TW201347043A - Semiconductor device and method of manufacturing the same - Google Patents

Semiconductor device and method of manufacturing the same Download PDF

Info

Publication number
TW201347043A
TW201347043A TW101116131A TW101116131A TW201347043A TW 201347043 A TW201347043 A TW 201347043A TW 101116131 A TW101116131 A TW 101116131A TW 101116131 A TW101116131 A TW 101116131A TW 201347043 A TW201347043 A TW 201347043A
Authority
TW
Taiwan
Prior art keywords
semiconductor
deposition layer
region
layer
semiconductor deposition
Prior art date
Application number
TW101116131A
Other languages
Chinese (zh)
Other versions
TWI596673B (en
Inventor
Wing-Chor Chan
Chih-Min Hu
Jeng Gong
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW101116131A priority Critical patent/TWI596673B/en
Publication of TW201347043A publication Critical patent/TW201347043A/en
Application granted granted Critical
Publication of TWI596673B publication Critical patent/TWI596673B/en

Links

Abstract

A disclosed semiconductor device includes a semiconductor deposition layer formed over an insulation structure and above a substrate. The device includes a gate formed over a contact region between first and second implant regions in the semiconductor deposition layer. The first and second implant regions both have a first conductivity type, and the gate has a second conductivity type. The device may further include a second gate formed beneath the semiconductor deposition layer.

Description

半導體元件及其製造方法Semiconductor component and method of manufacturing same

本發明關於一種半導體技術,特別是關於一種接面場效應電晶體(Junction Field Effect Transistor, JEFT)元件及其製造方法。The present invention relates to a semiconductor technology, and more particularly to a Junction Field Effect Transistor (JEFT) device and a method of fabricating the same.

習知之接面場效應電晶體元件具有如第1圖所示之結構。第1圖所繪示之接面場效應電晶體元件100形成在例如是矽晶圓的一半導體基板102之上。基板102可藉由例如是擴散摻雜(diffusion doping)、離子佈值(ion implantation)或原位摻雜(in-situ doping)等佈值製程修飾,以引入P型摻雜物。一N井104形成在基板102中,提供使電荷在源極端與汲極端間流動之一通道。N井104可藉習知之佈值製程引入N型摻雜物形成。接面場效應電晶體元件100更包括多個第一佈值區106及多個第二佈值區108。此些第一佈值區各包括一高濃度之N型摻雜物,且各第一佈值區可作為源極或汲極。此些第二佈值區108各包括P型摻雜物,且各第二佈值區可作為閘極。The conventional junction field effect transistor element has a structure as shown in Fig. 1. The junction field effect transistor element 100 illustrated in FIG. 1 is formed over a semiconductor substrate 102 such as a germanium wafer. The substrate 102 can be modified by a fabric process such as diffusion doping, ion implantation, or in-situ doping to introduce a P-type dopant. An N-well 104 is formed in the substrate 102 to provide a path for the charge to flow between the source and drain terminals. The N-well 104 can introduce N-type dopant formation by a conventional fabric process. The junction field effect transistor component 100 further includes a plurality of first routing regions 106 and a plurality of second routing regions 108. Each of the first value regions includes a high concentration of N-type dopants, and each of the first value regions can serve as a source or a drain. The second value regions 108 each include a P-type dopant, and each of the second value regions can serve as a gate.

操作時,一正值之汲極至源極電壓(drain-source voltage, VDS)驅使N井104內之電荷由源極流向汲極。N井104之導電度可藉一負值之閘極至源極電壓(gate-source voltage, VGS)控制,此負值之VGS使每一PN接面感應形成空乏區(depletion region)。閘極至源極電壓VGS之值可調整至空乏區夾止(pinch off)電荷流動之通道,以關閉接面場效應電晶體元件100。此達成夾止的電壓稱為夾止電壓(pinch off voltage, VP)。當接面場效應電晶體元件整合於一積體電路中時,半導體基板雜訊之影響能改變VP,導致多個接面場效應電晶體元件之不一致與缺陷。因此,為容許更加精確的VP,有需要將接面場效應電晶體元件絕緣。During operation, a positive drain-source voltage (V DS ) drives the charge in the N-well 104 to flow from the source to the drain. The conductivity of the N-well 104 may be a negative value by the gate-to-source voltage (gate-source voltage, V GS ) control, this negative value of V GS that each PN junction depletion region induced formed (depletion region). The value of the gate-to-source voltage V GS can be adjusted to the channel where the depletion region pinch off the charge flow to close the junction field effect transistor element 100. The voltage at which this is clamped is referred to as a pinch off voltage (V P ). When the junction field effect transistor component is integrated in an integrated circuit, the influence of the semiconductor substrate noise can change V P , resulting in inconsistencies and defects of the plurality of junction field effect transistor components. Therefore, in order to allow for a more accurate V P , it is necessary to insulate the junction field effect transistor element.

一第一示範性實施例揭露一種半導體元件,包含一基板,一絕緣結構形成在基板上;以及一半導體沉積層,形成在絕緣結構上與基板之上,半導體沉積層具有一第一導電型。所揭露之半導體元件更包括一第一佈值區,形成在半導體沉積層中,第一佈值區具有第一導電型與較半導體沉積層高之摻雜濃度;以及一第二佈值區,形成在半導體沉積層中,第二佈值區具有第一導電型與較半導體沉積層高之摻雜濃度。所揭露之半導體元件更包括一金屬接觸層,形成在半導體沉積層之第一佈值區與半導體沉積層之第二佈值區間的一接觸區上,藉以在金屬接觸層與半導體沉積層之接觸區間形成一接面,其中此接面為一蕭特基能障(Schottky barrier)。A first exemplary embodiment discloses a semiconductor device including a substrate, an insulating structure formed on the substrate, and a semiconductor deposited layer formed over the insulating structure and the substrate, the semiconductor deposited layer having a first conductivity type. The disclosed semiconductor device further includes a first layout region formed in the semiconductor deposition layer, the first layout region having a first conductivity type and a higher doping concentration than the semiconductor deposition layer; and a second layout region, Formed in the semiconductor deposited layer, the second value region has a higher doping concentration than the first conductive type and the semiconductor deposited layer. The disclosed semiconductor device further includes a metal contact layer formed on a contact region of the first layout region of the semiconductor deposition layer and the second layout region of the semiconductor deposition layer, thereby contacting the metal contact layer with the semiconductor deposition layer The interval forms a junction, wherein the junction is a Schottky barrier.

一第二示範性實施例揭露一種半導體元件,包含一基板,一第一絕緣結構形成在基板上,以及一第一半導體沉積層形成在第一絕緣結構上。所揭露之半導體元件更包括一第二絕緣結構形成在第一半導體沉積層上,一第二半導體沉積層形成在第二絕緣結構上,第二半導體沉積層具有一導電型。所揭露之半導體元件可包括一第一佈值區形成在第二半導體沉積層中,第一佈值區具有導電型與較第二半導體沉積層高之摻雜濃度;以及一第二佈值區形成在第二半導體沉積層中,第二佈值區具有導電型與較第二半導體沉積層高之摻雜濃度。一金屬接觸層形成在第二半導體沉積層之第一佈值區與第二半導體沉積層之第二佈值區間的一接觸區上,藉以在金屬層與第二半導體沉積層之接觸區形成一接面,其中此接面為一蕭特基能障。A second exemplary embodiment discloses a semiconductor device including a substrate, a first insulating structure formed on the substrate, and a first semiconductor deposited layer formed on the first insulating structure. The disclosed semiconductor device further includes a second insulating structure formed on the first semiconductor deposited layer, a second semiconductor deposited layer formed on the second insulating structure, and the second semiconductor deposited layer having a conductive type. The disclosed semiconductor device can include a first routing region formed in the second semiconductor deposition layer, the first routing region having a conductivity type and a higher doping concentration than the second semiconductor deposition layer; and a second routing region Formed in the second semiconductor deposition layer, the second value region has a conductivity type and a higher doping concentration than the second semiconductor deposition layer. a metal contact layer is formed on a contact region of the first routing region of the second semiconductor deposition layer and the second routing region of the second semiconductor deposition layer, thereby forming a contact region between the metal layer and the second semiconductor deposition layer The junction, wherein the junction is a Schottky barrier.

本發明揭露之半導體元件的相關製造方法亦有所揭露。Related manufacturing methods of the semiconductor device disclosed in the present invention are also disclosed.

第2圖繪示一接面場效應電晶體元件200之剖面圖,其能夠降低雜訊以及增加夾止之銳利度(sharpness)。接面場效應電晶體元件200包括一基板202及一絕緣結構204,絕緣結構204形成在基板202上。絕緣結構204可用以實質上保護其上之結構免於其下方基板之雜訊影響與干擾。絕緣結構204可包括一場氧化層206(field oxide, FOX),形成在基板202上,在一些實施例中,更可包括一高溫氧化層208(high temperature oxide, HTO)形成在場氧化層206之上。場氧化層206與高溫氧化層208可以習知之標準光罩及熱氧化技術形成。舉例來說,可以局部矽氧化(local oxidation of silicon, LOCOS)製程形成場氧化層206。可重複相同之製程以形成高溫氧化層208。LOCOS之示範性技術包括淺溝槽隔離(shallow trench isolation, STI)或絕緣層上覆矽(silicon on insulator, SOI)。儘管數值可能變動,場氧化層可具有範圍1000埃(angstrom)-10000埃間之厚度,最佳約為5000埃,而高溫氧化層208可具有120埃-400埃間之厚度,最佳約為300埃。2 is a cross-sectional view of a junction field effect transistor element 200 that reduces noise and increases the sharpness of the pinch. The junction field effect transistor device 200 includes a substrate 202 and an insulating structure 204 formed on the substrate 202. The insulating structure 204 can be used to substantially protect the structure thereon from the effects of noise and interference from the underlying substrate. The insulating structure 204 may include a field oxide layer (FOX) formed on the substrate 202. In some embodiments, a high temperature oxide layer 208 (HTO) may be formed on the field oxide layer 206. on. Field oxide layer 206 and high temperature oxide layer 208 can be formed by standard photomasking and thermal oxidation techniques. For example, the field oxide layer 206 can be formed by a local oxidation of silicon (LOCOS) process. The same process can be repeated to form the high temperature oxide layer 208. Exemplary techniques for LOCOS include shallow trench isolation (STI) or silicon on insulator (SOI). Although the values may vary, the field oxide layer may have a thickness ranging from 1000 angstroms to 10,000 angstroms, preferably about 5000 angstroms, and the high temperature oxide layer 208 may have a thickness between 120 angstroms and 400 angstroms, preferably about 300 angstroms.

在絕緣結構204下方,一第一井區210可形成於絕緣結構204下方之基板210內。在第2圖繪示之實施例中,基板202包括P型摻雜物,但在另一實施例中,基板202可包括N型摻雜物。在任一實施例中,第一井區210可為一P井或一N井。Below the insulating structure 204, a first well region 210 can be formed within the substrate 210 below the insulating structure 204. In the embodiment depicted in FIG. 2, substrate 202 includes a P-type dopant, but in another embodiment, substrate 202 can include an N-type dopant. In either embodiment, the first well region 210 can be a P well or an N well.

在絕緣結構204上方,可藉由一沉積製程形成一半導體沉積層212於絕緣結構204上。半導體沉積層212可具有一第一導電型,使電荷由源極214流向汲極216。半導體沉積層212之導電度可藉由閘極218控制。以下將以第3圖更加詳細說明接面場效應電晶體元件200之結構。A semiconductor deposition layer 212 is formed over the insulating structure 204 by a deposition process over the insulating structure 204. The semiconductor deposition layer 212 can have a first conductivity type that causes charge to flow from the source 214 to the drain 216. The conductivity of the semiconductor deposition layer 212 can be controlled by the gate 218. The structure of the junction field effect transistor element 200 will be described in more detail below with reference to FIG.

第3圖為接面場效應電晶體元件200之局部視圖。半導體沉積層212可為藉標準製程製造之一多晶矽層,且如同上述討論,半導體沉積層212可藉由佈值製程修飾以具有一第一導電型,此第一導電型可為N型或P型。在一實施例中,半導體沉積層212可藉沉積多晶矽形成,例如是三氯氧磷(phosphoryl chloride, POCl之N型摻雜物可在多晶矽沉積時藉原位摻雜(in-situ doping)引入。在一實施例中,POCl3之濃度大約為1*1011/cm2。亦可使用例如是磷(phosphorous, P)等其他的N型摻雜物。在另一實施例中,可藉由離子佈值(ion implantation)之擴散摻雜(diffusion doping )或原位摻雜引入N型摻雜物。在又一實施例中,亦可以與引入N型摻雜物相同的製程於半導體沉積層212中引入P型摻雜物。一P型摻雜物的例子為硼(boron, B)。Figure 3 is a partial view of the junction field effect transistor element 200. The semiconductor deposition layer 212 may be a polysilicon layer manufactured by a standard process, and as discussed above, the semiconductor deposition layer 212 may be modified by a fabric process to have a first conductivity type, and the first conductivity type may be N type or P. type. In one embodiment, the semiconductor deposition layer 212 may be formed by depositing polycrystalline germanium, for example, phosphorous chloride (N-type dopant of POCl may be introduced by in-situ doping during polycrystalline germanium deposition). In one embodiment, the concentration of POCl 3 is about 1*10 11 /cm 2 . Other N-type dopants such as phosphorus (P) may also be used. In another embodiment, The N-type dopant is introduced by diffusion doping or in-situ doping of the ion implantation. In still another embodiment, the same process as the introduction of the N-type dopant may be applied to the semiconductor sink. A P-type dopant is introduced into the buildup 212. An example of a P-type dopant is boron (Bordon, B).

一第一佈值區214可形成在半導體沉積層212中,此第一佈值區具有第一導電型且摻雜濃度較半導體沉積層212為高。第一佈值區214可標示為源極214。一第二佈值區216可形成在半導體沉積層212中,此第二佈值區具有第一導電型且摻雜濃度較半導體沉積層212為高。第二佈值區216可標示為汲極216。A first value region 214 may be formed in the semiconductor deposition layer 212, the first value region having a first conductivity type and having a higher doping concentration than the semiconductor deposition layer 212. The first value area 214 can be labeled as source 214. A second routing region 216 can be formed in the semiconductor deposition layer 212, the second routing region having a first conductivity type and having a higher doping concentration than the semiconductor deposition layer 212. The second value area 216 can be labeled as a drain 216.

在第3圖所示之示範性實施例中,第一導電型為N型,而半導體沉積層212可運作提供一N通道使電荷在第一N+佈值區214與第二N+佈值區216間流動。在另一實施例中,第一導電型可為P型,而半導體沉積層212可運作提供一P通道使電荷在第一P+摻雜區214與第二P+摻雜區216間流動。In the exemplary embodiment illustrated in FIG. 3, the first conductivity type is N-type, and the semiconductor deposition layer 212 is operable to provide an N-channel for charge in the first N+-valued region 214 and the second N+-valued region 216. Flow between. In another embodiment, the first conductivity type can be P-type, and the semiconductor deposition layer 212 can operate to provide a P-channel to cause charge to flow between the first P+ doped region 214 and the second P+ doped region 216.

除半導體沉積層212之外,接面場效應電晶體元件200更可包括一金屬接觸層218,形成在半導體沉積層212之一接觸區220上,此接觸區220位於第一佈值區214與第二佈值區216間。金屬接觸層218可包括一適合之金屬,使金屬接觸層218與半導體沉積層212之接觸區220間的接面作為蕭特基能障(Schottky barrier)。依據半導體沉積層212是包括N型或P型摻雜物,蕭特基能障可分別當作P型閘極或N型閘極使用。如上所述之金屬接觸層218可標示為閘極218。為形成一P型閘極,金屬接觸層218可包括適當的金屬如鈦、鎢、鎳、鉑、鋁、金或鈷。為形成一N型閘極,金屬接觸層218可包括適當的金屬如鉑(Pt)。In addition to the semiconductor deposition layer 212, the junction field effect transistor device 200 further includes a metal contact layer 218 formed on one of the contact regions 220 of the semiconductor deposition layer 212. The contact region 220 is located in the first value region 214 and The second cloth value area is 216. The metal contact layer 218 can include a suitable metal such that the junction between the metal contact layer 218 and the contact region 220 of the semiconductor deposition layer 212 acts as a Schottky barrier. Depending on whether the semiconductor deposition layer 212 includes N-type or P-type dopants, the Schottky barrier can be used as a P-type gate or an N-type gate, respectively. Metal contact layer 218 as described above may be labeled as gate 218. To form a P-type gate, the metal contact layer 218 can comprise a suitable metal such as titanium, tungsten, nickel, platinum, aluminum, gold or cobalt. To form an N-type gate, the metal contact layer 218 can comprise a suitable metal such as platinum (Pt).

可運作閘極218以控制半導體沉積層212之通道的導電度。操作時,正值之汲極至源極電壓(drain-source voltage, VDS)使電荷由半導體沉積層212之源極214流入汲極216。半導體沉積層212之導電度可藉由負值之閘極至源極電壓(gate-source voltage, VGS)控制,此負值之VGS在接觸區220內或其周圍感應形成空乏區(depletion region)。VGS之值可調整至空乏區夾止(pinch off)電荷流動之通道,以關閉接面場效應電晶體元件200。根據半導體沉積層之厚度,此夾止電壓(pinch off voltage, VP)可能變動。在一示範性實施例中,半導體沉積層厚度之範圍可使VP在0.7-30伏特之間。在另一實施例中,半導體沉積層之厚度範圍可在500埃-6000埃之間。The gate 218 can be operated to control the conductivity of the channel of the semiconductor deposition layer 212. In operation, a positive drain-source voltage (V DS ) causes charge to flow from the source 214 of the semiconductor deposition layer 212 into the drain 216. The conductivity of the semiconductor deposition layer 212 can be controlled by a negative gate-source voltage (V GS ), and the negative V GS induces a depletion region in or around the contact region 220 (depletion) Region). The value of V GS can be adjusted to the channel where the depletion region pinch off the charge flow to close the junction field effect transistor element 200. The pinch off voltage (V P ) may vary depending on the thickness of the semiconductor deposited layer. In an exemplary embodiment, the range of thickness of the semiconductor layer can be deposited between 0.7-30 volts V P. In another embodiment, the thickness of the semiconductor deposited layer can range from 500 angstroms to 6,000 angstroms.

藉由在絕緣結構204上形成金屬接觸層218與半導體沉積層212,實質上減少了源自基板202之雜訊與干擾,又能藉由閘極218與更加精確的VP,增進對半導體沉積層212之導電度的控制。所揭露結構的另一優點是,位於絕緣結構204之下的第一井區210可以用於容納其他可能沒有空間在接面場效應電晶體中形成PN接面的元件。By forming the metal contact layer 218 and the semiconductor deposition layer 212 on the insulating structure 204, the noise and interference originating from the substrate 202 are substantially reduced, and the semiconductor sink can be enhanced by the gate 218 and the more accurate V P . Control of the conductivity of the buildup 212. Another advantage of the disclosed structure is that the first well region 210 below the insulating structure 204 can be used to accommodate other components that may have no space to form a PN junction in the junction field effect transistor.

第4圖繪示具三維閘極結構之接面場效應電晶體元件300的正視圖。接面場效應電晶體元件300包括一基板302以及一第一絕緣結構304,第一絕緣結構304形成在基板上。類似於第2圖及第3圖討論之絕緣結構204,第一絕緣結構304可用以實質上保護其上之結構免於其下方基板302之雜訊影響與干擾。第一絕緣結構304可包括一場氧化層306,形成在基板302上。在一些實施例中,第一絕緣結構304更可包括一閘極氧化層308,設置在場氧化層306上。場氧化層306及閘極氧化層308可以習知之標準光罩及熱氧化技術形成。Figure 4 is a front elevational view of a junction field effect transistor element 300 having a three dimensional gate structure. The junction field effect transistor element 300 includes a substrate 302 and a first insulating structure 304 formed on the substrate. Similar to the insulating structure 204 discussed in Figures 2 and 3, the first insulating structure 304 can be used to substantially protect the structure thereon from the effects of noise and interference from the underlying substrate 302. The first insulating structure 304 can include a field oxide layer 306 formed on the substrate 302. In some embodiments, the first insulating structure 304 further includes a gate oxide layer 308 disposed on the field oxide layer 306. Field oxide layer 306 and gate oxide layer 308 can be formed using conventional photomasks and thermal oxidation techniques.

接面場效應電晶體元件300更包括形成在第一絕緣結構304上之一第一半導體沉積層310,形成在第一半導體沉積層310上之一第二絕緣結構312,以及形成在第二絕緣結構312上之一第二半導體沉積層314。第5圖為接面場效應電晶體元件300中,形成於第一絕緣結構304之上結構的部份視圖。在一實施例中,第一半導體沉積層310與第二半導體沉積層314可如第5圖所示,分別向第一長軸320與第二長軸322延伸。在一示範性實施例中,第一長軸320實質上正交於第二長軸322,但在另一實施例中,第一長軸320與第二長軸可調準成一角度。第一半導體沉積層310可包括N型或P型摻雜物之任一種,以提供形成三維閘極結構時所需的導電度,以下將詳加敘述。在一實施例中,第一半導體沉積層可用矽化鎢WSi與矽化鈷CoSi沉積,以形成可降低第一半導體沉積層310電阻之矽化物。絕緣結構312可為如第2圖及第3圖之實施例所述之一高溫氧化層208。The junction field effect transistor element 300 further includes a first semiconductor deposition layer 310 formed on the first insulation structure 304, a second insulation structure 312 formed on the first semiconductor deposition layer 310, and a second insulation formed thereon. A second semiconductor deposition layer 314 on structure 312. FIG. 5 is a partial view of the structure formed on the first insulating structure 304 in the junction field effect transistor element 300. In one embodiment, the first semiconductor deposition layer 310 and the second semiconductor deposition layer 314 may extend toward the first long axis 320 and the second long axis 322, respectively, as shown in FIG. In an exemplary embodiment, the first major axis 320 is substantially orthogonal to the second major axis 322, but in another embodiment, the first major axis 320 is adjustable at an angle to the second major axis. The first semiconductor deposition layer 310 can include any of N-type or P-type dopants to provide the conductivity required to form a three-dimensional gate structure, as will be described in more detail below. In one embodiment, the first semiconductor deposited layer may be deposited with tungsten telluride WSi and cobalt telluride CoSi to form a germanide that reduces the resistance of the first semiconductor deposited layer 310. The insulating structure 312 can be a high temperature oxide layer 208 as described in the embodiments of FIGS. 2 and 3.

此外,第二半導體沉積層314可實質上類似於第2圖及第3圖之實施例所述之半導體沉積層212。第二半導體沉積層314可為一藉由標準製程製造之多晶矽層,且可藉由佈值製程修飾以具有一第一導電型,此第一導電型可為N型或P型。在第6圖所繪示之一示範性實施例中,第二半導體沉積層314可藉由沉積多晶矽於第一絕緣結構304及第二絕緣結構312上形成,而N型摻雜物可在沉積多晶矽時,藉原位摻雜佈值在第二半導體沉積層314中。在另一實施例中,可藉離子佈值之擴散摻雜或原位摻雜引入N型摻雜物。在又一實施例中,可用P型摻雜物取代N型摻雜物,以相同的製程引入第二半導體沉積層314中。Additionally, the second semiconductor deposition layer 314 can be substantially similar to the semiconductor deposition layer 212 described in the embodiments of FIGS. 2 and 3. The second semiconductor deposition layer 314 can be a polysilicon layer manufactured by a standard process, and can be modified by a fabric process to have a first conductivity type, and the first conductivity type can be N-type or P-type. In an exemplary embodiment illustrated in FIG. 6, the second semiconductor deposition layer 314 may be formed by depositing polysilicon on the first insulating structure 304 and the second insulating structure 312, and the N-type dopant may be deposited. In the case of polysilicon, the in-situ doping value is in the second semiconductor deposition layer 314. In another embodiment, the N-type dopant can be introduced by diffusion doping or in-situ doping of ion cloth values. In yet another embodiment, the N-type dopant can be replaced with a P-type dopant and introduced into the second semiconductor deposition layer 314 in the same process.

請參照第4至第6圖,一第一佈值區316可形成在第二半導體沉積層314中,此第一佈值區316具有與第二半導體沉積層314相同之導電型與較第二半導體沉積層314高之摻雜濃度。第一佈值區316可標示為源極S。一第二佈值區318可形成在第二半導體沉積層314中,此第二佈值區318具有與第二半導體沉積層314相同之導電型與較第二半導體沉積層314高之摻雜濃度。第二佈值區318可標示為汲極D。Referring to FIGS. 4-6, a first layout region 316 may be formed in the second semiconductor deposition layer 314. The first layout region 316 has the same conductivity type and second as the second semiconductor deposition layer 314. The semiconductor deposition layer 314 has a high doping concentration. The first value area 316 can be labeled as source S. A second layout region 318 may be formed in the second semiconductor deposition layer 314, the second layout region 318 having the same conductivity type as the second semiconductor deposition layer 314 and a higher doping concentration than the second semiconductor deposition layer 314. . The second value area 318 can be labeled as the drain D.

接面場效應電晶體元件300包括一金屬接觸層,形成在第二半導體沉積層314之一接觸區326上,此接觸區326位於第一佈值區316與第二佈值區318間。類似於金屬接觸層218,金屬接觸層324可包括一適當之金屬,使金屬接觸層324與第二半導體沉積層314之接觸區326間的接面作為一蕭特基能障。金屬接觸層324可圍繞第二半導體沉積層314,且不與第一半導體沉積層接觸。根據第二半導體沉積層314包括N型或P型摻雜物,蕭特基能障可分別當作P型閘極或N型閘極使用。如上所述之金屬接觸層324可標示為閘極324。The junction field effect transistor element 300 includes a metal contact layer formed on a contact region 326 of the second semiconductor deposition layer 314, the contact region 326 being located between the first value region 316 and the second value region 318. Similar to the metal contact layer 218, the metal contact layer 324 can include a suitable metal such that the junction between the metal contact layer 324 and the contact region 326 of the second semiconductor deposition layer 314 acts as a Schottky barrier. Metal contact layer 324 may surround second semiconductor deposition layer 314 and be out of contact with the first semiconductor deposition layer. According to the second semiconductor deposition layer 314 including N-type or P-type dopants, the Schottky barrier can be used as a P-type gate or an N-type gate, respectively. Metal contact layer 324 as described above may be labeled as gate 324.

佈值N型或P型摻雜物後,第二半導體沉積層314之導電度容許電荷自源極316流向汲極318。第二半導體沉積層314之導電度可藉閘極324與第一半導體沉積層310兩者控制。獨立執行時,閘極324可以一負值之第一閘極至源極電壓VGS1控制第二半導體沉積層314之導電度,此VGS1在接觸區326內或其周圍感應一第一空乏區。VGS1之值可調整至空乏區夾止(pinch off)電荷流動之通道,以關閉接面場效應電晶體元件300。不過,第一半導體沉積層300與第二絕緣結構312可作為一第二閘極,在第二半導體沉積層314中運作以形成一第二空乏區。第二空乏區可藉由在與第一半導體沉積層310連接之電極(未繪示)上,另外施加一負值之第二閘極至源極電壓VGS2形成。除了第一絕緣結構304所造成的改進,第一空乏區與第二空乏區可互相作用,不但可更佳的控制VP,更能增進夾止之精確度(precision)。After the value of the N-type or P-type dopant, the conductivity of the second semiconductor deposition layer 314 allows charge to flow from the source 316 to the drain 318. The conductivity of the second semiconductor deposition layer 314 can be controlled by both the gate 324 and the first semiconductor deposition layer 310. When executed independently, the first shutter gate 324 can be of a negative-to-source voltage V GS1 control of the second conductive semiconductor layer 314 is deposited, this V GS1 in the contact region 326, or a first depletion region induced around . The value of V GS1 can be adjusted to the channel of the pinch region pinch off charge flow to close the junction field effect transistor element 300. However, the first semiconductor deposition layer 300 and the second insulating structure 312 can function as a second gate in the second semiconductor deposition layer 314 to form a second depletion region. The second depletion region can be formed by additionally applying a negative second gate to source voltage V GS2 on an electrode (not shown) connected to the first semiconductor deposition layer 310. In addition to the improvement caused by the first insulating structure 304, the first depletion region and the second depletion region can interact with each other, which not only better controls the V P but also improves the precision of the pinch.

藉由增進夾止電壓之控制性與精確度,本發明揭露之接面場效應電晶體元件可在積體電路(IC)上達成更多不同的改善。舉例來說,近年來,考慮到本發明揭露之接面場效應電晶體元件之高轉換效率以及低待機功耗,特別適用在綠色科技的發展。一切換式之電源IC包括一集成式啟動電路以及一脈寬調變(Pulse Width Moldulation, PWM)電路。第7圖繪示一傳統之高壓啟動電路400,其啟動後電阻410仍持續產生功耗。電阻410可選自能提供充電電流(charging curremt, IIC)至電容420,且能使脈寬調變電路啟動運作的種類。脈寬調變電路430持續運作直到其電壓VCC低於最小運作電壓,接著一輔助電流Iaux施加於脈寬調變電路上。脈寬調變電路430一般在10V-30V之間運作。為降低功耗,啟動電路之電阻410可以HV depletion(高壓空乏式)MOS或HV JEFT元件取代。不過,一HV depletion NMOS在臨界電壓處(<-4V)具有大的漏電流(>100μA)。一HV JEFT需要大的漂浮區(drift region)以形成降低表面場(reduced surface field, RESURF),因此HV JEFT之夾止特徵缺乏精確性。By improving the controllability and precision of the pinch-off voltage, the junction field effect transistor elements disclosed herein can achieve more different improvements in integrated circuits (ICs). For example, in recent years, in view of the high conversion efficiency and low standby power consumption of the junction field effect transistor element disclosed in the present invention, it is particularly suitable for the development of green technology. A switched power IC includes an integrated startup circuit and a Pulse Width Moldulation (PWM) circuit. Figure 7 illustrates a conventional high voltage startup circuit 400 that continues to generate power dissipation after startup. The resistor 410 can be selected from the group that can provide a charging curremt ( IC ) to the capacitor 420 and enable the pulse width modulation circuit to operate. The pulse width modulation circuit 430 continues to operate until its voltage V CC is below the minimum operating voltage, and then an auxiliary current I aux is applied to the pulse width modulation circuit. Pulse width modulation circuit 430 typically operates between 10V and 30V. To reduce power consumption, the resistor 410 of the startup circuit can be replaced by an HV depletion (MOS) or HV JEFT component. However, an HV depletion NMOS has a large leakage current (>100μA) at the threshold voltage (<-4V). A HV JEFT requires a large drift region to form a reduced surface field (RESURF), so the pinch feature of the HV JEFT lacks accuracy.

第8圖繪示包括本發明揭露之接面場效應電晶體元件510的一示範性電路500。接面場效應電晶體元件510可為任何根據本發明揭露原理之接面場效應電晶體組態。除了接面場效應電晶體元件510之外,電路500更包括一脈寬調變電路520,HV depletion MOS 530,以及二極體540。操作時,啟動期間之源極至閘極電壓VS小於接面場效應電晶體元件之夾止電壓VP,且接面場效應電晶體元件呈現低電阻。一示範性夾止電壓VP約為15伏特。當接面場效應電晶體元件呈現低電阻時,具有一示範性臨界電壓(threshold voltage, Vth)-3V之HV depletion MOS 530,可提供脈寬調變電路520運作以及電容450充電需要之電流,直到接面場效應電晶體元件510之VS達到夾止電壓Vp。當VS高於夾止電壓VP時,接面場效應電晶體元件510之電阻會大量的增高,同時汲極至源極電壓仍保持與夾止電壓VP相同。當VS高於夾止電壓VP一臨界電壓Vth時,MOS 530將會關閉。例如在一示範性實施例中,夾止電壓VP約為15V而臨界電壓Vth為-3V。第9圖之圖表繪示,在此實施例中,當VS高於夾止電壓VP約15V時,因接面場效應電晶體元件510之電阻增加,來自MOS 530之電流(ID)開始降低。當VS達到18V時,也就是高於夾止電壓VP一臨界電壓Vth,來自MOS 530之電流ID將停止。請參照第8圖,在脈寬調變啟動後,Iaux可用以充電電容550。因此,能精確控制夾止電壓VP之接面場效應電晶體元件510,可降低HV depletion MOS 530之漏電流及增加效率。FIG. 8 illustrates an exemplary circuit 500 including a junction field effect transistor element 510 of the present disclosure. Junction field effect transistor element 510 can be any junction field effect transistor configuration in accordance with the disclosed principles. In addition to the junction field effect transistor element 510, the circuit 500 further includes a pulse width modulation circuit 520, an HV depletion MOS 530, and a diode 540. In operation, the source during startup of the extreme gate voltage V S is less than the junction field effect transistor device of the pinch voltage V P, and the junction field effect transistor device exhibits a low resistance. An exemplary pinch voltage V P is approximately 15 volts. When the junction field effect transistor element exhibits low resistance, an HV depletion MOS 530 having an exemplary threshold voltage (V th ) -3 V can provide the operation of the pulse width modulation circuit 520 and the charging of the capacitor 450. The current is until the V S of the junction field effect transistor element 510 reaches the pinch voltage V p . When V S is higher than the pinch-off voltage V P , the resistance of the junction field effect transistor element 510 is greatly increased, while the drain-to-source voltage remains the same as the pinch-off voltage V P . When V S is higher than the pinch voltage V P by a threshold voltage V th , the MOS 530 will be turned off. For example, in an exemplary embodiment, the pinch-off voltage V P is about 15V and the threshold voltage V th is -3V. The graph of Fig. 9 shows that in this embodiment, when V S is higher than the clamping voltage V P by about 15 V, the current from the MOS 530 (I D ) increases due to the resistance of the junction field effect transistor element 510. Start to lower. When V S reaches 18V, that is, above the pinch voltage V P - a threshold voltage V th , the current I D from the MOS 530 will stop. Referring to FIG. 8, after the pulse width modulation is started, I aux can be used to charge the capacitor 550. Therefore, the junction field effect transistor element 510 capable of accurately controlling the pinch-off voltage V P can reduce the leakage current of the HV depletion MOS 530 and increase the efficiency.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明並不限於所揭露之特定實施例,且應包含在本發明之精神和範圍內所做之更動與潤飾,本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed above by way of example, it is not intended to limit the invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the invention is not limited to the specific embodiments disclosed, and the modifications and modifications are intended to be included within the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims. .

100、200、300...接面場效應電晶體元件100, 200, 300. . . Junction field effect transistor component

102、202、302...基板102, 202, 302. . . Substrate

104...N井104. . . N well

106...第一佈值區106. . . First value area

108...第二佈值區108. . . Second value area

204...絕緣結構204. . . Insulation structure

206、306...場氧化層206, 306. . . Field oxide layer

208...高溫氧化層208. . . High temperature oxide layer

210...第一井區210. . . First well area

212...半導體沉積層212. . . Semiconductor deposit

214、S...源極214, S. . . Source

216、D...汲極216, D. . . Bungee

218、324...金屬接觸層218, 324. . . Metal contact layer

220、326...接觸區220, 326. . . Contact area

304...第一絕緣結構304. . . First insulation structure

308...閘極氧化層308. . . Gate oxide layer

310...第一半導體沉積層310. . . First semiconductor deposition layer

312...第二絕緣結構312. . . Second insulation structure

314...第二半導體沉積層314. . . Second semiconductor deposition layer

316...第一佈值區,源極316. . . First value area, source

318...第二佈值區,汲極318. . . Second value area, bungee

320...第一長軸320. . . First long axis

322...第二長軸322. . . Second long axis

400、500...電路400, 500. . . Circuit

410...電阻410. . . resistance

420、550...電容420, 550. . . capacitance

430、520...脈寬調變電路430, 520. . . Pulse width modulation circuit

530...HV depletion MOS530. . . HV depletion MOS

540...二極體540. . . Dipole

ID...來自MOS之電流I D . . . Current from MOS

IIC...充電電流I IC . . . recharging current

IAUX...輔助電流I AUX . . . Auxiliary current

VZ...崩潰電壓V Z . . . Crash voltage

VCC...供電電壓V CC . . . Supply voltage

VS...源極至閘極電壓V S . . . Source to gate voltage

Vss...源極電壓V ss . . . Source voltage

Vgg...閘極電壓V gg . . . Gate voltage

第1圖繪示一種傳統接面場效應電晶體元件之剖面圖。Figure 1 is a cross-sectional view showing a conventional junction field effect transistor element.

第2圖繪示根據本發明揭露之一種接面場效應電晶體元件的剖面圖。2 is a cross-sectional view of a junction field effect transistor element in accordance with the present invention.

第3圖繪示第2圖之接面場效應電晶體元件之特定結構的局部視圖。Fig. 3 is a partial view showing a specific structure of the junction field effect transistor element of Fig. 2.

第4圖繪示具三維閘極結構之接面場效應電晶體元件300的正視圖。Figure 4 is a front elevational view of a junction field effect transistor element 300 having a three dimensional gate structure.

第5圖繪示第4圖之接面場效應電晶體元件之一實施例的局部視圖。Figure 5 is a partial elevational view of one embodiment of the junction field effect transistor element of Figure 4.

第6圖繪示第4圖之接面場效應電晶體元件之另一實施例的局部視圖。Figure 6 is a partial elevational view of another embodiment of the junction field effect transistor component of Figure 4.

第7圖繪示一包括電阻的傳統電路。Figure 7 illustrates a conventional circuit including a resistor.

第8圖繪示包含本發明揭露之接面場效應電晶體元件之電路的一實施例。FIG. 8 illustrates an embodiment of a circuit including a junction field effect transistor component disclosed herein.

第9圖繪示第8圖之一實施例中,接面場效應電晶體元件之源極至閘極電壓與MOS元件之汲極電壓的關係。Figure 9 is a diagram showing the relationship between the source-to-gate voltage of the junction field effect transistor element and the drain voltage of the MOS device in one embodiment of Fig. 8.

300...接面場效應電晶體元件300. . . Junction field effect transistor component

302...基板302. . . Substrate

304...第一絕緣結構304. . . First insulation structure

308...閘極氧化層308. . . Gate oxide layer

310...第一半導體沉積層310. . . First semiconductor deposition layer

312...第二絕緣結構312. . . Second insulation structure

314...第二半導體沉積層314. . . Second semiconductor deposition layer

Claims (10)

一種半導體元件,包括:
一基板;
一絕緣結構,形成在該基板上;
一半導體沉積層,形成在該絕緣結構上及該基板之上,該半導體沉積層具有一第一導電型;
一第一佈值區,形成在該半導體沉積層中,該第一佈值區具有該第一導電型與較該半導體沉積層高之摻雜濃度;
一第二佈值區,形成在該半導體沉積層中,該第二佈值區具有該第一導電型與較該半導體沉積層高之摻雜濃度;以及
一金屬接觸層,形成在該半導體沉積層之一接觸區上,該接觸區位於該第一佈值區與該第二佈值區之間,一接面形成在該金屬接觸層與該半導體沉積層之該接觸區之間,其中此接面為一蕭特基能障(Schottky barrier)。
A semiconductor component comprising:
a substrate;
An insulating structure formed on the substrate;
a semiconductor deposition layer formed on the insulating structure and over the substrate, the semiconductor deposition layer having a first conductivity type;
a first value region formed in the semiconductor deposition layer, the first value region having the first conductivity type and a higher doping concentration than the semiconductor deposition layer;
a second layout region formed in the semiconductor deposition layer, the second layout region having the first conductivity type and a higher doping concentration than the semiconductor deposition layer; and a metal contact layer formed on the semiconductor sink a contact region located between the first value region and the second value region, and a junction formed between the metal contact layer and the contact region of the semiconductor deposition layer, wherein The junction is a Schottky barrier.
如申請專利範圍第1項所述之半導體元件,其中該絕緣結構包括一場氧化層(field oxide layer)。The semiconductor component of claim 1, wherein the insulating structure comprises a field oxide layer. 如申請專利範圍第2項所述之半導體元件,其中該絕緣結構更包括一高溫氧化層,設置在該氧化層之上。The semiconductor device of claim 2, wherein the insulating structure further comprises a high temperature oxide layer disposed over the oxide layer. 如申請專利範圍第1項所述之半導體元件,更包括一第一井區,形成在該基板中,其中該第一井區位於該絕緣結構之下方,且該第一井區具有該第一導電型或一第二導電型。The semiconductor device of claim 1, further comprising a first well region formed in the substrate, wherein the first well region is located below the insulating structure, and the first well region has the first Conductive or a second conductivity type. 如申請專利範圍第1項所述之半導體元件,其中該半導體沉積層包括一多晶矽層。The semiconductor device of claim 1, wherein the semiconductor deposited layer comprises a polysilicon layer. 如申請專利範圍第1項所述之半導體元件,其中該第一導電型為N型,且該蕭特基能障可作為一P型閘極。The semiconductor device of claim 1, wherein the first conductivity type is N-type, and the Schottky barrier can function as a P-type gate. 如申請專利範圍第1項所述之半導體元件,其中該第一導電型為P型,且該蕭特基能障可作為一N型閘極。The semiconductor device according to claim 1, wherein the first conductivity type is a P type, and the Schottky barrier can function as an N-type gate. 一種半導體元件,包括:
一基板;
一第一絕緣結構形成在該基板上;
一第一半導體沉積層形成在該第一絕緣結構上;
一第二絕緣結構,形成在該第一半導體沉積層上;
一第二半導體沉積層,形成在該第二絕緣結構上,該第二半導體沉積層具有一導電型;
一第一佈值區,形成在該第二半導體沉積層中,該第一佈值區具有該導電型與較該第二半導體沉積層高之摻雜濃度;
一第二佈值區,形成在該第二半導體沉積層中,該第二佈值區具有該導電型與較該第二半導體沉積層高之摻雜濃度;以及,
一金屬接觸層,形成在該第二半導體沉積層之一接觸區上,該接觸區位於該第一佈值區與該第二佈值區之間,一接面形成在該金屬接觸層與該第二半導體沉積層之該接觸區之間,其中此接面為一蕭特基能障。
A semiconductor component comprising:
a substrate;
a first insulating structure is formed on the substrate;
a first semiconductor deposition layer is formed on the first insulation structure;
a second insulating structure formed on the first semiconductor deposited layer;
a second semiconductor deposition layer formed on the second insulation structure, the second semiconductor deposition layer having a conductivity type;
a first routing region formed in the second semiconductor deposition layer, the first routing region having the conductivity type and a higher doping concentration than the second semiconductor deposition layer;
a second routing region formed in the second semiconductor deposition layer, the second routing region having the conductivity type and a higher doping concentration than the second semiconductor deposition layer;
a metal contact layer formed on a contact region of the second semiconductor deposition layer, the contact region being located between the first layout region and the second layout region, a junction formed on the metal contact layer and the Between the contact regions of the second semiconductor deposition layer, wherein the junction is a Schottky barrier.
如申請專利範圍第8項所述之半導體元件,其中該第一絕緣結構包括一場氧化層以及一閘極氧化層,該閘極氧化層設置於該場氧化層之上。The semiconductor device of claim 8, wherein the first insulating structure comprises a field oxide layer and a gate oxide layer, the gate oxide layer being disposed on the field oxide layer. 一種半導體元件之製造方法,包括:
在一基板上形成一絕緣結構;
在該基板之上及該絕緣結構上形成一半導體沉積層,該半導體沉積層具有一第一導電型;
在該半導體沉積層中形成一第一佈值區,該第一佈值區具有該第一導電型以及較該半導體沉積層高之摻雜濃度;
在該半導體沉積層中形成一第二佈值區,該第二佈值區具有該第一導電型以及較該半導體沉積層高之摻雜濃度;
在該第二半導體沉積層之一接觸區上形成一金屬接觸層,該接觸區位於該第一佈值區與該第二佈值區之間,進而在該金屬接觸層與該第二半導體沉積層之該接觸區之間形成一接面,其中此接面為一蕭特基能障。
A method of manufacturing a semiconductor device, comprising:
Forming an insulating structure on a substrate;
Forming a semiconductor deposition layer on the substrate and on the insulating structure, the semiconductor deposition layer having a first conductivity type;
Forming a first value region in the semiconductor deposition layer, the first value region having the first conductivity type and a higher doping concentration than the semiconductor deposition layer;
Forming a second value region in the semiconductor deposition layer, the second value region having the first conductivity type and a higher doping concentration than the semiconductor deposition layer;
Forming a metal contact layer on a contact region of the second semiconductor deposition layer, the contact region being located between the first routing region and the second routing region, and further the metal contact layer and the second semiconductor sink A junction is formed between the contact regions of the laminate, wherein the junction is a Schottky barrier.
TW101116131A 2012-05-07 2012-05-07 Semiconductor device and method of manufacturing the same TWI596673B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101116131A TWI596673B (en) 2012-05-07 2012-05-07 Semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101116131A TWI596673B (en) 2012-05-07 2012-05-07 Semiconductor device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
TW201347043A true TW201347043A (en) 2013-11-16
TWI596673B TWI596673B (en) 2017-08-21

Family

ID=49990763

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101116131A TWI596673B (en) 2012-05-07 2012-05-07 Semiconductor device and method of manufacturing the same

Country Status (1)

Country Link
TW (1) TWI596673B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7368760B2 (en) * 2004-12-15 2008-05-06 Tower Semiconductor Ltd. Low parasitic capacitance Schottky diode
KR100763915B1 (en) * 2006-06-01 2007-10-05 삼성전자주식회사 Schottky diode having low breakdown voltage and method for fabricating the same
KR100763848B1 (en) * 2006-07-05 2007-10-05 삼성전자주식회사 Schottky diode and method for fabricating the same

Also Published As

Publication number Publication date
TWI596673B (en) 2017-08-21

Similar Documents

Publication Publication Date Title
TWI483343B (en) An soi device having a substrate diode with process tolerant configuration and method of forming the soi device
US10418481B2 (en) Method and structure for reducing switching power losses
US20180342612A1 (en) High-side power device and manufacturing method thereof
TWI521702B (en) Often open the lack of type MOS transistor
US20130178012A1 (en) Method for manufacturing a gate-control diode semiconductor device
US20140167158A1 (en) Integrated device and method for fabricating the integrated device
US20090170269A1 (en) High voltage mosfet devices containing tip compensation implant
TWI648821B (en) High voltage double diffused metal oxide semiconductor (DMOS) device and method of fabricating the same
US7632732B2 (en) Method of manufacturing MOS transistor
US7713821B2 (en) Thin silicon-on-insulator high voltage auxiliary gated transistor
TWI612639B (en) Semiconductor integrated circuit device
CN103545374A (en) Semiconductor device
US7736961B2 (en) High voltage depletion FET employing a channel stopping implant
TW415072B (en) High voltage resistant TFT and fabrication method therefor
TWI596673B (en) Semiconductor device and method of manufacturing the same
US8841709B2 (en) JFET device and method of manufacturing the same
US20060208316A1 (en) High performance tunneling-biased MOSFET and a process for its manufacture
US20140264618A1 (en) Isolation structure
US20130334604A1 (en) Soi semiconductor device comprising a substrate diode and a film diode formed by using a common well implantation mask
TWI385802B (en) High-voltage metal-oxide semiconductor device and fabrication method thereof
JP4577948B2 (en) Offset gate field effect transistor
US8008664B2 (en) Component comprising a thin-film transistor and CMOS-transistors and methods for production
CN103390646B (en) Semiconductor element and manufacture method thereof
TW439290B (en) CMOS transistor
US20200295004A1 (en) Cmos-based integrated circuit products with isolated p-wells for body-biasing transistor devices