TW201419384A - Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell - Google Patents

Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell Download PDF

Info

Publication number
TW201419384A
TW201419384A TW103101541A TW103101541A TW201419384A TW 201419384 A TW201419384 A TW 201419384A TW 103101541 A TW103101541 A TW 103101541A TW 103101541 A TW103101541 A TW 103101541A TW 201419384 A TW201419384 A TW 201419384A
Authority
TW
Taiwan
Prior art keywords
diffusion layer
type diffusion
forming composition
glass powder
layer forming
Prior art date
Application number
TW103101541A
Other languages
Chinese (zh)
Other versions
TWI570778B (en
Inventor
Tetsuya Sato
Masato Yoshida
Takeshi Nojiri
Kaoru Okaniwa
Yoichi Machii
Mitsunori Iwamuro
Keiko Kizawa
Akihiro Orita
Shuichiro Adachi
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Publication of TW201419384A publication Critical patent/TW201419384A/en
Application granted granted Critical
Publication of TWI570778B publication Critical patent/TWI570778B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/2225Diffusion sources
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/08Frit compositions, i.e. in a powdered or comminuted form containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/16Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions with vehicle or suspending agents, e.g. slip
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2255Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention provides a composition for forming an n-type diffusion layer, the composition including a glass powder containing a donor element and having an average particle diameter of 5 μ m or less and a softening temperature of from 500 DEG C to 900 DEG C, and the composition also including a dispersion medium.

Description

n型擴散層形成組成物、n型擴散層的製造方法以及太陽電 池元件的製造方法 N-type diffusion layer forming composition, manufacturing method of n-type diffusion layer, and solar power Cell component manufacturing method

本發明是有關於一種太陽電池元件的n型擴散層形成組成物、n型擴散層的製造方法以及太陽電池元件的製造方法,更詳細而言,本發明是有關於一種可於作為半導體基板的矽的特定區域形成n型擴散層的技術。 The present invention relates to an n-type diffusion layer forming composition of a solar cell element, a method of manufacturing an n-type diffusion layer, and a method of manufacturing a solar cell element. More specifically, the present invention relates to a semiconductor substrate. A technique in which a specific region of germanium forms an n-type diffusion layer.

對先前的矽太陽電池元件的製造步驟進行說明。 The manufacturing steps of the prior 矽 solar cell element will be described.

首先,為了促進光封閉效應來謀求高效率化,準備於受光面形成有紋理(texture)構造的p型矽基板,繼而,於作為含施體元素的化合物的氧氯化磷(POCl3)、氮氣、氧氣的混合氣體環境下,以800℃~900℃進行幾十分鐘的處理而同樣地形成n型擴散層。於該先前的方法中,因使用混合氣體進行磷的擴散,故不僅於表面形成n型擴散層,而且於側面、背面亦形成n型擴散層。因此,需要用於去除側面的n型擴散層的側蝕步驟。另外,背面的n型擴散層必須轉換成p+型擴散層,於背面的n型擴散層上賦予鋁膏,藉由鋁的擴散而自n型擴散層轉換成p+型擴散層。 First, in order to promote the light confinement effect and to increase the efficiency, a p-type ruthenium substrate having a texture structure formed on the light-receiving surface is prepared, and then phosphorus oxychloride (POCl 3 ) as a compound containing a donor element is prepared. The n-type diffusion layer was formed in the same manner in a mixed gas atmosphere of nitrogen and oxygen at a temperature of 800 ° C to 900 ° C for several tens of minutes. In this prior method, since phosphorus is diffused by using a mixed gas, an n-type diffusion layer is formed not only on the surface but also on the side surface and the back surface. Therefore, a side etching step for removing the side n-type diffusion layer is required. Further, the n-type diffusion layer on the back surface must be converted into a p + -type diffusion layer, and an aluminum paste is applied to the n-type diffusion layer on the back surface, and is converted from the n-type diffusion layer into a p + -type diffusion layer by diffusion of aluminum.

另一方面,於半導體的製造領域中,提出有如下的方法:藉由塗佈含有五氧化二磷(P2O5)或磷酸二氫銨(NH4H2PO4)等磷酸鹽作為含施體元素的化合物的溶液,而形成n型擴散層(例如參照日本專利特開2002-75894號公報)。另外,為了形成擴散層,將含有磷作為施體元素的膏作為擴散源塗佈於矽基板表面上,並進行熱擴散來形成擴散層的技術亦為人所知(例如參照日本專利第4073968號公報)。 On the other hand, in the field of semiconductor manufacturing, there has been proposed a method of coating a phosphate containing phosphorus pentoxide (P 2 O 5 ) or ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ) as a solution. A solution of a compound of a donor element is formed to form an n-type diffusion layer (for example, refer to JP-A-2002-75894). Further, in order to form a diffusion layer, a technique in which a paste containing phosphorus as a donor element is applied as a diffusion source on the surface of a ruthenium substrate and thermally diffused to form a diffusion layer is also known (for example, refer to Japanese Patent No. 4,037,968). Bulletin).

但是,於該些方法中,施體元素或含有其的化合物自作為擴 散源的溶液、或膏中飛散,因此與使用上述混合氣體的氣相反應法相同,於形成擴散層時磷亦擴散至側面及背面,而於所塗佈的部分以外亦形成n型擴散層。另外,通常於太陽電池中所使用的矽基板等半導體基板的上表面,具有凸部與凹部的高低差為5μm左右的紋理構造。因塗佈於此種紋理構造的面上,故有時n型擴散層形成得不均勻。 However, in these methods, the donor element or the compound containing the same is self-expanding The scattered solution or the paste scatters. Therefore, similar to the gas phase reaction method using the above mixed gas, phosphorus diffuses to the side surface and the back surface when the diffusion layer is formed, and an n-type diffusion layer is formed in addition to the applied portion. . Moreover, generally, the upper surface of a semiconductor substrate, such as a tantalum board used for a solar cell, has a texture structure in which the height difference of a convex part and a recessed part is about 5 micrometer. Since it is applied to the surface of such a texture structure, the n-type diffusion layer may be formed unevenly.

如此,當形成n型擴散層時,於使用氧氯化磷的氣相反應中,不僅於原本需要n型擴散層的一面(通常為受光面或表面)形成n型擴散層,而且於另一面(非受光面或背面)或側面亦形成n型擴散層。另外,於塗佈包含含有磷的化合物的溶液、或膏並進行熱擴散的方法中,與氣相反應法相同,在表面以外亦形成n型擴散層。因此,為使元件具有pn接合構造,必須於側面進行蝕刻,於背面將n型擴散層轉換成p型擴散層。通常,於背面塗佈作為第13族元素的鋁的膏,並進行煅燒,從而將n型擴散層轉換成p型擴散層。另外,於塗佈溶液時磷不均勻地擴散,而形成不均勻的n型擴散層,導致太陽電池整體的轉換效率下降。進而,於先前為人所知的將含有磷等施體元素的膏作為擴散源進行塗佈的方法中,含有施體元素的化合物昇華氣化,亦朝需要擴散的區域以外擴散,因此難以選擇性地於特定的區域形成擴散層。 Thus, when the n-type diffusion layer is formed, in the gas phase reaction using phosphorus oxychloride, an n-type diffusion layer is formed not only on the side (usually the light-receiving surface or surface) where the n-type diffusion layer is originally required, but also on the other side. An n-type diffusion layer is also formed on the non-light-receiving surface or the back surface or on the side surface. Further, in the method of applying a solution containing a phosphorus-containing compound or a paste and thermally diffusing, an n-type diffusion layer is formed in addition to the surface, similarly to the gas phase reaction method. Therefore, in order to have a pn junction structure, it is necessary to perform etching on the side surface and convert the n-type diffusion layer into a p-type diffusion layer on the back surface. Usually, a paste of aluminum as a Group 13 element is coated on the back surface and calcined to convert the n-type diffusion layer into a p-type diffusion layer. Further, phosphorus is unevenly diffused when the solution is applied, and a non-uniform n-type diffusion layer is formed, resulting in a decrease in conversion efficiency of the entire solar cell. Further, in a method known as a method of applying a paste containing a donor element such as phosphorus as a diffusion source, a compound containing a donor element is sublimated and vaporized, and is diffused outside a region where diffusion is required, so that it is difficult to select The diffusion layer is formed sexually in a specific area.

本發明是鑒於以上的先前的問題點而完成的發明,其課題在於提供一種n型擴散層形成組成物、n型擴散層的製造方法以及太陽電池元件的製造方法,上述n型擴散層形成組成物可應用於使用半導體基板的太陽電池元件,不於不需要的區域形成n型擴散層,且可於特定的區域在短時間內形成均勻的n型擴散層。 The present invention has been made in view of the above problems, and an object of the invention is to provide an n-type diffusion layer forming composition, a method for producing an n-type diffusion layer, and a method for producing a solar cell element, wherein the n-type diffusion layer is formed. The object can be applied to a solar cell element using a semiconductor substrate, an n-type diffusion layer is formed not in an unnecessary region, and a uniform n-type diffusion layer can be formed in a specific region in a short time.

解決上述課題的手段如下。 The means to solve the above problems are as follows.

<1>一種n型擴散層形成組成物,其包括:含有施體元素且軟化溫度為500℃以上、900℃以下,平均粒徑為5μm以下的玻璃粉末;以及分散媒。 <1> An n-type diffusion layer forming composition comprising: a glass powder containing a donor element and having a softening temperature of 500 ° C or more and 900 ° C or less and an average particle diameter of 5 μm or less; and a dispersing medium.

<2>如申請專利範圍<1>所述之n型擴散層形成組成物,其中上述玻璃粉末的d90為20μm以下。 <2> The n-type diffusion layer forming composition according to the invention, wherein the glass powder has a d90 of 20 μm or less.

<3>如<1>或<2>所述之n型擴散層形成組成物,其中上述施體元素為選自P(磷)及Sb(銻)中的至少1種。 <3> The n-type diffusion layer forming composition according to <1> or <2>, wherein the donor element is at least one selected from the group consisting of P (phosphorus) and Sb (antimony).

<4>如<1>~<3>中任一項所述之n型擴散層形成組成物,其中含有上述施體元素的玻璃粉末包括:選自由P2O3、P2O5及Sb2O3所組成的組群中的至少1種含施體元素的物質,以及選自由SiO2、K2O、Na2O、Li2O、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、SnO、ZrO2及MoO3所組成的組群中的至少1種玻璃成分物質。 The n-type diffusion layer forming composition according to any one of <1> to <3> wherein the glass powder containing the above-mentioned donor element comprises: selected from the group consisting of P 2 O 3 , P 2 O 5 and Sb At least one substance containing a donor element in the group consisting of 2 O 3 and selected from the group consisting of SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, At least one glass component substance in a group consisting of PbO, CdO, SnO, ZrO 2 and MoO 3 .

<5>一種n型擴散層的製造方法,其包括:於半導體基板上賦予如<1>~<4>中任一項所述之n型擴散層形成組成物的步驟;以及對上述賦予後的半導體基板實施熱擴散處理的步驟。 <5> A method for producing an n-type diffusion layer, comprising: a step of forming an n-type diffusion layer forming composition according to any one of <1> to <4> on a semiconductor substrate; The semiconductor substrate is subjected to a step of thermal diffusion treatment.

<6>一種太陽電池元件的製造方法,其包括:於半導體基板上賦予如<1>~<4>中任一項所述之n型擴散層形成組成物的步驟;對上述賦予後的半導體基板實施熱擴散處理,而形成n型擴散層的步驟;以及於所形成的上述n型擴散層上形成電極的步驟。 <6> A method for producing a solar cell element, comprising: a step of forming an n-type diffusion layer forming composition according to any one of <1> to <4> on a semiconductor substrate; and applying the semiconductor after the imparting a step of forming a n-type diffusion layer by performing thermal diffusion treatment on the substrate; and forming an electrode on the n-type diffusion layer formed.

<7>一種如<1>~<4>中任一項所述之n型擴散層形成組成物的使用,其製造n型擴散層。 The use of the n-type diffusion layer forming composition according to any one of <1> to <4>, which produces an n-type diffusion layer.

<8>一種如<1>~<4>中任一項所述之n型擴散層形成組成物的使用,其製造包括半導體基板、n型擴散層、以及電極的太陽電池元件。 The use of the n-type diffusion layer forming composition according to any one of <1> to <4>, which manufactures a solar cell element including a semiconductor substrate, an n-type diffusion layer, and an electrode.

根據本發明,可提供一種n型擴散層形成組成物、n型擴散層的製造方法以及太陽電池元件的製造方法,上述n型擴散層形成組成物可應用於使用半導體基板的太陽電池元件,不於不需要的區域形成n型擴散層,且可於特定的區域在短時間內形成均勻的n型擴散層。 According to the present invention, it is possible to provide an n-type diffusion layer forming composition, a method of manufacturing an n-type diffusion layer, and a method of manufacturing a solar cell element, wherein the n-type diffusion layer forming composition can be applied to a solar cell element using a semiconductor substrate, An n-type diffusion layer is formed in an unnecessary region, and a uniform n-type diffusion layer can be formed in a specific region in a short time.

1‧‧‧層間絕緣膜 1‧‧‧Interlayer insulating film

2‧‧‧阻障層 2‧‧‧Barrier layer

3‧‧‧配線金屬層 3‧‧‧ wiring metal layer

4‧‧‧侵蝕 4‧‧‧Erosion

5‧‧‧研磨前的狀態 5‧‧‧ State before grinding

6‧‧‧層間絕緣膜之配線金屬部附近 6‧‧‧near the wiring metal part of the interlayer insulating film

7‧‧‧裂縫 7‧‧‧ crack

A‧‧‧研磨量 A‧‧‧Abrasion

B‧‧‧研磨量之最大值 B‧‧‧Maximum amount of grinding

C‧‧‧距離 C‧‧‧ distance

圖1的(1)~(6)是概念性地表示本發明的太陽電池元件的製造步驟的一例的剖面圖。 (1) to (6) of Fig. 1 are cross-sectional views conceptually showing an example of a manufacturing procedure of a solar cell element of the present invention.

圖2A是自表面所觀察到的太陽電池元件的平面圖。 Figure 2A is a plan view of a solar cell component as viewed from the surface.

圖2B是將圖2A的一部分擴大表示的立體圖。 Fig. 2B is a perspective view showing a part of Fig. 2A in an enlarged manner.

首先,對本發明的n型擴散層形成組成物進行說明,其次對使用n型擴散層形成組成物的n型擴散層及太陽電池元件的製造方法進行 說明。 First, the n-type diffusion layer forming composition of the present invention will be described, and next, an n-type diffusion layer using a n-type diffusion layer forming composition and a method for manufacturing a solar cell element will be described. Description.

再者,於本說明書中,「步驟」這一用語不僅是指獨立的步驟,當無法與其他步驟明確地加以區分時,只要達成該步驟的預期的作用,則亦包含於本用語中。另外,於本說明書中,「~」表示包括其前後所記載的數值分別作為最小值及最大值的範圍。進而,於本說明書中,組成物中的各成分的量於在組成物中存在多個相當於各成分的物質的情況下,只要事先無特別說明,則表示組成物中所存在的該多個物質的合計量。 Furthermore, in the present specification, the term "step" means not only an independent step, but also cannot be clearly distinguished from other steps, and is included in the term as long as the intended effect of the step is achieved. In the present specification, "~" means a range including the numerical values described before and after the minimum value and the maximum value. Further, in the present specification, when the amount of each component in the composition is such that a plurality of substances corresponding to the respective components are present in the composition, the plurality of components present in the composition are not included unless otherwise specified. The total amount of matter.

本發明的n型擴散層形成組成物包括至少含有施體元素且軟化溫度為500℃以上、900℃以下,平均粒徑為5μm以下的玻璃粉末(以下,有時僅稱為「玻璃粉末」),以及分散媒,進而考慮組成物的賦予適應性(塗佈性)等,視需要亦可含有其他添加劑。 The n-type diffusion layer forming composition of the present invention includes a glass powder having at least a donor element and having a softening temperature of 500 ° C or more and 900 ° C or less and an average particle diameter of 5 μm or less (hereinafter, simply referred to as "glass powder"). In addition, as for the dispersing medium, the suitability (coating property) of the composition, and the like may be considered, and other additives may be contained as needed.

此處,所謂n型擴散層形成組成物,是指如下的材料:包括含有施體元素且軟化溫度為500℃以上、900℃以下,平均粒徑為5μm以下的玻璃粉末,將其賦予至半導體基板上後使該施體元素熱擴散,藉此可形成n型擴散層。 Here, the n-type diffusion layer forming composition is a material including a glass powder containing a donor element and having a softening temperature of 500 ° C or more and 900 ° C or less and an average particle diameter of 5 μm or less, which is imparted to the semiconductor. The donor element is thermally diffused on the substrate, whereby an n-type diffusion layer can be formed.

藉由使用包括含有施體元素且軟化溫度為500℃以上、900℃以下,平均粒徑為5μm以下的玻璃粉末的n型擴散層形成組成物,熱擴散處理時的玻璃的黏度不會變得過低,另外,玻璃粉末於短時間內熔融。藉此,於所期望的部位形成n型擴散層,不於背面或側面形成不需要的n型擴散層。 By using an n-type diffusion layer including a glass powder having a donor element and having a softening temperature of 500 ° C or more and 900 ° C or less and an average particle diameter of 5 μm or less, the viscosity of the glass during thermal diffusion treatment does not become Too low, in addition, the glass powder melts in a short time. Thereby, an n-type diffusion layer is formed at a desired portion, and an unnecessary n-type diffusion layer is not formed on the back surface or the side surface.

因此,若應用本發明的n型擴散層形成組成物,則不需要先前廣泛採用的氣相反應法中所必需的側蝕步驟,從而使步驟簡單化。另外,亦不需要將形成於背面的n型擴散層轉換成p+型擴散層的步驟。因此,背面的p+型擴散層的形成方法,或者背面電極的材質、形狀及厚度並無限制,所應用的製造方法或材質、形狀的選擇項擴大。另外,由背面電極的厚度所引起的半導體基板內的內部應力的產生得到抑制,半導體基板的翹曲亦得到抑制,詳細情況將後述。 Therefore, if the n-type diffusion layer of the present invention is used to form a composition, the side etching step necessary in the gas phase reaction method which has been widely used previously is not required, so that the steps are simplified. Further, there is no need to convert the n-type diffusion layer formed on the back surface into a p + -type diffusion layer. Therefore, the method of forming the p + -type diffusion layer on the back surface or the material, shape, and thickness of the back surface electrode is not limited, and the selection method of the applied manufacturing method, material, and shape is expanded. In addition, generation of internal stress in the semiconductor substrate due to the thickness of the back surface electrode is suppressed, and warpage of the semiconductor substrate is also suppressed, and details will be described later.

再者,藉由煅燒而使本發明的n型擴散層形成組成物中所含有的玻璃粉末熔融,從而於n型擴散層上形成玻璃層。但是,於先前的氣相反應法或者賦予含有磷酸鹽的溶液或膏的方法中,亦於n型擴散層上形成玻璃層,因此,本發明中所生成的玻璃層可與先前的方法同樣地藉由蝕 刻來去除。因此,即便與先前的方法相比,本發明的n型擴散層形成組成物亦不產生不需要的產物,亦不增加步驟。 Further, the glass powder contained in the n-type diffusion layer forming composition of the present invention is melted by calcination to form a glass layer on the n-type diffusion layer. However, in the conventional gas phase reaction method or the method of imparting a solution or paste containing a phosphate, a glass layer is also formed on the n-type diffusion layer, and therefore, the glass layer produced in the present invention can be formed in the same manner as the prior method. By etching Engraved to remove. Therefore, even if the n-type diffusion layer forming composition of the present invention does not produce an undesired product, the step is not increased as compared with the prior method.

另外,玻璃粉末中的施體成分於煅燒中亦不易昇華,因此抑制n型擴散層因昇華氣體的產生而不僅形成於表面,亦形成於背面或側面的情況。 Further, since the donor component in the glass powder is not easily sublimated during firing, it is suppressed that the n-type diffusion layer is formed not only on the surface but also on the back surface or the side surface due to the generation of the sublimation gas.

作為其理由,可認為施體成分於玻璃中與作為構成元素的其他元素牢固地結合,因此不易揮發。 For this reason, it is considered that the donor component is strongly bonded to other elements as constituent elements in the glass, and therefore it is less volatile.

如此,本發明的n型擴散層形成組成物可於所期望的部位形成所期望的濃度的n型擴散層,因此可形成n型施體元素(摻雜劑)的濃度高的選擇性的區域。另一方面,通常難以藉由作為n型擴散層的一般的方法的氣相反應法、或單獨使用含有磷酸鹽的溶液的方法,形成n型施體元素的濃度高的選擇性的區域。 As described above, the n-type diffusion layer forming composition of the present invention can form an n-type diffusion layer having a desired concentration at a desired portion, and thus can form a selective region having a high concentration of an n-type donor element (dopant). . On the other hand, it is generally difficult to form a selective region having a high concentration of an n-type donor element by a gas phase reaction method which is a general method of an n-type diffusion layer or a method of using a solution containing a phosphate alone.

對本發明的含有施體元素的玻璃粉末進行詳細說明。 The glass powder containing the donor element of the present invention will be described in detail.

所謂施體元素,是指藉由在半導體基板中擴散(摻雜)而可形成n型擴散層的元素。施體元素可使用第15族的元素,例如可列舉P(磷)、Sb(銻)、Bi(鉍)及As(砷)等。就安全性、玻璃化的容易性等的觀點而言,合適的是P或Sb。 The donor element refers to an element which can form an n-type diffusion layer by being diffused (doped) in a semiconductor substrate. As the donor element, a group 15 element can be used, and examples thereof include P (phosphorus), Sb (antimony), Bi (antimony), and As (arsenic). From the viewpoints of safety, easiness of vitrification, and the like, P or Sb is suitable.

作為用於將施體元素導入至玻璃粉末中的含施體元素的物質,可列舉P2O3、P2O5、Sb2O3、Bi2O3及As2O3,較佳為使用選自由P2O3、P2O5及Sb2O3所組成的組群中的至少1種。 Examples of the donor element-containing substance for introducing the donor element into the glass powder include P 2 O 3 , P 2 O 5 , Sb 2 O 3 , Bi 2 O 3 and As 2 O 3 , preferably At least one selected from the group consisting of P 2 O 3 , P 2 O 5 and Sb 2 O 3 is used.

另外,含有施體元素的玻璃粉末可視需要而調整成分比率,藉此控制熔融溫度、軟化溫度、玻璃轉移溫度、化學耐久性等。較佳為進而包含以下所述的玻璃成分物質。 Further, the glass powder containing the donor element may adjust the component ratio as needed, thereby controlling the melting temperature, the softening temperature, the glass transition temperature, the chemical durability, and the like. It is preferable to further contain the glass component substance described below.

作為玻璃成分物質,可列舉SiO2、K2O、Na2O、Li2O、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、SnO、ZrO2、WO3、MoO3、MnO、La2O3、Nb2O5、Ta2O5、Y2O3、TiO2、ZrO2、GeO2、TeO2及Lu2O3等,較佳為使用選自由SiO2、K2O、Na2O、Li2O、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、SnO、ZrO2、WO3、MoO3及MnO所組成的組群中的至少1種,更佳為使用選自由SiO2、K2O、Na2O、Li2O、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、SnO、ZrO2及MoO3所組成的組群中的至少1種。 Examples of the glass component include SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, SnO, ZrO 2 , WO 3 , MoO 3 , and MnO. , La 2 O 3 , Nb 2 O 5 , Ta 2 O 5 , Y 2 O 3 , TiO 2 , ZrO 2 , GeO 2 , TeO 2 and Lu 2 O 3 , etc., preferably selected from the group consisting of SiO 2 and K 2 At least one of a group consisting of O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, SnO, ZrO 2 , WO 3 , MoO 3 and MnO, Preferably, it is selected from the group consisting of SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, SnO, ZrO 2 and MoO 3 . At least one.

作為含有施體元素的玻璃粉末的具體例,可列舉包括上述含施體元素的物質與上述玻璃成分物質兩者的體系,可列舉:P2O5-SiO2系(以含施體元素的物質-玻璃成分物質的順序記載,以下相同)、P2O5-K2O系、P2O5-Na2O系、P2O5-Li2O系、P2O5-BaO系、P2O5-SrO系、P2O5-CaO系、P2O5-MgO系、P2O5-BeO系、P2O5-ZnO系、P2O5-CdO系、P2O5-PbO系、P2O5-SnO系、P2O5-GeO2系、P2O5-TeO2系等包含P2O5作為含施體元素的物質的體系,包含Sb2O3來代替上述包含P2O5的體系的P2O5作為含施體元素的物質的體系的玻璃粉末。 Specific examples of the glass powder containing the donor element include a system containing both the donor element-containing substance and the glass component substance, and examples thereof include a P 2 O 5 —SiO 2 system (including a donor element). The order of the substance-glass component is described below, P 2 O 5 -K 2 O, P 2 O 5 -Na 2 O, P 2 O 5 -Li 2 O, P 2 O 5 -BaO , P 2 O 5 -SrO-based, P 2 O 5 -CaO-based, P 2 O 5 -MgO-based, P 2 O 5 -BeO-based, P 2 O 5 -ZnO-based, P 2 O 5 -CdO based, P 2 O 5 -PbO system, P 2 O 5 -SnO system, P 2 O 5 -GeO 2 system, P 2 O 5 -TeO 2 system, etc., including P 2 O 5 as a system containing a donor element, including Sb 2 O 3 is used instead of the above-mentioned P 2 O 5 containing P 2 O 5 as a glass powder of a system containing a donor element.

再者,亦可為如P2O5-Sb2O3系、P2O5-As2O3系等般,包含2種以上含施體元素的物質的玻璃粉末。 Further, it may be a glass powder containing two or more kinds of substances containing a donor element, such as a P 2 O 5 —Sb 2 O 3 system or a P 2 O 5 —As 2 O 3 system.

於上述中例示了包含兩種成分的複合玻璃,但視需要亦可為P2O5-SiO2-CaO等包含三種成分以上的物質的玻璃粉末。 In the above, a composite glass containing two components is exemplified, but a glass powder containing three or more components such as P 2 O 5 —SiO 2 —CaO may be used as needed.

玻璃粉末中的玻璃成分物質的含有比率理想的是考慮熔融溫度、軟化溫度、玻璃轉移溫度、化學耐久性而適宜設定,一般而言,較佳為0.1質量%以上、95質量%以下,更佳為0.5質量%以上、90質量%以下。 The content ratio of the glass component in the glass powder is preferably set in consideration of the melting temperature, the softening temperature, the glass transition temperature, and the chemical durability. In general, it is preferably 0.1% by mass or more and 95% by mass or less. It is 0.5% by mass or more and 90% by mass or less.

具體而言,玻璃粉末中含有SiO2時的SiO2的含有比率較佳為10質量%以上、90質量%以下的範圍。 Specifically, the content ratio of SiO 2 when SiO 2 is contained in the glass powder is preferably in the range of 10% by mass or more and 90% by mass or less.

就擴散處理時的擴散性、滴液的觀點而言,玻璃粉末的軟化溫度需要為500℃以上、900℃以下。另外,較佳為600℃以上、800℃以下,更佳為700℃以上、800℃以下。於軟化溫度未滿500℃的情況下,擴散處理時玻璃的黏度變得過低,且產生滴液,因此有時於特定的部分以外亦形成n型擴散層。另外,於軟化溫度高於900℃的情況下,有時玻璃粉末不完全熔融,而不形成均勻的n型擴散層。 The softening temperature of the glass powder needs to be 500 ° C or more and 900 ° C or less from the viewpoint of the diffusibility at the time of the diffusion treatment and the dropping liquid. Further, it is preferably 600 ° C or more and 800 ° C or less, more preferably 700 ° C or more and 800 ° C or less. When the softening temperature is less than 500 ° C, the viscosity of the glass during the diffusion treatment is too low, and dripping occurs. Therefore, an n-type diffusion layer may be formed in addition to a specific portion. Further, in the case where the softening temperature is higher than 900 ° C, the glass powder may not be completely melted, and a uniform n-type diffusion layer may not be formed.

若玻璃粉末的軟化溫度為500℃以上、900℃以下的範圍內,則如上所述亦不會產生滴液,因此於擴散處理後,可朝特定的區域將n型擴散層形成為所期望的形狀。例如當以aμm寬的線狀圖案賦予n型擴散層形成組成物時,可保持擴散處理後的線寬b為b<1.5aμm的範圍的線狀圖案。 When the softening temperature of the glass powder is in the range of 500 ° C or more and 900 ° C or less, the dropping liquid does not occur as described above, so that the n-type diffusion layer can be formed into a desired region after the diffusion treatment. shape. For example, when the n-type diffusion layer forming composition is applied in a linear pattern having a width of a μm, a line pattern in which the line width b after the diffusion treatment is in the range of b < 1.5 a μm can be maintained.

玻璃粉末的軟化溫度可使用島津製作所(股份)製造的DTG-60H型示差熱.熱重量同時測定裝置,並藉由示差熱(示差熱分析 (Differential Thermal Analysis,DTA))曲線等來求出。 The softening temperature of the glass powder can be determined by DTG-60H type differential heat manufactured by Shimadzu Corporation. Thermogravimetric simultaneous measurement device with differential thermal analysis (Differential Thermal Analysis, DTA)) is obtained by a curve or the like.

作為玻璃粉末的形狀,可列舉大致球狀、扁平狀、塊狀、板狀及鱗片狀等,就製成n型擴散層形成組成物時的對於基板的塗佈性(賦予適應性)或均勻擴散性的觀點而言,理想的是大致球狀、扁平狀或板狀。 The shape of the glass powder is a substantially spherical shape, a flat shape, a block shape, a plate shape, a scale shape, or the like, and the coating property (adaptability) or uniformity to the substrate when the composition is formed into an n-type diffusion layer is used. From the viewpoint of diffusibility, it is desirable to have a substantially spherical shape, a flat shape, or a plate shape.

玻璃粉末的平均粒徑需要為5μm以下。另外,較佳為0.1μm~5μm,更佳為0.5μm~4μm。 The average particle diameter of the glass powder needs to be 5 μm or less. Further, it is preferably 0.1 μm to 5 μm, more preferably 0.5 μm to 4 μm.

藉由將玻璃粉末的平均粒徑設為5μm以下,即便於使用軟化溫度處於上述範圍內的玻璃粉末的情況下,亦在短時間內熔融,而容易獲得平滑的玻璃層。因此,藉由將玻璃粉末的平均粒徑設為5μm以下,可形成均勻的n型擴散層。 When the average particle diameter of the glass powder is 5 μm or less, even when the glass powder having a softening temperature within the above range is used, it is melted in a short time, and a smooth glass layer can be easily obtained. Therefore, by setting the average particle diameter of the glass powder to 5 μm or less, a uniform n-type diffusion layer can be formed.

n型擴散層為均勻的此事實,例如可由塗佈於半導體基板上所獲得的n型擴散層面內的薄片電阻的偏差(標準偏差:σ)來確認。當薄片電阻值的偏差(σ)顯現例如10以下,較佳為5以下,更佳為2以下時,可評價為形成有均勻的n型擴散層。 The fact that the n-type diffusion layer is uniform can be confirmed, for example, by the deviation (standard deviation: σ) of the sheet resistance in the n-type diffusion layer obtained by coating on the semiconductor substrate. When the deviation (σ) of the sheet resistance value is, for example, 10 or less, preferably 5 or less, more preferably 2 or less, it can be evaluated that a uniform n-type diffusion layer is formed.

於本發明中,薄片電阻,採用利用三菱化學(股份)製造的Loresta-EP MCP-T360型低電阻率計,並藉由四探針法於25℃下所測定者。 In the present invention, the sheet resistance was measured by a four-probe method at 25 ° C using a Loresta-EP MCP-T360 type low resistivity meter manufactured by Mitsubishi Chemical Corporation.

另外,σ是藉由如下值的平方根進行計算而獲得的標準偏差,該值是針對所塗佈的面內,藉由上述測定方法所獲得的25處的薄片電阻值的偏差的平方和除以資料數所得的值。 Further, σ is a standard deviation obtained by calculation of the square root of the value obtained by dividing the sum of the squares of the deviations of the sheet resistance values at 25 points obtained by the above-described measurement method in the applied plane. The value obtained from the number of data.

另外,通常於太陽電池中所使用的半導體基板上表面,具有凸部與凹部的高低差為5μm左右的紋理構造。因此,藉由將玻璃粉末的平均粒徑設為5μm以下,對於凹部表面的追隨性提昇,因此亦可減少擴散不均。 Further, generally, the upper surface of the semiconductor substrate used in the solar cell has a texture structure in which the height difference between the convex portion and the concave portion is about 5 μm. Therefore, by setting the average particle diameter of the glass powder to 5 μm or less, the followability to the surface of the concave portion is improved, so that uneven diffusion can be reduced.

此處,於本說明書中,只要事先無特別說明,則玻璃的平均粒徑表示體積平均粒徑,可藉由雷射散射繞射法粒度分布測定裝置(貝克曼庫爾特(Beckman Coulter)公司製造)等來測定。 Here, in the present specification, the average particle diameter of the glass means a volume average particle diameter unless otherwise specified, and a laser scattering diffraction particle size distribution measuring apparatus (Beckman Coulter) can be used. Manufacturing), etc. to determine.

本發明中所使用的玻璃粉末的d90較佳為20μm以下。另外,d90更佳為15μm以下,進而更佳為10μm以下。此處所謂d90,是指於描繪粒徑的體積分布累計曲線時,自粒徑最小的粒子起依次累計而達到整體的90%時的粒徑。體積分布累計曲線可與上述平均粒徑同様地進行測 定,可藉由雷射散射繞射法粒度分布測定裝置(貝克曼庫爾特公司製造)等來測定。 The glass powder used in the present invention preferably has a d90 of 20 μm or less. Further, d90 is more preferably 15 μm or less, and still more preferably 10 μm or less. Here, d90 is a particle diameter when the volume distribution curve of the particle diameter is plotted, and the particles having the smallest particle diameter are sequentially accumulated to reach 90% of the whole. The volume distribution cumulative curve can be measured in the same manner as the above average particle diameter The measurement can be carried out by a laser scattering diffraction particle size distribution measuring apparatus (manufactured by Beckman Coulter Co., Ltd.) or the like.

若上述玻璃粉末的d90為20μm以下,則存在如下的傾向:於將上述n型擴散層形成組成物賦予至半導體基板上表面後,抑制由粗大粒子所引起的大的氣孔的產生,並可使施體元素的分布更均勻化。 When the d90 of the glass powder is 20 μm or less, the n-type diffusion layer forming composition is applied to the upper surface of the semiconductor substrate, and generation of large pores due to coarse particles is suppressed. The distribution of donor elements is more uniform.

本發明中的玻璃粉末需要玻璃粉末的軟化溫度為500℃~900℃,平均粒徑為5μm以下。另外,較佳為玻璃粉末的軟化溫度為600℃~800℃,平均粒徑為0.1μm~5μm,更佳為玻璃粉末的軟化溫度為700℃~800℃,平均粒徑為0.5μm~4μm。 The glass powder in the present invention requires the glass powder to have a softening temperature of 500 ° C to 900 ° C and an average particle diameter of 5 μm or less. Further, the glass powder preferably has a softening temperature of 600 ° C to 800 ° C, an average particle diameter of 0.1 μm to 5 μm, more preferably a softening temperature of the glass powder of 700 ° C to 800 ° C, and an average particle diameter of 0.5 μm to 4 μm.

另外,上述玻璃粉末較佳為玻璃粉末的軟化溫度為500℃~900℃,平均粒徑為5μm以下,d90為20μm以下,更佳為玻璃粉末的軟化溫度為600℃~800℃,平均粒徑為0.1μm~5μm,d90為15μm以下,進而更佳為玻璃粉末的軟化溫度為700℃~800℃,平均粒徑為0.5μm~4μm,d90為10μm以下。 Further, the glass powder preferably has a softening temperature of the glass powder of 500 ° C to 900 ° C, an average particle diameter of 5 μm or less, a d90 of 20 μm or less, more preferably a softening temperature of the glass powder of 600 ° C to 800 ° C, and an average particle diameter. It is 0.1 μm to 5 μm, d90 is 15 μm or less, and more preferably, the glass powder has a softening temperature of 700 ° C to 800 ° C, an average particle diameter of 0.5 μm to 4 μm, and d90 of 10 μm or less.

另外,上述玻璃粉末更佳為玻璃粉末的軟化溫度為600℃~800℃,平均粒徑為0.1μm~5μm,d90為15μm以下,且含有上述施體元素的玻璃粉末包括選自由P2O3、P2O5及Sb2O3所組成的組群中的至少1種含施體元素的物質,以及選自由SiO2、K2O、Na2O、Li2O、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、SnO、ZrO2及MoO3所組成的組群中的至少1種玻璃成分物質,進而更佳為玻璃粉末的軟化溫度為700℃~800℃,平均粒徑為0.5μm~4μm,d90為10μm以下,且含有上述施體元素的玻璃粉末包括選自由P2O3、P2O5及Sb2O3所組成的組群中的至少1種含施體元素的物質,以及選自由SiO2、K2O、Na2O、Li2O、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、SnO、ZrO2及MoO3所組成的組群中的至少1種玻璃成分物質。 Further, the glass powder is more preferably a softening temperature of the glass powder of 600 ° C to 800 ° C, an average particle diameter of 0.1 μm to 5 μm, a d90 of 15 μm or less, and the glass powder containing the above-mentioned donor element includes a material selected from P 2 O 3 . At least one substance containing a donor element in a group consisting of P 2 O 5 and Sb 2 O 3 , and selected from the group consisting of SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO At least one glass component in the group consisting of MgO, BeO, ZnO, PbO, CdO, SnO, ZrO 2 and MoO 3 , and more preferably the glass powder has a softening temperature of 700 ° C to 800 ° C, and an average particle size The glass powder having a diameter of 0.5 μm to 4 μm and a d90 of 10 μm or less and containing the above-mentioned donor element includes at least one selected from the group consisting of P 2 O 3 , P 2 O 5 and Sb 2 O 3 . a substance of a bulk element, and a group selected from the group consisting of SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, SnO, ZrO 2 and MoO 3 At least one glass component substance in the group.

含有施體元素的玻璃粉末是藉由以下的程序來製作。 The glass powder containing the donor element was produced by the following procedure.

首先,稱量原料,例如稱量上述含施體元素的物質與玻璃成分物質,然後將其填充至坩堝中。作為坩堝的材質,可列舉:鉑、鉑-銠、銥、氧化鋁、石英、碳等。坩堝的材質是考慮熔融溫度、環境、與熔融物質的反應性等而適宜選擇。 First, the raw material is weighed, for example, the above-mentioned substance containing the donor element and the glass component substance are weighed, and then filled into the crucible. Examples of the material of the crucible include platinum, platinum-rhodium, ruthenium, aluminum oxide, quartz, and carbon. The material of the crucible is suitably selected in consideration of the melting temperature, the environment, and the reactivity with the molten material.

其次,藉由電爐並以對應於玻璃組成的溫度對上述含施體元素的物質及玻璃成分物質進行加熱而製成熔液。此時,理想的是以使熔液變得均勻的方式進行攪拌。 Next, the above-mentioned donor element-containing substance and glass component substance are heated by an electric furnace at a temperature corresponding to the glass composition to prepare a molten metal. At this time, it is desirable to perform stirring so that the melt becomes uniform.

繼而,使所獲得的熔液流出至氧化鋯基板或碳基板等上而將熔液玻璃化。 Then, the obtained melt flows out onto a zirconia substrate, a carbon substrate or the like to vitrify the melt.

最後,粉碎玻璃而形成粉末狀。粉碎可應用噴射磨機、珠磨機、球磨機等公知的方法。 Finally, the glass is pulverized to form a powder. A known method such as a jet mill, a bead mill, or a ball mill can be applied to the pulverization.

n型擴散層形成組成物中的含有施體元素的玻璃粉末的含有比率是考慮賦予適應性(塗佈性)、施體元素的擴散性等來決定。一般而言,n型擴散層形成組成物中的玻璃粉末的含有比率較佳為0.1質量%以上、95質量%以下,更佳為1質量%以上、90質量%以下,進而更佳為1.5質量%以上、85質量%以下,特佳為2質量%以上、80質量%以下。 The content ratio of the glass powder containing the donor element in the n-type diffusion layer forming composition is determined in consideration of impartability (coatability), diffusibility of the donor element, and the like. In general, the content ratio of the glass powder in the n-type diffusion layer forming composition is preferably 0.1% by mass or more and 95% by mass or less, more preferably 1% by mass or more, 90% by mass or less, and still more preferably 1.5% by mass. % or more and 85% by mass or less, particularly preferably 2% by mass or more and 80% by mass or less.

其次,對分散媒進行說明。 Next, the dispersing medium will be described.

所謂分散媒,是指於組成物中使上述玻璃粉末分散的介質。具體而言,採用選自由黏合劑及溶劑所組成的組群中的至少1種作為分散媒。 The dispersion medium refers to a medium in which the glass powder is dispersed in the composition. Specifically, at least one selected from the group consisting of a binder and a solvent is used as a dispersion medium.

作為黏合劑,例如可列舉:聚乙烯醇、聚丙烯醯胺樹脂、聚乙烯醯胺樹脂、聚乙烯吡咯啶酮、聚環氧乙烷樹脂、聚磺酸、丙烯醯胺烷基磺酸、纖維素醚樹脂、纖維素衍生物、羧甲基纖維素、羥乙基纖維素、乙基纖維素、明膠、澱粉及澱粉衍生物、海藻酸鈉及海藻酸鈉衍生物、三仙膠及三仙膠衍生物、瓜爾膠及瓜爾膠衍生物、硬葡聚糖及硬葡聚糖衍生物、黃蓍膠及黃蓍膠衍生物、糊精及糊精衍生物、(甲基)丙烯酸樹脂、(甲基)丙烯酸酯樹脂(例如(甲基)丙烯酸烷基酯樹脂、(甲基)丙烯酸二甲胺基乙酯樹脂等)、丁二烯樹脂、苯乙烯樹脂、及該些的共聚物。另外,此外可適宜選擇矽氧烷樹脂。該些黏合劑是單獨使用1種、或將2種以上組合使用。 Examples of the binder include polyvinyl alcohol, polypropylene decylamine resin, polyvinyl guanamine resin, polyvinylpyrrolidone, polyethylene oxide resin, polysulfonic acid, acrylamide sulfonic acid, and fiber. Ether resin, cellulose derivative, carboxymethyl cellulose, hydroxyethyl cellulose, ethyl cellulose, gelatin, starch and starch derivatives, sodium alginate and sodium alginate derivatives, Sanxian gum and Sanxian Gum derivatives, guar gum and guar derivatives, scleroglucans and scleroglucan derivatives, tragacanth and xanthan gum derivatives, dextrin and dextrin derivatives, (meth)acrylic resins (meth) acrylate resin (for example, alkyl (meth) acrylate resin, dimethylaminoethyl (meth) acrylate resin, etc.), butadiene resin, styrene resin, and copolymers thereof . Further, in addition, a decane resin can be suitably selected. These binders may be used alone or in combination of two or more.

黏合劑的分子量並無特別限制,理想的是鑒於作為組成物的所期望的黏度而適宜調整。 The molecular weight of the binder is not particularly limited, and is preferably adjusted in view of the desired viscosity as a composition.

作為溶劑,例如可列舉:丙酮、甲基乙基酮、甲基-正丙基酮、甲基-異丙基酮、甲基-正丁基酮、甲基-異丁基酮、甲基-正戊基酮、甲基-正己基酮、二乙基酮、二丙基酮、二-異丁基酮、三甲基壬酮、環己酮、環戊酮、甲基環己酮、2,4-戊二酮、丙酮基丙酮等酮溶劑;二乙醚、甲基乙 基醚、甲基-正丙醚、二-異丙醚、四氫呋喃、甲基四氫呋喃、二噁烷、二甲基二噁烷、乙二醇二甲醚、乙二醇二乙醚、乙二醇二-正丙醚、乙二醇二丁醚、二乙二醇二甲醚、二乙二醇二乙醚、二乙二醇甲基乙基醚、二乙二醇甲基-正丙醚、二乙二醇甲基-正丁醚、二乙二醇二-正丙醚、二乙二醇二-正丁醚、二乙二醇甲基-正己醚、三乙二醇二甲醚、三乙二醇二乙醚、三乙二醇甲基乙基醚、三乙二醇甲基-正丁醚、三乙二醇二-正丁醚、三乙二醇甲基-正己醚、四乙二醇二甲醚、四乙二醇二乙醚、四乙二醇甲基乙基醚、四乙二醇甲基-正丁醚、四乙二醇二-正丁醚、四乙二醇甲基-正己醚、四乙二醇二-正丁醚、丙二醇二甲醚、丙二醇二乙醚、丙二醇二-正丙醚、丙二醇二丁醚、二丙二醇二甲醚、二丙二醇二乙醚、二丙二醇甲基乙基醚、二丙二醇甲基-正丁醚、二丙二醇二-正丙醚、二丙二醇二-正丁醚、二丙二醇甲基-正己醚、三丙二醇二甲醚、三丙二醇二乙醚、三丙二醇甲基乙基醚、三丙二醇甲基-正丁醚、三丙二醇二-正丁醚、三丙二醇甲基-正己醚、四丙二醇二甲醚、四丙二醇二乙醚、四丙二醇甲基乙基醚、四丙二醇甲基-正丁醚、四丙二醇二-正丁醚、四丙二醇甲基-正己醚、四丙二醇二-正丁醚等醚溶劑;乙酸甲酯、乙酸乙酯、乙酸正丙酯、乙酸異丙酯、乙酸正丁酯、乙酸異丁酯、乙酸第二丁酯、乙酸正戊酯、乙酸第二戊酯、乙酸3-甲氧基丁酯、乙酸甲基戊酯、乙酸2-乙基丁酯、乙酸2-乙基己酯、乙酸2-(2-丁氧基乙氧基)乙酯、乙酸苄酯、乙酸環己酯、乙酸甲基環己酯、乙酸壬酯、乙醯乙酸甲酯、乙醯乙酸乙酯、乙酸二乙二醇甲醚、乙酸二乙二醇單乙醚、乙酸二丙二醇甲醚、乙酸二丙二醇乙醚、乙二醇二乙酸酯、甲氧基三乙二醇乙酸酯、丙酸乙酯、丙酸正丁酯、丙酸異戊酯、草酸二乙酯、草酸二-正丁酯、乳酸甲酯、乳酸乙酯、乳酸正丁酯、乳酸正戊酯、乙二醇甲醚丙酸酯、乙二醇乙醚丙酸酯、乙二醇甲醚乙酸酯、乙二醇乙醚乙酸酯、丙二醇甲醚乙酸酯、丙二醇乙醚乙酸酯、丙二醇丙醚乙酸酯、γ-丁內酯、γ-戊內酯等酯溶劑;乙腈、N-甲基吡咯啶酮、N-乙基吡咯啶酮、N-丙基吡咯啶酮、N-丁基吡咯啶酮、N-己基吡咯啶酮、N-環己基吡咯啶酮、N,N-二甲基甲醯胺、N,N-二甲基乙醯胺、二甲基亞碸等非質子性極性溶劑;甲醇、乙醇、正丙醇、異丙醇、正丁醇、異丁醇、第二丁醇、第三丁醇、正戊醇、異戊醇、2-甲基丁醇、第二戊醇、第三戊醇、3-甲氧基丁醇、正己醇、2-甲基戊醇、第二己醇、2- 乙基丁醇、第二庚醇、正辛醇、2-乙基己醇、第二辛醇、正壬醇、正癸醇、第二-十一醇、三甲基壬醇、第二-十四醇、第二-十七醇、苯酚、環己醇、甲基環己醇、苄醇、乙二醇、1,2-丙二醇、1,3-丁二醇、二乙二醇、二丙二醇、三乙二醇、三丙二醇等醇溶劑;乙二醇單甲醚、乙二醇單乙醚、乙二醇單苯醚、二乙二醇單甲醚、二乙二醇單乙醚、二乙二醇單-正丁醚、二乙二醇單-正己醚、三乙二醇單乙醚、四乙二醇單-正丁醚、丙二醇單甲醚、二丙二醇單甲醚、二丙二醇單乙醚、三丙二醇單甲醚等二醇單醚溶劑;α-萜品烯、α-萜品醇、月桂油烯、別羅勒烯、檸檬烯、雙戊烯、α-蒎烯、β-蒎烯、松脂醇、香旱芹酮、羅勒烯、水芹烯等萜烯溶劑;水。該些溶劑是單獨使用1種、或將2種以上組合使用。當製成n型擴散層形成組成物時,就對於基板的賦予適應性的觀點而言,較佳為α-萜品醇、二乙二醇單-正丁醚、乙酸二乙二醇單-正丁醚,作為更佳的溶劑,可列舉α-萜品醇、二乙二醇單-正丁醚。 Examples of the solvent include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-isopropyl ketone, methyl-n-butyl ketone, methyl-isobutyl ketone, and methyl group. N-pentyl ketone, methyl-n-hexyl ketone, diethyl ketone, dipropyl ketone, di-isobutyl ketone, trimethyl fluorenone, cyclohexanone, cyclopentanone, methylcyclohexanone, 2 a ketone solvent such as 4-pentanedione or acetonylacetone; diethyl ether, methyl ethyl Ether, methyl-n-propyl ether, di-isopropyl ether, tetrahydrofuran, methyltetrahydrofuran, dioxane, dimethyl dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol - n-propyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol methyl-n-propyl ether, two Glycol methyl-n-butyl ether, diethylene glycol di-n-propyl ether, diethylene glycol di-n-butyl ether, diethylene glycol methyl-n-hexyl ether, triethylene glycol dimethyl ether, triethylene glycol Alcohol diethyl ether, triethylene glycol methyl ethyl ether, triethylene glycol methyl-n-butyl ether, triethylene glycol di-n-butyl ether, triethylene glycol methyl-n-hexyl ether, tetraethylene glycol Methyl ether, tetraethylene glycol diethyl ether, tetraethylene glycol methyl ethyl ether, tetraethylene glycol methyl-n-butyl ether, tetraethylene glycol di-n-butyl ether, tetraethylene glycol methyl-n-hexyl ether , tetraethylene glycol di-n-butyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol di-n-propyl ether, propylene glycol dibutyl ether, dipropylene glycol dimethyl ether, dipropylene glycol diethyl ether, dipropylene glycol methyl ethyl ether Dipropylene glycol methyl-n-butyl ether, dipropylene Di-n-propyl ether, dipropylene glycol di-n-butyl ether, dipropylene glycol methyl-n-hexyl ether, tripropylene glycol dimethyl ether, tripropylene glycol diethyl ether, tripropylene glycol methyl ethyl ether, tripropylene glycol methyl-n-butyl ether, Tripropylene glycol di-n-butyl ether, tripropylene glycol methyl-n-hexyl ether, tetrapropylene glycol dimethyl ether, tetrapropylene glycol diethyl ether, tetrapropylene glycol methyl ethyl ether, tetrapropylene glycol methyl-n-butyl ether, tetrapropylene glycol di-n-butyl Ether, tetrapropylene glycol methyl-n-hexyl ether, tetrapropylene glycol di-n-butyl ether and other ether solvents; methyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, acetic acid Second butyl ester, n-amyl acetate, second amyl acetate, 3-methoxybutyl acetate, methyl amyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, acetic acid 2- (2-Butoxyethoxy)ethyl ester, benzyl acetate, cyclohexyl acetate, methylcyclohexyl acetate, decyl acetate, methyl acetate, ethyl acetate, diethylene glycol Methyl ether, diethylene glycol monoethyl ether, dipropylene glycol methyl ether, dipropylene glycol diethyl ether, ethylene glycol diacetate, A Triethylene glycol acetate, ethyl propionate, n-butyl propionate, isoamyl propionate, diethyl oxalate, di-n-butyl oxalate, methyl lactate, ethyl lactate, n-butyl lactate , n-amyl lactate, ethylene glycol methyl ether propionate, ethylene glycol ethyl ether propionate, ethylene glycol methyl ether acetate, ethylene glycol ethyl ether acetate, propylene glycol methyl ether acetate, propylene glycol ethyl ether Ester ester solvents such as ester, propylene glycol propyl ether acetate, γ-butyrolactone, γ-valerolactone; acetonitrile, N-methylpyrrolidone, N-ethylpyrrolidone, N-propylpyrrolidone , N-butylpyrrolidone, N-hexyl pyrrolidone, N-cyclohexyl pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethyl Aprotic polar solvents such as hydrazine; methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, second butanol, tert-butanol, n-pentanol, isoamyl alcohol, 2-methyl Butanol, second pentanol, third pentanol, 3-methoxybutanol, n-hexanol, 2-methylpentanol, second hexanol, 2- Ethyl butanol, second heptanol, n-octanol, 2-ethylhexanol, second octanol, n-nonanol, n-nonanol, second-undecanol, trimethylnonanol, second- Tetradecane, second-heptadecanol, phenol, cyclohexanol, methylcyclohexanol, benzyl alcohol, ethylene glycol, 1,2-propanediol, 1,3-butanediol, diethylene glycol, two Alcohol solvent such as propylene glycol, triethylene glycol or tripropylene glycol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monophenyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethyl Glycol mono-n-butyl ether, diethylene glycol mono-n-hexyl ether, triethylene glycol monoethyl ether, tetraethylene glycol mono-n-butyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, a glycol monoether solvent such as tripropylene glycol monomethyl ether; α-terpinene, α-terpineol, laurylene, allo-ocimene, limonene, dipentene, α-pinene, β-pinene, rosinol , terpene ketone, ocene, celery and other terpene solvents; water. These solvents may be used alone or in combination of two or more. When the n-type diffusion layer forming composition is formed, from the viewpoint of imparting flexibility to the substrate, α-terpineol, diethylene glycol mono-n-butyl ether, and diethylene glycol mono-acetate are preferred. N-butyl ether, as a more preferable solvent, α-terpineol and diethylene glycol mono-n-butyl ether can be mentioned.

n型擴散層形成組成物中的分散媒的含有比率是考慮塗佈性、施體濃度來決定。 The content ratio of the dispersion medium in the n-type diffusion layer forming composition is determined in consideration of coatability and donor concentration.

考慮到賦予適應性,n型擴散層形成組成物的黏度更佳為10mPa.s以上、1000000mPa.s以下。 The viscosity of the n-type diffusion layer forming composition is preferably 10 mPa in view of imparting flexibility. Above s, 1000000mPa. s below.

本發明的n型擴散層的製造方法包括:於半導體基板上賦予上述n型擴散層形成組成物的步驟、以及對上述賦予後的半導體基板實施熱擴散處理的步驟。另外,本發明的太陽電池元件的製造方法包括:於半導體基板上賦予上述n型擴散層形成組成物的步驟;對上述賦予後的半導體基板實施熱擴散處理,而形成n型擴散層的步驟;以及於所形成的上述n型擴散層上形成電極的步驟。 The method for producing an n-type diffusion layer of the present invention includes a step of providing a composition for forming the n-type diffusion layer on a semiconductor substrate, and a step of subjecting the semiconductor substrate after the application to thermal diffusion treatment. Further, a method for producing a solar cell element according to the present invention includes the steps of: providing a composition for forming the n-type diffusion layer on a semiconductor substrate; and performing a thermal diffusion treatment on the semiconductor substrate after the application to form an n-type diffusion layer; And a step of forming an electrode on the formed n-type diffusion layer.

一面參照圖1一面對本發明的n型擴散層及太陽電池元件的製造方法進行說明。圖1是概念性地表示本發明的太陽電池元件的製造步驟的一例的示意剖面圖。另外,圖1中,10表示p型半導體基板,12表示n型擴散層,14表示p+型擴散層,16表示抗反射膜,18表示表面電極,20表示背面電極(電極層)。於以下的圖式中,對相同的構成要素標註同一符號,並省略說明。再者,以下對使用矽基板作為p型半導體基板的例進行說明,但本發明中半導體基板並不限定於矽基板。 A method of manufacturing an n-type diffusion layer and a solar cell element of the present invention will be described with reference to FIG. Fig. 1 is a schematic cross-sectional view conceptually showing an example of a manufacturing procedure of a solar cell element of the present invention. In addition, in Fig. 1, 10 denotes a p-type semiconductor substrate, 12 denotes an n-type diffusion layer, 14 denotes a p + -type diffusion layer, 16 denotes an anti-reflection film, 18 denotes a surface electrode, and 20 denotes a back surface electrode (electrode layer). In the following drawings, the same components are denoted by the same reference numerals, and their description is omitted. In the following description, an example in which a tantalum substrate is used as a p-type semiconductor substrate will be described. However, in the present invention, the semiconductor substrate is not limited to a tantalum substrate.

圖1的(1)中,對作為p型半導體基板10的矽基板賦予鹼性溶液來去除損壞層,並藉由蝕刻而獲得紋理構造。 In (1) of FIG. 1, an alkaline solution is applied to a tantalum substrate as a p-type semiconductor substrate 10 to remove a damaged layer, and a texture structure is obtained by etching.

詳細而言,利用20質量%苛性鈉去除自鑄錠進行切片時所產生的矽表面的損壞層。繼而,利用1質量%苛性鈉與10質量%異丙醇的混合液進行蝕刻,而形成紋理構造(圖中省略紋理構造的記載)。太陽電池元件藉由在受光面(表面)側形成紋理構造,而促進光封閉效應,並謀求高效率化。 Specifically, the damaged layer of the crucible surface generated when slicing from the ingot was removed using 20% by mass of caustic soda. Then, etching was carried out by using a mixed solution of 1% by mass of caustic soda and 10% by mass of isopropyl alcohol to form a texture structure (the description of the texture structure is omitted in the drawing). The solar cell element forms a texture structure on the light-receiving surface (surface) side, thereby promoting the light confinement effect and achieving high efficiency.

圖1的(2)中,將上述n型擴散層形成組成物賦予至p型半導體基板10的表面即成為受光面的面上,形成n型擴散層形成組成物層11。本發明中,賦予方法並無限制,例如可列舉印刷法、旋轉法、毛刷塗佈、噴霧法、刮刀法、輥塗機法、噴墨法等。 In (2) of FIG. 1, the n-type diffusion layer forming composition is applied to the surface of the p-type semiconductor substrate 10, that is, the surface on which the light-receiving surface is formed, and the n-type diffusion layer forming composition layer 11 is formed. In the present invention, the method of imparting is not limited, and examples thereof include a printing method, a spinning method, a brush coating method, a spray method, a doctor blade method, a roll coater method, and an inkjet method.

上述n型擴散層形成組成物的賦予量並無特別限制。例如,作為玻璃粉末量,可設為0.01g/m2~100g/m2,較佳為0.1g/m2~10g/m2The amount of the n-type diffusion layer forming composition to be applied is not particularly limited. For example, the amount of the glass powder may be from 0.01 g/m 2 to 100 g/m 2 , preferably from 0.1 g/m 2 to 10 g/m 2 .

再者,根據n型擴散層形成組成物的組成,有時需要用以於賦予後,使組成物中所含有的溶劑揮發的乾燥步驟。於該情況下,在80℃~300℃左右的溫度下,當使用加熱板時乾燥1分鐘~10分鐘,當使用乾燥機等時乾燥10分鐘~30分鐘左右。該乾燥條件依存於n型擴散層形成組成物的溶劑組成,於本發明中並不特別限定於上述條件。 Further, depending on the composition of the n-type diffusion layer forming composition, a drying step for volatilizing the solvent contained in the composition after application may be required. In this case, it is dried for 1 minute to 10 minutes when using a hot plate at a temperature of about 80 ° C to 300 ° C, and dried for about 10 minutes to 30 minutes when using a dryer or the like. The drying conditions depend on the solvent composition of the n-type diffusion layer forming composition, and are not particularly limited to the above conditions in the present invention.

另外,當使用本發明的製造方法時,背面的p+型擴散層(高濃度電場層)14的製造方法並不限定於藉由鋁之由n型擴散層轉換為p型擴散層的方法,亦可採用先前公知的任何方法,製造方法的選擇項擴大。因此,例如可賦予含有B(硼)等第13族的元素的組成物13來形成p+型擴散層14。 Further, when the manufacturing method of the present invention is used, the method of producing the p + -type diffusion layer (high-concentration electric field layer) 14 on the back surface is not limited to the method of converting the n-type diffusion layer into a p-type diffusion layer by aluminum. Any of the previously known methods can also be employed, and the options for the manufacturing method are expanded. Therefore, for example, the composition 13 containing an element of Group 13 such as B (boron) can be imparted to form the p + -type diffusion layer 14.

作為上述含有B(硼)等第13族的元素的組成物13,例如可列舉使用含有受體元素的玻璃粉末代替含有施體元素的玻璃粉末,且以與n型擴散層形成組成物相同的方式構成的p型擴散層形成組成物。受體元素只要是第13族的元素即可,例如可列舉B(硼)、Al(鋁)及Ga(鎵)等。另外,含有受體元素的玻璃粉末較佳為包含選自由B2O3、Al2O3及Ga2O3所組成的組群中的至少1種。 The composition 13 containing the element of Group 13 such as B (boron) may be, for example, a glass powder containing an acceptor element instead of a glass powder containing a donor element, and the same composition as that of the n-type diffusion layer. The p-type diffusion layer formed by the method forms a composition. The acceptor element may be an element of Group 13 and examples thereof include B (boron), Al (aluminum), and Ga (gallium). Further, the glass powder containing the acceptor element preferably contains at least one selected from the group consisting of B 2 O 3 , Al 2 O 3 and Ga 2 O 3 .

進而,將p型擴散層形成組成物賦予至矽基板的背面的方法與已述的將n型擴散層形成組成物賦予至矽基板上的方法相同。 Further, the method of imparting the p-type diffusion layer forming composition to the back surface of the tantalum substrate is the same as the method of applying the n-type diffusion layer forming composition to the tantalum substrate as described above.

以與後述的n型擴散層形成組成物的熱擴散處理相同的方式,對被賦予至背面的p型擴散層形成組成物進行熱擴散處理,藉此可於背面形成p+型擴散層14。再者,較佳為p型擴散層形成組成物的熱擴散處理與n型擴散層形成組成物的熱擴散處理同時進行。 The p + -type diffusion layer 14 can be formed on the back surface by thermally diffusing the p-type diffusion layer forming composition applied to the back surface in the same manner as the thermal diffusion treatment of the n-type diffusion layer forming composition described later. Further, it is preferable that the thermal diffusion treatment of the p-type diffusion layer forming composition and the thermal diffusion treatment of the n-type diffusion layer forming composition are simultaneously performed.

繼而,於組成物中的玻璃粉末的熔點以上的溫度,例如600℃~1200℃下,對形成有上述n型擴散層形成組成物層11的p型半導體基板10進行熱擴散處理。藉由該熱擴散處理,如圖1的(3)所示,施體元素朝半導體基板中擴散,而形成n型擴散層12。熱擴散處理可應用公知的連續爐、分批式爐等。另外,熱擴散處理時的爐內環境亦可適宜調整成空氣、氧氣、氮氣等。 Then, the p-type semiconductor substrate 10 on which the n-type diffusion layer forming composition layer 11 is formed is thermally diffused at a temperature equal to or higher than the melting point of the glass powder in the composition, for example, 600 to 1200 °C. By this thermal diffusion treatment, as shown in (3) of FIG. 1, the donor element is diffused into the semiconductor substrate to form the n-type diffusion layer 12. As the heat diffusion treatment, a known continuous furnace, a batch furnace, or the like can be applied. In addition, the furnace environment during the thermal diffusion treatment may be appropriately adjusted to air, oxygen, nitrogen, or the like.

熱擴散處理時間可對應於n型擴散層形成組成物中所含有的施體元素的含有率而適宜選擇。例如,可設為1分鐘~60分鐘,更佳為5分鐘~30分鐘。 The thermal diffusion treatment time can be appropriately selected in accordance with the content ratio of the donor element contained in the n-type diffusion layer forming composition. For example, it can be set to 1 minute to 60 minutes, more preferably 5 minutes to 30 minutes.

於所形成的n型擴散層12的表面形成有磷酸玻璃等玻璃層(未圖示)。因此,藉由蝕刻來去除該磷酸玻璃。蝕刻可應用浸漬於氫氟酸等酸中的方法、浸漬於苛性鈉等鹼中的方法等任一種公知的方法。當使用浸漬於氫氟酸等酸中的蝕刻方法時,浸漬時間並無特別限制,通常可設為0.5分鐘~30分鐘,較佳為設為1分鐘~10分鐘。 A glass layer (not shown) such as phosphoric acid glass is formed on the surface of the formed n-type diffusion layer 12. Therefore, the phosphoric acid glass is removed by etching. The etching can be carried out by any known method such as a method of immersing in an acid such as hydrofluoric acid or a method of immersing in an alkali such as caustic soda. When an etching method of immersing in an acid such as hydrofluoric acid is used, the immersion time is not particularly limited, and it can be usually 0.5 minutes to 30 minutes, preferably 1 minute to 10 minutes.

於圖1的(2)及圖1的(3)所示的本發明的n型擴散層的形成方法中,於所期望的部位形成n型擴散層12,不於背面或側面形成不需要的n型擴散層。 In the method of forming the n-type diffusion layer of the present invention shown in (2) of FIG. 1 and (3) of FIG. 1, the n-type diffusion layer 12 is formed at a desired portion, and unnecessary formation is not performed on the back surface or the side surface. N-type diffusion layer.

因此,於先前廣泛採用的藉由氣相反應法來形成n型擴散層的方法中,需要用於去除形成於側面的不需要的n型擴散層的側蝕步驟,但根據本發明的製造方法,不需要側蝕步驟,從而使步驟簡單化。如此,藉由本發明的製造方法,而於短時間內在所期望的部位形成所期望的形狀的均勻的n型擴散層。 Therefore, in the previously widely used method of forming an n-type diffusion layer by a gas phase reaction method, a side etching step for removing an unnecessary n-type diffusion layer formed on the side is required, but the manufacturing method according to the present invention There is no need for a side etching step to simplify the steps. As described above, according to the manufacturing method of the present invention, a uniform n-type diffusion layer having a desired shape is formed at a desired portion in a short time.

另外,於先前的製造方法中,必須將形成於背面的不需要的n型擴散層轉換成p型擴散層,作為該轉換方法,採用如下的方法:於背面的n型擴散層上塗佈作為第13族元素的鋁的膏,並進行煅燒,使鋁擴散至n型擴散層而將n型擴散層轉換成p型擴散層。於該方法中,為了充分地將 n型擴散層轉換成p型擴散層,進而形成p+型擴散層的高濃度電場層,而需要某種程度以上的鋁量,因此必須將鋁層形成得厚。但是,鋁的熱膨脹係數與用作基板的矽的熱膨脹係數大不相同,因此於煅燒及冷卻的過程中,在矽基板中產生大的內部應力,而成為矽基板的翹曲的原因。 Further, in the prior manufacturing method, it is necessary to convert an unnecessary n-type diffusion layer formed on the back surface into a p-type diffusion layer, and as the conversion method, the following method is employed: coating on the n-type diffusion layer on the back surface A paste of aluminum of a Group 13 element is calcined to diffuse aluminum to the n-type diffusion layer to convert the n-type diffusion layer into a p-type diffusion layer. In this method, in order to sufficiently convert the n-type diffusion layer into a p-type diffusion layer and further form a high-concentration electric field layer of the p + -type diffusion layer, a certain amount of aluminum is required, so it is necessary to form an aluminum layer. thick. However, since the coefficient of thermal expansion of aluminum is greatly different from the coefficient of thermal expansion of the crucible used as the substrate, a large internal stress is generated in the crucible substrate during the firing and cooling, which causes the warpage of the crucible substrate.

存在該內部應力對結晶的晶界造成損傷、電力損失變大這一課題。另外,翹曲於模組製程中的太陽電池元件的搬送、或者與被稱為捲帶自動結合(TAB)線的銅線的連接過程中,容易使太陽電池元件破損。近年來,由於切片加工技術的提高,因此矽基板的厚度正被薄型化,而存在太陽電池元件更加容易破裂的傾向。 This internal stress causes damage to the grain boundary of the crystal and increases the power loss. Further, in the process of transferring the solar cell element in the module process or the connection to a copper wire called a tape automatic bonding (TAB) wire, the solar cell element is easily broken. In recent years, as the slicing technology has been improved, the thickness of the tantalum substrate is being thinned, and the solar cell element tends to be more easily broken.

但是,根據本發明的製造方法,不於背面形成不需要的n型擴散層,因此無需進行自n型擴散層朝p型擴散層的轉換,而不必使鋁層變厚。其結果,可抑制矽基板內的內部應力的產生或翹曲。結果可抑制電力損失的增大、或太陽電池元件的破損。 However, according to the manufacturing method of the present invention, since an unnecessary n-type diffusion layer is not formed on the back surface, it is not necessary to perform conversion from the n-type diffusion layer toward the p-type diffusion layer without thickening the aluminum layer. As a result, generation or warpage of internal stress in the ruthenium substrate can be suppressed. As a result, an increase in power loss or breakage of the solar cell element can be suppressed.

另外,當使用本發明的製造方法時,背面的p+型擴散層(高濃度電場層)14的製造方法並不限定於藉由鋁之由n型擴散層轉換為p型擴散層的方法,亦可採用任何方法,製造方法的選擇項擴大。 Further, when the manufacturing method of the present invention is used, the method of producing the p + -type diffusion layer (high-concentration electric field layer) 14 on the back surface is not limited to the method of converting the n-type diffusion layer into a p-type diffusion layer by aluminum. Any method can also be used, and the options of the manufacturing method are expanded.

較佳為例如將使用含有受體元素的玻璃粉末代替含有施體元素的玻璃粉末,且以與n型擴散層形成組成物相同的方式構成的p型擴散層形成組成物賦予至矽基板的背面(與賦予了n型擴散層形成組成物的面為相反側的面),並進行煅燒處理,藉此於背面形成p+型擴散層(高濃度電場層)14。 For example, a glass powder containing an acceptor element is used instead of the glass powder containing the donor element, and a p-type diffusion layer forming composition configured in the same manner as the n-type diffusion layer forming composition is applied to the back surface of the tantalum substrate. (The surface opposite to the surface to which the n-type diffusion layer forming composition is applied) is subjected to a firing treatment to form a p + -type diffusion layer (high-concentration electric field layer) 14 on the back surface.

另外,如後述般,用於背面電極20的材料並不限定於第13族的鋁,例如可應用Ag(銀)或Cu(銅)等,背面電極20的厚度亦可比先前的厚度更薄地形成。 Further, as will be described later, the material for the back surface electrode 20 is not limited to aluminum of Group 13, and for example, Ag (silver) or Cu (copper) may be applied, and the thickness of the back surface electrode 20 may be formed thinner than the previous thickness. .

圖1的(4)中,於n型擴散層12上形成抗反射膜16。抗反射膜16是應用公知的技術來形成。例如,當抗反射膜16為氮化矽膜時,藉由將SiH4與NH3的混合氣體作為原料的電漿化學氣相沈積(Chemical Vapor Deposition,CVD)法來形成。此時,氫於結晶中擴散,不參與矽原子之鍵結的軌道,即懸鍵與氫鍵結,而使缺陷鈍化(氫鈍化)。 In (4) of FIG. 1, an anti-reflection film 16 is formed on the n-type diffusion layer 12. The anti-reflection film 16 is formed using a well-known technique. For example, when the anti-reflection film 16 is a tantalum nitride film, it is formed by a plasma chemical vapor deposition (CVD) method using a mixed gas of SiH 4 and NH 3 as a raw material. At this time, hydrogen diffuses in the crystal, does not participate in the orbital of the bonding of the deuterium atoms, that is, the dangling bonds are hydrogen-bonded, and the defects are passivated (hydrogen passivation).

更具體而言,於上述混合氣體流量比NH3/SiH4為0.05~1.0,反應室的壓力為13.3Pa(0.1Torr)~266.6Pa(2Torr),成膜時的溫度為300℃~ 550℃,用於電漿的放電的頻率為100kHz以上的條件下形成。 More specifically, the mixed gas flow rate ratio NH 3 /SiH 4 is 0.05 to 1.0, the reaction chamber pressure is 13.3 Pa (0.1 Torr) to 266.6 Pa (2 Torr), and the film forming temperature is 300 ° C to 550 ° C. It is formed under the condition that the frequency of discharge of the plasma is 100 kHz or more.

圖1的(5)中,於表面(受光面)的抗反射膜16上,藉由網版印刷法來印刷塗佈表面電極用金屬膏並使其乾燥,而形成表面電極用金屬膏層17。表面電極用金屬膏是將(1)金屬粒子與(2)玻璃粒子作為必需成分,且視需要包含(3)樹脂黏合劑、(4)其他添加劑。 In (5) of Fig. 1, a metal paste for surface electrode coating is applied onto an antireflection film 16 having a surface (light-receiving surface) by a screen printing method, and dried to form a metal paste layer for a surface electrode. . The metal paste for surface electrodes contains (1) metal particles and (2) glass particles as essential components, and if necessary, (3) a resin binder and (4) other additives.

繼而,於上述背面的p+型擴散層14上亦形成背面電極用金屬膏層19。如上所述,於本發明中,背面電極用金屬膏層19的材質或形成方法並無特別限定。例如,亦可賦予包含鋁、銀或銅等金屬的背面電極用膏,並使其乾燥而形成背面電極用金屬膏層19。此時,為了模組製程中的太陽電池元件間的連接,亦可於背面的一部分上設置銀電極形成用銀膏。 Then, a metal paste layer 19 for a back surface electrode is also formed on the p + -type diffusion layer 14 on the back surface. As described above, in the present invention, the material or formation method of the metal paste layer 19 for back surface electrodes is not particularly limited. For example, a paste for a back surface electrode containing a metal such as aluminum, silver or copper may be applied and dried to form a metal paste layer 19 for a back surface electrode. At this time, in order to connect the solar cell elements in the module process, a silver paste for silver electrode formation may be provided on a part of the back surface.

圖1的(6)中,對電極用金屬膏層17進行煅燒來製成太陽電池元件。若於600℃~900℃的範圍內煅燒幾秒~幾分鐘,則於表面側,作為絕緣膜的抗反射膜16因電極用金屬膏中所含有的玻璃粒子而熔融,進而p型半導體基板10表面的一部分亦熔融,膏中的金屬粒子(例如銀粒子)與p型半導體基板10形成接觸部並凝固。藉此,所形成的表面電極18與p型半導體基板10被導通。將此稱為煅燒貫穿(fire through)。另外,於背面側,亦同樣地對背面電極用金屬膏層19的背面電極用金屬膏進行煅燒,而形成背面電極20。 In (6) of Fig. 1, the electrode paste metal layer 17 is fired to form a solar cell element. When calcined in the range of 600 ° C to 900 ° C for several seconds to several minutes, the antireflection film 16 as an insulating film is melted on the surface side by the glass particles contained in the metal paste for the electrode, and the p-type semiconductor substrate 10 is further melted. A part of the surface is also melted, and metal particles (for example, silver particles) in the paste form a contact portion with the p-type semiconductor substrate 10 and solidify. Thereby, the formed surface electrode 18 and the p-type semiconductor substrate 10 are electrically connected. This is referred to as fire through. Further, on the back surface side, the back surface electrode of the back surface electrode metal paste layer 19 is similarly fired with a metal paste to form the back surface electrode 20.

參照圖2A以及圖2B對表面電極18的形狀進行說明。再者,於圖2A以及圖2B中,30表示匯流條電極,32表示指狀電極。表面電極18包含匯流條電極30、以及與該匯流條電極30交叉的指狀電極32。圖2A是自表面觀察到的將表面電極18設為包含匯流條電極30、以及與該匯流條電極30交叉的指狀電極32的構成的太陽電池元件的平面圖,圖2B是將圖2A的一部分擴大表示的立體圖。 The shape of the surface electrode 18 will be described with reference to FIGS. 2A and 2B. Further, in FIGS. 2A and 2B, 30 denotes a bus bar electrode, and 32 denotes a finger electrode. The surface electrode 18 includes a bus bar electrode 30 and a finger electrode 32 that intersects the bus bar electrode 30. 2A is a plan view of a solar cell element in which the surface electrode 18 is formed to include the bus bar electrode 30 and the finger electrode 32 crossing the bus bar electrode 30, and FIG. 2B is a part of FIG. 2A. Expand the perspective view of the representation.

此種表面電極18可藉由例如上述金屬膏的網版印刷、或者電極材料的鍍敷、高真空中的利用電子束加熱的電極材料的蒸鍍等方法而形成。眾所周知,包含匯流條電極30與指狀電極32的表面電極18通常用作受光面側的電極,可應用受光面側的匯流條電極及指狀電極的公知的形成方法。 Such a surface electrode 18 can be formed by, for example, screen printing of the above-described metal paste, plating of an electrode material, vapor deposition of an electrode material by electron beam heating in a high vacuum, or the like. As is well known, the surface electrode 18 including the bus bar electrode 30 and the finger electrode 32 is generally used as an electrode on the light-receiving surface side, and a known method of forming the bus bar electrode and the finger electrode on the light-receiving surface side can be applied.

於上述中,對在表面形成n型擴散層,在背面形成p+型擴 散層,進而在各個層上設置有表面電極及背面電極的太陽電池元件進行了說明,但若使用本發明的n型擴散層形成組成物,則亦可製作背面接觸(back contact)型的太陽電池元件。 In the above description, a solar cell element in which an n-type diffusion layer is formed on the surface, a p + -type diffusion layer is formed on the back surface, and a surface electrode and a back surface electrode are provided on each layer has been described. However, the n-type of the present invention is used. When the diffusion layer forms a composition, a back contact type solar cell element can be produced.

背面接觸型的太陽電池元件是將電極全部設置於背面來增大受光面的面積的太陽電池元件。即,於背面接觸型的太陽電池元件中,必須於背面形成n型擴散部位及p+型擴散部位兩者來變成pn接合構造。本發明的n型擴散層形成組成物可於特定的部位形成n型擴散部位,因此可較佳地應用於背面接觸型的太陽電池元件的製造。 The back contact type solar cell element is a solar cell element in which all of the electrodes are provided on the back surface to increase the area of the light receiving surface. In other words, in the back contact type solar cell element, both the n-type diffusion portion and the p + -type diffusion portion must be formed on the back surface to form a pn junction structure. Since the n-type diffusion layer forming composition of the present invention can form an n-type diffusion site at a specific portion, it can be preferably applied to the manufacture of a back contact type solar cell element.

於本發明中,亦分別包含製造n型擴散層時的上述n型擴散層形成組成物的使用、以及製造含有上述半導體基板與n型擴散層及電極的太陽電池元件時的上述n型擴散層形成組成物的使用。如上所述,藉由使用本發明的n型擴散層形成組成物,可不形成不需要的n型擴散層,而於短時間內在特定的區域以所期望的形狀獲得均勻的n型擴散層,另外,可不形成不需要的n型擴散層而獲得具有此種n型擴散層的太陽電池元件。 In the present invention, the n-type diffusion layer forming composition is used in the production of the n-type diffusion layer, and the n-type diffusion layer in the case of manufacturing the solar cell element including the semiconductor substrate and the n-type diffusion layer and the electrode. The use of the composition is formed. As described above, by forming the composition using the n-type diffusion layer of the present invention, it is possible to obtain a uniform n-type diffusion layer in a desired shape in a specific region without forming an unnecessary n-type diffusion layer in a short time, and A solar cell element having such an n-type diffusion layer can be obtained without forming an unnecessary n-type diffusion layer.

[實例] [Example]

以下,更具體地說明本發明的實例,但本發明並不受該些實例限制。再者,只要無特別記述,則化學品全部使用了試劑。另外,只要事先無說明,則「%」表示「質量%」。進而,只要事先無說明,則「cm/s」表示流入至爐內的氣體的流量除以電爐的剖面面積所得的「線速度」。 Hereinafter, examples of the invention will be more specifically described, but the invention is not limited by the examples. Further, as long as there is no special description, the reagents are all used in the chemicals. In addition, "%" means "% by mass" as long as there is no explanation in advance. Further, unless otherwise stated, "cm/s" indicates the "linear velocity" obtained by dividing the flow rate of the gas flowing into the furnace by the cross-sectional area of the electric furnace.

[實例1] [Example 1]

使用自動乳缽混錬裝置將粒子形狀為大致球狀、平均粒徑為4μm、且d90為15μm的P2O5-SiO2-CaO系玻璃(軟化溫度為700℃,P2O5:50%,SiO2:43%,CaO:7%)粉末3g,乙基纖維素2.1g,及萜品醇24.9g加以混合並膏化,從而製成n型擴散層形成組成物。 P 2 O 5 -SiO 2 -CaO-based glass having a substantially spherical shape, an average particle diameter of 4 μm, and a d90 of 15 μm (softening temperature of 700 ° C, P 2 O 5 : 50) using an automatic mortar mixing device %, SiO 2 : 43%, CaO: 7%) 3 g of powder, 2.1 g of ethyl cellulose, and 24.9 g of terpineol were mixed and pasteified to prepare an n-type diffusion layer forming composition.

再者,玻璃粒子形狀是使用日立先端科技(Hitachi High-Technologies)(股份)製造的TM-1000型掃描型電子顯微鏡進行觀察並判定。玻璃的平均粒徑及d90是使用貝克曼庫爾特(股份)製造的LS 13 320型雷射散射繞射法粒度分布測定裝置(測定波長:632nm)來算出。玻璃的軟化溫度是使用島津製作所(股份)製造的DTG-60H型示差熱.熱重量同時測定裝置,並藉由示差熱(DTA)曲線來求出。 Further, the shape of the glass particles was observed and judged using a TM-1000 scanning electron microscope manufactured by Hitachi High-Technologies Co., Ltd. The average particle diameter of the glass and d90 were calculated using a LS 13 320 laser scattering diffraction particle size distribution measuring apparatus (measuring wavelength: 632 nm) manufactured by Beckman Coulter (Stock). The softening temperature of the glass is DTG-60H type differential heat manufactured by Shimadzu Corporation. The thermogravimetric simultaneous measurement device was determined by a differential heat (DTA) curve.

其次,藉由網版印刷將所製備的膏塗佈於p型矽基板的表面,並於150℃的加熱板上乾燥5分鐘。繼而,於設定成450℃的烘箱中保持1.5分鐘,而使乙基纖維素脫離。繼而,於大氣流動(0.9cm/s)環境中,在設定成950℃的電爐中保持10分鐘,藉此進行熱擴散處理,其後為了去除玻璃層而將基板於氫氟酸中浸漬5分鐘,然後進行流水清洗。其後,進行乾燥。 Next, the prepared paste was applied to the surface of the p-type ruthenium substrate by screen printing, and dried on a hot plate at 150 ° C for 5 minutes. Then, the ethyl cellulose was removed by holding it in an oven set at 450 ° C for 1.5 minutes. Then, in an atmosphere flow (0.9 cm/s) environment, the electrode was held in an electric furnace set at 950 ° C for 10 minutes, thereby performing thermal diffusion treatment, and thereafter, the substrate was immersed in hydrofluoric acid for 5 minutes in order to remove the glass layer. Then, the running water is cleaned. Thereafter, drying is carried out.

塗佈有n型擴散層形成組成物之側的表面的薄片電阻為60Ω/□,P(磷)擴散而形成了n型擴散層。另外,所塗佈的面內的薄片電阻值的偏差為σ=0.8,形成了均勻的n型擴散層。另一方面,背面的薄片電阻為1000000Ω/□以上而無法測定,未形成n型擴散層。 The sheet resistance of the surface coated with the side of the n-type diffusion layer forming composition was 60 Ω/□, and P (phosphorus) was diffused to form an n-type diffusion layer. Further, the deviation of the sheet resistance value in the applied surface was σ = 0.8, and a uniform n-type diffusion layer was formed. On the other hand, the sheet resistance of the back surface was 1,000,000 Ω/□ or more and could not be measured, and an n-type diffusion layer was not formed.

再者,薄片電阻是使用三菱化學(股份)製造的Loresta-EP MCP-T360型低電阻率計,並藉由四探針法於25℃下進行測定。 Further, the sheet resistance was a Loresta-EP MCP-T360 type low resistivity meter manufactured by Mitsubishi Chemical Co., Ltd., and was measured by a four-probe method at 25 °C.

另外,σ表示標準偏差,其藉由所塗佈的面內的25處的薄片電阻值的偏差的平方和除以資料數所得的值的平方根來算出。 Further, σ represents a standard deviation, which is calculated by dividing the sum of the squares of the deviations of the sheet resistance values at 25 points in the applied plane by the square root of the value obtained by dividing the number of the data.

[實例2] [Example 2]

將玻璃粉末的平均粒徑設為2μm、且將d90設為6.5μm,除此以外,以與實例1相同的方式形成n型擴散層。 An n-type diffusion layer was formed in the same manner as in Example 1 except that the average particle diameter of the glass powder was 2 μm and d90 was 6.5 μm.

塗佈有n型擴散層形成組成物之側的表面的薄片電阻為33Ω/□,P(磷)擴散而形成了n型擴散層。另外,所塗佈的面內的薄片電阻值的偏差為σ=0.5,形成了均勻的n型擴散層。另一方面,背面的薄片電阻為1000000Ω/□以上而無法測定,未形成n型擴散層。 The sheet resistance of the surface coated with the side of the n-type diffusion layer forming composition was 33 Ω/□, and P (phosphorus) was diffused to form an n-type diffusion layer. Further, the deviation of the sheet resistance value in the applied surface was σ = 0.5, and a uniform n-type diffusion layer was formed. On the other hand, the sheet resistance of the back surface was 1,000,000 Ω/□ or more and could not be measured, and an n-type diffusion layer was not formed.

[實例3] [Example 3]

將玻璃粉末的平均粒徑設為0.7μm、且將d90設為3.4μm,除此以外,以與實例1相同的方式形成n型擴散層。 An n-type diffusion layer was formed in the same manner as in Example 1 except that the average particle diameter of the glass powder was changed to 0.7 μm and d90 was set to 3.4 μm.

塗佈有n型擴散層形成組成物之側的表面的薄片電阻為25Ω/□,P(磷)擴散而形成了n型擴散層。另外,所塗佈的面內的薄片電阻值的偏差為σ=0.3,形成了均勻的n型擴散層。另一方面,背面的薄片電阻為1000000Ω/□以上而無法測定,未形成n型擴散層。 The sheet resistance of the surface coated with the side of the n-type diffusion layer forming composition was 25 Ω/□, and P (phosphorus) was diffused to form an n-type diffusion layer. Further, the deviation of the sheet resistance value in the applied surface was σ = 0.3, and a uniform n-type diffusion layer was formed. On the other hand, the sheet resistance of the back surface was 1,000,000 Ω/□ or more and could not be measured, and an n-type diffusion layer was not formed.

[實例4] [Example 4]

使用自動乳缽混錬裝置將粒子形狀為大致球狀、平均粒徑為2μm、且 d90為6.5μm、具有比實例1高的軟化溫度的P2O5-SiO2-CaO系玻璃(軟化溫度為800℃,P2O5:44%,SiO2:49%,CaO:7%)粉末3g,乙基纖維素2.1g,及萜品醇24.9g加以混合並膏化,從而製成n型擴散層形成組成物。其次,藉由網版印刷將所製備的膏塗佈於p型矽基板的表面,並於150℃的加熱板上乾燥5分鐘。繼而,於大氣流動(0.9cm/s)環境中,在設定成950℃的電爐中保持10分鐘來進行熱擴散處理,其後為了去除玻璃層而將基板於氫氟酸中浸漬5分鐘,然後進行流水清洗。其後,進行乾燥。 P 2 O 5 -SiO 2 -CaO-based glass having a particle shape of substantially spherical shape, an average particle diameter of 2 μm, and a d90 of 6.5 μm and having a softening temperature higher than that of Example 1 using an automatic mortar mixing device (softening temperature) 800 ° C, P 2 O 5 : 44%, SiO 2 : 49%, CaO: 7%) powder 3 g, ethyl cellulose 2.1 g, and terpineol 24.9 g were mixed and pasteified to prepare n-type The diffusion layer forms a composition. Next, the prepared paste was applied to the surface of the p-type ruthenium substrate by screen printing, and dried on a hot plate at 150 ° C for 5 minutes. Then, in an atmosphere flow (0.9 cm/s) environment, heat diffusion treatment was performed by holding in an electric furnace set at 950 ° C for 10 minutes, and then the substrate was immersed in hydrofluoric acid for 5 minutes in order to remove the glass layer, and then Perform running water cleaning. Thereafter, drying is carried out.

塗佈有n型擴散層形成組成物之側的表面的薄片電阻為42Ω/□,P(磷)擴散而形成了n型擴散層。另外,所塗佈的面內的薄片電阻值的偏差為σ=0.5,形成了均勻的n型擴散層。另一方面,背面的薄片電阻為1000000Ω/□以上而無法測定,未形成n型擴散層。 The sheet resistance of the surface coated with the side of the n-type diffusion layer forming composition was 42 Ω/□, and P (phosphorus) was diffused to form an n-type diffusion layer. Further, the deviation of the sheet resistance value in the applied surface was σ = 0.5, and a uniform n-type diffusion layer was formed. On the other hand, the sheet resistance of the back surface was 1,000,000 Ω/□ or more and could not be measured, and an n-type diffusion layer was not formed.

[比較例1] [Comparative Example 1]

將玻璃粉末的平均粒徑設為8μm、且將d90設為50μm,除此以外,以與實例1相同的方式形成n型擴散層。 An n-type diffusion layer was formed in the same manner as in Example 1 except that the average particle diameter of the glass powder was 8 μm and d90 was 50 μm.

塗佈有n型擴散層形成組成物之側的表面的薄片電阻為120Ω/□,P(磷)擴散而形成了n型擴散層。但是,可於面內的薄片電阻值中看到偏差(σ=10.7),而不均勻。 The sheet resistance of the surface coated with the side of the n-type diffusion layer forming composition was 120 Ω/□, and P (phosphorus) was diffused to form an n-type diffusion layer. However, the deviation (σ = 10.7) can be seen in the sheet resistance value in the plane, and is not uniform.

[比較例2] [Comparative Example 2]

將玻璃粉末的平均粒徑設為30μm、且將d90設為110μm,除此以外,以與實例1相同的方式形成n型擴散層。 An n-type diffusion layer was formed in the same manner as in Example 1 except that the average particle diameter of the glass powder was 30 μm and d90 was 110 μm.

塗佈有n型擴散層形成組成物之側的表面的薄片電阻為300Ω/□,P(磷)擴散而形成了n型擴散層。但是,可於面內的薄片電阻值中看到偏差(σ=24.9),而不均勻。 The sheet resistance of the surface on the side where the n-type diffusion layer was formed on the composition was 300 Ω/□, and P (phosphorus) was diffused to form an n-type diffusion layer. However, the deviation (σ = 24.9) can be seen in the in-plane sheet resistance value, and is not uniform.

[比較例3] [Comparative Example 3]

使用自動乳缽混錬裝置將粒子形狀為大致球狀、平均粒徑為2μm、且d90為6.5μm的P2O5-SnO系玻璃(軟化溫度為300℃,P2O5:30%,SnO:70%)粉末3g,乙基纖維素2.1g,及萜品醇24.9g加以混合並膏化,從而製成n型擴散層形成組成物。 P 2 O 5 -SnO-based glass having a particle shape of substantially spherical shape, an average particle diameter of 2 μm, and a d90 of 6.5 μm (softening temperature of 300 ° C, P 2 O 5 : 30%, using an automatic mortar mixing device) SnO: 70%) 3 g of powder, 2.1 g of ethyl cellulose, and 24.9 g of terpineol were mixed and pasteified to prepare an n-type diffusion layer forming composition.

其次,藉由網版印刷將所製備的膏於p型矽基板表面塗佈成120μm寬的細線狀,並於150℃的加熱板上乾燥5分鐘。繼而,於氮氣流動(0.9cm/s) 環境中,在設定成950℃的電爐中保持10分鐘來進行熱擴散處理,其後為了去除玻璃層而將基板於氫氟酸中浸漬5分鐘,然後進行流水清洗。其後,進行乾燥。 Next, the prepared paste was applied to the surface of the p-type ruthenium substrate by screen printing into a fine line of 120 μm width, and dried on a hot plate at 150 ° C for 5 minutes. Then, under nitrogen flow (0.9 cm/s) In the environment, the thermal diffusion treatment was performed by holding in an electric furnace set at 950 ° C for 10 minutes, and thereafter, the substrate was immersed in hydrofluoric acid for 5 minutes in order to remove the glass layer, and then washed with running water. Thereafter, drying is carried out.

將n型擴散層形成組成物塗佈成細線狀的部分的薄片電阻為120Ω/□,P(磷)擴散而形成了n型擴散層。另外,所塗佈的細線狀圖案的寬度變成400μm,已熔融的玻璃產生了滴液,因此無法實現朝特定部分的選擇擴散。 The sheet resistance of the portion in which the n-type diffusion layer forming composition was applied in a thin line shape was 120 Ω/□, and P (phosphorus) was diffused to form an n-type diffusion layer. Further, the width of the applied fine line pattern became 400 μm, and the molten glass was dripped, so that selective diffusion to a specific portion could not be achieved.

[比較例4] [Comparative Example 4]

使用自動乳缽混錬裝置將磷酸二氫銨(NH4H2PO4)粉末20g、乙基纖維素3g、及乙酸2-(2-丁氧基乙氧基)乙酯7g加以混合並膏化,從而製成n型擴散層形成組成物。 Mixing 20 g of ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ) powder, 3 g of ethyl cellulose, and 7 g of 2-(2-butoxyethoxy)ethyl acetate using an automatic nipple mixing device and paste The n-type diffusion layer is formed into a composition.

其次,藉由網版印刷將所製備的膏塗佈於p型矽基板的表面,並於150℃的加熱板上乾燥5分鐘。繼而,於設定成1000℃的電爐中保持10分鐘來進行熱擴散處理,其後為了去除玻璃層而將基板於氫氟酸中浸漬5分鐘,然後進行流水清洗、乾燥。 Next, the prepared paste was applied to the surface of the p-type ruthenium substrate by screen printing, and dried on a hot plate at 150 ° C for 5 minutes. Then, the film was subjected to thermal diffusion treatment for 10 minutes in an electric furnace set at 1000 ° C, and thereafter, the substrate was immersed in hydrofluoric acid for 5 minutes in order to remove the glass layer, and then washed with water and dried.

塗佈有n型擴散層形成組成物之側的表面的薄片電阻為14Ω/□,P(磷)擴散而形成了n型擴散層。但是,背面的薄片電阻為50Ω/□,於背面亦形成有n型擴散層。 The sheet resistance of the surface coated with the side of the n-type diffusion layer forming composition was 14 Ω/□, and P (phosphorus) was diffused to form an n-type diffusion layer. However, the sheet resistance of the back surface was 50 Ω/□, and an n-type diffusion layer was formed on the back surface.

[比較例5] [Comparative Example 5]

使用自動乳缽混錬裝置將磷酸二氫銨(NH4H2PO4)粉末1g、純水7g、聚乙烯醇0.7g、及異丙醇1.5g加以混合來製備溶液,從而製成n型擴散層組成物。 A solution was prepared by mixing 1 g of ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ) powder, 7 g of pure water, 0.7 g of polyvinyl alcohol, and 1.5 g of isopropyl alcohol using an automatic nipple mixing device to prepare an n-type. Diffusion layer composition.

其次,利用旋轉塗佈機(2000rpm,30sec)將所製備的溶液塗佈於p型矽基板的表面,並於150℃的加熱板上乾燥5分鐘。繼而,於設定成1000℃的電爐中保持10分鐘來進行熱擴散處理,其後為了去除玻璃層而將基板於氫氟酸中浸漬5分鐘,然後進行流水清洗、乾燥。 Next, the prepared solution was applied onto the surface of a p-type ruthenium substrate by a spin coater (2000 rpm, 30 sec), and dried on a hot plate at 150 ° C for 5 minutes. Then, the film was subjected to thermal diffusion treatment for 10 minutes in an electric furnace set at 1000 ° C, and thereafter, the substrate was immersed in hydrofluoric acid for 5 minutes in order to remove the glass layer, and then washed with water and dried.

塗佈有n型擴散層形成組成物之側的表面的薄片電阻為10Ω/□,P(磷)擴散而形成了n型擴散層。但是,背面的薄片電阻為100Ω/□,於背面亦形成有n型擴散層。 The sheet resistance of the surface coated with the side of the n-type diffusion layer forming composition was 10 Ω/□, and P (phosphorus) was diffused to form an n-type diffusion layer. However, the sheet resistance of the back surface was 100 Ω/□, and an n-type diffusion layer was formed on the back surface.

藉由參照而將2011年7月5日所申請的日本專利申請案 2011-149249號中所揭示的全部內容編入本說明書中。 Japanese patent application filed on July 5, 2011 by reference The entire contents disclosed in 2011-149249 are incorporated in the present specification.

本說明書中所記載的所有文獻、專利申請案、及技術規格是以與如下情況相同的程度,藉由參照而被編入至本說明書中,該情況是具體地且個別地記載藉由參照而編入各個文獻、專利申請案、及技術規格的情況。 All the documents, patent applications, and technical specifications described in the specification are incorporated herein by reference to the same extent as the following, which is specifically and individually described by reference. The status of each document, patent application, and technical specifications.

10‧‧‧p型半導體基板 10‧‧‧p type semiconductor substrate

11‧‧‧n型擴散層形成組成物層 11‧‧‧n type diffusion layer forming composition layer

12‧‧‧n型擴散層 12‧‧‧n type diffusion layer

13‧‧‧組成物 13‧‧‧Composition

14‧‧‧p+型擴散層 14‧‧‧p + diffusion layer

16‧‧‧抗反射膜 16‧‧‧Anti-reflective film

17‧‧‧表面電極用金屬膏層 17‧‧‧Metal paste layer for surface electrodes

18‧‧‧表面電極 18‧‧‧ surface electrode

19‧‧‧背面電極用金屬膏層 19‧‧‧Metal paste layer for back electrode

20‧‧‧背面電極 20‧‧‧Back electrode

Claims (6)

一種n型擴散層形成組成物,其包括:含有施體元素且軟化溫度為500℃以上、900℃以下,平均粒徑為5μm以下的玻璃粉末;以及分散媒。 An n-type diffusion layer forming composition comprising: a glass powder containing a donor element and having a softening temperature of 500 ° C or more and 900 ° C or less and an average particle diameter of 5 μm or less; and a dispersing medium. 如申請專利範圍第1項所述之n型擴散層形成組成物,其中上述玻璃粉末的d90為20μm以下。 The n-type diffusion layer forming composition according to claim 1, wherein the glass powder has a d90 of 20 μm or less. 如申請專利範圍第1項或第2項所述之n型擴散層形成組成物,其中上述施體元素為選自P(磷)及Sb(銻)中的至少1種。 The n-type diffusion layer forming composition according to the first or second aspect of the invention, wherein the donor element is at least one selected from the group consisting of P (phosphorus) and Sb (antimony). 如申請專利範圍第1項至第3項中任一項所述之n型擴散層形成組成物,其中含有上述施體元素的玻璃粉末包括:選自由P2O3、P2O5及Sb2O3所組成的組群中的至少1種含施體元素的物質,以及選自由SiO2、K2O、Na2O、Li2O、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、SnO、ZrO2及MoO3所組成的組群中的至少1種玻璃成分物質。 The n-type diffusion layer forming composition according to any one of claims 1 to 3, wherein the glass powder containing the above-mentioned donor element comprises: selected from the group consisting of P 2 O 3 , P 2 O 5 and Sb At least one substance containing a donor element in the group consisting of 2 O 3 and selected from the group consisting of SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, At least one glass component substance in a group consisting of PbO, CdO, SnO, ZrO 2 and MoO 3 . 一種n型擴散層的製造方法,其包括:於半導體基板上賦予如申請專利範圍第1項至第4項中任一項所述之n型擴散層形成組成物的步驟;以及對上述賦予後的半導體基板實施熱擴散處理的步驟。 A method of producing an n-type diffusion layer, comprising: a step of imparting an n-type diffusion layer forming composition according to any one of claims 1 to 4 on a semiconductor substrate; The semiconductor substrate is subjected to a step of thermal diffusion treatment. 一種太陽電池元件的製造方法,其包括:於半導體基板上賦予如申請專利範圍第1項至第4項中任一項所述之n型擴散層形成組成物的步驟;對上述賦予後的半導體基板實施熱擴散處理,而形成n型擴散層的步驟;以及於所形成的上述n型擴散層上形成電極的步驟。 A method of manufacturing a solar cell element, comprising: a step of applying a n-type diffusion layer forming composition according to any one of claims 1 to 4 on a semiconductor substrate; and applying the semiconductor after the imparting a step of forming a n-type diffusion layer by performing thermal diffusion treatment on the substrate; and forming an electrode on the n-type diffusion layer formed.
TW103101541A 2011-07-05 2012-07-05 Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell TWI570778B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011149249 2011-07-05

Publications (2)

Publication Number Publication Date
TW201419384A true TW201419384A (en) 2014-05-16
TWI570778B TWI570778B (en) 2017-02-11

Family

ID=47437086

Family Applications (2)

Application Number Title Priority Date Filing Date
TW101124252A TWI480929B (en) 2011-07-05 2012-07-05 Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell
TW103101541A TWI570778B (en) 2011-07-05 2012-07-05 Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW101124252A TWI480929B (en) 2011-07-05 2012-07-05 Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell

Country Status (5)

Country Link
JP (1) JP5176158B1 (en)
KR (2) KR101384874B1 (en)
CN (5) CN103839787A (en)
TW (2) TWI480929B (en)
WO (1) WO2013005738A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101384874B1 (en) * 2011-07-05 2014-04-16 히타치가세이가부시끼가이샤 COMPOSITION FOR FORMING n-TYPE DIFFUSION LAYER, METHOD FOR PRODUCING n-TYPE DIFFUSION LAYER, AND METHOD FOR PRODUCING SOLAR CELL ELEMENT
WO2016010095A1 (en) * 2014-07-15 2016-01-21 日立化成株式会社 Method for manufacturing semiconductor substrate having n-type diffusion layer, and method for manufacturing solar cell element
CN107148662A (en) * 2014-10-30 2017-09-08 日立化成株式会社 The manufacture method of n-type diffusion layer formation composition, the manufacture method of n-type diffusion layer and solar cell device

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19910816A1 (en) * 1999-03-11 2000-10-05 Merck Patent Gmbh Doping pastes for producing p, p + and n, n + regions in semiconductors
US6664567B2 (en) * 2001-06-28 2003-12-16 Kyocera Corporation Photoelectric conversion device, glass composition for coating silicon, and insulating coating in contact with silicon
US7326367B2 (en) * 2005-04-25 2008-02-05 E.I. Du Pont De Nemours And Company Thick film conductor paste compositions for LTCC tape in microwave applications
KR101543046B1 (en) * 2007-08-31 2015-08-07 헤레우스 프레셔스 메탈즈 노스 아메리카 콘쇼호켄 엘엘씨 Layered contact structure for solar cells
US20090092745A1 (en) * 2007-10-05 2009-04-09 Luca Pavani Dopant material for manufacturing solar cells
JP5522900B2 (en) * 2008-02-22 2014-06-18 東京応化工業株式会社 Electrode forming conductive composition and method for forming solar cell
KR101631711B1 (en) * 2008-03-21 2016-06-17 신에쓰 가가꾸 고교 가부시끼가이샤 Phosphorus paste for diffusion and method for preparing solar cell by using the same
WO2009149438A1 (en) * 2008-06-06 2009-12-10 E. I. Du Pont De Nemours And Company Glass compositions used in conductors for photovoltaic cells
TW201007773A (en) * 2008-06-06 2010-02-16 Du Pont Glass compositions used in conductors for photovoltaic cells
US8053867B2 (en) * 2008-08-20 2011-11-08 Honeywell International Inc. Phosphorous-comprising dopants and methods for forming phosphorous-doped regions in semiconductor substrates using phosphorous-comprising dopants
JP5414409B2 (en) * 2009-01-16 2014-02-12 日立粉末冶金株式会社 Low melting glass composition, low-temperature sealing material and electronic component using the same
JP5716664B2 (en) * 2009-06-17 2015-05-13 旭硝子株式会社 Glass frit for electrode formation, conductive paste for electrode formation using the same, solar cell
JP5815215B2 (en) * 2009-08-27 2015-11-17 東京応化工業株式会社 Diffusion agent composition and method for forming impurity diffusion layer
JP4868079B1 (en) * 2010-01-25 2012-02-01 日立化成工業株式会社 N-type diffusion layer forming composition, n-type diffusion layer manufacturing method, and solar cell manufacturing method
CN102834898B (en) * 2010-04-23 2016-06-15 日立化成工业株式会社 N-type diffusion layer forms the manufacture method of constituent, the manufacture method of n-type diffusion layer and solar cell device
CN102844841B (en) * 2010-04-23 2016-06-15 日立化成工业株式会社 N-type diffusion layer forms the manufacture method of compositions, the manufacture method of n-type diffusion layer and solar cell device
KR101384874B1 (en) * 2011-07-05 2014-04-16 히타치가세이가부시끼가이샤 COMPOSITION FOR FORMING n-TYPE DIFFUSION LAYER, METHOD FOR PRODUCING n-TYPE DIFFUSION LAYER, AND METHOD FOR PRODUCING SOLAR CELL ELEMENT

Also Published As

Publication number Publication date
TWI480929B (en) 2015-04-11
JPWO2013005738A1 (en) 2015-02-23
KR20140019473A (en) 2014-02-14
CN107093550A (en) 2017-08-25
CN105551947A (en) 2016-05-04
CN103650111A (en) 2014-03-19
TWI570778B (en) 2017-02-11
WO2013005738A1 (en) 2013-01-10
JP5176158B1 (en) 2013-04-03
CN105006429A (en) 2015-10-28
KR20140008535A (en) 2014-01-21
KR101384874B1 (en) 2014-04-16
CN103839787A (en) 2014-06-04
TW201308402A (en) 2013-02-16

Similar Documents

Publication Publication Date Title
TWI480930B (en) Method for producing photovoltaic cell
TWI502753B (en) Semiconductor substrate and method for producing the same, photovoltaic cell element, and photovoltaic cell
TWI558676B (en) Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell element
TWI667695B (en) Composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for producing photovoltaic cell
TWI499070B (en) Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell element
TWI485875B (en) Composition for forming impurity diffusion layer, composition for forming n-type diffusion layer, method for forming n-type diffusion layer, composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for produci
TWI462157B (en) Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell
TWI570778B (en) Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell
TWI482302B (en) Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell element
TWI548102B (en) Composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for producing photovoltaic cell element
TWI488222B (en) Composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for producing photovoltaic cell element
TWI556289B (en) Composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for producing photovoltaic cell element
TW201530791A (en) Composition for forming n-type diffusion layer, method for producing n-type diffusion layer and method for producing photovoltaic cell
TW201626588A (en) Composition for N-type diffusion layer formation, method of manufacturing N-type diffusion layer and method of manufacturing photovoltaic cell element

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees