TW201420794A - Al alloy film for anode electrodes of organic el elements, organic el element and al alloy sputtering target - Google Patents
Al alloy film for anode electrodes of organic el elements, organic el element and al alloy sputtering target Download PDFInfo
- Publication number
- TW201420794A TW201420794A TW102131292A TW102131292A TW201420794A TW 201420794 A TW201420794 A TW 201420794A TW 102131292 A TW102131292 A TW 102131292A TW 102131292 A TW102131292 A TW 102131292A TW 201420794 A TW201420794 A TW 201420794A
- Authority
- TW
- Taiwan
- Prior art keywords
- atom
- film
- organic
- alloy
- alloy film
- Prior art date
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 71
- 238000005477 sputtering target Methods 0.000 title claims description 17
- 229910001325 element alloy Inorganic materials 0.000 title 1
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 24
- 229910052751 metal Inorganic materials 0.000 claims abstract description 18
- 239000002184 metal Substances 0.000 claims abstract description 18
- 230000008018 melting Effects 0.000 claims abstract description 15
- 238000002844 melting Methods 0.000 claims abstract description 15
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 13
- 229910052732 germanium Inorganic materials 0.000 claims abstract description 11
- 229910052738 indium Inorganic materials 0.000 claims abstract description 10
- 229910052718 tin Inorganic materials 0.000 claims abstract description 10
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 10
- 229910052797 bismuth Inorganic materials 0.000 claims abstract description 8
- 238000005401 electroluminescence Methods 0.000 claims description 35
- 239000012044 organic layer Substances 0.000 claims description 24
- 238000005286 illumination Methods 0.000 claims description 8
- 229910052715 tantalum Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910052779 Neodymium Inorganic materials 0.000 claims description 3
- 239000000463 material Substances 0.000 description 23
- 238000010438 heat treatment Methods 0.000 description 14
- 239000010410 layer Substances 0.000 description 13
- 238000004544 sputter deposition Methods 0.000 description 13
- 239000000758 substrate Substances 0.000 description 13
- 238000005259 measurement Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 239000012535 impurity Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 229910000583 Nd alloy Inorganic materials 0.000 description 2
- 229910006303 Si—Nd Inorganic materials 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 239000003566 sealing material Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000013077 target material Substances 0.000 description 2
- 229910018125 Al-Si Inorganic materials 0.000 description 1
- 229910018520 Al—Si Inorganic materials 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910000573 alkali metal alloy Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004770 highest occupied molecular orbital Methods 0.000 description 1
- 230000005525 hole transport Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000009718 spray deposition Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/26—Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/805—Electrodes
- H10K59/8051—Anodes
- H10K59/80518—Reflective anodes, e.g. ITO combined with thick metallic layers
Landscapes
- Electroluminescent Light Sources (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
本發明係有關有機電激發光元件之陽極電極用Al合金膜、有機電激發光元件及Al合金濺鍍靶材,例如係有關有機電激發光顯示器或有機電激發光照明當中所使用之構成有機電激發光元件的陽極電極之Al合金膜、將該Al合金膜用於陽極電極之有機電激發光元件、及前述Al合金膜形成用之Al合金濺鍍靶材。 The present invention relates to an Al alloy film for an anode electrode, an organic electroluminescence device, and an Al alloy sputtering target for an organic electroluminescence device, and is, for example, used in an organic electroluminescence display or an organic electroluminescence illumination. An Al alloy film of an anode electrode of an electromechanical excitation element, an organic electroluminescence element using the Al alloy film for an anode electrode, and an Al alloy sputtering target for forming the Al alloy film.
有機電激發光材料為自發光體。利用有機電激發光材料的發光,來設計顯示裝置或發光裝置。 The organic electroluminescent material is a self-luminous body. The display device or the light-emitting device is designed using the light emission of the organic electroluminescent material.
圖1揭示典型的有機電激發光元件之構造。如圖1所示,有機電激發光元件中,於基板上具有被陰極電極與陽極電極包夾之有機層(有機發光層),為了保護上述層積體免受氧氣或水等外部因素影響,而做成密封構造。 Figure 1 reveals the construction of a typical organic electroluminescent device. As shown in FIG. 1 , in the organic electroluminescence device, an organic layer (organic light-emitting layer) sandwiched between a cathode electrode and an anode electrode is provided on a substrate, and the laminate is protected from external factors such as oxygen or water in order to protect the laminate. And made a sealed structure.
上述有機電激發光元件的發光,係藉由從陰極電極及陽極電極所施加之電子與電洞在有機層(有機發 光層)中復合(recombination),能量以光的形式放出而產生。 The light emitted by the organic electroluminescent device is carried out in the organic layer by electrons and holes applied from the cathode electrode and the anode electrode (organic hair In the light layer, recombination occurs, and energy is emitted in the form of light.
為了使上述發光現象產生,作為陰極電極,必須使電子注入構成有機層的材料的LUMO軌道,故一般而言會利用功函數(work function)較小的材料。另一方面,在陽極電極,必須使電洞注入構成有機層的材料的HOMO軌道,故必須使用功函數較大的材料。 In order to cause the above-described luminescence phenomenon, it is necessary to inject electrons into the LUMO orbital of the material constituting the organic layer as the cathode electrode. Therefore, a material having a small work function is generally used. On the other hand, in the anode electrode, it is necessary to inject a hole into the HOMO orbital of the material constituting the organic layer, and therefore it is necessary to use a material having a large work function.
作為上述陽極電極,專利文獻1中係利用含有Ag或Pd或Cu的貴金屬合金膜、或是ITO膜或IZO膜等透明導電膜(氧化物導電膜)。但,由於上述Ag或Pd為貴金屬,故材料成本高。此外,透明導電膜的ITO膜或IZO膜也含有稀少金屬In,故成本高。故,為了減低有機電激發光元件的製造成本,係尋求以低價材料來實現陽極電極。 In the above-mentioned anode electrode, Patent Document 1 uses a noble metal alloy film containing Ag, Pd or Cu, or a transparent conductive film (oxide conductive film) such as an ITO film or an IZO film. However, since the above Ag or Pd is a noble metal, the material cost is high. Further, since the ITO film or the IZO film of the transparent conductive film also contains a rare metal In, the cost is high. Therefore, in order to reduce the manufacturing cost of the organic electroluminescent device, it is sought to realize the anode electrode with a low-cost material.
作為上述低價材料,可例舉Al系材料。例如專利文獻2中,作為陽極電極便使用Al-Nd合金。 As the above-mentioned low-priced material, an Al-based material can be exemplified. For example, in Patent Document 2, an Al-Nd alloy is used as the anode electrode.
先前技術文獻 Prior technical literature
專利文獻 Patent literature
專利文獻1:日本國特開2003-77681號公報 Patent Document 1: Japanese Patent Laid-Open Publication No. 2003-77681
專利文獻2:日本國特開2006-79836號公報 Patent Document 2: Japanese Patent Laid-Open Publication No. 2006-79836
然而,專利文獻2中揭示之構造,作為有機層,除了與發光有關的層以外還需要其他的層(電洞注入層)。故,料想製造成本會變高。 However, the structure disclosed in Patent Document 2, as the organic layer, requires another layer (hole injection layer) in addition to the layer related to light emission. Therefore, it is expected that the manufacturing cost will become higher.
本發明係著眼於上述各種事態而研發,目的在於尋求一種膜,其作為有機電激發光元件的陽極電極,從生產性觀點看來能夠使用低成本的Al系材料,採用習知有機層之構成(亦即,作為有機層不需要如前述專利文獻2般多餘的層),且即使不使用ITO等透明導電膜(氧化物導電膜),仍具備足夠的電洞注入特性(高功函數)以及作為電極的特性(低電阻率)。 The present invention has been developed in view of the above various aspects, and aims to find a film which is an anode electrode of an organic electroluminescence element, and which can use a low-cost Al-based material from the viewpoint of productivity, and adopts a composition of a conventional organic layer. (that is, a layer which is unnecessary as the above-mentioned Patent Document 2 is not required as the organic layer), and sufficient hole injection characteristics (high work function) and sufficient hole injection characteristics (high work function) are not used even if a transparent conductive film (oxide conductive film) such as ITO is not used. As a characteristic of the electrode (low resistivity).
本發明提供以下的有機電激發光元件之陽極電極用Al合金膜、有機電激發光元件、有機電激發光顯示器、有機電激發光照明及Al合金濺鍍靶材。 The present invention provides an Al alloy film for an anode electrode of an organic electroluminescence device, an organic electroluminescence device, an organic electroluminescence display, an organic electroluminescence illumination, and an Al alloy sputtering target.
(1)一種有機電激發光元件之陽極電極用Al合金膜,其特徴為:含有從Si、Ge、Bi、In、Sn及Zn所成之群組中選擇之1種以上元素,同時含有0.2原子%以上5.0原子%以下之稀土類元素及高熔點金屬當中的至少一者,且功函數為4.5eV以上。 (1) An Al alloy film for an anode electrode of an organic electroluminescence device, which comprises one or more elements selected from the group consisting of Si, Ge, Bi, In, Sn, and Zn, and contains 0.2 or less At least one of a rare earth element and a high melting point metal having an atomic % or more and 5.0 atomic % or less and a work function of 4.5 eV or more.
(2)如(1)所述之Al合金膜,其中,前述稀土類元素及高熔點金屬當中的至少一者,是從Nd、Ti及Ta所成之群組中選擇之1種以上元素。 (2) The Al alloy film according to the above aspect, wherein at least one of the rare earth element and the high melting point metal is one or more elements selected from the group consisting of Nd, Ti, and Ta.
(3)如(2)所述之Al合金膜,其中,前述稀土類元素及 高熔點金屬當中的至少一者,為Nd。 (3) The Al alloy film according to (2), wherein the rare earth element and At least one of the high melting point metals is Nd.
(4)一種有機電激發光元件,屬於包含有機層、及與前述有機層直接連接之陽極電極的有機電激發光元件,其特徵為:前述陽極電極,是由(1)~(3)任一項所述之Al合金膜所構成。 (4) An organic electroluminescence device comprising an organic layer and an anode electrode directly connected to the organic layer, wherein the anode electrode is composed of (1) to (3) One of the described Al alloy films.
(5)一種有機電激發光顯示器,具備(4)所述之有機電激發光元件。 (5) An organic electroluminescence display comprising the organic electroluminescence element according to (4).
(6)一種有機電激發光照明,具備(4)所述之有機電激發光元件。 (6) An organic electroluminescence illumination device comprising the organic electroluminescence device according to (4).
(7)一種Al合金濺鍍靶材,屬於用來形成(1)~(3)任一項所述之Al合金膜的Al合金濺鍍靶材,其特徵為:含有從Si、Ge、Bi、In、Sn及Zn所成之群組中選擇之1種以上元素,同時含有0.2原子%以上5.0原子%以下之稀土類元素及高熔點金屬當中的至少一者。 (7) An Al alloy sputtering target material, which is an Al alloy sputtering target material for forming the Al alloy film according to any one of (1) to (3), which is characterized by containing Si, Ge, and Bi One or more elements selected from the group consisting of In, Sn, and Zn contain at least one of 0.2 atom% or more and 5.0 atom% or less of a rare earth element and a high melting point metal.
按照本發明,能夠使用低價的Al系材料,提供適合有機電激發光元件的陽極電極之Al合金膜。其結果,作為陽極電極,不必使用習知常用之氧化物導電膜(ITO膜等),此外,也不必如上述專利文獻2般追加多餘的有機層,便能實現低價的有機電激發光元件。故,能夠以低價製造發光亮度特性優良的有機電激發光顯示器或有機電激發光照明等。 According to the present invention, it is possible to provide an Al alloy film suitable for an anode electrode of an organic electroluminescence element by using a low-cost Al-based material. As a result, it is not necessary to use a conventionally used oxide conductive film (such as an ITO film) as the anode electrode, and it is not necessary to add an unnecessary organic layer as in the above-mentioned Patent Document 2, and a low-cost organic electroluminescent device can be realized. . Therefore, an organic electroluminescence display, an organic electroluminescence illumination, or the like excellent in light-emitting luminance characteristics can be manufactured at low cost.
1‧‧‧基板 1‧‧‧Substrate
2‧‧‧陽極電極(Al合金膜) 2‧‧‧Anode electrode (Al alloy film)
3‧‧‧有機層(有機發光層) 3‧‧‧Organic layer (organic light-emitting layer)
4‧‧‧陰極電極 4‧‧‧Cathode electrode
5‧‧‧密封材 5‧‧‧ Sealing material
[圖1]圖1為有機電激發光元件之概略說明圖。 Fig. 1 is a schematic explanatory view of an organic electroluminescence device.
本發明團隊為解決前述課題,係反覆專注研究,以便以材料成本低的Al系材料來實現一種在有機電激發光元件中與有機層直接連接,且表現出高功函數與高反射率之陽極電極。其結果發現,作為構成上述陽極電極之Al合金膜,只要滿足(1)含有從Si、Ge、Bi、In、Sn及Zn所成之群組中選擇之1種以上元素、同時(2)含有0.2原子%以上5.0原子%以下之稀土類元素及/或高熔點金屬、且(3)功函數為4.5eV以上者即可,進而完成了本發明。 In order to solve the aforementioned problems, the present invention has repeatedly focused on research to realize an anode which is directly connected to an organic layer in an organic electroluminescent device and exhibits a high work function and high reflectance with an Al-based material having a low material cost. electrode. As a result, it is found that the Al alloy film constituting the anode electrode satisfies (1) one or more elements selected from the group consisting of Si, Ge, Bi, In, Sn, and Zn, and (2) The rare earth element and/or the high melting point metal of 0.2 atom% or more and 5.0 atom% or less, and (3) the work function is 4.5 eV or more, and the present invention has been completed.
以下,首先針對Al合金膜的成分組成進行說明。 Hereinafter, the component composition of the Al alloy film will be described first.
上述(1)的Si、Ge、Bi、In、Sn、Zn(以下或將這些元素統稱為「X群元素」),係在Al合金膜的表面擴散而濃化。在Al合金膜表面濃化之X群元素會被氧化,其結果,Al合金膜表面會被上述X群元素的氧化物所覆蓋,藉此,功函數會變大。 Si, Ge, Bi, In, Sn, and Zn (hereinafter referred to as "X group elements") of the above (1) are diffused and concentrated on the surface of the Al alloy film. The X group element concentrated on the surface of the Al alloy film is oxidized, and as a result, the surface of the Al alloy film is covered with the oxide of the above X group element, whereby the work function becomes large.
為了發揮上述效果,當含有Bi來作為X群元素的情形下,較佳是使Bi量含有0.1原子%以上、更佳是0.3原子%以上、更佳是0.5原子%以上、再更佳是1.0原子%以上。另一方面,若Bi含有過多,則會容易發生膜剝離,故較佳是2原子%未滿、更佳是1.5原子%以下。 In order to exhibit the above effects, when Bi is contained as the X group element, the amount of Bi is preferably 0.1 atom% or more, more preferably 0.3 atom% or more, more preferably 0.5 atom% or more, still more preferably 1.0. More than atomic %. On the other hand, when Bi is excessively contained, film peeling easily occurs, so that it is preferably 2 atom% or less, more preferably 1.5 atom% or less.
此外,作為上述X群元素,當含有Bi以外的元素(Si、Ge、In、Sn、Zn)的情形下,為了發揮上述效果,其含有量(單獨含有時意指單獨量,含有二種類以上時意指合計量,下同)較佳是訂為1原子%以上、更佳是3原子%以上。另一方面,若這些元素含有過多,則電阻率會增加,故作為電極的特性會變差。故,這些元素的含有量上限,雖會因各元素而有些許差異,但較佳是25原子%未滿、更佳是20原子%未滿。 In addition, when the elements other than Bi (Si, Ge, In, Sn, and Zn) are contained in the X group element, the content thereof (inclusively, it means a separate amount, and contains two or more types). The time ratio means that the total amount is preferably 1 atom% or more, more preferably 3 atom% or more. On the other hand, if these elements are too much, the electrical resistivity will increase, and the characteristics as an electrode will deteriorate. Therefore, the upper limit of the content of these elements may vary slightly depending on the elements, but it is preferably 25 atom% or less, more preferably 20 atom%.
上述(2)的稀土類元素及/或高熔點金屬(以下或稱「稀土類元素等」),係為有助於Al晶粒微細化之元素。若Al晶粒微細化,則Al晶粒的晶界(grain boundary)會增加,上述X群元素的遷移路徑會增加。其結果,可認為X群元素會在Al合金膜表面有效率地遷移,促進X群元素的濃化。 The rare earth element and/or the high melting point metal (hereinafter referred to as "rare earth element" or the like) of the above (2) are elements which contribute to the refinement of Al crystal grains. When the Al crystal grains are refined, the grain boundary of the Al crystal grains increases, and the migration path of the above X group elements increases. As a result, it is considered that the X group element efficiently migrates on the surface of the Al alloy film and promotes concentration of the X group element.
為了發揮這樣的效果,係將稀土類元素等的含有量訂為0.2原子%以上。較佳為0.5原子%以上。另一方面,若稀土類元素等的含有量超過5.0原子%,則電阻率會增加,作為電極的特性會變差。故,稀土類元素等的含有量訂為5.0原子%以下。較佳為3.0原子%以下。 In order to exhibit such an effect, the content of the rare earth element or the like is set to 0.2 atom% or more. It is preferably 0.5 atom% or more. On the other hand, when the content of the rare earth element or the like exceeds 5.0 atomic %, the electrical resistivity increases, and the characteristics as an electrode deteriorate. Therefore, the content of the rare earth element or the like is set to be 5.0 atom% or less. It is preferably 3.0 atom% or less.
此處所謂「稀土類元素等的含有量」,較佳是從下列元素所成之群組中選擇之至少一種高熔點金屬、及/或較佳是從下列元素所成之群組中選擇之至少一種稀土類元素,單獨含有時意指單獨的量,含有二種類以上時意指合計量。 Here, the "content of the rare earth element or the like" is preferably at least one high melting point metal selected from the group consisting of the following elements, and/or preferably selected from the group consisting of the following elements. At least one rare earth element, when it is contained alone, means a single amount, and when it contains two or more types, it means a total amount.
本發明中使用之較佳的高熔點金屬,可列舉從Ti、Fe、Ta及Mn所成之群組中選擇之至少一種元素。此外,本發明中使用之稀土類元素,可列舉從鑭系元素(La至Lu為止的15個元素)、Sc(鈧)及Y(釔)所成之群組中選擇之至少一種。 The preferred high-melting-point metal used in the present invention is at least one element selected from the group consisting of Ti, Fe, Ta, and Mn. In addition, the rare earth element used in the present invention may be at least one selected from the group consisting of lanthanoid elements (15 elements up to La) and Sc (钪) and Y (钇).
上述稀土類元素等當中,尤其以從Nd、Ti及Ta所成之群組中選擇之1種以上元素較佳,因其容易製造濺鍍靶材,更佳的是Nd。 Among the above-mentioned rare earth elements and the like, one or more elements selected from the group consisting of Nd, Ti, and Ta are preferable, and a sputtering target is easily produced, and Nd is more preferable.
本發明之Al合金膜如上述般,含有X群元素且含有規定量的稀土類元素等,剩餘部分為Al及不可避免雜質。該不可避免雜質,可列舉在Al合金膜的製造過程等中可能不可避免混入之元素,例如Fe、Si、B、C、O、N等,其含有量較佳是Fe、Si分別訂為0.12原子%以下、其他不可避免元素分別訂為0.05原子%以下。 As described above, the Al alloy film of the present invention contains a group X element and contains a predetermined amount of a rare earth element, and the remainder is Al and an unavoidable impurity. The unavoidable impurities include elements which may be inevitably mixed in the production process of the Al alloy film, such as Fe, Si, B, C, O, N, etc., and the content thereof is preferably 0.12 for Fe and Si, respectively. Atom% or less and other inevitable elements are set to 0.05 atom% or less.
當使用Nd來作為上述稀土類元素等的情形下,即Al-X群元素-Nd膜的情形下,各X群元素量的較佳範圍如下所述。 In the case where Nd is used as the rare earth element or the like, that is, in the case of an Al-X group element-Nd film, a preferred range of the amount of each X group element is as follows.
首先,當X群元素=Si,即Al-Si-Nd膜的情形下,Si量較佳是1原子%以上20原子%未滿。只要Si量為1原子%以上,便能使Si在表面充分擴散而增大功函數。更佳是2原子%以上、再更佳是4原子%以上。另一方面,若Si量過多,則電阻率會增加,故作為電極的特性會變差。故,Si量較佳是訂為20原子%未滿、更佳是15原子%以下。 First, in the case where the X group element = Si, that is, the Al-Si-Nd film, the amount of Si is preferably 1 atom% or more and 20 atom% or less. As long as the amount of Si is 1 atom% or more, Si can be sufficiently diffused on the surface to increase the work function. More preferably, it is 2 atom% or more, and still more preferably 4 atom% or more. On the other hand, when the amount of Si is too large, the electrical resistivity increases, and the characteristics as an electrode deteriorate. Therefore, the amount of Si is preferably set to be 20 atom% or less, more preferably 15 atom% or less.
當X群元素=Ge,即Al-Ge-Nd膜的情形下,Ge量較佳是1原子%以上25原子%未滿。只要Ge量為1原子%以上,便能使Ge在表面充分擴散而增大功函數。更佳是3原子%以上。另一方面,若Ge量過多,則電阻率會增加,故作為電極的特性會變差。故,Ge量較佳是25原子%未滿、更佳是15原子%以下,再更佳是10原子%以下。 In the case where the X group element = Ge, that is, the Al-Ge-Nd film, the amount of Ge is preferably 1 atom% or more and 25 atom% is not full. As long as the amount of Ge is 1 atom% or more, Ge can be sufficiently diffused on the surface to increase the work function. More preferably, it is 3 atom% or more. On the other hand, if the amount of Ge is too large, the specific resistance increases, and the characteristics as an electrode deteriorate. Therefore, the amount of Ge is preferably 25 atom% or less, more preferably 15 atom% or less, still more preferably 10 atom% or less.
當X群元素=Bi,即Al-Bi-Nd膜的情形下,Bi量較佳是0.3原子%以上2原子%未滿。只要Bi量為0.3原子%以上,便能使Bi在表面充分擴散而增大功函數。另一方面,若Bi量過多,則膜會變得容易剝離。故,Bi量較佳是訂為2原子%未滿、更佳是1.5原子%以下。 In the case where the X group element = Bi, that is, the Al-Bi-Nd film, the amount of Bi is preferably 0.3 atom% or more and 2 atom% is not full. When the amount of Bi is 0.3 atom% or more, Bi can be sufficiently diffused on the surface to increase the work function. On the other hand, if the amount of Bi is too large, the film will be easily peeled off. Therefore, the amount of Bi is preferably set to 2 atom% or less, more preferably 1.5 atom% or less.
當X群元素=Zn,即Al-Zn-Nd膜的情形下,Zn量較佳是1原子%以上20原子%未滿。只要Zn量為1原子%以上,便能使Zn在表面充分擴散而增大功函數。更佳是3原子%以上。另一方面,若Zn量過多,則電阻率會增加,故作為電極的特性會變差。故,Zn量較佳是訂為20原子%未滿、更佳是15原子%以下。 In the case where the X group element = Zn, that is, the Al-Zn-Nd film, the amount of Zn is preferably 1 atom% or more and 20 atom% or less. As long as the amount of Zn is 1 atom% or more, Zn can be sufficiently diffused on the surface to increase the work function. More preferably, it is 3 atom% or more. On the other hand, when the amount of Zn is too large, the electrical resistivity increases, and the characteristics as an electrode deteriorate. Therefore, the amount of Zn is preferably set to be 20 atom% or less, more preferably 15 atom% or less.
In、Sn在Al中的晶界容易擴散,且低熔點,故預料其會與Zn表現出同樣的舉動。因此,In量、Sn量各自的較佳範圍係訂為與上述Zn相同之值。亦即,Al-In-Nd膜的情形下,In量較佳是1原子%以上(更佳是3原子%以上)、20原子%未滿(更佳是15原子%以下)。此外,Al-Sn-Nd膜的情形下,Sn量較佳是1原子%以上(更佳是 3原子%以上)、20原子%未滿(更佳是15原子%以下)。 The grain boundaries of In and Sn in Al easily diffuse and have a low melting point, so it is expected to exhibit the same behavior as Zn. Therefore, the preferred range of each of the amount of In and the amount of Sn is set to the same value as the above Zn. That is, in the case of the Al-In-Nd film, the amount of In is preferably 1 atom% or more (more preferably 3 atom% or more), and 20 atom% or less (more preferably 15 atom% or less). Further, in the case of the Al-Sn-Nd film, the amount of Sn is preferably 1 atom% or more (more preferably 3 atom% or more), 20 atom% or less (more preferably 15 atom% or less).
此外,當稀土類元素等為Nd、且含有二種類以上X群元素的情形下,亦即Al-(複數個X群元素)-Nd膜的情形下,複數個X群元素當中任一個X群元素,只要滿足上述Al-X群元素-Nd膜情形下的X群元素量範圍即可。 Further, when the rare earth element or the like is Nd and contains two or more types of X group elements, that is, in the case of Al-(multiple X group elements)-Nd film, any one of the plurality of X group elements is X group The element may be in the range of the amount of the X group element in the case where the above-described Al-X group element-Nd film is satisfied.
本發明中,與有機層直接連接之陽極電極,係不使用ITO等透明導電膜,而是由上述Al合金膜所構成之物,如上述(3)般,該Al合金膜,從與有機層之間的電性連接觀點看來,係為表現出功函數為4.5eV以上者。該功函數較佳為4.8eV以上。另,功函數沒有上限。就算Al合金膜的功函數大,也不會對其與有機層之間的電性連接造成障礙。 In the present invention, the anode electrode directly connected to the organic layer is formed of the above-described Al alloy film without using a transparent conductive film such as ITO, and the Al alloy film is bonded to the organic layer as in the above (3). The viewpoint of electrical connection is to show that the work function is 4.5 eV or more. The work function is preferably 4.8 eV or more. In addition, there is no upper limit to the work function. Even if the work function of the Al alloy film is large, it does not cause an obstacle to the electrical connection with the organic layer.
另,有關功函數之測定,Al合金膜表面(曝露於外界大氣的面)的功函數,可以利用理研計器公司製之功函數測量裝置(型號:AC-2)來測定。另,功函數對於表面狀態(大氣中的有機物污染等)很敏感,故較佳是在以上述AC-2測定前一刻進行UV照射,以洗淨Al合金膜表面。上述UV照射,可以使用GS YUASA公司製UV照射裝置(型號:DUV-800-6),在燈電壓:300V下照射1分鐘UV來進行。 Further, regarding the measurement of the work function, the work function of the surface of the Al alloy film (the surface exposed to the outside atmosphere) can be measured by a work function measuring device (model: AC-2) manufactured by Riken Keiki Co., Ltd. Further, since the work function is sensitive to the surface state (organic matter contamination in the atmosphere, etc.), it is preferred to carry out UV irradiation immediately before the measurement of the above AC-2 to wash the surface of the Al alloy film. The UV irradiation described above can be carried out by using a UV irradiation device (Model: DUV-800-6) manufactured by GS YUASA Co., Ltd., and irradiating the lamp at a lamp voltage of 300 V for 1 minute.
本發明之Al合金膜,藉由含有規定元素(特別是X群元素),便如上述般,X群元素會在Al合金膜的表面擴散且被氧化,而在Al合金膜表面形成氧化物,藉 此功函數會提高。 In the Al alloy film of the present invention, by containing a predetermined element (particularly, an X group element), as described above, the X group element is diffused on the surface of the Al alloy film and oxidized, and an oxide is formed on the surface of the Al alloy film. borrow This work function will increase.
上述X群元素的氧化方法並無特別限定,可以是自然氧化,但為了促進對上述Al合金膜表面的擴散或氧化,較佳是依下述條件進行熱處理。亦即,較佳是以下述條件進行,環境:氮氣環境或大氣環境、加熱溫度=150℃~350℃、加熱時間:30分鐘~1.5小時。在上述氮氣環境中進行熱處理的情形下,X群元素當中例如Si、Ge、Zn,可以認為會藉由該熱處理而特別促進對Al合金膜表面之擴散。 The oxidation method of the X group element is not particularly limited, and may be natural oxidation. However, in order to promote diffusion or oxidation of the surface of the Al alloy film, it is preferred to carry out heat treatment under the following conditions. That is, it is preferably carried out under the following conditions: environment: nitrogen atmosphere or atmospheric environment, heating temperature = 150 ° C to 350 ° C, heating time: 30 minutes to 1.5 hours. In the case where the heat treatment is performed in the above nitrogen atmosphere, among the X group elements, for example, Si, Ge, and Zn, it is considered that the diffusion of the surface of the Al alloy film is particularly promoted by the heat treatment.
上述加熱溫度,為了促進上述擴散或氧化,較佳是如上述般訂為150℃以上、更佳是200℃以上。另一方面,若加熱溫度過高會發生Al的遷移(migration),故較佳是如上述般訂為350℃以下、更佳是300℃以下、再更佳是250℃以下。此外,上述加熱溫度,為了促進上述擴散或氧化,較佳是如上述般訂為30分鐘以上、更佳是45分鐘以上。另一方面,若加熱時間過長則生產性會降低,故較較是如上述般訂為1.5小時(90分鐘)以下、更佳是75分鐘以下。 The heating temperature is preferably set to 150 ° C or higher, and more preferably 200 ° C or higher as described above in order to promote the above diffusion or oxidation. On the other hand, if the heating temperature is too high, migration of Al occurs. Therefore, it is preferably 350 ° C or lower, more preferably 300 ° C or lower, and still more preferably 250 ° C or lower as described above. Further, in order to promote the above diffusion or oxidation, the heating temperature is preferably set to 30 minutes or longer, more preferably 45 minutes or longer as described above. On the other hand, if the heating time is too long, the productivity is lowered, so it is set to be 1.5 hours (90 minutes) or less, more preferably 75 minutes or less as described above.
前述Al合金膜的熱處理,可以是以前述擴散或氧化為目的而進行,也可以是前述Al合金膜形成後的熱歷程,會滿足前述環境、前述加熱溫度及前述加熱時間。 The heat treatment of the Al alloy film may be carried out for the purpose of diffusion or oxidation, or may be a heat history after the formation of the Al alloy film, and satisfy the environment, the heating temperature, and the heating time.
前述Al合金膜的形成方法,例如可舉出濺鍍法或真空蒸鍍法等。本發明中,從能夠使膜厚均一、且組 成均一性良好地成膜的觀點、或是從能夠容易控制添加元素量等觀點看來,較佳是以濺鍍法形成Al合金膜。 Examples of the method for forming the Al alloy film include a sputtering method, a vacuum deposition method, and the like. In the present invention, it is possible to make the film thickness uniform and group From the viewpoint of forming a film with good uniformity or from the viewpoint of easily controlling the amount of added elements, it is preferred to form an Al alloy film by a sputtering method.
前述濺鍍法的條件(成膜條件)並無特別限定。例如,舉例採用以下條件。 The conditions (film formation conditions) of the sputtering method are not particularly limited. For example, the following conditions are employed by way of example.
.基板溫度:室溫~50℃ . Substrate temperature: room temperature ~ 50 ° C
.極限真空度:1×10-5Torr以下(1.3×10-3Pa以下) . Ultimate vacuum: 1 × 10 -5 Torr or less (1.3 × 10 -3 Pa or less)
.成膜時的(Ar)氣體壓力:1~4mTorr . (Ar) gas pressure at the time of film formation: 1 to 4 mTorr
.DC濺鍍功率密度(靶材每單位面積的DC濺鍍功率):1.0~20W/cm2 . DC sputtering power density (DC sputtering power per unit area of target): 1.0~20W/cm 2
欲以濺鍍法形成前述Al合金膜,該濺鍍法中所使用之濺鍍靶材,可以使用含有從Si、Ge、Bi、In、Sn及Zn所成之群組中選擇之1種以上元素,同時含有0.2原子%以上5.0原子%以下之稀土類元素及/或高熔點金屬,剩餘部分為Al及不可避免雜質之,與所需Al合金組成為同一組成之Al合金濺鍍靶材。只要使用該Al合金濺鍍靶材,便沒有組成偏差的疑慮,能夠形成所需成分組成之Al合金膜。 The above-described Al alloy film is formed by a sputtering method, and the sputtering target used in the sputtering method may be one or more selected from the group consisting of Si, Ge, Bi, In, Sn, and Zn. The element contains a rare earth element of 0.2 atom% or more and 5.0 atom% or less and/or a high melting point metal, and the remainder is an Al alloy sputtering target having the same composition as Al and an unavoidable impurity. As long as the Al alloy sputtering target is used, there is no fear of composition variation, and an Al alloy film having a desired composition can be formed.
前述Al合金濺鍍靶材的形狀,係包含因應濺鍍裝置的形狀或構造而加工成任意形狀(方型板狀、圓形板狀、環形板狀等)者。 The shape of the Al alloy sputtering target is processed into an arbitrary shape (square plate shape, circular plate shape, annular plate shape, or the like) in accordance with the shape or structure of the sputtering apparatus.
前述Al合金濺鍍靶材的製造方法並無特別限定。例如,能夠以熔解鑄造法或粉末燒結法、噴覆成型法(spray forming)來製造。 The method for producing the Al alloy sputtering target is not particularly limited. For example, it can be produced by a melt casting method, a powder sintering method, or a spray forming method.
本發明之Al合金膜,只要滿足前述成分組成 、功函數即可,Al合金膜的膜厚並不特別過問。Al合金膜的膜厚,例如可做成50nm以上(較佳為100nm以上)、500nm以下(較佳為300nm以下)。 The Al alloy film of the present invention is provided as long as the composition of the foregoing components is satisfied The work function is sufficient, and the film thickness of the Al alloy film is not particularly problematic. The film thickness of the Al alloy film can be, for example, 50 nm or more (preferably 100 nm or more) or 500 nm or less (preferably 300 nm or less).
以上已針對本發明之特徴部分,即構成陽極電極之Al合金膜進行了說明。以下,針對包含該Al合金膜(陽極電極)之有機電激發光元件的構造進行說明。 The above has been described with respect to the special portion of the present invention, that is, the Al alloy film constituting the anode electrode. Hereinafter, the structure of the organic electroluminescence device including the Al alloy film (anode electrode) will be described.
圖1揭示一般的有機電激發光元件之構造。圖1中,於基板1上具有陽極電極2,層積了有機層3、陰極電極4,又,該層積體係以密封材5密封。基板1一般係使用玻璃基板,但只要是能支撐者即可,金屬或樹脂材料也能適用。有機層3除了有機發光層外,有時會包含(層積)電洞遷移層或電子遷移層。該有機層3,只要使用由泛用材料所構成者即可。陰極電極4,一般可以使用功函數小的Al-鹼金屬合金、或鹼金屬膜與Al系膜之層積膜(例如LiF與Al系膜之層積膜)。圖1中係揭示從基板1側起依序為陽極電極2(基板側電極)、有機層3、陰極電極4的層積構造,但並非限定於此。依照元件的構造不同,亦可為從基板側起依序為陰極電極(基板側電極)、有機層、陽極電極的層積構造。 Figure 1 discloses the construction of a general organic electroluminescent device. In Fig. 1, an anode electrode 2 is provided on a substrate 1, and an organic layer 3 and a cathode electrode 4 are laminated. Further, the laminated system is sealed with a sealing material 5. The substrate 1 is generally a glass substrate, but a metal or resin material can be used as long as it can support it. The organic layer 3 sometimes contains (layers) a hole transport layer or an electron transport layer in addition to the organic light-emitting layer. The organic layer 3 may be formed of a general-purpose material. As the cathode electrode 4, an Al-alkali metal alloy having a small work function or a laminated film of an alkali metal film and an Al-based film (for example, a laminated film of LiF and Al-based films) can be generally used. In FIG. 1, the laminated structure of the anode electrode 2 (substrate side electrode), the organic layer 3, and the cathode electrode 4 from the side of the substrate 1 is disclosed, but the invention is not limited thereto. The laminated structure of the cathode electrode (substrate side electrode), the organic layer, and the anode electrode may be sequentially formed from the substrate side depending on the structure of the element.
本發明還包含含有上述有機電激發光元件之顯示裝置(有機電激發光顯示器)及有機電激發光照明。上述顯示器或照明中,用於它們的有機電激發光元件,只要是具有基板、利用本發明之Al合金膜作為陽極電極、且具有與其直接連接的有機層(有機發光層)、更如一般的有 機電激發光元件的構造般具備陰極電極者即可,有機電激發光元件的其他構造、或有機電激發光元件以外的構造並無限定。 The present invention also includes a display device (organic electroluminescence display) including the above-described organic electroluminescence device and organic electroluminescence illumination. In the above display or illumination, the organic electroluminescence element used for the same is provided as long as it has an organic layer (organic light-emitting layer) having a substrate, an Al alloy film of the present invention as an anode electrode, and a direct connection thereto. Have The structure of the electromechanical excitation element may be a cathode electrode, and the other structure of the organic electroluminescence element or the structure other than the organic electroluminescence element is not limited.
實施例 Example
以下舉出實施例進一步具體說明本發明,但本發明當然不因下述實施例而受限,在切合前、後文要旨之範圍內,自可適當加以變更並實施,而它們均包含於本發明之技術範圍內。 The present invention is further described in the following examples, but the present invention is of course not limited by the following examples, and may be appropriately modified and implemented within the scope of the gist of the present invention. Within the technical scope of the invention.
(Al合金膜的成膜) (film formation of Al alloy film)
首先,在玻璃基板(康寧公司製之無鹼玻璃#1737、直徑:50mm、厚度:0.7mm)上,將表1所示成分組成之Al合金膜(皆為膜厚:100nm,剩餘部分:Al及不可避免雜質)利用DC磁控管濺鍍裝置以濺鍍法成膜。 First, an Al alloy film composed of the components shown in Table 1 was formed on a glass substrate (alkali-free glass #1737, diameter: 50 mm, thickness: 0.7 mm) manufactured by Corning Co., Ltd. (all of which were film thickness: 100 nm, and the remainder: Al). And inevitable impurities) film formation by sputtering using a DC magnetron sputtering device.
上述濺鍍裝置係使用可進行複數個靶材同時放電之多元濺鍍裝置(ULVAC公司製CS-200)。濺鍍條件(成膜條件)訂為,基板溫度:室溫、Ar氣體流量:20sccm、Ar氣體壓力:約0.1Pa、DC濺鍍功率密度:2~5W/cm2、極限真空度:2.0×10-6Torr以下。 As the sputtering apparatus, a multi-layer sputtering apparatus (CS-200 manufactured by ULVAC Co., Ltd.) capable of simultaneously discharging a plurality of targets is used. The sputtering conditions (film formation conditions) are defined as: substrate temperature: room temperature, Ar gas flow rate: 20 sccm, Ar gas pressure: about 0.1 Pa, DC sputtering power density: 2 to 5 W/cm 2 , ultimate vacuum: 2.0 × 10 -6 Torr or less.
又,上述成膜用之濺鍍靶材,係使用藉由真空熔解法製作之與下述表1所示膜組成為同組成之Al合金濺鍍靶材、或是使用在純Al濺鍍靶材的濺鍍面上,黏著由構成下述表1所示Al合金膜的金屬元素所成之金屬 片而成之複合靶材。 Further, the sputtering target for film formation is an Al alloy sputtering target which is produced by a vacuum melting method and has the same composition as the film composition shown in Table 1 below, or is used in a pure Al sputtering target. On the sputtered surface of the material, a metal formed of a metal element constituting the Al alloy film shown in Table 1 below is adhered. A composite target made of tablets.
如上述般將Al合金膜成膜後,於氮氣環境中或大氣環境中,在250℃下施加1小時的熱處理而得到試料。另,後述表1的No.2~8之Al合金膜,並未施加上述熱處理。 The Al alloy film was formed into a film as described above, and then heat-treated at 250 ° C for 1 hour in a nitrogen atmosphere or an atmosphere to obtain a sample. Further, the above-described heat treatment was not applied to the Al alloy films of Nos. 2 to 8 of Table 1 described later.
針對上述各試料,如下述所示般進行功函數的測定與電阻率的測定。另,所得到的Al合金膜之組成,係利用ICP發光分光分析裝置(島津製作所公司製之ICP發光分光分析裝置「ICP-8000型」),以定量分析確認。 For each of the above samples, the measurement of the work function and the measurement of the specific resistance were carried out as follows. In addition, the composition of the obtained Al alloy film was confirmed by quantitative analysis by an ICP emission spectroscopic analyzer (ICP-8000 type ICP emission spectrometer manufactured by Shimadzu Corporation).
(功函數的測定) (Measurement of work function)
Al合金膜表面(曝露於外界大氣的面)的功函數,係利用理研計器公司製之功函數測量裝置(型號:AC-2)來測定。另,功函數對於其表面狀態(大氣中的有機物污染等)很敏感,故在以上述AC-2測定前一刻進行UV照射,以洗淨Al合金膜表面。上述UV照射,係使用GS YUASA公司製UV照射裝置(型號:DUV-800-6),在燈電壓:300V下照射1分鐘UV。又,將功函數為4.5eV以上之情形訂為合格。 The work function of the surface of the Al alloy film (the surface exposed to the outside atmosphere) was measured by a work function measuring device (Model: AC-2) manufactured by Riken Keiki Co., Ltd. Further, the work function is sensitive to the surface state (organic matter contamination in the atmosphere, etc.), so UV irradiation is performed immediately before the measurement of the above AC-2 to wash the surface of the Al alloy film. The UV irradiation described above was carried out by using a UV irradiation device (Model: DUV-800-6) manufactured by GS YUASA Co., Ltd., and irradiated with UV at a lamp voltage of 300 V for 1 minute. Further, the case where the work function is 4.5 eV or more is set as the pass.
(電阻率的測定) (Measurement of resistivity)
利用上述試料測定電阻率。詳言之,藉由一般所使用之四點探針法,利用市售測量儀器(日置電機公司製: 3540 MΩ HiTESTER)來測定。接著,依據下述式(1),算出層積體的電阻率。另,上述測定中,係利用測定試料面積比探針間隔還足夠廣的試料,且將比例常數F訂為下述數值。接著,將電阻率為21.0μΩ.cm以下之情形評估為良好、電阻率為20.0μΩ.cm以下之情形評估為非常良好。 The resistivity was measured using the above sample. In detail, a commercially available measuring instrument (made by Hioki Electric Co., Ltd.) is used by the four-point probe method generally used. 3540 MΩ HiTESTER) to determine. Next, the specific resistance of the laminate was calculated according to the following formula (1). Further, in the above measurement, a sample having a sample area larger than the probe interval is used, and the proportional constant F is set to the following value. Next, the resistivity is 21.0 μΩ. The case below cm is evaluated as good and the resistivity is 20.0 μΩ. The situation below cm is evaluated as very good.
電阻率=四點探針法測定值×膜厚×F...(1) Resistivity = four-point probe method measurement value × film thickness × F. . . (1)
[上述式(1)中,F(比例常數)=π/In2=4.532] [In the above formula (1), F (proportional constant) = π / In2 = 4.532]
該些結果如表1所示。另,表1中作為參考,還揭示了依基板-ITO膜(膜厚:10nm)-純Ag膜(膜厚:100nm)的順序層積之,泛用的陽極電極(ITO/Ag層積膜)之功函數與電阻率(測定條件皆如上所述)。 The results are shown in Table 1. Further, as a reference, in Table 1, a anodic electrode (ITO/Ag laminated film) which is laminated in the order of a substrate-ITO film (film thickness: 10 nm)-pure Ag film (film thickness: 100 nm) is also disclosed. The work function and resistivity (measurement conditions are as described above).
表1中,將功函數為4.5eV以上,且電阻率為21.0μΩ.cm以下的情形,評估為適用於陽極電極(○),而將上述功函數與上述電阻率的至少一者不滿足上述範圍的情形,評估為不適用於陽極電極(×)。 In Table 1, the work function is 4.5 eV or more, and the resistivity is 21.0 μΩ. The case of cm or less is evaluated as being applied to the anode electrode (○), and the case where at least one of the above work function and the above-described specific resistance does not satisfy the above range is evaluated as being unsuitable for the anode electrode (x).
根據表1可做下述解讀。 According to Table 1, the following interpretation can be made.
No.1揭示,以一般利用之ITO/Ag層積膜來作為陽極電極時之功函數與電阻率。由No.1可知,ITO/Ag層積膜的功函數為5eV以上,且電阻率亦相當低。 No. 1 discloses a work function and a specific resistance when an ITO/Ag laminated film which is generally used is used as an anode electrode. As is clear from No. 1, the work function of the ITO/Ag laminated film was 5 eV or more, and the specific resistance was also relatively low.
相對於此,No.2~6為Al-Nd合金膜的例子,由於並未含有X群元素,故功函數小。 On the other hand, Nos. 2 to 6 are examples of the Al-Nd alloy film, and since the X group element is not contained, the work function is small.
No.7~9為Al-Si膜的例子,由於並未含有稀土類元素等,故功函數小。尤其是No.8為含有較多Si,且未進行熱處理的例子,其電阻率亦高。 No. 7 to 9 are examples of the Al-Si film, and since the rare earth element or the like is not contained, the work function is small. In particular, No. 8 is an example in which a large amount of Si is contained and heat treatment is not performed, and the electrical resistivity is also high.
No.10~14為在Al-Nd材添加Si作為X群元素而成之Al-Si-Nd膜的例子,當中係使Si量變化。從這些 例子可知,為了達成更低的電阻率,較佳是將Si量訂為20原子%未滿。 No. 10 to 14 are examples of an Al-Si-Nd film in which Si is added as an X group element to an Al-Nd material, and the amount of Si is changed. From these As an example, in order to achieve a lower resistivity, it is preferable to set the amount of Si to 20 atom% or less.
No.15~19為在Al-Nd材添加Ge作為X群元素而成之Al-Ge-Nd膜的例子,當中係使Ge量變化。從這些例子可知,為了達成更低的電阻率,較佳是將Ge量訂為25原子%未滿。 No. 15 to 19 are examples of an Al-Ge-Nd film in which Ge is added as an X group element to an Al-Nd material, and the amount of Ge is changed. As can be seen from these examples, in order to achieve a lower resistivity, it is preferable to set the amount of Ge to 25 atom% or less.
No.20~23為在Al-Nd材添加Zn作為X群元素而成之Al-Zn-Nd膜的例子,當中係使Zn量變化。從這些例子可知,為了達成更低的電阻率,較佳是將Zn量訂為20原子%未滿。 No. 20 to 23 is an example of an Al-Zn-Nd film in which Zn is added as an X group element to an Al-Nd material, and the amount of Zn is changed. As is apparent from these examples, in order to achieve a lower resistivity, it is preferred to set the amount of Zn to 20 atom% or less.
No.24~26為在Al-Nd材添加Bi作為X群元素而成之Al-Bi-Nd膜的例子,當中係使Bi量變化。從這些例子可知,當Bi量為2原子%以上則膜會剝離,故不適用於陽極電極。 No. 24 to 26 are examples of an Al-Bi-Nd film in which Bi is added as an X group element to an Al-Nd material, and the amount of Bi is changed. As is apparent from these examples, when the amount of Bi is 2 atom% or more, the film peels off, and thus it is not suitable for the anode electrode.
No.27~31為在Al-Nd材添加Si與Ge作為X群元素而成之Al-Si-Ge-Nd膜的例子,當中係使Si量與Ge量變化。從這些結果可知,即使在含有複數種X群元素的情形下,作為陽極電極仍會表現出良好的特性。 No. 27 to 31 are examples of an Al-Si-Ge-Nd film in which Si and Ge are added as an X group element in an Al-Nd material, and the amount of Si and the amount of Ge are changed. From these results, it is understood that even when a plurality of X group elements are contained, excellent characteristics are exhibited as the anode electrode.
雖已詳細且參照特定的實施態樣說明了本申請案,但在不脫離本發明精神與範圍內,所屬技術領域者自可施加各種變更或修正。 The present invention has been described in detail with reference to the specific embodiments thereof, and various modifications and changes can be made by those skilled in the art without departing from the spirit and scope of the invention.
本申請案係以2012年9月13日申請之日本發明專利申請案(特願2012-201786)為基礎,其內容被援引於此以作為參照。 The present application is based on a Japanese patent application filed on Sep. 13, 2012 (Japanese Patent Application No. 2012-201786), the disclosure of which is incorporated herein by reference.
產業利用性 Industrial utilization
按照本發明,能夠使用低價的Al系材料,提供適合有機電激發光元件的陽極電極之Al合金膜。其結果,作為陽極電極,不必使用習知常用之氧化物導電膜(ITO膜等),此外,也不必如上述專利文獻2般追加多餘的有機層,便能實現低價的有機電激發光元件。故,能夠以低價製造發光亮度特性優良的有機電激發光顯示器或有機電激發光照明等。 According to the present invention, it is possible to provide an Al alloy film suitable for an anode electrode of an organic electroluminescence element by using a low-cost Al-based material. As a result, it is not necessary to use a conventionally used oxide conductive film (such as an ITO film) as the anode electrode, and it is not necessary to add an unnecessary organic layer as in the above-mentioned Patent Document 2, and a low-cost organic electroluminescent device can be realized. . Therefore, an organic electroluminescence display, an organic electroluminescence illumination, or the like excellent in light-emitting luminance characteristics can be manufactured at low cost.
Claims (7)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012201786A JP5906159B2 (en) | 2012-09-13 | 2012-09-13 | Al alloy film for anode electrode of organic EL element, organic EL element, and Al alloy sputtering target |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201420794A true TW201420794A (en) | 2014-06-01 |
Family
ID=50278098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102131292A TW201420794A (en) | 2012-09-13 | 2013-08-30 | Al alloy film for anode electrodes of organic el elements, organic el element and al alloy sputtering target |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5906159B2 (en) |
TW (1) | TW201420794A (en) |
WO (1) | WO2014041974A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI650230B (en) * | 2016-08-26 | 2019-02-11 | 日商神戶製鋼所股份有限公司 | Reflective electrode and aluminum alloy sputtering target |
CN112018260A (en) * | 2019-05-30 | 2020-12-01 | 株式会社神户制钢所 | Reflective anode electrode, thin film transistor, organic EL display, and sputtering target |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7053290B2 (en) * | 2018-02-05 | 2022-04-12 | 株式会社神戸製鋼所 | Reflective anode electrode for organic EL display |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100546662B1 (en) * | 2003-08-05 | 2006-01-26 | 엘지전자 주식회사 | Organic electroluminescence device |
JP2010135300A (en) * | 2008-11-10 | 2010-06-17 | Kobe Steel Ltd | Reflecting anodic electrode for organic el display, and manufacturing method thereof |
JP2010192413A (en) * | 2009-01-22 | 2010-09-02 | Sony Corp | Organic electroluminescence device, and display unit |
JP5235011B2 (en) * | 2009-11-16 | 2013-07-10 | 株式会社神戸製鋼所 | Reflective anode electrode for organic EL display |
-
2012
- 2012-09-13 JP JP2012201786A patent/JP5906159B2/en active Active
-
2013
- 2013-08-21 WO PCT/JP2013/072248 patent/WO2014041974A1/en active Application Filing
- 2013-08-30 TW TW102131292A patent/TW201420794A/en unknown
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI650230B (en) * | 2016-08-26 | 2019-02-11 | 日商神戶製鋼所股份有限公司 | Reflective electrode and aluminum alloy sputtering target |
CN109644536A (en) * | 2016-08-26 | 2019-04-16 | 株式会社神户制钢所 | Reflecting electrode and Al alloy sputtering targets |
CN109644536B (en) * | 2016-08-26 | 2021-03-19 | 株式会社神户制钢所 | Reflection electrode and Al alloy sputtering target |
CN112018260A (en) * | 2019-05-30 | 2020-12-01 | 株式会社神户制钢所 | Reflective anode electrode, thin film transistor, organic EL display, and sputtering target |
CN112018260B (en) * | 2019-05-30 | 2023-12-08 | 株式会社神户制钢所 | Reflective anode electrode, thin film transistor, organic EL display, and sputtering target |
Also Published As
Publication number | Publication date |
---|---|
JP2014056770A (en) | 2014-03-27 |
JP5906159B2 (en) | 2016-04-20 |
WO2014041974A1 (en) | 2014-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5235011B2 (en) | Reflective anode electrode for organic EL display | |
TWI651433B (en) | Metal oxide film, organic electroluminescence device having the film, solar cell and organic solar cell | |
KR101745290B1 (en) | Ag ALLOY FILM FOR REFLECTIVE ELECTRODES, AND REFLECTIVE ELECTRODE | |
TW200401832A (en) | Target for transparent conductive thin film, transparent conductive thin film and manufacturing method thereof, electrode material for display, organic electroluminescence element and solar cell | |
WO2012176407A1 (en) | Conductive film and method for producing same, and sputtering target used for same | |
WO2016043231A1 (en) | Light-emitting element, display device, and lighting device | |
JP2002208479A (en) | Substrate with intermediate resistor for organic led element, and organic led element | |
US20170330643A1 (en) | Ag alloy film for reflecting electrode or wiring electrode, reflecting electrode or wiring electrode, and ag alloy sputtering target | |
TW432898B (en) | Organic electroluminescent light emitting devices | |
TW201420794A (en) | Al alloy film for anode electrodes of organic el elements, organic el element and al alloy sputtering target | |
TW201439339A (en) | Ag-In alloy sputering target | |
JP6142363B2 (en) | Method for manufacturing organic electroluminescent device | |
WO2013138550A1 (en) | Plasma-chlorinated electrode and organic electronic devices using the same | |
JP2012059470A (en) | Reflecting anodic electrode for organic el display | |
JP2013077547A (en) | Conductive film and manufacturing method thereof, and silver alloy sputtering target for conductive film formation and manufacturing method thereof | |
KR101437808B1 (en) | Transparent conductive film for organic el applications, and organic el element equipped with said transparent conductive film | |
JP6384147B2 (en) | Translucent Ag alloy film | |
WO2015037582A1 (en) | Reflective electrode film for organic el, multilayer reflective electrode film, and sputtering target for forming reflective electrode film | |
TWI650230B (en) | Reflective electrode and aluminum alloy sputtering target | |
CN114015919B (en) | Visible and near-infrared high-transmittance electrode, preparation method thereof and organic light-emitting device | |
CN101777631B (en) | 8-hydroxyquinoline aluminum salt luminescent device and manufacture method thereof | |
JP2021027039A (en) | Lamination film | |
TW201417373A (en) | Organic el element, production method for reflective electrode in organic el element, and al alloy sputtering target for forming reflective electrode in organic el element | |
JP2013062203A (en) | Conductive film and manufacturing method thereof, and silver alloy sputtering target for forming conductive film and manufacturing method thereof |