TW201344176A - Apparatus and method for non-invasive blood glucose monitoring and method for analysing biological molecule - Google Patents

Apparatus and method for non-invasive blood glucose monitoring and method for analysing biological molecule Download PDF

Info

Publication number
TW201344176A
TW201344176A TW101140170A TW101140170A TW201344176A TW 201344176 A TW201344176 A TW 201344176A TW 101140170 A TW101140170 A TW 101140170A TW 101140170 A TW101140170 A TW 101140170A TW 201344176 A TW201344176 A TW 201344176A
Authority
TW
Taiwan
Prior art keywords
light
blood glucose
invasive blood
glucose monitoring
optical
Prior art date
Application number
TW101140170A
Other languages
Chinese (zh)
Other versions
TWI495864B (en
Inventor
Yu-Tang Li
Chang-Sheng Chu
Chih-Hsun Fan
Shuang-Chao Chung
Ming-Chia Li
Jyh-Chern Chen
Kuo-Tung Tiao
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/457,496 external-priority patent/US9833175B2/en
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Publication of TW201344176A publication Critical patent/TW201344176A/en
Application granted granted Critical
Publication of TWI495864B publication Critical patent/TWI495864B/en

Links

Abstract

An apparatus and a method for non-invasive blood glucose monitoring and a method for analysing biological molecule are provided. An apparatus for non-invasive blood glucose monitoring includes following elements. A light source generates at least one ray of light. A beam splitter with a focusing function leads the light generated from the light source into an eyeball and focuses on the eyeball. A set of photo detectors measures optical rotatory distribution (ORD) information and absorption energy information of the light reflected from the eyeball and transmitted through the first beam splitter to the set of photo detectors. A processing unit receives and processes the ORD information and the absorption energy information to obtain an ORD difference and an absorption energy difference between the light emitted from the light source and the light transmitted to the set of photo detectors, and analyzes the ORD difference and the absorption energy difference to obtain a glucose information, and since the glucose information has a corresponding relationship with a blood glucose information, the blood glucose information may be read.

Description

非侵入式血糖監測裝置與方法以及生化分子的分析方 法 Non-invasive blood glucose monitoring device and method and analysis of biochemical molecules law

本揭露是有關於一種血糖監測裝置與方法以及生化分子的分析方法,且特別是有關於一種非侵入式血糖監測裝置與方法以及生化分子的分析方法。 The present disclosure relates to a blood glucose monitoring device and method, and a method for analyzing biochemical molecules, and more particularly to a non-invasive blood glucose monitoring device and method and a method for analyzing biochemical molecules.

糖尿病是一種因體內胰島素絕對或者相對不足、分泌時間不正常、胰島素作用體發生障礙或抗性等因素所造成所導致的臨床綜合症。假如糖尿病沒有得到良好的控制,會引起一些急性併發症,如低血糖症、酮症酸中毒、非酮高滲性昏迷。嚴重的長期併發症包括心血管疾病、慢性腎衰竭、視網膜病變、神經病變及微血管病變等。 Diabetes is a clinical syndrome caused by factors such as absolute or relative deficiency of insulin in the body, abnormal secretion time, impaired insulin action or resistance. If diabetes is not well controlled, it can cause acute complications such as hypoglycemia, ketoacidosis, and non-keto hyperosmolar coma. Serious long-term complications include cardiovascular disease, chronic renal failure, retinopathy, neuropathy, and microvascular disease.

對於糖尿病患而言,時常監測血糖非常重要。管理糖尿病的首要目標就是維持正常的血糖值,如果患者平日能夠很留心血糖的控制,將可有效預防上述併發症的產生。 For diabetics, it is important to monitor blood glucose from time to time. The primary goal of managing diabetes is to maintain normal blood sugar levels. If the patient can pay attention to the control of blood sugar on weekdays, it will effectively prevent the above complications.

目前,糖尿病患最常使用血糖機來進行血糖監測。然而,使用血糖機量測血糖濃度值前,必須先進行採血的步驟。指尖採血為侵入式(破壞性)的取樣方式,其過程複雜且會造成疼痛,這也是影響糖尿病患無法自我定時監測血糖的最重要因素。 At present, diabetes patients often use blood glucose machines for blood glucose monitoring. However, before using the blood glucose meter to measure the blood glucose concentration value, the blood sampling step must be performed. Fingertip blood collection is an invasive (destructive) sampling method, which is complicated and causes pain, which is also the most important factor affecting diabetes patients' ability to monitor blood glucose on their own.

因此,非侵入式的血糖檢測方式成為血糖檢測的主要發展趨勢。目前的非侵入式血糖計是利用單一方法來進行量測,如聲學、光學及電學。但都以量測人體皮膚血糖為 主。然而,皮膚的構造可分為表皮、真皮、皮下組織,且皮膚中各種不同的組織、血管及水分會產生多種散射光和吸收光,因而影響訊號的量測,進而影響到血糖值的判斷。 Therefore, the non-invasive blood glucose detection method has become a major development trend of blood glucose detection. Current non-invasive blood glucose meters use a single method for measurement, such as acoustics, optics, and electricity. But they all measure the blood sugar of human skin. the Lord. However, the structure of the skin can be divided into epidermis, dermis, and subcutaneous tissue, and various tissues, blood vessels, and water in the skin generate a variety of scattered light and absorbed light, thereby affecting the measurement of the signal, thereby affecting the judgment of the blood sugar level.

本揭露提供一種非侵入式血糖監測裝置,其可準確地量測出血糖資訊。 The present disclosure provides a non-invasive blood glucose monitoring device that accurately measures blood glucose information.

本揭露提供一種具有非侵入式血糖監測功能的可攜式行動裝置,其可在室內或室外的環境使用。 The present disclosure provides a portable mobile device with non-invasive blood glucose monitoring functionality that can be used in an indoor or outdoor environment.

本揭露提供一種非侵入式血糖監測方法,其可連續地且即時地獲得量測對象的血糖值。 The present disclosure provides a non-invasive blood glucose monitoring method that can continuously and instantaneously obtain a blood glucose level of a measurement subject.

本揭露提供一種生化分子的分析方法,其可獲得同時存在目標分子與干擾分子時的目標分子濃度。 The present disclosure provides a method for analyzing biochemical molecules, which can obtain a target molecule concentration when a target molecule and an interfering molecule are simultaneously present.

本揭露提出一種非侵入式血糖監測裝置,包括至少一光源、第一分光器、光偵測器組及處理單元。光源發射出至少一光線。第一分光器具有聚焦功能,使由光源發射出的光線藉由第一分光器而入射且聚焦到眼球中。光偵測器組量測由眼球所反射、再藉由第一分光器傳送到光偵測器組的光線的旋光資訊及吸收能量資訊。處理單元接收並處理旋光資訊及吸收能量資訊,以獲得由光源發射出的光線與傳送到光偵測器組的光線之間的旋光變化及吸收能量變化,且對旋光變化及吸收能量變化進行分析,以獲得生化分子的生化分子資訊,生化分子至少包括葡萄糖,且處理單元藉由生化分子資訊獲得葡萄糖資訊,由於葡萄糖資訊 與血糖資訊具有對應關係,進而讀出血糖資訊。 The present disclosure provides a non-invasive blood glucose monitoring device including at least one light source, a first beam splitter, a photodetector group, and a processing unit. The light source emits at least one light. The first beam splitter has a focusing function that causes light emitted by the light source to be incident by the first beam splitter and focused into the eyeball. The photodetector group measures the optical information and the absorbed energy information of the light reflected by the eyeball and transmitted to the photodetector group by the first beam splitter. The processing unit receives and processes the optical rotation information and the absorption energy information to obtain an optical rotation change and an absorption energy change between the light emitted by the light source and the light transmitted to the photodetector group, and analyzes the optical rotation change and the absorbed energy change. To obtain biochemical molecular information of biochemical molecules, biochemical molecules include at least glucose, and the processing unit obtains glucose information by biochemical molecular information, due to glucose information Correspondence with blood sugar information, and then read blood sugar information.

本揭露提出一種具有非侵入式血糖監測功能的可攜式行動裝置,包括裝置本體、至少一光源、光學套件、光偵測器組以及處理單元。光源發射出至少一光線。光學套件裝設於裝置本體上,且包括第一分光器於其中,第一分光器具有聚焦功能,使由光源發射出的光線藉由第一分光器而入射且聚焦到眼球中。光偵測器組量測由眼球所反射、再藉由第一分光器傳送到光偵測器組的光線的旋光資訊及吸收能量資訊。處理單元設置於裝置本體中,且接收並處理旋光資訊及吸收能量資訊,以獲得由光源發射出的光線與傳送到光偵測器組的光線之間的旋光變化及吸收能量變化,以獲得生化分子的生化分子資訊,生化分子至少包括葡萄糖,且處理單元藉由生化分子資訊獲得葡萄糖資訊,由於葡萄糖資訊與血糖資訊具有對應關係,進而讀出血糖資訊。 The present disclosure provides a portable mobile device having a non-invasive blood glucose monitoring function, including a device body, at least one light source, an optical kit, a photodetector group, and a processing unit. The light source emits at least one light. The optical package is mounted on the device body and includes a first beam splitter therein. The first beam splitter has a focusing function, so that the light emitted by the light source is incident by the first beam splitter and is focused into the eyeball. The photodetector group measures the optical information and the absorbed energy information of the light reflected by the eyeball and transmitted to the photodetector group by the first beam splitter. The processing unit is disposed in the device body, and receives and processes the optical information and the absorbed energy information to obtain an optical rotation change and an absorption energy change between the light emitted by the light source and the light transmitted to the photodetector group to obtain biochemistry. The biochemical molecular information of the molecule, the biochemical molecule includes at least glucose, and the processing unit obtains the glucose information by biochemical molecular information, and the glucose information has a corresponding relationship with the blood glucose information, thereby reading the blood sugar information.

本揭露提出一種非侵入式血糖監測方法,包括下列步驟。由至少一光源發射出至少一光線。使由光源發射出的光線藉由具有聚焦功能的第一分光器而入射且聚焦到眼球中。藉由第一分光器將由眼球所反射的光線傳送到光偵測器組。藉由光偵測器組量測傳送到光偵測器組的光線的旋光資訊及吸收能量資訊。藉由處理旋光資訊及吸收能量資訊而獲得由光源發射出的光線與傳送到光偵測器組的光線之間的旋光變化及吸收能量變化。對旋光變化及吸收能量變化進行分析,以獲得生化分子的生化分子資訊,且藉由 生化分子資訊獲得葡萄糖資訊,由於葡萄糖資訊與血糖資訊具有對應關係,透過此對應關係,進而讀出血糖資訊。 The present disclosure proposes a non-invasive blood glucose monitoring method comprising the following steps. At least one light is emitted by at least one light source. The light emitted by the light source is incident by the first beam splitter having a focusing function and is focused into the eyeball. The light reflected by the eyeball is transmitted to the photodetector group by the first beam splitter. The optical detector information is used to measure the optical information and the absorbed energy information of the light transmitted to the photodetector group. The optical rotation and the absorbed energy change between the light emitted by the light source and the light transmitted to the photodetector group are obtained by processing the optical rotation information and absorbing the energy information. Analysis of changes in optical rotation and absorption energy to obtain biochemical molecular information of biochemical molecules The biochemical molecular information obtains the glucose information, and since the glucose information has a corresponding relationship with the blood glucose information, the blood glucose information is read through the corresponding relationship.

本揭露提出一種生化分子的分析方法,包括下列步驟。建立生化分子與旋光變化關係的至少一第一多項式方程式以及生化分子與吸收能量變化關係的至少一第二多項式方程式。其中,生化分子包括目標分子與至少一干擾分子,且第一多項式方程式與第二多項式方程式的多個變數分別包括目標分子濃度變數及干擾分子濃度變數。藉由將由生化分子監測裝置所測得的旋光變化與吸收能量變化帶入第一多項式方程式與第二多項式方程式中,以計算出同時存在目標分子與干擾分子時的目標分子的第一目標分子濃度。 The present disclosure proposes a method for analyzing biochemical molecules, including the following steps. Establishing at least a first polynomial equation relating the biochemical molecule to the optical rotation change and at least a second polynomial equation relating the biochemical molecule to the change in absorbed energy. The biochemical molecule includes a target molecule and at least one interfering molecule, and the plurality of variables of the first polynomial equation and the second polynomial equation respectively include a target molecule concentration variable and an interference molecule concentration variable. By introducing the changes in optical rotation and absorption energy measured by the biochemical molecular monitoring device into the first polynomial equation and the second polynomial equation to calculate the target molecule when the target molecule and the interfering molecule are simultaneously present. A target molecular concentration.

基於上述,藉由本揭露所提出之非侵入式血糖監測裝置可準確地量測出血糖資訊。另外,本揭露所提出之具有非侵入式血糖監測功能的可攜式行動裝置的使用環境並無特殊限制,可於室內或室外使用。此外,本揭露所提出之非侵入式血糖監測方法可連續地且即時地獲得量測對象的血糖值。另一方面,本揭露所提出之生化分子的分析方法可獲得同時存在目標分子與干擾分子時的目標分子濃度,因此可獲得更精確的目標分子濃度。 Based on the above, the non-invasive blood glucose monitoring device proposed by the present disclosure can accurately measure blood glucose information. In addition, the use environment of the portable mobile device with non-invasive blood glucose monitoring function proposed in the present disclosure is not particularly limited and can be used indoors or outdoors. In addition, the non-invasive blood glucose monitoring method proposed by the present disclosure can continuously and instantaneously obtain the blood glucose level of the measurement subject. On the other hand, the analysis method of the biochemical molecule proposed by the present disclosure can obtain the target molecule concentration when the target molecule and the interfering molecule are present at the same time, and thus a more accurate target molecule concentration can be obtained.

為讓本揭露之上述和其他目的和特徵能更明顯易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下。 The above and other objects and features of the present invention will become more apparent from the following description.

本揭露的目的是提供一種非侵入式血糖監測裝置,可準確地量測出量測對象的葡萄糖資訊(如,葡萄糖值),由於眼球(如,眼球中的房水液)中之葡萄糖資訊(葡萄糖濃度)與血糖資訊(血糖濃度)具有對應關係,透過此對應關係,進而讀出血糖資訊(如,血糖值)。 The purpose of the present disclosure is to provide a non-invasive blood glucose monitoring device capable of accurately measuring glucose information (eg, glucose value) of a measurement subject due to glucose information in an eyeball (eg, aqueous humor in the eyeball) ( The glucose concentration has a correspondence with the blood glucose information (blood sugar concentration), and the blood glucose information (for example, blood sugar level) is read through the correspondence.

本揭露的另一目的是提供一種非侵入式血糖監測方法,可連續地且即時地獲得量測對象的血糖值。 Another object of the present disclosure is to provide a non-invasive blood glucose monitoring method that continuously and instantaneously obtains a blood glucose level of a measurement subject.

圖1A所繪示為本揭露之第一實施例的非侵入式血糖糖監測裝置的示意圖。圖1B所繪示為圖1A中之旋光量測裝置的示意圖。 FIG. 1A is a schematic diagram of a non-invasive blood glucose monitoring device according to a first embodiment of the present disclosure. FIG. 1B is a schematic diagram of the optical rotation measuring device of FIG. 1A.

請參照圖1A,非侵入式血糖監測裝置100,包括光源102、第一分光器104、光偵測器組106及處理單元108。非侵入式血糖監測裝置100例如是對眼球200之前房202的房水液(aqueous humor)204中的葡萄糖進行檢測。 Referring to FIG. 1A, the non-invasive blood glucose monitoring device 100 includes a light source 102, a first beam splitter 104, a photodetector group 106, and a processing unit 108. The non-invasive blood glucose monitoring device 100 detects, for example, glucose in the aqueous humor 204 of the anterior chamber 202 of the eyeball 200.

光源102發射出光線110。光源102例如是發光二極體(LED)或雷射二極體等光源。光源102的波長例如是葡萄糖可吸收波長,亦即只要是可被眼球200中的葡萄糖所吸收的波長即可,如紅外光中的波長。光源102所發射出的光線110中包括線性偏振光、圓偏振光、橢圓偏振光或部分偏振光。此外,光源102例如是具有控制光線110的發射頻率的功能,有助於光偵測器106組藉由發射頻率確定所要量測的光線為何者。另外,光源102例如是具有控制光線110的強度的功能,可確保進入眼球200之光線能量不會造成傷害。此外,光源102例如是具有控制光線110的開啟時間 長度、控制光線110的關閉時間長度的功能或其組合,一方面提供葡萄糖偵測的時間,另一方面確保進入眼球200之光線能量不會造成傷害。在此實施例中,雖然是以單一光源102發射出單一光線110為例進行說明,但是本揭露並不以此為限。在另一實施例中,光源102的種類與光線110的種類亦可為二種以上。 Light source 102 emits light 110. The light source 102 is, for example, a light source such as a light emitting diode (LED) or a laser diode. The wavelength of the light source 102 is, for example, a glucose absorbable wavelength, that is, a wavelength that can be absorbed by glucose in the eye 200, such as a wavelength in infrared light. The light 110 emitted by the light source 102 includes linearly polarized light, circularly polarized light, elliptically polarized light or partially polarized light. In addition, the light source 102 has, for example, a function of controlling the emission frequency of the light 110, which helps the light detector 106 group determine the light to be measured by the transmission frequency. In addition, the light source 102 has a function of controlling the intensity of the light 110, for example, to ensure that the light energy entering the eyeball 200 does not cause damage. In addition, the light source 102 has, for example, an opening time for controlling the light 110. The length, the function of controlling the length of the closing time of the light 110, or a combination thereof, on the one hand provides the time for glucose detection, and on the other hand ensures that the light energy entering the eye 200 does not cause harm. In this embodiment, although the single light source 110 emits a single light 110 as an example, the disclosure is not limited thereto. In another embodiment, the type of the light source 102 and the type of the light ray 110 may be two or more.

第一分光器104具有聚焦功能,使由光源102發射出的光線110藉由第一分光器104而入射且聚焦到眼球200中。第一分光器104例如是將光線110聚焦到眼球200的前房202,且光線110經眼球200所反射的光包括來自房水液204的反射光。第一分光器104例如是光學膜片、透鏡、光柵或繞射光學元件或上述任意元件之組合。 The first beam splitter 104 has a focusing function that causes the light 110 emitted by the light source 102 to be incident by the first beam splitter 104 and focused into the eyeball 200. The first beam splitter 104, for example, focuses the light 110 onto the anterior chamber 202 of the eye 200, and the light reflected by the light 110 through the eye 200 includes reflected light from the aqueous humor 204. The first beam splitter 104 is, for example, an optical film, a lens, a grating or a diffractive optical element or a combination of any of the above.

光偵測器組106量測由眼球200所反射、再藉由第一分光器104傳送到光偵測器組106的光線110的旋光資訊及吸收能量資訊。在此實施例中,光偵測器組106包括旋光量測裝置112及能量量測裝置114。其中,旋光量測裝置112用以量測由眼球200所反射、再藉由第一分光器104反射的光線110的旋光資訊,而能量量測裝置114用以量測由眼球200所反射、再穿過第一分光器104的光線110的吸收能量資訊。 The photodetector group 106 measures the optical information and the absorbed energy information of the light 110 reflected by the eyeball 200 and transmitted to the photodetector group 106 by the first beam splitter 104. In this embodiment, the photodetector set 106 includes an optical rotation measuring device 112 and an energy measuring device 114. The optical rotation measuring device 112 is configured to measure the optical rotation information of the light 110 reflected by the eyeball 200 and reflected by the first beam splitter 104, and the energy measuring device 114 is used to measure the reflection by the eyeball 200, and then Absorbed energy information of light 110 passing through first beam splitter 104.

在另一實施例中,可將旋光量測裝置112及能量量測裝置114互換,亦即利用旋光量測裝置112量測由眼球200所反射、再穿過第一分光器104的光線110的旋光資訊,且利用能量量測裝置114量測由眼球200所反射、再藉由 第一分光器104反射的光線110的吸收能量資訊。 In another embodiment, the optical rotation measuring device 112 and the energy measuring device 114 can be interchanged, that is, the optical light 110 reflected by the eyeball 200 and passed through the first beam splitter 104 can be measured by the optical rotation measuring device 112. The optical information is measured and measured by the energy measuring device 114 and reflected by the eye 200 Absorbed energy information of the light 110 reflected by the first beam splitter 104.

請參照圖1B,旋光量測裝置112包括偏振片112a與感光元件112b,其中光線會先通過偏振片112a,再傳送到感光元件112b。旋光量測裝置112例如是主動式旋光量測裝置或被動式旋光量測裝置,其中主動式旋光量測裝置的量測角度可變動,而被動式旋光量測裝置的量測角度固定。主動式旋光量測裝置例如是檢偏器,檢偏器可直接計算出旋光資訊。被動式旋光角度量測裝置是藉由感光元件112b量測穿過偏振片112a的光線110的能量而計算出旋光角度資訊。能量量測裝置114例如是感光元件,如電荷耦合元件、互補金屬氧化半導體感測器或光二極體。 Referring to FIG. 1B, the optical rotation measuring device 112 includes a polarizing plate 112a and a photosensitive element 112b, wherein the light passes through the polarizing plate 112a and then to the photosensitive element 112b. The optical rotation measuring device 112 is, for example, an active optical rotation measuring device or a passive optical rotation measuring device, wherein the measuring angle of the active optical measuring device can be varied, and the measuring angle of the passive optical measuring device is fixed. The active optical rotation measuring device is, for example, an analyzer, and the analyzer can directly calculate the optical rotation information. The passive optical rotation angle measuring device calculates the optical rotation angle information by measuring the energy of the light 110 passing through the polarizing plate 112a by the photosensitive element 112b. The energy measuring device 114 is, for example, a photosensitive element such as a charge coupled device, a complementary metal oxide semiconductor sensor or a photodiode.

此外,請同時參照圖1A及圖1B,非侵入式血糖監測裝置100更可選擇性地包括具有擋光板113與擋光板115中的至少一者。擋光板113具有孔洞113a,且經裝配以使得光線110先通過擋光板113的孔洞113a,再傳送到感光元件112b。擋光板113例如是設置於偏振片112a與感光元件112b之間,但並不用以限制本揭露。在其他實施例中,擋光板113更可經裝配以使得光線110先通過偏振片112a,再通過擋光板113的孔洞113a。另外,擋光板115具有孔洞115a,且經裝配以使得光線110先通過擋光板115的孔洞115a,再傳送到能量量測裝置114(如,感光元件)。擋光板113、115分別例如是金屬光罩或石英玻璃光罩。擋光板113、115分別可防止雜光進入旋光量測裝置112與能量量測裝置114,所以能降低雜光的干擾,進而提升訊號/ 雜訊比(S/N ratio)。需注意的是,在下文中的各個實施例均可藉由擋光板來降低雜光對旋光量測裝置與能量量測裝置之量測結果的影響,然而為了簡化說明,在其他實施例中則省略擋光板的說明。 In addition, referring to FIG. 1A and FIG. 1B simultaneously, the non-invasive blood glucose monitoring device 100 further optionally includes at least one of a light blocking plate 113 and a light blocking plate 115. The light blocking plate 113 has a hole 113a and is assembled such that the light 110 first passes through the hole 113a of the light blocking plate 113 and is then transferred to the photosensitive member 112b. The light blocking plate 113 is disposed between the polarizing plate 112a and the photosensitive element 112b, for example, but is not intended to limit the disclosure. In other embodiments, the light barrier 113 can be further assembled such that the light 110 passes first through the polarizer 112a and through the aperture 113a of the light barrier 113. In addition, the light blocking plate 115 has a hole 115a and is assembled such that the light 110 passes through the hole 115a of the light blocking plate 115 and is then transmitted to the energy measuring device 114 (e.g., the photosensitive member). The light blocking plates 113, 115 are respectively, for example, metal reticle or quartz glass reticle. The light blocking plates 113 and 115 respectively prevent stray light from entering the optical rotation measuring device 112 and the energy measuring device 114, so that the interference of the stray light can be reduced, thereby improving the signal/ Noise ratio (S/N ratio). It should be noted that in each of the following embodiments, the influence of the stray light on the measurement result of the optical rotation measuring device and the energy measuring device can be reduced by the light blocking plate. However, in other embodiments, the description is omitted. Description of the light barrier.

請繼續參照圖1A,處理單元108例如是與光偵測器組106的旋光量測裝置112及能量量測裝置114進行耦接,來接收並處理旋光資訊及吸收能量資訊,以獲得由光源102發射出的光線110與傳送到光偵測器組106的光線110之間的旋光變化及吸收能量變化,且對旋光變化及吸收能量變化進行分析,以獲得生化分子的生化分子資訊,生化分子至少包括葡萄糖,且處理單元藉由生化分子資訊獲得葡萄糖資訊。生化分子例如是膽固醇、尿酸、水、乳酸、尿素、抗壞血酸或其組合。此外,在生化分子中可能會包括干擾分子,干擾分子例如是量測標的(如,葡萄糖)以外的分子,如膽固醇、尿酸、水、乳酸、尿素或抗壞血酸。其中,抗壞血酸、乳酸等會對旋光資訊產生干擾,而水等會對吸收能量資訊產生干擾。在藉由處理單元108獲得葡萄糖資訊的過程中,處理單元108可對干擾分子所造成的干擾進行排除。處理單元108亦可從控制光源變化、光機元件空間偏移或其組合,統計分析旋光資訊及吸收能量資訊,以獲得葡萄糖資訊,光源變化包括光發射頻率的變化、光能量強度的變化及、光開啟時間長度的變化、光關閉時間長度的變化或其組合。由於眼球(如,眼球中的房水液)中之葡萄糖濃度與血糖濃度具有對應關係,透過此對應關 係,進而讀出血糖資訊(如,血糖值)。處理單元108例如是類比數位電路整合模組,其中類比數位電路整合模組包括微處理器、放大器及類比數位轉換器。類比數位電路整合模組更可包括無線傳輸裝置。 Referring to FIG. 1A , the processing unit 108 is coupled to the optical rotation measuring device 112 and the energy measuring device 114 of the photodetector group 106 to receive and process the optical information and the absorbed energy information to obtain the light source 102. The optical change and the absorbed energy change between the emitted light 110 and the light 110 transmitted to the photodetector set 106, and the change of the optical change and the absorbed energy are analyzed to obtain biochemical molecular information of the biochemical molecule, and the biochemical molecule is at least Including glucose, and the processing unit obtains glucose information by biochemical molecular information. The biochemical molecule is, for example, cholesterol, uric acid, water, lactic acid, urea, ascorbic acid or a combination thereof. In addition, interfering molecules may be included in the biochemical molecule, such as molecules other than the labeled (eg, glucose), such as cholesterol, uric acid, water, lactic acid, urea, or ascorbic acid. Among them, ascorbic acid and lactic acid may interfere with the optical information, and water may interfere with the absorption of energy information. In the process of obtaining glucose information by processing unit 108, processing unit 108 may exclude interference caused by interfering molecules. The processing unit 108 can also statistically analyze the optical rotation information and absorb the energy information from the control light source variation, the optical component spatial offset or a combination thereof to obtain glucose information, and the light source change includes a change of the light emission frequency, a change of the light energy intensity, and A change in the length of the light on time, a change in the length of the light off time, or a combination thereof. Since the glucose concentration in the eyeball (eg, the aqueous humor in the eyeball) has a corresponding relationship with the blood glucose concentration, the corresponding relationship is System, and then read blood sugar information (such as blood sugar levels). The processing unit 108 is, for example, an analog digital circuit integration module, wherein the analog digital circuit integration module includes a microprocessor, an amplifier, and an analog digital converter. The analog digital circuit integration module can further include a wireless transmission device.

在此實施例中,處理單元108例如是與光源102進行耦接,以控制光源102所發射出之光線110的光學特性。 In this embodiment, processing unit 108 is coupled, for example, to light source 102 to control the optical characteristics of light 110 emitted by light source 102.

非侵入式血糖監測裝置100更可選擇性地包括光資訊分析單元116,用以在光線110入射到眼球200中之前,偵測來自第一分光器104的光線110的光資訊,且可將光線110的光資訊選擇性地傳送到處理單元108或警示器118,以對光線110的光學特性進行回饋控制。光資訊分析單元116包括光功率計及光感測器中的至少一者,光功率計所偵測的光資訊為能量資訊,光感測器所偵測的光資訊為能量資訊及位置資訊中的至少一者。光線110的光學特性例如是射出能量及/或光線位置。 The non-invasive blood glucose monitoring device 100 further includes an optical information analyzing unit 116 for detecting light information of the light 110 from the first beam splitter 104 before the light 110 is incident on the eyeball 200, and the light can be Light information of 110 is selectively transmitted to processing unit 108 or alert 118 to provide feedback control of the optical characteristics of light 110. The optical information analysis unit 116 includes at least one of an optical power meter and a light sensor. The light information detected by the optical power meter is energy information, and the light information detected by the light sensor is energy information and location information. At least one of them. The optical properties of the light 110 are, for example, the energy of the exit and/or the position of the light.

當光源102所發射出之光線110的射出能量過高時,光線110會對眼球200造成傷害。因此,當處理單元108接收到光線110的射出能量過高的能量資訊時,處理單元108會降低光源102所發射出之光線110的射出能量。另一方面,當警示器118接收到光線110的射出能量過高的能量資訊時,警示器118會發出光或聲音等警示訊號,以告知使者者光源102所發射出之光線110的射出能量過高,需對光線110的射出能量進行調整。因此,光資訊分析單元116可防止因光線110的射出能量過高而對眼球 200造成傷害的情況。 When the emission energy of the light 110 emitted by the light source 102 is too high, the light 110 may cause damage to the eyeball 200. Therefore, when the processing unit 108 receives the energy information of the light 110 that is too high in energy emission, the processing unit 108 reduces the emission energy of the light 110 emitted by the light source 102. On the other hand, when the warning device 118 receives the energy information of the light 110 that is too high, the warning device 118 emits a warning signal such as light or sound to inform the light source of the light 110 emitted by the light source 102. High, the emission energy of the light 110 needs to be adjusted. Therefore, the optical information analyzing unit 116 can prevent the eyeball from being excessively high due to the excessive energy of the light 110. 200 causes damage.

此外,當光源102所發射出之光線110的光線位置發生偏移時,會降低血糖量測的準確度。因此,當處理單元108接收到光線110的光線位置產生偏移的位置資訊時,處理單元108會調整光源102所發射出之光線110的光線位置。另一方面,當警示器118接收到光線110的光線位置產生偏移的位置資訊時,警示器118會發出光或聲音等警示訊號,以告知使者者光源102所發射出之光線110的光線位置產生偏移,需對光線110的光線位置進行調整。因此,光資訊分析單元116可防止因光線110的光線位置產生偏移,進而可提升血糖量測的準確度。 In addition, when the position of the light ray 110 emitted by the light source 102 is shifted, the accuracy of the blood glucose measurement is lowered. Therefore, when the processing unit 108 receives the position information of the light position of the light ray 110, the processing unit 108 adjusts the light position of the light ray 110 emitted by the light source 102. On the other hand, when the warning device 118 receives the position information of the light position of the light 110, the warning device 118 emits a warning signal such as light or sound to inform the light source position of the light 110 emitted by the light source 102. An offset is generated, and the position of the light of the light 110 needs to be adjusted. Therefore, the optical information analyzing unit 116 can prevent the shift of the light position of the light 110, thereby improving the accuracy of the blood sugar measurement.

在此實施例中,是以將光資訊分析單元116偵測到的能量資訊同時傳送到處理單元108與警示器118為例進行說明,然而只要將能量資訊傳送到處理單元108與警示器118的其中一者即可進行回饋控制的操作。光資訊分析單元116例如是分別耦接至處理單元108及警示器118,但光資訊分析單元116、處理單元108及警示器118的耦接方式並不以此為限。 In this embodiment, the energy information detected by the optical information analyzing unit 116 is simultaneously transmitted to the processing unit 108 and the alerter 118 as an example, but the energy information is transmitted to the processing unit 108 and the alerter 118. One of them can perform the feedback control operation. For example, the optical information analysis unit 116 is coupled to the processing unit 108 and the alarm 118, but the optical information analysis unit 116, the processing unit 108, and the alarm 118 are not limited thereto.

在另一實施例中,光源102例如是耦接至或光源控制單元(未繪示),此時光資訊分析單元116會將光線110的能量資訊傳送到光源控制單元,以對光源102進行回饋控制。 In another embodiment, the light source 102 is coupled to a light source control unit (not shown), for example, when the light information analysis unit 116 transmits the energy information of the light 110 to the light source control unit to perform feedback control on the light source 102. .

此外,在此實施例中,是以在光線110入射到眼球200中之前,利用光資訊分析單元116偵測由第一分光器104 所反射的光線110為例進行說明。 In addition, in this embodiment, the first optical splitter 104 is detected by the optical information analyzing unit 116 before the light 110 is incident on the eyeball 200. The reflected light 110 is described as an example.

另外,非侵入式血糖監測裝置100更可選擇性地包括眼睛瞄準用定位裝置120,用以使眼睛的視線122對準眼睛瞄準用定位裝置120而進行對位,以決定眼球200的量測位置。眼睛瞄準用定位裝置120例如是光點、標誌或浮雕圖案。 In addition, the non-invasive blood glucose monitoring device 100 further selectively includes an eye aiming positioning device 120 for aligning the line of sight 122 of the eye with the eye aiming positioning device 120 to determine the measurement position of the eyeball 200. . The eye aiming positioning device 120 is, for example, a light spot, a logo or an embossed pattern.

另一方面,非侵入式血糖監測裝置100更可選擇性地包括連接元件124。連接元件124的的一端連接於非侵入式血糖監測裝置100的出光口,連接元件124的另一端用以貼靠於眼睛外緣。此外,非侵入式血糖監測裝置100更可選擇性地包括護套126,設置於連接元件124用以貼靠於該眼睛外緣的一面上。護套126例如是拋棄式護套。 In another aspect, the non-invasive blood glucose monitoring device 100 more preferably includes a connecting element 124. One end of the connecting member 124 is connected to the light exit port of the non-invasive blood glucose monitoring device 100, and the other end of the connecting member 124 is for abutting against the outer edge of the eye. In addition, the non-invasive blood glucose monitoring device 100 further optionally includes a sheath 126 disposed on the side of the connecting member 124 for abutting against the outer edge of the eye. The sheath 126 is, for example, a disposable sheath.

基於第一實施例可知,在非侵入式血糖監測裝置100中,由於可同時對由光源102發射出的光線110與傳送到光偵測器組106的光線110之間的旋光變化及吸收能量變化進行分析,而測得葡萄糖資訊(如,葡萄糖值),由於眼球(如,眼球中的房水液)中之葡萄糖濃度與血糖濃度具有對應關係,透過此對應關係,進而讀出具有高準確度的血糖資訊(如,血糖值)。 Based on the first embodiment, in the non-invasive blood glucose monitoring device 100, the optical rotation change and the absorption energy change between the light 110 emitted by the light source 102 and the light 110 transmitted to the photodetector group 106 can be simultaneously changed. The analysis is performed, and the glucose information (for example, the glucose value) is measured, and since the glucose concentration in the eyeball (for example, the aqueous humor in the eyeball) has a correspondence relationship with the blood glucose concentration, the correspondence is read and the reading is performed with high accuracy. Blood sugar information (eg, blood sugar values).

此外,非侵入式血糖監測裝置100可進行微型化應用,例如是以頭帶式使用或搭配眼鏡使用,進而增進使用的便利性。另外,非侵入式血糖監測裝置100的使用環境並無特殊限制,可於室內或室外使用。 In addition, the non-invasive blood glucose monitoring device 100 can be used for miniaturization, for example, in a headband type or in combination with glasses, thereby improving the convenience of use. In addition, the use environment of the non-invasive blood glucose monitoring device 100 is not particularly limited and can be used indoors or outdoors.

圖2所繪示為本揭露之第二實施例的非侵入式血糖監 測裝置的示意圖。 2 is a non-invasive blood glucose monitor according to a second embodiment of the present disclosure. Schematic diagram of the measuring device.

請同時參照本案的圖1A及圖2,第二實施例的非侵入式血糖監測裝置300與第一實施例的非侵入式血糖監測裝置100之差異在於:第二實施例的光偵測器組306中的旋光量測裝置312及能量量測裝置314位於第一分光器104的同一側,而第一實施例的光偵測器組106中的旋光量測裝置112及能量量測裝置114分別位於第一分光器104的兩側。旋光量測裝置312及能量量測裝置314例如是分別與處理單元108進行耦接,但並不用以限制本揭露。至於第二實施例的非侵入式血糖監測裝置300之其他構件的組成裝置、連接關係及功效等與第一實施例的非侵入式血糖監測裝置100相似,故於此不再贅述。 Referring to FIG. 1A and FIG. 2 of the present invention, the non-invasive blood glucose monitoring device 300 of the second embodiment is different from the non-invasive blood glucose monitoring device 100 of the first embodiment in the photodetector group of the second embodiment. The optical rotation measuring device 312 and the energy measuring device 314 in the 306 are located on the same side of the first optical splitter 104, and the optical rotation measuring device 112 and the energy measuring device 114 in the photodetector group 106 of the first embodiment respectively Located on both sides of the first beam splitter 104. The optical rotation measuring device 312 and the energy measuring device 314 are respectively coupled to the processing unit 108, respectively, but are not intended to limit the disclosure. The components, connection relationships, and functions of the other components of the non-invasive blood glucose monitoring device 300 of the second embodiment are similar to those of the non-invasive blood glucose monitoring device 100 of the first embodiment, and thus will not be described herein.

在此實施例中,光偵測器組306例如是用以量測由眼球200所反射、再藉由第一分光器104反射的光線110。所要量測的光線110例如是先傳送到旋光量測裝置312進行旋光資訊的量測,再進入到能量量測裝置314中進行吸收能量資訊的量測。在另一實施例中,光偵測器組306亦可用以量測由眼球200所反射、再穿過第一分光器104的光線110。 In this embodiment, the photodetector set 306 is used, for example, to measure the light 110 reflected by the eyeball 200 and reflected by the first beam splitter 104. The light 110 to be measured is, for example, first transmitted to the optical rotation measuring device 312 for measurement of the optical rotation information, and then entered into the energy measuring device 314 for measurement of the absorbed energy information. In another embodiment, the photodetector set 306 can also be used to measure the light 110 reflected by the eyeball 200 and then passed through the first beam splitter 104.

在另一實施例中,非侵入式血糖監測裝置300更可包括另一組旋光量測裝置312及能量量測裝置314,而同時具有兩組旋光量測裝置312及能量量測裝置314,以分別量測由眼球200所反射、再穿過第一分光器104的光線110的旋光資訊與吸收能量資訊,並量測由眼球200所反射、 再藉由第一分光器104反射的光線110的旋光資訊與吸收能量資訊。 In another embodiment, the non-invasive blood glucose monitoring device 300 further includes another set of optical rotation measuring device 312 and energy measuring device 314, and has two sets of optical rotation measuring device 312 and energy measuring device 314 at the same time. The optical information and the absorbed energy information of the light 110 reflected by the eyeball 200 and passing through the first beam splitter 104 are respectively measured, and measured by the eyeball 200, The optical information and the absorbed energy information of the light 110 reflected by the first beam splitter 104 are then used.

同樣地,由於第二實施例的非侵入式血糖監測裝置300可同時對由光源102發射出的光線110與傳送到光偵測器組306的光線110之間的旋光變化及吸收能量變化進行分析,而測得葡萄糖資訊(如,葡萄糖值),由於眼球(如,眼球中的房水液)中之葡萄糖濃度與血糖濃度具有對應關係,透過此對應關係,進而讀出具有高準確度的血糖資訊(如,血糖值)。此外,非侵入式血糖監測裝置300可微型化,所以在使用上相當便利,且可於室內或室外使用。 Similarly, since the non-invasive blood glucose monitoring device 300 of the second embodiment can simultaneously analyze the optical change and the absorbed energy change between the light 110 emitted by the light source 102 and the light 110 transmitted to the photodetector group 306. And the glucose information (for example, the glucose value) is measured, and since the glucose concentration in the eyeball (for example, the aqueous humor in the eyeball) has a corresponding relationship with the blood glucose concentration, the blood glucose concentration is read by the correspondence relationship, thereby reading the blood glucose with high accuracy. Information (eg, blood glucose values). Further, the non-invasive blood glucose monitoring device 300 can be miniaturized, so it is quite convenient to use and can be used indoors or outdoors.

圖3所繪示為本揭露之第三實施例的非侵入式血糖監測裝置的示意圖。 FIG. 3 is a schematic diagram of a non-invasive blood glucose monitoring device according to a third embodiment of the present disclosure.

請同時參照本案的圖1A及圖3,第三實施例的非侵入式血糖監測裝置400與第一實施例的非侵入式血糖監測裝置100之差異在於:第三實施例的非侵入式血糖監測裝置400更包括第二分光器404,且光偵測器組406包括第一光偵測器408及第二光偵測器410。至於第三實施例的非侵入式血糖監測裝置400之其他構件的組成裝置、連接關係及功效等與第一實施例的非侵入式血糖監測裝置100相似,故於此不再贅述。 Referring to FIG. 1A and FIG. 3 of the present invention, the non-invasive blood glucose monitoring device 400 of the third embodiment is different from the non-invasive blood glucose monitoring device 100 of the first embodiment in the non-invasive blood glucose monitoring of the third embodiment. The device 400 further includes a second beam splitter 404, and the photodetector group 406 includes a first photodetector 408 and a second photodetector 410. The components, connection relationships, and functions of the other components of the non-invasive blood glucose monitoring device 400 of the third embodiment are similar to those of the non-invasive blood glucose monitoring device 100 of the first embodiment, and thus will not be described herein.

第二分光器404將由眼球200所反射、再藉由第一分光器104傳送的光線110傳送到光偵測器組406。第二分光器404例如是光學膜片、透鏡、光柵或繞射光學元件或上述任意元件之組合。 The second beam splitter 404 transmits the light 110 reflected by the eyeball 200 and transmitted by the first beam splitter 104 to the photodetector group 406. The second beam splitter 404 is, for example, an optical film, a lens, a grating or a diffractive optical element or a combination of any of the above.

第一光偵測器408用以量測由第二分光器404所反射的光線110,且第二光偵測器410用以量測穿過第二分光器404的光線110。第一光偵測器408包括旋光量測裝置412及能量量測裝置414,且第二光偵測器410包括旋光量測裝置416及能量量測裝置418。所要量測的光線110例如是先傳送到旋光量測裝置412(或416)進行旋光資訊的量測,再進入到能量量測裝置414(或418)中進行吸收能量資訊的量測。其中,旋光量測裝置412、416的組成裝置與第一實施例之旋光量測裝置112的組成裝置相似,且能量量測裝置414、418的組成裝置與第一實施例之能量量測裝置114的組成裝置相似,故於此不再贅述。當非侵入式血糖監測裝置400中的第一光偵測器408及第二光偵測器410均可同時量測旋光資訊及吸收能量資訊時,可藉由同時交叉比對所得到的兩組旋光資訊及吸收能量資訊,而對由光源102發射出的光線110與傳送到光偵測器組406的光線110之間的旋光變化及吸收能量變化進行分析,而測得葡萄糖資訊(如,葡萄糖值),由於眼球(如,眼球中的房水液)中之葡萄糖濃度與血糖濃度具有對應關係,透過此對應關係,進而讀出具有高準確度的血糖資訊(如,血糖值)。旋光量測裝置412、416與能量量測裝置414、418例如是分別與處理單元108進行耦接,但並不用以限制本揭露。 The first photodetector 408 is configured to measure the light 110 reflected by the second beam splitter 404, and the second photodetector 410 is configured to measure the light 110 passing through the second beam splitter 404. The first photodetector 408 includes an optical rotation measuring device 412 and an energy measuring device 414 , and the second optical detector 410 includes an optical rotation measuring device 416 and an energy measuring device 418 . The light 110 to be measured is, for example, first transmitted to the optical rotation measuring device 412 (or 416) for measurement of the optical rotation information, and then entered into the energy measuring device 414 (or 418) for measurement of the absorbed energy information. The components of the optical rotation measuring devices 412, 416 are similar to those of the optical rotation measuring device 112 of the first embodiment, and the components of the energy measuring devices 414, 418 and the energy measuring device 114 of the first embodiment. The composition of the device is similar, so it will not be described here. When both the first photodetector 408 and the second photodetector 410 in the non-invasive blood glucose monitoring device 400 can simultaneously measure the optical rotation information and absorb the energy information, the two groups obtained by simultaneous cross-alignment can be obtained. The optical information and the absorbed energy information are analyzed, and the optical change and the absorbed energy change between the light 110 emitted by the light source 102 and the light 110 transmitted to the photodetector group 406 are analyzed, and glucose information (eg, glucose is measured). Value), since the glucose concentration in the eyeball (for example, aqueous humor in the eyeball) has a correspondence relationship with the blood glucose concentration, the blood glucose information (for example, blood sugar level) having high accuracy is read through the correspondence. The optical rotation measuring devices 412, 416 and the energy measuring devices 414, 418 are respectively coupled to the processing unit 108, respectively, but are not intended to limit the disclosure.

值得注意的是,當旋光量測裝置412、416均為被動式旋光量測裝置且均包括偏振片時,旋光量測裝置412、416中的偏振片例如是水平偏振片與垂直偏振片中的一者與另 一者,或為兩種已知角度的偏振片。若搭配兩組已知旋光角度的偏振片,其量測方式之一為比較兩組能量差異,因能量差異可得知其旋光變化位於某個特定葡萄糖濃度範圍,以提高偵測的精準度。另一方法為藉由兩組已知旋光角度的偏振片,可分別因吸收能量變化判斷出偏移分量,進而計算出旋光資訊。 It should be noted that when the optical rotation measuring devices 412, 416 are both passive optical rotation measuring devices and each includes a polarizing plate, the polarizing plate in the optical rotation measuring devices 412, 416 is, for example, one of a horizontal polarizing plate and a vertical polarizing plate. And another One, or two polarizing plates of known angles. If two sets of polarizing plates with known optical rotation angles are combined, one of the measurement methods is to compare the energy difference between the two groups. The difference in energy can be seen that the optical rotation change is in a specific glucose concentration range to improve the detection accuracy. Another method is to determine the offset component by the absorption energy change by using two sets of polarizing plates with known optical rotation angles, and then calculate the optical rotation information.

在另一實施例中,第一光偵測器408及第二光偵測器410中的一者例如是單一個旋光量測裝置,第一光偵測器408及第二光偵測器410中的另一者例如是單一個能量量測裝置。 In another embodiment, one of the first photodetector 408 and the second photodetector 410 is, for example, a single optical measuring device, the first photodetector 408 and the second photodetector 410. The other of them is, for example, a single energy measuring device.

此外,在上述實施例中,雖然由第二分光器404所反射的光線110及/或穿過第二分光器404的光線110是以一道光線為例進行說明。然而,由第二分光器404所反射的光線110及/或穿過第二分光器404的光線110可經由第二分光器404分為兩道以上的光線,再藉由上述所描述的第一光偵測器408及第二光偵測器410進行量測。 In addition, in the above embodiment, although the light 110 reflected by the second beam splitter 404 and/or the light 110 passing through the second beam splitter 404 is exemplified by a light. However, the light 110 reflected by the second beam splitter 404 and/or the light 110 passing through the second beam splitter 404 can be split into two or more rays via the second beam splitter 404, and then the first described above. The photodetector 408 and the second photodetector 410 perform measurement.

基於第三實施例可知,非侵入式血糖監測裝置400可同時對由光源102發射出的光線110與傳送到光偵測器組406的光線110之間的旋光變化及吸收能量變化進行分析,而測得葡萄糖資訊(如,葡萄糖值),由於眼球(如,眼球中的房水液)中之葡萄糖濃度與血糖濃度具有對應關係,透過此對應關係,進而讀出具有高準確度的血糖資訊(如,血糖值)。此外,非侵入式血糖監測裝置400可微型化,所以在使用上相當便利,且可於室內或室外使用。 Based on the third embodiment, the non-invasive blood glucose monitoring device 400 can simultaneously analyze the optical change and the absorbed energy change between the light 110 emitted by the light source 102 and the light 110 transmitted to the photodetector group 406. Glucose information (eg, glucose value) is measured, and since the glucose concentration in the eyeball (eg, aqueous humor in the eyeball) has a corresponding relationship with the blood glucose concentration, the blood glucose information with high accuracy is read through the corresponding relationship ( For example, blood sugar value). Further, the non-invasive blood glucose monitoring device 400 can be miniaturized, so it is quite convenient to use and can be used indoors or outdoors.

圖4所繪示為本揭露之第四實施例的非侵入式血糖監測裝置的示意圖。 FIG. 4 is a schematic diagram of a non-invasive blood glucose monitoring device according to a fourth embodiment of the present disclosure.

請同時參照本案的圖3及圖4,第四實施例的非侵入式血糖監測裝置500與第三實施例的非侵入式血糖監測裝置400之差異在於:在第四實施例的非侵入式血糖監測裝置500中,光偵測器組506包括第一光偵測器508與第二光偵測器510,且第一光偵測器508與第二光偵測器510位於第二分光器404的同一側。在此實施例中,第一光偵測器508與第二光偵測器510例如是位於光線110穿透第二分光器404的一側,且分別用以量測光線110穿透第二分光器404所產生的光線110a、100b。其中,第一光偵測器508與第二光偵測器510中的一者例如是用以量測旋光資訊的旋光量測裝置,第一光偵測器508與第二光偵測器510中的另一者例如是用以量測吸收能量資訊的能量測裝置。第一光偵測器508與第二光偵測器510例如是分別與處理單元108進行耦接,但並不用以限制本揭露。至於第四實施例的非侵入式血糖監測裝置500之其他構件的組成裝置、連接關係及功效等與第三實施例的非侵入式血糖監測裝置400相似,故於此不再贅述。 Referring to FIG. 3 and FIG. 4 of the present invention, the non-invasive blood glucose monitoring device 500 of the fourth embodiment is different from the non-invasive blood glucose monitoring device 400 of the third embodiment in the non-invasive blood glucose of the fourth embodiment. In the monitoring device 500, the photodetector group 506 includes a first photodetector 508 and a second photodetector 510, and the first photodetector 508 and the second photodetector 510 are located in the second optical splitter 404. The same side. In this embodiment, the first photodetector 508 and the second photodetector 510 are, for example, located on a side of the light beam 110 that penetrates the second beam splitter 404, and are used to measure the light beam 110 to penetrate the second splitting light, respectively. The light rays 110a, 100b generated by the device 404. One of the first photodetector 508 and the second photodetector 510 is, for example, an optical rotation measuring device for measuring optical rotation information, and the first photodetector 508 and the second photodetector 510 are used. The other of them is, for example, an energy measuring device for measuring energy absorption information. The first photodetector 508 and the second photodetector 510 are coupled to the processing unit 108, for example, but are not intended to limit the disclosure. The components, connection relationships, and functions of the other components of the non-invasive blood glucose monitoring device 500 of the fourth embodiment are similar to those of the non-invasive blood glucose monitoring device 400 of the third embodiment, and thus will not be described herein.

在另一實施例中,第一光偵測器508與第二光偵測器510亦可位於第二分光器404反射光線110的一側,且分別用以量測藉由第二分光器404反射光線110所產生的兩道光線。 In another embodiment, the first photodetector 508 and the second photodetector 510 are also located on a side of the second beam splitter 404 that reflects the light 110, and are respectively used to measure the second beam splitter 404. The two rays of light generated by the reflected light 110 are reflected.

在上述實施例中,雖然由第二分光器404所反射的光 線110及/或穿過第二分光器404的光線110是以兩道光線110a、100b為例進行說明。然而,由第二分光器404所反射的光線110及/或穿過第二分光器404的光線110更可經由第二分光器404分為三道以上的光線,再藉由上述所描述的第一光偵測器508及第二光偵測器510進行量測。 In the above embodiment, although the light reflected by the second beam splitter 404 The line 110 and/or the light 110 passing through the second beam splitter 404 is illustrated by taking two rays 110a, 100b as an example. However, the light 110 reflected by the second beam splitter 404 and/or the light 110 passing through the second beam splitter 404 can be further divided into three or more light beams by the second beam splitter 404, and the above described A photodetector 508 and a second photodetector 510 measure.

同樣地,由於第四實施例的非侵入式血糖監測裝置500可同時對由光源102發射出的光線110與傳送到光偵測器組506的光線110a、100b之間的旋光變化及吸收能量變化進行分析,而測得葡萄糖資訊(如,葡萄糖值),由於眼球(如,眼球中的房水液)中之葡萄糖濃度與血糖濃度具有對應關係,透過此對應關係,進而讀出具有高準確度的血糖資訊(如,血糖值)。此外,非侵入式血糖監測裝置500可微型化,所以在使用上相當便利,且可於室內或室外使用。 Similarly, since the non-invasive blood glucose monitoring device 500 of the fourth embodiment can simultaneously change the optical rotation and the absorption energy between the light 110 emitted by the light source 102 and the light 110a, 100b transmitted to the photodetector group 506. The analysis is performed, and the glucose information (for example, the glucose value) is measured, and since the glucose concentration in the eyeball (for example, the aqueous humor in the eyeball) has a correspondence relationship with the blood glucose concentration, the correspondence is read and the reading is performed with high accuracy. Blood sugar information (eg, blood sugar values). Further, the non-invasive blood glucose monitoring device 500 can be miniaturized, so it is quite convenient to use and can be used indoors or outdoors.

圖5所繪示為本揭露之第五實施例的非侵入式血糖監測方法的流程圖。 FIG. 5 is a flow chart showing a non-invasive blood glucose monitoring method according to a fifth embodiment of the present disclosure.

請參照圖5,首先,可選擇性地進行步驟S90,使眼球瞄準眼睛瞄準用定位裝置,用以使眼睛的視線對準眼睛瞄準用定位裝置而進行對位,其對位包含裝置光軸與眼睛視線的相對角度及位置調整,以決定眼球的量測位置。繼之,進行步驟S100,由至少一光源發射出至少一光線。接著,可選擇性地進行步驟S102,控制光源的光學特性、光機元件空間偏移或其組合,可用以產生改變因子,而有助於分析出更精確的血糖資訊。其中,可藉由光源控制光線 的發射頻率、強度、開啟時間長度、關閉時間長度或其組合。光偵測器組可藉由發射頻率確定所要量測的光線。另外,藉由光源控制光線的強度的功能,可確保進入眼球之光線能量不會造成傷害。此外,藉由光源控制光線的開啟時間長度、關閉時間長度或其組合,一方面可提供葡萄糖偵測的時間,另一方面可確保進入眼球之光線能量不會造成傷害。然後,可選擇性地進行步驟S104,在光線入射到眼球中之前,偵測來自第一分光器的光線的光資訊,以對光線的光學特性進行回饋控制。光資訊包括能量資訊及位置資訊中的至少一者。光學特性例如是射出能量及/或光線位置。接下來,進行步驟S106,使由光源發射出的光線藉由具有聚焦功能的第一分光器而入射且聚焦到眼球中。繼之,可進行步驟S108與步驟S110中的其中一者。其中,步驟S108為藉由第一分光器將由眼球所反射的光線傳送到光偵測器組。步驟S110為將由眼球所反射的光線藉由第一分光器傳送到第二分光器,再藉由第二分光器傳送到光偵測器組。再者,進行步驟S112,藉由光偵測器組量測傳送到光偵測器組的光線的旋光資訊及吸收能量資訊。然後,進行步驟S114,藉由處理旋光資訊及吸收能量資訊而獲得由光源發射出的光線與傳送到光偵測器組的光線之間的旋光變化及吸收能量變化。接著,進行步驟S116,對旋光變化及吸收能量變化進行分析,以獲得生化分子的生化分子資訊,生化分子至少包括葡萄糖,且藉由生化分子資訊獲得葡萄糖資訊,由於眼球(如,眼球中的房水液)中 之葡萄糖濃度與血糖濃度具有對應關係,透過此對應關係,進而讀出血糖資訊(如,血糖值)。生化分子例如膽固醇、尿酸、水、乳酸、尿素、抗壞血酸或其組合。此外,在生化分子中可能會包括干擾分子,干擾分子例如是量測標的(如,葡萄糖)以外的分子,如膽固醇、尿酸、水、乳酸、尿素或抗壞血酸。其中,抗壞血酸、乳酸等會對旋光資訊產生干擾,而水等會對吸收能量資訊產生干擾。等會對吸收能量資訊產生干擾。此外,在步驟S116中,更可選擇性地對干擾分子所造成的干擾進行排除。第五實施例的各種非侵入式血糖監測方法的各種態樣及各種使用裝置已於第一實施例至第四實施例中進行詳盡地說明,故於此不再贅述。 Referring to FIG. 5, firstly, step S90 may be selectively performed to aim the eyeball at the eye aiming positioning device for aligning the line of sight of the eye with the positioning device for eye aiming, and the alignment includes the optical axis of the device. The relative angle and position of the eye's line of sight are adjusted to determine the measurement position of the eye. Then, in step S100, at least one light is emitted by at least one light source. Then, step S102 can be selectively performed to control the optical characteristics of the light source, the spatial offset of the optomechanical component, or a combination thereof, which can be used to generate a change factor, and help to analyze more accurate blood glucose information. Among them, the light can be controlled by the light source The transmission frequency, intensity, length of turn-on time, length of turn-off time, or a combination thereof. The photodetector group can determine the light to be measured by the transmission frequency. In addition, by controlling the intensity of the light source by the light source, it is ensured that the light energy entering the eyeball does not cause damage. In addition, by controlling the length of the light, the length of the closing time, or a combination thereof, the light source can provide the time for glucose detection, and on the other hand, ensure that the light energy entering the eyeball does not cause damage. Then, step S104 is selectively performed to detect light information of the light from the first beam splitter before the light is incident on the eyeball to perform feedback control on the optical characteristics of the light. The light information includes at least one of energy information and location information. Optical properties are, for example, emission energy and/or light position. Next, step S106 is performed to cause the light emitted by the light source to be incident and focused into the eyeball by the first beam splitter having the focusing function. Then, one of step S108 and step S110 can be performed. Step S108 is to transmit the light reflected by the eyeball to the photodetector group by the first beam splitter. In step S110, the light reflected by the eyeball is transmitted to the second beam splitter by the first beam splitter, and then transmitted to the photodetector group by the second beam splitter. Furthermore, in step S112, the optical detector group measures the optical rotation information and the absorbed energy information of the light transmitted to the photodetector group. Then, in step S114, the optical rotation and the absorbed energy change between the light emitted by the light source and the light transmitted to the photodetector group are obtained by processing the optical rotation information and the absorption energy information. Next, step S116 is performed to analyze the change of the optical rotation and the change of the absorbed energy to obtain biochemical molecular information of the biochemical molecule, the biochemical molecule includes at least glucose, and the glucose information is obtained by biochemical molecular information, because the eyeball (for example, the room in the eyeball) In water) The glucose concentration has a corresponding relationship with the blood glucose concentration, and the blood glucose information (for example, blood sugar level) is read through the correspondence. Biochemical molecules such as cholesterol, uric acid, water, lactic acid, urea, ascorbic acid or a combination thereof. In addition, interfering molecules may be included in the biochemical molecule, such as molecules other than the labeled (eg, glucose), such as cholesterol, uric acid, water, lactic acid, urea, or ascorbic acid. Among them, ascorbic acid and lactic acid may interfere with the optical information, and water may interfere with the absorption of energy information. Will interfere with the absorption of energy information. Further, in step S116, interference caused by the interfering molecules is more selectively excluded. Various aspects and various use devices of the various non-invasive blood glucose monitoring methods of the fifth embodiment have been described in detail in the first to fourth embodiments, and thus will not be described again.

基於上述,由於第五實施例所提出的非侵入式血糖監測方法是利用光學偵測眼球的方式來量測出量測對象的葡萄糖資訊(如,葡萄糖值),因此可連續地且即時地獲得量測對象的葡萄糖資訊(如,葡萄糖濃度),並因葡萄糖濃度與血糖濃度具有對應關係,因此可讀出血糖資訊(如,血糖值)。 Based on the above, the non-invasive blood glucose monitoring method proposed in the fifth embodiment is to measure the glucose information (eg, glucose value) of the measurement object by optically detecting the eyeball, and thus can be obtained continuously and instantaneously. The glucose information (eg, glucose concentration) of the subject is measured, and since the glucose concentration has a correspondence with the blood glucose concentration, blood glucose information (eg, blood glucose level) can be read.

另一方面,上述實施例之非侵入式血糖監測裝置更可應用於可攜式行動裝置,而使得可攜式行動裝置具有非侵入式血糖監測功能。可攜式行動裝置例如是手機、平板電腦及數位相機等。以下,以實施例說明具有非侵入式血糖監測功能的可攜式行動裝置。 On the other hand, the non-invasive blood glucose monitoring device of the above embodiment is more applicable to the portable mobile device, and the portable mobile device has a non-invasive blood glucose monitoring function. Portable mobile devices are, for example, mobile phones, tablet computers, and digital cameras. Hereinafter, a portable mobile device having a non-invasive blood glucose monitoring function will be described by way of example.

圖6所繪示為本揭露之第六實施例的具有非侵入式血 糖監測功能的可攜式行動裝置的示意圖。 FIG. 6 illustrates a non-invasive blood of a sixth embodiment of the present disclosure. Schematic diagram of a portable mobile device for sugar monitoring functions.

請同時參照圖2及圖6,第六實施例的可攜式行動裝置600與第二實施例的非侵入式血糖監測裝置300的差異在於:可攜式行動裝置600更包括裝置本體602及光學套件604。光學套件604裝設於裝置本體602上,而光學套件604中包括第一分光器104。光偵測器組606、處理單元108、光源102、光資訊分析單元116及警示器118例如是設置於本體602內,但並不用以限制本揭露。此外,光偵測器組606包括旋光量測裝置612及能量量測裝置614,其中可攜式行動裝置600利用其相機模組中的感光元件作為光偵測器組606中的能量量測裝置614。旋光量測裝置612及能量量測裝置614例如是分別與處理單元108進行耦接,但並不用以限制本揭露。旋光量測裝置612例如是主動式旋光量測裝置或被動式旋光量測裝置。能量量測裝置614例如是感光元件,如電荷耦合元件、互補金屬氧化半導體感測器或光二極體。另外,可攜式行動裝置600進行血糖監測用之光線110是利用可攜式行動裝置600的相機模組中的光行進路線進行傳送。至於第六實施例的可攜式行動裝置600之其他構件的組成裝置、連接關係及功效等與第二實施例的非侵入式血糖監測裝置300相似,而第六實施例與第二實施例中相似的構件為相似的組成裝置,且血糖的監測方式可參照第二實施例,故於此不再贅述。 Referring to FIG. 2 and FIG. 6 simultaneously, the portable mobile device 600 of the sixth embodiment is different from the non-invasive blood glucose monitoring device 300 of the second embodiment in that the portable mobile device 600 further includes the device body 602 and the optical device. Kit 604. The optical package 604 is mounted on the device body 602, and the optical package 604 includes a first beam splitter 104. The photodetector group 606, the processing unit 108, the light source 102, the optical information analyzing unit 116, and the alerter 118 are disposed in the body 602, for example, but are not intended to limit the disclosure. In addition, the photodetector group 606 includes an optical rotation measuring device 612 and an energy measuring device 614, wherein the portable mobile device 600 uses the photosensitive element in the camera module as the energy measuring device in the photodetector group 606. 614. The optical rotation measuring device 612 and the energy measuring device 614 are respectively coupled to the processing unit 108, but are not intended to limit the disclosure. The optical rotation measuring device 612 is, for example, an active optical rotation measuring device or a passive optical rotation measuring device. The energy measuring device 614 is, for example, a photosensitive element such as a charge coupled device, a complementary metal oxide semiconductor sensor, or a photodiode. In addition, the light source 110 for performing blood glucose monitoring by the portable mobile device 600 is transmitted by using a light travel route in the camera module of the portable mobile device 600. The components, connection relationships, and functions of the other components of the portable mobile device 600 of the sixth embodiment are similar to those of the non-invasive blood glucose monitoring device 300 of the second embodiment, and in the sixth embodiment and the second embodiment. Similar components are similar components, and the monitoring method of blood glucose can be referred to the second embodiment, and thus will not be described again.

此外,在第六實施例中,連接元件124連接元件的一端連接於可攜式行動裝置600的出光口601,連接元件124 的另一端用以貼靠於眼睛外緣。 In addition, in the sixth embodiment, one end of the connecting component 124 connecting component is connected to the light exit port 601 of the portable mobile device 600, and the connecting component 124 The other end is used to abut the outer edge of the eye.

另一方面,光學套件604更可選擇性地包括鏡片組608。當光學套件604具有鏡片組608時,光學套件604可整合作為可攜式行動裝置600的相機模組中的鏡頭。此外,不論光學套件604是否具有鏡片組608,可將可攜式行動裝置600的相機模組中的鏡頭置換成光學套件604,以進行血糖監測。在另一實施例中,在進行血糖監測時,搭配光源的設計,更可將光學套件604直接外掛於可攜式行動裝置600的相機模組中的鏡頭上。 In another aspect, optical kit 604 can more optionally include lens set 608. When the optical kit 604 has the lens set 608, the optical kit 604 can be integrated into the lens in the camera module of the portable mobile device 600. Moreover, regardless of whether the optical kit 604 has the lens set 608, the lens in the camera module of the portable mobile device 600 can be replaced with an optical kit 604 for blood glucose monitoring. In another embodiment, when the blood glucose monitoring is performed, with the design of the light source, the optical package 604 can be directly attached to the lens in the camera module of the portable mobile device 600.

在此實施例中,由光源102發射的光線110藉由第一分光器104而入射且聚焦到眼球200中。光偵測器組606例如是用以量測由眼球200所反射、再穿過第一分光器104的光線110。所要量測的光線110例如是先傳送到旋光量測裝置612進行旋光資訊的量測,再進入到能量量測裝置614中進行吸收能量資訊的量測。 In this embodiment, light 110 emitted by light source 102 is incident by the first beam splitter 104 and focused into eye 200. The photodetector set 606 is, for example, used to measure the light 110 reflected by the eyeball 200 and passed through the first beam splitter 104. The light 110 to be measured is, for example, first transmitted to the optical rotation measuring device 612 for measurement of the optical rotation information, and then entered into the energy measuring device 614 for measurement of the absorbed energy information.

基於上述可知,第六實施例的可攜式行動裝置600可同時對由光源102發射出的光線110與傳送到光偵測器組606的光線110之間的旋光變化及吸收能量變化進行分析,而測得葡萄糖資訊(如,葡萄糖值),由於眼球(如,眼球中的房水液)中之葡萄糖濃度與血糖濃度具有對應關係,透過此對應關係,進而讀出具有高準確度的血糖資訊(如,血糖值)。此外,由於將血糖監測功能整合至可攜式行動裝置600,所以在使用上相當便利。另外,可利用可攜式行動裝置600的程式或網路連上雲端,提供遠距醫療 照護。 Based on the above, the portable mobile device 600 of the sixth embodiment can simultaneously analyze the optical change and the absorbed energy change between the light 110 emitted by the light source 102 and the light 110 transmitted to the photodetector group 606. The glucose information (eg, glucose value) is measured, and the glucose concentration in the eyeball (eg, the aqueous humor in the eyeball) has a corresponding relationship with the blood glucose concentration, and the blood glucose information with high accuracy is read through the corresponding relationship. (eg, blood sugar value). In addition, since the blood glucose monitoring function is integrated into the portable mobile device 600, it is quite convenient in use. In addition, the mobile device 600 can be connected to the cloud by using a program or network of the portable mobile device 600 to provide telemedicine. Care.

圖7所繪示為本揭露之第七實施例的具有非侵入式血糖監測功能的可攜式行動裝置的示意圖。 FIG. 7 is a schematic diagram of a portable mobile device having a non-invasive blood glucose monitoring function according to a seventh embodiment of the present disclosure.

請同時參照圖6及圖7,第七實施例的可攜式行動裝置700與第六實施例的可攜式行動裝置600的差異在於:第七實施例的可攜式行動裝置700更包括第二分光器404(可參照第三實施例),且光偵測器組606更包括旋光量測裝置616及能量量測裝置618。旋光量測裝置616例如是主動式旋光量測裝置或被動式旋光量測裝置。能量量測裝置618例如是感光元件,如電荷耦合元件、互補金屬氧化半導體感測器或光二極體。至於第七實施例的可攜式行動裝置700之其他構件的組成裝置、連接關係及功效等與第六實施例的可攜式行動裝置600相似,而第七實施例與第六實施例中相似的構件為相似的組成裝置,且血糖的監測方式可參照第三實施例,故於此不再贅述。 Referring to FIG. 6 and FIG. 7 simultaneously, the portable mobile device 700 of the seventh embodiment is different from the portable mobile device 600 of the sixth embodiment in that the portable mobile device 700 of the seventh embodiment further includes The second optical splitter 404 (refer to the third embodiment), and the photodetector set 606 further includes an optical rotation measuring device 616 and an energy measuring device 618. The optical rotation measuring device 616 is, for example, an active optical rotation measuring device or a passive optical rotation measuring device. The energy measuring device 618 is, for example, a photosensitive element such as a charge coupled device, a complementary metal oxide semiconductor sensor, or a photodiode. The components, connection relationships, and functions of the other components of the portable mobile device 700 of the seventh embodiment are similar to those of the portable mobile device 600 of the sixth embodiment, and the seventh embodiment is similar to the sixth embodiment. The components are similar components, and the monitoring method of blood glucose can refer to the third embodiment, and thus will not be described herein.

第二分光器404例如是將由眼球200所反射、再藉由第一分光器104傳送的光線110傳送到光偵測器組606中。第二分光器404例如是光學膜片、透鏡、光柵或繞射光學元件或上述任意元件之組合。 The second beam splitter 404 transmits, for example, the light 110 reflected by the eyeball 200 and transmitted by the first beam splitter 104 to the photodetector group 606. The second beam splitter 404 is, for example, an optical film, a lens, a grating or a diffractive optical element or a combination of any of the above.

在光偵測器組606中,旋光量測裝置612及能量量測裝置614例如是用以量測由眼球200所反射、再穿過第一分光器104的光線110c。所要量測的光線110c例如是先傳送到旋光量測裝置612進行旋光資訊的量測,再進入到能量量測裝置614中進行吸收能量資訊的量測。旋光量測 裝置616及能量量測裝置618例如是用以量測由眼球200所反射、經第一分光器104傳送到第二分光器404、再由第二分光器404所反射的光線110d。所要量測的光線110d例如是先傳送到旋光量測裝置616進行旋光資訊的量測,再進入到能量量測裝置618中進行吸收能量資訊的量測。 In the photodetector set 606, the optical rotation measuring device 612 and the energy measuring device 614 are used, for example, to measure the light 110c reflected by the eyeball 200 and passed through the first beam splitter 104. The light 110c to be measured is, for example, first transmitted to the optical rotation measuring device 612 for measurement of the optical rotation information, and then entered into the energy measuring device 614 for measurement of the absorbed energy information. Optical rotation measurement The device 616 and the energy measuring device 618 are used, for example, to measure the light 110d reflected by the eyeball 200, transmitted to the second beam splitter 404 via the first beam splitter 104, and reflected by the second beam splitter 404. The light 110d to be measured is, for example, first transmitted to the optical rotation measuring device 616 for measurement of the optical rotation information, and then entered into the energy measuring device 618 for measurement of the absorbed energy information.

在此實施例中,能量量測裝置614、618是以兩個分離的構件進行說明。然而,在另一實施例中,能量量測裝置614、618也可是同一個感光元件上的不同感測區域,而可利用感光元件上的不同感測區域進行光線的感測。 In this embodiment, the energy measuring devices 614, 618 are illustrated in two separate components. However, in another embodiment, the energy measuring devices 614, 618 can also be different sensing regions on the same photosensitive element, and the sensing of the light can be performed using different sensing regions on the photosensitive member.

同樣地,第七實施例的可攜式行動裝置700可同時對由光源102發射出的光線110與傳送到光偵測器組606的光線110c、110d之間的旋光變化及吸收能量變化進行分析,而測得葡萄糖資訊(如,葡萄糖值),由於眼球(如,眼球中的房水液)中之葡萄糖濃度與血糖濃度具有對應關係,透過此對應關係,進而讀出具有高準確度的血糖資訊(如,血糖值)。此外,由於將血糖監測功能整合至可攜式行動裝置700,所以在使用上相當便利。另外,可利用可攜式行動裝置700的程式或網路連上雲端,提供遠距醫療照護。 Similarly, the portable mobile device 700 of the seventh embodiment can simultaneously analyze the optical change and the absorbed energy change between the light 110 emitted by the light source 102 and the light 110c, 110d transmitted to the photodetector group 606. And the glucose information (for example, the glucose value) is measured, and since the glucose concentration in the eyeball (for example, the aqueous humor in the eyeball) has a corresponding relationship with the blood glucose concentration, the blood glucose concentration is read by the correspondence relationship, thereby reading the blood glucose with high accuracy. Information (eg, blood glucose values). In addition, since the blood glucose monitoring function is integrated into the portable mobile device 700, it is quite convenient in use. In addition, the mobile device 700 can be connected to the cloud using a program or network of the portable mobile device 700 to provide remote medical care.

圖8所繪示為本揭露之第八實施例的具有非侵入式血糖監測功能的可攜式行動裝置的示意圖。 FIG. 8 is a schematic diagram of a portable mobile device having a non-invasive blood glucose monitoring function according to an eighth embodiment of the present disclosure.

請同時參照圖7及圖8,第八實施例的可攜式行動裝置800與第七實施例的可攜式行動裝置700的差異在於:在可攜式行動裝置800中,光線110穿過第一分光器104 即可產生兩道光線110e、110f,所以不具有可攜式行動裝置700中的第二分光器404。此外,可攜式行動裝置800的光偵測器組606只具有一個能量量測裝置614,而不具有能量量測裝置618。能量量測裝置614包括感測區域614a、614b,感測區域614a、614b可分別量測光線110e、100f的吸收能量資訊。至於第八實施例的可攜式行動裝置800之其他構件的組成裝置、連接關係及功效等與第七實施例的可攜式行動裝置700相似,而第八實施例與第七實施例中相似的構件為相似的組成裝置,且血糖的監測方式可參照第七實施例,故於此不再贅述。 Referring to FIG. 7 and FIG. 8 simultaneously, the portable mobile device 800 of the eighth embodiment differs from the portable mobile device 700 of the seventh embodiment in that, in the portable mobile device 800, the light 110 passes through the first a beam splitter 104 Two rays 110e, 110f can be generated, so there is no second beam splitter 404 in the portable mobile device 700. In addition, the photodetector set 606 of the portable mobile device 800 has only one energy measuring device 614 without the energy measuring device 618. The energy measurement device 614 includes sensing regions 614a, 614b that can measure the absorbed energy information of the light rays 110e, 100f, respectively. The components, connection relationships, and functions of the other components of the portable mobile device 800 of the eighth embodiment are similar to those of the portable mobile device 700 of the seventh embodiment, and the eighth embodiment is similar to the seventh embodiment. The components are similar components, and the monitoring method of blood glucose can refer to the seventh embodiment, and thus will not be described again.

在此實施例中,是以同一個能量量測裝置614對光線110e、100f進行量測。然而,在另一實施例中,可攜式行動裝置800亦可使用兩個分離的能量量測裝置對光線110e、100f進行量測。 In this embodiment, the light rays 110e, 100f are measured by the same energy measuring device 614. However, in another embodiment, the portable mobile device 800 can also measure the light rays 110e, 100f using two separate energy measuring devices.

值得注意的是,在上述實施例中,光線110是以經由第一分光器104分為兩道光線110e、100f為例進行說明,但並不用以限制本揭露。於此技術領域具有通常知識者參照上述實施例可知,當光線110經由第一分光器104分為兩道以上的光線時,能量量測裝置614上的感測區域數量亦可分為兩個以上,而分別對應來自第一分光器104的光線,而能夠分別量測所對應之光線的吸收能量資訊。 It should be noted that, in the above embodiment, the light 110 is illustrated as being divided into two light rays 110e and 100f through the first beam splitter 104, but is not intended to limit the disclosure. Referring to the above embodiments, those skilled in the art can understand that when the light ray 110 is split into two or more light beams by the first beam splitter 104, the number of sensing regions on the energy measuring device 614 can be divided into two or more. And corresponding to the light from the first beam splitter 104, respectively, and can separately measure the absorbed energy information of the corresponding light.

雖然,在此實施例中,由能量量測裝置614所接收之兩道以上的光線是經由第一分光器104所產生,但並不用以限制本揭露。在另一實施例中,由能量量測裝置614所 接收之兩道以上的光線亦可由光源100所形成,因此通過第一分光器104的光線可為兩道以上,此時能量量測裝置614上的感測區域數量亦可分為兩個以上,而可分別對應來自第一分光器104的光線,而能夠分別量測所對應之光線的吸收能量資訊。 Although, in this embodiment, more than two rays of light received by the energy measuring device 614 are generated via the first beam splitter 104, it is not intended to limit the disclosure. In another embodiment, by the energy measuring device 614 The light received by the light source 100 can also be formed by the light source 100. Therefore, the light passing through the first beam splitter 104 can be two or more. The number of sensing regions on the energy measuring device 614 can also be divided into two or more. Instead, the light from the first beam splitter 104 can be separately measured, and the absorbed energy information of the corresponding light can be separately measured.

同樣地,第八實施例的可攜式行動裝置800可同時對由光源102發射出的光線110與傳送到光偵測器組606的光線110e、110f之間的旋光變化及吸收能量變化進行分析,而測得葡萄糖資訊(如,葡萄糖值),由於眼球(如,眼球中的房水液)中之葡萄糖濃度與血糖濃度具有對應關係,透過此對應關係,進而讀出具有高準確度的血糖資訊(如,血糖值)。此外,由於將血糖監測功能整合至可攜式行動裝置800,所以在使用上相當便利。另外,可利用可攜式行動裝置800的程式或網路連上雲端,提供遠距醫療照護,以即時血糖數據來提醒或控制用藥,如遇緊急狀況亦可直接通報醫療單位進行救護。 Similarly, the portable mobile device 800 of the eighth embodiment can simultaneously analyze the optical change and the absorbed energy change between the light 110 emitted by the light source 102 and the light 110e, 110f transmitted to the photodetector group 606. And the glucose information (for example, the glucose value) is measured, and since the glucose concentration in the eyeball (for example, the aqueous humor in the eyeball) has a corresponding relationship with the blood glucose concentration, the blood glucose concentration is read by the correspondence relationship, thereby reading the blood glucose with high accuracy. Information (eg, blood glucose values). In addition, since the blood glucose monitoring function is integrated into the portable mobile device 800, it is quite convenient in use. In addition, the mobile device 800 can be connected to the cloud to provide remote medical care, and the blood glucose data can be used to remind or control the medication. In case of an emergency, the medical unit can be directly notified for medical care.

圖9所繪示為本揭露之第九實施例的具有非侵入式血糖監測功能的可攜式行動裝置的示意圖。 FIG. 9 is a schematic diagram of a portable mobile device having a non-invasive blood glucose monitoring function according to a ninth embodiment of the present disclosure.

請同時參照圖7及圖9,第九實施例的可攜式行動裝置900與第七實施例的可攜式行動裝置700的差異在於:第九實施例的光學套件904的組成與第七實施例的光學套件604的組成不同。光學套件904外接於裝置主體602上,且光學套件904除了包括第一分光器104及鏡片組608外,更包括光源102及第二分光器404,且更可選擇性地 包括光資訊分析單元116及警示器118。至於第九實施例的可攜式行動裝置900之其他構件的組成裝置、連接關係及功效等與第七實施例的可攜式行動裝置700相似,而第九實施例與第七實施例中相似的構件為相似的組成裝置,且血糖的監測方式可參照第七實施例,故於此不再贅述。 Referring to FIG. 7 and FIG. 9 simultaneously, the portable mobile device 900 of the ninth embodiment differs from the portable mobile device 700 of the seventh embodiment in the composition and seventh implementation of the optical package 904 of the ninth embodiment. The composition of the optical kit 604 is different. The optical package 904 is externally connected to the device body 602, and the optical package 904 includes a first light splitter 104 and a lens group 608, and further includes a light source 102 and a second beam splitter 404, and more selectively The optical information analysis unit 116 and the alarm 118 are included. The components, connection relationships, and functions of the other components of the portable mobile device 900 of the ninth embodiment are similar to those of the portable mobile device 700 of the seventh embodiment, and the ninth embodiment is similar to the seventh embodiment. The components are similar components, and the monitoring method of blood glucose can refer to the seventh embodiment, and thus will not be described again.

同樣地,第九實施例的可攜式行動裝置900可同時對由光源102發射出的光線110與傳送到光偵測器組606的光線110c、110d之間的旋光變化及吸收能量變化進行分析,而測得葡萄糖資訊(如,葡萄糖值),由於眼球(如,眼球中的房水液)中之葡萄糖濃度與血糖濃度具有對應關係,透過此對應關係,進而讀出具有高準確度的血糖資訊(如,血糖值)。此外,由於將血糖監測功能整合至可攜式行動裝置900,所以在使用上相當便利。另外,可利用可攜式行動裝置900的程式或網路連上雲端,提供遠距醫療照護。 Similarly, the portable mobile device 900 of the ninth embodiment can simultaneously analyze the optical change and the absorbed energy change between the light 110 emitted by the light source 102 and the light 110c, 110d transmitted to the photodetector group 606. And the glucose information (for example, the glucose value) is measured, and since the glucose concentration in the eyeball (for example, the aqueous humor in the eyeball) has a corresponding relationship with the blood glucose concentration, the blood glucose concentration is read by the correspondence relationship, thereby reading the blood glucose with high accuracy. Information (eg, blood glucose values). In addition, since the blood glucose monitoring function is integrated into the portable mobile device 900, it is quite convenient in use. In addition, remote medical care can be provided by connecting the cloud with the program or network of the portable mobile device 900.

值得注意的是,第九實施例的可攜式行動裝置900中之外接式光學套件904的概念亦可應用於第六實施例至第八實施例中。 It is to be noted that the concept of the external optical package 904 in the portable mobile device 900 of the ninth embodiment can also be applied to the sixth to eighth embodiments.

圖10所繪示為本揭露之第十實施例的具有非侵入式血糖監測功能的可攜式行動裝置的示意圖。 FIG. 10 is a schematic diagram of a portable mobile device having a non-invasive blood glucose monitoring function according to a tenth embodiment of the present disclosure.

請同時參照圖6及圖10,第十實施例的可攜式行動裝置1000與第六實施例的可攜式行動裝置600的差異在於:第十實施例的光學套件1004的組成與第六實施例的光學套件604的組成不同。光學套件1004外接於可攜式行動裝 置1000的鏡頭1006上,且光學套件1004包括第一分光器104、光源102及旋光量測裝置612,且更可選擇性地包括光資訊分析單元116及警示器118。於此技術領域具有通常知識者可將光源102、旋光量測裝置612及光資訊分析單元116以最適當的方式與處理單元108進行耦接,於此不再贅述。至於第十實施例的可攜式行動裝置1000之其他構件的組成裝置、連接關係及功效等與第六實施例的可攜式行動裝置600相似,而第十實施例與第六實施例中相似的構件為相似的組成裝置,且血糖的監測方式可參照第六實施例,故於此不再贅述。 Referring to FIG. 6 and FIG. 10 simultaneously, the portable mobile device 1000 of the tenth embodiment is different from the portable mobile device 600 of the sixth embodiment in the composition and the sixth implementation of the optical package 1004 of the tenth embodiment. The composition of the optical kit 604 is different. Optical kit 1004 is externally connected to a portable mobile device The lens 1006 is disposed on the lens 1006, and the optical package 1004 includes a first beam splitter 104, a light source 102, and an optical rotation measuring device 612, and further optionally includes an optical information analyzing unit 116 and a warning device 118. The light source 102, the optical rotation measuring device 612, and the optical information analyzing unit 116 can be coupled to the processing unit 108 in the most appropriate manner, and will not be described herein. The components, connection relationships, and functions of the other components of the portable mobile device 1000 of the tenth embodiment are similar to those of the portable mobile device 600 of the sixth embodiment, and the tenth embodiment is similar to the sixth embodiment. The components are similar components, and the monitoring method of blood glucose can refer to the sixth embodiment, and thus will not be described again.

在進行血糖量測時,旋光量測裝置612及能量量測裝置614例如是用以量測由眼球200所反射、再穿過第一分光器104的光線110。所要量測的光線110例如是先傳送到旋光量測裝置612進行旋光資訊的量測,接著穿過鏡頭1006之後,再進入到能量量測裝置614中進行吸收能量資訊的量測。 When performing blood glucose measurement, the optical rotation measuring device 612 and the energy measuring device 614 are used, for example, to measure the light 110 reflected by the eyeball 200 and passed through the first beam splitter 104. The light 110 to be measured is, for example, first transmitted to the optical rotation measuring device 612 for measurement of the optical rotation information, and then passes through the lens 1006, and then enters the energy measuring device 614 for measurement of the absorbed energy information.

同樣地,第十實施例的可攜式行動裝置1000可同時對由光源102發射出的光線110與傳送到光偵測器組606的光線110之間的旋光變化及吸收能量變化進行分析,而測得葡萄糖資訊(如,葡萄糖值),由於眼球(如,眼球中的房水液)中之葡萄糖濃度與血糖濃度具有對應關係,透過此對應關係,進而讀出具有高準確度的血糖資訊(如,血糖值)。此外,由於將血糖監測功能整合至可攜式行動裝置1000,所以在使用上相當便利。另外,可利用可攜式行動 裝置1000的程式或網路連上雲端,提供遠距醫療照護。 Similarly, the portable mobile device 1000 of the tenth embodiment can simultaneously analyze the optical change and the absorbed energy change between the light 110 emitted by the light source 102 and the light 110 transmitted to the photodetector group 606, and Glucose information (eg, glucose value) is measured, and since the glucose concentration in the eyeball (eg, aqueous humor in the eyeball) has a corresponding relationship with the blood glucose concentration, the blood glucose information with high accuracy is read through the corresponding relationship ( For example, blood sugar value). In addition, since the blood glucose monitoring function is integrated into the portable mobile device 1000, it is quite convenient in use. In addition, portable action is available The program or network of the device 1000 is connected to the cloud to provide remote medical care.

圖11所繪示為本揭露之第十一實施例的具有非侵入式血糖監測功能的可攜式行動裝置的示意圖。 FIG. 11 is a schematic diagram of a portable mobile device having a non-invasive blood glucose monitoring function according to an eleventh embodiment of the present disclosure.

請同時參照圖10及圖11,第十一實施例的可攜式行動裝置1100與第十實施例的可攜式行動裝置1000的差異在於:在可攜式行動裝置1100中,光線110穿過第一分光器104後,可產生兩道光線110g、110h。此外,可攜式行動裝置1100的光偵測器組606包括旋光量測裝置612、616及能量量測裝置614。其中,能量量測裝置614包括感測區域614c、614d。光線110g、100h可分別藉由旋光量測裝置612、616量測旋光資訊之後,再分別藉由能量量測裝置614的感測區域614c、614d量測吸收能量資訊。至於第十一實施例的可攜式行動裝置1100之其他構件的組成裝置、連接關係及功效等與第十實施例的可攜式行動裝置1000相似,而第十一實施例與第十實施例中相似的構件為相似的組成裝置,且血糖的監測方式可參照第十實施例,故於此不再贅述。 Referring to FIG. 10 and FIG. 11 simultaneously, the portable mobile device 1100 of the eleventh embodiment differs from the portable mobile device 1000 of the tenth embodiment in that, in the portable mobile device 1100, the light 110 passes through After the first beam splitter 104, two rays 110g, 110h can be generated. In addition, the photodetector set 606 of the portable mobile device 1100 includes optical rotation measuring devices 612, 616 and an energy measuring device 614. Wherein, the energy measuring device 614 includes sensing regions 614c, 614d. The light rays 110g and 100h can measure the optical rotation information by the optical rotation measuring devices 612 and 616, respectively, and then measure the absorbed energy information by the sensing regions 614c and 614d of the energy measuring device 614, respectively. The components, connection relationships, and functions of the other components of the portable mobile device 1100 of the eleventh embodiment are similar to those of the portable mobile device 1000 of the tenth embodiment, and the eleventh and tenth embodiments The similar components are similar components, and the monitoring method of blood glucose can refer to the tenth embodiment, and thus will not be described herein.

在此實施例中,是以同一個能量量測裝置614對光線110g、100h進行量測。然而,在另一實施例中,可攜式行動裝置1100亦可使用兩個分離的能量量測裝置對光線110g、100h進行量測。 In this embodiment, the light 110g, 100h is measured by the same energy measuring device 614. However, in another embodiment, the portable mobile device 1100 can also measure the light rays 110g, 100h using two separate energy measuring devices.

值得注意的是,在上述實施例中,光線110是以經由第一分光器104分為兩道光線110g、100h為例進行說明,但並不用以限制本揭露。於此技術領域具有通常知識者參 照上述實施例可知,當光線110經由第一分光器104分為兩道以上的光線時,能量量測裝置614上的感測區域數量亦可分為兩個以上,而分別對應來自第一分光器104的光線,而能夠分別量測所對應之光線的吸收能量資訊。 It should be noted that, in the above embodiment, the light 110 is illustrated as being divided into two light rays 110g and 100h through the first beam splitter 104, but is not intended to limit the disclosure. Common knowledge in this technical field According to the above embodiment, when the light ray 110 is split into two or more light beams by the first beam splitter 104, the number of sensing regions on the energy measuring device 614 can be further divided into two or more, and the corresponding light splitting signals are respectively corresponding to the first light splitting. The light of the device 104 can be used to measure the absorbed energy information of the corresponding light.

雖然,在此實施例中,由能量量測裝置614所接收之兩道以上的光線是經由第一分光器104所產生,但並不用以限制本揭露。在另一實施例中,由能量量測裝置614所接收之兩道以上的光線亦可由光源100所形成,因此通過第一分光器104的光線可為兩道以上,此時能量量測裝置614上的感測區域數量亦可分為兩個以上,而可分別對應來自第一分光器104的光線,而能夠分別量測所對應之光線的吸收能量資訊。 Although, in this embodiment, more than two rays of light received by the energy measuring device 614 are generated via the first beam splitter 104, it is not intended to limit the disclosure. In another embodiment, two or more light beams received by the energy measuring device 614 may also be formed by the light source 100. Therefore, the light passing through the first beam splitter 104 may be two or more. At this time, the energy measuring device 614 The number of sensing regions on the upper layer can also be divided into two or more, and the light from the first beam splitter 104 can be respectively corresponding to the light absorption energy information of the corresponding light.

同樣地,第十一實施例的可攜式行動裝置1100可同時對由光源102發射出的光線110與傳送到光偵測器組606的光線110g、100h之間的旋光變化及吸收能量變化進行分析,而測得葡萄糖資訊(如,葡萄糖值),由於眼球(如,眼球中的房水液)中之葡萄糖濃度與血糖濃度具有對應關係,透過此對應關係,進而讀出具有高準確度的血糖資訊(如,血糖值)。此外,由於將血糖監測功能整合至可攜式行動裝置1100,所以在使用上相當便利。另外,可利用可攜式行動裝置1100的程式或網路連上雲端,提供遠距醫療照護。 Similarly, the portable mobile device 1100 of the eleventh embodiment can simultaneously perform optical rotation change and absorption energy variation between the light 110 emitted by the light source 102 and the light 110g, 100h transmitted to the photodetector group 606. Analysis, and the measurement of glucose information (eg, glucose value), because the glucose concentration in the eyeball (eg, aqueous humor in the eyeball) has a corresponding relationship with the blood glucose concentration, through this correspondence, and then read out with high accuracy Blood glucose information (eg, blood glucose levels). In addition, since the blood glucose monitoring function is integrated into the portable mobile device 1100, it is quite convenient in use. In addition, the mobile device can be connected to the cloud using a program or network of the portable mobile device 1100 to provide remote medical care.

圖12所繪示為本揭露之第十二實施例的具有非侵入式血糖監測功能的可攜式行動裝置的示意圖。 FIG. 12 is a schematic diagram of a portable mobile device having a non-invasive blood glucose monitoring function according to a twelfth embodiment of the present disclosure.

請同時參照圖7及圖12,第十二實施例的可攜式行動裝置1200與第七實施例的可攜式行動裝置700的差異在於:在可攜式行動裝置1200中,光線110經由第二分光器404反射後會產生兩道光線110i、110j。此外,可攜式行動裝置1200的光偵測器組1206包括第一光偵測器1208與第二光偵測器1210,且第一光偵測器1208與第二光偵測器1210位於第二分光器404的同一側。在此實施例中,第一光偵測器1208與第二光偵測器1210例如是位於第二分光器404反射光線110的一側,且分別用以量測由第二分光器404反射光線110所產生的光線110i、110j。其中,第一光偵測器1208與第二光偵測器1210中的一者例如是用以量測旋光資訊的旋光量測裝置,第一光偵測器1208與第二光偵測器1210中的另一者例如是用以量測吸收能量資訊的能量測裝置。在其他實施例中,第一光偵測器1208與第二光偵測器1210亦可分別包括旋光量測裝置及能量量測裝置。第一光偵測器1208與第二光偵測器1210例如是分別與處理單元108進行耦接,但並不用以限制本揭露。至於第十二實施例的可攜式行動裝置1200之其他構件的組成裝置、連接關係及功效等與第七實施例的可攜式行動裝置700相似,而第十二實施例與第七實施例中相似的構件為相似的組成裝置,且血糖的監測方式可參照第四實施例,故於此不再贅述。 Referring to FIG. 7 and FIG. 12 simultaneously, the portable mobile device 1200 of the twelfth embodiment differs from the portable mobile device 700 of the seventh embodiment in that, in the portable mobile device 1200, the light 110 passes through the first After the two beamsplitter 404 reflects, two rays 110i, 110j are generated. In addition, the photodetector group 1206 of the portable mobile device 1200 includes a first photodetector 1208 and a second photodetector 1210, and the first photodetector 1208 and the second photodetector 1210 are located at the first The same side of the dichotomy 404. In this embodiment, the first photodetector 1208 and the second photodetector 1210 are, for example, located on a side of the second beam splitter 404 that reflects the light 110, and are respectively used to measure the light reflected by the second beam splitter 404. The light rays 110i, 110j produced by 110. One of the first photodetector 1208 and the second photodetector 1210 is, for example, an optical rotation measuring device for measuring optical rotation information, and the first photodetector 1208 and the second photodetector 1210 The other of them is, for example, an energy measuring device for measuring energy absorption information. In other embodiments, the first photodetector 1208 and the second photodetector 1210 can also include an optical rotation measuring device and an energy measuring device, respectively. The first photodetector 1208 and the second photodetector 1210 are coupled to the processing unit 108, for example, but are not intended to limit the disclosure. The components, connection relationships, and functions of the other components of the portable mobile device 1200 of the twelfth embodiment are similar to those of the portable mobile device 700 of the seventh embodiment, and the twelfth embodiment and the seventh embodiment The similar components are similar components, and the monitoring method of blood glucose can refer to the fourth embodiment, and thus will not be described herein.

在另一實施例中,第一光偵測器1208與第二光偵測器1210亦可位於光線110穿透第二分光器404的一側,且分 別用以量測光線110穿透第二分光器404所產生的兩道光線110a、100b。 In another embodiment, the first photodetector 1208 and the second photodetector 1210 may also be located on a side of the light 110 that penetrates the second beam splitter 404, and It is not used to measure the two rays 110a, 100b generated by the light 110 passing through the second beam splitter 404.

同樣地,第十二實施例的可攜式行動裝置1200可同時對由光源102發射出的光線110與傳送到光偵測器組1206的光線110i、110g之間的旋光變化及吸收能量變化進行分析,而測得葡萄糖資訊(如,葡萄糖值),由於眼球(如,眼球中的房水液)中之葡萄糖濃度與血糖濃度具有對應關係,透過此對應關係,進而讀出具有高準確度的血糖資訊(如,血糖值)。此外,由於將血糖監測功能整合至可攜式行動裝置1200,所以在使用上相當便利。另外,可利用可攜式行動裝置800的程式或網路連上雲端,提供遠距醫療照護,以即時血糖數據來提醒或控制用藥,如遇緊急狀況亦可直接通報醫療單位進行救護。 Similarly, the portable mobile device 1200 of the twelfth embodiment can simultaneously perform the optical change and the absorbed energy change between the light 110 emitted by the light source 102 and the light 110i, 110g transmitted to the photodetector group 1206. Analysis, and the measurement of glucose information (eg, glucose value), because the glucose concentration in the eyeball (eg, aqueous humor in the eyeball) has a corresponding relationship with the blood glucose concentration, through this correspondence, and then read out with high accuracy Blood glucose information (eg, blood glucose levels). In addition, since the blood glucose monitoring function is integrated into the portable mobile device 1200, it is quite convenient in use. In addition, the mobile device 800 can be connected to the cloud to provide remote medical care, and the blood glucose data can be used to remind or control the medication. In case of an emergency, the medical unit can be directly notified for medical care.

圖13所繪示為本揭露之第十三實施例的具有非侵入式血糖監測功能的可攜式行動裝置的示意圖。 FIG. 13 is a schematic diagram of a portable mobile device having a non-invasive blood glucose monitoring function according to a thirteenth embodiment of the present disclosure.

請同時參照圖12及圖13,第十三實施例的可攜式行動裝置1300與第十二實施例的可攜式行動裝置1200的差異在於:第十三實施例的光學套件1304的組成與第十二實施例的光學套件1204的組成不同。光學套件1304外接於裝置主體602上,且光學套件1304除了包括第一分光器104及鏡片組608外,更包括光源102及第二分光器404,且更可選擇性地包括光資訊分析單元116及警示器118。至於第十三實施例的可攜式行動裝置1300之其他構件的組成裝置、連接關係及功效等與第十二實施例的可攜式行 動裝置1200相似,而第十三實施例與第十二實施例中相似的構件為相似的組成裝置,且血糖的監測方式可參照第十二實施例,故於此不再贅述。 Referring to FIG. 12 and FIG. 13 simultaneously, the portable mobile device 1300 of the thirteenth embodiment is different from the portable mobile device 1200 of the twelfth embodiment in that the composition of the optical package 1304 of the thirteenth embodiment is The composition of the optical kit 1204 of the twelfth embodiment is different. The optical package 1304 is externally connected to the device body 602, and the optical package 1304 includes a first light splitter 104 and a lens group 608, and further includes a light source 102 and a second beam splitter 404, and more preferably includes a light information analyzing unit 116. And the warning device 118. The components, connection relationships, and functions of the other components of the portable mobile device 1300 of the thirteenth embodiment are the same as those of the twelfth embodiment. The components of the thirteenth embodiment are similar to those of the twelfth embodiment, and the components of the twelfth embodiment are similar to those of the twelfth embodiment.

同樣地,第十三實施例的可攜式行動裝置1300可同時對由光源102發射出的光線110與傳送到光偵測器組606的光線110i、110j之間的旋光變化及吸收能量變化進行分析,而測得葡萄糖資訊(如,葡萄糖值),由於眼球(如,眼球中的房水液)中之葡萄糖濃度與血糖濃度具有對應關係,透過此對應關係,進而讀出具有高準確度的血糖資訊(如,血糖值)。此外,由於將血糖監測功能整合至可攜式行動裝置1300,所以在使用上相當便利。另外,可利用可攜式行動裝置1300的程式或網路連上雲端,提供遠距醫療照護。 Similarly, the portable mobile device 1300 of the thirteenth embodiment can simultaneously perform the optical change and the absorbed energy change between the light 110 emitted by the light source 102 and the light 110i, 110j transmitted to the photodetector group 606. Analysis, and the measurement of glucose information (eg, glucose value), because the glucose concentration in the eyeball (eg, aqueous humor in the eyeball) has a corresponding relationship with the blood glucose concentration, through this correspondence, and then read out with high accuracy Blood glucose information (eg, blood glucose levels). In addition, since the blood glucose monitoring function is integrated into the portable mobile device 1300, it is quite convenient in use. In addition, the mobile device can be connected to the cloud using a program or network of the portable mobile device 1300 to provide remote medical care.

此外,雖然非侵入式血糖監測裝置應用於可攜式行動裝置是以上述第六實施例至第十三實施例為例進行說明,但並不用以限制本揭露。於此技術領域具有通常知識者可參照第六實施例至第十三實施例所揭露之具有非侵入式血糖監測功能的可攜式行動裝置,將具有非侵入式血糖監測功能的可攜式行動裝置的概念與第一實施例至第四實施例的各種實施型態結合,而發展出多樣化的具有非侵入式血糖監測功能的可攜式行動裝置。 In addition, although the non-invasive blood glucose monitoring device is applied to the portable mobile device as an example of the sixth embodiment to the thirteenth embodiment, it is not intended to limit the disclosure. A portable mobile device having non-invasive blood glucose monitoring function disclosed in the sixth embodiment to the thirteenth embodiment, which is capable of carrying out a non-invasive blood glucose monitoring function, can be carried out by a person skilled in the art. The concept of the device is combined with various embodiments of the first to fourth embodiments to develop a variety of portable mobile devices having non-invasive blood glucose monitoring functions.

另外,雖然在上述第一實施例至第十三實施例中是以量測一眼為例進行說明,但並不用以限制本揭露。於此技術領域具有通常知識者可參照上述實施例揭露的內容得知 本揭露應用於兩眼的實施方式。 In addition, although the first embodiment to the thirteenth embodiment are described by taking an eye as an example, it is not intended to limit the disclosure. Those skilled in the art can refer to the contents disclosed in the above embodiments. The present disclosure applies to embodiments of both eyes.

圖14所繪示為本揭露之第十四實施例的生化分子的分析方法的示意圖。 FIG. 14 is a schematic view showing a method for analyzing biochemical molecules according to a fourteenth embodiment of the present disclosure.

在此實施例中,生化分子的分析方法例如是藉由生化分子監控裝置的處理單元進行分析。所要進行分析的生化分子例如是葡萄糖、膽固醇、尿酸、水、乳酸、尿素、抗壞血酸或其組合。 In this embodiment, the analysis method of the biochemical molecule is, for example, analyzed by a processing unit of the biochemical molecular monitoring device. The biochemical molecules to be analyzed are, for example, glucose, cholesterol, uric acid, water, lactic acid, urea, ascorbic acid or a combination thereof.

請參照圖14,可進行步驟S202,獲得旋光變化。獲得旋光變化的方法包括下列步驟。首先,將生化分子監測裝置所測得的多個旋光變化數值中超過可接受變動範圍的部份捨去。接著,使用至少一數學統計方法對旋光變化數值進行計算。其中,數學統計方法例如是最小平方誤差回歸分析法。可接受變動範圍例如是以下列數學式表示的範圍。 Referring to FIG. 14, step S202 can be performed to obtain an optical rotation change. The method of obtaining an optical rotation change includes the following steps. First, the portion of the plurality of optical rotation change values measured by the biochemical molecular monitoring device that exceeds the acceptable variation range is discarded. Next, the value of the optical rotation change is calculated using at least one mathematical statistical method. Among them, the mathematical statistical method is, for example, a least square error regression analysis method. The acceptable range of variation is, for example, a range expressed by the following mathematical formula.

旋光變化的可接受變動範圍=旋光變化數值的算數平均數×(1±15%) Acceptable variation range of optical rotation change = arithmetic mean of optical rotation change value × (1 ± 15%)

此外,可進行步驟S204,獲得吸收能量變化。獲得吸收能量變化的方法包括下列步驟。首先,將生化分子監測裝置所測得的多個吸收能量變化數值中超過可接受變動範圍的部份捨去。接著,使用至少一數學統計方法對吸收能量變化數值進行計算。其中,數學統計方法例如是最小平方誤差回歸分析法。可接受變動範圍例如是以下列數學式表示的範圍。 Further, step S204 may be performed to obtain an absorption energy change. A method of obtaining a change in absorbed energy includes the following steps. First, the portion of the plurality of absorbed energy change values measured by the biochemical molecular monitoring device that exceeds the acceptable variation range is discarded. Next, the value of the absorbed energy change is calculated using at least one mathematical statistical method. Among them, the mathematical statistical method is, for example, a least square error regression analysis method. The acceptable range of variation is, for example, a range expressed by the following mathematical formula.

吸收能量變化的可接受變動範圍=吸收能量變化數值 的算數平均數×(1±15%) Acceptable range of variation in absorbed energy = value of absorbed energy change Arithmetic mean × (1 ± 15%)

進行步驟S206,建立生化分子與旋光變化關係的至少一第一多項式方程式以及生化分子與吸收能量變化關係的至少一第二多項式方程式。其中,生化分子包括目標分子與至少一干擾分子,且第一多項式方程式與第二多項式方程式的多個變數分別包括目標分子濃度變數及干擾分子濃度變數。 Step S206 is performed to establish at least a first polynomial equation of the relationship between the biochemical molecule and the optical rotation change and at least a second polynomial equation of the relationship between the biochemical molecule and the absorbed energy. The biochemical molecule includes a target molecule and at least one interfering molecule, and the plurality of variables of the first polynomial equation and the second polynomial equation respectively include a target molecule concentration variable and an interference molecule concentration variable.

第一多項式方程式例如是由資料庫中所儲存的多個生化分子濃度數值與相對應的多個旋光變化數值所建立。第二多項式方程式例如是由資料庫中所儲存的多個生化分子濃度數值與相對應的多個吸收能量變化數值所建立。其中,資料庫中所儲存的多個生化分子濃度數值的樣本體包括多個活體樣本或多個標準樣本。 The first polynomial equation is established, for example, by a plurality of biochemical molecular concentration values stored in the database and corresponding plurality of optical rotation change values. The second polynomial equation is, for example, established by a plurality of biochemical molecular concentration values stored in the database and corresponding plurality of absorbed energy change values. The sample body of the plurality of biochemical molecular concentration values stored in the database includes a plurality of living samples or a plurality of standard samples.

此外,建立第一多項式方程式與第二多項式方程式的步驟更包括區分出多個旋光變化範圍與多個吸收能量變化範圍,且在各旋光變化範圍具有所對應使用的第一多項式方程式,在各吸收能量變化範圍具有所對應使用的第二多項式方程式。 In addition, the steps of establishing the first polynomial equation and the second polynomial equation further comprise distinguishing a plurality of optical rotation variation ranges from the plurality of absorption energy variation ranges, and having the first plurality of corresponding use in each of the optical rotation variation ranges The equation has a second polynomial equation that is used correspondingly in each range of absorbed energy variations.

舉例來說,當目標分子為葡萄糖且干擾分子為乳酸,且區分出三個旋光變化範圍與三個吸收能量變化範圍時,所選用的第一多項式方程式與第二多項式方程式如下所示,但本揭露並不以此為限。 For example, when the target molecule is glucose and the interfering molecule is lactic acid, and the range of three optical rotations and the range of three absorption energies are distinguished, the first polynomial equation and the second polynomial equation are selected as follows. Show, but this disclosure is not limited to this.

在第一旋光變化範圍所對應使用的第一多項式方程式: θ(葡萄糖影響+乳酸影響)=a1X葡萄糖濃度+b1Y乳酸濃度+c1 The first polynomial equation used in the first range of optical rotation: θ (glucose effect + lactic acid effect) = a 1 X glucose concentration + b 1 Y lactic acid concentration + c 1

在第二旋光變化範圍所對應使用的第一多項式方程式:θ(葡萄糖影響+乳酸影響)=a1'X葡萄糖濃度+b1'Y乳酸濃度+c1' The first polynomial equation used in the second range of optical rotation: θ (glucose effect + lactic acid effect) = a 1 'X glucose concentration + b 1 'Y lactic acid concentration + c 1 '

在第三旋光變化範圍所對應使用的第一多項式方程式:θ(葡萄糖影響+乳酸影響)=a1"X葡萄糖濃度+b1"Y乳酸濃度+c1" The first polynomial equation used in the third range of optical rotation: θ (glucose effect + lactic acid effect) = a 1 "X glucose concentration + b 1 "Y lactic acid concentration + c 1 "

其中,θ(葡萄糖影響+乳酸影響)為旋光變化,X葡萄糖濃度為目標分子濃度變數,Y乳酸濃度為干擾分子濃度變數,a1、a1'、a1"、b1、b1'、b1"、c1、c1'與c1"為已知的係數。 Among them, θ (glucose effect + lactic acid influence) is an optical rotation change, X glucose concentration is a target molecular concentration variable, and Y lactic acid concentration is an interference molecule concentration variable, a 1 , a 1 ', a 1 ", b 1 , b 1 ', b 1 ", c 1 , c 1 ' and c 1 " are known coefficients.

在第一吸收能量變化範圍所對應使用第二多項式方程式:P(葡萄糖影響+乳酸影響)=a2X葡萄糖濃度+b2Y乳酸濃度+c2 The second polynomial equation is used in the range of the first absorbed energy variation: P (glucose effect + lactic acid influence) = a 2 X glucose concentration + b 2 Y lactic acid concentration + c 2

在第二吸收能量變化範圍所對應使用第二多項式方程式:P(葡萄糖影響+乳酸影響)=a2'X葡萄糖濃度+b2'Y乳酸濃度+c2' The second polynomial equation is used in the range of the second absorbed energy variation: P (glucose effect + lactic acid influence) = a 2 'X glucose concentration + b 2 'Y lactic acid concentration + c 2 '

在第三吸收能量變化範圍所對應使用第二多項式方程式:P(葡萄糖影響+乳酸影響)=a2"X葡萄糖濃度+b2"Y乳酸濃度+c2" The second polynomial equation is used in the range of the third absorbed energy variation: P (glucose effect + lactic acid influence) = a 2 "X glucose concentration + b 2 "Y lactic acid concentration + c 2 "

其中,P(葡萄糖影響+乳酸影響)為旋光變化,X葡萄糖濃度為目標分子濃度變數,Y乳酸濃度為干擾分子濃度變數,a2、a2'、a2"、b2、b2'、b2"、c2、c2'與c2"為已知的係數。 Among them, P (glucose effect + lactic acid effect) is an optical rotation change, X glucose concentration is a target molecular concentration variable, Y lactic acid concentration is an interference molecule concentration variable, a 2 , a 2 ', a 2 ", b 2 , b 2 ', b 2 ", c 2 , c 2 ' and c 2 " are known coefficients.

進行步驟S208,藉由將由生化分子監測裝置所測得的旋光變化與吸收能量變化帶入第一多項式方程式與第二多 項式方程式中,以計算出同時存在目標分子與干擾分子時的目標分子的第一目標分子濃度。第一目標分子濃度的計算方法例如是對第一多項式方程式與第二多項式方程式進行聯立方程式的求解。在進行步驟S208的過程中,更可藉由控制改變因子,分析旋光變化及吸收能量變化,以獲得第一目標分子濃度。其中,改變因子包括光發射頻率、光能量強度、光開啟時間長度、光關閉時間長度、光機元件空間偏移或其組合。 Going to step S208, the optical rotation change and the absorbed energy change measured by the biochemical molecular monitoring device are brought into the first polynomial equation and the second largest In the term equation, the first target molecule concentration of the target molecule when the target molecule and the interfering molecule are present simultaneously is calculated. The calculation method of the first target molecular concentration is, for example, solving the simultaneous equations of the first polynomial equation and the second polynomial equation. In the process of performing step S208, the change of the optical rotation and the change of the absorbed energy can be further analyzed by controlling the change factor to obtain the first target molecular concentration. The change factor includes a light emission frequency, a light energy intensity, a light on time length, a light off time length, a optomechanical space offset, or a combination thereof.

此外,更可選擇性地進行步驟S210、S212、S214、S216、S218或其組合。 Further, steps S210, S212, S214, S216, S218, or a combination thereof are more selectively performed.

在步驟S210中,建立生化分子與旋光變化關係的至少一第一圖表或至少一第三多項式方程式。其中,第三多項式方程式的變數包括目標分子濃度變數。 In step S210, at least a first graph or at least a third polynomial equation of the biochemical molecule relationship with the optical rotation change is established. Wherein, the variable of the third polynomial equation includes a target molecule concentration variable.

第一圖表與第三多項式方程式例如是由資料庫中所儲存的多個生化分子濃度數值與相對應的多個旋光變化數值所建立。其中,資料庫中所儲存的多個生化分子濃度數值的樣本體包括多個活體樣本或多個標準樣本。 The first graph and the third polynomial equation are, for example, established by a plurality of biochemical molecular concentration values stored in the database and corresponding plurality of optical rotation change values. The sample body of the plurality of biochemical molecular concentration values stored in the database includes a plurality of living samples or a plurality of standard samples.

此外,建立第一圖表或第三多項式方程式的步驟更包括區分出多個旋光變化範圍,且在各旋光變化範圍具有所對應使用的第一圖表、第三多項式方程式或其組合。 Further, the step of establishing the first graph or the third polynomial equation further includes distinguishing a plurality of optical rotation variation ranges, and having a corresponding first used pattern, a third polynomial equation, or a combination thereof in each of the optical rotation variation ranges.

舉例來說,當目標分子為葡萄糖,且區分出三個旋光變化範圍時,所選用的第三多項式方程式如下所示,但本揭露並不以此為限。 For example, when the target molecule is glucose and three optical rotation ranges are distinguished, the third polynomial equation selected is as follows, but the disclosure is not limited thereto.

在第一旋光變化範圍所對應使用的第三多項式方程 式:θ(葡萄糖影響)=a3X葡萄糖濃度+c3 The third polynomial equation used in the first range of optical rotation: θ (glucose effect) = a 3 X glucose concentration + c 3

在第二旋光變化範圍所對應使用的第三多項式方程式:θ(葡萄糖影響)=a3'X葡萄糖濃度+c3' The third polynomial equation used in the second range of optical rotation: θ (glucose effect) = a 3 'X glucose concentration + c 3 '

在第三旋光變化範圍所對應使用的第三多項式方程式:θ(葡萄糖影響)=a3"X葡萄糖濃度+c3" The third polynomial equation used in the third range of optical rotation: θ (glucose effect) = a 3 "X glucose concentration + c 3 "

其中,θ(葡萄糖影響)為旋光變化,X葡萄糖濃度為目標分子濃度變數,a3、a3'、a3"、c3、c3'與c3"為已知的係數。 Wherein θ (glucose effect) is an optical rotation change, X glucose concentration is a target molecular concentration variable, and a 3 , a 3 ', a 3 ", c 3 , c 3 ' and c 3 " are known coefficients.

在步驟S212中,將由生化分子監測裝置所測得的旋光變化帶入第一圖表、第三多項式方程式或其組合中,以計算出目標分子的第二目標分子濃度。在進行步驟S212的過程中,更可藉由控制改變因子,分析旋光變化,以獲得第二目標分子濃度。其中,改變因子包括光發射頻率、光能量強度、光開啟時間長度、光關閉時間長度、光機元件空間偏移或其組合。 In step S212, the optical rotation change measured by the biochemical molecular monitoring device is brought into the first chart, the third polynomial equation, or a combination thereof to calculate the second target molecular concentration of the target molecule. In the process of performing step S212, the optical rotation change can be analyzed by controlling the change factor to obtain the second target molecular concentration. The change factor includes a light emission frequency, a light energy intensity, a light on time length, a light off time length, a optomechanical space offset, or a combination thereof.

在步驟S214中,建立生化分子與吸收能量變化關係的至少一第二圖表或至少一第四多項式方程式。其中,第四多項式方程式的變數包括目標分子濃度變數。 In step S214, at least a second chart or at least a fourth polynomial equation of the relationship between the biochemical molecule and the absorbed energy is established. Wherein, the variable of the fourth polynomial equation includes a target molecule concentration variable.

第二圖表與第四多項式方程式例如是由資料庫中所儲存的多個生化分子濃度數值與相對應的多個吸收能量變化數值所建立。其中,資料庫中所儲存的多個生化分子濃度數值的樣本體包括多個活體樣本或多個標準樣本。 The second graph and the fourth polynomial equation are, for example, established by a plurality of biochemical molecular concentration values stored in the database and corresponding plurality of absorbed energy change values. The sample body of the plurality of biochemical molecular concentration values stored in the database includes a plurality of living samples or a plurality of standard samples.

此外,建立第二圖表或第四多項式方程式的步驟更包括區分出多個吸收能量變化範圍,且在各吸收能量變化範圍具有所對應使用的第二圖表、第四多項式方程式或其組合。 Furthermore, the step of establishing the second graph or the fourth polynomial equation further comprises distinguishing a plurality of ranges of absorbed energy variations, and having a second graph, a fourth polynomial equation or a correspondingly used equation for each absorbed energy variation range or combination.

舉例來說,當目標分子為葡萄糖,且區分出三個吸收能量變化範圍時,所選用的第四多項式方程式如下所示,但本揭露並不以此為限。 For example, when the target molecule is glucose and the three ranges of absorbed energy are distinguished, the fourth polynomial equation selected is as follows, but the disclosure is not limited thereto.

在第一吸收能量變化範圍所對應使用的第四多項式方程式:P(葡萄糖影響)=a4X葡萄糖濃度+c4 The fourth polynomial equation used in the first range of absorbed energy variations: P (glucose effect) = a 4 X glucose concentration + c 4

在第二吸收能量變化範圍所對應使用的第四多項式方程式:P(葡萄糖影響)=a4'X葡萄糖濃度+c4' The fourth polynomial equation used in the second range of absorbed energy variations: P (glucose effect) = a 4 'X glucose concentration + c 4 '

在第三吸收能量變化範圍所對應使用的第四多項式方程式:P(葡萄糖影響)=a4"X葡萄糖濃度+c4" The fourth polynomial equation used in the third range of absorbed energy variations: P (glucose effect) = a 4 "X glucose concentration + c 4 "

其中,P(葡萄糖影響)為吸收能量變化,X葡萄糖濃度為目標分子濃度變數,a4、a4'、a4"、c4、c4'與c4"為已知的係數。 Among them, P (glucose effect) is a change in absorbed energy, X glucose concentration is a target molecular concentration variable, and a 4 , a 4 ', a 4 ", c 4 , c 4 ' and c 4 " are known coefficients.

在步驟S216中,將由生化分子監測裝置所測得的吸收能量變化帶入第二圖表、第四多項式方程式或其組合中,以計算出目標分子的第三目標分子濃度。在進行步驟S216的過程中,更可藉由控制改變因子,分析吸收能量變化,以獲得第三目標分子濃度。其中,改變因子包括光發射頻率、光能量強度、光開啟時間長度、光關閉時間長度、 光機元件空間偏移或其組合。 In step S216, the change in absorbed energy measured by the biochemical molecular monitoring device is brought into a second chart, a fourth polynomial equation, or a combination thereof to calculate a third target molecular concentration of the target molecule. In the process of performing step S216, the absorption energy change can be analyzed by controlling the change factor to obtain the third target molecule concentration. Wherein, the change factor includes a light emission frequency, a light energy intensity, a light on time length, a light off time length, Optomechanical component space offset or a combination thereof.

在步驟S218中,由第一目標分子濃度、第二目標分子濃度、第三目標分子濃度或其組合判斷出最終目標分子濃度。在其他實施例中,當不進行步驟S218時,可將步驟S208中所得到的第一目標分子濃度作為最終目標分子濃度。 In step S218, the final target molecular concentration is determined from the first target molecular concentration, the second target molecular concentration, the third target molecular concentration, or a combination thereof. In other embodiments, when step S218 is not performed, the first target molecular concentration obtained in step S208 can be taken as the final target molecular concentration.

由上述第十四實施例可知,上述生化分子的分析方法可藉由旋光變化與吸收能量變化,而獲得同時存在目標分子與干擾分子時的目標分子濃度,因此可獲得更精確的目標分子濃度。 As can be seen from the above-described fourteenth embodiment, the above-described biochemical molecular analysis method can obtain a target molecule concentration when both the target molecule and the interfering molecule are present by the change in the optical rotation and the absorption energy, and thus a more accurate target molecule concentration can be obtained.

綜上所述,上述實施例至少具有下列特徵: In summary, the above embodiment has at least the following features:

1.藉由上述實施例所提出之非侵入式血糖監測裝置可準確地量測出量測對象的葡萄糖資訊(如,葡萄糖值),由於眼球(如,眼球中的房水液)中之葡萄糖濃度與血糖濃度具有對應關係,透過此對應關係,進而讀出血糖資訊(如,血糖值)。 1. The non-invasive blood glucose monitoring device proposed by the above embodiment can accurately measure the glucose information (eg, glucose value) of the measurement object due to glucose in the eyeball (eg, aqueous humor in the eyeball). The concentration has a corresponding relationship with the blood glucose concentration, and the blood glucose information (for example, blood sugar level) is read through the correspondence.

2.上述實施例所提出之非侵入式血糖監測裝置可進行微型化應用,進而增進使用的便利性。 2. The non-invasive blood glucose monitoring device proposed in the above embodiment can be used for miniaturization, thereby improving the convenience of use.

3.上述實施例所提出之具有非侵入式血糖監測功能的可攜式行動裝置的使用環境並無特殊限制,可於室內或室外使用。 3. The portable mobile device having the non-invasive blood glucose monitoring function proposed in the above embodiment is not particularly limited in use, and can be used indoors or outdoors.

4.藉由上述實施例所提出之非侵入式血糖監測方法可連續地且即時地獲得量測對象的血糖值。 4. The blood glucose level of the measurement subject can be continuously and instantaneously obtained by the non-invasive blood glucose monitoring method proposed in the above embodiment.

5.上述實施例所提出之生化分子的分析方法可藉由旋 光變化與吸收能量變化,而獲得同時存在目標分子與干擾分子時的目標分子濃度,因此可獲得更精確的目標分子濃度。 5. The method for analyzing biochemical molecules proposed in the above embodiments can be rotated by The light change and the absorption energy change, and the target molecule concentration when the target molecule and the interference molecule are present simultaneously are obtained, so that a more accurate target molecule concentration can be obtained.

雖然本揭露已以較佳實施例揭露如上,然其並非用以限定本揭露,任何熟習此技藝者,在不脫離本揭露之精神和範圍內,當可作些許之更動與潤飾,因此本揭露之保護範圍當視後附之申請專利範圍所界定者為準。 The present disclosure has been disclosed in the above preferred embodiments. However, it is not intended to limit the scope of the disclosure, and the invention may be modified and modified without departing from the spirit and scope of the disclosure. The scope of protection is subject to the definition of the scope of the patent application.

100、300、400、500‧‧‧非侵入式血糖監測裝置 100, 300, 400, 500‧‧‧ non-invasive blood glucose monitoring device

102‧‧‧光源 102‧‧‧Light source

104‧‧‧第一分光器 104‧‧‧First beam splitter

106、306、406、506、606、1206‧‧‧光偵測器組 106, 306, 406, 506, 606, 1206‧‧‧Photodetector group

108‧‧‧處理單元 108‧‧‧Processing unit

110、110a、100b、110c、110d、110e、110f、110g、110h、110i、110j‧‧‧光線 110, 110a, 100b, 110c, 110d, 110e, 110f, 110g, 110h, 110i, 110j‧‧‧ rays

112、312、412、416、612、616‧‧‧旋光量測裝置 112, 312, 412, 416, 612, 616‧‧‧ optical rotation measuring device

112a‧‧‧偏振片 112a‧‧‧Polarizer

112b‧‧‧感光元件 112b‧‧‧Photosensitive element

113、115‧‧‧擋光板 113, 115‧‧ ‧ light barrier

113a、115a‧‧‧孔洞 113a, 115a‧‧ hole

114、314、414、418、614、618‧‧‧能量量測裝置 114, 314, 414, 418, 614, 618‧‧‧ energy measuring devices

116‧‧‧光資訊分析單元 116‧‧‧Light Information Analysis Unit

118‧‧‧警示器 118‧‧‧ warning device

120‧‧‧眼睛瞄準用定位裝置 120‧‧‧ Eye sighting positioning device

122‧‧‧視線 122‧‧ Sight

124‧‧‧連接元件 124‧‧‧Connecting components

126‧‧‧護套 126‧‧‧ sheath

200‧‧‧眼球 200‧‧‧ eyeballs

202‧‧‧前房 202‧‧‧ front room

204‧‧‧房水液 204‧‧‧ aqueous liquid

404‧‧‧第二分光器 404‧‧‧Second splitter

408、508、1208‧‧‧第一光偵測器 408, 508, 1208‧‧‧ first photodetector

410、510、1210‧‧‧第二光偵測器 410, 510, 1210‧‧‧ second photodetector

600、700、800、900、1000、1100、1200‧‧‧可攜式行動裝置 600, 700, 800, 900, 1000, 1100, 1200‧‧‧ portable mobile devices

601‧‧‧出光口 601‧‧‧ light exit

602‧‧‧裝置本體 602‧‧‧ device body

604、904、1004、1204、1304‧‧‧光學套件 604, 904, 1004, 1204, 1304‧‧‧ optical kit

608‧‧‧鏡片組 608‧‧‧ lens group

614a、614b、614c、614d‧‧‧感測區域 614a, 614b, 614c, 614d‧‧‧ Sensing area

1006‧‧‧鏡頭 1006‧‧‧ lens

S90、S100、S102、S104、S106、S108、S110、S112、S114、S116、S202、S204、S206、S208、S210、S212、S214、S216、S218‧‧‧步驟 S90, S100, S102, S104, S106, S108, S110, S112, S114, S116, S202, S204, S206, S208, S210, S212, S214, S216, S218‧‧

圖1A所繪示為本揭露之第一實施例的非侵入式血糖監測裝置的示意圖。 FIG. 1A is a schematic diagram of a non-invasive blood glucose monitoring device according to a first embodiment of the present disclosure.

圖1B所繪示為圖1A中之旋光量測裝置的示意圖。 FIG. 1B is a schematic diagram of the optical rotation measuring device of FIG. 1A.

圖2所繪示為本揭露之第二實施例的非侵入式血糖監測裝置的示意圖。 2 is a schematic diagram of a non-invasive blood glucose monitoring device according to a second embodiment of the present disclosure.

圖3所繪示為本揭露之第三實施例的非侵入式血糖監測裝置的示意圖。 FIG. 3 is a schematic diagram of a non-invasive blood glucose monitoring device according to a third embodiment of the present disclosure.

圖4所繪示為本揭露之第四實施例的非侵入式血糖監測裝置的示意圖。 FIG. 4 is a schematic diagram of a non-invasive blood glucose monitoring device according to a fourth embodiment of the present disclosure.

圖5所繪示為本揭露之第五實施例的非侵入式血糖監測方法的流程圖。 FIG. 5 is a flow chart showing a non-invasive blood glucose monitoring method according to a fifth embodiment of the present disclosure.

圖6所繪示為本揭露之第六實施例的具有非侵入式血糖監測功能的可攜式行動裝置的示意圖。 FIG. 6 is a schematic diagram of a portable mobile device having a non-invasive blood glucose monitoring function according to a sixth embodiment of the present disclosure.

圖7所繪示為本揭露之第七實施例的具有非侵入式血 糖監測功能的可攜式行動裝置的示意圖。 FIG. 7 illustrates a non-invasive blood of a seventh embodiment of the present disclosure. Schematic diagram of a portable mobile device for sugar monitoring functions.

圖8所繪示為本揭露之第八實施例的具有非侵入式血糖監測功能的可攜式行動裝置的示意圖。 FIG. 8 is a schematic diagram of a portable mobile device having a non-invasive blood glucose monitoring function according to an eighth embodiment of the present disclosure.

圖9所繪示為本揭露之第九實施例的具有非侵入式血糖監測功能的可攜式行動裝置的示意圖。 FIG. 9 is a schematic diagram of a portable mobile device having a non-invasive blood glucose monitoring function according to a ninth embodiment of the present disclosure.

圖10所繪示為本揭露之第十實施例的具有非侵入式血糖監測功能的可攜式行動裝置的示意圖。 FIG. 10 is a schematic diagram of a portable mobile device having a non-invasive blood glucose monitoring function according to a tenth embodiment of the present disclosure.

圖11所繪示為本揭露之第十一實施例的具有非侵入式血糖監測功能的可攜式行動裝置的示意圖。 FIG. 11 is a schematic diagram of a portable mobile device having a non-invasive blood glucose monitoring function according to an eleventh embodiment of the present disclosure.

圖12所繪示為本揭露之第十二實施例的具有非侵入式血糖監測功能的可攜式行動裝置的示意圖。 FIG. 12 is a schematic diagram of a portable mobile device having a non-invasive blood glucose monitoring function according to a twelfth embodiment of the present disclosure.

圖13所繪示為本揭露之第十三實施例的具有非侵入式血糖監測功能的可攜式行動裝置的示意圖。 FIG. 13 is a schematic diagram of a portable mobile device having a non-invasive blood glucose monitoring function according to a thirteenth embodiment of the present disclosure.

圖14所繪示為本揭露之第十四實施例的生化分子的分析方法的示意圖。 FIG. 14 is a schematic view showing a method for analyzing biochemical molecules according to a fourteenth embodiment of the present disclosure.

100‧‧‧非侵入式血糖監測裝置 100‧‧‧ Non-invasive blood glucose monitoring device

102‧‧‧光源 102‧‧‧Light source

104‧‧‧第一分光器 104‧‧‧First beam splitter

106‧‧‧光偵測器組 106‧‧‧Photodetector group

108‧‧‧處理單元 108‧‧‧Processing unit

110‧‧‧光線 110‧‧‧Light

112‧‧‧旋光量測裝置 112‧‧‧Aperture measuring device

115‧‧‧擋光板 115‧‧‧Light barrier

115a‧‧‧孔洞 115a‧‧ hole

114‧‧‧能量量測裝置 114‧‧‧ Energy measuring device

116‧‧‧光資訊分析單元 116‧‧‧Light Information Analysis Unit

118‧‧‧警示器 118‧‧‧ warning device

120‧‧‧眼睛瞄準用定位裝置 120‧‧‧ Eye sighting positioning device

122‧‧‧視線 122‧‧ Sight

124‧‧‧連接元件 124‧‧‧Connecting components

126‧‧‧護套 126‧‧‧ sheath

200‧‧‧眼球 200‧‧‧ eyeballs

202‧‧‧前房 202‧‧‧ front room

204‧‧‧房水液 204‧‧‧ aqueous liquid

Claims (126)

一種非侵入式血糖監測裝置,包括:至少一光源,發射出至少一光線;一第一分光器,具有聚焦功能,使由該光源發射出的該光線藉由該第一分光器而入射且聚焦到一眼球中;一光偵測器組,量測由該眼球所反射、再藉由該第一分光器傳送到該光偵測器組的該光線的一旋光資訊及一吸收能量資訊;以及一處理單元,接收並處理該旋光資訊及該吸收能量資訊,以獲得由該光源發射出的該光線與傳送到該光偵測器組的該光線之間的一旋光變化及一吸收能量變化,以獲得一生化分子的一生化分子資訊,該生化分子至少包括一葡萄糖,且該處理單元藉由該生化分子資訊獲得一葡萄糖資訊,由於該葡萄糖資訊與一血糖資訊具有一對應關係,進而讀出該血糖資訊。 A non-invasive blood glucose monitoring device comprising: at least one light source emitting at least one light; a first optical splitter having a focusing function for causing the light emitted by the light source to be incident and focused by the first optical splitter Going into a ball; a photodetector group measuring an optical rotation information and an absorption energy information of the light reflected by the eyeball and transmitted to the photodetector group by the first beam splitter; a processing unit that receives and processes the optical rotation information and the absorbed energy information to obtain an optical rotation change and an absorption energy change between the light emitted by the light source and the light transmitted to the photodetector group, Obtaining a biochemical molecular information of a biochemical molecule, the biochemical molecule includes at least one glucose, and the processing unit obtains a glucose information by using the biochemical molecular information, and the glucose information has a correspondence relationship with the blood glucose information, thereby reading The blood sugar information. 如申請專利範圍第1項所述之非侵入式血糖監測裝置,其中該光源的一波長包括一葡萄糖可吸收波長。 The non-invasive blood glucose monitoring device of claim 1, wherein a wavelength of the light source comprises a glucose absorbable wavelength. 如申請專利範圍第1項所述之非侵入式血糖監測裝置,其中該光源的一波長包括一紅外光中的波長。 The non-invasive blood glucose monitoring device of claim 1, wherein a wavelength of the light source comprises a wavelength in the infrared light. 如申請專利範圍第1項所述之非侵入式血糖監測裝置,其中該光源包括一發光二極體或一雷射二極體。 The non-invasive blood glucose monitoring device of claim 1, wherein the light source comprises a light emitting diode or a laser diode. 如申請專利範圍第1項所述之非侵入式血糖監測裝置,其中該光線包括一線性偏振光、一圓偏振光、一橢圓偏振光或一部分偏振光。 The non-invasive blood glucose monitoring device of claim 1, wherein the light comprises a linearly polarized light, a circularly polarized light, an elliptically polarized light or a partially polarized light. 如申請專利範圍第1項所述之非侵入式血糖監測裝置,其中該光源具有控制該光線的一發射頻率的功能、控制該光線的一強度的功能、控制該光線的一開啟時間長度的功能、控制該光線的一關閉時間長度的功能或其組合。 The non-invasive blood glucose monitoring device according to claim 1, wherein the light source has a function of controlling a transmitting frequency of the light, a function of controlling an intensity of the light, and a function of controlling an opening time of the light. a function that controls the length of time of the light to be turned off or a combination thereof. 如申請專利範圍第1項所述之非侵入式血糖監測裝置,更包括一光資訊分析單元,在該光線入射到該眼球中之前,偵測來自該第一分光器的該光線的一光資訊,且將該光資訊傳送到該處理單元、一警示器或一光源控制單元,以對該光線的一光學特性進行回饋控制。 The non-invasive blood glucose monitoring device according to claim 1, further comprising an optical information analyzing unit that detects a light information of the light from the first beam splitter before the light is incident on the eyeball And transmitting the optical information to the processing unit, a warning device or a light source control unit to perform feedback control on an optical characteristic of the light. 如申請專利範圍第7項所述之非侵入式血糖監測裝置,其中該光資訊分析單元包括一光功率計及一光感測器中的至少一者,該光功率計所偵測的該光資訊為一能量資訊,該光感測器所偵測的該光資訊為該能量資訊及一位置資訊中的至少一者。 The non-invasive blood glucose monitoring device of claim 7, wherein the optical information analyzing unit comprises at least one of an optical power meter and a light sensor, the light detected by the optical power meter The information is an energy information, and the light information detected by the light sensor is at least one of the energy information and a location information. 如申請專利範圍第1項所述之非侵入式血糖監測裝置,其中該第一分光器將該光線聚焦到該眼球的一前房,且該光線經該眼球所反射的光包括來自一房水液的反射光。 The non-invasive blood glucose monitoring device according to claim 1, wherein the first beam splitter focuses the light to an anterior chamber of the eyeball, and the light reflected by the eyeball includes water from a room The reflected light of the liquid. 如申請專利範圍第1項所述之非侵入式血糖監測裝置,其中該第一分光器包括一光學膜片、一透鏡、一光柵、一繞射光學元件或上述任意元件之組合。 The non-invasive blood glucose monitoring device of claim 1, wherein the first beam splitter comprises an optical film, a lens, a grating, a diffractive optical element or a combination of any of the above. 如申請專利範圍第1項所述之非侵入式血糖監測裝置,其中該光偵測器組包括一旋光量測裝置及一能量量測裝置,分別量測由該眼球所反射、再藉由該第一分光器 反射或再穿過該第一分光器的該光線。 The non-invasive blood glucose monitoring device according to claim 1, wherein the photodetector group includes an optical rotation measuring device and an energy measuring device, respectively measuring the reflection by the eyeball, and then First beam splitter The light that reflects or passes through the first beam splitter. 如申請專利範圍第11項所述之非侵入式血糖監測裝置,其中旋光量測裝置包括一主動式旋光量測裝置或至少一被動式旋光量測裝置。 The non-invasive blood glucose monitoring device of claim 11, wherein the optical rotation measuring device comprises an active optical rotation measuring device or at least one passive optical rotation measuring device. 如申請專利範圍第12項所述之非侵入式血糖監測裝置,其中該主動式旋光量測裝置包括一檢偏器,該檢偏器直接計算出該旋光資訊。 The non-invasive blood glucose monitoring device according to claim 12, wherein the active optical rotation measuring device comprises an analyzer, and the analyzer directly calculates the optical rotation information. 如申請專利範圍第12項所述之非侵入式血糖監測裝置,其中該被動式旋光量測裝置包括一偏振片,該被動式旋光量測裝置藉由量測穿過該偏振片的該光線的能量而計算出該旋光資訊。 The non-invasive blood glucose monitoring device according to claim 12, wherein the passive optical rotation measuring device comprises a polarizing plate, and the passive optical measuring device measures the energy of the light passing through the polarizing plate. Calculate the optical information. 如申請專利範圍第11項所述之非侵入式血糖監測裝置,其中該能量量測裝置與該旋光量測裝置分別包括一感光元件。 The non-invasive blood glucose monitoring device according to claim 11, wherein the energy measuring device and the optical rotation measuring device respectively comprise a photosensitive element. 如申請專利範圍第15項所述之非侵入式血糖監測裝置,其中該感光元件包括一電荷耦合元件、一互補金屬氧化半導體感測器或一光二極體。 The non-invasive blood glucose monitoring device of claim 15, wherein the photosensitive element comprises a charge coupled device, a complementary metal oxide semiconductor sensor or a photodiode. 如申請專利範圍第15項所述之非侵入式血糖監測裝置,更包括具有一孔洞的一擋光板,經裝配以使得該光線先通過該擋光板的該孔洞,再傳送到該感光元件。 The non-invasive blood glucose monitoring device according to claim 15, further comprising a light blocking plate having a hole, the light is first passed through the hole of the light blocking plate and then transmitted to the photosensitive element. 如申請專利範圍第17項所述之非侵入式血糖監測裝置,其中該擋光板包括一金屬光罩或一石英玻璃光罩。 The non-invasive blood glucose monitoring device of claim 17, wherein the light barrier comprises a metal mask or a quartz glass mask. 如申請專利範圍第1項所述之非侵入式血糖監測裝置,其中該生化分子包括一膽固醇、一尿酸、一水、一 乳酸、一尿素、一抗壞血酸或其組合。 The non-invasive blood glucose monitoring device according to claim 1, wherein the biochemical molecule comprises a cholesterol, a uric acid, a water, and a Lactic acid, monourea, ascorbic acid or a combination thereof. 如申請專利範圍第1項所述之非侵入式血糖監測裝置,其中該生化分子包括一干擾分子。 The non-invasive blood glucose monitoring device of claim 1, wherein the biochemical molecule comprises an interfering molecule. 如申請專利範圍第20項所述之非侵入式血糖監測裝置,其中在藉由該處理單元獲得該葡萄糖資訊的過程中,該處理單元對該干擾分子所造成的干擾進行排除。 The non-invasive blood glucose monitoring device according to claim 20, wherein in the process of obtaining the glucose information by the processing unit, the processing unit excludes interference caused by the interference molecule. 如申請專利範圍第1項所述之非侵入式血糖監測裝置,其中該處理單元包括一類比數位電路整合模組,其中該類比數位電路整合模組包括一微處理器、一放大器及一類比數位轉換器。 The non-invasive blood glucose monitoring device of claim 1, wherein the processing unit comprises an analog digital integrated circuit module, wherein the analog digital integrated circuit module comprises a microprocessor, an amplifier and an analog digital converter. 如申請專利範圍第22項所述之非侵入式血糖監測裝置,其中該類比數位電路整合模組更包括一無線傳輸裝置。 The non-invasive blood glucose monitoring device of claim 22, wherein the analog digital integrated circuit module further comprises a wireless transmission device. 如申請專利範圍第1項所述之非侵入式血糖監測裝置,其中該處理單元從控制一光源變化、一光機元件空間偏移或其組合,分析該旋光資訊及該吸收能量資訊,以獲得該葡萄糖資訊,該光源變化包括一光發射頻率的變化、一光能量強度的變化、一光開啟時間長度的變化或一光關閉時間長度的變化或其組合。 The non-invasive blood glucose monitoring device of claim 1, wherein the processing unit analyzes the optical rotation information and the absorbed energy information by controlling a light source change, a light machine component spatial offset or a combination thereof. The glucose information includes a change in light emission frequency, a change in light energy intensity, a change in length of a light on time, or a change in length of a light off time, or a combination thereof. 如申請專利範圍第1項所述之非侵入式血糖監測裝置,更包括一第二分光器,將由該眼球所反射、再藉由該第一分光器傳送的該光線傳送到該光偵測器組。 The non-invasive blood glucose monitoring device according to claim 1, further comprising a second beam splitter, wherein the light reflected by the eyeball and transmitted by the first beam splitter is transmitted to the light detector group. 如申請專利範圍第25項所述之非侵入式血糖監測裝置,其中該光偵測器組包括一第一光偵測器及一第二光 偵測器,分別用以量測由該第二分光器所反射或穿過該第二分光器的該光線。 The non-invasive blood glucose monitoring device of claim 25, wherein the photodetector group comprises a first photodetector and a second light a detector for measuring the light reflected by the second beam splitter or passing through the second beam splitter. 如申請專利範圍第26項所述之非侵入式血糖監測裝置,其中該第一光偵測器與該第二光偵測器分別包括一旋光量測裝置及一能量量測裝置。 The non-invasive blood glucose monitoring device of claim 26, wherein the first photodetector and the second photodetector respectively comprise an optical rotation measuring device and an energy measuring device. 如申請專利範圍第26項所述之非侵入式血糖監測裝置,其中該第一光偵測器與該第二光偵測器中的一者為一旋光量測裝置,該第一光偵測器與該第二光偵測器中的另一者為一能量量測裝置。 The non-invasive blood glucose monitoring device of claim 26, wherein one of the first photodetector and the second photodetector is an optical rotation measuring device, the first optical detecting The other of the second photodetector and the second photodetector is an energy measuring device. 如申請專利範圍第25項所述之非侵入式血糖監測裝置,其中該第二分光器包括一光學膜片、一透鏡、一光柵、一繞射光學元件或上述任意元件之組合。 The non-invasive blood glucose monitoring device of claim 25, wherein the second beam splitter comprises an optical film, a lens, a grating, a diffractive optical element or a combination of any of the above. 如申請專利範圍第1項所述之非侵入式血糖監測裝置,更包括一眼睛瞄準用定位裝置,用以使一眼睛的視線對準該眼睛瞄準用定位裝置而進行對位,以決定該眼球的量測位置。 The non-invasive blood glucose monitoring device according to claim 1, further comprising an eye aiming positioning device for aligning an eye's line of sight with the eye aiming positioning device to determine the eyeball. Measuring position. 如申請專利範圍第30項所述之非侵入式血糖監測裝置,其中該眼睛瞄準用定位裝置包括一光點、一標誌或一浮雕圖案。 The non-invasive blood glucose monitoring device of claim 30, wherein the eye targeting device comprises a light spot, a logo or an embossed pattern. 如申請專利範圍第1項所述之非侵入式血糖監測裝置,更包括一連接元件,該連接元件的一端連接於該非侵入式血糖監測裝置的一出光口,該連接元件的另一端用以貼靠於一眼睛外緣。 The non-invasive blood glucose monitoring device according to claim 1, further comprising a connecting component, one end of the connecting component is connected to an optical outlet of the non-invasive blood glucose monitoring device, and the other end of the connecting component is used for attaching Rely on the outer edge of an eye. 如申請專利範圍第32項所述之非侵入式血糖監測 裝置,更包括一個護套,設置於該連接元件用以貼靠於該眼睛外緣的一面上。 Non-invasive blood glucose monitoring as described in Section 32 of the patent application The device further includes a sheath disposed on the side of the connecting member for abutting against the outer edge of the eye. 如申請專利範圍第33項所述之非侵入式血糖監測裝置,該護套包括一拋棄式護套。 The non-invasive blood glucose monitoring device of claim 33, wherein the sheath comprises a disposable sheath. 一種具有非侵入式血糖監測功能的可攜式行動裝置,包括:一裝置本體;至少一光源,發射出至少一光線;一光學套件,裝設於裝置本體上,且包括一第一分光器於其中,該第一分光器具有聚焦功能,使由該光源發射出的該光線藉由該第一分光器而入射且聚焦到一眼球中;一光偵測器組,量測由該眼球所反射、再藉由該第一分光器傳送到該光偵測器組的該光線的一旋光資訊及一吸收能量資訊;以及一處理單元,設置於該裝置本體中,且接收並處理該旋光資訊及該吸收能量資訊,以獲得由該光源發射出的該光線與傳送到該光偵測器組的該光線之間的一旋光變化及一吸收能量變化,以獲得一生化分子的一生化分子資訊,該生化分子至少包括一葡萄糖,且該處理單元藉由該生化分子資訊獲得一葡萄糖資訊,由於該葡萄糖資訊與一血糖資訊具有一對應關係,進而讀出該血糖資訊。 A portable mobile device having a non-invasive blood glucose monitoring function, comprising: a device body; at least one light source emitting at least one light; an optical package mounted on the device body and including a first beam splitter Wherein, the first beam splitter has a focusing function, so that the light emitted by the light source is incident by the first beam splitter and is focused into an eyeball; a photodetector group, the measurement is reflected by the eyeball And an optical rotation information and an absorption energy information of the light transmitted by the first optical splitter to the photodetector group; and a processing unit disposed in the apparatus body and receiving and processing the optical rotation information and Absorbing energy information to obtain an optical rotation change and an absorption energy change between the light emitted by the light source and the light transmitted to the photodetector group to obtain a biochemical molecular information of a biochemical molecule, The biochemical molecule includes at least one glucose, and the processing unit obtains a glucose information by using the biochemical molecular information, and the glucose information has a correspondence with the blood glucose information. And then read the glucose information. 如申請專利範圍第35項所述之具有非侵入式血糖監測功能的可攜式行動裝置,其中該光源設置於該裝置本體中。 A portable mobile device having a non-invasive blood glucose monitoring function according to claim 35, wherein the light source is disposed in the device body. 如申請專利範圍第35項所述之具有非侵入式血糖監測功能的可攜式行動裝置,其中該光源為該光學套件的一部份。 A portable mobile device having a non-invasive blood glucose monitoring function according to claim 35, wherein the light source is part of the optical kit. 如申請專利範圍第35項所述之具有非侵入式血糖監測功能的可攜式行動裝置,其中該光源的一波長包括一葡萄糖可吸收波長。 A portable mobile device having a non-invasive blood glucose monitoring function according to claim 35, wherein a wavelength of the light source comprises a glucose absorbable wavelength. 如申請專利範圍第35項所述之具有非侵入式血糖監測功能的可攜式行動裝置,其中該光源的一波長包括一紅外光中的波長。 A portable mobile device having a non-invasive blood glucose monitoring function according to claim 35, wherein a wavelength of the light source comprises a wavelength in an infrared light. 如申請專利範圍第35項所述之具有非侵入式血糖監測功能的可攜式行動裝置,其中該光源包括一發光二極體或一雷射二極體。 A portable mobile device having a non-invasive blood glucose monitoring function according to claim 35, wherein the light source comprises a light emitting diode or a laser diode. 如申請專利範圍第35項所述之具有非侵入式血糖監測功能的可攜式行動裝置,其中該光線包括一線性偏振光、一圓偏振光、一橢圓偏振光或一部分偏振光。 A portable mobile device having a non-invasive blood glucose monitoring function according to claim 35, wherein the light comprises a linearly polarized light, a circularly polarized light, an elliptically polarized light or a partially polarized light. 如申請專利範圍第35項所述之具有非侵入式血糖監測功能的可攜式行動裝置,其中該光源具有控制該光線的一發射頻率的功能、控制該光線的一強度的功能、控制該光線的一開啟時間長度的功能、控制一關閉時間長度的功能或其組合。 A portable mobile device having a non-invasive blood glucose monitoring function according to claim 35, wherein the light source has a function of controlling a transmission frequency of the light, a function of controlling an intensity of the light, and controlling the light. A function that turns on the length of time, a function that controls the length of a closed time, or a combination thereof. 如申請專利範圍第35項所述之具有非侵入式血糖監測功能的可攜式行動裝置,更包括一光資訊分析單元,在該光線入射到該眼球中之前,偵測來自該第一分光器的該光線的一光資訊,且將該光資訊傳送到該處理單元、一 警示器或一光源控制單元,以對該光線的一光學特性進行回饋控制。 The portable mobile device with non-invasive blood glucose monitoring function according to claim 35, further comprising an optical information analyzing unit, detecting the first optical splitter before the light is incident on the eyeball a light information of the light, and transmitting the light information to the processing unit, A warning device or a light source control unit for feedback control of an optical characteristic of the light. 如申請專利範圍第43項所述之具有非侵入式血糖監測功能的可攜式行動裝置,其中該光資訊分析單元包括一光功率計及一光感測器中的至少一者,該光功率計所偵測的該光資訊為一能量資訊,該光感測器所偵測的該光資訊為該能量資訊及一位置資訊中的至少一者。 The portable mobile device with non-invasive blood glucose monitoring function according to claim 43 , wherein the optical information analyzing unit comprises at least one of an optical power meter and a light sensor, the optical power The light information detected by the meter is an energy information, and the light information detected by the light sensor is at least one of the energy information and a position information. 如申請專利範圍第44項所述之具有非侵入式血糖監測功能的可攜式行動裝置,其中該光功率計及該光感測器中的至少一者設置於該裝置本體中。 A portable mobile device having a non-invasive blood glucose monitoring function according to claim 44, wherein at least one of the optical power meter and the optical sensor is disposed in the device body. 如申請專利範圍第44項所述之具有非侵入式血糖監測功能的可攜式行動裝置,其中該光功率計及該光感測器中的至少一者為該光學套件的一部份。 A portable mobile device having a non-invasive blood glucose monitoring function according to claim 44, wherein at least one of the optical power meter and the optical sensor is part of the optical kit. 如申請專利範圍第35項所述之具有非侵入式血糖監測功能的可攜式行動裝置,其中該第一分光器將該光線聚焦到該眼球的一前房,且該光線經該眼球所反射的光包括來自一房水液的反射光。 A portable mobile device having a non-invasive blood glucose monitoring function according to claim 35, wherein the first optical splitter focuses the light to an anterior chamber of the eyeball, and the light is reflected by the eyeball The light includes reflected light from a room of water. 如申請專利範圍第35項所述之具有非侵入式血糖監測功能的可攜式行動裝置,其中該第一分光器包括一光學膜片、一透鏡、一光柵、一繞射光學元件或上述任意元件之組合。 The portable mobile device having the non-invasive blood glucose monitoring function according to claim 35, wherein the first optical splitter comprises an optical film, a lens, a grating, a diffractive optical element or any of the above A combination of components. 如申請專利範圍第35項所述之具有非侵入式血糖監測功能的可攜式行動裝置,其中該光偵測器組包括一旋光量測裝置及一能量量測裝置,分別量測由該眼球所反 射、再藉由該第一分光器傳送的該光線。 The portable mobile device with non-invasive blood glucose monitoring function according to claim 35, wherein the photodetector group comprises an optical rotation measuring device and an energy measuring device, respectively measuring the eyeball Counter And illuminating the light transmitted by the first beam splitter. 如申請專利範圍第49項所述之具有非侵入式血糖監測功能的可攜式行動裝置,其中該能量量測裝置設置於該裝置本體中。 A portable mobile device having a non-invasive blood glucose monitoring function according to claim 49, wherein the energy measuring device is disposed in the device body. 如申請專利範圍第49項所述之具有非侵入式血糖監測功能的可攜式行動裝置,其中該旋光量測裝置設置於該裝置本體中。 A portable mobile device having a non-invasive blood glucose monitoring function according to claim 49, wherein the optical rotation measuring device is disposed in the device body. 如申請專利範圍第49項所述之具有非侵入式血糖監測功能的可攜式行動裝置,其中該旋光量測裝置為該光學套件的一部份。 A portable mobile device having a non-invasive blood glucose monitoring function as described in claim 49, wherein the optical rotation measuring device is part of the optical package. 如申請專利範圍第49項所述之具有非侵入式血糖監測功能的可攜式行動裝置,其中該旋光量測裝置包括一主動式旋光量測裝置或至少一被動式旋光量測裝置。 A portable mobile device having a non-invasive blood glucose monitoring function according to claim 49, wherein the optical rotation measuring device comprises an active optical rotation measuring device or at least one passive optical rotation measuring device. 如申請專利範圍第53項所述之具有非侵入式血糖監測功能的可攜式行動裝置,其中該主動式旋光量測裝置包括一檢偏器,該檢偏器直接計算出該旋光資訊。 The portable mobile device with non-invasive blood glucose monitoring function according to claim 53, wherein the active optical rotation measuring device comprises an analyzer, and the optical device directly calculates the optical rotation information. 如申請專利範圍第53項所述之具有非侵入式血糖監測功能的可攜式行動裝置,其中該被動式旋光量測裝置包括一偏振片,該被動式旋光量測裝置藉由量測穿過該偏振片的該光線的能量而計算出該旋光資訊。 A portable mobile device having a non-invasive blood glucose monitoring function according to claim 53 wherein the passive optical rotation measuring device comprises a polarizing plate, and the passive optical measuring device passes the polarization through the measurement. The optical information of the piece of light is used to calculate the optical information. 如申請專利範圍第49項所述之具有非侵入式血糖監測功能的可攜式行動裝置,其中該能量量測裝置與該旋光量測裝置分別包括一感光元件。 A portable mobile device having a non-invasive blood glucose monitoring function according to claim 49, wherein the energy measuring device and the optical rotation measuring device respectively comprise a photosensitive element. 如申請專利範圍第56項所述之具有非侵入式血糖 監測功能的可攜式行動裝置,其中該感光元件包括一電荷耦合元件、一互補金屬氧化半導體感測器或一光二極體。 Non-invasive blood glucose as described in claim 56 A portable mobile device for monitoring functions, wherein the photosensitive element comprises a charge coupled device, a complementary metal oxide semiconductor sensor or a photodiode. 如申請專利範圍第56項所述之具有非侵入式血糖監測功能的可攜式行動裝置,更包括具有一孔洞的一擋光板,經裝配以使得該光線先通過該擋光板的該孔洞,再傳送到該感光元件。 The portable mobile device with non-invasive blood glucose monitoring function according to claim 56, further comprising a light blocking plate having a hole, the light is first passed through the hole of the light blocking plate, and then the light is first passed through the hole of the light blocking plate. Transfer to the photosensitive element. 如申請專利範圍第58項所述之具有非侵入式血糖監測功能的可攜式行動裝置,其中該擋光板包括一金屬光罩或一石英玻璃光罩。 A portable mobile device having a non-invasive blood glucose monitoring function according to claim 58 wherein the light barrier comprises a metal mask or a quartz glass mask. 如申請專利範圍第35項所述之具有非侵入式血糖監測功能的可攜式行動裝置,其中該生化分子包括一膽固醇、一尿酸、一水、一乳酸、一尿素、一抗壞血酸或其組合。 A portable mobile device having a non-invasive blood glucose monitoring function according to claim 35, wherein the biochemical molecule comprises a cholesterol, a uric acid, a monohydrate, a lactic acid, a urea, an ascorbic acid or a combination thereof. 如申請專利範圍第35項所述之具有非侵入式血糖監測功能的可攜式行動裝置,其中該生化分子包括一干擾分子。 A portable mobile device having a non-invasive blood glucose monitoring function according to claim 35, wherein the biochemical molecule comprises an interference molecule. 如申請專利範圍第61項所述之具有非侵入式血糖監測功能的可攜式行動裝置,其中在藉由該處理單元獲得該葡萄糖資訊的過程中,該處理單元對該干擾分子所造成的干擾進行排除。 The portable mobile device with non-invasive blood glucose monitoring function according to claim 61, wherein the processing unit interferes with the interfering molecule in the process of obtaining the glucose information by the processing unit Exclude. 如申請專利範圍第35項所述之具有非侵入式血糖監測功能的可攜式行動裝置,其中該處理單元包括一類比數位電路整合模組,其中該類比數位電路整合模組包括一微處理器、一放大器及一類比數位轉換器。 The portable mobile device with non-invasive blood glucose monitoring function according to claim 35, wherein the processing unit comprises an analog digital integrated circuit module, wherein the analog digital integrated circuit module comprises a microprocessor An amplifier and an analog-to-digital converter. 如申請專利範圍第63項所述之具有非侵入式血糖監測功能的可攜式行動裝置,其中該類比數位電路整合模組更包括一無線傳輸裝置。 The portable mobile device with non-invasive blood glucose monitoring function according to claim 63, wherein the analog digital integrated circuit module further comprises a wireless transmission device. 如申請專利範圍第35項所述之具有非侵入式血糖監測功能的可攜式行動裝置,其中該處理單元從控制一光源變化、一光機元件空間偏移或其組合,分析該旋光資訊及該吸收能量資訊,以獲得該葡萄糖資訊,該光源變化包括一光發射頻率的變化、一光能量強度的變化、一光開啟時間長度的變化、一光關閉時間長度的變化或其組合。 The portable mobile device with non-invasive blood glucose monitoring function according to claim 35, wherein the processing unit analyzes the optical rotation information by controlling a light source change, a light machine component spatial offset or a combination thereof. The energy information is acquired to obtain the glucose information, and the light source change includes a change in light emission frequency, a change in light energy intensity, a change in length of a light on time, a change in length of a light off time, or a combination thereof. 如申請專利範圍第35項所述之具有非侵入式血糖監測功能的可攜式行動裝置,更包括一第二分光器,將由該眼球所反射、再藉由該第一分光器傳送的該光線傳送到該光偵測器組。 The portable mobile device with non-invasive blood glucose monitoring function according to claim 35, further comprising a second beam splitter, the light reflected by the eyeball and transmitted by the first beam splitter Transfer to the photodetector group. 如申請專利範圍第66項所述之具有非侵入式血糖監測功能的可攜式行動裝置,其中該第二分光器設置於該裝置本體中。 A portable mobile device having a non-invasive blood glucose monitoring function according to claim 66, wherein the second optical splitter is disposed in the device body. 如申請專利範圍第66項所述之具有非侵入式血糖監測功能的可攜式行動裝置,其中該第二分光器為該光學套件的一部份。 A portable mobile device having a non-invasive blood glucose monitoring function according to claim 66, wherein the second optical splitter is part of the optical package. 如申請專利範圍第66項所述之具有非侵入式血糖監測功能的可攜式行動裝置,其中該光偵測器組包括一第一旋光量測裝置、一第一能量量測裝置、一第二旋光量測裝置及一第二能量量測裝置,設置於該裝置本體中,其中該第一旋光量測裝置與該第一能量量測裝置分別量測由該 眼球所反射、再藉由該第一分光器傳送的該光線,且該第二旋光量測裝置與該第二能量量測裝置分別用以量測藉由該第二分光器所傳送的該光線。 The portable mobile device with non-invasive blood glucose monitoring function according to claim 66, wherein the photodetector group comprises a first optical measuring device, a first energy measuring device, and a first a second optical measuring device and a second energy measuring device are disposed in the device body, wherein the first optical measuring device and the first energy measuring device respectively measure The light reflected by the eyeball and transmitted by the first beam splitter, and the second optical measuring device and the second energy measuring device are respectively configured to measure the light transmitted by the second beam splitter . 如申請專利範圍第66項所述之具有非侵入式血糖監測功能的可攜式行動裝置,該光偵測器組包括一第一光偵測器及一第二光偵測器,分別用以量測由該第二分光器所反射或穿過該第二分光器的該光線。 A portable mobile device having a non-invasive blood glucose monitoring function according to claim 66, wherein the photodetector group includes a first photodetector and a second photodetector, respectively The light reflected by the second beam splitter or passing through the second beam splitter is measured. 如申請專利範圍第70項所述之具有非侵入式血糖監測功能的可攜式行動裝置,其中該第一光偵測器與該第二光偵測器分別包括一旋光量測裝置及一能量量測裝置。 The portable mobile device with non-invasive blood glucose monitoring function according to claim 70, wherein the first photodetector and the second photodetector respectively comprise an optical rotation measuring device and an energy Measuring device. 如申請專利範圍第70項所述之具有非侵入式血糖監測功能的可攜式行動裝置,其中該第一光偵測器與該第二光偵測器中的一者為一旋光量測裝置,該第一光偵測器與該第二光偵測器中的另一者為一能量量測裝置。 The portable mobile device with non-invasive blood glucose monitoring function according to claim 70, wherein one of the first photodetector and the second photodetector is an optical rotation measuring device The other of the first photodetector and the second photodetector is an energy measuring device. 如申請專利範圍第66項所述之具有非侵入式血糖監測功能的可攜式行動裝置,其中該第二分光器包括一光學膜片、一透鏡、一光柵、一繞射光學元件或上述任意元件之組合。 A portable mobile device having a non-invasive blood glucose monitoring function according to claim 66, wherein the second optical splitter comprises an optical film, a lens, a grating, a diffractive optical element or any of the above A combination of components. 如申請專利範圍第35項所述之具有非侵入式血糖監測功能的可攜式行動裝置,其中當該第一分光器傳送多道光線時,該光偵測器組包括多個旋光量測裝置及一能量量測裝置,其中該些旋光量測裝置及該能量量測裝置的多個感測區域分別用以量測對應的該些光線。 The portable mobile device having the non-invasive blood glucose monitoring function according to claim 35, wherein the photodetector group includes a plurality of optical rotation measuring devices when the first optical splitter transmits a plurality of light rays. And an energy measuring device, wherein the optical rotation measuring devices and the plurality of sensing regions of the energy measuring device are respectively used to measure the corresponding light rays. 如申請專利範圍第35項所述之具有非侵入式血糖 監測功能的可攜式行動裝置,其中該光學套件更包括一鏡片組。 Non-invasive blood glucose as described in claim 35 A portable mobile device that monitors functionality, wherein the optical package further includes a lens set. 如申請專利範圍第75項所述之具有非侵入式血糖監測功能的可攜式行動裝置,其中該光學套件具有該鏡片組時,將該光學套件整合作為一相機模組中的鏡頭。 A portable mobile device having a non-invasive blood glucose monitoring function according to claim 75, wherein when the optical kit has the lens set, the optical package is integrated as a lens in a camera module. 如申請專利範圍第35項所述之具有非侵入式血糖監測功能的可攜式行動裝置,更包括一眼睛瞄準用定位裝置,用以使一眼睛的視線對準該眼睛瞄準用定位裝置而進行對位,以決定該眼球的量測位置。 A portable mobile device having a non-invasive blood glucose monitoring function according to claim 35, further comprising an eye aiming positioning device for aligning an eye's line of sight with the eye aiming positioning device Alignment to determine the measurement position of the eye. 如申請專利範圍第77項所述之具有非侵入式血糖監測功能的可攜式行動裝置,其中該眼睛瞄準用定位裝置包括一光點、一標誌或一浮雕圖案。 A portable mobile device having a non-invasive blood glucose monitoring function according to claim 77, wherein the eye aiming positioning device comprises a light spot, a logo or an embossed pattern. 如申請專利範圍第35項所述之具有非侵入式血糖監測功能的可攜式行動裝置,更包括一連接元件,該連接元件的一端連接於該具有非侵入式血糖監測功能的可攜式行動裝置的一出光口,該連接元件的另一端用以貼靠於一眼睛外緣。 The portable mobile device with non-invasive blood glucose monitoring function according to claim 35, further comprising a connecting component, one end of the connecting component being connected to the portable action with non-invasive blood glucose monitoring function A light exit of the device, the other end of the connecting element is used to abut the outer edge of an eye. 如申請專利範圍第79項所述之具有非侵入式血糖監測功能的可攜式行動裝置,更包括一個護套,設置於該連接元件用以貼靠於該眼睛外緣的一面上。 The portable mobile device with non-invasive blood glucose monitoring function according to claim 79, further comprising a sheath disposed on the side of the connecting member for abutting against the outer edge of the eye. 如申請專利範圍第80項所述之具有非侵入式血糖監測功能的可攜式行動裝置,該護套包括一拋棄式護套。 A portable mobile device having a non-invasive blood glucose monitoring function as described in claim 80, the sheath comprising a disposable sheath. 一種非侵入式血糖監測方法,包括:由至少一光源發射出至少一光線; 使由該光源發射出的該光線藉由具有聚焦功能的一第一分光器而入射且聚焦到一眼球中;藉由該第一分光器將由該眼球所反射的該光線傳送到一光偵測器組;藉由該光偵測器組量測傳送到該光偵測器組的該光線的一旋光資訊及一吸收能量資訊;藉由處理該旋光資訊及該吸收能量資訊而獲得由該光源發射出的該光線與傳送到該光偵測器組的該光線之間的一旋光變化及一吸收能量變化;以及對該旋光變化及該吸收能量變化進行分析,以獲得一生化分子的一生化分子資訊,該生化分子至少包括一葡萄糖,且藉由該生化分子資訊獲得一葡萄糖資訊,由於該葡萄糖資訊與一血糖資訊具有一對應關係,透過該對應關係,進而讀出該血糖資訊。 A non-invasive blood glucose monitoring method includes: emitting at least one light by at least one light source; The light emitted by the light source is incident by a first beam splitter having a focusing function and is focused into an eyeball; the light reflected by the eyeball is transmitted to a light detecting by the first beam splitter The optical detector group measures an optical rotation information and an absorption energy information of the light transmitted to the photodetector group; and obtains the optical light by processing the optical rotation information and the absorbed energy information An optical rotation change and an absorption energy change between the emitted light and the light transmitted to the photodetector group; and the optical rotation change and the absorption energy change are analyzed to obtain a biochemical molecule biochemical According to the molecular information, the biochemical molecule includes at least one glucose, and the glucose information is obtained by the biochemical molecular information. Since the glucose information has a correspondence with the blood glucose information, the blood glucose information is read through the correspondence. 如申請專利範圍第82項所述之非侵入式血糖監測方法,其中獲得及分析該旋光變化及該吸收能量變化的裝置包括一處理單元。 The non-invasive blood glucose monitoring method according to claim 82, wherein the means for obtaining and analyzing the optical rotation change and the absorbed energy change comprises a processing unit. 如申請專利範圍第83項所述之非侵入式血糖監測方法,其中該處理單元包括一類比數位電路整合模組,其中該類比數位電路整合模組包括一微處理器、一放大器及一類比數位轉換器。 The non-invasive blood glucose monitoring method according to claim 83, wherein the processing unit comprises an analog digital circuit integration module, wherein the analog digital integration module comprises a microprocessor, an amplifier and an analog digital converter. 如申請專利範圍第84項所述之非侵入式血糖監測方法,其中該類比數位電路整合模組更包括一無線傳輸裝置。 The non-invasive blood glucose monitoring method according to claim 84, wherein the analog digital circuit integration module further comprises a wireless transmission device. 如申請專利範圍第82項所述之非侵入式血糖監測方法,更包括控制該光源的一光學特性、一光機元件空間偏移或其組合,其中該光學特性包括藉由該光源控制該光線的一發射頻率、該光線的一強度、一開啟時間長度、該光線的一關閉時間長度或其組合。 The method of non-invasive blood glucose monitoring according to claim 82, further comprising controlling an optical characteristic of the light source, a spatial displacement of the optical component, or a combination thereof, wherein the optical characteristic comprises controlling the light by the light source A firing frequency, an intensity of the light, an opening time length, a closing time length of the light, or a combination thereof. 如申請專利範圍第82項所述之非侵入式血糖監測方法,更包括在該光線入射到該眼球中之前,偵測來自該第一分光器的該光線的一光資訊,以對該光線的一光學特性進行一回饋控制。 The non-invasive blood glucose monitoring method of claim 82, further comprising: detecting a light information of the light from the first beam splitter before the light is incident on the eyeball, to An optical characteristic performs a feedback control. 如申請專利範圍第87項所述之非侵入式血糖監測裝置,其中該光資訊包括一能量資訊及一位置資訊中的至少一者。 The non-invasive blood glucose monitoring device of claim 87, wherein the light information comprises at least one of energy information and a location information. 如申請專利範圍第87項所述之非侵入式血糖監測方法,其中偵測該光資訊的裝置包括一光功率計及一光感測器中的至少一者。 The non-invasive blood glucose monitoring method of claim 87, wherein the means for detecting the optical information comprises at least one of an optical power meter and a light sensor. 如申請專利範圍第87項所述之非侵入式血糖監測方法,其中對該光學特性進行該回饋控制的裝置包括一處理單元、一警示器或一光源控制單元。 The non-invasive blood glucose monitoring method according to claim 87, wherein the device for performing the feedback control on the optical characteristic comprises a processing unit, a warning device or a light source control unit. 如申請專利範圍第82項所述之非侵入式血糖監測方法,其中該生化分子包括一膽固醇、一尿酸、一水、一乳酸、一尿素、一抗壞血酸或其組合。 The non-invasive blood glucose monitoring method according to claim 82, wherein the biochemical molecule comprises a cholesterol, a uric acid, a monohydrate, a lactic acid, a urea, an ascorbic acid or a combination thereof. 如申請專利範圍第82項所述之非侵入式血糖監測方法,其中該生化分子包括一干擾分子。 The non-invasive blood glucose monitoring method according to claim 82, wherein the biochemical molecule comprises an interference molecule. 如申請專利範圍第92項所述之非侵入式血糖監測 方法,其中獲得該葡萄糖資訊的步驟更包括對該干擾分子所造成的干擾進行排除。 Non-invasive blood glucose monitoring as described in Section 92 of the patent application The method wherein the step of obtaining the glucose information further comprises eliminating interference caused by the interfering molecule. 如申請專利範圍第82項所述之非侵入式血糖監測方法,其中該第一分光器將該光線聚焦到該眼球的一前房,且該光線經該眼球所反射的光包括來自一房水液的反射光。 The non-invasive blood glucose monitoring method according to claim 82, wherein the first beam splitter focuses the light to an anterior chamber of the eyeball, and the light reflected by the eyeball includes water from a room The reflected light of the liquid. 如申請專利範圍第82項所述之非侵入式血糖監測方法,其中該光偵測器組包括一旋光量測裝置及一能量量測裝置,分別量測由該眼球所反射的該光線。 The non-invasive blood glucose monitoring method according to claim 82, wherein the photodetector group comprises an optical rotation measuring device and an energy measuring device for respectively measuring the light reflected by the eyeball. 如申請專利範圍第82項所述之非侵入式血糖監測方法,更包括將由該眼球所反射的該光線藉由該第一分光器傳送到一第二分光器,再藉由該第二分光器傳送到該光偵測器組。 The method of non-invasive blood glucose monitoring according to claim 82, further comprising transmitting the light reflected by the eyeball to the second beam splitter by the first beam splitter, and then using the second beam splitter Transfer to the photodetector group. 如申請專利範圍第96項所述之非侵入式血糖監測方法,其中該光偵測器組包括一第一光偵測器及一第二光偵測器,分別用以量測由該第二分光器所反射或穿過該第二分光器的該光線。 The non-invasive blood glucose monitoring method of claim 96, wherein the photodetector group includes a first photodetector and a second photodetector, respectively for measuring the second The light reflected by or passing through the second beam splitter. 如申請專利範圍第97項所述之非侵入式血糖監測方法,其中該第一光偵測器與該第二光偵測器包括一旋光量測裝置及一能量量測裝置。 The non-invasive blood glucose monitoring method of claim 97, wherein the first photodetector and the second photodetector comprise an optical rotation measuring device and an energy measuring device. 如申請專利範圍第97項所述之非侵入式血糖監測方法,其中該第一光偵測器與該第二光偵測器中的一者為一旋光量測裝置,該第一光偵測器與該第二光偵測器中的另一者為一能量量測裝置。 The non-invasive blood glucose monitoring method of claim 97, wherein one of the first photodetector and the second photodetector is an optical rotation measuring device, the first optical detecting The other of the second photodetector and the second photodetector is an energy measuring device. 如申請專利範圍第82項所述之非侵入式血糖監測方法,其中該光偵測器組量測該旋光變化的方法包括一主動式旋光角度量測法及一被動式旋光角度量測法。 The non-invasive blood glucose monitoring method according to claim 82, wherein the method for measuring the optical rotation of the photodetector group comprises an active optical rotation angle measurement method and a passive optical rotation angle measurement method. 如申請專利範圍第100項所述之非侵入式血糖監測方法,其中該主動式旋光角度量測法包括藉由一檢偏器直接計算出該旋光資訊。 The non-invasive blood glucose monitoring method according to claim 100, wherein the active optical rotation angle measurement method comprises directly calculating the optical rotation information by using an analyzer. 如申請專利範圍第100項所述之非侵入式血糖監測方法,其中該被動式旋光角度量測法包括藉由至少一被動式旋光量測裝置量測該旋光資訊,且該被動式旋光量測裝置包括一偏振片,該被動式旋光量測裝置量測穿過該偏振片的該光線的能量而計算出該旋光資訊。 The non-invasive blood glucose monitoring method according to claim 100, wherein the passive optical rotation angle measuring method comprises measuring the optical rotation information by at least one passive optical rotation measuring device, and the passive optical rotation measuring device comprises a A polarizing plate, the passive optical measuring device measures the energy of the light passing through the polarizing plate to calculate the optical rotation information. 如申請專利範圍第82項所述之非侵入式血糖監測方法,更包括使該眼球瞄準一眼睛瞄準用定位裝置,用以使一眼睛的視線對準該眼睛瞄準用定位裝置而進行對位,以決定該眼球的量測位置。 The non-invasive blood glucose monitoring method according to claim 82, further comprising aiming the eyeball at an eye aiming positioning device for aligning the line of sight of an eye with the positioning device for eye sighting, To determine the measurement position of the eyeball. 一種生化分子的分析方法,包括:建立一生化分子與一旋光變化關係的至少一第一多項式方程式以及該生化分子與一吸收能量變化關係的至少一第二多項式方程式,其中該生化分子包括一目標分子與至少一干擾分子,且該第一多項式方程式與該第二多項式方程式的多個變數分別包括一目標分子濃度變數及一干擾分子濃度變數;以及藉由將由一生化分子監測裝置所測得的該旋光變化與該吸收能量變化帶入該第一多項式方程式與該第二多項式 方程式中,以計算出同時存在該目標分子與該干擾分子時的該目標分子的一第一目標分子濃度。 A method for analyzing biochemical molecules, comprising: establishing at least a first polynomial equation relating a biochemical molecule to an optical rotation change, and at least a second polynomial equation of the biochemical molecule and an absorption energy change, wherein the biochemical The molecule includes a target molecule and at least one interfering molecule, and the plurality of variables of the first polynomial equation and the second polynomial equation respectively include a target molecular concentration variable and an interfering molecule concentration variable; and The optical rotation change measured by the biochemical molecular monitoring device and the absorption energy change are brought into the first polynomial equation and the second polynomial In the equation, a first target molecule concentration of the target molecule when the target molecule and the interfering molecule are simultaneously present is calculated. 如申請專利範圍第104項所述之生化分子的分析方法,其中該第一目標分子濃度的計算方法包括對該第一多項式方程式與該第二多項式方程式進行聯立方程式的求解。 The method for analyzing a biochemical molecule according to claim 104, wherein the calculating method of the first target molecular concentration comprises solving the simultaneous equation of the first polynomial equation and the second polynomial equation. 如申請專利範圍第104項所述之生化分子的分析方法,其中該第一多項式方程式是由一資料庫中所儲存的多個生化分子濃度數值與相對應的多個旋光變化數值所建立,該第二多項式方程式是由該資料庫中所儲存的多個生化分子濃度數值與相對應的多個吸收能量變化數值所建立。 The method for analyzing biochemical molecules according to claim 104, wherein the first polynomial equation is established by a plurality of biochemical molecular concentration values stored in a database and corresponding plurality of optical rotation change values. The second polynomial equation is established by the values of the plurality of biochemical molecules stored in the database and the corresponding values of the plurality of absorbed energy changes. 如申請專利範圍第106項所述之生化分子的分析方法,其中該資料庫中所儲存的多個生化分子濃度數值的樣本體包括多個活體樣本或多個標準樣本。 The method for analyzing biochemical molecules according to claim 106, wherein the sample body of the plurality of biochemical molecule concentration values stored in the database comprises a plurality of living samples or a plurality of standard samples. 如申請專利範圍第104項所述之生化分子的分析方法,其中獲得該旋光變化的方法包括:將該生化分子監測裝置所測得的多個旋光變化數值中超過一可接受變動範圍的部份捨去;以及使用至少一數學統計方法對旋光變化數值進行計算。 The method for analyzing a biochemical molecule according to claim 104, wherein the method for obtaining the optical rotation change comprises: a portion of the plurality of optical rotation change values measured by the biochemical molecular monitoring device exceeding an acceptable variation range Round off; and use at least one mathematical statistical method to calculate the value of the optical rotation change. 如申請專利範圍第108項所述之生化分子的分析方法,其中該數學統計方法包括一最小平方誤差回歸分析法。 The method for analyzing biochemical molecules according to claim 108, wherein the mathematical statistical method comprises a least square error regression analysis method. 如申請專利範圍第108項所述之生化分子的分析 方法,其中該可接受變動範圍包括旋光變化數值的算數平均數×(1±15%)的範圍。 Analysis of biochemical molecules as described in Section 108 of the patent application The method wherein the acceptable range of variation comprises an arithmetic mean of the value of the optical rotation change x (1 ± 15%). 如申請專利範圍第104項所述之生化分子的分析方法,其中獲得該吸收能量變化的方法包括:將該生化分子監測裝置所測得的多個吸收能量變化數值中超過一可接受變動範圍的部份捨去;以及使用至少一數學統計方法對吸收能量變化數值進行計算。 The method for analyzing a biochemical molecule according to claim 104, wherein the method for obtaining the change in the absorbed energy comprises: the plurality of absorbed energy change values measured by the biochemical molecular monitoring device exceeds an acceptable variation range Partially rounded off; and using at least one mathematical statistical method to calculate the value of the absorbed energy change. 如申請專利範圍第111項所述之生化分子的分析方法,其中該數學統計方法包括一最小平方誤差回歸分析法。 The method for analyzing biochemical molecules according to claim 111, wherein the mathematical statistical method comprises a least square error regression analysis method. 如申請專利範圍第111項所述之生化分子的分析方法,其中該可接受變動範圍包括吸收能量變化數值的算數平均數×(1±15%)的範圍。 The method for analyzing biochemical molecules according to claim 111, wherein the acceptable variation range comprises an arithmetic mean of the value of the absorbed energy change × (1 ± 15%). 如申請專利範圍第104項所述之生化分子的分析方法,其中建立該第一多項式方程式與該第二多項式方程式的步驟更包括:區分出多個旋光變化範圍與多個吸收能量變化範圍,且在各該旋光變化範圍具有所對應使用的該第一多項式方程式,在各該吸收能量變化範圍具有所對應使用的該第二多項式方程式。 The method for analyzing biochemical molecules according to claim 104, wherein the step of establishing the first polynomial equation and the second polynomial equation further comprises: distinguishing a plurality of optical rotation ranges from the plurality of absorption energies The range of variation, and having the first polynomial equation used correspondingly in each of the optical rotation variation ranges, has the second polynomial equation correspondingly used in each of the absorption energy variation ranges. 如申請專利範圍第104項所述之生化分子的分析方法,在計算出該第一目標分子濃度的步驟更包括:藉由控制一改變因子,分析該旋光變化及該吸收能量 變化,以獲得該第一目標分子濃度,該改變因子包括一光發射頻率、一光能量強度、一光開啟時間長度、一關閉時間長度、一光機元件空間偏移或其組合。 For the analysis method of the biochemical molecule described in claim 104, the step of calculating the concentration of the first target molecule further comprises: analyzing the optical rotation change and the absorbed energy by controlling a change factor. Varying to obtain the first target molecule concentration, the change factor comprising a light emission frequency, a light energy intensity, a light on time length, a turn off time length, a optomechanical space offset, or a combination thereof. 如申請專利範圍第104項所述之生化分子的分析方法,更包括:建立該生化分子與該旋光變化關係的至少一第一圖表或至少一第三多項式方程式,其中該第三多項式方程式的變數包括該目標分子濃度變數;將由該生化分子監測裝置所測得的該旋光變化帶入該第一圖表、該第三多項式方程式或其組合中,以計算出該目標分子的一第二目標分子濃度;以及由該第一目標分子濃度與該第二目標分子濃度判斷出一最終目標分子濃度。 The method for analyzing a biochemical molecule according to claim 104, further comprising: establishing at least a first graph or at least a third polynomial equation of the biochemical molecule and the optical rotation change, wherein the third plurality The variable of the equation includes the target molecule concentration variable; the optical rotation change measured by the biochemical molecular monitoring device is brought into the first chart, the third polynomial equation or a combination thereof to calculate the target molecule a second target molecule concentration; and determining a final target molecule concentration from the first target molecule concentration and the second target molecule concentration. 如申請專利範圍第116項所述之生化分子的分析方法,其中該第一圖表與該第三多項式方程式是由一資料庫中所儲存的多個生化分子濃度數值與相對應的多個旋光變化數值所建立。 The method for analyzing biochemical molecules according to claim 116, wherein the first graph and the third polynomial equation are a plurality of corresponding biochemical molecular concentration values stored in a database. The value of the optical rotation change is established. 如申請專利範圍第116項所述之生化分子的分析方法,其中建立該第一圖表或該第三多項式方程式的步驟更包括:區分出多個旋光變化範圍,且在各該旋光變化範圍具有所對應使用的該第一圖表、該第三多項式方程式或其組合。 The method for analyzing biochemical molecules according to claim 116, wherein the step of establishing the first graph or the third polynomial equation further comprises: distinguishing a plurality of optical rotation ranges, and each of the optical rotation ranges The first graph, the third polynomial equation, or a combination thereof used accordingly. 如申請專利範圍第116項所述之生化分子的分析 方法,更包括:建立該生化分子與該吸收能量變化關係的至少一第二圖表或至少一第四多項式方程式,其中該第四多項式方程式的變數包括該目標分子濃度變數;將由該生化分子監測裝置所測得的該吸收能量變化帶入該第二圖表、該第四多項式方程式或其組合中,以計算出該目標分子的一第三目標分子濃度;以及由該第一目標分子濃度、該第二目標分子濃度、該第三目標分子濃度或其組合判斷出該最終目標分子濃度。 Analysis of biochemical molecules as described in claim 116 The method further includes: establishing at least a second graph or at least a fourth polynomial equation of the biochemical molecule in relation to the change in absorbed energy, wherein the variable of the fourth polynomial equation includes the target molecule concentration variable; The absorbed energy change measured by the biochemical molecular monitoring device is brought into the second graph, the fourth polynomial equation or a combination thereof to calculate a third target molecular concentration of the target molecule; and by the first The target molecule concentration, the second target molecule concentration, the third target molecule concentration, or a combination thereof determines the final target molecule concentration. 如申請專利範圍第119項所述之生化分子的分析方法,其中該第二圖表與該第四多項式方程式是由一資料庫中所儲存的多個生化分子濃度數值與相對應的多個吸收能量變化數值所建立。 The method for analyzing biochemical molecules according to claim 119, wherein the second graph and the fourth polynomial equation are a plurality of corresponding biochemical molecular concentration values stored in a database. The value of the absorbed energy change is established. 如申請專利範圍第119項所述之生化分子的分析方法,其中建立該第二圖表或該第四多項式方程式的步驟更包括:區分出多個吸收能量變化範圍,且在各該吸收能量變化範圍具有所對應使用的該第二圖表、該第四多項式方程式或其組合。 The method for analyzing biochemical molecules according to claim 119, wherein the step of establishing the second chart or the fourth polynomial equation further comprises: distinguishing a plurality of absorption energy variation ranges, and each of the absorbed energy The range of variation has the second graph, the fourth polynomial equation, or a combination thereof used accordingly. 如申請專利範圍第104項所述之生化分子的分析方法,更包括:建立該生化分子與該吸收能量變化關係的至少一第二圖表或至少一第四多項式方程式,其中該第四多項式方程式的變數包括該目標分子濃度變數; 將由該生化分子監測裝置所測得該吸收能量變化帶入該第二圖表、該第四多項式方程式或其組合中,以計算出該目標分子的一第三目標分子濃度;以及由該第一目標分子濃度與該第三目標分子濃度判斷出一最終目標分子濃度。 The method for analyzing a biochemical molecule according to claim 104, further comprising: establishing at least a second graph or at least a fourth polynomial equation of the biochemical molecule in relation to the change in absorbed energy, wherein the fourth plurality The variable of the term equation includes the target molecule concentration variable; The absorption energy change measured by the biochemical molecular monitoring device is brought into the second chart, the fourth polynomial equation or a combination thereof to calculate a third target molecular concentration of the target molecule; A target molecule concentration and the third target molecule concentration determine a final target molecule concentration. 如申請專利範圍第122項所述之生化分子的分析方法,其中該第二圖表與該第四多項式方程式是由一資料庫中所儲存的多個生化分子濃度數值與相對應的多個吸收能量變化數值所建立。 The method for analyzing biochemical molecules according to claim 122, wherein the second graph and the fourth polynomial equation are a plurality of corresponding biochemical molecular concentration values stored in a database. The value of the absorbed energy change is established. 如申請專利範圍第122項所述之生化分子的分析方法,其中建立該第二圖表或該第四多項式方程式的步驟更包括:區分出多個吸收能量變化範圍,且在各該吸收能量變化範圍具有所對應使用的該第二圖表、該第四多項式方程式或其組合。 The method for analyzing biochemical molecules according to claim 122, wherein the step of establishing the second graph or the fourth polynomial equation further comprises: distinguishing a plurality of absorption energy variation ranges, and each of the absorption energies The range of variation has the second graph, the fourth polynomial equation, or a combination thereof used accordingly. 如申請專利範圍第104項所述之生化分子的分析方法,其中該生化分子包括一葡萄糖、一膽固醇、一尿酸、一水、一乳酸、一尿素、一抗壞血酸或其組合。 The method for analyzing a biochemical molecule according to claim 104, wherein the biochemical molecule comprises a glucose, a cholesterol, a uric acid, a monohydrate, a lactic acid, a urea, an ascorbic acid or a combination thereof. 如申請專利範圍第104項所述之生化分子的分析方法,其中該分析方法是藉由該生化分子監控裝置的一處理單元中進行分析。 The method for analyzing biochemical molecules according to claim 104, wherein the analysis method is performed by a processing unit of the biochemical molecular monitoring device.
TW101140170A 2012-04-27 2012-10-30 Apparatus and method for non-invasive blood glucose monitoring and method for analysing biological molecule TWI495864B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/457,496 US9833175B2 (en) 2011-04-29 2012-04-27 Apparatus for non-invasive blood glucose monitoring

Publications (2)

Publication Number Publication Date
TW201344176A true TW201344176A (en) 2013-11-01
TWI495864B TWI495864B (en) 2015-08-11

Family

ID=49993391

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101140170A TWI495864B (en) 2012-04-27 2012-10-30 Apparatus and method for non-invasive blood glucose monitoring and method for analysing biological molecule

Country Status (1)

Country Link
TW (1) TWI495864B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI603067B (en) * 2015-04-28 2017-10-21 臺醫光電科技股份有限公司 Optical measurement device and method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5433197A (en) * 1992-09-04 1995-07-18 Stark; Edward W. Non-invasive glucose measurement method and apparatus
DE4243142A1 (en) * 1992-12-19 1994-06-23 Boehringer Mannheim Gmbh Device for in-vivo determination of an optical property of the aqueous humor of the eye
TW275570B (en) * 1994-05-05 1996-05-11 Boehringer Mannheim Gmbh
JP3599878B2 (en) * 1996-03-01 2004-12-08 テルモ株式会社 Blood glucose meter
JP3604231B2 (en) * 1996-05-16 2004-12-22 富士写真フイルム株式会社 Method and apparatus for measuring glucose concentration
WO2001022871A1 (en) * 1999-09-28 2001-04-05 University Of Connecticut Optical glucose sensor apparatus and method
JP2001187046A (en) * 1999-12-27 2001-07-10 Ge Medical Systems Global Technology Co Llc Multi-slice x-ray ct device and method for controlling the same
CN101433462A (en) * 2007-11-12 2009-05-20 沈阳陆风科技有限公司 Blood sugar instrument

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI603067B (en) * 2015-04-28 2017-10-21 臺醫光電科技股份有限公司 Optical measurement device and method

Also Published As

Publication number Publication date
TWI495864B (en) 2015-08-11

Similar Documents

Publication Publication Date Title
US9743864B2 (en) Method for non-invasive blood glucose monitoring and method for analysing biological molecule
JP6472406B2 (en) Optical measurement module, optical measurement device and method
US9295419B2 (en) Method and system for a non-invasive measurement of optically active component concentration
JP6642421B2 (en) Measuring device and measuring method
CN106793950B (en) Non-invasive in situ glucose level detection using electromagnetic radiation
EP2749217B1 (en) Apparatus for non-invasive glucose monitoring
TWI522086B (en) Apparatus for non-invasive glucose monitoring
US9724022B2 (en) Apparatus for non-invasive glucose monitoring
EP2749218B1 (en) Apparatus for non-invasive glucose monitoring
US9662004B2 (en) Apparatus for non-invasive glucose monitoring
TWI495864B (en) Apparatus and method for non-invasive blood glucose monitoring and method for analysing biological molecule
US20200359938A1 (en) Lipid measurement device and method therefor
US20230355142A1 (en) Substance-in-blood concentration measurement device and substance-in-blood concentration measurement method
JP2005028005A (en) Glucose concentration measuring apparatus
JP7411349B2 (en) Glucose measuring device and glucose measuring method
JP2005095193A (en) Biological information measuring method and measuring device
Khan et al. Non-Invasive Blood Glucose Measurement Device: Performance analysis of Diffused Reflectance method and Diffused Transmittance method using Near Infrared Light
WO2022061262A1 (en) Systems and methods for non-invasive solute measurement
WO2016002560A1 (en) Measuring device