TW201435342A - 鑑定水淬鋼筋之非破壞式檢測方法 - Google Patents

鑑定水淬鋼筋之非破壞式檢測方法 Download PDF

Info

Publication number
TW201435342A
TW201435342A TW102108618A TW102108618A TW201435342A TW 201435342 A TW201435342 A TW 201435342A TW 102108618 A TW102108618 A TW 102108618A TW 102108618 A TW102108618 A TW 102108618A TW 201435342 A TW201435342 A TW 201435342A
Authority
TW
Taiwan
Prior art keywords
steel bar
tested
hardness
quenched
water
Prior art date
Application number
TW102108618A
Other languages
English (en)
Other versions
TWI475224B (zh
Inventor
Peng-Ji Peng
zhong-jun Ji
xin-yan Lin
Original Assignee
Dragon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dragon Steel Corp filed Critical Dragon Steel Corp
Priority to TW102108618A priority Critical patent/TW201435342A/zh
Publication of TW201435342A publication Critical patent/TW201435342A/zh
Application granted granted Critical
Publication of TWI475224B publication Critical patent/TWI475224B/zh

Links

Landscapes

  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

一種鑑定水淬鋼筋之非破壞式檢測方法,以目視檢測、硬度測試及超音波檢測等非破壞方式對一待測鋼筋進行檢測,在目視檢測時透過顏色分布的情形進行初步判斷,並對於該待測鋼筋斷面之周圍與中心之間的硬度差異比對其是否高出一特定比例,且以超音波檢測該待測鋼筋及一熱軋鋼筋,分別取得該超音波經該待測鋼筋及該熱軋鋼筋後的波速及衰減值,將該兩者的波速與衰減值進行比較,若該波速及衰減值差異分別達到一特定值時,則可判定該待測鋼筋為一水淬鋼筋,藉以提供一非破壞、準確且快速鑑定之鑑定水淬鋼筋之非破壞式檢測方法。

Description

鑑定水淬鋼筋之非破壞式檢測方法
本發明係關於一種鑑定水淬鋼筋之檢測方法,尤指一種以非破壞方式鑑定水淬鋼筋之檢測方法。
一般工程鋼筋混凝土用之鋼筋,係利用轉爐或電爐煉製之鋼胚,經熱軋加工製造後形成一熱軋鋼筋,其中若於軋延製程結束前,依線上熱處理原理進行冷卻控制,並且利用鋼筋本身的餘熱回火,進而造成鋼筋表面形成一淬火後之回火組織,而所生產的鋼筋稱為一線上熱處理鋼筋,亦即俗稱的水淬鋼筋(成本較低),因此,現有水淬鋼筋是利用大量高壓冷卻水,在鋼筋軋延製程結束前,藉由淬火和鋼筋內部餘熱的回火,於鋼筋表層形成一高強度之回火麻田散鐵組織。
我國先前經921大地震後,目前國內對於耐震結構的要求也日趨嚴謹,其中由於現有水淬鋼筋的品質、耐震、加工及銲接等性質會造成工程人員的疑慮,因此,近年工程人員正積極研究有關熱軋鋼筋與水淬鋼筋之材料分析與鑑定方法。
現有鑑定水淬鋼筋的方法係透過一破壞式的金相試驗,其流程主要包含有切割、鑲埋、研磨、拋光及浸蝕等操作步驟,其中研磨又可再分為粗磨與細磨,而拋光又可再分為粗拋光與細拋光,且在研磨與拋光的操作步驟間,需以水徹底沖洗並於最後一道拋光後,經水洗外需要再以酒精沖洗及烘乾,其中若要 判定試片之清淨度並執行介在物之觀察時,可在拋光後水洗、酒精沖洗並烘乾後即可進行觀察,而若要觀察試片之顯微組織,則必須再做一浸蝕處理。
由上述的操作步驟可知,現有破壞式金相試驗的鑑定方法雖可明確得知鋼筋之組織,藉以鑑定是否為一水淬鋼筋,但現有破壞式金相試驗的鑑定方法則必須破壞鋼筋且耗時較長,僅能協助客戶於進料鋼筋時,確認是否為一水淬鋼筋,但若為重要結構之鋼筋混凝土結構安全鑑定(即鋼筋埋在在混凝土內),則無法透過切除鋼筋,甚至破壞鋼筋混凝土之主體結構的方式進行檢測,誠有加以改良之處。
因此,本發明有鑑於現有水淬鋼筋的破壞式金相試驗之鑑定方法於實際操作時的缺失及不足,特經過不斷的試驗與研究,終於發展出一種能改進現有缺失之本發明,本發明鑑定水淬鋼筋之非破壞式檢測方法,係採用一非破壞式的檢測方式,透過目視檢測、硬度試驗、現場金相試驗、超音波檢測等方式,準確且快速地對於鋼筋進行鑑定,藉以提供一非破壞、準確且快速鑑定之鑑定水淬鋼筋之非破壞式檢測方法之目的者。
基於上述目的,本發明所運用的技術手段係在於提供一鑑定水淬鋼筋之非破壞式檢測方法之第一較佳實施例,其係包含有以下的操作步驟:目視檢測:將一待測鋼筋的斷面經一研磨拋光後,利用一酸液進行侵蝕後,透過顏色分布的情形對於該待測鋼筋進行初步判斷;硬度測試:經過該目視檢測的操作步驟後,對於該 待測鋼筋的斷面進行硬度測試,並對於該待測鋼筋斷面之周圍與中心之間的硬度差異進行比對,判斷該待測鋼筋斷面的周圍硬度是否較中心硬度高出一特定比例;以及超音波檢測:以超音波檢測該待測鋼筋及一熱軋鋼筋,藉以分別取得該超音波經該待測鋼筋及該熱軋鋼筋後的波速及其衰減值,將該待測鋼筋的超音波波速與衰減值與該熱軋鋼筋的波速及衰減值進行比較,若該超音波波速以及衰減值差異分別達到一特定值時,則可判定該待測鋼筋為一水淬鋼筋。
進一步,該鑑定水淬鋼筋之非破壞式檢測方法在該硬度測試及該超音波檢測兩操作步驟之間加入一現場金相試驗,其中該現場金相試驗操作步驟係依序利用粗磨、細磨、拋光、浸蝕、印模複製、顯微觀察及取相等步驟,分析該待測鋼筋的組織差異,判斷該待測鋼筋是否為一水淬鋼筋。
再進一步,在現場金相試驗的操作步驟中,該拋光步驟係以一拋光絨布、鑽石膏及酒精除去該待測鋼筋的殘留磨痕,使其達到平整無磨痕之表面,藉以進行後續的操作步驟。
較佳地,在硬度測試的操作步驟中,係將該待測鋼筋的斷面區分為一上表面、一上熱影響區、一1/4T、一1/2T、一3/4T、一下熱影響區、及一下表面等七點區域位置,並採用十字方向進行硬度量測。
基於上述目的,本發明所運用的技術手段係在於提供一鑑定水淬鋼筋之非破壞式檢測方法之第二較佳實施例,其係包含有以下的操作步驟:現場金相試驗:在該現場金相試驗操作步驟係依序利用粗磨、細磨、拋光、浸蝕、印模複製、顯微觀察及取相等步驟 ,分析一待測鋼筋的組織差異,判斷該待測鋼筋是否為一水淬鋼筋;以及超音波檢測:以超音波檢測該待測鋼筋及一熱軋鋼筋,藉以分別取得該超音波經該待測鋼筋及該熱軋鋼筋後的波速及其衰減值,將該待測鋼筋的超音波波速與衰減值與該熱軋鋼筋的波速及衰減值進行比較,若該超音波波速以及衰減值差異分別達到一特定值時,則可判定該待測鋼筋為一水淬鋼筋。
進一步,在現場金相試驗的操作步驟中,該拋光步驟係以一拋光絨布、鑽石膏及酒精除去該待測鋼筋的殘留磨痕,使其達到平整無磨痕之表面,藉以進行後續的操作步驟。
藉由上述的技術手段,本發明鑑定水淬鋼筋之非破壞式檢測方法,主要係藉由水淬鋼筋與熱軋鋼筋組織及特性的不同,可透過目視檢測、硬度測試、現場金相試驗以及超音波檢測的方式,快速且準確地對於待測鋼筋進行檢測,藉以鑑定該待測鋼筋是否為一水淬鋼筋,再者,本發明鑑定水淬鋼筋之非破壞式檢測方法可根據客戶的需求,於上述的檢測步驟中選擇至少一種檢測步驟進行檢測,可相對提高檢測的實用性及靈活性,舉例來說,若待測鋼筋之客戶為一般盤商時,僅需以目視檢測或者硬度測試檢測步驟即可進行檢測,若待測鋼筋之客戶為土木技師或結構技師且欲對其結構(該待測鋼筋在結構體中)進行鑑定時,則必須透過現場金相試驗或者超音波檢測等檢測方式進行檢測,進而以一非破壞的方式進行鑑定該待測鋼筋是否為一水淬鋼筋。
圖1係本發明鑑定水淬鋼筋之非破壞式檢測方法第一較佳實施例 的操作流程方塊示意圖。
圖2係本發明鑑定水淬鋼筋之非破壞式檢測方法第二較佳實施例的操作流程方塊示意圖。
圖3係本發明鑑定水淬鋼筋之非破壞式檢測方法的水淬鋼筋斷面示意圖。
圖4係本發明鑑定水淬鋼筋之非破壞式檢測方法的熱軋鋼筋斷面圖。
圖5係本發明鑑定水淬鋼筋之非破壞式檢測方法在硬度測試時區分七點測試區域位置之示意圖。
圖6係本發明鑑定水淬鋼筋之非破壞式檢測方法在現場金相試驗時取得回火麻田散鐵組織之金相示意圖。
圖7係本發明鑑定水淬鋼筋之非破壞式檢測方法在現場金相試驗時取得肥粒鐵+波來鐵組織之金相示意圖。
表1係本發明鑑定水淬鋼筋之非破壞式檢測方法的水淬鋼筋斷面硬度之差異值。
表2係本發明鑑定水淬鋼筋之非破壞式檢測方法的熱軋鋼筋斷面硬度之差異值。
表3係本發明鑑定水淬鋼筋之非破壞式檢測方法的水淬鋼筋超音波檢測結果。
表4係本發明鑑定水淬鋼筋之非破壞式檢測方法的熱軋鋼筋超音波檢測結果。
為能詳細瞭解本發明的技術特徵及實用功效,並可依照說明書的內容來實施,玆進一步以如圖式所示(如圖1及2所示)的較佳實施例,詳細說明如后: 本發明所提供的鑑定水淬鋼筋之非破壞式檢測方法,主要係根據熱軋鋼筋與水淬鋼筋之製程和組織的差異,而透過數種非破壞的檢測方式,藉以鑑定待測鋼筋為一水淬鋼筋或一熱軋鋼筋,其操作流程包含有:(A)、目視檢測:由於水淬鋼筋的斷面周圍為一回火麻田散鐵組織,而中心為肥粒鐵+波來鐵,因此會如圖3所示呈現兩種不同的顏色,而熱軋鋼筋的斷面多為肥粒鐵+波來鐵,其如圖4所示顏色較均勻且非兩種顏色,因此,本發明在目視檢測的操作步驟中係將一待測鋼筋的斷面經一研磨拋光後,利用一酸液進行侵蝕後,即可透過顏色分布的情形進行是否為水淬鋼筋的初步判斷;(B)、硬度測試:經過該目視檢測的操作步驟後,由於水淬鋼筋的斷面周圍是回火麻田散鐵組織,而中心是肥粒鐵+波來鐵,故其周圍與中心的硬度有所差異,反觀熱軋鋼筋因其斷面多為肥粒鐵+波來鐵,故其斷面周圍與中心間的硬度差異較小,因此,若斷面周圍硬度較中心高(如40%以上)則可判定該待測鋼筋為一水淬鋼筋,其中本發明進行硬度測試的方式係如圖5所示,首先將該待測鋼筋的斷面區分為一上表面(1)、一上熱影響區(2)、一1/4T(3)、一1/2T(4)、一3/4T(5)、一下熱影響區(6)、及一下表面(7)等七點區域位置,並採用十字方向進行硬度量測(即兩個方向),其硬度試驗結果係如表1所示,由表1結果可知現有水淬鋼筋斷面的硬度差異,其周圍硬度較中心硬度最高可達75%;表1、水淬鋼筋斷面硬度之差異值
另外,熱軋鋼筋斷面硬度試驗結果係如表2所示,由表2結果可知熱軋鋼筋斷面硬度之差異,其周圍硬度較中心硬度最高達2%,結果顯示硬度間差異較小,因此,可透過硬度測試的方式經由周圍與中心硬度差異的大小來判斷待測鋼筋係為一水淬鋼筋或一熱軋鋼筋;
(C)、現場金相試驗:依序利用粗磨、細磨、拋光 、浸蝕、印模複製、顯微觀察及取相等操作步驟,以分析待測鋼筋的組織差異,其中在印模複製時係將一複製膜以軟化劑滴入後貼於該待測鋼筋的工件表面,靜置若干分鐘後取下,並以顯微鏡確認拓印是否成功,進一步,在上述拋光的操作步驟中,係以一拋光絨布、鑽石膏(主成份為碳,5 micron)及酒精除去該待測鋼筋的殘留磨痕,使其達到平整無磨痕如鏡面之表面,藉以進行後續的操作步驟,其中當發現如圖5所示之回火麻田散鐵組織時,則可判斷該待測鋼筋為一水淬鋼筋,再者,若發現如圖7所示之肥粒鐵+波來鐵組織時,則可判斷該待測鋼筋為一熱軋鋼筋而非一水淬鋼筋;以及(D)、超音波檢測:由於水淬鋼筋斷面周圍是回火麻田散鐵組織,其細化組織可改變超音波之訊號,尤其是超音波之波速與衰減,因此,本發明利用超音波訊號的改變,可間接得知該待測鋼筋是否為一水淬鋼筋,其中超音波衰減之定義為單位距離(公厘;mm)損失之音壓值(dB),其公式如下所示:衰減值(dB/mm)=20 log(B1/Bn)/2(n-1)d,其中B1為第一支超音波背面回波(%),Bn為第n支超音波背面回波(%),d為檢測之厚度(公厘;mm),其中由表3及4的超音波檢測結果可知,水淬鋼筋的超音波波速較快且衰減較小,與熱軋鋼筋的超音波檢測結果比較後,可發現兩者間的超音波波速差異達1.1%,且超音波的衰減差異達47.7%,因此,由超音波訊號的改變,可鑑定該待測鋼筋為一水淬鋼筋或一熱軋鋼筋。
藉由上述的技術手段,本發明鑑定水淬鋼筋之非破壞式檢測方法,主要係藉由水淬鋼筋與熱軋鋼筋組織及特性的不同,可透過目視檢測、硬度測試、現場金相試驗以及超音波檢測的方式,快速且準確地對於待測鋼筋進行檢測,藉以鑑定該待測鋼筋是否為一水淬鋼筋,再者,本發明鑑定水淬鋼筋之非破壞式檢測方法可根據客戶的需求,於上述的檢測步驟中選擇至少一種檢測步驟進行檢測,可相對提高檢測的實用性及靈活性,舉例來說,若待測鋼筋之客戶為一般盤商時,僅需以目視檢測或者硬度測試檢測步驟即可進行檢測,若待測鋼筋之客戶為土木技師或結構技師且欲對其結構(該待測鋼筋在結構體中)進行鑑定時,則必須透過現場金相試驗或者超音波檢測等檢測方式進行檢測,進而以一非破壞的方式進行鑑定該待測鋼筋是否為一水淬鋼筋。
以上所述,僅是本發明的較佳實施例,並非對本發 明作任何形式上的限制,任何所屬技術領域中具有通常知識者,若在不脫離本發明所提技術方案的範圍內,利用本發明所揭示技術內容所作出局部更動或修飾的等效實施例,並且未脫離本發明的技術方案內容,均仍屬於本發明技術方案的範圍內。

Claims (6)

  1. 一種鑑定水淬鋼筋之非破壞式檢測方法,其係包含有以下的操作步驟:目視檢測:將一待測鋼筋的斷面經一研磨拋光後,利用一酸液進行侵蝕後,透過顏色分布的情形對於該待測鋼筋進行初步判斷;硬度測試:經過該目視檢測的操作步驟後,對於該待測鋼筋的斷面進行硬度測試,並對於該待測鋼筋斷面之周圍與中心之間的硬度差異進行比對,判斷該待測鋼筋斷面的周圍硬度是否較中心硬度高出一特定比例;以及超音波檢測:以超音波檢測該待測鋼筋及一熱軋鋼筋,藉以分別取得該超音波經該待測鋼筋及該熱軋鋼筋後的波速及其衰減值,將該待測鋼筋的超音波波速與衰減值與該熱軋鋼筋的波速及衰減值進行比較,若該超音波波速以及衰減值差異分別達到一特定值時,則可判定該待測鋼筋為一水淬鋼筋。
  2. 如請求項1所述之鑑定水淬鋼筋之非破壞式檢測方法,其中該鑑定水淬鋼筋之非破壞式檢測方法在該硬度測試及該超音波檢測兩操作步驟之間加入一現場金相試驗,其中該現場金相試驗操作步驟係依序利用粗磨、細磨、拋光、浸蝕、印模複製、顯微觀察及取相等步驟,分析該待測鋼筋的組織差異,判斷該待測鋼筋是否為一水淬鋼筋。
  3. 如請求項2所述之鑑定水淬鋼筋之非破壞式檢測方法,其中在現場金相試驗的操作步驟中,該拋光步驟係以一拋光絨布、鑽石膏及酒精除去該待測鋼筋的殘留磨痕, 使其達到平整無磨痕之表面,藉以進行後續的操作步驟。
  4. 如請求項1、2或3所述之鑑定水淬鋼筋之非破壞式檢測方法,其中在硬度測試的操作步驟中,係將該待測鋼筋的斷面區分為一上表面、一上熱影響區、一1/4T、一1/2T、一3/4T、一下熱影響區、及一下表面等七點區域位置,並採用十字方向進行硬度量測。
  5. 一種鑑定水淬鋼筋之非破壞式檢測方法,其係包含有以下的操作步驟:現場金相試驗:在該現場金相試驗操作步驟係依序利用粗磨、細磨、拋光、浸蝕、印模複製、顯微觀察及取相等步驟,分析一待測鋼筋的組織差異,判斷該待測鋼筋是否為一水淬鋼筋;以及超音波檢測:以超音波檢測該待測鋼筋及一熱軋鋼筋,藉以分別取得該超音波經該待測鋼筋及該熱軋鋼筋後的波速及其衰減值,將該待測鋼筋的超音波波速與衰減值與該熱軋鋼筋的波速及衰減值進行比較,若該超音波波速以及衰減值差異分別達到一特定值時,則可判定該待測鋼筋為一水淬鋼筋。
  6. 如請求項5所述之鑑定水淬鋼筋之非破壞式檢測方法,其中在現場金相試驗的操作步驟中,該拋光步驟係以一拋光絨布、鑽石膏及酒精除去該待測鋼筋的殘留磨痕,使其達到平整無磨痕之表面,藉以進行後續的操作步驟。
TW102108618A 2013-03-12 2013-03-12 鑑定水淬鋼筋之非破壞式檢測方法 TW201435342A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102108618A TW201435342A (zh) 2013-03-12 2013-03-12 鑑定水淬鋼筋之非破壞式檢測方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102108618A TW201435342A (zh) 2013-03-12 2013-03-12 鑑定水淬鋼筋之非破壞式檢測方法

Publications (2)

Publication Number Publication Date
TW201435342A true TW201435342A (zh) 2014-09-16
TWI475224B TWI475224B (zh) 2015-03-01

Family

ID=51943322

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102108618A TW201435342A (zh) 2013-03-12 2013-03-12 鑑定水淬鋼筋之非破壞式檢測方法

Country Status (1)

Country Link
TW (1) TW201435342A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104730222A (zh) * 2015-03-27 2015-06-24 交通运输部公路科学研究所 一种钢筋混凝土构件锈蚀开裂后钢筋锈蚀度无损检测方法
CN111024533A (zh) * 2019-12-06 2020-04-17 阳江十八子刀剪制品有限公司 一种刀剪钢材检测方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4576048A (en) * 1982-09-30 1986-03-18 New York Institute Of Technology Method and apparatus for ultrasonic inspection of a solid workpiece
US4890496A (en) * 1988-09-07 1990-01-02 Electric Power Research Institute Method and means for detection of hydrogen attack by ultrasonic wave velocity measurements
JP3694502B2 (ja) * 2002-11-18 2005-09-14 黒崎播磨株式会社 耐火物の物性検査方法とその装置
TWI265290B (en) * 2005-04-22 2006-11-01 Univ Nat Central Method for testing steel plate reinforcement of structure
JP5006227B2 (ja) * 2008-02-20 2012-08-22 大成建設株式会社 合成部材の耐火性能評価方法
TW201111774A (en) * 2009-09-18 2011-04-01 Dragon Steel Corp Non-destructive strength testing method for refractory materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104730222A (zh) * 2015-03-27 2015-06-24 交通运输部公路科学研究所 一种钢筋混凝土构件锈蚀开裂后钢筋锈蚀度无损检测方法
CN111024533A (zh) * 2019-12-06 2020-04-17 阳江十八子刀剪制品有限公司 一种刀剪钢材检测方法

Also Published As

Publication number Publication date
TWI475224B (zh) 2015-03-01

Similar Documents

Publication Publication Date Title
US20190145933A1 (en) Methods of using nondestructive material inspection systems
Beretta et al. From atmospheric corrosive attack to crack propagation for A1N railway axles steel under fatigue: Damage process and detection
CN103868830A (zh) 轧辊表层晶粒度的快速检测评价方法
Xing et al. Quantitative metal magnetic memory reliability modeling for welded joints
CN104596472B (zh) 一种乙烯裂解炉管磁记忆检测及安全评估方法
Rusk et al. Fatigue life prediction of corrosion-damaged high-strength steel using an equivalent stress riser (ESR) model: Part I: Test development and results
TW201435342A (zh) 鑑定水淬鋼筋之非破壞式檢測方法
Xu et al. Detection, distinction, and quantification of pipeline surface and subsurface defects by DC magnetization scanning induction thermography
CN104359726A (zh) 一种快速测量穿水后脱碳层检验方法
Nosov et al. Nondestructive testing of the quality of blanks for the fabrication of hot-rolled strips using the acoustic-emission method
CN103323304A (zh) 用于热损伤巴克豪森检测灵敏度校验的标准试样制作方法
Hu et al. Variations in surface residual compressive stress and magnetic induction intensity of 304 stainless steel
Souridi et al. Simple digital image processing applied to thermographic data for the detection of cracks via eddy current thermography
Yin et al. Determination of grain size in deep drawing steel sheet by laser ultrasonics
CN113340903B (zh) 一种轧制钢板分层的快速检测方法
Stančeková et al. Investigation of defects in forging tools by nondestructive detection method
Raude et al. Advances in carbon steel weld inspection using tangential eddy current array
Bellanova et al. A multidisciplinary strategy for the inspection of historical metallic tie-rods: the Milan Cathedral case study
He et al. Grain size measurement in steel by laser ultrasonics based on time domain energy
JP6077512B2 (ja) 渦電流検査法を用いた伝熱管腐食量予測方法
Nemoto et al. 3D observation of micro-cracks as cleavage fracture initiation site in ferrite-pearlite steel
Zhang et al. Detection of fatigue microcrack using eddy current pulsed thermography
CN102721620B (zh) 一种15CrMo钢珠光体球化等级的现场检测方法
Bahn et al. Manufacturing of representative axial stress corrosion cracks in tube specimens for eddy current testing
JP5794927B2 (ja) 浸炭深さ評価方法及び配管の寿命評価方法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees