TW201418930A - Bandgap reference voltage circuit and electronic device - Google Patents

Bandgap reference voltage circuit and electronic device Download PDF

Info

Publication number
TW201418930A
TW201418930A TW101140742A TW101140742A TW201418930A TW 201418930 A TW201418930 A TW 201418930A TW 101140742 A TW101140742 A TW 101140742A TW 101140742 A TW101140742 A TW 101140742A TW 201418930 A TW201418930 A TW 201418930A
Authority
TW
Taiwan
Prior art keywords
reference voltage
resistor
coupled
voltage
current
Prior art date
Application number
TW101140742A
Other languages
Chinese (zh)
Other versions
TWI497255B (en
Inventor
I-Hsiu Ho
Original Assignee
Elite Semiconductor Esmt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elite Semiconductor Esmt filed Critical Elite Semiconductor Esmt
Priority to TW101140742A priority Critical patent/TWI497255B/en
Publication of TW201418930A publication Critical patent/TW201418930A/en
Application granted granted Critical
Publication of TWI497255B publication Critical patent/TWI497255B/en

Links

Landscapes

  • Control Of Electrical Variables (AREA)

Abstract

A bandgap reference voltage circuit is provided. The band gap reference voltage circuit includes a reference voltage generating unit, a current generating unit and an impedance providing unit. The current generating unit generates a first current with a positive temperature coefficient and is used for biasing the reference voltage generating unit. A voltage between two terminals of the impedance providing unit is the voltage with positive temperature coefficient, wherein the impedance providing unit has the characteristic with positive temperature coefficient, so that a second current flowing through the impedance providing unit has the characteristic with negative temperature coefficient, and thus the present disclosure may compensate a temperature cure for the reference voltage through the impedance providing unit.

Description

能帶隙參考電壓電路與電子裝置 Bandgap reference voltage circuit and electronic device

本發明有關於一種能帶隙參考電壓電路,且特別是關於一種具有補償參考電壓之能帶隙參考電壓電路。 The present invention relates to an energy bandgap reference voltage circuit, and more particularly to an energy bandgap reference voltage circuit having a compensated reference voltage.

能帶隙參考電壓源電路的設計是該領域中眾所周知的,這些電路被設計以提供一獨立於電路中溫度變化的電壓標準。 The design of bandgap reference voltage source circuits is well known in the art and is designed to provide a voltage standard that is independent of temperature variations in the circuit.

能帶隙參考電壓源的參考電壓是一個雙載子接面電晶體(雙載子電晶體)的基極與射極間所發展的電壓Vbe和另外兩個雙載子電晶體的基極-射極電壓Vbe之差(△Vbe)的函數。第一個雙載子電晶體的基極-射極電壓Vbe具有一個負的溫度係數,或者當溫度升高時基極-射極電壓Vbe將會減少。另外兩個雙載子電晶體的差分電壓△Vbe將會具有一個正的溫度係數,這就意味著當溫度升高時該差分基極-射極電壓△Vbe也隨之升高。獨立於能帶隙電壓參考電壓源之溫度的參考電壓通過縮放差分基極-射極電壓△Vbe以及求其與第一個雙載子電晶體的基極-射極電壓Vbe的和而得到調整。 The reference voltage of the bandgap reference voltage source is the voltage Vbe developed between the base and the emitter of a bipolar junction transistor (dual-carrier transistor) and the base of the other two bipolar transistor- A function of the difference (ΔVbe) of the emitter voltage Vbe. The base-emitter voltage Vbe of the first bipolar transistor has a negative temperature coefficient, or the base-emitter voltage Vbe will decrease as the temperature increases. The differential voltage ΔVbe of the other two bipolar transistors will have a positive temperature coefficient, which means that the differential base-emitter voltage ΔVbe also increases as the temperature rises. The reference voltage independent of the temperature of the bandgap voltage reference source is adjusted by scaling the differential base-emitter voltage ΔVbe and summing it with the base-emitter voltage Vbe of the first bipolar transistor. .

美國第2006/0043957號專利申請案揭露一種利用電阻來微調參考電壓的能帶隙參考電壓產生電路,請同時參照圖1A及圖1B,圖1A為習能帶隙參考電壓電路之示意圖。圖1B為參考電壓之溫度電壓曲線圖。習知能帶隙參考電壓電路100包括複數個P型電晶體,複數個電阻,複數個雙載子接面電晶體以及放大器,習知能帶隙參考電壓電路100 利用加入一些電阻來微調參考電壓VREF’的溫度曲線,亦即將參考電壓VREF’的溫度曲線從曲線20補償至曲線21。然而,前案卻有著大功耗與大佈局面積的隱憂。 U.S. Patent Application Serial No. 2006/0043957 discloses an energy bandgap reference voltage generating circuit for finely adjusting a reference voltage by using a resistor. Referring to FIG. 1A and FIG. 1B simultaneously, FIG. 1A is a schematic diagram of a conventional bandgap reference voltage circuit. FIG. 1B is a graph of temperature and voltage of a reference voltage. The conventional bandgap reference voltage circuit 100 includes a plurality of P-type transistors, a plurality of resistors, a plurality of bi-carrier junction transistors, and an amplifier. The conventional bandgap reference voltage circuit 100 The temperature profile of the reference voltage VREF' is fine-tuned by adding some resistors, that is, the temperature profile of the reference voltage VREF' is compensated from the curve 20 to the curve 21. However, the previous case has the worry of large power consumption and large layout area.

本發明實施例提供一種能帶隙參考電壓電路,能帶隙參考電壓電路包括參考電壓產生單元、電流產生單元與阻抗提供單元。參考電壓產生單元用以輸出參考電壓。電流產生單元電性連接至參考電壓產生單元,所述電流產生單元產生具有正溫度係數之第一電流,且用以偏壓參考電壓產生單元。阻抗提供單元電性連接參考電壓產生單元與電流產生單元之間,阻抗提供單元之兩端跨壓為具有正溫度係數的電壓,其中阻抗提供單元具有正溫度係數之特性,使得流經阻抗提供單元之第二電流具有負溫度係數之特性,藉由阻抗提供單元以補償參考電壓之溫度曲線。 Embodiments of the present invention provide a band gap reference voltage circuit, and the band gap reference voltage circuit includes a reference voltage generating unit, a current generating unit, and an impedance providing unit. The reference voltage generating unit is configured to output a reference voltage. The current generating unit is electrically connected to the reference voltage generating unit, the current generating unit generates a first current having a positive temperature coefficient, and is configured to bias the reference voltage generating unit. The impedance providing unit is electrically connected between the reference voltage generating unit and the current generating unit, and the voltage across the impedance providing unit is a voltage having a positive temperature coefficient, wherein the impedance providing unit has a characteristic of a positive temperature coefficient, so that the impedance providing unit flows through The second current has a negative temperature coefficient characteristic, and the impedance providing unit compensates the temperature curve of the reference voltage.

在本發明其中一個實施例中,上述之補償參考電壓之溫度曲線,為將參考電壓之二階溫度曲線補償為三階溫度曲線。 In one embodiment of the present invention, the temperature curve of the compensated reference voltage is used to compensate the second-order temperature curve of the reference voltage to a third-order temperature curve.

在本發明其中一個實施例中,上述之參考電壓產生單元包括第一P型電晶體、第二P型電晶體、第一電阻、第二電阻與放大器。第一P型電晶體之源極耦接至系統電壓。第二P型電晶體之源極耦接至系統電壓,其閘極耦接至第一P型電晶體之閘極,其汲極輸出參考電壓,其中第一P型電晶體受第一電流偏壓,而在第二P型電晶體之汲極輸出具有正溫度係數之參考電流。第一電阻之一端耦接至第一P型電晶體之汲極。第二電阻之一端耦接至第二P型電 晶體之汲極。放大器之輸出端耦接至第二P型電晶體之閘極,其正輸入端耦接至第一電阻之另一端,其負輸入端耦接至第二電阻之另一端,其中放大器用以使第一電阻之另一端之電壓與第二電阻之另一端之電壓實質上相同。 In one embodiment of the present invention, the reference voltage generating unit includes a first P-type transistor, a second P-type transistor, a first resistor, a second resistor, and an amplifier. The source of the first P-type transistor is coupled to the system voltage. The source of the second P-type transistor is coupled to the system voltage, the gate is coupled to the gate of the first P-type transistor, and the drain of the first P-type transistor outputs a reference voltage, wherein the first P-type transistor is subjected to the first current bias Pressurization, while the drain of the second P-type transistor outputs a reference current having a positive temperature coefficient. One end of the first resistor is coupled to the drain of the first P-type transistor. One end of the second resistor is coupled to the second P type The bungee of the crystal. The output of the amplifier is coupled to the gate of the second P-type transistor, the positive input end of which is coupled to the other end of the first resistor, and the negative input end of the amplifier is coupled to the other end of the second resistor, wherein the amplifier is configured to The voltage at the other end of the first resistor is substantially the same as the voltage at the other end of the second resistor.

在本發明其中一個實施例中,上述之第二電阻具有負溫度係數之特性,用以調整參考電壓之溫度曲線。 In one embodiment of the invention, the second resistor has a negative temperature coefficient characteristic for adjusting the temperature profile of the reference voltage.

在本發明其中一個實施例中,上述之電流產生單元包括第三電阻、第一雙載子接面電晶體與第二雙載子接面電晶體。第三電阻之一端耦接至第一電阻之另一端,其中第三電阻兩端之跨壓為正溫度係數之電壓,用以產生具有正溫度係數之第一電流。第一雙載子接面電晶體之射極耦接至第三電阻之另一端,其集極耦接至接地電壓。第二雙載子接面電晶體之射極耦接至第二電阻之另一端,其集極耦接至接地電壓,其基極耦接至第一雙載子接面電晶體之基極。 In one embodiment of the invention, the current generating unit includes a third resistor, a first bipolar junction transistor, and a second bipolar junction transistor. One end of the third resistor is coupled to the other end of the first resistor, wherein a voltage across the third resistor is a voltage of a positive temperature coefficient for generating a first current having a positive temperature coefficient. The emitter of the first bipolar junction transistor is coupled to the other end of the third resistor, and the collector is coupled to the ground voltage. The emitter of the second bipolar junction transistor is coupled to the other end of the second resistor, the collector of which is coupled to the ground voltage, and the base of which is coupled to the base of the first bipolar junction transistor.

在本發明其中一個實施例中,上述之阻抗提供單元包括第四電阻。第四電阻之一端耦接至第二電阻之另一端,其另一端耦接至第二雙載子接面電晶體之源極,其中第四電阻具有正溫度係數之特性,且第四電阻兩端之跨壓與第三電阻兩端之跨壓具有相同之值與正溫度係數。 In one embodiment of the invention, the impedance providing unit includes a fourth resistor. One end of the fourth resistor is coupled to the other end of the second resistor, and the other end of the fourth resistor is coupled to the source of the second bipolar junction transistor, wherein the fourth resistor has a positive temperature coefficient characteristic, and the fourth resistor has two The voltage across the end has the same value and positive temperature coefficient as the voltage across the third resistor.

在本發明其中一個實施例中,上述之第四電阻用以產生具有負溫度係數之第二電流,並且藉由第四電阻之阻抗值來補償參考電壓之溫度曲線。 In one embodiment of the present invention, the fourth resistor is configured to generate a second current having a negative temperature coefficient, and the temperature curve of the reference voltage is compensated by the impedance value of the fourth resistor.

在本發明其中一個實施例中,上述之補償參考電壓之溫度曲線,為將參考電壓之二階溫度曲線補償為三階溫度曲線。 In one embodiment of the present invention, the temperature curve of the compensated reference voltage is used to compensate the second-order temperature curve of the reference voltage to a third-order temperature curve.

本發明實施例另提供一種電子裝置,電子裝置包括能帶隙參考電壓電路、信號處理電路與負載。能帶隙參考電壓電路用以提供參考電壓。信號處理電路耦接至能帶隙參考電壓電路,所述信號處理電路接收參考電壓,用以將所接收之輸入信號予以信號處理後輸出。負載耦接至信號處理電路,負載接收信號處理電路所輸出之輸出信號。能帶隙參考電壓電路包括參考電壓產生單元、電流產生單元與阻抗提供單元。 Embodiments of the present invention further provide an electronic device including a bandgap reference voltage circuit, a signal processing circuit, and a load. The bandgap reference voltage circuit is used to provide a reference voltage. The signal processing circuit is coupled to the bandgap reference voltage circuit, and the signal processing circuit receives the reference voltage for signal processing and outputting the received input signal. The load is coupled to the signal processing circuit, and the load receives the output signal output by the signal processing circuit. The bandgap reference voltage circuit includes a reference voltage generating unit, a current generating unit, and an impedance providing unit.

綜上所述,本發明實施例所提出之能帶隙參考電壓電路與電子裝置,透過在參考電壓產生單元與電流產生單元之間引進阻抗提供單元,所述阻抗提供單元本身具有正溫度係數之特性且阻抗提供單元之兩端跨壓為具有正溫度係數的電壓,進而使得流經阻抗提供單元之第二電流具有負溫度係數之特性,藉由阻抗提供單元以補償參考電壓之溫度曲線。據此,本揭露內容能夠將參考電壓的二階溫度曲線補償至三階溫度曲線,以提高參考電壓在面對溫度變異時的穩定度。 In summary, the band gap reference voltage circuit and the electronic device proposed by the embodiments of the present invention introduce an impedance providing unit between the reference voltage generating unit and the current generating unit, and the impedance providing unit itself has a positive temperature coefficient. The characteristic and the voltage across the impedance providing unit are voltages having a positive temperature coefficient, so that the second current flowing through the impedance providing unit has a negative temperature coefficient characteristic, and the impedance providing unit compensates the temperature curve of the reference voltage. Accordingly, the present disclosure can compensate the second-order temperature profile of the reference voltage to the third-order temperature profile to improve the stability of the reference voltage in the face of temperature variation.

為使能更進一步瞭解本發明之特徵及技術內容,請參閱以下有關本發明之詳細說明與附圖,但是此等說明與所附圖式僅係用來說明本發明,而非對本發明的權利範圍作任何的限制。 The detailed description of the present invention and the accompanying drawings are to be understood by the claims The scope is subject to any restrictions.

在下文將參看隨附圖式更充分地描述各種例示性實施例,在隨附圖式中展示一些例示性實施例。然而,本發明概念可能以許多不同形式來體現,且不應解釋為限於本文 中所闡述之例示性實施例。確切而言,提供此等例示性實施例使得本發明將為詳盡且完整,且將向熟習此項技術者充分傳達本發明概念的範疇。在諸圖式中,可為了清楚而誇示層及區之大小及相對大小。類似數字始終指示類似元件。 Various illustrative embodiments are described more fully hereinafter with reference to the accompanying drawings. However, the inventive concept may be embodied in many different forms and should not be construed as being limited to Illustrative embodiments set forth in the description. Rather, these exemplary embodiments are provided so that this invention will be in the In the drawings, the size and relative sizes of layers and regions may be exaggerated for clarity. Similar numbers always indicate similar components.

應理解,雖然本文中可能使用術語第一、第二、第三等來描述各種元件,但此等元件不應受此等術語限制。此等術語乃用以區分一元件與另一元件。因此,下文論述之第一元件可稱為第二元件而不偏離本發明概念之教示。如本文中所使用,術語「及/或」包括相關聯之列出項目中之任一者及一或多者之所有組合。 It will be understood that, although the terms first, second, third, etc. may be used herein to describe various elements, such elements are not limited by the terms. These terms are used to distinguish one element from another. Thus, a first element discussed below could be termed a second element without departing from the teachings of the inventive concept. As used herein, the term "and/or" includes any of the associated listed items and all combinations of one or more.

〔能帶隙參考電壓電路的實施例〕 [Embodiment of Bandgap Reference Voltage Circuit]

請參照圖2,圖2為根據本發明實施例之能帶隙參考電壓電路之區塊示意圖。如圖2所示,能帶隙參考電壓電路200包括參考電壓產生單元210、電流產生單元220與阻抗提供單元230。電流產生單元220電性連接至參考電壓產生單元210,阻抗提供單元230電性連接至參考電壓產生單元210與電流產生單元220之間。 Please refer to FIG. 2. FIG. 2 is a block diagram of an energy bandgap reference voltage circuit according to an embodiment of the invention. As shown in FIG. 2, the bandgap reference voltage circuit 200 includes a reference voltage generating unit 210, a current generating unit 220, and an impedance providing unit 230. The current generating unit 220 is electrically connected to the reference voltage generating unit 210 , and the impedance providing unit 230 is electrically connected between the reference voltage generating unit 210 and the current generating unit 220 .

參考電壓產生單元210接收一系統電壓,且輸出參考電壓VREF,其中參考電壓VREF具有非線性(non-linear)之溫度係數。電流產生單元220產生第一電流I1,其中第一電流I1具有正溫度係數之特性,並且第一電流I1用以偏壓參考電壓產生單元210。阻抗提供單元230的兩端跨壓為具有正溫度係數的電壓,並且,阻抗提供單元230本身具有正溫度係數的特性,使得流經阻抗提供單元230的第二電流I2具有負溫度係數的特性,其中阻抗提供單元230可 以是具有正溫度係數之電阻或是其它能夠提供阻抗且具有正溫度係數的元件,並不以本實施例為限。因此,能夠藉由阻抗提供單元230來補償參考電壓VREF的溫度曲線,換句話說,本揭露內容能夠將參考電壓VREF的二階(second-order)溫度曲線補償為三階(third-order)溫度曲線。 The reference voltage generating unit 210 receives a system voltage and outputs a reference voltage VREF, wherein the reference voltage VREF has a non-linear temperature coefficient. The current generating unit 220 generates a first current I1, wherein the first current I1 has a characteristic of a positive temperature coefficient, and the first current I1 is used to bias the reference voltage generating unit 210. The two ends of the impedance providing unit 230 are voltages having a positive temperature coefficient, and the impedance providing unit 230 itself has a characteristic of a positive temperature coefficient such that the second current I2 flowing through the impedance providing unit 230 has a characteristic of a negative temperature coefficient, Wherein the impedance providing unit 230 can Therefore, a resistor having a positive temperature coefficient or another component capable of providing an impedance and having a positive temperature coefficient is not limited to the embodiment. Therefore, the temperature profile of the reference voltage VREF can be compensated by the impedance providing unit 230. In other words, the present disclosure can compensate the second-order temperature curve of the reference voltage VREF to a third-order temperature curve. .

附帶一提的是,本文所述之正溫度係數指示其物理量(如電壓值、電流值或電阻值)與溫度之間成正比關係,也就是說,當溫度上升或下降時,其物理量會隨著溫度而上升或下降;本文所述之負溫度係數指示其物理量與溫度之間成反比關係,也就是說,當溫度上升或下降時,其物理量會隨著溫度而下降或上升。接下來要教示的,是進一步說明能帶隙參考電壓電路200的工作原理。 Incidentally, the positive temperature coefficient described in this paper indicates that the physical quantity (such as voltage value, current value or resistance value) is proportional to the temperature, that is, when the temperature rises or falls, the physical quantity will follow The temperature rises or falls; the negative temperature coefficient described herein indicates that the physical quantity is inversely proportional to the temperature, that is, when the temperature rises or falls, the physical quantity decreases or rises with temperature. What follows is to further explain the working principle of the bandgap reference voltage circuit 200.

在本實施例中,在未加入阻抗提供單元230的情況下,參考電壓產生單元210所輸出之參考電壓VREF為一非線性溫度係數的電壓,亦即具有二階溫度係數的電壓。透過阻抗提供單元230的適當選擇與配置,阻抗提供單元230能夠為本實施例之能帶隙參考電壓電路200引進一具有負溫度係數的第二電流I2,使得設計者能夠調整阻抗提供單元230所提供的阻抗值,來補償參考電壓VREF的溫度曲線,亦即將參考電壓VREF的二階溫度曲線補償為三階溫度曲線,以使得參考電壓VREF在面對溫度的變異時能夠更為穩定。 In the present embodiment, in the case where the impedance providing unit 230 is not added, the reference voltage VREF output by the reference voltage generating unit 210 is a voltage of a nonlinear temperature coefficient, that is, a voltage having a second-order temperature coefficient. Through the appropriate selection and configuration of the impedance providing unit 230, the impedance providing unit 230 can introduce a second current I2 having a negative temperature coefficient to the bandgap reference voltage circuit 200 of the embodiment, so that the designer can adjust the impedance providing unit 230. The impedance value is provided to compensate the temperature curve of the reference voltage VREF, that is, the second-order temperature curve of the reference voltage VREF is compensated to a third-order temperature curve, so that the reference voltage VREF can be more stable in the face of temperature variation.

值得注意的是,本實施例中之阻抗提供單元230必須具有正溫度係數之特性,且阻抗提供單元230兩端之跨壓亦須具有正溫度係數的特性。為了方便說明,將阻抗提供單元230的正溫度係數設為第一斜率m1,而阻抗提供單元 230兩端之跨壓的正溫度係數設為第二斜率m2。為使得流經阻抗提供單元230的第二電流I2具有負溫度係數的特性,本領域具有通常知識者應可理解,於本實施例中,第二斜率m2必須大於第一斜率m1,如此一來,第二電流I2才會具有負溫度係數的特性。接著,由於第二電流I2的電流值和溫度係數都會直接影響到能帶隙參考電壓電路200所輸出的參考電壓VREF,所以,設計者可以依據電路設計需求或製程需求來設計阻抗提供單元230,亦即可以選擇阻抗提供單元230所提供的阻抗值與其溫度係數的大小。 It should be noted that the impedance providing unit 230 in this embodiment must have the characteristics of a positive temperature coefficient, and the voltage across the impedance providing unit 230 must also have the characteristics of a positive temperature coefficient. For convenience of explanation, the positive temperature coefficient of the impedance providing unit 230 is set to the first slope m1, and the impedance providing unit The positive temperature coefficient of the cross-pressure at both ends of 230 is set to the second slope m2. In order to make the second current I2 flowing through the impedance providing unit 230 have a negative temperature coefficient, it should be understood by those skilled in the art that in the present embodiment, the second slope m2 must be greater than the first slope m1, thus The second current I2 will have the characteristic of a negative temperature coefficient. Then, since the current value and the temperature coefficient of the second current I2 directly affect the reference voltage VREF output by the bandgap reference voltage circuit 200, the designer can design the impedance providing unit 230 according to the circuit design requirement or the process requirement. That is, the magnitude of the impedance value provided by the impedance providing unit 230 and its temperature coefficient can be selected.

為了更詳細地說明本揭露內容所述之能帶隙參考電壓電路的運作流程,以下將舉多個實施例中至少之一來做更進一步的說明。 In order to explain in more detail the operational flow of the bandgap reference voltage circuit of the present disclosure, at least one of the following embodiments will be further described.

在接下來的多個實施例中,將描述不同於上述圖2實施例之部分,且其餘省略部分與上述圖2實施例之部分相同。此外,為說明便利起見,相似之參考數字或標號指示相似之元件。 In the following various embodiments, portions different from the above-described embodiment of Fig. 2 will be described, and the remaining omitted portions are the same as those of the above-described embodiment of Fig. 2. In addition, for the sake of convenience, like reference numerals or numerals indicate similar elements.

〔能帶隙參考電壓電路的另一實施例〕 [Another embodiment of the bandgap reference voltage circuit]

請參照圖3,圖3為根據本發明實施例之能帶隙參考電壓電路之細部電路示意圖。如圖3實施例所示,參考電壓產生單元210包括第一P型電晶體M1、第二P型電晶體M2、第一電阻R1、第二電阻R2與放大器OP。電流產生單元220包括第三電阻R3、第一雙載子接面電晶體Q1與第二雙載子接面電晶體Q2。阻抗提供單元230包括第四電阻R4。 Please refer to FIG. 3. FIG. 3 is a schematic diagram of a detailed circuit of an energy bandgap reference voltage circuit according to an embodiment of the invention. As shown in the embodiment of FIG. 3, the reference voltage generating unit 210 includes a first P-type transistor M1, a second P-type transistor M2, a first resistor R1, a second resistor R2, and an amplifier OP. The current generating unit 220 includes a third resistor R3, a first bipolar junction transistor Q1 and a second bipolar junction transistor Q2. The impedance providing unit 230 includes a fourth resistor R4.

第一P型電晶體M1的源極耦接至系統電壓VDD。第二P型電晶體M2之源極耦接至系統電壓VDD,第二P型 電晶體M2之閘極耦接至第一P型電晶體M1之閘極,第二P型電晶體M2之汲極輸出參考電壓VREF。第一電阻R1的一端耦接至第一P型電晶體M1的汲極。第二電阻R2的一端耦接至第二P型電晶體M2的汲極。放大器OP的輸出端耦接至第二P型電晶體之閘極,放大器OP的正輸入端耦接至第一電阻R1的另一端,放大器OP的負輸入端耦接至第二電阻R2的另一端。 The source of the first P-type transistor M1 is coupled to the system voltage VDD. The source of the second P-type transistor M2 is coupled to the system voltage VDD, and the second P-type The gate of the transistor M2 is coupled to the gate of the first P-type transistor M1, and the drain of the second P-type transistor M2 outputs a reference voltage VREF. One end of the first resistor R1 is coupled to the drain of the first P-type transistor M1. One end of the second resistor R2 is coupled to the drain of the second P-type transistor M2. The output terminal of the amplifier OP is coupled to the gate of the second P-type transistor, the positive input terminal of the amplifier OP is coupled to the other end of the first resistor R1, and the negative input terminal of the amplifier OP is coupled to the second resistor R2. One end.

第三電阻R3的一端耦接至第一電阻R1的另一端,第一雙載子接面電晶體Q1的射極耦接至第三電阻R3的另一端,第一雙載子接面電晶體Q1的集極耦接至接地電壓GND。第二雙載子接面電晶體Q2的射極耦接至第二電阻R2的另一端,第二雙載子接面電晶體Q2的集極耦接至接地電壓GND,第二雙載子接面電晶體Q2的基極耦接至第一雙載子接面電晶體的基極,其中,在一實施中,為了佈局的需求,第一雙載子接面電晶體Q1的射極面積為第二雙載子接面電晶體Q2的射極面積的八倍。第四電阻R4的一端耦接至第二電阻R2之另一端,第四電阻R4的另一端耦接至第二雙載子接面電晶體Q2的源極。 One end of the third resistor R3 is coupled to the other end of the first resistor R1, and the emitter of the first bipolar junction transistor Q1 is coupled to the other end of the third resistor R3, the first bipolar junction transistor The collector of Q1 is coupled to the ground voltage GND. The emitter of the second bipolar junction transistor Q2 is coupled to the other end of the second resistor R2, the collector of the second bipolar junction transistor Q2 is coupled to the ground voltage GND, and the second bipolar carrier is connected. The base of the surface transistor Q2 is coupled to the base of the first bipolar junction transistor. In an implementation, the emitter area of the first bipolar junction transistor Q1 is The second bipolar junction transistor Q2 has eight times the emitter area. One end of the fourth resistor R4 is coupled to the other end of the second resistor R2, and the other end of the fourth resistor R4 is coupled to the source of the second bipolar junction transistor Q2.

在本實施例中,放大器OP會使第一電阻R1的另一端的電壓與第二電阻R2的另一端的電壓實質上相同,也就是將電壓V1與V2鎖定為實質上相同的值,其中電壓V2為第二雙載子接面電晶體Q2的射-集極跨壓VEB2。第一P型電晶體M1會受到第一電流I1而予以偏壓於飽和區,而在第二P型電晶體M2亦會工作於飽和區,且第二P型電晶體M2的汲極會輸出具有正溫度係數的參考電流IREF。再者,第二電阻R2之材料具有負溫度係數的特性,且第二 電阻R2用以調整參考電壓VREF之溫度曲線。第三電阻R3兩端之跨壓為正溫度係數之電壓,且第三電阻R3用以產生正溫度係數之第一電流I1。第四電阻R4之材料具有正溫度係數之特性,且第四電阻R4兩端之跨壓與第三電阻R3兩端之跨壓具有相同的值與正溫度係數。再者,第四電阻R4用以產生具有負溫度係數之第二電流I2,並且可藉由第四電阻R4之阻抗值來補償參考電壓VREF之溫度曲線。接下來將進一步教示的,是關於能帶隙參考電壓電路300之動作。 In this embodiment, the amplifier OP causes the voltage at the other end of the first resistor R1 to be substantially the same as the voltage at the other end of the second resistor R2, that is, the voltages V1 and V2 are locked to substantially the same value, wherein the voltage V2 is the emitter-collector crossover voltage VEB2 of the second bipolar junction transistor Q2. The first P-type transistor M1 is biased to the saturation region by the first current I1, and the second P-type transistor M2 also operates in the saturation region, and the drain of the second P-type transistor M2 is output. Reference current IREF with positive temperature coefficient. Furthermore, the material of the second resistor R2 has a characteristic of a negative temperature coefficient, and the second The resistor R2 is used to adjust the temperature curve of the reference voltage VREF. The voltage across the third resistor R3 is a voltage of a positive temperature coefficient, and the third resistor R3 is used to generate a first current I1 of a positive temperature coefficient. The material of the fourth resistor R4 has a positive temperature coefficient, and the voltage across the fourth resistor R4 has the same value and positive temperature coefficient as the voltage across the third resistor R3. Furthermore, the fourth resistor R4 is used to generate the second current I2 having a negative temperature coefficient, and the temperature curve of the reference voltage VREF can be compensated by the impedance value of the fourth resistor R4. What will be further taught next is the action of the bandgap reference voltage circuit 300.

請繼續參照圖3,由於第一及第二雙載子接面電晶體Q1與Q2的射-集極跨壓VEB1(亦即電壓V3)與VEB2(亦即電壓V2)都是負溫度係數的電壓,且放大器OP會將其正輸入端的電壓V1為與負輸入端的電壓V2鎖定為一樣的電壓值與溫度係數。所以,第三電阻R3兩端之跨壓為電壓V1與電壓V3之間的差值,也就是說,第三電阻R3兩端之跨壓為雙載子接面電晶體Q1與Q2內兩射-集極跨壓的差值(亦即電壓VEB2-VEB1),本領域具有通常知識者應可理解,電壓VEB2-VEB1為一具有正溫度係數的電壓。接著,在本實施例中,第三電阻R3為一具有正溫度係數之電流,因此流經第三電阻R3的第一電流I1可以由第三電阻R3的大小所決定。而此第一電流I1為具有正溫度係數的電流,並且第一電流I1為用來偏壓參考電壓產生單元210,進一步來說,第一電流I1為用來偏壓第一P型電晶體M1。因此,第二電晶體亦會輸出一具有正溫度係數的參考電流IREF。而本實施例中之參考電壓VREF的關係式可以由方程式(1)來表示: VREF=IREF×R2+VEB2 (1) Please continue to refer to FIG. 3, because the emitter-collector voltages VEB1 (ie, voltage V3) and VEB2 (ie, voltage V2) of the first and second dual-carrier junction transistors Q1 and Q2 are both negative temperature coefficients. The voltage, and the amplifier OP will lock the voltage V1 of its positive input terminal to the same voltage value and temperature coefficient as the voltage V2 of the negative input terminal. Therefore, the voltage across the third resistor R3 is the difference between the voltage V1 and the voltage V3, that is, the voltage across the third resistor R3 is two shots in the bipolar junction transistors Q1 and Q2. The difference in collector voltage across the voltage (i.e., voltage VEB2-VEB1), as will be understood by those of ordinary skill in the art, voltage VEB2-VEB1 is a voltage having a positive temperature coefficient. Next, in the present embodiment, the third resistor R3 is a current having a positive temperature coefficient, so the first current I1 flowing through the third resistor R3 can be determined by the magnitude of the third resistor R3. The first current I1 is a current having a positive temperature coefficient, and the first current I1 is used to bias the reference voltage generating unit 210. Further, the first current I1 is used to bias the first P-type transistor M1. . Therefore, the second transistor also outputs a reference current IREF having a positive temperature coefficient. The relationship of the reference voltage VREF in this embodiment can be expressed by equation (1): VREF=IREF×R2+VEB2 (1)

方程式(1)中之參考電流IREF為一正溫度係數的電流,第二電阻R2為一負溫度係數的電阻,而射-基極電壓VEB2(V2)為一具有負溫度係數的電壓。因此,設計者能夠透過調整第二電阻R2的值來將參考電壓VREF調整為接近零溫度係數的電壓,亦即,也就是將參考電壓VREF在一溫度範圍內變化時相對穩定。值得注意的是,本揭露內容更在參考電壓產生單元210與電流產生單元220之間配置一第四電阻R4。由於第四電阻之一端耦接電壓V2,且第四電阻R4的另一端耦接電壓V3,所以第四電阻R4兩端的跨壓與第三電阻R3兩端之間的跨壓一樣,亦即為電壓VEB2減去電壓VEB1的值,故第四電阻R4兩端的跨壓為一具有正溫度係數之電壓。值得注意的是,本實施例中之第四電阻R4的材料具有正溫度係數且其溫度係數大於電壓VEB2-VEB1的溫度係數,所以流經第四電阻R4的第二電流I2為具有負溫度係數的電流。參考電壓VREF可以由以下方程式(2)來表示:VREF=IREF×R2+VEB2=(I2+I3)×R2+VEB2 (2) The reference current IREF in equation (1) is a positive temperature coefficient current, the second resistor R2 is a negative temperature coefficient resistor, and the emitter-base voltage VEB2 (V2) is a voltage having a negative temperature coefficient. Therefore, the designer can adjust the reference voltage VREF to a voltage close to zero temperature coefficient by adjusting the value of the second resistor R2, that is, the reference voltage VREF is relatively stable when it changes within a temperature range. It should be noted that the present disclosure further configures a fourth resistor R4 between the reference voltage generating unit 210 and the current generating unit 220. Since one end of the fourth resistor is coupled to the voltage V2, and the other end of the fourth resistor R4 is coupled to the voltage V3, the voltage across the fourth resistor R4 is the same as the voltage across the third resistor R3. The voltage VEB2 is subtracted from the value of the voltage VEB1, so the voltage across the fourth resistor R4 is a voltage having a positive temperature coefficient. It should be noted that the material of the fourth resistor R4 in this embodiment has a positive temperature coefficient and the temperature coefficient thereof is greater than the temperature coefficient of the voltage VEB2-VEB1, so the second current I2 flowing through the fourth resistor R4 has a negative temperature coefficient. Current. The reference voltage VREF can be expressed by the following equation (2): VREF = IREF × R2 + VEB2 = (I2 + I3) × R2 + VEB2 (2)

如方程式(2)所示,本實施例之參考電流IREF分為兩個電流分量,亦即因為第四電阻R4的存在,參考電流IREF分為第二電流I2與第三電流I3,其中第二電流I2為負溫度係數的電流,第三電流為正溫度係數的電流。因此,設計者可以根據電路需求或製程需求,透過調整第四電阻R4的電阻值或是挑選第四電阻R4本身材料的溫度係數,來調整第二電流I2的電流值及溫度係數,進而可補償參考電壓 VREF的電壓值或其溫度曲線。在一實施例中,本揭露內容能夠將參考電壓VREF的二階溫度曲線補償至三階溫度曲線,進而提高參考電壓VREF在面對溫度變異時的穩定度。 As shown in the equation (2), the reference current IREF of the present embodiment is divided into two current components, that is, because of the presence of the fourth resistor R4, the reference current IREF is divided into a second current I2 and a third current I3, wherein the second The current I2 is a current of a negative temperature coefficient, and the third current is a current of a positive temperature coefficient. Therefore, the designer can adjust the current value and the temperature coefficient of the second current I2 by adjusting the resistance value of the fourth resistor R4 or selecting the temperature coefficient of the material of the fourth resistor R4 according to the circuit requirement or the process requirement, thereby compensating Reference voltage The voltage value of VREF or its temperature curve. In an embodiment, the disclosure can compensate the second-order temperature curve of the reference voltage VREF to the third-order temperature curve, thereby improving the stability of the reference voltage VREF in the face of temperature variation.

為了方便說明本實施例,請同時參考圖3與圖4,圖4為根據本發明另一實施例之參考電壓之溫度曲線圖。在圖4中,橫坐標代表溫度,單位為攝氏度(0C)。縱坐標代表參考電壓VREF的值,單位為伏特(V)。圖4中的曲線為對能帶隙參考電路300在溫度範圍為-40攝氏度~125攝氏度的模擬曲線圖。由圖4可知,在溫度範圍-40攝氏度~125攝氏度中電壓的最大值與最小值之間僅有1.48毫伏特(mV),相較於習知技術下,本揭露內容大幅地提高了能帶隙參考電壓電路300在溫度變異時穩定度。 For convenience of description of the present embodiment, please refer to FIG. 3 and FIG. 4 at the same time. FIG. 4 is a temperature graph of a reference voltage according to another embodiment of the present invention. In Figure 4, the abscissa represents temperature in degrees Celsius ( 0 C). The ordinate represents the value of the reference voltage VREF in volts (V). The curve in FIG. 4 is a simulated graph of the bandgap reference circuit 300 at a temperature ranging from -40 degrees Celsius to 125 degrees Celsius. It can be seen from Fig. 4 that there is only 1.48 millivolts (mV) between the maximum and minimum voltages in the temperature range of -40 degrees Celsius to 125 degrees Celsius. Compared with the prior art, the present disclosure greatly improves the energy band. The gap reference voltage circuit 300 is stable in temperature variation.

總之,在不脫離在參考電流的電流分量中引進一具有負溫度係數的電流,且將參考電壓的溫度曲線補償為三階溫度曲線以穩定參考電壓之精神下,皆屬於本發明所揭露的範圍內。 In short, it is within the scope of the present invention to introduce a current having a negative temperature coefficient into the current component of the reference current and compensate the temperature curve of the reference voltage to a third-order temperature curve to stabilize the reference voltage. Inside.

〔電子裝置的實施例〕 [Embodiment of Electronic Apparatus]

請參照圖5,圖5為根據本發明實施例之電子裝置之示意圖。如圖5所示,電子裝置500包括能帶隙參考電壓電路510、信號處理電路520與負載530。能帶隙參考電壓電路510接收一系統電壓VDD,且用以提供參考電壓VREF。信號處理電路520耦接至能帶隙參考電壓電路510,且信號處理電路520接收能帶隙參考電壓電路510所傳送而來的參考電壓VREF而予以工作,接著,信號處理電路520將所接收之輸入信號VIN予以信號處理後輸出。負載530 耦接至信號處理電路520,且負載530接收信號處理電路520所輸出之輸出信號VOUT。能帶隙參考電壓電路510可以是上述實施例中之能帶隙參考電壓電路200與300的其中之一,且用以提供穩定的參考電壓給信號處理電路520。電子裝置500可以是各種類型的電子裝置,例如手持裝置或行動裝置等。 Please refer to FIG. 5. FIG. 5 is a schematic diagram of an electronic device according to an embodiment of the invention. As shown in FIG. 5, the electronic device 500 includes a bandgap reference voltage circuit 510, a signal processing circuit 520, and a load 530. The bandgap reference voltage circuit 510 receives a system voltage VDD and is used to provide a reference voltage VREF. The signal processing circuit 520 is coupled to the bandgap reference voltage circuit 510, and the signal processing circuit 520 receives the reference voltage VREF transmitted from the bandgap reference voltage circuit 510 to operate. Then, the signal processing circuit 520 receives the received signal. The input signal VIN is signal processed and output. Load 530 The signal processing circuit 520 is coupled to the signal processing circuit 520, and the load 530 receives the output signal VOUT output by the signal processing circuit 520. The bandgap reference voltage circuit 510 can be one of the bandgap reference voltage circuits 200 and 300 in the above embodiments and is used to provide a stable reference voltage to the signal processing circuit 520. The electronic device 500 can be various types of electronic devices, such as handheld devices or mobile devices.

〔實施例的可能功效〕 [Possible effects of the examples]

綜上所述,本發明實施例所提供的能帶隙參考電壓電路與電子裝置,透過在參考電壓產生單元與電流產生單元之間引進阻抗提供單元,且阻抗提供單元本身具有正溫度係數之特性且阻抗提供單元之兩端跨壓為具有正溫度係數的電壓,進而使得流經阻抗提供單元之第二電流具有負溫度係數之特性,藉由阻抗提供單元以補償參考電壓之溫度曲線。據此,本揭露內容能夠將參考電壓的二階溫度曲線補償至三階溫度曲線,以提高參考電壓在面對溫度變異時的穩定度。 In summary, the band gap reference voltage circuit and the electronic device provided by the embodiments of the present invention introduce an impedance providing unit between the reference voltage generating unit and the current generating unit, and the impedance providing unit itself has a positive temperature coefficient characteristic. And the voltage across the impedance providing unit is a voltage having a positive temperature coefficient, so that the second current flowing through the impedance providing unit has a negative temperature coefficient characteristic, and the impedance providing unit compensates the temperature curve of the reference voltage. Accordingly, the present disclosure can compensate the second-order temperature profile of the reference voltage to the third-order temperature profile to improve the stability of the reference voltage in the face of temperature variation.

在本發明揭露內容中多個實施例中至少一實施例,相較於習知技術,能夠節省功耗與佈局面積。 In at least one of the various embodiments of the present disclosure, power consumption and layout area can be saved compared to the prior art.

以上所述僅為本發明之實施例,其並非用以侷限本發明之專利範圍。 The above description is only an embodiment of the present invention, and is not intended to limit the scope of the invention.

100‧‧‧習知能帶隙參考電壓電路 100‧‧‧Knowledge bandgap reference voltage circuit

200、300‧‧‧能帶隙參考電壓電路 200, 300‧‧‧ bandgap reference voltage circuit

210‧‧‧參考電壓產生單元 210‧‧‧reference voltage generating unit

220‧‧‧電流產生單元 220‧‧‧current generating unit

230‧‧‧阻抗提供單元 230‧‧‧Impact providing unit

500‧‧‧電子裝置 500‧‧‧Electronic devices

510‧‧‧能帶隙參考電壓電路 510‧‧‧ Bandgap reference voltage circuit

520‧‧‧信號處理單元 520‧‧‧Signal Processing Unit

530‧‧‧負載 530‧‧‧load

GND‧‧‧接地電壓 GND‧‧‧ Grounding voltage

I1‧‧‧第一電流 I1‧‧‧First current

I2‧‧‧第二電流 I2‧‧‧second current

I3‧‧‧第三電流 I3‧‧‧ third current

IREF‧‧‧參考電流 IREF‧‧‧reference current

M1‧‧‧第一P型電晶體 M1‧‧‧First P-type transistor

M2‧‧‧第二P型電晶體 M2‧‧‧Second P-type transistor

OP‧‧‧放大器 OP‧‧Amplifier

Q1‧‧‧第一雙載子接面電晶體 Q1‧‧‧First double carrier junction transistor

Q2‧‧‧第二雙載子接面電晶體 Q2‧‧‧Second double carrier junction transistor

R1‧‧‧第一電阻 R1‧‧‧first resistance

R2‧‧‧第二電阻 R2‧‧‧second resistance

R3‧‧‧第三電阻 R3‧‧‧ third resistor

R4‧‧‧第四電阻 R4‧‧‧fourth resistor

V1、V2、V3‧‧‧電壓 V1, V2, V3‧‧‧ voltage

VEB1、VEB2‧‧‧射-集極跨壓 VEB1, VEB2‧‧‧ shot-collective cross-pressure

VDD‧‧‧系統電壓 VDD‧‧‧ system voltage

VREF、VREF’‧‧‧參考電壓 VREF, VREF'‧‧‧ reference voltage

VIN‧‧‧輸入信號 VIN‧‧‧ input signal

VOUT‧‧‧輸出信號 VOUT‧‧‧ output signal

上文已參考隨附圖式來詳細地說明本發明之具體實施例,藉此可對本發明更為明白,在該等圖式中:圖1A為習能帶隙參考電壓電路之示意圖。 The present invention has been described in detail with reference to the accompanying drawings, in which FIG. 1A is a schematic diagram of a conventional bandgap reference voltage circuit.

圖1B為參考電壓之溫度電壓曲線圖。 FIG. 1B is a graph of temperature and voltage of a reference voltage.

圖2為根據本發明實施例之能帶隙參考電壓電路之區塊示意圖。 2 is a block diagram of an energy bandgap reference voltage circuit in accordance with an embodiment of the present invention.

圖3為根據本發明實施例之能帶隙參考電壓電路之細部電路示意圖。 3 is a schematic diagram of a detailed circuit of an energy bandgap reference voltage circuit in accordance with an embodiment of the present invention.

圖4為根據本發明另一實施例之參考電壓之溫度曲線圖。 4 is a temperature graph of a reference voltage in accordance with another embodiment of the present invention.

圖5為根據本發明實施例之電子裝置之示意圖。 FIG. 5 is a schematic diagram of an electronic device in accordance with an embodiment of the present invention.

200‧‧‧能帶隙參考電壓電路 200‧‧‧ Bandgap reference voltage circuit

210‧‧‧參考電壓產生單元 210‧‧‧reference voltage generating unit

220‧‧‧電流產生單元 220‧‧‧current generating unit

230‧‧‧阻抗提供單元 230‧‧‧Impact providing unit

I1‧‧‧第一電流 I1‧‧‧First current

I2‧‧‧第二電流 I2‧‧‧second current

VREF‧‧‧參考電壓 VREF‧‧‧reference voltage

Claims (10)

一種能帶隙參考電壓電路,包括:一參考電壓產生單元,用以輸出一參考電壓;一電流產生單元,電性連接至該參考電壓產生單元,該電流產生單元產生具有正溫度係數之一第一電流,且用以偏壓該參考電壓產生單元;以及一阻抗提供單元,電性連接該參考電壓產生單元與該電流產生單元之間,該阻抗提供單元之兩端跨壓為一具有正溫度係數的電壓,其中該阻抗提供單元具有正溫度係數之特性,使得流經該阻抗提供單元之一第二電流具有負溫度係數之特性,藉由該阻抗提供單元以補償該參考電壓之溫度曲線。 An energy bandgap reference voltage circuit comprising: a reference voltage generating unit for outputting a reference voltage; a current generating unit electrically connected to the reference voltage generating unit, the current generating unit generating one of positive temperature coefficients a current, and is used to bias the reference voltage generating unit; and an impedance providing unit electrically connected between the reference voltage generating unit and the current generating unit, the impedance providing unit has a positive temperature across the two ends a voltage of a coefficient, wherein the impedance providing unit has a characteristic of a positive temperature coefficient such that a second current flowing through one of the impedance providing units has a negative temperature coefficient characteristic, and the impedance providing unit compensates a temperature profile of the reference voltage. 如申請專利範圍第1項所述之能帶隙參考電壓電路,其中補償該參考電壓之溫度曲線,為將該參考電壓之二階溫度曲線補償為三階溫度曲線。 The energy band gap reference voltage circuit of claim 1, wherein the temperature curve of the reference voltage is compensated for compensating the second-order temperature curve of the reference voltage into a third-order temperature curve. 如申請專利範圍第1項所述之能帶隙參考電壓電路,其中該參考電壓產生單元包括:一第一P型電晶體,其源極耦接至一系統電壓;一第二P型電晶體,其源極耦接至該系統電壓,其閘極耦接至該第一P型電晶體之閘極,其汲極輸出該參考電壓;一第一電阻,其一端耦接至該第一P型電晶體之汲極;一第二電阻,其一端耦接至該第二P型電晶體之汲極;以及一放大器,其輸出端耦接至該第二P型電晶體之閘極,其正輸入端耦接至該第一電阻之另一端,其負輸入端耦接至該第二電阻之另一端,其中該放大器用以使該第一電阻之另一端之電壓與該第二 電阻之另一端之電壓實質上相同,並且該第一P型電晶體受該第一電流偏壓,而在該第二P型電晶體之汲極輸出具有正溫度係數之一參考電流。 The energy band gap reference voltage circuit of claim 1, wherein the reference voltage generating unit comprises: a first P-type transistor, the source of which is coupled to a system voltage; and a second P-type transistor The source is coupled to the voltage of the system, the gate is coupled to the gate of the first P-type transistor, and the drain thereof outputs the reference voltage; a first resistor is coupled to the first P at one end thereof a drain of the type transistor; a second resistor having one end coupled to the drain of the second P-type transistor; and an amplifier having an output coupled to the gate of the second P-type transistor, The positive input end is coupled to the other end of the first resistor, and the negative input end is coupled to the other end of the second resistor, wherein the amplifier is configured to make the voltage of the other end of the first resistor and the second The voltage at the other end of the resistor is substantially the same, and the first P-type transistor is biased by the first current, and the drain output of the second P-type transistor has a reference current of a positive temperature coefficient. 如申請專利範圍第3項所述之能帶隙參考電壓電路,其中該第二電阻具有負溫度係數之特性,用以調整該參考電壓之溫度曲線。 The bandgap reference voltage circuit of claim 3, wherein the second resistor has a negative temperature coefficient characteristic for adjusting a temperature profile of the reference voltage. 如申請專利範圍第3項所述之能帶隙參考電壓電路,其中該電流產生單元包括:一第三電阻,其一端耦接至該第一電阻之另一端;一第一雙載子接面電晶體,其射極耦接至該第三電阻之另一端,其集極耦接至一接地電壓;以及一第二雙載子接面電晶體,其射極耦接至該第二電阻之另一端,其集極耦接至該接地電壓,其基極耦接至該第一雙載子接面電晶體之基極,其中該第三電阻兩端之跨壓為正溫度係數之電壓,用以產生具有正溫度係數之該第一電流。 The energy band gap reference voltage circuit of claim 3, wherein the current generating unit comprises: a third resistor, one end of which is coupled to the other end of the first resistor; and a first dual carrier junction a transistor, the emitter of which is coupled to the other end of the third resistor, the collector of which is coupled to a ground voltage; and a second dual carrier junction transistor whose emitter is coupled to the second resistor The other end is coupled to the ground voltage, and the base thereof is coupled to the base of the first bipolar junction transistor, wherein the voltage across the third resistor is a positive temperature coefficient voltage, Used to generate the first current having a positive temperature coefficient. 如申請專利範圍第5項所述之能帶隙參考電壓電路,其中該阻抗提供單元包括:一第四電阻,其一端耦接至該第二電阻之另一端,其另一端耦接至該第二雙載子接面電晶體之源極,其中該第四電阻具有正溫度係數之特性,且該第四電阻兩端之跨壓與該第三電阻兩端之跨壓具有相同之值與正溫度係數。 The energy band gap reference voltage circuit of claim 5, wherein the impedance providing unit comprises: a fourth resistor, one end of which is coupled to the other end of the second resistor, and the other end of which is coupled to the first a source of the two-double carrier junction transistor, wherein the fourth resistor has a positive temperature coefficient characteristic, and a voltage across the fourth resistor has the same value and a positive voltage across the third resistor Temperature Coefficient. 如申請專利範圍第6項所述之能帶隙參考電壓電路,其中該第四電阻用以產生具有負溫度係數之該第二電流,並且藉由該第四電阻之阻抗值來補償該參考電壓之溫度曲線。 The energy band gap reference voltage circuit of claim 6, wherein the fourth resistor is configured to generate the second current having a negative temperature coefficient, and the reference voltage is compensated by the impedance value of the fourth resistor Temperature curve. 如申請專利範圍第7項所述之能帶隙參考電壓電路,其中補償該參考電壓之溫度曲線,為將該參考電壓之二階溫度曲線補償為三階溫度曲線。 The energy band gap reference voltage circuit according to claim 7, wherein the temperature curve of the reference voltage is compensated for compensating the second-order temperature curve of the reference voltage into a third-order temperature curve. 一種電子裝置,包括:一能帶隙參考電壓電路,用以提供一參考電壓;一信號處理電路,耦接至該能帶隙參考電壓電路,該信號處理電路接收該參考電壓,用以將所接收之一輸入信號予以信號處理後輸出;以及一負載,耦接至該信號處理電路,該負載接收該信號處理電路所輸出之一輸出信號,其中該能帶隙參考電壓電路包括:一參考電壓產生單元,用以輸出一參考電壓;一電流產生單元,電性連接至該參考電壓產生單元,該電流產生單元產生一具有正溫度係數之一第一電流,用以偏壓該參考電壓產生單元;以及一阻抗提供單元,電性連接該參考電壓產生單元與電流產生單元之間,該阻抗提供單元之兩端跨壓為一具有正溫度係數的電壓,其中該阻抗提供單元具有正溫度係數之特性,使得流經該阻抗提供單元之一第二電流具有負溫度係數之特性,藉由該阻抗提供單元以補償該參考電壓之溫度曲線。 An electronic device comprising: a bandgap reference voltage circuit for providing a reference voltage; a signal processing circuit coupled to the bandgap reference voltage circuit, the signal processing circuit receiving the reference voltage for Receiving an input signal for signal processing and outputting; and a load coupled to the signal processing circuit, the load receiving an output signal output by the signal processing circuit, wherein the bandgap reference voltage circuit comprises: a reference voltage a generating unit for outputting a reference voltage; a current generating unit electrically connected to the reference voltage generating unit, the current generating unit generating a first current having a positive temperature coefficient for biasing the reference voltage generating unit And an impedance providing unit electrically connected between the reference voltage generating unit and the current generating unit, the voltage across the impedance providing unit is a voltage having a positive temperature coefficient, wherein the impedance providing unit has a positive temperature coefficient a characteristic that causes a second current flowing through one of the impedance providing units to have a negative temperature coefficient characteristic Providing means to compensate for the impedance of the reference voltage of the temperature profile. 如申請專利範圍第9項所述之能帶隙參考電壓電路,其中補償該參考電壓之溫度曲線,為將該參考電壓之二階溫度曲線補償為三階溫度曲線。 The energy band gap reference voltage circuit according to claim 9, wherein the temperature curve of the reference voltage is compensated for compensating the second-order temperature curve of the reference voltage into a third-order temperature curve.
TW101140742A 2012-11-02 2012-11-02 Bandgap reference voltage circuit and electronic device TWI497255B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101140742A TWI497255B (en) 2012-11-02 2012-11-02 Bandgap reference voltage circuit and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101140742A TWI497255B (en) 2012-11-02 2012-11-02 Bandgap reference voltage circuit and electronic device

Publications (2)

Publication Number Publication Date
TW201418930A true TW201418930A (en) 2014-05-16
TWI497255B TWI497255B (en) 2015-08-21

Family

ID=51294312

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101140742A TWI497255B (en) 2012-11-02 2012-11-02 Bandgap reference voltage circuit and electronic device

Country Status (1)

Country Link
TW (1) TWI497255B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108762366A (en) * 2018-06-02 2018-11-06 丹阳恒芯电子有限公司 A kind of band-gap reference circuit
CN113203495A (en) * 2020-02-01 2021-08-03 瑞昱半导体股份有限公司 Temperature sensing circuit
CN115248613A (en) * 2021-04-28 2022-10-28 极创电子股份有限公司 Reference voltage circuit with temperature compensation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6987416B2 (en) * 2004-02-17 2006-01-17 Silicon Integrated Systems Corp. Low-voltage curvature-compensated bandgap reference
TWI330309B (en) * 2007-03-27 2010-09-11 Faraday Tech Corp Bandgap reference circuits and methods for generating a bandgap voltage
US7598799B2 (en) * 2007-12-21 2009-10-06 Analog Devices, Inc. Bandgap voltage reference circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108762366A (en) * 2018-06-02 2018-11-06 丹阳恒芯电子有限公司 A kind of band-gap reference circuit
CN113203495A (en) * 2020-02-01 2021-08-03 瑞昱半导体股份有限公司 Temperature sensing circuit
CN115248613A (en) * 2021-04-28 2022-10-28 极创电子股份有限公司 Reference voltage circuit with temperature compensation

Also Published As

Publication number Publication date
TWI497255B (en) 2015-08-21

Similar Documents

Publication Publication Date Title
CN106200732B (en) Generate the method to set up of the circuit of output voltage and the output voltage of low dropout voltage regulator
TWI503648B (en) Bandgap circuit and method for generating a reference voltage
CN104977957B (en) Current generating circuit and the band-gap reference circuit and semiconductor devices for including it
US9395740B2 (en) Temperature coefficient factor circuit, semiconductor device, and radar device
KR20090009293A (en) Very low power analog compensation circuit
US9141124B1 (en) Bandgap reference circuit
US9568929B2 (en) Bandgap reference circuit with beta-compensation
TWI497255B (en) Bandgap reference voltage circuit and electronic device
TW201506577A (en) Bandgap reference voltage circuit and electronic apparatus thereof
US8901966B2 (en) Sensor circuit
US9304528B2 (en) Reference voltage generator with op-amp buffer
US7253677B1 (en) Bias circuit for compensating fluctuation of supply voltage
WO2015178271A1 (en) Dummy load circuit and charge detection circuit
US9417649B2 (en) Method and apparatus for a floating current source
KR100809716B1 (en) Bandgap reference circuit capable of trimming using additional resistor
CN108693912B (en) Bandgap reference circuit with inverted bandgap pairs
JP2013200767A (en) Band gap reference circuit
TWI536139B (en) Temperature compensation circuit
TWI699967B (en) Gain modulation circuit
US10476447B2 (en) Source follower
JP6758029B2 (en) Semiconductor device
US9654074B2 (en) Variable gain amplifier circuit, controller of main amplifier and associated control method
US8896379B2 (en) Error amplifier having cascode current source using body biasing
US11609591B2 (en) Reference circuit with temperature compensation
JP2011107800A (en) Circuit for generating reference voltage and reception circuit