TW201431069A - Metal oxynitride based heterojunction field effect transistor - Google Patents

Metal oxynitride based heterojunction field effect transistor Download PDF

Info

Publication number
TW201431069A
TW201431069A TW102144754A TW102144754A TW201431069A TW 201431069 A TW201431069 A TW 201431069A TW 102144754 A TW102144754 A TW 102144754A TW 102144754 A TW102144754 A TW 102144754A TW 201431069 A TW201431069 A TW 201431069A
Authority
TW
Taiwan
Prior art keywords
semiconductor
semiconductor layer
field effect
effect transistor
heterojunction field
Prior art date
Application number
TW102144754A
Other languages
Chinese (zh)
Inventor
Yan Ye
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of TW201431069A publication Critical patent/TW201431069A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)

Abstract

Embodiments of the present invention generally relate to an HFET having one or more metal oxynitride or metal oxide channel semiconductor layers with source and drain electrodes, and a gate which contacts the semiconductor layer though a junction or junctions formed between the gate and channel semiconductor. The junction can be formed by inserting a different type of semiconductor material, for example, an amorphous silicon semiconductor material, a different metal oxynitride, a p-type metal oxide semiconductor or a low work function metal oxide conductor, between the gate and channel material. The junction can be also formed by using a metal which forms a Schottky barrier as in a Schottky diode between the metal and semiconductor.

Description

基於金屬氮氧化物之異質接面場效電晶體 Heterojunction field effect transistor based on metal oxynitride

本發明之實施例大體上是有關於一種異質接面場效電晶體(heterojunction field effect transistor,HFET)與一種閘極,異質接面場效電晶體具有一或數個金屬氮氧化物通道半導體層,金屬氮氧化物通道半導體層具有源極與汲極,閘極經由一或數個形成於閘極與通道半導體之間的接面來接觸半導體層。 Embodiments of the present invention generally relate to a heterojunction field effect transistor (HFET) having a one or more metal oxynitride channel semiconductor layers and a gate. The heterojunction field effect transistor has one or more metal oxynitride channel semiconductor layers. The metal oxynitride channel semiconductor layer has a source and a drain, and the gate contacts the semiconductor layer via one or more junctions formed between the gate and the channel semiconductor.

目前對薄膜電晶體(TFTs)之關注係特別高,因為此些裝置可用於液晶主動矩陣顯示器(liquid crystal active matrix displays,LCDs)之類的裝置中,液晶主動矩陣顯示器之類的裝置時常係應用在電腦及電視平板。LCDs可亦包括發光二極體(light emitting diodes,LEDs),例如是用於背光之有機發光二極體(organic light emitting diodes,OLEDs)。LEDs與OLEDs需要TFTs來進行控制以定址顯示畫面的活動。 At present, the focus on thin film transistors (TFTs) is particularly high, because such devices can be used in devices such as liquid crystal active matrix displays (LCDs), and devices such as liquid crystal active matrix displays are often used. On the computer and TV tablet. The LCDs may also include light emitting diodes (LEDs), such as organic light emitting diodes (OLEDs) for backlighting. LEDs and OLEDs require TFTs for control to address the activity of the display screen.

藉由TFTs驅動的電流(也就是導通電流(on-current))係受限於通道材料(時常意指主動材料、半導體材料或半導體主動材料)及通道寬度與長度。此外,導通電壓(turn-on voltage)係決定 於半導體層之通道區內的載子堆積,且臨界電壓(threshold voltage)係在偏壓溫度加壓(bias temperature stress)或電流溫度加壓(current temperature stress)後偏移,而當半導體或介電材料內的固定電荷飄移或電荷補捉於介面內時,載子堆積會改變。 The current (ie, on-current) driven by the TFTs is limited by the channel material (often meant active material, semiconductor material or semiconductor active material) and channel width and length. In addition, the turn-on voltage is determined The carrier is accumulated in the channel region of the semiconductor layer, and the threshold voltage is offset after bias temperature stress or current temperature stress, and when semiconductor or dielectric When the fixed charge drifts or charges in the electrical material are trapped in the interface, the carrier packing changes.

做為半導體材料的矽具有其限制。非晶矽具有低遷移率。多晶矽雖然具有較非晶矽高之遷移率,但製造昂貴且必需進行退火製程。 Helium as a semiconductor material has its limitations. Amorphous germanium has a low mobility. Although polycrystalline germanium has a higher mobility than amorphous germanium, it is expensive to manufacture and must be subjected to an annealing process.

因此,具有高遷移率但可以低成本製造之TFT係在此領域中有需求,TFT係以半導體材料形成。 Therefore, TFTs having high mobility but which can be manufactured at low cost are required in the field, and TFTs are formed of semiconductor materials.

本發明之實施例大體上有關於一種HFET及一種閘極,HFET具有一或數個具有源極及汲極的金屬氮氧化物或金屬氧化物的通道半導體層,閘極經由一或數個接面接觸半導體層,接面形成於閘極與通道半導體之間。接面可藉由插入不同形式之半導體材料、不同金屬氮氧化物、p型金屬氧化物半導體或低功函數(work function)金屬氧化物導體於閘極與通道材料之間來形成,半導體材料舉例為非晶矽半導體材料。接面可亦藉由使用一金屬來形成,此金屬係如同在蕭基電晶體中一般的形成蕭基位障於金屬與半導體之間。 Embodiments of the present invention generally relate to an HFET having a channel semiconductor layer having one or more metal oxynitrides or metal oxides having a source and a drain, and a gate connected via one or several connections The surface contacts the semiconductor layer, and the junction is formed between the gate and the channel semiconductor. The junction can be formed by interposing different forms of semiconductor material, different metal oxynitrides, p-type metal oxide semiconductors or low work function metal oxide conductors between the gate and the channel material, examples of semiconductor materials It is an amorphous germanium semiconductor material. The junction can also be formed by the use of a metal that is typically formed between the metal and the semiconductor as in the Schottky transistor.

於一實施例中,一種異質接面場效電晶體包括:一第一半導體層;一源極,設置於第一半導體層之至少一部分上;一汲極,設置於第一半導體層之至少一部分上;一閘介電層,設 置於源極、汲極與第一半導體層之至少一部分之上方,閘介電層具有貫穿其的一接面,以暴露第一半導體層之至少一部分;一第二半導體層,設置於閘介電層之上方與接面中;以及一閘極,設置於第二半導體層之上方與接面中。第二半導體層具有較第一半導體層低之費米能階,或者,閘極金屬具有功函數,此功函數低於相接之半導體的費米能階,以形成蕭基位障於金屬與半導體之間。為了對本發明之上述及其他方面有更佳的瞭解,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下: In one embodiment, a heterojunction field effect transistor includes: a first semiconductor layer; a source disposed on at least a portion of the first semiconductor layer; and a drain disposed on at least a portion of the first semiconductor layer Upper; a gate dielectric layer, Placed over the source, drain and at least a portion of the first semiconductor layer, the gate dielectric layer has a junction therethrough to expose at least a portion of the first semiconductor layer; a second semiconductor layer disposed on the gate Above the electrical layer and the junction; and a gate disposed above the junction and the junction of the second semiconductor layer. The second semiconductor layer has a lower Fermi level than the first semiconductor layer, or the gate metal has a work function which is lower than the Fermi level of the connected semiconductor to form a Schottky barrier to the metal and Between semiconductors. In order to better understand the above and other aspects of the present invention, the preferred embodiments are described below, and in conjunction with the drawings, the detailed description is as follows:

100‧‧‧腔體 100‧‧‧ cavity

102、202‧‧‧基板 102, 202‧‧‧ substrate

104‧‧‧靶材 104‧‧‧ Target

106‧‧‧基座 106‧‧‧Base

108‧‧‧舉栓 108‧‧‧Tip

110‧‧‧接地帶 110‧‧‧ Grounding belt

112‧‧‧致動器 112‧‧‧Actuator

114‧‧‧真空幫浦 114‧‧‧vacuum pump

116‧‧‧背板 116‧‧‧ Backplane

118‧‧‧磁控管 118‧‧‧Magnetron

120‧‧‧暗區遮蔽件 120‧‧‧ Dark area cover

122‧‧‧腔體遮蔽件 122‧‧‧ cavity cover

124‧‧‧陽極 124‧‧‧Anode

126‧‧‧氣體導引管 126‧‧‧ gas guiding tube

128‧‧‧耦接件 128‧‧‧ couplings

130‧‧‧架體 130‧‧‧ ‧ body

132‧‧‧氣體控制板 132‧‧‧ gas control panel

200、220、230、300、400、500‧‧‧HFET 200, 220, 230, 300, 400, 500‧‧‧ HFET

204‧‧‧介電層 204‧‧‧Dielectric layer

206A、206B、206C、302、304、402、502‧‧‧半導體層 206A, 206B, 206C, 302, 304, 402, 502‧‧ ‧ semiconductor layer

208‧‧‧源極 208‧‧‧ source

210‧‧‧汲極 210‧‧‧汲polar

212‧‧‧閘介電層 212‧‧‧gate dielectric layer

214、306‧‧‧閘極 214, 306‧‧ ‧ gate

216‧‧‧接面 216‧‧‧ joint

A、AA、B、C、D、E、F‧‧‧箭頭 A, AA, B, C, D, E, F‧‧‧ arrows

N、S‧‧‧磁極 N, S‧‧‧ magnetic pole

為了可詳細地了解本發明上述之特性,簡要摘錄於上之本發明的更特有的說明可參照實施例,一些實施例係繪示於所附之圖式中。然而,值得注意的是,由於本發明可承認其他等效實施例,所附之圖式僅為本發明之代表性實施例,因此並非用以限制本發明之範圍。 For a more detailed description of the present invention, reference should be made to the preferred embodiments of the invention. However, it is to be understood that the appended claims are not intended to limit the scope of the invention.

第1圖繪示根據本發明一實施例之PVD之腔體的剖面圖。 1 is a cross-sectional view of a cavity of a PVD in accordance with an embodiment of the present invention.

第2A-2C圖繪示根據數個實施例之HFETs之剖面圖。 2A-2C are cross-sectional views of HFETs in accordance with several embodiments.

第3圖繪示根據另一實施例之HFET之剖面圖。 FIG. 3 is a cross-sectional view of an HFET according to another embodiment.

第4圖繪示根據另一實施例之HFET之剖面圖。 4 is a cross-sectional view of an HFET in accordance with another embodiment.

第5圖繪示根據另一實施例之HFET之剖面圖。 FIG. 5 is a cross-sectional view of an HFET according to another embodiment.

為了便於了解,在可行之處,相同的參考編號係使 用來表示通用於此些圖式之相同的元件。可預期的是,揭露於一實施例中之元件可在無需特別說明的情況下,有助益地使用於其他實施例中。 For ease of understanding, the same reference numbers are used wherever practicable. It is used to indicate the same components that are common to these figures. It is contemplated that elements disclosed in one embodiment may be used in other embodiments without departing from the scope of the invention.

本發明之實施例大體上係有關於一種金屬氮氧化物HFET和一種閘極,金屬氮氧化物HFET具有一或數個具有源極和汲極之通道半導體層,閘極經由一或數個形成於閘極與通道半導體之間的接面接觸半導體層。接面可藉由插入不同形式之半導體材料、不同金屬氮氧化物、p型金屬氧化物半導體或低功函數(work function)金屬氧化物導體於閘極與通道材料之間來形成,不同形式之半導體材料舉例為非晶矽半導體材料。接面可亦藉由使用一金屬來形成,此金屬係如同在蕭基電晶體(Schottky diode)中一般的形成蕭基位障(Schottky barrier)於金屬與半導體之間。 Embodiments of the present invention generally relate to a metal oxynitride HFET having a one or more channel semiconductor layers having a source and a drain, and a gate formed via one or more The junction between the gate and the channel semiconductor contacts the semiconductor layer. The junction can be formed by interposing different forms of semiconductor material, different metal oxynitrides, p-type metal oxide semiconductors or low work function metal oxide conductors between the gate and the channel material, in different forms. The semiconductor material is exemplified by an amorphous germanium semiconductor material. The junction can also be formed by the use of a metal that forms a Schottky barrier between the metal and the semiconductor as is typical in Schottky diodes.

本發明係說明性描述,且可用於PVD腔體中來處理大面積基板,例如是4300 PVD腔體,取自美商業凱科技股份有限公司(AKT®),其為位於加州聖塔克拉拉之應用材料公司(Applied Materials,Inc.,Santa Clara,California)之子公司。然而,應理解的是,濺鍍靶材在其他系統架構中可具有效用,包括設置來處理大面積圓基板之系統與由其他製造商所生產之系統。 The present invention is illustratively described and can be used in a PVD cavity to process a large area substrate, such as a 4300 PVD cavity, taken from AKT ® , located in Santa Clara, California. A subsidiary of Applied Materials, Inc., Santa Clara, California. However, it should be understood that the sputter target may have utility in other system architectures, including systems configured to process large area circular substrates and systems produced by other manufacturers.

第1圖繪示根據本發明一實施例之PVD之腔體100的剖面圖。腔體100可藉由真空幫浦114來進行排氣。在腔體100中,基板102可相對於靶材104設置。基板可設置於腔體100中 之基座(susceptor)106上。基座106可藉由致動器112來如同箭頭「A」所示的舉起或降低。基座106可舉起以抬升基板102至處理位置且降低使得基板102可從腔體100移除。當基座106位在較低位置中時,舉栓108舉起基板102至基座106上。接地帶110可在處理期間讓基座106接地。基座106可在處理期間抬升以有助於均勻地沉積。 1 is a cross-sectional view of a cavity 100 of a PVD in accordance with an embodiment of the present invention. The cavity 100 can be vented by the vacuum pump 114. In the cavity 100, the substrate 102 can be disposed relative to the target 104. The substrate can be disposed in the cavity 100 On the susceptor 106. The base 106 can be lifted or lowered by the actuator 112 as indicated by the arrow "A". The pedestal 106 can be lifted to lift the substrate 102 to a processing position and lowered such that the substrate 102 can be removed from the cavity 100. When the pedestal 106 is in the lower position, the lift pin 108 lifts the substrate 102 onto the pedestal 106. Ground strap 110 can ground base 106 during processing. The pedestal 106 can be lifted during processing to aid in uniform deposition.

靶材104可包括一或多個靶材104。靶材104可藉由接合層接合於背板116。為了控制靶材104之溫度,冷卻通道可位於背板116中。一或多個磁控管118可設置在背板116後。磁控管118可以線性移動或二維路徑掃描過背板116。腔體之數個牆可藉由暗區遮蔽件(dark space shield)120與腔體遮蔽件122遮蔽而避免沉積。 Target 104 may include one or more targets 104. The target 104 can be bonded to the backing plate 116 by a bonding layer. To control the temperature of the target 104, a cooling passage can be located in the backing plate 116. One or more magnetrons 118 may be disposed behind the backing plate 116. The magnetron 118 can be scanned across the backing plate 116 in a linear or two dimensional path. The walls of the cavity can be shielded by the dark space shield 120 and the cavity shield 122 to avoid deposition.

為了有助於提供均勻之濺鍍沉積在整個基板102,陽極124可置於靶材104與基板102之間。於一實施例中,陽極124可為鍍有電弧噴塗鋁(arc sprayed aluminum)之已噴珠處理之不鏽鋼。於一實施例中,陽極124之一端可藉由架體130固定於腔體牆。陽極124在相對於靶材104處提供電荷,使得帶電離子將被吸引至此而不是一般為接地電位之腔體牆。藉由提供陽極124於靶材104與基板102之間,電漿可更為均勻,而有助於沉積。 In order to help provide uniform sputtering deposition throughout the substrate 102, the anode 124 can be placed between the target 104 and the substrate 102. In one embodiment, the anode 124 can be a bead-treated stainless steel plated with arc sprayed aluminum. In one embodiment, one end of the anode 124 can be fixed to the cavity wall by the frame body 130. The anode 124 provides a charge relative to the target 104 such that charged ions will be attracted thereto rather than a cavity wall that is typically a ground potential. By providing the anode 124 between the target 104 and the substrate 102, the plasma can be more uniform and contribute to deposition.

對反應式濺鍍來說,提供反應氣體至腔體100內係有助益的。一或多個氣體導引管126可亦在靶材104和基板102 之間橫跨整個腔體100的距離。氣體導引管126可導引濺鍍氣體,例如是惰性氣體或反應氣體,惰性氣體包括氬,反應氣體例如是氧、氮等。氣體可自氣體控制板132提供至氣體導引管126,氣體控制板132可導引一或多種氣體,例如是氬、氧、及氮。氣體導引管126可設置於低於一或多個陽極124之基板102與靶材104之間的位置。陽極124可在處理期間遮蔽氣體導引管126來避免沉積。以陽極124遮蔽氣體導引管126可減少可能覆蓋或阻塞氣體排氣口之沉積總量。氣體導引管126可藉由一或多個耦接件128耦接於陽極124。 For reactive sputtering, it is helpful to provide a reactive gas into the chamber 100. One or more gas guiding tubes 126 may also be at the target 104 and the substrate 102 The distance between the entire cavity 100 is between. The gas guiding tube 126 can guide a sputtering gas such as an inert gas or a reactive gas, the inert gas includes argon, and the reactive gas is, for example, oxygen, nitrogen, or the like. Gas may be supplied from gas control plate 132 to gas guiding tube 126, which may direct one or more gases, such as argon, oxygen, and nitrogen. The gas guiding tube 126 can be disposed at a position below the substrate 102 of the one or more anodes 124 and the target 104. The anode 124 can shield the gas guiding tube 126 during processing to avoid deposition. Masking the gas guiding tube 126 with the anode 124 reduces the total amount of deposition that may cover or block the gas vent. The gas guiding tube 126 can be coupled to the anode 124 by one or more coupling members 128.

如同此處所述,TFT係使用一或數個金屬氮氧化物層或一具有另一半導體材料做為主動通道材料之金屬氮氧化物層的結合來形成,TFT更特別是HFET。二維電子氣(two dimensional electron gas)經由侷限在兩層之間的介面而可形成於電晶體內,而不是來自提供到電晶體之外部電場。電晶體具有閘極,閘極直接接觸主動通道材料,或經由薄介電層或其他半導體層接觸主動通道材料。源極與汲極係藉由一區域分隔,此區域係由閘極覆蓋,閘極可直接接觸通道或經由半導體材料之其他層或介電層接觸通道。藉由閘極覆蓋之區域及源極與汲極可亦經由退火或轉換(conversion)來以不同的方式處理。 As described herein, the TFT is formed using a combination of one or more metal oxynitride layers or a metal oxynitride layer having another semiconductor material as the active channel material, more particularly an HFET. A two dimensional electron gas can be formed in the transistor via an interface confined between the two layers, rather than from an external electric field provided to the transistor. The transistor has a gate that directly contacts the active channel material or contacts the active channel material via a thin dielectric layer or other semiconductor layer. The source and drain are separated by a region that is covered by a gate that can directly contact the via or contact the via via other layers or dielectric layers of the semiconductor material. The region covered by the gate and the source and drain can also be processed in different ways via annealing or conversion.

第2A-2C圖繪示根據數個實施例之HFETs之剖面圖。在第2A-2C圖中所示之實施例中,HFET包括基板202。可用於基板202之合適材料包括矽、鍺、矽鍺、鈉鈣玻璃(soda lime glass)、玻璃、半導體、塑膠、鋼或不鏽鋼基板,但不限於此些材料。 2A-2C are cross-sectional views of HFETs in accordance with several embodiments. In the embodiment shown in Figures 2A-2C, the HFET includes a substrate 202. Suitable materials for the substrate 202 include bismuth, bismuth, bismuth, soda lime glass (soda lime) Glass), glass, semiconductor, plastic, steel or stainless steel substrates, but not limited to these materials.

在基板202上可有介電層204。可用於介電層204之合適材料包括二氧化矽、氮氧化矽、氮化矽、氧化鋁或其組合。介電層204可藉由合適的沉積技術進行沉積,合適的沉積技術包括電漿輔助化學氣相沉積(plasma enhanced chemical vapor deposition,PECVD)。 There may be a dielectric layer 204 on the substrate 202. Suitable materials that can be used for the dielectric layer 204 include hafnium oxide, hafnium oxynitride, tantalum nitride, aluminum oxide, or combinations thereof. Dielectric layer 204 can be deposited by suitable deposition techniques, including plasma enhanced chemical vapor deposition (PECVD).

數個半導體層206A-206C係接著形成在介電層204上。實際應用中,半導體層206A-206C往往意指為通道層、主動層或半導體主動層。 A plurality of semiconductor layers 206A-206C are then formed over dielectric layer 204. In practical applications, the semiconductor layers 206A-206C are often referred to as channel layers, active layers, or semiconductor active layers.

源極208及汲極210係形成在半導體層206A-206C之上方。源極208及汲極210間之半導體層206A-206C之暴露部分係做為主動通道。用於源極208及汲極210之合適材料包括鉻、銅、鋁、鉭、鈦、鉬、及其組合、或透明導電氧化物(transparent conductive oxides,TCOs)。源極208及汲極210可藉由合適的沉積技術形成,例如是物理氣相沉積(PVD),接續PVD係為藉由蝕刻達成之圖案化。 Source 208 and drain 210 are formed over semiconductor layers 206A-206C. The exposed portions of the semiconductor layers 206A-206C between the source 208 and the drain 210 are used as active channels. Suitable materials for source 208 and drain 210 include chromium, copper, aluminum, tantalum, titanium, molybdenum, and combinations thereof, or transparent conductive oxides (TCOs). Source 208 and drain 210 may be formed by a suitable deposition technique, such as physical vapor deposition (PVD), followed by PVD as a patterning by etching.

在暴露之主動通道及源極208及汲極210上可沉積閘介電層212。可用於閘介電層212之合適材料包括二氧化矽、氮氧化矽、氮化矽、氧化鋁或其組合。閘介電層212可藉由合適的沉積技術沉積,合適的沉積技術包括電漿輔助化學氣相沉積(PECVD)。閘介電層212可接著蝕刻以形成接面216且暴露主動 通道之最上方的半導體層206C。 A gate dielectric layer 212 can be deposited over the exposed active channel and source 208 and drain 210. Suitable materials that can be used for the gate dielectric layer 212 include hafnium oxide, hafnium oxynitride, tantalum nitride, aluminum oxide, or combinations thereof. Gate dielectric layer 212 can be deposited by suitable deposition techniques, including plasma assisted chemical vapor deposition (PECVD). The gate dielectric layer 212 can then be etched to form the junction 216 and exposed to active The uppermost semiconductor layer 206C of the channel.

閘極214可接著以至少部分之閘極214填入接面216的方式形成。可用於閘極204之合適材料包括鉻、銅、鋁、鉭、鈦、鉬、及其組合、或透明導電氧化物(TCO),但不限於此些材料,透明導電氧化物例如是通常用來做為透明電極之氧化銦錫(indium tin oxide,ITO)或摻雜氟的氧化鋅(fluorine doped zinc oxide,ZnO:F)。閘極214可藉由合適之沉積技術來進行沉積,例如是PVD、有機金屬化學氣相沉積(MOCVD)、旋塗製程(spin-on process)及印刷製程。 Gate 214 can then be formed by filling at least a portion of gate 214 into junction 216. Suitable materials for the gate 204 include chromium, copper, aluminum, tantalum, titanium, molybdenum, and combinations thereof, or transparent conductive oxide (TCO), but are not limited to such materials, and transparent conductive oxides are commonly used, for example. Indium tin oxide (ITO) or fluorine doped zinc oxide (ZnO: F) as a transparent electrode. Gate 214 can be deposited by suitable deposition techniques such as PVD, metalorganic chemical vapor deposition (MOCVD), spin-on process, and printing processes.

如第2A圖中所示,HFET 200可具有接面216,接面216以與源極208及汲極210等距的方式形成,如箭頭「A」及「B」所示。如第2B圖中所示,HFET 220可具有接面216,接面216係以較接近源極208或汲極210的方式形成。箭頭「C」及「D」顯示出接面216係較遠離源極208及汲極210之其中一者。如第2C圖中所示,不單是HFET 230之接面216係形成以可如箭頭「E」及「F」所示的較接近源極208或汲極210,而且閘極214可以僅位於源極208及汲極210之其中一者之上方。 As shown in FIG. 2A, the HFET 200 can have a junction 216 that is formed equidistant from the source 208 and the drain 210, as indicated by arrows "A" and "B". As shown in FIG. 2B, HFET 220 can have a junction 216 that is formed closer to source 208 or drain 210. The arrows "C" and "D" indicate that the junction 216 is closer to one of the source 208 and the drain 210. As shown in FIG. 2C, not only the junction 216 of the HFET 230 is formed closer to the source 208 or the drain 210 as indicated by arrows "E" and "F", but the gate 214 may be located only at the source. Above one of the pole 208 and the drain 210.

半導體層206A-206C可包括氧、氮、及一或多個選自由鋅、鎵、鎘、銦、錫、及其組合所組成之群組的元素。於一實施例中,半導體層206A-206C可包括氧、氮、及一或多個具有已填滿之s軌域及已填滿之d軌域的元素。於另一實施例中,半導體層206A-206C可包括氧、氮、及一或多個具有已填滿之f軌 域的元素。於另一實施例中,半導體層206A-206C可包括氧、氮、及一或多個二價元素。於另一實施例中,半導體層206A-206C可包括氧、氮、及一或多個三價元素。於另一實施例中,半導體層206A-206C可包括氧、氮、及一或多個四價元素。 The semiconductor layers 206A-206C can include oxygen, nitrogen, and one or more elements selected from the group consisting of zinc, gallium, cadmium, indium, tin, and combinations thereof. In one embodiment, the semiconductor layers 206A-206C can include oxygen, nitrogen, and one or more elements having a filled s rail domain and a filled d rail domain. In another embodiment, the semiconductor layers 206A-206C can include oxygen, nitrogen, and one or more have filled rails The elements of the domain. In another embodiment, the semiconductor layers 206A-206C can include oxygen, nitrogen, and one or more divalent elements. In another embodiment, the semiconductor layers 206A-206C can include oxygen, nitrogen, and one or more trivalent elements. In another embodiment, the semiconductor layers 206A-206C can include oxygen, nitrogen, and one or more tetravalent elements.

半導體層206A-206C可亦包括摻雜物。可使用之適合之摻雜物包括Al、Sn、Ga、Ca、Si、Ti、Cu、Ge、In、Ni、Mn、Cr、V、Mg、SixNy、AlxOy、及SiC。摻雜物可亦為非金屬,例如是H、C、S、F等。於一實施例中,摻雜物包括鋁。於另一實施例中,摻雜物包括錫。 Semiconductor layers 206A-206C may also include dopants. Suitable dopants that can be used include Al, Sn, Ga, Ca, Si, Ti, Cu, Ge, In, Ni, Mn, Cr, V, Mg, Si x N y , Al x O y , and SiC. The dopant may also be non-metallic, such as H, C, S, F, and the like. In one embodiment, the dopant comprises aluminum. In another embodiment, the dopant comprises tin.

半導體層206A-206C之例子包括下述:ZnOxNy、SnOxNy、InOxNy、CdOxNy、GaOxNy、ZnSnOxNy、ZnInOxNy、ZnCdOxNy、ZnGaOxNy、SnInOxNy、SnCdOxNy、SnGaOxNy、InCdOxNy、InGaOxNy、CdGaOxNy、ZnSnInOxNy、ZnSnCdOxNy、ZnSnGaOxNy、ZnInCdOxNy、ZnInGaOxNy、ZnCdGaOxNy、SnInCdOxNy、SnInGaOxNy、SnCdGaOxNy、InCdGaOxNy、ZnSnInCdOxNy、ZnSnInGaOxNy、ZnInCdGaOxNy、及SnInCdGaOxNy。半導體層206A-206C之例子包括下述的摻雜材料:ZnOxNy:Al、ZnOxNy:Sn、SnOxNy:Al、InOxNy:Al、InOxNy:Sn、CdOxNy:Al、CdOxNy:Sn、GaOxNy:Al、GaOxNy:Sn、ZnSnOxNy:Al、ZnInOxNy:Al、ZnInOxNy:Sn、ZnCdOxNy:Al、ZnCdOxNy:Sn、ZnGaOxNy:Al、ZnGaOxNy:Sn、SnInOxNy:Al、SnCdOxNy:Al、SnGaOxNy:Al、InCdOxNy:Al、InCdOxNy:Sn、InGaOxNy:Al、 InGaOxNy:Sn、CdGaOxNy:Al、CdGaOxNy:Sn、ZnSnInOxNy:Al、ZnSnCdOxNy:Al、ZnSnGaOxNy:Al、ZnInCdOxNy:Al、ZnInCdOxNy:Sn、ZnInGaOxNy:Al、ZnInGaOxNy:Sn、ZnCdGaOxNy:Al、ZnCdGaOxNy:Sn、SnInCdOxNy:Al、SnInGaOxNy:Al、SnCdGaOxNy:Al、InCdGaOxNy:Al、InCdGaOxNy:Sn、ZnSnInCdOxNy:Al、ZnSnInGaOxNy:Al、ZnInCdGaOxNy:Al、ZnInCdGaOxNy:Sn、及SnInCdGaOxNy:Al。 Examples of the semiconductor layers 206A-206C include the following: ZnO x N y , SnO x N y , InO x N y , CdO x N y , GaO x N y , ZnSnO x N y , ZnInO x N y , ZnCdO x N y , ZnGaO x N y, SnInO x N y, SnCdO x N y, SnGaO x N y, InCdO x N y, InGaO x N y, CdGaO x N y, ZnSnInO x N y, ZnSnCdO x N y, ZnSnGaO x N y ZnInCdO x N y , ZnInGaO x N y , ZnCdGaO x N y , SnInCdO x N y , SnInGaO x N y , SnCdGaO x N y , InCdGaO x N y , ZnSnInCdO x N y , ZnSnInGaO x N y , ZnInCdGaO x N y And SnInCdGaO x N y . Examples of the semiconductor layers 206A-206C include doping materials: ZnO x N y : Al, ZnO x N y : Sn, SnO x N y : Al, InO x N y : Al, InO x N y : Sn, CdO x N y : Al, CdO x N y : Sn, GaO x N y : Al, GaO x N y : Sn, ZnSnO x N y : Al, ZnInO x N y : Al, ZnInO x N y : Sn, ZnCdO x N y : Al, ZnCdO x N y : Sn, ZnGaO x N y : Al, ZnGaO x N y : Sn, SnInO x N y : Al, SnCdO x N y : Al, SnGaO x N y : Al, InCdO x N y: Al, InCdO x N y: Sn, InGaO x N y: Al, InGaO x N y: Sn, CdGaO x N y: Al, CdGaO x N y: Sn, ZnSnInO x N y: Al, ZnSnCdO x N y : Al, ZnSnGaO x N y : Al, ZnInCdO x N y : Al, ZnInCdO x N y : Sn, ZnInGaO x N y : Al, ZnInGaO x N y : Sn, ZnCdGaO x N y : Al, ZnCdGaO x N y :Sn, SnInCdO x N y : Al, SnInGaO x N y : Al, SnCdGaO x N y : Al, InCdGaO x N y : Al, InCdGaO x N y : Sn, ZnSnInCdO x N y : Al, ZnSnInGaO x N y : Al, ZnInCdGaO x N y : Al, ZnInCdGaO x N y :Sn, and SnInCdGaO x N y :Al.

半導體層206A-206C可藉由濺鍍來沉積。於一實施例中,濺鍍靶材包括金屬,例如是鋅、鎵、錫、鎘、銦、或其組合。濺鍍靶材可額外地包括摻雜物。含氧氣體及含氮氣體係引入到腔體中以藉由反應式濺鍍來沉積半導體層206A-206C。於一實施例中,含氮氣體包括N2。於另一實施例中,含氮氣體包括N2O、NH3、或其組合。於一實施例中,含氧氣體包括O2。於另一實施例中,含氧氣體包括N2O。含氮氣體之氮及含氧氣體之氧係與來自濺鍍靶材之金屬反應,以形成一半導體材料於基板上,半導體材料包括金屬、氧、氮、及選擇性的摻雜物。於一實施例中,含氮氣體及含氧氣體係為個別的氣體。於另一實施例中,含氮氣體及含氧氣體包括相同氣體。例如是B2H6、CO2、CO、CH4、及其組合之額外的添加劑可亦在濺鍍期間提供至腔體。 The semiconductor layers 206A-206C can be deposited by sputtering. In one embodiment, the sputter target comprises a metal such as zinc, gallium, tin, cadmium, indium, or a combination thereof. The sputter target may additionally include a dopant. An oxygen-containing gas and a nitrogen-containing system are introduced into the cavity to deposit the semiconductor layers 206A-206C by reactive sputtering. In one embodiment, the nitrogen containing gas comprises N 2 . In another embodiment, the nitrogen containing gas comprises N 2 O, NH 3 , or a combination thereof. In one embodiment, the oxygen containing gas comprises O 2 . In another embodiment, the oxygen containing gas comprises N 2 O. The nitrogen containing nitrogen gas and the oxygen containing oxygen gas react with the metal from the sputtering target to form a semiconductor material on the substrate, the semiconductor material including metal, oxygen, nitrogen, and selective dopants. In one embodiment, the nitrogen-containing gas and oxygen-containing system are individual gases. In another embodiment, the nitrogen-containing gas and the oxygen-containing gas comprise the same gas. Additional additives such as B 2 H 6 , CO 2 , CO, CH 4 , and combinations thereof may also be provided to the cavity during sputtering.

此外,半導體層206A-206C可包括多成分金屬氧化物(換言之多陽離子金屬氧化物,例如是IGZO)、單一陽離子金屬氧化物(換言之是氧化鋅)、或包含至少兩個陰離子及單一陽離子 系統之多陰離子化合物。陽離子可為N、O、S、P、C、F、I、As、Se等。此外,半導體層206A-206C可選自例如是金屬氧化物或金屬氮化物之其他半導體材料。 Furthermore, the semiconductor layers 206A-206C may comprise a multi-component metal oxide (in other words a polycationic metal oxide such as IGZO), a single cationic metal oxide (in other words zinc oxide), or comprise at least two anions and a single cation. A multi-anionic compound of the system. The cation may be N, O, S, P, C, F, I, As, Se or the like. Additionally, the semiconductor layers 206A-206C can be selected from other semiconductor materials such as metal oxides or metal nitrides.

各半導體層206A-206C可相異。或者,第一半導體層206A及第三半導體層206C可實質上一致,第二半導體層206B與其相異。舉例來說,此些層可在成分上相異。具有不同之半導體層206A-206C係產生較高之遷移率。較高之遷移率可以石墨烯(graphene)及其他層狀半導體材料來達成。然而,藉由具有不同能隙、載子濃度或費米能階之氮氧化物半導體與金屬氧化物半導體的結合來使用量子侷限,可達到大於100之遷移率。 Each of the semiconductor layers 206A-206C can be different. Alternatively, the first semiconductor layer 206A and the third semiconductor layer 206C may be substantially identical, and the second semiconductor layer 206B may be different therefrom. For example, such layers may differ in composition. Having different semiconductor layers 206A-206C produces higher mobility. Higher mobility can be achieved with graphene and other layered semiconductor materials. However, mobility can be achieved by using quantum confinement by combining quantum oxide semiconductors having different energy gaps, carrier concentrations or Fermi levels with metal oxide semiconductors.

當電子係侷限在稱為量子井之峭谷(steep canyon)中時,電子在不與其他雜質碰撞的情況下可快速地移動。使用AlGaAs/GaAs結構之量子井係已知。建立兩個不同之金屬氮氧化物或金屬氮化物或金屬氧化物或一金屬氮氧化物及其他半導體材料的異質接面(heterojunction)可產生量子井。藉由量子井的形成,可達成高遷移率來產生高遷移率TFTs及其他薄膜電子器件。來自金屬氮氧化物之膜可具有一或更多量子井以形成超晶格(superlattice)。 When the electron system is confined to a steep canyon called a quantum well, electrons can move quickly without colliding with other impurities. Quantum well systems using AlGaAs/GaAs structures are known. A heterojunction of two different metal oxynitrides or metal nitrides or metal oxides or a metal oxynitride and other semiconductor materials can be created to produce quantum wells. With the formation of quantum wells, high mobility can be achieved to produce high mobility TFTs and other thin film electronic devices. The film from the metal oxynitride may have one or more quantum wells to form a superlattice.

各半導體層206A-206C將具有各種特性來分別促成與其他層作用。各半導體層206A-206C將具有真空之能階(Ev)、傳導帶底部之能階(ECB)、電中性能階(ECNL)、費米能階(EF)、及價帶頂部之能階(EVB)。藉由控制費米能階及電中性能階,量 子井可形成且遷移率可改善。 Each of the semiconductor layers 206A-206C will have various characteristics to facilitate interaction with other layers, respectively. Each of the semiconductor layers 206A-206C will have an energy level (Ev) of the vacuum, an energy level (ECB) at the bottom of the conduction band, an electrical intermediate order (ECNL), a Fermi level (EF), and an energy level at the top of the valence band ( EVB). By controlling the Fermi level and the electrical performance level, the amount The subwell can be formed and the mobility can be improved.

藉由控制費米能階,量子井的位置可預先選擇。如果有需要時,量子井可形成以侷限電子於此些層之介面。或者,量子井可形成以捕捉在第二半導體層206B中的電子。電子侷限係透過接觸之不同膜的成分劇變來達成。此侷限係藉由在電荷轉移跨過此些介面時形成的能障而產生,電荷轉移跨過此些介面係由於費米能階之差異及電中性能階之差異的緣故。在第2A-2C圖中之閘極係為具有功函數之金屬,此功函數低於相接之半導體的費米能階。 By controlling the Fermi level, the position of the quantum well can be pre-selected. Quantum wells can form interfaces that limit electrons to these layers, if desired. Alternatively, a quantum well can be formed to capture electrons in the second semiconductor layer 206B. Electronic limitations are achieved through dramatic changes in the composition of the different membranes in contact. This limitation is caused by an energy barrier formed when charge transfer crosses such interfaces, and charge transfer across these interfaces is due to differences in Fermi level and differences in electrical performance steps. The gate in Figure 2A-2C is a metal with a work function which is lower than the Fermi level of the connected semiconductor.

第3圖繪示根據另一實施例之HFET 300之剖面圖。可理解的是,雖然繪示於第3圖中之HFET 300係具有在源極208及汲極210之間等距之接面216,其他HFET設計(layouts)係可應用的。舉例來說,具有數個接面之HFETs如同具有較鄰近源極208或汲極210其中一者的一接面之HFETs係可預期的。再者,例如是在第2C圖中之HFETs係可預期的。 FIG. 3 is a cross-sectional view of the HFET 300 in accordance with another embodiment. It will be understood that although the HFET 300 illustrated in FIG. 3 has a junction 216 equidistant between the source 208 and the drain 210, other HFET layouts are applicable. For example, HFETs having a plurality of junctions can be expected as HFETs having a junction that is closer to one of source 208 or drain 210. Again, for example, the HFETs in Figure 2C are contemplated.

在第3圖中所示之實施例中,數個半導體層302、304係設置於閘介電層212上及接面216中。閘極306係設置於半導體層304上。可用於閘極306之合適材料包括鉻、銅、鋁、鉭、鈦、鉬、及其組合、或透明導電氧化物(TCO),但不限於此些材料,透明導電氧化物例如是通常用來做為透明電極之氧化銦錫(ITO)或摻雜氟的氧化鋅(ZnO:F)。 In the embodiment shown in FIG. 3, a plurality of semiconductor layers 302, 304 are disposed on the gate dielectric layer 212 and in the junction 216. The gate 306 is disposed on the semiconductor layer 304. Suitable materials for the gate 306 include chromium, copper, aluminum, tantalum, titanium, molybdenum, and combinations thereof, or transparent conductive oxide (TCO), but are not limited to such materials, and transparent conductive oxides are commonly used, for example. Indium tin oxide (ITO) or fluorine-doped zinc oxide (ZnO: F) as a transparent electrode.

在第3圖中所示之實施例中,繪示兩個半導體層 302、304。兩個半導體層302、304包括不同成分及/或特性。於一實施例中,半導體層302、304可皆包括非晶矽,其中第一半導體層302包括本質非晶矽(intrinsic amorphous silicon)且第二半導體層304包括p型非晶矽。第一半導體層302係接觸主動通道之半導體層206A。相異之第一及第二半導體層302、304可亦相異於主動通道之半導體層206A-206C。特別是,可預期的是,半導體層302及半導體層206A具有不同成分或性質,使得不同半導體層之費米能階可引發電子從一半導體層推至另一半導體層,或者,於有需要時捕捉於特定之半導體層中。此外,半導體層302、304可亦具有不同之費米或電中性能階。 In the embodiment shown in FIG. 3, two semiconductor layers are shown 302, 304. The two semiconductor layers 302, 304 comprise different compositions and/or characteristics. In one embodiment, the semiconductor layers 302, 304 may each comprise an amorphous germanium, wherein the first semiconductor layer 302 comprises intrinsic amorphous silicon and the second semiconductor layer 304 comprises p-type amorphous germanium. The first semiconductor layer 302 is in contact with the semiconductor layer 206A of the active channel. The distinct first and second semiconductor layers 302, 304 can also be different from the active layers of the semiconductor layers 206A-206C. In particular, it is contemplated that semiconductor layer 302 and semiconductor layer 206A have different compositions or properties such that the Fermi level of different semiconductor layers can induce electrons to be pushed from one semiconductor layer to another, or, if desired, Captured in a specific semiconductor layer. In addition, the semiconductor layers 302, 304 may also have different Fermi or electrical performance steps.

第4圖繪示根據另一實施例之HFET 400之剖面圖。可理解的是,雖然繪示於第4圖中之HFET 400係具有在源極208及汲極210之間等距之接面216,其他HFET設計係可應用的。舉例來說,具有數個接面之HFETs如同具有較鄰近源極208或汲極210其中一者的一接面之HFETs係可預期的。再者,例如是在第2C圖中之HFETs係可預期的。 FIG. 4 is a cross-sectional view of an HFET 400 in accordance with another embodiment. It will be appreciated that while the HFET 400 illustrated in FIG. 4 has a junction 216 equidistant between the source 208 and the drain 210, other HFET designs are applicable. For example, HFETs having a plurality of junctions can be expected as HFETs having a junction that is closer to one of source 208 or drain 210. Again, for example, the HFETs in Figure 2C are contemplated.

在第4圖中所示之實施例中,單一半導體層402係在閘極306形成於其上的情況中形成於接面216中。半導體層402可包括金屬氧化物或金屬氮氧化物,此金屬氧化物或此金屬氮氧化物不同於用於半導體層206A之半導體材料。半導體層402可在成分、費米能階、電中性能階等部分不同於半導體層206A。用於半導體層402之合適例子包括氮氧化鋅富含氧、氧化鋅富含 氧、氮氧化錫、氮氧化銦、二氧化錫、或其組合。 In the embodiment shown in FIG. 4, a single semiconductor layer 402 is formed in junction 216 in the case where gate 306 is formed thereon. The semiconductor layer 402 may comprise a metal oxide or a metal oxynitride, which is different from the semiconductor material used for the semiconductor layer 206A. The semiconductor layer 402 may be different from the semiconductor layer 206A in a composition, a Fermi level, an electrical performance step, and the like. Suitable examples for the semiconductor layer 402 include zinc oxynitride rich in oxygen and zinc oxide rich Oxygen, tin oxynitride, indium oxynitride, tin dioxide, or a combination thereof.

第5圖繪示根據另一實施例之HFET 500之剖面圖。可理解的是,雖然繪示於第5圖中之HFET 500係具有在源極208及汲極210之間等距之接面216,其他HFET設計係可應用的。舉例來說,具有數個接面之HFETs如同具有較鄰近源極208或汲極210其中一者的一接面之HFETs係可預期的。再者,例如是在第2C圖中之HFETs係可預期的。 FIG. 5 is a cross-sectional view of a HFET 500 in accordance with another embodiment. It will be appreciated that while the HFET 500 illustrated in Figure 5 has a junction 216 equidistant between the source 208 and the drain 210, other HFET designs are applicable. For example, HFETs having a plurality of junctions can be expected as HFETs having a junction that is closer to one of source 208 or drain 210. Again, for example, the HFETs in Figure 2C are contemplated.

在第5圖中所示之實施例中,單一半導體層502係在閘極306形成於其上的情況中形成於接面216中。半導體層502包括不同於半導體層206A之材料。半導體層502可在成分、費米能階、電中性能階等部分不同於半導體層206A。半導體層502可包括p型金屬氧化物或氮氧化物或低功函數金屬氧化物導體。一氧化錫係為半導體層502之一例子。 In the embodiment shown in FIG. 5, a single semiconductor layer 502 is formed in the junction 216 in the case where the gate 306 is formed thereon. The semiconductor layer 502 includes a material different from the semiconductor layer 206A. The semiconductor layer 502 may be different from the semiconductor layer 206A in a composition, a Fermi level, an electrical performance step, and the like. Semiconductor layer 502 can include a p-type metal oxide or an oxynitride or a low work function metal oxide conductor. Tin oxide is an example of the semiconductor layer 502.

藉由具有直接接觸、或經由薄介電層或其他半導體層接觸主動通道材料之閘極,結構之遷移率可改善。 The mobility of the structure can be improved by having a gate that is in direct contact or in contact with the active channel material via a thin dielectric layer or other semiconductor layer.

綜上所述,雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In conclusion, the present invention has been disclosed in the above preferred embodiments, and is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

202‧‧‧基板 202‧‧‧Substrate

204‧‧‧介電層 204‧‧‧Dielectric layer

206A、206B、206C‧‧‧半導體層 206A, 206B, 206C‧‧‧ semiconductor layer

208‧‧‧源極 208‧‧‧ source

210‧‧‧汲極 210‧‧‧汲polar

212‧‧‧閘介電層 212‧‧‧gate dielectric layer

214‧‧‧閘極 214‧‧‧ gate

216‧‧‧接面 216‧‧‧ joint

230‧‧‧HFET 230‧‧‧HFET

E、F‧‧‧箭頭 E, F‧‧‧ arrows

Claims (19)

一種異質接面場效電晶體,包括:一第一半導體層;一源極,設置於該第一半導體層之至少一部分上;一汲極,設置於該第一半導體層之至少一部分上;一閘介電層,設置於該源極、該汲極與該第一半導體層之至少一部分之上方,該閘介電層具有貫穿其的一接面,以暴露該第一半導體層之至少一部分;一第二半導體層,設置於該閘介電層之上方與該接面中;以及一閘極,設置於該第二半導體層之上方與該接面中。 A heterojunction field effect transistor, comprising: a first semiconductor layer; a source disposed on at least a portion of the first semiconductor layer; a drain disposed on at least a portion of the first semiconductor layer; a gate dielectric layer disposed over the source, the drain, and at least a portion of the first semiconductor layer, the gate dielectric layer having a junction therethrough to expose at least a portion of the first semiconductor layer; a second semiconductor layer is disposed over the gate dielectric layer and the junction; and a gate is disposed over the second semiconductor layer and the junction. 如申請專利範圍第1項所述之異質接面場效電晶體,其中該第二半導體層包括複數個半導體層。 The heterojunction field effect transistor of claim 1, wherein the second semiconductor layer comprises a plurality of semiconductor layers. 如申請專利範圍第2項所述之異質接面場效電晶體,其中該些第二半導體層包括:一第一第二半導體層,包括一第一半導體材料;以及一第二第二半導體層,包括一第二半導體材料,該第二半導體材料係相異於該第一半導體材料。 The heterojunction field effect transistor of claim 2, wherein the second semiconductor layers comprise: a first second semiconductor layer comprising a first semiconductor material; and a second second semiconductor layer The second semiconductor material is different from the first semiconductor material. 如申請專利範圍第3項所述之異質接面場效電晶體,其中該第一半導體材料包括本質矽。 The heterojunction field effect transistor of claim 3, wherein the first semiconductor material comprises an intrinsic germanium. 如申請專利範圍第4項所述之異質接面場效電晶體,其中該第二半導體材料包括p型矽。 The heterojunction field effect transistor of claim 4, wherein the second semiconductor material comprises p-type germanium. 如申請專利範圍第5項所述之異質接面場效電晶體,其中該第一半導體材料及該第二半導體材料皆為非晶矽。 The heterojunction field effect transistor of claim 5, wherein the first semiconductor material and the second semiconductor material are amorphous germanium. 如申請專利範圍第6項所述之異質接面場效電晶體,其中該第一半導體材料及該第二半導體材料係相異於包括該第一半導體層之材料。 The heterojunction field effect transistor of claim 6, wherein the first semiconductor material and the second semiconductor material are different from the material including the first semiconductor layer. 如申請專利範圍第7項所述之異質接面場效電晶體,其中該第一半導體層包括複數個層。 The heterojunction field effect transistor of claim 7, wherein the first semiconductor layer comprises a plurality of layers. 如申請專利範圍第8項所述之異質接面場效電晶體,其中該些第一半導體層具有不同之費米能階。 The heterojunction field effect transistor of claim 8, wherein the first semiconductor layers have different Fermi energy levels. 如申請專利範圍第1項所述之異質接面場效電晶體,其中該第二半導體層包括一金屬氮氧化物或一金屬氧化物。 The heterojunction field effect transistor of claim 1, wherein the second semiconductor layer comprises a metal oxynitride or a metal oxide. 如申請專利範圍第10項所述之異質接面場效電晶體,其中該第一半導體層包括不同於該第二半導體層之該金屬氮氧化物之另一金屬氮氧化物或另一金屬氧化物。 The heterojunction field effect transistor of claim 10, wherein the first semiconductor layer comprises another metal oxynitride different from the metal oxynitride of the second semiconductor layer or another metal oxide Things. 如申請專利範圍第11項所述之異質接面場效電晶體,其中該第二半導體層包括一材料,選自由氮氧化鋅富含氧、氧化鋅、氮氧化錫、氮氧化銦、二氧化錫、及其組合所組成之群組。 The heterojunction field effect transistor according to claim 11, wherein the second semiconductor layer comprises a material selected from the group consisting of zinc oxynitride rich in oxygen, zinc oxide, tin oxynitride, indium oxynitride, and dioxide. a group of tin, and combinations thereof. 如申請專利範圍第12項所述之異質接面場效電晶體,其中該第一半導體層包括複數個層。 The heterojunction field effect transistor of claim 12, wherein the first semiconductor layer comprises a plurality of layers. 如申請專利範圍第13項所述之異質接面場效電晶體,其中該些第一半導體層具有不同之費米能階。 The heterojunction field effect transistor of claim 13, wherein the first semiconductor layers have different Fermi energy levels. 如申請專利範圍第1項所述之異質接面場效電晶體,其 中該第二半導體層包括一p型金屬氧化物、一p型金屬氮氧化物、或低功函數金屬氧化物導體。 Such as the heterojunction field effect transistor described in claim 1 of the patent scope, The second semiconductor layer includes a p-type metal oxide, a p-type metal oxynitride, or a low work function metal oxide conductor. 如申請專利範圍第15項所述之異質接面場效電晶體,其中該第二半導體層包括一氧化錫。 The heterojunction field effect transistor of claim 15, wherein the second semiconductor layer comprises tin oxide. 如申請專利範圍第16項所述之異質接面場效電晶體,其中該第一半導體層包括複數個層。 The heterojunction field effect transistor of claim 16, wherein the first semiconductor layer comprises a plurality of layers. 如申請專利範圍第17項所述之異質接面場效電晶體,其中該些第一半導體層具有不同之費米能階。 The heterojunction field effect transistor of claim 17, wherein the first semiconductor layers have different Fermi energy levels. 如申請專利範圍第18項所述之異質接面場效電晶體,其中該些第一半導體層包括複數個金屬氮氧化物。 The heterojunction field effect transistor of claim 18, wherein the first semiconductor layers comprise a plurality of metal oxynitrides.
TW102144754A 2013-01-08 2013-12-06 Metal oxynitride based heterojunction field effect transistor TW201431069A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201361750028P 2013-01-08 2013-01-08

Publications (1)

Publication Number Publication Date
TW201431069A true TW201431069A (en) 2014-08-01

Family

ID=51167285

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102144754A TW201431069A (en) 2013-01-08 2013-12-06 Metal oxynitride based heterojunction field effect transistor

Country Status (2)

Country Link
TW (1) TW201431069A (en)
WO (1) WO2014109830A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160225915A1 (en) * 2015-01-30 2016-08-04 Cindy X. Qiu Metal oxynitride transistor devices
CN110581068A (en) * 2019-09-05 2019-12-17 西交利物浦大学 Method for realizing low-on-resistance enhanced gallium nitride transistor by using gate dielectric
CN112885851B (en) * 2021-01-29 2024-04-05 合肥维信诺科技有限公司 Array substrate and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6372633B1 (en) * 1998-07-08 2002-04-16 Applied Materials, Inc. Method and apparatus for forming metal interconnects
US7855401B2 (en) * 2005-06-29 2010-12-21 Cree, Inc. Passivation of wide band-gap based semiconductor devices with hydrogen-free sputtered nitrides
KR101219046B1 (en) * 2005-11-17 2013-01-08 삼성디스플레이 주식회사 Display device and manufacturing method thereof
KR101733718B1 (en) * 2009-09-24 2017-05-10 어플라이드 머티어리얼스, 인코포레이티드 Methods of fabricating metal oxide or metal oxynitride tfts using wet process for source-drain metal etch
US8669552B2 (en) * 2011-03-02 2014-03-11 Applied Materials, Inc. Offset electrode TFT structure

Also Published As

Publication number Publication date
WO2014109830A1 (en) 2014-07-17

Similar Documents

Publication Publication Date Title
KR100907400B1 (en) Thin film transistor and Light-emitting dislplay device having the thin film transistor
KR101960889B1 (en) Offset electrode tft structure
CN105390551B (en) Thin film transistor (TFT) and its manufacturing method, array substrate, display device
US20100001346A1 (en) Treatment of Gate Dielectric for Making High Performance Metal Oxide and Metal Oxynitride Thin Film Transistors
US9378981B2 (en) Thin film device and manufacturing method thereof
CN103681751A (en) Thin film transistor array substrate and method for manufacturing same
GB2548721A (en) Thin-film transistor array substrate
TWI612669B (en) Thin film semiconductor device
CN102646715A (en) TFT (thin film transistor) and manufacturing method thereof
US20150060843A1 (en) Display substrate and method of manufacturing a display substrate
TW201431069A (en) Metal oxynitride based heterojunction field effect transistor
KR101625207B1 (en) Thin Film Transistor and manufacturing method thereof
US9385239B2 (en) Buffer layers for metal oxide semiconductors for TFT
JP6327548B2 (en) Thin film transistor and manufacturing method thereof
US8975625B2 (en) TFT with insert in passivation layer or etch stop layer
Jeon et al. Contact properties of a low-resistance aluminum-based electrode with metal capping layers in vertical oxide thin-film transistors
JP6241848B2 (en) Thin film transistor structure, thin film transistor manufacturing method, and semiconductor device
KR102699702B1 (en) Array Substrate For Thin Film Transistor
KR102145978B1 (en) Array substrate and method for fabricating of the same
KR102571072B1 (en) Thin Film Transistor and Preparation Method Thereof
US20140110714A1 (en) High mobility compound semiconductor material using multiple anions
CN106847699A (en) Based on Ga2O3Compound double grid NMOSFET of the cap layers of material and preparation method thereof