TW201432807A - Silicon wafer cleaning method - Google Patents

Silicon wafer cleaning method Download PDF

Info

Publication number
TW201432807A
TW201432807A TW102104625A TW102104625A TW201432807A TW 201432807 A TW201432807 A TW 201432807A TW 102104625 A TW102104625 A TW 102104625A TW 102104625 A TW102104625 A TW 102104625A TW 201432807 A TW201432807 A TW 201432807A
Authority
TW
Taiwan
Prior art keywords
cleaning
wafer
cleaning process
deionized water
particle
Prior art date
Application number
TW102104625A
Other languages
Chinese (zh)
Inventor
Jun Xia
Hui Lu
Li-Sen Qian
Chee-Wei Tan
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW102104625A priority Critical patent/TW201432807A/en
Publication of TW201432807A publication Critical patent/TW201432807A/en

Links

Abstract

A silicon wafer cleaning method is provided. Firstly, a silicon wafer is provided. Then, a polymer cleaning step is performed to clean a surface of the silicon wafer. After the polymer cleaning step, a deionized water/carbon dioxide gas decharging step is performed, so that the charges accumulated on the surface of the silicon wafer can be instantly removed. After the deionized water/carbon dioxide gas decharging step, two or more particle removing steps are performed. In addition, an air-jet step is performed during the time interval between every two sub-steps of the single particle removing step. Consequently, the cleaning efficiency of removing the particles will be enhanced.

Description

矽晶圓清洗方法 矽 wafer cleaning method

本發明是有關於一種晶圓清洗方法,且特別是有關於一種矽晶圓的濕式清洗方法。 The present invention relates to a wafer cleaning method, and more particularly to a wet cleaning method for a tantalum wafer.

在半導體晶圓上的積體電路的製造過程中,包括蝕刻、氧化、沉積、去光阻、以及化學機械研磨等每一個步驟,都是晶圓表面污染的來源,因此需要反覆的清洗。而元件尺寸及閘極氧化層厚度的持續縮小,讓晶圓表面的潔淨程度要求更為嚴苛。 In the manufacturing process of the integrated circuit on the semiconductor wafer, each step including etching, oxidation, deposition, photoresist removal, and chemical mechanical polishing is a source of wafer surface contamination, and thus requires repeated cleaning. The continued reduction in component size and gate oxide thickness makes wafer surface cleanliness more demanding.

表面潔淨的主要目的在於清除所有的微量汙染物,例如有機物、聚合物、金屬、微粒等,並控制表面形成的氧化薄膜。 The main purpose of surface cleaning is to remove all trace contaminants such as organic matter, polymers, metals, particles, etc., and control the oxide film formed on the surface.

一般應用於清洗具有閘極結構的晶圓表面的步驟包含:先利用含有硫酸/臭氧混合物(sulfuric acid/ozone mixture,簡稱SOM)來對晶圓表面進行清洗,之後進行標準化第一清洗(standard clean 1,簡稱SC1)與空氣噴射(Air-Jet)處理等。然而當晶圓經過SOM清洗之後,晶圓表面容易累積大量電荷,且後續之其他清洗步驟亦會累積許多電荷於晶圓表面。而當晶圓表面電荷超出飽和臨界點時,將產生電荷的火山效應,進而導致晶圓表面之結構被破壞。 Generally, the step of cleaning the surface of the wafer having the gate structure comprises: first cleaning the surface of the wafer with a sulfuric acid/ozone mixture (SOM), and then performing standardized first cleaning (standard clean) 1, referred to as SC1) and air-jet treatment (Air-Jet). However, when the wafer is cleaned by SOM, the surface of the wafer tends to accumulate a large amount of charge, and subsequent cleaning steps accumulate a lot of charge on the surface of the wafer. When the surface charge of the wafer exceeds the saturation critical point, a volcanic effect of charge is generated, which in turn causes the structure of the wafer surface to be destroyed.

有鑑於此,有必要提出一種新的矽晶圓清洗方法,用以提升矽晶圓的清洗效率與矽晶圓上元件的良率。 In view of this, it is necessary to propose a new silicon wafer cleaning method to improve the cleaning efficiency of the germanium wafer and the yield of the components on the wafer.

本發明提出一種矽晶圓清洗方法,以提升清洗後矽晶圓上的元件良率。 The present invention provides a silicon wafer cleaning method to improve component yield on a germanium wafer after cleaning.

本發明提出一種矽晶圓清洗方法,以提升矽晶圓的清洗效率。 The invention provides a silicon wafer cleaning method to improve the cleaning efficiency of the germanium wafer.

為達上述優點或其他優點,本發明之一實施例提出一種矽晶圓清洗方法,包括:提供矽晶圓;對矽晶圓之表面進行聚合物清洗製程;於聚合物清洗製程後對矽晶圓之表面進行去離子水加二氧化碳去電荷製程;以及於去離子水加二氧化碳去電荷製程後對矽晶圓之表面進行微粒清洗製程與空氣噴射處理。 In order to achieve the above advantages or other advantages, an embodiment of the present invention provides a method for cleaning a silicon wafer, comprising: providing a germanium wafer; performing a polymer cleaning process on the surface of the germanium wafer; and twinning after the polymer cleaning process The surface of the circle is subjected to a deionized water plus carbon dioxide de-charge process; and after the deionized water is added with a carbon dioxide de-charge process, the surface of the wafer is subjected to a particle cleaning process and an air jet process.

本發明另提出一種矽晶圓清洗方法,包括:提供矽晶圓;對矽晶圓之表面進行聚合物清洗製程;於聚合物清洗製程後對矽晶圓之表面進行第一微粒清洗製程;於第一微粒清洗製程後對矽晶圓之表面進行空氣噴射處理;以及於空氣噴射處理後對矽晶圓之表面進行第二微粒清洗製程。 The invention further provides a method for cleaning a silicon wafer, comprising: providing a germanium wafer; performing a polymer cleaning process on the surface of the germanium wafer; and performing a first particle cleaning process on the surface of the germanium wafer after the polymer cleaning process; After the first particle cleaning process, the surface of the germanium wafer is subjected to air jet treatment; and after the air jet process, the second particle cleaning process is performed on the surface of the germanium wafer.

綜上所述,本發明之矽晶圓清洗方法主要係於進行聚合物清洗製程之後,即接續進行去離子水加二氧化碳去電荷製程。或是將置次聚合物清洗製程的時間進行拆解並分次進行,並於首次聚合物清洗製程之後,即接續進行去離子水加二氧化碳去電荷製程,而後再重複進行聚合物清洗製程。如此可即時去除累積於晶圓表面上之電荷,避免因後續清洗製程而繼續累積電荷於晶圓表面,從而導致電荷之火山效應問題。此外本發明之矽晶圓清洗方法亦將單次微粒清洗製程分次進行,並於兩次微粒清洗製程之間插入空氣噴射處理。如此的製程設計可提升微粒清洗製程之清洗效率,以達成完全去除附著於晶圓表面上之微粒子。 In summary, the wafer cleaning method of the present invention is mainly after the polymer cleaning process, that is, the deionized water plus carbon dioxide de-charge process is continued. Alternatively, the time of the polymer cleaning process is disassembled and divided, and after the first polymer cleaning process, the deionized water is added to the carbon dioxide decharge process, and then the polymer cleaning process is repeated. In this way, the charge accumulated on the surface of the wafer can be removed immediately, and the accumulation of charge on the surface of the wafer can be continued due to the subsequent cleaning process, thereby causing the volcanic effect of the charge. In addition, the wafer cleaning method of the present invention also performs a single particle cleaning process in stages, and inserts an air jet process between the two particle cleaning processes. Such a process design can improve the cleaning efficiency of the particle cleaning process to achieve complete removal of the particles attached to the surface of the wafer.

為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下。 The above and other objects, features and advantages of the present invention will become more <RTIgt;

210‧‧‧提供矽晶圓 210‧‧‧ Providing silicon wafers

220a、220b‧‧‧進行聚合物清洗製程 220a, 220b‧‧‧ Polymer cleaning process

232a、232b‧‧‧進行高溫去離子水清洗製程 232a, 232b‧‧‧High temperature deionized water cleaning process

234a、234b、260‧‧‧進行去離子水加二氧化碳去電荷製程 234a, 234b, 260‧‧‧ Deionized water plus carbon dioxide decharge process

240a、240b‧‧‧進行微粒清洗製程 240a, 240b‧‧‧ for particle cleaning process

250a、250b‧‧‧進行空氣噴射處理 250a, 250b‧‧‧Air jet treatment

20‧‧‧矽晶圓 20‧‧‧矽 wafer

21、22、25‧‧‧矽閘極結構 21, 22, 25‧ ‧ 矽 gate structure

23‧‧‧聚合物 23‧‧‧ polymer

24‧‧‧微粒子 24‧‧‧Microparticles

圖1A為本發明之一實施例之矽晶圓清洗方法流程示意圖。 1A is a schematic flow chart of a wafer cleaning method according to an embodiment of the present invention.

圖1B為利用圖1A之矽晶圓清洗方法所清洗之矽晶圓結構示意圖。 FIG. 1B is a schematic view showing the structure of a germanium wafer cleaned by the wafer cleaning method of FIG. 1A.

圖2A為本發明之另一實施例之矽晶圓清洗方法流程示意圖。 2A is a schematic flow chart of a wafer cleaning method according to another embodiment of the present invention.

圖2B係為根據圖2A之矽晶圓清洗方法流程的步驟220a~234b所對應之矽晶圓表面之電荷累積量的變化圖。 2B is a graph showing changes in charge accumulation amount on the surface of the germanium wafer corresponding to steps 220a to 234b of the wafer cleaning method flow of FIG. 2A.

圖3A為本發明之另一實施例之矽晶圓清洗方法流程示意圖。 3A is a schematic flow chart of a wafer cleaning method according to another embodiment of the present invention.

圖3B為根據圖3A之矽晶圓清洗方法流程的步驟240a~250b所對應之微粒子移除效率的變化圖。 FIG. 3B is a graph showing changes in particle removal efficiency corresponding to steps 240a to 250b of the wafer cleaning method flow of FIG. 3A.

圖3C為對晶圓表面進行單次微粒清洗製程之蝕刻率與時間關係圖。 Figure 3C is a graph showing the etch rate versus time for a single particle cleaning process on the wafer surface.

圖1A為本發明之一實施例之矽晶圓清洗方法流程示意圖。圖1B為利用圖1A之矽晶圓清洗方法所清洗之矽晶圓結構示意圖。請合併參閱圖1A與圖1B。本實施例之矽晶圓清洗方法包括:提供矽晶圓(步驟210),其中矽晶圓表面可以是形成有矽閘極結構21、22、25的矽晶圓20表面。接著對矽晶圓20之表面進行聚合物清洗製程(步驟220a)。上述聚合物清洗製程(步驟220a)可以是利用含有硫酸/臭氧混合物(sulfuric acid/ozone mixture,簡稱SOM)之清洗劑來對矽晶圓20表面進行清洗的製程(以下皆簡稱為SOM清洗),用以去除矽晶圓20表面上因之前製程所產生的聚合物23。 1A is a schematic flow chart of a wafer cleaning method according to an embodiment of the present invention. FIG. 1B is a schematic view showing the structure of a germanium wafer cleaned by the wafer cleaning method of FIG. 1A. Please refer to FIG. 1A and FIG. 1B together. The silicon wafer cleaning method of this embodiment includes: providing a germanium wafer (step 210), wherein the germanium wafer surface may be a surface of the germanium wafer 20 on which the germanium gate structures 21, 22, 25 are formed. A surface cleaning process is then performed on the surface of the germanium wafer 20 (step 220a). The polymer cleaning process (step 220a) may be a process of cleaning the surface of the germanium wafer 20 by using a sulfuric acid/ozone mixture (SOM) cleaning agent (hereinafter referred to as SOM cleaning). It is used to remove the polymer 23 produced on the surface of the tantalum wafer 20 by the previous process.

於聚合物清洗製程(步驟220a)後,則對矽晶圓20表面依序進行高溫去離子水清洗製程(步驟232a)與去離子水加二氧化碳去電荷製程(步驟234a)。並於進行去離子水加二氧化碳去電荷製程後對矽晶圓20之表面依序進行微粒清洗製程(步驟240a)與空氣噴射處理(Air-Jet)(步驟250a)。上 述高溫去離子水的溫度例如是70度C,上述去離子水加二氧化碳去電荷的製程溫度例如是室溫。上述微粒清洗製程(步驟240a)例如是標準化第一清洗(standard clean 1,簡稱SC1)製程。上述SC1清洗製程一般係利用氫氧化銨(NH4OH)、過氧化氫(H2O2)與去離子水(DI water)之混合物,以氧化矽晶圓20表面的矽原子並輕微蝕刻矽晶圓20表面,從而移除附著於矽晶圓20表面之微粒子24。上述空氣噴射處理(步驟250a)係用以去除殘留於矽晶圓20表面之氧化矽與微粒子24,並乾燥矽晶圓20表面。 After the polymer cleaning process (step 220a), the surface of the germanium wafer 20 is sequentially subjected to a high temperature deionized water cleaning process (step 232a) and a deionized water plus carbon dioxide decharge process (step 234a). After performing the deionized water plus carbon dioxide de-charge process, the surface of the germanium wafer 20 is sequentially subjected to a particle cleaning process (step 240a) and air jet processing (Air-Jet) (step 250a). The temperature of the high-temperature deionized water is, for example, 70 ° C, and the process temperature of the deionized water plus carbon dioxide de-charge is, for example, room temperature. The above-described particle cleaning process (step 240a) is, for example, a standard clean 1 (SC1) process. The above SC1 cleaning process generally uses a mixture of ammonium hydroxide (NH 4 OH), hydrogen peroxide (H 2 O 2 ) and deionized water (DI water) to oxidize germanium atoms on the surface of the germanium wafer 20 and etch it slightly. The surface of the wafer 20 is removed to remove the particles 24 attached to the surface of the germanium wafer 20. The air jet treatment (step 250a) is for removing yttrium oxide and fine particles 24 remaining on the surface of the tantalum wafer 20 and drying the surface of the tantalum wafer 20.

上述製程流程設計的理由為:當矽晶圓20表面歷經了上述聚合物清洗製程(步驟220a)之後,矽晶圓20表面的溫度約為150度C左右,因此於較佳的情況下,則需先利用高溫去離子水來清洗矽晶圓20表面,以避免矽晶圓20表面的溫度驟降而致使產品出現缺陷。此外當矽晶圓20經過上述聚合物清洗製程(步驟220a)之後,矽晶圓20表面容易累積大量電荷。因此於進行高溫去離子水清洗製程(步驟232a)之後,即立即進行去離子水加二氧化碳去電荷製程(步驟234a),以即時去除矽晶圓20表面所累積之電荷。如此則可避免因後續清洗製程而繼續累積電荷於矽晶圓20表面,從而發生電荷的火山效應而破壞矽晶圓20表面上的矽閘極結構21、22、25。 The reason for the above process flow design is that after the surface of the germanium wafer 20 has undergone the above polymer cleaning process (step 220a), the temperature of the surface of the germanium wafer 20 is about 150 degrees C, so in the preferred case, High-temperature deionized water needs to be used to clean the surface of the germanium wafer 20 to avoid a sudden drop in temperature on the surface of the germanium wafer 20, resulting in defects in the product. In addition, after the germanium wafer 20 passes through the above polymer cleaning process (step 220a), the surface of the germanium wafer 20 tends to accumulate a large amount of electric charge. Therefore, after the high temperature deionized water cleaning process (step 232a) is performed, the deionized water plus carbon dioxide decharge process is immediately performed (step 234a) to instantly remove the charge accumulated on the surface of the germanium wafer 20. In this way, it is possible to avoid accumulating charges on the surface of the germanium wafer 20 due to the subsequent cleaning process, thereby causing a volcanic effect of charges to destroy the germanium gate structures 21, 22, 25 on the surface of the germanium wafer 20.

請參閱圖2A,於本發明之另一實施例中,首先提供矽晶圓(步驟210),接著可於依序進行上述聚合物清洗製程(步驟220a)、高溫去離子水清洗製程(步驟232a)與去離子水加二氧化碳去電荷製程(步驟234a)之後,再依序重複進行聚合物清洗製程(步驟220b)、高溫去離子水清洗製程(步驟232b)與去離子水加二氧化碳去電荷製程(步驟234b)至少一個循環,並可依製程需求而進行次數調整,之後再接續進行上述之微粒清洗製程(步驟240a)與空氣噴射處理(步驟250a)。 Referring to FIG. 2A, in another embodiment of the present invention, a germanium wafer is first provided (step 210), and then the polymer cleaning process (step 220a) and the high temperature deionized water cleaning process (step 232a) may be sequentially performed. After the deionized water is added to the carbon dioxide decharge process (step 234a), the polymer cleaning process (step 220b), the high temperature deionized water cleaning process (step 232b), and the deionized water plus carbon dioxide decharge process are sequentially repeated. Step 234b) at least one cycle, and the number of times can be adjusted according to the process requirements, and then the particle cleaning process (step 240a) and the air jet process (step 250a) are continued.

上述製程流程的設計,相當於將單次的聚合物清洗製程分次完成,例如分成步驟220a與步驟220b之聚合物清洗製程。並於首次之聚合物清洗製程後,例如於完成步驟220a後,即先進行了去離子水加二氧化碳 去電荷製程,以即時去除矽晶圓表面所累積之電荷。或亦可於每次進行聚合物清洗製程之後,皆進行去離子水加二氧化碳去電荷製程。如此可以更完整的去除於進行聚合物清洗製程後,累積於矽晶圓表面上的電荷。 The design of the above process flow is equivalent to completing a single polymer cleaning process, for example, into a polymer cleaning process of steps 220a and 220b. And after the first polymer cleaning process, for example, after completing step 220a, deionized water plus carbon dioxide is first applied. The charge process is removed to instantly remove the charge accumulated on the surface of the germanium wafer. Alternatively, deionized water plus carbon dioxide de-charge process may be performed after each polymer cleaning process. This allows for a more complete removal of the charge accumulated on the surface of the germanium wafer after the polymer cleaning process.

圖2B係為根據圖2A之矽晶圓清洗方法流程的步驟220a~234b所對應之矽晶圓表面之電荷累積量的變化圖。圖2B中縱軸為電荷累積量,橫軸為各個清洗製程進行的時間。此外於圖2B中之聚合物清洗(步驟220a、220b)係以SOM清洗的數據作為解說範例。於圖2B中可看出,於每次進行聚合物清洗製程(步驟220a、220b)與高溫去離子水製程(步驟232a、232b)之後,並接著進行去離子水加二氧化碳去電荷製程(步驟234a、234b),可以有效去除累積於矽晶圓表面上的電荷。如此可有效避免矽晶圓表面的電荷累積至飽和程度(以水平線示意於圖2B中)而發生電荷的火山效應。 2B is a graph showing changes in charge accumulation amount on the surface of the germanium wafer corresponding to steps 220a to 234b of the wafer cleaning method flow of FIG. 2A. In Fig. 2B, the vertical axis represents the amount of charge accumulation, and the horizontal axis represents the time taken for each cleaning process. Further, the polymer cleaning (steps 220a, 220b) in Fig. 2B is based on the SOM cleaning data as an illustrative example. As can be seen in Figure 2B, each time the polymer cleaning process (steps 220a, 220b) and the high temperature deionized water process (steps 232a, 232b) are performed, then a deionized water plus carbon dioxide decharge process is performed (step 234a). , 234b), can effectively remove the charge accumulated on the surface of the germanium wafer. This effectively avoids the accumulation of charge on the surface of the wafer to saturation (illustrated in Figure 2B as a horizontal line) and the volcanic effect of the charge.

請參閱圖3A,於本發明之另一實施例中,首先提供矽晶圓(步驟210),並依序進行上述聚合物清洗製程(步驟220a)、高溫去離子水清洗製程(步驟232a)與去離子水加二氧化碳去電荷製程(步驟234a),接著於依序完成微粒清洗製程(步驟240a)與空氣噴射處理(步驟250a)之後,可再重複進行上述微粒清洗製程(步驟240b)與空氣噴射處理(步驟250b)至少一個循環,並可依製程需求而進行次數調整。最後再進行去離子水加二氧化碳去電荷製程(步驟260),以去除殘留於矽晶圓表面之電荷。於圖3A中,在微粒清洗製程(步驟240a)之前的清洗步驟,係以圖1A之流程作為解說範例,但亦可適用圖2A之流程,本發明不以此為限。 Referring to FIG. 3A, in another embodiment of the present invention, a germanium wafer is first provided (step 210), and the polymer cleaning process (step 220a) and the high temperature deionized water cleaning process (step 232a) are sequentially performed. Deionized water is added to the carbon dioxide de-charge process (step 234a), and then after the particle cleaning process (step 240a) and the air jet process (step 250a) are sequentially performed, the above-mentioned particle cleaning process (step 240b) and air injection may be repeated. Process (step 250b) at least one cycle and adjust the number of times as required by the process. Finally, a deionized water plus carbon dioxide decharge process is performed (step 260) to remove the charge remaining on the surface of the germanium wafer. In FIG. 3A, the cleaning step before the particle cleaning process (step 240a) is illustrated by the flow of FIG. 1A, but the flow of FIG. 2A may also be applied, and the invention is not limited thereto.

上述製程流程的設計目的,主要是為了解決單次微粒清洗製程所能形成之氧化矽的深度不夠深到足以能完全蝕刻剝除矽晶圓表面上的微粒子;或是解決欲氧化矽晶圓並形成一定深度之氧化矽,則單次微粒清洗製程所需耗費的製程時間太長,而致使製程效率過低的問題。因此本發明係將單次微粒清洗製程所需的時間分為(或均分為)二或大於二,例如分成 步驟240a與步驟240b之微粒清洗製程。意即本發明係利用分次氧化矽晶圓表面的方法,以達成完全去除附著於矽晶圓表面之微粒子,並提升清洗效率。而於每次完成SC1清洗之後,搭配空氣噴射處理。並於進行兩個循環或以上之SC1清洗與空氣噴射處理之後,最後再進行去離子水加二氧化碳去電荷製程(步驟260),並完成整個清洗流程。 The above process flow is designed to solve the problem that the cerium oxide formed by the single particle cleaning process is not deep enough to completely etch the particles on the surface of the ruthenium wafer; When a certain depth of cerium oxide is formed, the processing time required for the single-particle cleaning process is too long, resulting in a problem of low process efficiency. Therefore, the present invention divides (or divides) the time required for a single particle cleaning process into two or more than two, for example, The microparticle cleaning process of step 240a and step 240b. That is, the present invention utilizes a method of dividing the surface of the yttrium oxide wafer to achieve complete removal of the particles attached to the surface of the ruthenium wafer, and to improve the cleaning efficiency. After each completion of the SC1 cleaning, it is combined with air jet treatment. After two or more cycles of SC1 cleaning and air jet treatment, the deionized water plus carbon dioxide decharge process is finally performed (step 260), and the entire cleaning process is completed.

請參閱圖3B。圖3B為根據圖3A之矽晶圓清洗方法流程的步驟240a~250b所對應之微粒子移除效率的變化圖。其中上述微粒清洗製程(步驟240a、240b)係以SC1清洗製程的數據為解說範例。於圖3B中,縱軸為微粒子的移除率,或稱為表面蝕刻率;橫軸為各個清洗製程進行的時間。由圖3B中可看出,將單次微粒清洗製程分次進行,並於每次完成SC1清洗之後,搭配空氣噴射處理(步驟250a、250b)。如此可有效提升矽晶圓表面的微粒子移除率。 Please refer to Figure 3B. FIG. 3B is a graph showing changes in particle removal efficiency corresponding to steps 240a to 250b of the wafer cleaning method flow of FIG. 3A. The above-mentioned particle cleaning process (steps 240a, 240b) is an example of the data of the SC1 cleaning process. In FIG. 3B, the vertical axis is the removal rate of the microparticles, or the surface etching rate; and the horizontal axis is the time taken for each cleaning process. As can be seen in Figure 3B, the single particle cleaning process is performed in divided portions and, after each completion of the SC1 cleaning, is combined with an air jet process (steps 250a, 250b). This can effectively improve the particle removal rate of the wafer surface.

圖3C為對矽晶圓表面進行單次微粒清洗製程之蝕刻率與時間關係圖。其中微粒清洗製程係利用SC1清洗製程來產生圖中的數據。縱軸為微粒子的移除率,或稱為晶圓表面之蝕刻率,單位為埃/分鐘(Angstrom/minute);橫軸為清洗時間,單位為秒。由圖3C中可看出,當清洗時間大於30秒,則微蝕刻速率開始下降。因此,舉例來說,於本發明中,例如可將第一次的SC1清洗設計為蝕刻率下降前的最長時間,例如30秒,之後再接續進行空氣噴射處理。而後續的SC1清洗時間,則可視製程需求與參考圖3C中之微蝕刻速率來進行調整。如此分次對矽晶圓表面進行氧化與微蝕刻,以達成所需移除的膜層深度,可提升微粒清洗製程的效率與完成度。 Figure 3C is a graph showing the relationship between etch rate and time for a single particle cleaning process on the surface of a germanium wafer. The particle cleaning process utilizes the SC1 cleaning process to generate the data in the graph. The vertical axis is the removal rate of the microparticles, or the etching rate of the wafer surface, in angstroms per minute (Angstrom/minute); the horizontal axis is the cleaning time in seconds. As can be seen from Figure 3C, when the cleaning time is greater than 30 seconds, the microetch rate begins to decrease. Therefore, for example, in the present invention, for example, the first SC1 cleaning can be designed to be the longest time before the etching rate is lowered, for example, 30 seconds, and then the air ejection processing is continued. The subsequent SC1 cleaning time is adjusted according to the process requirements and the micro-etching rate in FIG. 3C. This oxidation and micro-etching of the wafer surface in this way to achieve the desired depth of the removed layer can improve the efficiency and completeness of the particle cleaning process.

值得一提的是,本發明之矽晶圓清洗方法所提供的各個清洗步驟(聚合物清洗、高溫去離子水清洗、去離子水加二氧化碳去電荷製程、微粒清洗製程、空氣噴射處理)例如可於同一腔室(chamber)中完成。或是,於圖1A與圖2A之製程方法中,聚合物清洗製程、去離子水加二氧化碳去 電荷製程與微粒清洗製程例如可於同一腔室中完成。或是,於圖3A之製程方法中,聚合物清洗製程、第一微粒清洗製程、空氣噴射處理與第二微粒清洗製程例如可於同一腔室中完成。此外本發明矽晶圓清洗方法例如可應用於形成輕摻雜汲極(lightly doped drain,簡稱LDD)結構之前或之後的清洗步驟。 It is worth mentioning that the various cleaning steps provided by the wafer cleaning method of the present invention (polymer cleaning, high temperature deionized water cleaning, deionized water plus carbon dioxide decharge processing, particle cleaning process, air jet treatment) may be Completed in the same chamber. Or, in the process method of FIG. 1A and FIG. 2A, the polymer cleaning process, deionized water plus carbon dioxide The charge process and the particle cleaning process can be performed, for example, in the same chamber. Alternatively, in the process of FIG. 3A, the polymer cleaning process, the first particle cleaning process, the air jet process, and the second particle cleaning process can be performed, for example, in the same chamber. Furthermore, the wafer cleaning method of the present invention can be applied, for example, to a cleaning step before or after forming a lightly doped drain (LDD) structure.

綜上所述,本發明之矽晶圓清洗方法主要係於進行聚合物清洗製程之後,即接續進行去離子水加二氧化碳去電荷製程。或是將單次聚合物清洗製程的時間進行拆解並分次進行,並於首次聚合物清洗製程之後,即接續進行去離子水加二氧化碳去電荷製程,而後再重複進行聚合物清洗製程。如此可即時去除累積於矽晶圓表面上之電荷,避免因後續清洗製程繼續累積電荷於矽晶圓表面,從而導致電荷之火山效應問題。此外本發明之矽晶圓清洗方法亦將單次微粒清洗製程分次進行,並於兩次微粒清洗製程之間插入空氣噴射處理。如此的製程設計可提升微粒清洗製程之清洗效率,以達成完全去除附著於矽晶圓表面上之微粒子。 In summary, the wafer cleaning method of the present invention is mainly after the polymer cleaning process, that is, the deionized water plus carbon dioxide de-charge process is continued. Alternatively, the time of the single polymer cleaning process can be disassembled and divided, and after the first polymer cleaning process, the deionized water plus carbon dioxide de-charge process is continued, and then the polymer cleaning process is repeated. In this way, the charge accumulated on the surface of the germanium wafer can be removed immediately, so as to avoid the accumulation of charge on the surface of the germanium wafer by the subsequent cleaning process, thereby causing the volcanic effect of the charge. In addition, the wafer cleaning method of the present invention also performs a single particle cleaning process in stages, and inserts an air jet process between the two particle cleaning processes. Such a process design can improve the cleaning efficiency of the particle cleaning process to achieve complete removal of the particles attached to the surface of the germanium wafer.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application.

210‧‧‧提供矽晶圓 210‧‧‧ Providing silicon wafers

220a‧‧‧進行聚合物清洗製程 220a‧‧‧ Polymer cleaning process

232a‧‧‧進行高溫去離子水清洗製程 232a‧‧‧High temperature deionized water cleaning process

234a‧‧‧進行去離子水加二氧化碳去電荷製程 234a‧‧‧Deionized water plus carbon dioxide decharge process

240a‧‧‧進行微粒清洗製程 240a‧‧‧Particulate cleaning process

250a‧‧‧進行空氣噴射處理 250a‧‧‧Air jet treatment

Claims (22)

一種矽晶圓清洗方法,包括:提供一矽晶圓;對該矽晶圓之一表面進行一聚合物清洗製程;於該聚合物清洗製程後對該矽晶圓之表面進行一去離子水加二氧化碳去電荷製程;以及於該去離子水加二氧化碳去電荷製程後對該矽晶圓之表面進行一微粒清洗製程與一空氣噴射處理。 A method for cleaning a wafer, comprising: providing a wafer; performing a polymer cleaning process on a surface of the germanium wafer; performing a deionized water addition on the surface of the germanium wafer after the polymer cleaning process a carbon dioxide de-charge process; and a particle cleaning process and an air jet process on the surface of the germanium wafer after the deionized water plus carbon dioxide de-charge process. 如申請專利範圍第1項所述之矽晶圓清洗方法,其中該聚合物清洗製程為一硫酸/臭氧混合物(sulfuric acid/ozone mixture,簡稱SOM)清洗製程。 The wafer cleaning method according to claim 1, wherein the polymer cleaning process is a sulfuric acid/ozone mixture (SOM) cleaning process. 如申請專利範圍第1項所述之矽晶圓清洗方法,其中於進行該聚合物清洗製程之後與進行該去離子水加二氧化碳去電荷製程之前,更包含進行一高溫去離子水清洗製程。 The wafer cleaning method of claim 1, wherein the high temperature deionized water cleaning process is performed after performing the polymer cleaning process and before performing the deionized water plus carbon dioxide decharge process. 如申請專利範圍第3項所述之矽晶圓清洗方法,其中該高溫去離子水清洗之溫度為70度C。 The wafer cleaning method according to claim 3, wherein the high temperature deionized water cleaning temperature is 70 degrees C. 如申請專利範圍第1項所述之矽晶圓清洗方法,其中於進行該去離子水加二氧化碳去電荷製程之後與進行該微粒清洗製程之前,更包括再次進行該聚合物清洗製程。 The wafer cleaning method of claim 1, wherein the polymer cleaning process is performed again after performing the deionized water plus carbon dioxide decharge process and before performing the particle cleaning process. 如申請專利範圍第5項所述之矽晶圓清洗方法,其中於再次進行該聚合物清洗製程之後與進行該微粒清洗製程之前,更包含依序進行一高溫 去離子水清洗製程及再次進行該去離子水加二氧化碳去電荷製程。 The wafer cleaning method according to claim 5, wherein after the polymer cleaning process is performed again and before the particle cleaning process is performed, a high temperature is sequentially included. The deionized water cleaning process and the deionized water plus carbon dioxide decharge process are performed again. 如申請專利範圍第6項所述之矽晶圓清洗方法,其中該高溫去離子水清洗製程之溫度為70度C。 The wafer cleaning method according to claim 6, wherein the high temperature deionized water cleaning process has a temperature of 70 degrees C. 如申請專利範圍第1項所述之矽晶圓清洗方法,其中該微粒清洗製程為一標準化第一清洗(standard clean 1,簡稱SC1),該標準化第一清洗包括利用氫氧化銨(NH4OH)、過氧化氫(H2O2)與去離子水來進行清洗製程。 The wafer cleaning method according to claim 1, wherein the particle cleaning process is a standardized first cleaning (standard clean 1, SC1), and the standardized first cleaning comprises using ammonium hydroxide (NH 4 OH). ), hydrogen peroxide (H 2 O 2 ) and deionized water for the cleaning process. 如申請專利範圍第1項所述之矽晶圓清洗方法,其中於進行該空氣噴射處理之後,更包含再次依序進行該微粒清洗製程與該空氣噴射處理。 The wafer cleaning method according to claim 1, wherein the performing the air jet processing further comprises performing the particle cleaning process and the air jet processing in sequence. 如申請專利範圍第9項所述之矽晶圓清洗方法,其中於再次依序進行該微粒清洗製程與該空氣噴射處理之後,更包含再次進行該去離子水加二氧化碳去電荷製程。 The wafer cleaning method according to claim 9, wherein after the particle cleaning process and the air jet processing are performed in sequence, the deionized water plus carbon dioxide de-charge process is further performed. 如申請專利範圍第1項所述之矽晶圓清洗方法,其中該矽晶圓表面已形成有一矽閘極結構。 The wafer cleaning method of claim 1, wherein a surface of the germanium wafer has a gate structure formed thereon. 如申請專利範圍第1項所述之矽晶圓清洗方法,其中該聚合物清洗製程、該去離子水加二氧化碳去電荷製程與該微粒清洗製程係於同一腔室(chamber)中完成。 The wafer cleaning method of claim 1, wherein the polymer cleaning process, the deionized water plus carbon dioxide decharge process, and the particle cleaning process are performed in the same chamber. 一種矽晶圓清洗方法,包括:提供一矽晶圓;對該矽晶圓之一表面進行一聚合物清洗製程; 於該聚合物清洗製程後對該矽晶圓之表面進行一第一微粒清洗製程;於該第一微粒清洗製程後對該矽晶圓之表面進行一空氣噴射處理;以及於該空氣噴射處理後對該矽晶圓之表面進行一第二微粒清洗製程。 A method for cleaning a wafer, comprising: providing a wafer; performing a polymer cleaning process on a surface of the germanium wafer; Performing a first particle cleaning process on the surface of the germanium wafer after the polymer cleaning process; performing an air jet process on the surface of the germanium wafer after the first particle cleaning process; and after the air jet processing A second particle cleaning process is performed on the surface of the germanium wafer. 如申請專利範圍第13項所述之矽晶圓清洗方法,其中該第一微粒清洗製程與該第二微粒清洗製程為一標準化第一清洗(standard clean 1,簡稱SC1),該標準化第一清洗包括利用氫氧化銨(NH4OH)、過氧化氫(H2O2)與去離子水來進行清洗製程。 The wafer cleaning method of claim 13, wherein the first particle cleaning process and the second particle cleaning process are a standard first cleaning (standard clean 1, SC1), the standardized first cleaning This includes the use of ammonium hydroxide (NH 4 OH), hydrogen peroxide (H 2 O 2 ) and deionized water for the cleaning process. 如申請專利範圍第13項所述之矽晶圓清洗方法,其中該矽晶圓表面已形成有一矽閘極結構。 The wafer cleaning method according to claim 13, wherein a surface of the germanium wafer has a gate structure formed thereon. 如申請專利範圍第13項所述之矽晶圓清洗方法,其中於進行該第二微粒清洗製程之後,更包含再次進行該空氣噴射處理。 The wafer cleaning method of claim 13, wherein the performing the second particle cleaning process further comprises performing the air jet processing again. 如申請專利範圍第16項所述之矽晶圓清洗方法,其中於再次進行該空氣噴射處理之後,更包含進行一去離子水加二氧化碳去電荷製程。 The wafer cleaning method of claim 16, wherein after the air jet treatment is performed again, performing a deionized water plus carbon dioxide decharge process. 如申請專利範圍第13項所述之矽晶圓清洗方法,其中該聚合物清洗製程為一硫酸/臭氧混合物(sulfuric acid/ozone mixture,簡稱SOM)清洗製程。 The wafer cleaning method according to claim 13, wherein the polymer cleaning process is a sulfuric acid/ozone mixture (SOM) cleaning process. 如申請專利範圍第13項所述之矽晶圓清洗方法,其中於進行該聚合物清洗製程之後與進行該第一微粒清洗製程之前,更包含依序進行一高溫去離子水清洗製程與一去離子水加二氧化碳去電荷製程。 The wafer cleaning method according to claim 13 , wherein after the polymer cleaning process and before the first particle cleaning process, a high-temperature deionized water cleaning process is sequentially performed. Ionized water plus carbon dioxide to charge the process. 如申請專利範圍第19項所述之矽晶圓清洗方法,其中該高溫去離子水清洗製程之溫度為70度C。 The wafer cleaning method according to claim 19, wherein the high temperature deionized water cleaning process has a temperature of 70 degrees C. 如申請專利範圍第19項所述之矽晶圓清洗方法,其中於進行該去離子水加二氧化碳去電荷製程之後與進行該第一微粒清洗製程之前,更包含再次依序進行該聚合物清洗製程、該高溫去離子水清洗製程與該去離子水加二氧化碳去電荷製程。 The wafer cleaning method according to claim 19, wherein the performing the polymer cleaning process is performed sequentially after performing the deionized water plus carbon dioxide decharge process and before performing the first particle cleaning process. The high temperature deionized water cleaning process and the deionized water plus carbon dioxide decharge process. 如申請專利範圍第13項所述之矽晶圓清洗方法,其中該聚合物清洗製程、該第一微粒清洗製程、該空氣噴射處理與該第二微粒清洗製程係於同一腔室中完成。 The wafer cleaning method of claim 13, wherein the polymer cleaning process, the first particle cleaning process, the air jetting process, and the second particle cleaning process are performed in the same chamber.
TW102104625A 2013-02-06 2013-02-06 Silicon wafer cleaning method TW201432807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102104625A TW201432807A (en) 2013-02-06 2013-02-06 Silicon wafer cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102104625A TW201432807A (en) 2013-02-06 2013-02-06 Silicon wafer cleaning method

Publications (1)

Publication Number Publication Date
TW201432807A true TW201432807A (en) 2014-08-16

Family

ID=51797487

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102104625A TW201432807A (en) 2013-02-06 2013-02-06 Silicon wafer cleaning method

Country Status (1)

Country Link
TW (1) TW201432807A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108074805A (en) * 2016-11-11 2018-05-25 株式会社迪思科 The processing method of chip
CN113140445A (en) * 2021-03-18 2021-07-20 上海华力集成电路制造有限公司 Cleaning method after back-end etching

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108074805A (en) * 2016-11-11 2018-05-25 株式会社迪思科 The processing method of chip
CN113140445A (en) * 2021-03-18 2021-07-20 上海华力集成电路制造有限公司 Cleaning method after back-end etching

Similar Documents

Publication Publication Date Title
US20150050812A1 (en) Wafer-less auto clean of processing chamber
JP2009543344A (en) Post-etch wafer surface cleaning with liquid meniscus
US20110230054A1 (en) Semiconductor substrate cleaning method
JP2017526181A5 (en)
CN115910756A (en) Wafer cleaning method
US8741066B2 (en) Method for cleaning substrates utilizing surface passivation and/or oxide layer growth to protect from pitting
TW201432807A (en) Silicon wafer cleaning method
CN103643220B (en) A kind of reduce the method for impurity particle in low pressure boiler tube
TW201325744A (en) Method for treating pollutant of workpiece provided with yttrium oxide coating layer
JP2007073806A (en) Silicon wafer cleansing method
TWI504726B (en) Silicon etching solution and method for manufacturing transistor using the same
US20140216504A1 (en) Silicon wafer cleaning method
CN111229685B (en) Method for removing crystal defects of aluminum bonding pad of integrated circuit
CN103681241A (en) Cleaning method capable of improving quality of oxide layer
JP2007150196A (en) Cleaning method and manufacturing method of semiconductor wafer
US20050045202A1 (en) Method for wafer surface cleaning using hydroxyl radicals in deionized water
KR100906043B1 (en) Method for cleaning a semiconductor device
CN106298494B (en) Polysilicon etching method
KR101778368B1 (en) Method for Cleaning Wafer
JP6200273B2 (en) Manufacturing method of bonded wafer
TWI569894B (en) Pollutant Treatment Method for Sprinkler with Silicon Carbide Coated
CN102569022A (en) Cleaning method after tungsten chemical-mechanical polishing
TWI506690B (en) Silicon wafer manufacturing method
CN105448652B (en) The cleaning procedure of contact groove and the forming method of contact layer
JP2010092938A (en) Method of cleaning semiconductor wafer, and semiconductor wafer