TW201406644A - Structure of micro-nano anti-reflective layer and method for manufacturing the same - Google Patents
Structure of micro-nano anti-reflective layer and method for manufacturing the same Download PDFInfo
- Publication number
- TW201406644A TW201406644A TW101129227A TW101129227A TW201406644A TW 201406644 A TW201406644 A TW 201406644A TW 101129227 A TW101129227 A TW 101129227A TW 101129227 A TW101129227 A TW 101129227A TW 201406644 A TW201406644 A TW 201406644A
- Authority
- TW
- Taiwan
- Prior art keywords
- micro
- layer structure
- reflective layer
- nano anti
- nanostructures
- Prior art date
Links
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
本發明是有關於一種抗反射層結構及其製造方法,且特別是有關於一種可應用於太陽能電池的微奈米抗反射層結構及其製造方法。 The invention relates to an anti-reflection layer structure and a manufacturing method thereof, and in particular to a micro-nano anti-reflection layer structure applicable to a solar cell and a manufacturing method thereof.
近年來,隨著環保意識抬頭以及全球面臨能源危機、石化能源的污染與短缺等問題,如何開發節能、環保且可永續使用的替代能源已成為各個先進國家之科技研發的首要目標。在眾多替代能源的方案之中,太陽能電池於再生能源新興市場中的佔有率達23%以上,其為現階段最主要的替代能源,亦為十分具有前景的能源技術。 In recent years, with the rise of environmental awareness and the global energy crisis, pollution and shortage of petrochemical energy, how to develop energy-saving, environmentally-friendly and sustainable alternative energy sources has become the primary goal of technology research and development in various advanced countries. Among the many alternative energy solutions, solar cells account for more than 23% of the emerging markets of renewable energy. It is the most important alternative energy source at this stage, and it is also a promising energy technology.
目前在各種類型的太陽能電池中,矽基太陽能電池於市場佔有率約達90%以上,且在未來仍會是太陽能電池技術的主流。然而,目前矽基太陽能電池的發展仍受到光電轉換效率的限制。具體而言,矽基太陽能電池之轉換效率理論上可達到約24%左右,但現行的商用太陽能電池之轉換效率卻僅在15%~16%之間。其中,最主要的技術瓶頸在於矽太陽能電池本身的反射損耗(reflection loss)過大,導致光電轉換效率無法提升至理論值。 At present, among various types of solar cells, germanium-based solar cells have a market share of more than 90%, and will remain the mainstream of solar cell technology in the future. However, the current development of germanium-based solar cells is still limited by the photoelectric conversion efficiency. Specifically, the conversion efficiency of germanium-based solar cells can theoretically reach about 24%, but the conversion efficiency of current commercial solar cells is only between 15% and 16%. Among them, the most important technical bottleneck is that the reflection loss of the solar cell itself is too large, and the photoelectric conversion efficiency cannot be raised to the theoretical value.
先前已有許多研究嘗試藉由改善抗反射層的構形或材料,以提升矽基太陽能電池之光電轉換效率,但製程往往十分繁複,需要耗費較高成本且常具有製程條件難以控 制、無法與前後段製程結合等缺點。因此,如何有效改善太陽能電池的反射層結構與製程設計以進一步光電轉換效率,實為太陽能電池技術之重要課題。 Many previous studies have attempted to improve the photoelectric conversion efficiency of germanium-based solar cells by improving the configuration or materials of the anti-reflective layer, but the process is often complicated, costly and often difficult to control. The system can not be combined with the front and back process. Therefore, how to effectively improve the reflective layer structure and process design of solar cells to further convert photoelectric efficiency is an important issue in solar cell technology.
本發明提供一種微奈米抗反射層結構,其與矽太陽能電池有良好接合性,並可實現優異的抗反射性。 The present invention provides a micro-nano anti-reflective layer structure which has good adhesion to a tantalum solar cell and can achieve excellent anti-reflection properties.
本發明另提供一種微奈米抗反射層結構的製造方法,可快速且低成本的製造微奈米抗反射層結構,並且易於整合至現行太陽能電池之製程。 The invention further provides a manufacturing method of the micro-nano anti-reflection layer structure, which can quickly and low-cost manufacture of the micro-nano anti-reflection layer structure, and is easy to integrate into the current solar cell process.
本發明提出一種微奈米抗反射層結構,包括矽基板,其表面具有微米陣列結構,且微米陣列結構表面包括多個奈米結構,其中,奈米結構沿矽<100>方向延伸。 The invention provides a micro-nano anti-reflective layer structure, comprising a germanium substrate having a micro-array structure on its surface, and the micro-array structure surface comprises a plurality of nanostructures, wherein the nanostructures extend along the 矽<100> direction.
在本發明之一實施例中,上述奈米結構包括奈米孔洞或奈米線。 In an embodiment of the invention, the nanostructure comprises a nanopore or a nanowire.
在本發明之一實施例中,上述微米陣列結構包括由矽{111}平面組所構成的多個角錐體。 In an embodiment of the invention, the microarray structure comprises a plurality of pyramids composed of a group of 矽{111} planes.
在本發明之一實施例中,上述角錐體之高度為在0.5 μm~15 μm的範圍內。 In an embodiment of the invention, the height of the pyramid is in the range of 0.5 μm to 15 μm.
在本發明之一實施例中,上述角錐體之寬度為在0.5 μm~15 μm的範圍內。 In an embodiment of the invention, the width of the pyramid is in the range of 0.5 μm to 15 μm.
在本發明之一實施例中,上述奈米結構之高度為在20 nm~15 μm的範圍內。 In an embodiment of the invention, the height of the nanostructure is in the range of 20 nm to 15 μm.
在本發明之一實施例中,上述奈米結構之剖面線寬在 50 nm~300 nm的範圍內。 In an embodiment of the invention, the cross-sectional line width of the nanostructure is In the range of 50 nm to 300 nm.
本發明另提出一種微奈米抗反射層結構的製造方法,包括提供矽基板,於矽基板表面形成微米陣列結構;進行無電鍍金屬輔助蝕刻製程,於微米陣列結構上形成多個奈米結構,且奈米結構沿矽<100>方向延伸。 The invention further provides a method for manufacturing a micro-nano anti-reflection layer structure, comprising providing a germanium substrate, forming a micro-array structure on the surface of the germanium substrate; performing an electroless metal-assisted etching process to form a plurality of nanostructures on the micro-array structure, And the nanostructure extends along the 矽<100> direction.
在本發明之另一實施例中,上述奈米結構為奈米孔洞或奈米線。 In another embodiment of the invention, the nanostructure is a nanohole or a nanowire.
在本發明之另一實施例中,上述奈米結構之高度在20 nm~15 μm的範圍內。 In another embodiment of the invention, the height of the nanostructure is in the range of 20 nm to 15 μm.
在本發明之另一實施例中,上述奈米結構之剖面線寬在50 nm~300 nm的範圍內。 In another embodiment of the invention, the nanostructure has a profile line width in the range of 50 nm to 300 nm.
在本發明之另一實施例中,上述形成微米陣列結構的方法包括濕式蝕刻。 In another embodiment of the invention, the above method of forming a micro-array structure includes wet etching.
在本發明之另一實施例中,上述濕式蝕刻包括以鹼蝕刻法對矽基板進行非等向性蝕刻。 In another embodiment of the invention, the wet etching includes an anisotropic etching of the germanium substrate by an alkali etching method.
在本發明之另一實施例中,上述無電鍍金屬輔助蝕刻製程包括:將矽基板浸於反應溶液中,以於微米陣列結構的表面上透過還原反應形成多個金屬奈米顆粒;並同時對於金屬奈米顆粒底下的矽朝向矽<100>方向進行蝕刻,以形成奈米結構;之後移除金屬奈米顆粒。 In another embodiment of the present invention, the electroless metal-assisted etching process includes: immersing the germanium substrate in the reaction solution to form a plurality of metal nanoparticles by a reduction reaction on the surface of the micro-array structure; The ruthenium under the metal nanoparticles is etched toward the 矽<100> direction to form a nanostructure; the metal nanoparticles are then removed.
在本發明之另一實施例中,上述金屬奈米顆粒包括金、銀、鉑或銅。 In another embodiment of the invention, the above metal nanoparticles comprise gold, silver, platinum or copper.
在本發明之另一實施例中,上述反應溶液包括硝酸銀以及氫氟酸。 In another embodiment of the invention, the above reaction solution comprises silver nitrate and hydrofluoric acid.
在本發明之另一實施例中,於上述無電鍍金屬輔助蝕刻製程中,將溫度控制在10℃~80℃的範圍內。 In another embodiment of the present invention, in the above electroless metal-assisted etching process, the temperature is controlled within a range of 10 ° C to 80 ° C.
基於上述,本發明提供一種微奈米抗反射層結構及其製造方法,透過結合微米結構與奈米結構而成,不但能與矽太陽能電池有良好接合性,還可低成本而有效率地製造具有優異抗反射性的微奈米抗反射層結構。 Based on the above, the present invention provides a micro-nano anti-reflective layer structure and a manufacturing method thereof, which are combined with a micro-structure and a nano-structure to not only have good adhesion to a tantalum solar cell, but also can be manufactured at low cost and efficiently. A micro-nano anti-reflective layer structure with excellent anti-reflective properties.
為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the present invention will be more apparent from the following description.
以下實施例所參照的各個圖式中,為明確起見可能將各層的尺寸以及相對尺寸作誇張的描繪。此外,應注意本發明可以多種不同的形式實踐,並不限於文中所述之實施例。 In the various figures referred to in the following examples, the dimensions and relative sizes of the layers may be exaggerated for clarity. In addition, it should be noted that the present invention may be practiced in many different forms and is not limited to the embodiments described herein.
圖1A~圖1D為依照本發明之一實施例所繪示之微奈米抗反射層結構的製造流程剖面示意圖。 1A-1D are schematic cross-sectional views showing a manufacturing process of a micro-nano anti-reflection layer structure according to an embodiment of the invention.
首先,請參照圖1A,提供矽基板100。矽基板100的材料例如是單晶矽,但不限於此。 First, referring to FIG. 1A, a germanium substrate 100 is provided. The material of the tantalum substrate 100 is, for example, a single crystal germanium, but is not limited thereto.
接下來,請參照圖1B,於矽基板100表面形成微米陣列結構110。形成微米陣列結構110的方法例如是濕式蝕刻。舉例而言,可透過鹼蝕刻法對矽基板100進行非等向性蝕刻,從而獲得微米陣列結構110。然而,本發明並不限於此,可藉由其他所屬技術領域中具通常知識者所習知的方法來形成微米陣列結構110。 Next, referring to FIG. 1B, a micro-array structure 110 is formed on the surface of the germanium substrate 100. The method of forming the micro-array structure 110 is, for example, wet etching. For example, the germanium substrate 100 may be anisotropically etched by an alkali etching method to obtain the micro-array structure 110. However, the invention is not limited thereto, and the micro-array structure 110 can be formed by other methods known to those of ordinary skill in the art.
藉由上述方法所形成的微米陣列結構110例如是由矽{111}平面組所構成的多個角錐體112。角錐體112之高度Hp例如是在0.5 μm~15 μm的範圍內,角錐體之寬度Wp例如是在0.5 μm~15 μm的範圍內,但本發明並不限於此。 The microarray structure 110 formed by the above method is, for example, a plurality of pyramids 112 composed of a group of 矽{111} planes. The height Hp of the pyramid 112 is, for example, in the range of 0.5 μm to 15 μm, and the width Wp of the pyramid is, for example, in the range of 0.5 μm to 15 μm, but the present invention is not limited thereto.
然後,進行無電鍍金屬輔助蝕刻製程,請參照圖1C至圖1D。 Then, an electroless metal assisted etching process is performed, please refer to FIG. 1C to FIG. 1D.
在圖1C中,將矽基板100浸於一反應溶液中,以於角錐體112表面形成多個金屬奈米顆粒114,然後透過金屬奈米顆粒114輔助催化的特性,藉由控制反應條件(如溫控)而以金屬奈米顆粒114作為電極,進行氧化還原反應,使金屬奈米顆粒114下方的矽基板100(如圖1C中所示的待蝕刻部分116)被逐漸蝕刻。上述金屬奈米顆粒114例如金、銀、鉑或銅,但本發明並不限於此。於無電鍍金屬輔助蝕刻製程中,例如將反應溫度控制在10℃~80℃的範圍內。然後,可透過如濃硝酸(濃度為20~65%)清洗矽基板100之表面,以移除金屬奈米顆粒114。 In FIG. 1C, the ruthenium substrate 100 is immersed in a reaction solution to form a plurality of metal nanoparticles 114 on the surface of the pyramid 112, and then through the metal nanoparticles 114 to assist the catalytic properties by controlling the reaction conditions (eg, The metal oxide nanoparticles 114 are used as an electrode to carry out a redox reaction, and the tantalum substrate 100 under the metal nanoparticles 114 (the portion to be etched 116 as shown in FIG. 1C) is gradually etched. The above metal nanoparticles 114 are, for example, gold, silver, platinum or copper, but the invention is not limited thereto. In the electroless metal-assisted etching process, for example, the reaction temperature is controlled in the range of 10 ° C to 80 ° C. Then, the surface of the crucible substrate 100 can be cleaned by, for example, concentrated nitric acid (concentration: 20 to 65%) to remove the metal nanoparticles 114.
在圖1D中顯示於微米陣列結構110上形成的奈米結構118,且此些奈米結構118均沿矽<100>方向延伸。值得注意的是,於無電鍍金屬輔助蝕刻製程中,可透過調整各種反應條件(如反應溶液濃度、反應時間等)改變金屬奈米顆粒分布於微米陣列結構110表面的密度,藉此改變所形成的奈米結構118形態。舉例而言,當金屬奈米顆粒114分布密度較低時(分布密度小於108 cm-2),奈米結構118 可成為奈米孔洞形態,而當金屬奈米顆粒114分布密度較高時(分布密度大於等於108 cm-2),奈米結構118則為奈米線形態。此外,所形成的奈米結構118之高度Hn例如是在20 nm~15 μm的範圍內,奈米結構118之剖面線寬Wn例如是在50 nm~300 nm的範圍內。另外,可進一步透過濕氧化方式使具有奈米結構118的表面鈍化。 The nanostructures 118 formed on the microarray structure 110 are shown in FIG. 1D, and all of the nanostructures 118 extend in the 矽<100> direction. It is worth noting that in the electroless metal-assisted etching process, the density of the metal nanoparticles distributed on the surface of the micro-array structure 110 can be changed by adjusting various reaction conditions (such as concentration of the reaction solution, reaction time, etc.), thereby changing the formation. The structure of the nanostructure 118. For example, when the metal nanoparticle 114 has a low distribution density (distribution density is less than 10 8 cm -2 ), the nanostructure 118 can be in the form of a nanopore, and when the distribution density of the metal nanoparticle 114 is high ( The distribution density is greater than or equal to 10 8 cm -2 ), and the nanostructure 118 is in the form of a nanowire. Further, the height Hn of the formed nanostructure 118 is, for example, in the range of 20 nm to 15 μm, and the cross-sectional line width Wn of the nanostructure 118 is, for example, in the range of 50 nm to 300 nm. Alternatively, the surface having the nanostructures 118 can be further passivated by wet oxidation.
如上所述,藉由本實施例所提出之微奈米抗反射層結構的製造方法,可僅透過濕蝕刻及無電鍍金屬輔助蝕刻製程而快速且低成本的製造微奈米抗反射層結構。此外,由於上述反應中不需真空環境,且不需使用到矽以外的材料,因此無材料接合性不佳的問題,並且亦易於整合至現行太陽能電池之製程。 As described above, with the manufacturing method of the micro-nano anti-reflection layer structure proposed in the present embodiment, the micro-nano anti-reflection layer structure can be manufactured quickly and inexpensively by only the wet etching and electroless metal-assisted etching processes. In addition, since the vacuum reaction environment is not required in the above reaction, and materials other than ruthenium are not required, there is no problem of poor material bondability, and it is also easy to integrate into the current solar cell process.
以下將舉實驗例以對本發明進行更詳盡的說明。應注意,下文中各實驗例之數據僅是用來說明本發明之實施例中的微奈米抗反射層結構於不同實驗的測試效果,並非用以限定本發明之範圍。 Experimental examples will be given below to explain the present invention in more detail. It should be noted that the data of each experimental example in the following is only for explaining the test effect of the micro-nano anti-reflective layer structure in the examples of the present invention in different experiments, and is not intended to limit the scope of the present invention.
首先,以鹼蝕刻法對矽基板進行非等向性蝕刻,而形成由矽{111}平面組所構成的多個角錐體。 First, the tantalum substrate is anisotropically etched by an alkali etching method to form a plurality of pyramids composed of a group of 矽{111} planes.
然後,將矽基板浸入包含硝酸銀(AgNO3)以及氫氟酸(HF)的反應溶液中。其中,硝酸銀的濃度範圍為0.005~0.2 M,而氫氟酸(HF)的濃度範圍為2~6 M。矽基板與反應溶液間產生的化學反應式如下: 陰極反應 Ag ++e - → Ag E0=+0.79 V 陽極反應 Si+6F - → SiF 6 2-+4e - E0=-1.24 V 總反應 Si+4Ag ++6HF → H 2 SiF 6+4Ag+4H + Then, the ruthenium substrate was immersed in a reaction solution containing silver nitrate (AgNO 3 ) and hydrofluoric acid (HF). Among them, the concentration of silver nitrate ranges from 0.005 to 0.2 M, and the concentration of hydrofluoric acid (HF) ranges from 2 to 6 M. The chemical reaction between the ruthenium substrate and the reaction solution is as follows: Cathodic reaction Ag + + e - → Ag E 0 = +0.79 V Anode reaction Si +6 F - → SiF 6 2- +4 e - E 0 = -1.24 V Total reaction Si +4 Ag + +6 HF → H 2 SiF 6 +4 Ag +4 H +
如上述化學反應式所示,在反應溫度為10~80℃的無電鍍金屬輔助蝕刻製程中,溶液中的銀離子會去抓取矽的電子而被還原成銀奈米顆粒析出,而在銀奈米顆粒底下的矽因此被氧化成SiOx(x=1~2),同時與水溶液中的HF所提供的氟離子(F-)結合形成SiF6 2-溶解,造成蝕刻反應。 As shown in the above chemical reaction formula, in the electroless metal-assisted etching process at a reaction temperature of 10 to 80 ° C, the silver ions in the solution will pick up the electrons of the ruthenium and be reduced to silver nanoparticles, and precipitated in silver. The ruthenium under the nanoparticle is thus oxidized to SiO x (x = 1 to 2), and simultaneously with the fluoride ion (F - ) provided by HF in the aqueous solution to form SiF 6 2- dissolves, causing an etching reaction.
於此蝕刻反應中,對於矽的蝕刻有兩個主要的現象發生,其一是蝕刻的進行會與矽的晶格結構相關,即,蝕刻會沿著最易蝕刻的方向,也就是矽<100>方向進行蝕刻;其二是後續的銀析出會優先於原先奈米顆粒的表面上發生,因此造成蝕刻之進行會由蝕刻起始位置繼續發生。由於這兩個主要的現象,原本位於角錐體表面的銀奈米顆粒會逐步地往矽<100>方向移動,造成單一的朝向矽<100>方向的矽奈米結構陣列形成。然後,可透過濃硝酸清洗矽基板表面,以移除銀奈米顆粒。 In this etching reaction, there are two main phenomena occurring for the etching of germanium. One is that the etching proceeds in relation to the lattice structure of germanium, that is, the etching proceeds in the direction of the most easy etching, that is, 矽<100 The direction is etched; the second is that subsequent silver precipitation occurs on the surface of the original nanoparticle, so that the etching progresses from the etching start position. Due to these two main phenomena, the silver nanoparticles originally located on the surface of the pyramidal surface gradually move toward the <100> direction, resulting in a single array of nanostructures oriented toward the <100> direction. Then, the surface of the crucible substrate can be cleaned by concentrated nitric acid to remove the silver nanoparticles.
結果如圖2的的掃描式電子顯微相片所示,在角錐體表面形成緻密且均勻分布的奈米線結構。 As a result, as shown in the scanning electron micrograph of Fig. 2, a dense and uniformly distributed nanowire structure was formed on the surface of the pyramidal.
圖3為分別以理論計算未經處理的矽晶片以及圖2之微奈米抗反射層結構之折射率變化圖。計算方式為採用克
拉莫-克若尼關係式(Kramers Kronig relations,K-K relations)(參考文獻:Zhongyi Guo,Jin-Young Jung,Keya Zhou,Yanjun Xiao,Sang-won Jee,S.A.Moiz,Jung-Ho Lee,“Optical properties of silicon nanowires array fabricated bymetal-assisted electroless etching”,Proc.of SPIE Vol.7772,77721C(2010).),公式如下:
其中,n(ω)為等效折射係數(effective refraction index),R(ω)為實際所量測樣品的反射率,θ(ω)可由量測得的反射率推算得知。因此,由量測矽晶片與微奈米抗反射層結構的反射率結果,帶入上述克拉莫-克若尼關係式即可得知其等效折射係數變化。 Where n(ω) is the effective refraction index, R(ω) is the reflectance of the actually measured sample, and θ(ω) can be estimated from the measured reflectance. Therefore, by measuring the reflectance results of the structure of the germanium wafer and the micro-nano anti-reflective layer, the change in the equivalent refractive index can be known by bringing in the above-mentioned Cramer-Krönni relationship.
如圖2所示,藉由上述計算所得的矽晶片之等效折射係數在400奈米到700奈米範圍平均為3.8,而本發明之微奈米抗反射層結構的等效折射係數在400奈米到700奈米範圍平均則為1.5,顯見其折射係數較未經處理的矽晶片來的低許多,這也是造成本發明的微奈米抗反射層結構之反射率較低的主因。 As shown in FIG. 2, the equivalent refractive index of the tantalum wafer calculated by the above calculation is 3.8 in the range of 400 nm to 700 nm, and the equivalent refractive index of the micro-nano anti-reflective layer structure of the present invention is 400. The average range from nanometer to 700 nm is 1.5, and it is obvious that the refractive index is much lower than that of the untreated tantalum wafer, which is also the main cause of the low reflectance of the micro-nano anti-reflective layer structure of the present invention.
從圖3可知,相較於矽晶片,本發明所提供之微奈米抗反射層結構具有較低的等效折射係數,而適用作為太陽能電池之抗反射層材料。 As can be seen from FIG. 3, the micro-nano anti-reflective layer structure provided by the present invention has a lower equivalent refractive index than the tantalum wafer, and is suitable as an anti-reflective layer material for a solar cell.
評價樣品折射係數的方法是透過附有積分球 (integrating sphere)的紫外光-可見光光譜儀(型號:U-3010,Hitachi),來量測樣品的在波長範圍300奈米到900奈米間的反射率,此實驗例中為採用在此波長範圍內量測得的反射率作平均,來評估樣品的抗反射能力。 The method of evaluating the refractive index of a sample is by attaching an integrating sphere. The ultraviolet-visible spectrometer (model: U-3010, Hitachi) of the integrating sphere is used to measure the reflectance of the sample in the wavelength range of 300 nm to 900 nm. In this experimental example, the wavelength range is used. The measured reflectance of the internal quantity is averaged to evaluate the anti-reflective ability of the sample.
圖4為未經處理的矽晶片(L1)、只製作角錐體之微米抗反射層結構(L2)以及圖2之微奈米抗反射層結構(L3)對於波長範圍為300 nm~900 nm的光之反射率圖。實驗結果證實,在這範圍內的任一波長下,微奈米抗反射層結構(L3)的反射率皆低於7%,且皆遠低於未經處理的矽晶片(L1)或只製作角錐體之微米抗反射層結構(L2)的結果。 4 is an untreated tantalum wafer (L1), a micron anti-reflective layer structure (L2) for making only a pyramid, and a micro-nano anti-reflective layer structure (L3) of FIG. 2 for a wavelength range of 300 nm to 900 nm. Reflectance map of light. The experimental results confirmed that the reflectance of the micro-nano anti-reflective layer structure (L3) was lower than 7% at any wavelength within this range, and both were much lower than the untreated tantalum wafer (L1) or only fabricated. The result of the micron anti-reflective layer structure (L2) of the pyramid.
圖5為未經處理的矽晶片(Si)、只製作角錐體之微米抗反射層結構(ML)以及圖2之微奈米抗反射層結構(NML)對於波長範圍為300 nm~900 nm的光之平均反射率。 Figure 5 shows an untreated tantalum wafer (Si), a micron anti-reflective layer structure (ML) that only produces pyramids, and a micro-nano anti-reflective layer structure (NML) of Figure 2 for wavelengths ranging from 300 nm to 900 nm. The average reflectance of light.
從圖5可知,圖2之微奈米抗反射層結構的矽晶片對太陽能全波段範圍的光之平均反射率僅約3.6%左右,遠低於矽晶片(Si)的52%或是微米抗反射層結構(ML)的15%,實驗數據清楚地顯示,本發明的微奈米抗反射層結構(NML)在三個樣品中確實具有最優異的抗反射特性。 As can be seen from FIG. 5, the average reflectance of the tantalum wafer of the micro-nano anti-reflective layer structure of FIG. 2 to the full-wavelength range of solar energy is only about 3.6%, which is much lower than that of the germanium wafer (Si) of 52% or micron resistance. 15% of the reflective layer structure (ML), the experimental data clearly shows that the micro-nano anti-reflective layer structure (NML) of the present invention does have the most excellent anti-reflection characteristics among the three samples.
綜上所述,藉由本發明之微奈米抗反射層結構的製造方法,可快速而低成本地大量製造微奈米抗反射層結構,且可直接與現行的太陽能電池製程結合,具有高整合性。此外,所製造出的微奈米抗反射層結構不僅可大幅降低界面反射、提供太陽能全波段的抗反射能力並減少表面載子再結合機率,且與矽太陽能電池之間亦有良好的接合性及 穩固性,從而可實現優異的抗反射特性。 In summary, by the manufacturing method of the micro-nano anti-reflective layer structure of the present invention, the micro-nano anti-reflective layer structure can be mass-produced quickly and at low cost, and can be directly combined with the current solar cell process, and has high integration. Sex. In addition, the micro-nano anti-reflective layer structure can not only greatly reduce the interface reflection, provide the full-wave anti-reflection ability of the solar energy, and reduce the surface carrier recombination probability, and also has good bonding property with the tantalum solar cell. and It is stable and thus achieves excellent anti-reflection properties.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.
100‧‧‧矽基板 100‧‧‧矽 substrate
110‧‧‧微米陣列結構 110‧‧‧microarray structure
112‧‧‧角錐體 112‧‧‧Corner
114‧‧‧金屬奈米顆粒 114‧‧‧Metal Nanoparticles
116‧‧‧待蝕刻部分 116‧‧‧ part to be etched
118‧‧‧奈米結構 118‧‧‧Nano structure
120‧‧‧微奈米抗反射層結構 120‧‧‧Micron anti-reflective layer structure
L1、L2、L3‧‧‧曲線 L1, L2, L3‧‧‧ curves
Wn‧‧‧剖面線寬 Wn‧‧‧ section line width
Wp‧‧‧寬度 Wp‧‧‧Width
Hn、Hp‧‧‧高度 Hn, Hp‧‧‧ height
圖1A~圖1D為依照本發明之一實施例所繪示之微奈米抗反射層結構的製造流程剖面示意圖。 1A-1D are schematic cross-sectional views showing a manufacturing process of a micro-nano anti-reflection layer structure according to an embodiment of the invention.
圖2為實驗例1的微奈米抗反射層結構的掃描式電子顯微相片。 2 is a scanning electron micrograph of the structure of the micro-nano antireflection layer of Experimental Example 1.
圖3為分別以理論計算矽晶片以及微奈米抗反射層結構之折射率變化圖。 Fig. 3 is a graph showing the refractive index change of the structure of the tantalum wafer and the micro-nano anti-reflective layer, respectively, theoretically.
圖4為矽晶片、微米抗反射層結構以及微奈米抗反射層結構對於波長範圍為300 nm~900 nm的光之反射率圖。 Figure 4 is a graph showing the reflectance of a germanium wafer, a micron anti-reflective layer structure, and a micro-nano anti-reflective layer structure for light in the wavelength range of 300 nm to 900 nm.
圖5為矽晶片、微米抗反射層結構以及微奈米抗反射層結構對於波長範圍為300 nm~900 nm的光之平均反射率。 Figure 5 shows the average reflectance of a germanium wafer, a micron anti-reflective layer structure, and a micro-nano anti-reflective layer structure for light in the wavelength range of 300 nm to 900 nm.
100‧‧‧矽基板 100‧‧‧矽 substrate
112‧‧‧角錐體 112‧‧‧Corner
118‧‧‧奈米結構 118‧‧‧Nano structure
120‧‧‧微奈米抗反射層結構 120‧‧‧Micron anti-reflective layer structure
Wn‧‧‧剖面線寬 Wn‧‧‧ section line width
Wp‧‧‧寬度 Wp‧‧‧Width
Hn、Hp‧‧‧高度 Hn, Hp‧‧‧ height
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101129227A TWI498275B (en) | 2012-08-13 | 2012-08-13 | Structure of micro-nano anti-reflective layer and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101129227A TWI498275B (en) | 2012-08-13 | 2012-08-13 | Structure of micro-nano anti-reflective layer and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201406644A true TW201406644A (en) | 2014-02-16 |
TWI498275B TWI498275B (en) | 2015-09-01 |
Family
ID=50550333
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101129227A TWI498275B (en) | 2012-08-13 | 2012-08-13 | Structure of micro-nano anti-reflective layer and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI498275B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI623109B (en) * | 2014-12-31 | 2018-05-01 | Crystalline solar silicon wafer with low gloss and low reflectivity |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101475173A (en) * | 2009-01-20 | 2009-07-08 | 吉林大学 | Method for preparing super-hydrophobic antireflex micron and nano composite structure surface |
US20130258483A1 (en) * | 2010-12-20 | 2013-10-03 | 3M Innovative Properties Company | Glass-like polymeric antireflective films coated with silica nanoparticles, methods of making and light absorbing devices using same |
-
2012
- 2012-08-13 TW TW101129227A patent/TWI498275B/en active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI623109B (en) * | 2014-12-31 | 2018-05-01 | Crystalline solar silicon wafer with low gloss and low reflectivity |
Also Published As
Publication number | Publication date |
---|---|
TWI498275B (en) | 2015-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Huo et al. | Metal‐assisted chemical etching of silicon in oxidizing HF solutions: origin, mechanism, development, and black silicon solar cell application | |
Wang et al. | Periodic Si nanopillar arrays fabricated by colloidal lithography and catalytic etching for broadband and omnidirectional elimination of Fresnel reflection | |
JP6392866B2 (en) | Surface texture structure of crystalline silicon solar cell and manufacturing method thereof | |
Wang et al. | Realizing high-efficiency omnidirectional n-type Si solar cells via the hierarchical architecture concept with radial junctions | |
TWI605265B (en) | Optical anti-reflection structure and solar cell including the same, and method for making the optical anti-reflection structure | |
US20130012022A1 (en) | Method for fabricating silicon nanowire arrays | |
US8101522B2 (en) | Silicon substrate having nanostructures and method for producing the same and application thereof | |
KR20120012554A (en) | Fabricating method of nano structure for antireflection and fabricating method of photo device integrated with antireflection nano structure | |
WO2013171286A1 (en) | Solar cells having a nanostructured antireflection layer | |
Singh et al. | Fabrication of vertical silicon nanowire arrays on three-dimensional micro-pyramid-based silicon substrate | |
CN104584231A (en) | Copper-assisted, anti-reflection etching of silicon surfaces | |
CN102097497A (en) | Solar cell with high conversion efficiency | |
Liu et al. | Micro/nanostructures for light trapping in monocrystalline silicon solar cells | |
Gao et al. | Enhanced etching rate of black silicon by Cu/Ni Co-assisted chemical etching process | |
Ho et al. | Plasmonic silicon solar cell based on silver nanoparticles using ultra-thin anodic aluminum oxide template | |
KR20130009997A (en) | Silicon solar cell and manufacturing method thereof | |
TWI549305B (en) | Opto-electrical conversion structure, solar cell using the same, and manufacturing method thereof | |
Kismann et al. | Ordered arrays of Si nanopillars with alternating diameters fabricated by nanosphere lithography and metal-assisted chemical etching | |
Omar et al. | Surface morphological and optical properties of flexible black silicon fabricated by metal-assisted chemical etching | |
Srivastava et al. | Arrays of nano and micro inverted silicon structures via copper catalyzed chemical etching for effective light trapping | |
TWI498275B (en) | Structure of micro-nano anti-reflective layer and method for manufacturing the same | |
CN102856434B (en) | Preparation method for square silicon nano-porous array | |
Kim et al. | Optimization of Si photocathode formation conditions through correlation between saw damage removal and black Si | |
Ou et al. | Structural and optical properties of textured silicon substrates by three-step chemical etching | |
CN103219411A (en) | Solar battery with composite light-trapping structure of nanopores and metal particles and preparation method |