TW201409690A - 蛋白質電晶體裝置 - Google Patents

蛋白質電晶體裝置 Download PDF

Info

Publication number
TW201409690A
TW201409690A TW101129877A TW101129877A TW201409690A TW 201409690 A TW201409690 A TW 201409690A TW 101129877 A TW101129877 A TW 101129877A TW 101129877 A TW101129877 A TW 101129877A TW 201409690 A TW201409690 A TW 201409690A
Authority
TW
Taiwan
Prior art keywords
protein
forming
molecular
electrode
antibody molecule
Prior art date
Application number
TW101129877A
Other languages
English (en)
Other versions
TWI492384B (zh
Inventor
Gue-Wha Huang
Meng-Yen Hong
Yu-Shiun Chen
Original Assignee
Univ Nat Chiao Tung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chiao Tung filed Critical Univ Nat Chiao Tung
Priority to TW101129877A priority Critical patent/TWI492384B/zh
Priority to US13/691,547 priority patent/US8697469B2/en
Publication of TW201409690A publication Critical patent/TW201409690A/zh
Application granted granted Critical
Publication of TWI492384B publication Critical patent/TWI492384B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/761Biomolecules or bio-macromolecules, e.g. proteins, chlorophyl, lipids or enzymes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/82Electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Biophysics (AREA)
  • Mathematical Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Medicinal Preparation (AREA)

Abstract

本發明提供一種蛋白質電晶體裝置,其利用高再現性的抗體分子(抗原-抗體)自組裝結合至至少二奈米金粒子上,據以形成一分子接點,二奈米金粒子分別結合於源極電極及汲極電極上,只要在閘極電極施加偏壓即能有效地進行電流調變,且蛋白質電晶體的電荷運輸特性會因蛋白質結構的改變而有所不同。此外,將量子點結合到分子接點上,就可以經由施加不同光場來調控此蛋白質電晶體,能提升不同功能性的應用價值。

Description

蛋白質電晶體裝置
本發明係有關一種蛋白質電晶體裝置,特別是指一種以免疫球蛋白自組裝結合於奈米金粒子上以形成一分子接點之蛋白質電晶體裝置。
分子電子學的起源可以追溯到1974年,Ari Aviram和Mark Ratner提出一個單一的有機分子可以用來構建一個簡單的電子元件作為整流器之用。近期,已有研究團隊在探索可在分子電子領域應用的生物分子,進而闡釋一些數百萬年前提出的進化理論,例如電子運輸、光化學轉換及分子識別等。
然而,儘管實驗了許多模型,在分子尺度上控制生物分子和結構的連結是非常困難的,在現階段無法達到應用程序所需的再現性水平;特別是在生物分子電子學的尺度下,衰退化是另一個問題。舉例來說,將單分子應用在奈米電子元件的方法,最常使用電子遷移和打斷鍵結法作為電極和分子之間形成共價鍵的結合方式;但是此方式存在很大的結合不確定性及不穩定性,以及如何在結合後形成穩定電流流通的問題;因此,無法大尺度製造分子結構,且分子與結構的鍵結可能導致分子結構上的改變,進而影響分子尺度元件效應。
有鑑於此,本發明遂針對上述先前技術之缺失,提出一種蛋白質電晶體裝置,以有效克服上述之該等問題。
本發明之主要目的在提供一種蛋白質電晶體裝置,其利用免疫球蛋白 (IgG)自組裝結合於奈米金粒子,能夠應用在不同功能的分子間進行穩定鍵結,以實現分子與結構優越的再現性與穩定性。
本發明之另一目的在提供一種蛋白質電晶體裝置,其可將一量子點(quantum dot)鍵結分子接點上,藉由施加不同光場來調控電晶體的開關啟閉,能提升蛋白質電晶體不同功能性的應用價值。
本發明之再一目的在提供一種蛋白質電晶體裝置,其整合生物功能與奈米電子元件,能夠將高性能分子電子技術往下一世代的奈米科技領域推進,例如可廣泛應用於生物技術、醫學診斷、藥物及檢疫等領域,極具市場競爭優勢。
為達上述之目的,本發明提供一種蛋白質電晶體裝置,包括一電晶體及至少二奈米金粒子,電晶體具有一汲極電極、一源極電極及一閘極電極,且汲極電極與源極電極之間具有一奈米通道,二奈米金粒子分別設於汲極電極及源極電極上,將一第一抗體分子通過奈米通道自組裝結合至二奈米金粒子上,據以形成一分子接點。
本發明另提供一種形成蛋白質分子接點之方法,包括下列步驟:於二電極上分別結合至少二奈米金粒子;由於奈米金粒子可以在鍵結時作為穩定分子與電極介面,因此只要施加一偏壓於二電極,即使得第一抗體分子自組裝結合至二奈米金粒子上,據以形成一分子接點。
底下藉由具體實施例詳加說明,當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。
本發明以單分子角度研究生物功能的多方應用平台,並作為大尺寸製 造整合性電子電路的分子電子技術為出發點,在此提出一種新穎的蛋白質電晶體裝置,其可實現分子和結構鍵結後優越的再現性和穩定性。如第1圖所示,為本發明之結構示意圖。蛋白質電晶體裝置包括一電晶體10及至少二奈米金粒子12,電晶體具有一汲極電極14、一源極電極16及一閘極電極(圖中未示)。其中,可利用原子力顯微鏡(AFM)並使用電子束微影方式製造寬度5~15nm的奈米通道18,且奈米通道18位於汲極電極14與源極電極16之間。再將二奈米金粒子12分別結合於汲極電極14及源極電極16上,由於奈米金粒子可以在鍵結時創造出穩定的分子及電極介面,因此可使用具有高再現性和穩定性高的第一抗體分子20,其為免疫球蛋白(IgG),讓第一抗體分子20通過奈米通道18自組裝結合至二奈米金粒子12上,據以形成一分子接點。其中第一抗體分子20猶如Y字型,Y字型的兩尖端分別結合至二奈米金粒子12表面上,二奈米金粒子12之直徑為5nm。只要於閘極電極施加一偏壓,即可控制電晶體10的電流調變與電荷傳輸,由於本發明設計的蛋白質電晶體裝置的電荷運輸特性會因為施加偏壓不同而有所改變,且分子接點能夠應用在不同功能的分子間進行穩定鍵結。
請同時參閱第2圖,為本發明鍵結量子點之結構示意圖。本發明更可將一量子點22接合一第二抗體分子24後,並鍵結於分子接點上,如Y字型的支幹上。此第二抗體分子24為具有高再現性和穩定性高的免疫球蛋白;而量子點22之材質為硒化鎘,於量子點22施加一光場時,可調控電晶體的開關啟閉,當然,若施加不同光場可對應調控電晶體的開關啟閉,如閘極電壓導通變化,能提升蛋白質電晶體不同功能性的應用價值。
為更進一步說明本發明如何形成蛋白質分子接點之方法,請同時參閱第2圖及第3圖,第3圖為本發明之步驟流程圖。為了將生物功能與電晶體整合以建構為蛋白質電晶體裝置,如步驟S10,於二電極上分別結合至少二奈米金粒子12,其二電極為汲極電極14及源極電極16,且汲極電極14及源極電極16之間具有寬度為5~15nm之一奈米通道。由於二奈米金粒子12可以在鍵結時作為穩定分子與電極介面,如步驟S12,只要施加一偏壓於汲極電極14及源極電極16,詳言之,就是先施加偏壓於一閘極電極上以提供予二電極,使得第一抗體分子20能夠自組裝結合至二奈米金粒子12上,據以形成一分子接點。
其中,第一抗體分子20為免疫球蛋白,藉由第一抗體分子20及奈米金粒子的特性,能夠增強訊號感測輸出時的敏感性,在生物感測以及即時訊號偵測的應用,具有高準度的感測功效。由於是利用二奈米金粒子12作為接觸媒介,藉由施加偏壓讓第一抗體分子20自組裝結合至二奈米金粒子12上,據以實現一種新的自組裝整合方法,且具有高度的穩定性,後續只要施加偏壓於閘極電極上,就能夠有效的進行電流控制。當然,若要製作大尺寸的電子電路時,只要電極上結合所需的奈米金粒子數量,直接利用第一抗體分子20自組裝結合這些奈米金粒子,即能實現大尺寸的整合性電子電路之目的。
為了讓蛋白質電晶體裝置更具應用彈性,如步驟S14,將硒化鎘材質的量子點22接合一第二抗體分子24,其為免疫球蛋白。再如步驟S16,鍵結第二抗體分子24至分子接點上;由於第一抗體分子20與第二抗體分子24為相同的抗體-抗原,因此彼此間能夠穩定的鍵結。於分子接點額外透過量 子點22鍵結第二抗體分子24,能夠藉由施加不同光場來調控電晶體的開關啟閉,當然分子接點亦可鍵結不同功能性的抗體分子,以因應市場需求。
綜上所述,本發明可整合生物功能與奈米電子元件為優越的再現性及穩定性之蛋白質電晶體裝置,能夠將高性能分子電子技術往下一世代的奈米科技領域推進,例如可廣泛應用於生物技術、醫學診斷、藥物及檢疫等領域。由於具有生物功能,對於葡萄糖檢測、懷孕測試、血液檢驗、病毒檢測、DNA判讀、環境有毒物質監測或製作人工鼻子等,使得本發明對未來市場具有極大的應用價值,極具市場競爭優勢。
唯以上所述者,僅為本發明之較佳實施例而已,並非用來限定本發明實施之範圍。故即凡依本發明申請範圍所述之特徵及精神所為之均等變化或修飾,均應包括於本發明之申請專利範圍內。
10‧‧‧電晶體
12‧‧‧奈米金粒子
14‧‧‧汲極電極
16‧‧‧源極電極
18‧‧‧奈米通道
20‧‧‧第一抗體分子
22‧‧‧量子點
24‧‧‧第二抗體分子
第1圖為本發明之結構示意圖。
第2圖為本發明鍵結量子點之結構示意圖。
第3圖為本發明之步驟流程圖。
10‧‧‧電晶體
12‧‧‧奈米金粒子
14‧‧‧汲極電極
16‧‧‧源極電極
18‧‧‧奈米通道
20‧‧‧第一抗體分子

Claims (18)

  1. 一種蛋白質電晶體裝置,包括:一電晶體,具有一汲極電極、一源極電極及一閘極電極,且該汲極電極與該源極電極之間具有一奈米通道;及至少二奈米金粒子,分別設於該汲極電極及該源極電極上,將一第一抗體分子通過該奈米通道自組裝結合至該二奈米金粒子上,據以形成一分子接點。
  2. 如請求項1所述之蛋白質電晶體裝置,其中於該閘極電極施加一偏壓時,可控制該電晶體的電流調變與電荷傳輸。
  3. 如請求項1所述之蛋白質電晶體裝置,更包括一量子點,其接合一第二抗體分子並鍵結於該分子接點上。
  4. 如請求項3所述之蛋白質電子裝置,其中該量子點之材質為硒化鎘。
  5. 如請求項3所述之蛋白質電晶體裝置,其中於該量子點施加一光場時,可調控該電晶體的開關啟閉。
  6. 如請求項3所述之蛋白質電晶體裝置,其中該第二抗體為免疫球蛋白。
  7. 如請求項1所述之蛋白質電晶體裝置,其中該第一抗體為免疫球蛋白。
  8. 如請求項1所述之蛋白質電晶體裝置,其中該奈米通道之寬度為5~15nm。
  9. 如請求項1所述之蛋白質電晶體裝置,其中該二奈米金粒子之直徑為5nm。
  10. 一種形成蛋白質分子接點之方法,包括下列步驟:於二電極上分別結合至少二奈米金粒子;及 施加一偏壓於該二電極,使得一第一抗體分子自組裝結合至該二奈米金粒子上,據以形成一分子接點。
  11. 如請求項10所述之形成蛋白質分子接點之方法,其中可先施加該偏壓於一閘極電極上以提供予該二電極,該二電極為汲極電極及源極電極,且該汲極電極及該源極電極之間具有一奈米通道。
  12. 如請求項11所述形成蛋白質分子接點之方法,其中施加該偏壓於該閘極電極可控制該汲極電極及該源極電極的電流調變與電荷傳輸。
  13. 如請求項11所述之形成蛋白質分子接點之方法,其中該奈米通道寬度為5~15nm。
  14. 如請求項10所述之形成蛋白質分子接點之方法,其中該第一抗體為免疫球蛋白。
  15. 如請求項10所述之形成蛋白質分子接點之方法,其中該二奈米金粒子之直徑為5nm。
  16. 如請求項10所述之形成蛋白質分子接點之方法,其中於形成該分子接點的步驟之後,更包括:將一量子點接合一第二抗體分子;及鍵結該第二抗體分子至該分子接點上。
  17. 如請求項16所述之形成蛋白質分子接點之方法,其中該量子點之材質為硒化鎘。
  18. 如請求項16所述之形成蛋白質分子接點之方法,其中該第二抗體為免疫球蛋白。
TW101129877A 2012-08-17 2012-08-17 蛋白質電晶體裝置 TWI492384B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW101129877A TWI492384B (zh) 2012-08-17 2012-08-17 蛋白質電晶體裝置
US13/691,547 US8697469B2 (en) 2012-08-17 2012-11-30 Protein transistor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101129877A TWI492384B (zh) 2012-08-17 2012-08-17 蛋白質電晶體裝置

Publications (2)

Publication Number Publication Date
TW201409690A true TW201409690A (zh) 2014-03-01
TWI492384B TWI492384B (zh) 2015-07-11

Family

ID=50099434

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101129877A TWI492384B (zh) 2012-08-17 2012-08-17 蛋白質電晶體裝置

Country Status (2)

Country Link
US (1) US8697469B2 (zh)
TW (1) TWI492384B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112384296A (zh) * 2018-05-17 2021-02-19 斯图尔特.林赛 用于直接电测量酶活性的装置、系统和方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7166586B2 (ja) * 2015-06-25 2022-11-08 ロズウェル バイオテクノロジーズ,インコーポレイテッド 生体分子センサーおよび方法
CA3050062A1 (en) * 2016-01-14 2017-07-20 Roswell Biotechnologies, Inc. Molecular sensors and related methods
KR20180104127A (ko) 2016-01-28 2018-09-19 로스웰 바이오테크놀로지스 인코포레이티드 대량 병렬 dna 시퀀싱 장치
US11624725B2 (en) * 2016-01-28 2023-04-11 Roswell Blotechnologies, Inc. Methods and apparatus for measuring analytes using polymerase in large scale molecular electronics sensor arrays
EP3882616A1 (en) 2016-02-09 2021-09-22 Roswell Biotechnologies, Inc Electronic label-free dna and genome sequencing
US10597767B2 (en) 2016-02-22 2020-03-24 Roswell Biotechnologies, Inc. Nanoparticle fabrication
US9829456B1 (en) 2016-07-26 2017-11-28 Roswell Biotechnologies, Inc. Method of making a multi-electrode structure usable in molecular sensing devices
KR102622275B1 (ko) 2017-01-10 2024-01-05 로스웰 바이오테크놀로지스 인코포레이티드 Dna 데이터 저장을 위한 방법들 및 시스템들
WO2018136148A1 (en) 2017-01-19 2018-07-26 Roswell Biotechnologies, Inc. Solid state sequencing devices comprising two dimensional layer materials
US10508296B2 (en) 2017-04-25 2019-12-17 Roswell Biotechnologies, Inc. Enzymatic circuits for molecular sensors
CN110546276A (zh) 2017-04-25 2019-12-06 罗斯威尔生命技术公司 用于分子传感器的酶电路
WO2018208505A1 (en) 2017-05-09 2018-11-15 Roswell Biotechnologies, Inc. Binding probe circuits for molecular sensors
CN111373049A (zh) 2017-08-30 2020-07-03 罗斯威尔生命技术公司 用于dna数据存储的进行性酶分子电子传感器
EP3694990A4 (en) 2017-10-10 2022-06-15 Roswell Biotechnologies, Inc. METHODS, APPARATUS AND SYSTEMS FOR NON-AMPLIFICATION DNA DATA STORAGE

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6721083B2 (en) * 1996-07-19 2004-04-13 E Ink Corporation Electrophoretic displays using nanoparticles
US6482639B2 (en) * 2000-06-23 2002-11-19 The United States Of America As Represented By The Secretary Of The Navy Microelectronic device and method for label-free detection and quantification of biological and chemical molecules
US6989290B2 (en) * 2003-11-15 2006-01-24 Ari Aviram Electrical contacts for molecular electronic transistors
US20060052947A1 (en) 2004-05-17 2006-03-09 Evelyn Hu Biofabrication of transistors including field effect transistors
US20110033940A1 (en) 2009-01-30 2011-02-10 Northwestern University Click chemistry, molecular transport junctions, and colorimetric detection of copper
US20110171749A1 (en) 2009-03-02 2011-07-14 Board Of Trustees Of Michigan State University Nanoparticle tracer-based electrochemical dna sensor for detection of pathogens-amplification by a universal nano-tracer (aunt)
US8420328B2 (en) 2010-05-12 2013-04-16 Academia Sinica Reusable nanowire field effect transistor system for detecting biomolecular interactions
US20120045748A1 (en) 2010-06-30 2012-02-23 Willson Richard C Particulate labels
US8462334B2 (en) 2010-08-25 2013-06-11 Weixing Lu Sensor system with plasmonic nano-antenna array

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112384296A (zh) * 2018-05-17 2021-02-19 斯图尔特.林赛 用于直接电测量酶活性的装置、系统和方法
CN112384296B (zh) * 2018-05-17 2023-06-27 识别分析股份有限公司 用于直接电测量酶活性的装置、系统和方法

Also Published As

Publication number Publication date
US20140048776A1 (en) 2014-02-20
US8697469B2 (en) 2014-04-15
TWI492384B (zh) 2015-07-11

Similar Documents

Publication Publication Date Title
TWI492384B (zh) 蛋白質電晶體裝置
Assad et al. Spray-coating route for highly aligned and large-scale arrays of nanowires
Park et al. Label-free and recalibrated multilayer MoS2 biosensor for point-of-care diagnostics
Heo et al. Large-scale assembly of silicon nanowire network-based devices using conventional microfabrication facilities
Lin et al. The impact of nanocontact on nanowire based nanoelectronics
Jin et al. Scalable interconnection and integration of nanowire devices without registration
TWI424160B (zh) 結合矽奈米線閘極二極體之感測元件、製造方法及其檢測系統
Li et al. Complementary detection of prostate-specific antigen using In2O3 nanowires and carbon nanotubes
Chen et al. A protein transistor made of an antibody molecule and two gold nanoparticles
Juhasz et al. Controlled fabrication of silicon nanowires by electron beam lithography and electrochemical size reduction
Ramgir et al. Nanowire‐based sensors
Bof Bufon et al. Hybrid organic/inorganic molecular heterojunctions based on strained nanomembranes
Wang et al. Biological assembly of nanocircuit prototypes from protein-modified CdTe nanowires
Banerjee et al. Location-specific biological functionalization on nanotubes: Attachment of proteins at the ends of nanotubes using Au nanocrystal masks
Kovtyukhova et al. Coaxially gated in-wire thin-film transistors made by template assembly
WO2017206414A1 (zh) 一种在cmos标准工艺下的生物化学传感器
WO2007114140A1 (ja) カーボンナノチューブ電界効果トランジスタおよびその製造方法
Lee et al. Nanowire and nanotube transistors for lab-on-a-chip applications
Li et al. Performance investigation of multilayer MoS2 thin-film transistors fabricated via mask-free optically induced electrodeposition
Cho et al. Double-floating-gate van der Waals transistor for high-precision synaptic operations
Cao et al. Electronic sensitivity of carbon nanotubes to internal water wetting
Adam et al. Novel approaches in fabrication and integration of nanowire for micro/nano systems
Colli et al. Nanowire lithography on silicon
Xie et al. Ultimate Limit in Optoelectronic Performances of Monolayer WSe2 Sloping-Channel Transistors
Rinaldi et al. Electronic nanodevices based on self-assembled metalloproteins