TW201405779A - Semiconductor device and method of fabricating the same - Google Patents

Semiconductor device and method of fabricating the same Download PDF

Info

Publication number
TW201405779A
TW201405779A TW101125532A TW101125532A TW201405779A TW 201405779 A TW201405779 A TW 201405779A TW 101125532 A TW101125532 A TW 101125532A TW 101125532 A TW101125532 A TW 101125532A TW 201405779 A TW201405779 A TW 201405779A
Authority
TW
Taiwan
Prior art keywords
gate
gates
semiconductor device
layer
dielectric layer
Prior art date
Application number
TW101125532A
Other languages
Chinese (zh)
Other versions
TWI532149B (en
Inventor
Cheng-Yuan Hsu
Chi Ren
Tzeng-Fei Wen
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW101125532A priority Critical patent/TWI532149B/en
Publication of TW201405779A publication Critical patent/TW201405779A/en
Application granted granted Critical
Publication of TWI532149B publication Critical patent/TWI532149B/en

Links

Landscapes

  • Non-Volatile Memory (AREA)

Abstract

A semiconductor device includes a semiconductor substrate, two floating gates, a control gate and a first dielectric layer. The two floating gates are disposed on the substrate, the control gate partially overlaps each of the floating gates, and a part of the control gate is disposed between the two floating gates. Furthermore, the first dielectric layer disposed between the floating gates and the control gate has a fixed thickness.

Description

半導體裝置及其製作方法 Semiconductor device and method of fabricating the same

本發明係關於一種半導體裝置及其製作方法,尤指一種具有高閘極耦合值(gate coupling ratio,GCR)的半導體裝置及其製作方法。 The present invention relates to a semiconductor device and a method of fabricating the same, and more particularly to a semiconductor device having a high gate coupling ratio (GCR) and a method of fabricating the same.

快閃記憶體(flash memory)係一種非揮發性(non-volatile)記憶體,其在缺乏外部電源供應時,亦能夠保存儲存在記憶體中的資訊內容。近幾年來,由於快閃記憶體具有可重複寫入以及可被電抹除等優點,因此,已被廣泛地應用在行動電話(mobile phone)、數位相機(digital camera)、遊戲機(video player)、個人數位助理(personal digital assistant,PDA)等電子產品或正在發展中的系統單晶片(system on a chip,SOC)中。 Flash memory is a non-volatile memory that retains the information stored in memory in the absence of an external power supply. In recent years, flash memory has been widely used in mobile phones, digital cameras, and video players because of its rewritable and rewritable advantages. ), an electronic product such as a personal digital assistant (PDA) or a system on a chip (SOC) under development.

然而,由於電子產品朝微型化趨勢發展,使得快閃記憶體單元的尺寸縮小,造成閘極耦合值(gate coupling ratio,GCR)下降。因此,如何提升閘極耦合值以改善快閃記憶體單元的電性表現實為相關技術者所欲改進之課題。 However, due to the trend toward miniaturization of electronic products, the size of the flash memory cell is reduced, resulting in a decrease in the gate coupling ratio (GCR). Therefore, how to improve the gate coupling value to improve the electrical performance of the flash memory cell is a problem that the related art desires to improve.

本發明之目的之一在於提供一種具有高閘極耦合值的半導體裝置及製作此半導體裝置的方法,以改善半導體裝置的效能。 It is an object of the present invention to provide a semiconductor device having a high gate coupling value and a method of fabricating the same to improve the performance of the semiconductor device.

本發明之一較佳實施例是提供一種半導體裝置,包括:一半導體基底、二浮置閘極(floating gate)、一控制閘極(control gate)以及一第一介電層。二浮置閘極設置於半導體基底上,其中控制閘極部分重疊各浮置閘極,且部分控制閘極位於二浮置閘極之間。此外,第一介電層設置於二浮置閘極與控制閘極之間,且第一介電層具有一固定厚度。 A preferred embodiment of the present invention provides a semiconductor device comprising: a semiconductor substrate, two floating gates, a control gate, and a first dielectric layer. The two floating gates are disposed on the semiconductor substrate, wherein the control gate partially overlaps the floating gates, and the partial control gates are located between the two floating gates. In addition, the first dielectric layer is disposed between the two floating gates and the control gate, and the first dielectric layer has a fixed thickness.

本發明之另一較佳實施例是提供一種製作半導體裝置的方法,包括下列步驟。首先,依序形成一閘極介電層以及一第一閘極層於一半導體基底上,且閘極介電層位於第一閘極層與半導體基底之間。接著,形成至少一開口於第一閘極層中。然後,全面性形成一介電層於半導體基底上,且介電層覆蓋第一閘極層。隨後,形成一第二閘極層填滿開口並重疊第一閘極層。 Another preferred embodiment of the present invention provides a method of fabricating a semiconductor device comprising the following steps. First, a gate dielectric layer and a first gate layer are sequentially formed on a semiconductor substrate, and the gate dielectric layer is located between the first gate layer and the semiconductor substrate. Next, at least one opening is formed in the first gate layer. Then, a dielectric layer is formed on the semiconductor substrate in a comprehensive manner, and the dielectric layer covers the first gate layer. Subsequently, a second gate layer is formed to fill the opening and overlap the first gate layer.

本發明藉由設置一T形控制閘極,使控制閘極可同時重疊二浮置閘極的頂面與一側面,與控制閘極僅重疊一浮置閘極的頂面之結構相比,本發明的控制閘極之結構設計可增加浮置閘極與控制閘極之間的重疊面積以提升閘極耦合值,進而降低半導體裝置的操作電壓以及提升半導體裝置的效能。此外,各浮置閘極與控制閘極之間僅全面性設置有第一介電層,而且此第一介電層具有一固定厚度,因此可使各浮置閘極與控制閘極之一間距為固定值,進而得到一穩定的電容值。 The present invention provides a T-shaped control gate so that the control gate can simultaneously overlap the top surface and a side surface of the two floating gates, compared with the structure in which the control gate overlaps only the top surface of a floating gate. The structural design of the control gate of the present invention can increase the overlap area between the floating gate and the control gate to increase the gate coupling value, thereby reducing the operating voltage of the semiconductor device and improving the performance of the semiconductor device. In addition, a first dielectric layer is integrally disposed between each of the floating gates and the control gate, and the first dielectric layer has a fixed thickness, so that each of the floating gates and the control gates can be The pitch is a fixed value, which in turn results in a stable capacitance value.

為使熟習本發明所屬技術領域之一般技藝者能更進一步了解本發明,下文特列舉本發明之較佳實施例,並配合所附圖式,詳細說明本發明的構成內容及所欲達成之功效。 The present invention will be further understood by those of ordinary skill in the art to which the present invention pertains. .

請參考第1圖。第1圖繪示本發明一實施例之一半導體裝置的剖面示意圖。如第1圖所示,半導體裝置10,以快閃記憶體單元為例,包含有一半導體基底12、設置於半導體基底12上的一閘極堆疊14,以及一選擇閘極(select gate)20設置於閘極堆疊14的側面,其中閘極堆疊14包括浮置閘極(floating gate)16以及控制閘極(control gate)18。半導體基底12可包含例如一由矽、砷化鎵、矽覆絕緣(SOI)層、磊晶層、矽鍺層或其他半導體基底材料所構成的基底。浮置閘極16、控制閘極18以及選擇閘極20一般係由多晶矽所構成。各閘極之間可設置介電層22/24/26例如:氧化物層,以彼此電性絕緣。半導體裝置10另包含有源極/汲極摻雜區28/30設置於閘極堆疊14兩側的半導體基底12中,以及一通道區32定義於源極/汲極摻雜區28/30之間的半導體基底12中。此外,浮置閘極16與半導體基底12之間的介電層22係一穿隧氧化(tunneling oxide)層,熱電子(hot electron)即經由此穿隧氧化層隧穿(tunneling)進出浮置閘極16,而達到半導體裝置10資料存取的功能。 Please refer to Figure 1. FIG. 1 is a cross-sectional view showing a semiconductor device according to an embodiment of the present invention. As shown in FIG. 1, the semiconductor device 10, taking a flash memory cell as an example, includes a semiconductor substrate 12, a gate stack 14 disposed on the semiconductor substrate 12, and a select gate 20 setting. On the side of the gate stack 14, wherein the gate stack 14 includes a floating gate 16 and a control gate 18. The semiconductor substrate 12 can comprise, for example, a substrate comprised of germanium, gallium arsenide, a blanket insulating (SOI) layer, an epitaxial layer, a germanium layer, or other semiconductor substrate material. The floating gate 16, the control gate 18, and the selection gate 20 are typically constructed of polysilicon. Dielectric layers 22/24/26, such as oxide layers, may be disposed between the gates to electrically insulate each other. The semiconductor device 10 further includes a source/drain doping region 28/30 disposed in the semiconductor substrate 12 on both sides of the gate stack 14, and a channel region 32 defined in the source/drain doping region 28/30. In the semiconductor substrate 12 between. In addition, the dielectric layer 22 between the floating gate 16 and the semiconductor substrate 12 is a tunneling oxide layer through which the hot electrons tunneling into and out of the floating layer. The gate 16 functions to access the data of the semiconductor device 10.

一般而言,閘極耦合值(gate coupling ratio,GCR)係為決定快閃記憶體單元效能的重要指標之一,閘極耦合值愈高表示快閃記憶體 單元在進行寫入或抹除操作時所需的操作電壓愈低,效能愈好。閘極耦合值可被定義為:GCR=C1/(C1+C2) In general, the gate coupling ratio (GCR) is one of the important indicators for determining the performance of a flash memory cell. The higher the gate coupling value is, the flash memory. The lower the operating voltage required for the unit to perform a write or erase operation, the better the performance. The gate coupling value can be defined as: GCR=C1/(C1+C2)

其中,浮置閘極16與控制閘極18之間的電容為C1,浮置閘極16與半導體基底12中的通道區32之間的電容為C2。由上述關係式可知,提高GCR的方法可以增加C1與/或減少C2,舉例來說,由於電容大小與形成電容的重疊面積成正比,因此,可藉由增加浮置閘極16與控制閘極18之間的重疊面積以增加C1,而提升閘極耦合值。 The capacitance between the floating gate 16 and the control gate 18 is C1, and the capacitance between the floating gate 16 and the channel region 32 in the semiconductor substrate 12 is C2. It can be seen from the above relationship that the method of increasing the GCR can increase C1 and/or reduce C2. For example, since the capacitance is proportional to the overlapping area of the formed capacitance, the floating gate 16 and the control gate can be increased by The overlap area between 18s increases C1 and increases the gate coupling value.

為提升閘極耦合值,本發明提供一種半導體裝置,請參考第2圖以及第3圖。第2圖繪示本發明一較佳實施例之一半導體裝置的佈局示意圖。第3圖繪示本發明一較佳實施例之一半導體裝置沿第2圖A-A’線段之剖面示意圖。其中,第2圖為上視示意圖,為明確表達各主要元件的相對關係,部分標示於第3圖的元件未標示於第2圖中。 In order to increase the gate coupling value, the present invention provides a semiconductor device. Please refer to FIG. 2 and FIG. FIG. 2 is a schematic view showing the layout of a semiconductor device according to a preferred embodiment of the present invention. Figure 3 is a cross-sectional view of the semiconductor device of the preferred embodiment of the present invention taken along line A-A' of Figure 2; 2 is a top view, in order to clearly express the relative relationship of the main elements, the elements partially labeled in FIG. 3 are not shown in FIG. 2.

如第2圖及第3圖所示,半導體裝置100,以快閃記憶體單元為例,包括閘極介電層104、至少二浮置閘極(floating gate)106、一第一介電層108以及一控制閘極(control gate)110依序設置於一半導體基底102上。半導體基底102可包含例如一由矽、砷化鎵、矽覆絕緣(SOI)層、磊晶層、矽鍺層或其他半導體基底材料所構成的基底。閘極介電層104以及第一介電層108可由介電材料所構成,包括矽 氧化物、氮氧化物或介電常數大於4的高介電常數介電層,其中,閘極介電層104設置於各浮置閘極106與半導體基底102之間,可作為穿隧氧化層,熱電子即經由閘極介電層104隧穿進出浮置閘極106,而達到半導體裝置100之資料存取的功能;而第一介電層108設置於二浮置閘極106與控制閘極110之間,其可係單層結構或例如氧化物-氮化物-氧化物(oxide-nitride-oxide,ONO)疊層組成的多層結構,可作為閘間氧化層,以提供電性絕緣效果。浮置閘極106以及控制閘極110均可由導電材料所構成,包括多晶矽、金屬矽化物或具有特定功函數的金屬材料,其中,浮置閘極106可用於儲存熱電子,而控制閘極110可用於控制半導體裝置100之資料存取的功能。 As shown in FIGS. 2 and 3, the semiconductor device 100 includes a flash memory cell 104, a gate dielectric layer 104, at least two floating gates 106, and a first dielectric layer. 108 and a control gate 110 are sequentially disposed on a semiconductor substrate 102. The semiconductor substrate 102 can comprise, for example, a substrate comprised of germanium, gallium arsenide, a germanium-on-insulator (SOI) layer, an epitaxial layer, a germanium layer, or other semiconductor substrate material. The gate dielectric layer 104 and the first dielectric layer 108 may be composed of a dielectric material, including germanium. An oxide, oxynitride or a high-k dielectric layer having a dielectric constant greater than 4, wherein a gate dielectric layer 104 is disposed between each of the floating gates 106 and the semiconductor substrate 102 to serve as a tunneling oxide layer The hot electrons are tunneled into and out of the floating gate 106 via the gate dielectric layer 104 to achieve the data access function of the semiconductor device 100; and the first dielectric layer 108 is disposed on the two floating gates 106 and the control gate. Between the poles 110, it may be a single layer structure or a multilayer structure composed of, for example, an oxide-nitride-oxide (ONO) laminate, which can serve as an oxide layer between the gates to provide electrical insulation. . The floating gate 106 and the control gate 110 may each be composed of a conductive material, including a polysilicon, a metal halide or a metal material having a specific work function, wherein the floating gate 106 can be used to store hot electrons, and the gate 110 is controlled. A function that can be used to control data access of the semiconductor device 100.

值得注意的是,控制閘極110係為一T形控制閘極,且控制閘極110係同時部分重疊二浮置閘極106並位於二浮置閘極106之間,也就是說,控制閘極110可同時重疊各浮置閘極106的部分頂面、二浮置閘極106相向的側面S1/S2以及二浮置閘極106之間的半導體基底102。因此,與半導體裝置10相比,在半導體裝置100中,控制閘極110不僅沿第一方向D1重疊二浮置閘極106的頂面(與控制閘極18重疊浮置閘極16的頂面相似),控制閘極110還可沿第二方向D2重疊二浮置閘極106之相向的側面S1/S2,以增加浮置閘極106與控制閘極110的重疊面積進而提升閘極耦合值。 It should be noted that the control gate 110 is a T-shaped control gate, and the control gate 110 partially overlaps the two floating gates 106 and is located between the two floating gates 106, that is, the control gate. The pole 110 can simultaneously overlap a portion of the top surface of each of the floating gates 106, the opposite side S1/S2 of the two floating gates 106, and the semiconductor substrate 102 between the two floating gates 106. Therefore, in the semiconductor device 100, the control gate 110 overlaps not only the top surface of the two floating gates 106 in the first direction D1 (the top surface of the floating gate 16 overlaps the control gate 18). Similarly, the control gate 110 may also overlap the opposite side S1/S2 of the two floating gates 106 in the second direction D2 to increase the overlapping area of the floating gate 106 and the control gate 110 to increase the gate coupling value. .

另外,在半導體裝置100中,各浮置閘極106與控制閘極110 之間僅設置有第一介電層108,而且第一介電層108係全面性設置於各浮置閘極106以及半導體基底102上。更詳細地說,第一介電層108接觸各浮置閘極106的一頂面、各浮置閘極106的一側面S1/S2、控制閘極110的底面以及重疊二浮置閘極106之間的半導體基底102,且第一介電層108接觸的各浮置閘極106的側面S1/S2係彼此面對。在其他實施例中,設置於控制閘極110與二浮置閘極106之間的第一介電層108也可係直接接觸半導體基底102。此外,在本實施例中,第一介電層108與接觸的浮置閘極106的表面互相平行,且第一介電層108具有一固定厚度,因此可使各浮置閘極106與控制閘極110之一間距為固定值。 In addition, in the semiconductor device 100, each of the floating gates 106 and the control gate 110 Only the first dielectric layer 108 is disposed between the first dielectric layer 108 and the first dielectric layer 108 is disposed on each of the floating gates 106 and the semiconductor substrate 102. In more detail, the first dielectric layer 108 contacts a top surface of each floating gate 106, one side S1/S2 of each floating gate 106, a bottom surface of the control gate 110, and an overlapping two floating gates 106. The semiconductor substrate 102 is between, and the side surfaces S1/S2 of the floating gates 106 that the first dielectric layer 108 contacts are facing each other. In other embodiments, the first dielectric layer 108 disposed between the control gate 110 and the two floating gates 106 may also directly contact the semiconductor substrate 102. In addition, in the embodiment, the surfaces of the first dielectric layer 108 and the contact floating gate 106 are parallel to each other, and the first dielectric layer 108 has a fixed thickness, so that the floating gates 106 and the control can be controlled. One of the gates 110 has a fixed pitch.

半導體裝置100還包括二選擇閘極112分別設置於各浮置閘極106與控制閘極110的一側。選擇閘極112由導電材料所構成,可包括多晶矽、金屬矽化物或具有特定功函數的金屬材料,用於協助控制半導體裝置100之資料存取的功能。不同於半導體裝置10的選擇閘極20係具有一弧狀表面,在本實施例中,半導體裝置100的各選擇閘極112具有一平坦的頂面平行各浮置閘極106的一頂面以及控制閘極110的一頂面,且具有一倒L之形狀以分別部分重疊相對應的各浮置閘極106,也就是說,各選擇閘極112可重疊相對應的各浮置閘極106的彎角A1/A2以及部分頂面。在半導體裝置100例如:快閃記憶體單元進行抹除操作時,儲存於浮置閘極106中的部分熱電子將可透過此彎角A1/A2經由選擇閘極112釋出,有助於降低半導體裝置100進行抹除操作時所需的操作電壓以及處理時間。 The semiconductor device 100 further includes two selective gates 112 disposed on one side of each of the floating gates 106 and the control gates 110. The select gate 112 is composed of a conductive material and may include polysilicon, metal germanide or a metal material having a specific work function for assisting in controlling the data access function of the semiconductor device 100. The select gate 20 of the semiconductor device 10 has an arcuate surface. In this embodiment, each of the select gates 112 of the semiconductor device 100 has a flat top surface parallel to a top surface of each of the floating gates 106 and A top surface of the gate 110 is controlled and has an inverted L shape to partially overlap the corresponding floating gates 106, that is, each of the selection gates 112 can overlap the corresponding floating gates 106. The corner A1/A2 and part of the top surface. When the semiconductor device 100, for example, the flash memory cell performs the erase operation, part of the hot electrons stored in the floating gate 106 can be released through the selection gate 112 through the corners A1/A2, which helps to reduce The operating voltage and processing time required for the erase operation of the semiconductor device 100 are performed.

此外,二第二介電層114分別設置於各選擇閘極112與各浮置閘極106之間以及各選擇閘極112與控制閘極110之間,可作為閘間氧化層,以提供電性絕緣效果,其中閘極介電層104、第一介電層108以及各第二介電層114共同環繞相對應的各浮置閘極106。 In addition, the second dielectric layers 114 are respectively disposed between the selection gates 112 and the floating gates 106 and between the selection gates 112 and the control gates 110, and serve as an oxide layer between the gates to provide electricity. The insulating effect, wherein the gate dielectric layer 104, the first dielectric layer 108, and each of the second dielectric layers 114 collectively surround the corresponding floating gates 106.

還有,一第一摻雜區116以及二第二摻雜區118可作為半導體裝置100的源極/汲極摻雜區,其中第一摻雜區116設置於二浮置閘極106之間的半導體基底102中,也就是說,控制閘極110將重疊此第一摻雜區116;而二第二摻雜區118分別設置於各浮置閘極106相對於第一摻雜區116的另一側的半導體基底102中,也就是說,二第二摻雜區118分別設置於二浮置閘極106兩側的半導體基底102中。在本實施例中,第一摻雜區116可電性連接至一源極線(source line,SL),且二第二摻雜區118可分別電性連接至一位元線(bit line,BL)。另外,介電材料所構成的二側壁子120可分別設置於選擇閘極112與各第二摻雜區118之間的半導體基底102上,可用於調整第一摻雜區116以及第二摻雜區118的間距,亦即電子通道的長度,也可避免施加於選擇閘極112與第二摻雜區118的訊號互相干擾。 Also, a first doped region 116 and two second doped regions 118 can be used as the source/drain doping region of the semiconductor device 100, wherein the first doped region 116 is disposed between the two floating gates 106. In the semiconductor substrate 102, that is, the control gate 110 will overlap the first doping region 116; and the second second doping regions 118 are respectively disposed on the floating gate 106 relative to the first doping region 116. In the semiconductor substrate 102 on the other side, that is, the two second doping regions 118 are respectively disposed in the semiconductor substrate 102 on both sides of the two floating gates 106. In this embodiment, the first doping region 116 can be electrically connected to a source line (SL), and the second doping regions 118 can be electrically connected to a bit line, respectively. BL). In addition, the two sidewalls 120 of the dielectric material may be respectively disposed on the semiconductor substrate 102 between the selection gate 112 and each of the second doping regions 118, and may be used to adjust the first doping region 116 and the second doping. The pitch of the regions 118, i.e., the length of the electron channel, also prevents signals applied to the select gate 112 and the second doped region 118 from interfering with each other.

請參考表1,並請一併參考第3圖。表1列示本發明一較佳實施例之一半導體裝置的操作條件參考表。如表1所示,當半導體裝置100處於不同操作狀態包括寫入(programming)、抹除(erase)、或讀取(read)時,需分別施加不同的訊號於各端點(terminal)包括選擇閘極 112、電性連接至一位元線BL的第二摻雜區118、電性連接至源極線SL的第一摻雜區116或控制閘極110,以完成相對應的操作。舉例來說,當半導體裝置100被選取進行寫入(programming)操作時,一第一正電位例如+8伏特(V)係施加於控制閘極110上,使第一正電位電容性耦合至浮置閘極106,此外,一第二正電位例如+2.5V係施加於選擇閘極112上,一第三正電位例如+4.5V係施加於源極線SL上也就是施加至第一摻雜區116,以及一電流例如+1毫安培(μA)係施加於位元線BL上也就是施加至第二摻雜區118,以共同在第一摻雜區116與第二摻雜區118之間的通道區中形成熱電子,並藉由控制閘極110與通道區所形成的電位差,形成一橫越閘極介電層104的電場使熱電子可越過閘極介電層104進入浮置閘極106中,以完成寫入操作。而當半導體裝置100未與其他半導體裝置(圖未示)共同進行寫入操作時,亦即半導體裝置100未被選取進行寫入操作時,則可施加一相同電壓Vcc至控制閘極110以及位元線BL,而選擇閘極112以及源極線SL則可接地以維持0V的電位。 Please refer to Table 1, and please refer to Figure 3 together. Table 1 shows a reference table of operating conditions of a semiconductor device according to a preferred embodiment of the present invention. As shown in Table 1, when the semiconductor device 100 is in different operating states including programming, erasing, or reading, different signals are respectively applied to each terminal including selection. Gate 112. The second doped region 118 electrically connected to the one bit line BL, the first doping region 116 electrically connected to the source line SL or the control gate 110 to complete the corresponding operation. For example, when the semiconductor device 100 is selected for a programming operation, a first positive potential, such as +8 volts (V), is applied to the control gate 110 to capacitively couple the first positive potential to the floating gate 110. The gate 106 is further provided. Further, a second positive potential such as +2.5 V is applied to the selection gate 112, and a third positive potential such as +4.5 V is applied to the source line SL, that is, to the first doping. A region 116, and a current such as +1 milliamperes (μA) are applied to the bit line BL, that is, to the second doping region 118 to be common to the first doping region 116 and the second doping region 118. The hot electrons are formed in the channel region, and by controlling the potential difference formed between the gate 110 and the channel region, an electric field across the gate dielectric layer 104 is formed so that the hot electrons can pass over the gate dielectric layer 104 to enter the floating region. In the gate 106, the write operation is completed. When the semiconductor device 100 is not performing a write operation together with other semiconductor devices (not shown), that is, when the semiconductor device 100 is not selected for a write operation, a same voltage Vcc can be applied to the control gate 110 and the bit. The source line BL, and the selection gate 112 and the source line SL can be grounded to maintain a potential of 0V.

本發明亦提供一種製作半導體裝置的方法以形成上述的半導體裝置,請參考第4圖至第14圖。第4圖至第14圖繪示了本發明之一較佳實施例之製作半導體裝置的方法示意圖。如第4圖所示,首先,依序形成一閘極介電層202以及一第一閘極層204於一半導體基底200上,半導體基底200可包含例如一由矽、砷化鎵、矽覆絕緣(SOI)層、磊晶層、矽鍺層或其他半導體基底材料所構成的基底。閘極介電層202係由介電材料所構成,包括矽氧化物、氮氧化物或介電常數大於4的高介電常數介電層,可由熱氧化製程、化學氣相沈積(chemical vapor deposition,CVD)或原子層沈積(atomic layer deposition,ALD)等沈積製程加以形成,在本實施例中,閘極介電層202係由熱氧化製程所形成的矽氧化物所組成。第一閘極層204可由導電材料所構成,包括多晶矽、金屬矽化物或具有特定功函數的金屬材料,例如利用低壓化學氣相沈積(low pressure chemical vapor deposition,LPCVD)製程或電漿加強化學氣相沈積(plasma-enhanced CVD,PECVD)製程等沈積製程所形成的多晶矽,並可依需求在沈積製程中同步(in-situ)摻雜多晶矽。 The present invention also provides a method of fabricating a semiconductor device to form the above-described semiconductor device. Please refer to FIGS. 4 to 14. 4 to 14 are schematic views showing a method of fabricating a semiconductor device in accordance with a preferred embodiment of the present invention. As shown in FIG. 4, first, a gate dielectric layer 202 and a first gate layer 204 are sequentially formed on a semiconductor substrate 200. The semiconductor substrate 200 may include, for example, germanium, gallium arsenide, and germanium. A substrate composed of an insulating (SOI) layer, an epitaxial layer, a germanium layer, or other semiconductor substrate material. The gate dielectric layer 202 is composed of a dielectric material, including tantalum oxide, nitrogen oxide or a high dielectric constant dielectric layer having a dielectric constant greater than 4, which can be subjected to a thermal oxidation process or a chemical vapor deposition. , CVD) or atomic layer deposition (ALD) deposition processes are formed. In this embodiment, the gate dielectric layer 202 is composed of cerium oxide formed by a thermal oxidation process. The first gate layer 204 may be composed of a conductive material, including polycrystalline germanium, metal germanide or a metal material having a specific work function, for example, a low pressure chemical vapor deposition (LPCVD) process or a plasma enhanced chemical gas. Polycrystalline germanium formed by deposition processes such as plasma-enhanced CVD (PECVD) processes, and in-situ doped polysilicon in the deposition process as required.

此外,為定義第一閘極層204與閘極介電層202形成的主動區域,如第5圖所示,在形成閘極介電層202與第一閘極層204之前, 可先形成複數個突出於半導體基底200表面的淺溝渠隔離(shallow trench isolation,STI)206,其中,第4圖之剖面方向D3與第5圖之剖面方向D4互相垂直。接著,再如前述依序毯覆性形成閘極介電層202以及第一閘極層204於半導體基底200上,之後進行一化學機械研磨(chemical mechanical polishing,CMP)等平坦化製程去除部分的第一閘極層204以劃分出預定形成半導體裝置的複數個主動區域,也就是說,淺溝渠隔離206突出於半導體基底200的部分可作為定義第一閘極層204與閘極介電層202的遮罩。淺溝渠隔離206通常包含介電材料,例如矽氧化物,而形成淺溝渠隔離206的方法係為習知該項技藝者與通常知識者所熟知,在此不多加贅述,此外,淺溝渠隔離206的形狀、位置與形成順序也不以此為限。 In addition, to define an active region formed by the first gate layer 204 and the gate dielectric layer 202, as shown in FIG. 5, before the gate dielectric layer 202 and the first gate layer 204 are formed, A plurality of shallow trench isolation (STI) 206 protruding from the surface of the semiconductor substrate 200 may be formed first, wherein the cross-sectional direction D3 of FIG. 4 and the cross-sectional direction D4 of FIG. 5 are perpendicular to each other. Then, the gate dielectric layer 202 and the first gate layer 204 are sequentially formed on the semiconductor substrate 200 as described above, and then a planarization process removal portion such as chemical mechanical polishing (CMP) is performed. The first gate layer 204 defines a plurality of active regions that are predetermined to form a semiconductor device. That is, a portion of the shallow trench isolation 206 protruding from the semiconductor substrate 200 can define the first gate layer 204 and the gate dielectric layer 202. The mask. Shallow trench isolation 206 typically comprises a dielectric material, such as tantalum oxide, and the method of forming shallow trench isolation 206 is well known to those skilled in the art and will not be described herein, and shallow trench isolation 206 The shape, position and order of formation are not limited to this.

隨後,如第6圖所示,形成至少一開口208於第一閘極層204中,其中開口208係暴露部分閘極介電層202,且未暴露該半導體基底200。在開口208形成後,進行一離子佈植製程,以在開口208暴露的閘極介電層202下方的半導體基底200中形成一第一摻雜區210,作為後續形成的半導體裝置的源極/汲極摻雜區。在本實施例中,第一摻雜區210可電性連接至一源極線(source line,SL)。其中,形成開口208的方法包括形成一圖案化遮罩(圖未示)於第一閘極層204上,並進行一蝕刻製程,例如為一非等向性蝕刻製程;或進行一濕蝕刻製程,蝕刻液較佳為對第一閘極層204之材料與閘極介電層202之材料具選擇比,以去除部分第一閘極層204至暴露閘極介電層202。 Subsequently, as shown in FIG. 6, at least one opening 208 is formed in the first gate layer 204, wherein the opening 208 exposes a portion of the gate dielectric layer 202 and the semiconductor substrate 200 is not exposed. After the opening 208 is formed, an ion implantation process is performed to form a first doped region 210 in the semiconductor substrate 200 under the gate dielectric layer 202 exposed by the opening 208 as a source of a subsequently formed semiconductor device/ Bungee doped area. In this embodiment, the first doping region 210 is electrically connected to a source line (SL). The method of forming the opening 208 includes forming a patterned mask (not shown) on the first gate layer 204, and performing an etching process, such as an anisotropic etching process, or performing a wet etching process. The etchant preferably has a selectivity to the material of the first gate layer 204 and the material of the gate dielectric layer 202 to remove portions of the first gate layer 204 to expose the gate dielectric layer 202.

接下來,如第7圖以及第8圖所示,首先全面性形成一第一介電層212於半導體基底200上,其中第一介電層212係覆蓋第一閘極層204、開口208暴露的閘極介電層202,以及暴露的淺溝渠隔離206。第一介電層212係由介電材料所構成的單層結構或多層結構,例如利用熱氧化製程、熱氮化製程、電漿加強化學氣相沈積製程或低壓化學氣相沈積製程依序形成的氧化物-氮化物-氧化物(oxide-nitride-oxide,ONO)疊層。接著,形成一第二閘極層214填滿開口208並重疊第一閘極層204,第二閘極層214可包括多晶矽、金屬矽化物或具有特定功函數的金屬材料等導電材料,例如利用低壓化學氣相沈積製程或電漿加強化學氣相沈積製程等沈積製程所形成的多晶矽。然後,再形成一遮罩層216於第二閘極層214上,遮罩層216係由抗氧化材料所構成的單層結構或多層結構,例如利用化學氣相沈積製程形成的氮化矽層,或氧化矽與氧化矽組成的複合層。 Next, as shown in FIG. 7 and FIG. 8 , a first dielectric layer 212 is first formed on the semiconductor substrate 200 , wherein the first dielectric layer 212 covers the first gate layer 204 and the opening 208 is exposed. The gate dielectric layer 202, and the exposed shallow trench isolation 206. The first dielectric layer 212 is a single layer structure or a multilayer structure composed of a dielectric material, for example, formed by a thermal oxidation process, a thermal nitridation process, a plasma enhanced chemical vapor deposition process, or a low pressure chemical vapor deposition process. An oxide-nitride-oxide (ONO) stack. Next, a second gate layer 214 is formed to fill the opening 208 and overlap the first gate layer 204. The second gate layer 214 may include a conductive material such as polysilicon, metal germanide or a metal material having a specific work function, for example, A polycrystalline germanium formed by a deposition process such as a low pressure chemical vapor deposition process or a plasma enhanced chemical vapor deposition process. Then, a mask layer 216 is formed on the second gate layer 214. The mask layer 216 is a single layer structure or a multilayer structure composed of an oxidation resistant material, for example, a tantalum nitride layer formed by a chemical vapor deposition process. , or a composite layer composed of cerium oxide and cerium oxide.

如第9圖所示,圖案化遮罩層216、第二閘極層214以及第一介電層212以形成一控制閘極218,其圖案化方法可包括下列步驟。首先,以一微影蝕刻製程形成圖案化遮罩層216’,再以圖案化遮罩層216’作為遮罩,進行一蝕刻製程例如:非等向性蝕刻製程以移除部分第二閘極層214以及部分第一介電層212;或是額外形成一圖案化遮罩(圖未示)來進行蝕刻製程以移除部分圖案化遮罩層216、部分第二閘極層214以及部分第一介電層212,使剩餘的第二閘極層214形成控制閘極218。此外,可選擇性保留部分第一介電層212’, 例如ONO疊層中的底氧化物層,於第一閘極層204上,以避免進行上述控制閘極218的製程時,對第一閘極層204之表面造成損傷。 As shown in FIG. 9, the mask layer 216, the second gate layer 214, and the first dielectric layer 212 are patterned to form a control gate 218, and the patterning method thereof may include the following steps. First, the patterned mask layer 216 ′ is formed by a lithography process, and the mask layer 216 ′ is used as a mask to perform an etching process, for example, an anisotropic etching process to remove a portion of the second gate. Layer 214 and a portion of the first dielectric layer 212; or additionally forming a patterned mask (not shown) for performing an etching process to remove a portion of the patterned mask layer 216, a portion of the second gate layer 214, and portions A dielectric layer 212 causes the remaining second gate layer 214 to form a control gate 218. In addition, a portion of the first dielectric layer 212' may be selectively retained, For example, the bottom oxide layer in the ONO stack is on the first gate layer 204 to avoid damage to the surface of the first gate layer 204 when the control gate 218 is processed.

然後,如第10圖所示,移除部分第一閘極層204以形成二浮置閘極220A/220B,其方法可包括下列步驟。首先,形成二犧牲側壁子222A/222B環繞於控制閘極218的周圍,犧牲側壁子222A/222B可為單一層或多層結構,或可包括襯層(liner)等組成,此外,犧牲側壁子222A/222B之材料可包括高溫氧化矽(high temperature oxide,HTO)、氮化矽、氧化矽或使用六氯二矽烷(hexachlorodisilane,Si2Cl6)形成的氮化矽(HCD-SiN),但不以此為限。形成犧牲側壁子222A/222B的方法為習知技術,在此不加以贅述。接著,利用控制閘極218與犧牲側壁子222A/222B當作遮罩來移除部分第一閘極層204以形成二浮置閘極220A/220B,且控制閘極218部分重疊二浮置閘極220A/220B,更詳細地說,控制閘極218可部分重疊各浮置閘極220A/220B的頂面以及二浮置閘極220A/220B的相對內側S3/S4。此外,二浮置閘極220A/220B的相對外側S5/S6則係利用犧牲側壁子222A/222B當作遮罩來進行蝕刻以定義之,亦即以自對準的方式蝕刻而成。 Then, as shown in FIG. 10, a portion of the first gate layer 204 is removed to form two floating gates 220A/220B, the method of which may include the following steps. First, the two sacrificial sidewalls 222A/222B are formed around the control gate 218. The sacrificial sidewalls 222A/222B may be a single layer or a multi-layer structure, or may include a liner or the like. In addition, the sacrificial sidewalls 222A The material of /222B may include high temperature oxide (HTO), tantalum nitride, hafnium oxide or tantalum nitride (HCD-SiN) formed using hexachlorodisilane (Si 2 Cl 6 ), but not This is limited to this. The method of forming the sacrificial sidewalls 222A/222B is a conventional technique and will not be described herein. Next, the control gate 218 and the sacrificial sidewalls 222A/222B are used as masks to remove portions of the first gate layer 204 to form two floating gates 220A/220B, and the control gate 218 partially overlaps the two floating gates. The poles 220A/220B, in more detail, the control gate 218 may partially overlap the top surface of each of the floating gates 220A/220B and the opposite inner side S3/S4 of the two floating gates 220A/220B. In addition, the opposite outer sides S5/S6 of the two floating gates 220A/220B are etched by using the sacrificial sidewalls 222A/222B as a mask to define, that is, etched in a self-aligned manner.

接下來,如第11圖所示,去除犧牲側壁子222A/222B,以暴露原先犧牲側壁子222A/222B覆蓋的浮置閘極220A/220B的頂面,包含各浮置閘極220A/220B的一彎角A3/A4。其中,犧牲側壁子222A/222B覆蓋的浮置閘極220A/220B的頂面面積正相關於自對準 形成的犧牲側壁子222A/222B的底部面積。據此,形成包括閘極介電層202、二浮置閘極220A/220B、第一介電層212以及控制閘極218的一閘極堆疊結構224。此外,在形成後續的選擇閘極之前,可選擇性形成摻雜區226於閘極堆疊結構224兩側的半導體基底200中,以調整後續形成的選擇閘極的電性表現。 Next, as shown in FIG. 11, the sacrificial sidewalls 222A/222B are removed to expose the top surface of the floating gates 220A/220B covered by the original sacrificial sidewalls 222A/222B, including the floating gates 220A/220B. A corner A3/A4. Wherein, the top surface area of the floating gate 220A/220B covered by the sacrificial sidewall 222A/222B is positively correlated with self-alignment The bottom area of the sacrificial sidewalls 222A/222B is formed. Accordingly, a gate stack structure 224 including a gate dielectric layer 202, two floating gates 220A/220B, a first dielectric layer 212, and a control gate 218 is formed. In addition, doped regions 226 may be selectively formed in the semiconductor substrate 200 on both sides of the gate stack structure 224 prior to forming subsequent select gates to adjust the electrical performance of the subsequently formed select gates.

如第12圖所示,透過熱氧化製程形成的高溫氧化矽所組成的二第二介電層228A/228B,接著,再透過沈積製程全面性形成第三閘極層230覆蓋圖案化遮罩層216’、第二介電層228A/228B以及閘極堆疊結構224的二側。第三閘極層230可包括多晶矽、金屬矽化物或具有特定功函數的金屬材料,例如利用沈積製程所形成的多晶矽。隨後如第13圖所示,去除部分第三閘極層230以形成二選擇閘極232A/232B分別設置於閘極堆疊結構224的兩側。形成選擇閘極232A/232B的方法包括下列步驟。首先,對第三閘極層230進行一回蝕刻等平坦化製程直至暴露出圖案化遮罩層216’,以定義之後形成的選擇閘極232A/232B的高度並使選擇閘極232A/232B分別具有一平坦的頂面;之後再進行一微影暨蝕刻製程以完成選擇閘極232A/232B,並定義選擇閘極232A/232B的大小與寬度。據此,各選擇閘極232A/232B具有一平坦的頂面以及一倒L之形狀的結構,並分別部分重疊相對應的各浮置閘極220A/220B,此重疊的部分即為上述犧牲側壁子222A/222B所覆蓋的區域。 As shown in FIG. 12, the second dielectric layer 228A/228B composed of the high temperature yttrium oxide formed by the thermal oxidation process is then further formed by the deposition process to form the third gate layer 230 to cover the patterned mask layer. 216', the second dielectric layer 228A/228B, and the two sides of the gate stack structure 224. The third gate layer 230 may include polysilicon, metal germanide, or a metal material having a specific work function, such as a polysilicon formed by a deposition process. Subsequently, as shown in FIG. 13, a portion of the third gate layer 230 is removed to form two select gates 232A/232B disposed on opposite sides of the gate stack structure 224, respectively. The method of forming the selection gates 232A/232B includes the following steps. First, the third gate layer 230 is subjected to a planarization process such as etching back until the patterned mask layer 216' is exposed to define the height of the selected gate 232A/232B formed and the selection gates 232A/232B respectively. There is a flat top surface; a lithography and etching process is then performed to complete the select gates 232A/232B and define the size and width of the select gates 232A/232B. Accordingly, each of the selection gates 232A/232B has a flat top surface and an inverted L-shaped structure, and partially overlaps the corresponding floating gates 220A/220B, respectively, and the overlapping portions are the sacrificial sidewalls. The area covered by the sub-222A/222B.

在本實施例中,第二介電層228A/228B係為一複晶矽層間氧化 層(inter-poly oxide,IPO)分別設置於第三閘極層230與各浮置閘極220A/220B之間以及第三閘極層230與控制閘極218之間,以提供電性絕緣效果,且第二介電層228A/228B未覆蓋控制閘極218的頂面。如此閘極介電層202、第一介電層212以及各第二介電層228A/228B便可共同環繞相對應的各浮置閘極220A/220B。 In this embodiment, the second dielectric layer 228A/228B is a polysilicon layer inter-layer oxidation. An inter-poly oxide (IPO) is disposed between the third gate layer 230 and each of the floating gates 220A/220B and between the third gate layer 230 and the control gate 218 to provide an electrical insulating effect. And the second dielectric layer 228A/228B does not cover the top surface of the control gate 218. Thus, the gate dielectric layer 202, the first dielectric layer 212, and the second dielectric layers 228A/228B can collectively surround the corresponding floating gates 220A/220B.

由於在本實施例中控制閘極218、浮置閘極220A/220B、選擇閘極232A/232B均係利用多晶矽所構成的,因此需藉由圖案化遮罩層216’的遮蔽與保護來進行第9圖之控制閘極218的圖案化製程、第10圖的形成側壁子222A/222B與圖案化浮置閘極220A/220B製程、以及第13圖之第三閘極層230的回蝕刻製程與選擇閘極232A/232B的圖案化製程。所以在完成上述製程後,可選擇性去除此圖案化遮罩層216’。 In this embodiment, the control gate 218, the floating gate 220A/220B, and the selection gate 232A/232B are all formed by using polysilicon, so it is necessary to shield and protect the patterned mask layer 216'. The patterning process of the control gate 218 of FIG. 9 , the process of forming the sidewall spacers 222A/222B and the patterned floating gate 220A/220B of FIG. 10, and the etching process of the third gate layer 230 of FIG. 13 And the patterning process of selecting gate 232A/232B. Therefore, after the above process is completed, the patterned mask layer 216' can be selectively removed.

在去除圖案化遮罩層216’之後,如第14圖所示,形成二側壁子234A/234B於各選擇閘極232A/232B的外側後,進行一離子佈植製程以形成二第二摻雜區236A/236B於閘極堆疊結構224兩側的半導體基底200中。在本實施例中,二第二摻雜區236A/236B可作為源極/汲極摻雜區,且分別電性連接至一位元線(bit line,BL)。至此,完成本發明之半導體裝置238。 After removing the patterned mask layer 216', as shown in FIG. 14, after the two sidewall spacers 234A/234B are formed outside the respective selection gates 232A/232B, an ion implantation process is performed to form two second dopings. Regions 236A/236B are in semiconductor substrate 200 on either side of gate stack structure 224. In this embodiment, the second and second doping regions 236A/236B can serve as source/drain doping regions and are electrically connected to a bit line (BL), respectively. So far, the semiconductor device 238 of the present invention has been completed.

本發明之選擇閘極與第二介電層的設置方式並不以上述實施例為限,在其他實施例中,選擇閘極與第二介電層也可藉由其他製作 方法形成不同形狀的結構。下文將依序介紹本發明之其它較佳實施例,且為了便於比較各實施例之相異處並簡化說明,在下文之各實施例中使用相同的符號標注相同的元件,且主要針對各實施例之相異處進行說明,而不再對重覆部分進行贅述。 The selection of the gate and the second dielectric layer of the present invention is not limited to the above embodiment. In other embodiments, the gate and the second dielectric layer may also be fabricated by other methods. The method forms structures of different shapes. Other preferred embodiments of the present invention will be described in the following, and in order to facilitate the comparison of the various embodiments and the simplification of the description, the same elements are denoted by the same symbols in the following embodiments, and mainly for each implementation. The differences between the examples are explained, and the repeated parts are not described again.

請參考第15圖至第19圖。第15圖至第19圖繪示了本發明之另一較佳實施例之製作半導體裝置的方法示意圖。首先,進行前述製作半導體裝置的方法,至形成如第7圖以及第8圖所示的堆疊結構,接著,如第15圖所示,圖案化遮罩層216、第二閘極層214、第一介電層212、第一閘極層204以及閘極介電層202以形成圖案化遮罩層310、控制閘極308以及二浮置閘極306,且控制閘極308之側邊S7/S8與二浮置閘極306之相對外側S9/S10係彼此切齊。其圖案化方法可包括下列步驟。首先,以一微影蝕刻製程形成圖案化遮罩層310,再以圖案化遮罩層310作為遮罩,進行一蝕刻製程例如:非等向性蝕刻製程以部分移除第二閘極層214(形成控制閘極308)、第一介電層212、第一閘極層204(形成二浮置閘極306)以及閘極介電層202;或是額外形成一圖案化遮罩(圖未示)來進行蝕刻製程以部分移除遮罩層216、第二閘極層214、第一介電層212、第一閘極層204以及閘極介電層202。此外,被圖案化遮罩層310覆蓋的控制閘極308、第一介電層212、二浮置閘極306以及閘極介電層202可共同定義為閘極堆疊結構311。 Please refer to Figures 15 to 19. 15 to 19 are schematic views showing a method of fabricating a semiconductor device according to another preferred embodiment of the present invention. First, the method of fabricating the semiconductor device described above is performed to form a stacked structure as shown in FIGS. 7 and 8, and then, as shown in FIG. 15, the patterned mask layer 216, the second gate layer 214, and the first A dielectric layer 212, a first gate layer 204, and a gate dielectric layer 202 to form a patterned mask layer 310, a control gate 308, and two floating gates 306, and control the side S7 of the gate 308 The opposite outer sides S9/S10 of S8 and the two floating gates 306 are aligned with each other. The patterning method can include the following steps. First, the patterned mask layer 310 is formed by a lithography process, and the mask layer 310 is used as a mask to perform an etching process, for example, an anisotropic etching process to partially remove the second gate layer 214. (forming control gate 308), first dielectric layer 212, first gate layer 204 (forming two floating gates 306), and gate dielectric layer 202; or additionally forming a patterned mask (not shown) The etching process is performed to partially remove the mask layer 216, the second gate layer 214, the first dielectric layer 212, the first gate layer 204, and the gate dielectric layer 202. In addition, the control gate 308, the first dielectric layer 212, the two floating gates 306, and the gate dielectric layer 202 covered by the patterned mask layer 310 may be collectively defined as a gate stack structure 311.

隨後,形成二側壁子312於閘極堆疊結構311的側壁,側壁子 312可為單一層或多層結構,或可包括襯層(liner)等組成,此外,側壁子312之材料可包括高溫氧化矽(high temperature oxide,HTO)、氮化矽、氧化矽或使用六氯二矽烷(hexachlorodisilane,Si2Cl6)形成的氮化矽(HCD-SiN),但不以此為限。在本實施例中,側壁子312較佳係由對同一種蝕刻液蝕刻率不同的多種材料,例如襯層-氮化矽-氧化矽,所組成的平面狀堆疊結構。形成側壁子312的方法為習知技術,在此不加以贅述。 Subsequently, two sidewalls 312 are formed on the sidewalls of the gate stack structure 311. The sidewall spacers 312 may be a single layer or a multilayer structure, or may include a liner or the like. Further, the material of the sidewall spacers 312 may include high temperature yttrium oxide. (high temperature oxide, HTO), tantalum nitride, hafnium oxide or tantalum nitride (HCD-SiN) formed using hexachlorodisilane (Si 2 Cl 6 ), but not limited thereto. In the present embodiment, the sidewall spacers 312 are preferably a planar stacked structure composed of a plurality of materials having different etching rates for the same etching solution, such as a liner-tantalum nitride-yttria. The method of forming the sidewall spacers 312 is a conventional technique and will not be described herein.

接下來,如第16圖所示,選擇性形成摻雜區313於閘極堆疊結構311兩側的半導體基底200中,以調整後續形成的選擇閘極的電性表現。然後,進行一蝕刻步驟去除部分側壁子312以及半導體基底200表面的原生氧化層(native oxide)(圖未示),以暴露剩餘的側壁子312’兩側的半導體基底200。其中,剩餘的側壁子312’可為一包括襯層-氮化矽的結構。 Next, as shown in FIG. 16, doped regions 313 are selectively formed in the semiconductor substrate 200 on both sides of the gate stack structure 311 to adjust the electrical performance of the subsequently formed select gates. Then, an etching step is performed to remove a portion of the sidewall spacer 312 and a native oxide (not shown) on the surface of the semiconductor substrate 200 to expose the semiconductor substrate 200 on both sides of the remaining sidewall sub-312'. Wherein, the remaining sidewall spacers 312' may be a structure including a liner-tantalum nitride.

接著,如第17圖所示,形成一介電層314,例如透過熱氧化製程形成氧化矽層於裸露之半導體基底200上,以及透過沈積製程全面性形成第三閘極層316覆蓋圖案化遮罩層310、剩餘的側壁子312’以及介電層314。第三閘極層316可包括多晶矽、金屬矽化物或具有特定功函數的金屬材料,例如利用沈積製程所形成的多晶矽。 Next, as shown in FIG. 17, a dielectric layer 314 is formed, for example, by forming a yttrium oxide layer on the bare semiconductor substrate 200 through a thermal oxidation process, and forming a third gate layer 316 to cover the patterned mask through the deposition process. A cap layer 310, remaining sidewalls 312', and a dielectric layer 314. The third gate layer 316 may comprise polysilicon, metal telluride or a metal material having a specific work function, such as polysilicon formed using a deposition process.

之後,如第18圖所示,去除部分第三閘極層316以及部分介電層314,以形成二選擇閘極302分別設置於閘極堆疊結構311的兩 側,此外,剩餘的介電層314’與剩餘的側壁子312’可共同作為第二介電層304。形成選擇閘極302的方法包括如前述所依序進行的一回蝕刻等平坦化製程以及一微影暨蝕刻製程,以分別決定選擇閘極302的高度與寬度,在此不加以贅述。值得注意的是,由於剩餘的介電層314’與剩餘的側壁子312’是經由不同的製程先後形成,因此,第二介電層304的厚度原則上並非固定值。亦即垂直部份之第二介電層304(由剩餘的側壁子312’所構成)的厚度係實質上不等於水平部份之第二介電層304(由剩餘的介電層314’所構成)的厚度。 Thereafter, as shown in FIG. 18, a portion of the third gate layer 316 and a portion of the dielectric layer 314 are removed to form two gates 302 that are respectively disposed on the gate stack structure 311. Side, in addition, the remaining dielectric layer 314' and the remaining sidewalls 312' may be used together as the second dielectric layer 304. The method for forming the selection gate 302 includes a planarization process such as etching back and a lithography and etching process as described above to determine the height and width of the selection gate 302, respectively, and details are not described herein. It should be noted that since the remaining dielectric layer 314' and the remaining sidewalls 312' are formed through different processes, the thickness of the second dielectric layer 304 is not in principle a fixed value. That is, the thickness of the vertical portion of the second dielectric layer 304 (consisting of the remaining sidewalls 312') is substantially not equal to the horizontal portion of the second dielectric layer 304 (by the remaining dielectric layer 314' The thickness of the composition).

隨後,如第19圖所示,去除圖案化遮罩層310,並形成二側壁子318於各選擇閘極302的外側,然後,再進行一離子佈植製程以形成二第二摻雜區320於閘極堆疊結構311的兩側,第二摻雜區320可作為源極/汲極摻雜區,且分別電性連接至一位元線(bit line,BL)。至此,完成本發明之半導體裝置300。 Subsequently, as shown in FIG. 19, the patterned mask layer 310 is removed, and two sidewall spacers 318 are formed on the outer sides of the respective selection gates 302, and then an ion implantation process is performed to form the second second doping regions 320. On both sides of the gate stack structure 311, the second doping region 320 can serve as a source/drain doping region and are electrically connected to a bit line (BL), respectively. Thus far, the semiconductor device 300 of the present invention has been completed.

請繼續參考第19圖。與第3圖所繪示的半導體裝置100相比,半導體裝置300的選擇閘極302之材質與相對位置(設置於各浮置閘極306與控制閘極308的一側)均與半導體裝置100的選擇閘極112相似。不同的地方在於,在本實施例中,控制閘極308之側邊係切齊二浮置閘極306之相對外側,而使各選擇閘極302係具有一條狀剖面且未部分重疊各浮置閘極306,此外,第二介電層304的厚度非固定值,例如各選擇閘極302與相對應的各浮置閘極306的間距或各選擇閘極302與T形之控制閘極308的間距會與各選擇閘極302 與半導體基底102的間距不同,也就是說,第二介電層304在第二方向D2上的厚度與第二介電層304在第一方向D1上的厚度不同。 Please continue to refer to Figure 19. Compared with the semiconductor device 100 shown in FIG. 3 , the material and the relative position of the selection gate 302 of the semiconductor device 300 (the side disposed on each of the floating gate 306 and the control gate 308 ) are the same as the semiconductor device 100 . The selection gate 112 is similar. The difference is that, in this embodiment, the sides of the control gate 308 are aligned with the opposite outer sides of the two floating gates 306, and the selection gates 302 have a strip-shaped cross section and are not partially overlapped and floated. The gate 306, in addition, the thickness of the second dielectric layer 304 is not a fixed value, such as the pitch of each of the select gates 302 and the corresponding floating gates 306 or the control gates 308 and T-shaped control gates 308. Spacing will be associated with each select gate 302 The pitch of the semiconductor substrate 102 is different, that is, the thickness of the second dielectric layer 304 in the second direction D2 is different from the thickness of the second dielectric layer 304 in the first direction D1.

請參考表2,表2列示本發明另一較佳實施例之一半導體裝置於選取狀態時的操作條件參考表。如表2所示,當半導體裝置300被選取且處於不同操作狀態包括寫入、抹除或讀取(read)時,需分別施加不同的訊號於各端點包括選擇閘極302、電性連接至一位元線的第二摻雜區320、電性連接至源極線的第一摻雜區210、控制閘極308或電性連接至半導體基底200的端點,以完成相對應的操作。值得注意的是,在本實施例中,如第19圖所示的半導體裝置300的選擇閘極302與半導體基底200的間距(第二介電層304在第一方向D1上的厚度)係實質上小於如第3圖所示的半導體裝置100的選擇閘極112與半導體基底102的間距(第二介電層114在第一方向D1上的厚度),因此,有助於降低半導體裝置300例如:快閃記憶體單元進行讀取操作時所需的操作電壓。此外,半導體裝置300被選取進行抹除操作時,可藉由控制閘極308與半導體基底200之間的電位差,形成一橫越閘極介電層202的電場,並透過福樂諾漢穿遂(Fowler-Nordheim tunneling,FN tunneling)機制使儲存於浮置閘極306中的熱電子可越過閘極介電層202由半導體基底200釋出,以完成抹除操作。 Please refer to Table 2. Table 2 lists the operating condition reference table of the semiconductor device in the selected state according to another preferred embodiment of the present invention. As shown in Table 2, when the semiconductor device 300 is selected and in different operating states including writing, erasing or reading, different signals are respectively applied to the respective terminals including the selection gate 302 and the electrical connection. a second doped region 320 to a single line, a first doped region 210 electrically connected to the source line, a control gate 308, or an electrical connection to an end of the semiconductor substrate 200 to perform a corresponding operation . It should be noted that in the present embodiment, the pitch of the selection gate 302 and the semiconductor substrate 200 of the semiconductor device 300 as shown in FIG. 19 (the thickness of the second dielectric layer 304 in the first direction D1) is substantially The upper side is smaller than the pitch of the selection gate 112 of the semiconductor device 100 and the semiconductor substrate 102 as shown in FIG. 3 (the thickness of the second dielectric layer 114 in the first direction D1), thereby contributing to the reduction of the semiconductor device 300, for example. : The operating voltage required for the flash memory unit to perform a read operation. In addition, when the semiconductor device 300 is selected for the erase operation, an electric field across the gate dielectric layer 202 can be formed by controlling the potential difference between the gate 308 and the semiconductor substrate 200, and through the Fullerhan The Fowler-Nordheim tunneling (FN tunneling) mechanism allows hot electrons stored in the floating gate 306 to be released from the semiconductor substrate 200 across the gate dielectric layer 202 to complete the erase operation.

綜上所述,本發明藉由一T形控制閘極的設置,使控制閘極可同時重疊二浮置閘極的頂面與一側面,與控制閘極僅重疊一浮置閘極的頂面之結構相比,本發明的控制閘極之結構設計可增加浮置閘極與控制閘極之間的重疊面積以提升閘極耦合值,進而降低半導體裝置的操作電壓以及提升半導體裝置的效能。此外,各浮置閘極與控制閘極之間僅全面性設置有第一介電層,而且此第一介電層具有一固定厚度,因此可使各浮置閘極與控制閘極之一間距為固定值,進而得到一穩定的電容值。 In summary, the present invention allows the control gate to simultaneously overlap the top surface and the side surface of the two floating gates by a T-shaped control gate, and only overlaps the top of the floating gate with the control gate. Compared with the structure of the surface, the structure design of the control gate of the present invention can increase the overlapping area between the floating gate and the control gate to increase the gate coupling value, thereby reducing the operating voltage of the semiconductor device and improving the performance of the semiconductor device. . In addition, a first dielectric layer is integrally disposed between each of the floating gates and the control gate, and the first dielectric layer has a fixed thickness, so that each of the floating gates and the control gates can be The pitch is a fixed value, which in turn results in a stable capacitance value.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

10,100,238,300‧‧‧半導體裝置 10,100,238,300‧‧‧ semiconductor devices

12,102,200‧‧‧半導體基底 12,102,200‧‧‧Semiconductor substrate

14‧‧‧閘極堆疊 14‧‧‧gate stacking

16,106,220A,220B,306‧‧‧浮置閘極 16,106,220A,220B,306‧‧‧Floating gate

18,110,218,308‧‧‧控制閘極 18,110,218,308‧‧‧Control gate

20,112,232A,232B,302‧‧‧選擇閘極 20,112,232A,232B,302‧‧‧Select gate

22,24,26,314,314’‧‧‧介電層 22,24,26,314,314'‧‧‧ dielectric layer

28,30‧‧‧源極/汲極摻雜區 28, 30‧‧‧ source/drain doping

32‧‧‧通道區 32‧‧‧Channel area

104,202‧‧‧閘極介電層 104,202‧‧‧ gate dielectric layer

108,212,212’‧‧‧第一介電層 108,212,212'‧‧‧First dielectric layer

114,228A,228B,304‧‧‧第二介電層 114,228A, 228B, 304‧‧‧Second dielectric layer

116,210‧‧‧第一摻雜區 116,210‧‧‧First doped area

118,236A,236B,320‧‧‧第二摻雜區 118,236A, 236B, 320‧‧‧Second doped area

120,234A,234B,312,312’, 318‧‧‧側壁子 120,234A, 234B, 312, 312', 318‧‧‧ Sidewall

204‧‧‧第一閘極層 204‧‧‧First gate layer

206‧‧‧淺溝渠隔離 206‧‧‧Shallow trench isolation

208‧‧‧開口 208‧‧‧ openings

214‧‧‧第二閘極層 214‧‧‧second gate layer

216‧‧‧遮罩層 216‧‧‧ mask layer

216’,310‧‧‧圖案化遮罩層 216', 310‧‧‧ patterned mask layer

222A,222B‧‧‧犧牲側壁子 222A, 222B‧‧‧ Sacrifice side wall

224,311‧‧‧閘極堆疊結構 224,311‧‧‧ gate stack structure

226,313‧‧‧摻雜區 226,313‧‧‧Doped area

230,316‧‧‧第三閘極層 230, 316‧‧‧ third gate layer

A1,A2,A3,A4‧‧‧彎角 A1, A2, A3, A4‧‧‧ corner

BL‧‧‧位元線 BL‧‧‧ bit line

C1,C2‧‧‧電容 C1, C2‧‧‧ capacitor

D1‧‧‧第一方向 D1‧‧‧ first direction

D2‧‧‧第二方向 D2‧‧‧ second direction

D3,D4‧‧‧剖面方向 D3, D4‧‧‧ section direction

S1,S2‧‧‧側面 S1, S2‧‧‧ side

S3,S4‧‧‧內側 S3, S4‧‧‧ inside

S5,S6,S9,S10‧‧‧外側 S5, S6, S9, S10‧‧‧ outside

S7,S8‧‧‧側邊 S7, S8‧‧‧ side

SL‧‧‧源極線 SL‧‧‧ source line

第1圖繪示了本發明一實施例之一半導體裝置的剖面示意圖。 FIG. 1 is a cross-sectional view showing a semiconductor device according to an embodiment of the present invention.

第2圖繪示本發明一較佳實施例之一半導體裝置的佈局示意圖。 FIG. 2 is a schematic view showing the layout of a semiconductor device according to a preferred embodiment of the present invention.

第3圖繪示本發明一較佳實施例之一半導體裝置沿第2圖A-A’線段之剖面示意圖。 Figure 3 is a cross-sectional view of the semiconductor device of the preferred embodiment of the present invention taken along line A-A' of Figure 2;

第4圖至第14圖繪示了本發明之一較佳實施例之製作半導體裝置的方法示意圖。 4 to 14 are schematic views showing a method of fabricating a semiconductor device in accordance with a preferred embodiment of the present invention.

第15圖至第19圖繪示了本發明之另一較佳實施例之製作半導體裝置的方法示意圖。 15 to 19 are schematic views showing a method of fabricating a semiconductor device according to another preferred embodiment of the present invention.

100‧‧‧半導體裝置 100‧‧‧Semiconductor device

102‧‧‧半導體基底 102‧‧‧Semiconductor substrate

104‧‧‧閘極介電層 104‧‧‧ gate dielectric layer

106‧‧‧浮置閘極 106‧‧‧Floating gate

108‧‧‧第一介電層 108‧‧‧First dielectric layer

110‧‧‧控制閘極 110‧‧‧Control gate

112‧‧‧選擇閘極 112‧‧‧Select gate

114‧‧‧第二介電層 114‧‧‧Second dielectric layer

116‧‧‧第一摻雜區 116‧‧‧First doped area

118‧‧‧第二摻雜區 118‧‧‧Second doped area

120‧‧‧側壁子 120‧‧‧ Sidewall

A1,A2‧‧‧彎角 A1, A2‧‧‧ corner

BL‧‧‧位元線 BL‧‧‧ bit line

D1‧‧‧第一方向 D1‧‧‧ first direction

D2‧‧‧第二方向 D2‧‧‧ second direction

S1,S2‧‧‧側面 S1, S2‧‧‧ side

SL‧‧‧源極線 SL‧‧‧ source line

Claims (20)

一種半導體裝置,包括:二浮置閘極(floating gate)設置於一半導體基底上;一控制閘極(control gate)部分重疊各該浮置閘極,且部分該控制閘極位於二該浮置閘極之間;以及一第一介電層設置於二該浮置閘極與該控制閘極之間,且該第一介電層具有一固定厚度。 A semiconductor device comprising: two floating gates disposed on a semiconductor substrate; a control gate partially overlapping the floating gates, and a portion of the control gates being located on the floating Between the gates; and a first dielectric layer disposed between the floating gate and the control gate, and the first dielectric layer has a fixed thickness. 如請求項1所述之半導體裝置,其中各該浮置閘極與該控制閘極之間僅有該第一介電層,使各該浮置閘極與該控制閘極之一間距為固定值。 The semiconductor device of claim 1, wherein only the first dielectric layer is between the floating gate and the control gate, such that a distance between each of the floating gate and the control gate is fixed. value. 如請求項1所述之半導體裝置,其中該控制閘極係為一T形控制閘極。 The semiconductor device of claim 1, wherein the control gate is a T-shaped control gate. 如請求項1所述之半導體裝置,其中該第一介電層接觸各該浮置閘極的一頂面、各該浮置閘極的一側面以及二該浮置閘極之間的該半導體基底。 The semiconductor device of claim 1, wherein the first dielectric layer contacts a top surface of each of the floating gates, a side of each of the floating gates, and the semiconductor between the floating gates Substrate. 如請求項4所述之半導體裝置,其中該第一介電層接觸的各該浮置閘極的該側面彼此面對。 The semiconductor device of claim 4, wherein the side faces of each of the floating gates in contact with the first dielectric layer face each other. 如請求項1所述之半導體裝置,其中設置於該控制閘極與二該浮 置閘極之間的該第一介電層係直接接觸該半導體基底。 The semiconductor device according to claim 1, wherein the control gate is disposed on the floating gate The first dielectric layer between the gates is in direct contact with the semiconductor substrate. 如請求項1所述之半導體裝置,另包括:一第一摻雜區設置於二該浮置閘極之間的該半導體基底中,且該控制閘極重疊該第一摻雜區;以及二第二摻雜區分別設置於各該浮置閘極相對於該第一摻雜區的另一側的該半導體基底中。 The semiconductor device of claim 1, further comprising: a first doped region disposed in the semiconductor substrate between the floating gates, wherein the control gate overlaps the first doped region; The second doped regions are respectively disposed in the semiconductor substrate of each of the floating gates opposite to the other side of the first doped region. 如請求項1所述之半導體裝置,另包括:一閘極介電層分別設置於各該浮置閘極與該半導體基底之間;二選擇閘極分別設置於各該浮置閘極與該控制閘極的一側;以及二第二介電層分別設置於各該選擇閘極與各該浮置閘極之間以及各該選擇閘極與該控制閘極之間,其中該閘極介電層、該第一介電層以及各該第二介電層共同環繞相對應的各該浮置閘極。 The semiconductor device of claim 1, further comprising: a gate dielectric layer respectively disposed between each of the floating gates and the semiconductor substrate; and two selection gates respectively disposed on the floating gates and the gate Controlling one side of the gate; and two second dielectric layers are respectively disposed between each of the selection gates and each of the floating gates and between the selection gates and the control gates, wherein the gates are The electrical layer, the first dielectric layer, and each of the second dielectric layers collectively surround each of the corresponding floating gates. 如請求項8所述之半導體裝置,其中各該選擇閘極均包括一倒L之形狀並分別部分重疊相對應的各該浮置閘極。 The semiconductor device of claim 8, wherein each of the selection gates comprises an inverted L shape and partially overlaps each of the corresponding floating gates. 如請求項8所述之半導體裝置,其中各該選擇閘極具有一平坦的頂面。 The semiconductor device of claim 8 wherein each of the select gates has a flat top surface. 如請求項10所述之半導體裝置,其中各該選擇閘極的該頂面平 行各該浮置閘極的一頂面以及該控制閘極的一頂面。 The semiconductor device of claim 10, wherein the top surface of each of the selection gates is flat A top surface of each of the floating gates and a top surface of the control gate are disposed. 如請求項8所述之半導體裝置,其中各該選擇閘極係包括一條狀剖面,且未部分重疊各該浮置閘極。 The semiconductor device of claim 8, wherein each of the select gates comprises a strip profile and the floating gates are not partially overlapped. 如請求項8所述之半導體裝置,其中各該第二介電層的一厚度係非固定值。 The semiconductor device of claim 8, wherein a thickness of each of the second dielectric layers is a non-fixed value. 如請求項8所述之半導體裝置,其中各該選擇閘極與相對應的各該浮置閘極的間距或各該選擇閘極與該控制閘極的間距係實質上不同於各該選擇閘極與該半導體基底的間距。 The semiconductor device of claim 8, wherein a distance between each of the selection gates and a corresponding one of the floating gates or a distance between each of the selection gates and the control gate is substantially different from each of the selection gates The distance between the pole and the semiconductor substrate. 一種製作半導體裝置的方法,包括:依序形成一閘極介電層以及一第一閘極層於一半導體基底上,且該閘極介電層位於該第一閘極層與該半導體基底之間;形成至少一開口於該第一閘極層中;全面性形成一第一介電層於該半導體基底上,且該第一介電層覆蓋該第一閘極層;以及形成一第二閘極層填滿該開口並重疊該第一閘極層。 A method of fabricating a semiconductor device includes: sequentially forming a gate dielectric layer and a first gate layer on a semiconductor substrate, and the gate dielectric layer is located on the first gate layer and the semiconductor substrate Forming at least one opening in the first gate layer; forming a first dielectric layer on the semiconductor substrate in a comprehensive manner, and the first dielectric layer covers the first gate layer; and forming a second A gate layer fills the opening and overlaps the first gate layer. 如請求項15所述之製作半導體裝置的方法,其中該開口暴露部分該閘極介電層,且未暴露該半導體基底。 A method of fabricating a semiconductor device according to claim 15, wherein the opening exposes a portion of the gate dielectric layer and the semiconductor substrate is not exposed. 如請求項15所述之製作半導體裝置的方法,另包括形成一第一摻雜區位於該開口暴露的該閘極介電層下方的該半導體基底中。 The method of fabricating a semiconductor device of claim 15 further comprising forming a first doped region in the semiconductor substrate below the exposed gate dielectric layer of the opening. 如請求項15所述之製作半導體裝置的方法,另包括:移除部分該第二閘極層以及部分該第一閘極層以形成一閘極堆疊結構;形成二選擇閘極分別設置於該閘極堆疊結構的兩側;以及形成二第二摻雜區於該閘極堆疊結構兩側的該半導體基底中。 The method of fabricating a semiconductor device according to claim 15, further comprising: removing a portion of the second gate layer and a portion of the first gate layer to form a gate stack structure; forming two select gates respectively disposed on the gate device Two sides of the gate stack structure; and two second doped regions are formed in the semiconductor substrate on both sides of the gate stack structure. 如請求項18所述之製作半導體裝置的方法,其中形成該閘極堆疊結構的方法,另包括:移除部分該第二閘極層以形成一控制閘極;形成二犧牲側壁子環繞於該控制閘極的周圍;以及利用該控制閘極與該犧牲側壁子當作遮罩來移除部分該第一閘極層以形成二浮置閘極,且該控制閘極部分重疊二該浮置閘極。 The method of fabricating a semiconductor device of claim 18, wherein the method of forming the gate stack structure further comprises: removing a portion of the second gate layer to form a control gate; forming two sacrificial sidewalls surrounding the Controlling the periphery of the gate; and using the control gate and the sacrificial sidewall as a mask to remove a portion of the first gate layer to form two floating gates, and the control gate partially overlaps the floating Gate. 如請求項18所述之製作半導體裝置的方法,其中形成該閘極堆疊結構的方法,另包括:以相同的遮罩移除部分該第二閘極層以形成一控制閘極以及移除部分該第一閘極層以形成二浮置閘極,且該控制閘極之側邊與二該浮置閘極之相對外側係彼此切齊。 The method of fabricating a semiconductor device of claim 18, wherein the method of forming the gate stack structure further comprises: removing a portion of the second gate layer with the same mask to form a control gate and removing portions The first gate layer forms two floating gates, and the side edges of the control gate and the opposite outer sides of the floating gates are aligned with each other.
TW101125532A 2012-07-16 2012-07-16 Semiconductor device and method of fabricating the same TWI532149B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101125532A TWI532149B (en) 2012-07-16 2012-07-16 Semiconductor device and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101125532A TWI532149B (en) 2012-07-16 2012-07-16 Semiconductor device and method of fabricating the same

Publications (2)

Publication Number Publication Date
TW201405779A true TW201405779A (en) 2014-02-01
TWI532149B TWI532149B (en) 2016-05-01

Family

ID=50550123

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101125532A TWI532149B (en) 2012-07-16 2012-07-16 Semiconductor device and method of fabricating the same

Country Status (1)

Country Link
TW (1) TWI532149B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI677967B (en) * 2016-01-21 2019-11-21 聯華電子股份有限公司 Non-volatile memory and fabricating method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI677967B (en) * 2016-01-21 2019-11-21 聯華電子股份有限公司 Non-volatile memory and fabricating method thereof

Also Published As

Publication number Publication date
TWI532149B (en) 2016-05-01

Similar Documents

Publication Publication Date Title
US9117847B2 (en) Method for fabricating semiconductor device
US9236391B2 (en) Method of forming split-gate cell for non-volative memory devices
KR101221598B1 (en) Method for forming a dielectric layer pattern and method for manufacturing non-volatile memory device using for the same
TWI490982B (en) Semiconductor structure and method of forming the same
US9583640B1 (en) Method including a formation of a control gate of a nonvolatile memory cell and semiconductor structure
US9431256B2 (en) Semiconductor device and manufacturing method thereof
JP2006093327A (en) Semiconductor device and its manufacturing method
US20170047336A1 (en) Semiconductor structure including a nonvolatile memory cell and method for the formation thereof
US7514741B2 (en) Nonvolatile semiconductor memory device and related method
CN110085592B (en) Flash memory manufacturing method
US7488645B2 (en) Method of fabricating a non-volatile memory
US11257830B2 (en) Memory structure
JP2006186073A (en) Semiconductor device and its manufacturing method
US9023726B1 (en) Method of fabricating semiconductor device
TWI532149B (en) Semiconductor device and method of fabricating the same
TWI543303B (en) Non-volatile memory cell and fabricating method thereof
US20140183614A1 (en) Semiconductor device
US20070221984A1 (en) Nonvolatile semiconductor memory device and method for manufacturing same
US8722488B2 (en) Method of fabricating semiconductor device
US20160181267A1 (en) Non-volatile memory cell, nand-type non-volatile memory, and method of manufacturing the same
US7932149B2 (en) Method of manufacturing a semiconductor device
US9496418B2 (en) Non-volatile memory and fabricating method thereof
CN103579362B (en) Semiconductor device and preparation method thereof
TWI845109B (en) Non-volatile memory device
TWI517302B (en) Method of fabricating semiconductor device