JP2005095193A - Biological information measuring method and measuring device - Google Patents

Biological information measuring method and measuring device Download PDF

Info

Publication number
JP2005095193A
JP2005095193A JP2000103033A JP2000103033A JP2005095193A JP 2005095193 A JP2005095193 A JP 2005095193A JP 2000103033 A JP2000103033 A JP 2000103033A JP 2000103033 A JP2000103033 A JP 2000103033A JP 2005095193 A JP2005095193 A JP 2005095193A
Authority
JP
Japan
Prior art keywords
light
living body
biological information
light source
information measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000103033A
Other languages
Japanese (ja)
Inventor
Shinji Uchida
真司 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000103033A priority Critical patent/JP2005095193A/en
Priority to PCT/JP2001/002915 priority patent/WO2001076486A1/en
Publication of JP2005095193A publication Critical patent/JP2005095193A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biological information measuring method and a measuring device with which the biological information can be measured easily with high precision. <P>SOLUTION: A supporting table 5 with a concavity holding a light source 1 and a light sensor 4 is made to cohere to a living body and the living body is irradiated with an outgoing beam from the light source 1 so that the biological information is measured by detecting the reflected beam from the living body with the light sensor 4. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、人をはじめとする生体の体脂肪厚、体脂肪率、心拍数、血圧値、酸素飽和度、血糖値等の生体情報を測定する方法及び装置に関するものである。
【0002】
【従来の技術】
従来の生体情報を測定する装置として、例えば米国特許第5,086,229号に、血液中のグルコース濃度を非侵襲的に測定する装置が開示されている。
【0003】
この生体情報測定装置は、光源と光センサ−とを有した測定装置を、指先に挟み込み、光源から出射した後、指先を透過した光を光センサ−で検出し、血糖値や脈拍等の生体情報を測定するものである。
【0004】
【発明が解決しようとする課題】
しかし、この従来の生体情報測定装置では以下の問題点を有していた。
【0005】
光源から出射した後、指先を透過して光センサに到達する光の光量は、光の通過経路に存在する血液量によって大きく変化する。この指の中の血液量は、指にかかる圧力により変化するため、測定中に指先が動いた場合、生体情報測定装置により大きな圧力が指先に働くので、指の中の血液量が変化して、光センサでの検出光量が変化する。従って、測定時は、指先を揺り動かさずに安静にしなければ正確な生体情報を計測することができなかった。
【0006】
また、指先に装着した生体情報測定装置を、他の物体に押さえつけた場合にも、前述と同様に検出光量が大きく変化していた。
【0007】
これらのことから、運動や手作業を日々行う健常人の血糖値、脈拍等を連続的に測定するのは困難であった。
【0008】
また、米国特許第4,990,772号には、近赤外線を用いて被験者の体脂肪率を測定する方法が提案されている。この方法は、食品等の成分分析に用いられている近赤外線を被験者に投射し、被験者に侵入した後の光の特定波長成分を分析するものである。
【0009】
図4に、この方法を用いた体脂肪率測定装置の構成を示す。本体11の端面には、一対の発光素子12と受光素子13が配されている。この端面を保護するためのキャップ14には、発光素子12と受光素子13に対向するように光学標準板15が配されている。一対の発光素子12は、本体11の端面に密着した被験者に向けて近赤外線を投射する。投射された光は、被験者の内部に侵入した後、拡散反射される。受光素子13は、この拡散反射した光を検出する。発光素子12と受光素子13の距離を固定して生体に密着させて測定することで、生体内を特定の距離だけ伝搬した光を検出することができる。
【0010】
本体11に内臓されたマイクロコンピュ−タ(図示せず)は、被験者の身長および体重のデ−タと受光素子13により検出された反射光に関する情報とに基づいて被験者の体脂肪率を算出する。実際の測定においては、まず、本体11にキャップ14を装着した状態で光の投射および反射光の検出を行い、以降の測定における基準値を求める。その後、被験者に向けて光の投射および反射光の検出を行う。
【0011】
しかしながら、上記の体脂肪率測定装置によると、細い腕部分など、被験者の測定部位によっては、遮光性や密着性が不十分となって測定精度が悪くなったり、体脂肪計を被験者に押し当てる圧力により、脂肪層の厚みや血流量に変化が生じて、測定精度が悪くなるという問題点があった。
【0012】
本発明は、上記従来の問題点に鑑みてなされたものであり、容易に精度良く生体情報を得ることができる生体情報測定方法及び測定装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
上記課題を解決するため、本発明による生体情報測定方法は、光源からの出射光を生体に照射し、前記生体からの帰還光を光センサで検出して、検出された前記帰還光の光量に基づいて前記生体の生体情報を測定する方法であって、前記生体の表面の前記出射光が照射される部分に接して空間部が存在することを特徴とする。
【0014】
また、本発明による生体情報測定装置は、光源、光センサ、並びに前記光源及び前記光センサを保持し生体に密着させる保持台を備え、前記保持台が凹部を有することを特徴とする。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態について、図1から図3を用いて説明する。
【0016】
(実施の形態1)
図1は、本発明の実施の形態1による生体情報測定装置を示す断面図である。1は波長が650nmのLED光源で、2がレンズであり、光源1から出射した光を生体上に集光させる働きを有する。
【0017】
光源1としては、特に限定されないが、可視光または近赤外光のものが好ましい。
【0018】
また、3はレンズで生体の特定部分からの帰還光を集光し、光センサ4に到達させる働きを有する。
【0019】
光センサ4は、特に限定されないが、例えば、シリコンフォトダイオ−ドや固体撮像素子が好ましい。
【0020】
保持台5は凹部を有しており、凹部の内側に光源1及び光センサ4を保持して光源1及び光センサ4を固定するとともに、測定時に生体に密着させて生体からの距離を一定にする役割を有する。
【0021】
6は、生体への圧力が局部的に増大するのを防ぐために設けられた、圧力抑制手段で、これにより、保持台5が生体に押しつけられても、生体が凹むのを抑制できる。
【0022】
次に、本発明の動作原理について説明する。
【0023】
光源1から出射した光は、レンズ2を介して生体上に集光する。集光された光は、集光点を中心に生体内を拡散反射を繰り返しながら、生体内を伝搬していく。生体内を伝搬し、その一部が生体表面より出射してくる。この光をレンズ3により集光し、光センサ4に集光する。光センサ4に集光した光は、強度に応じた信号に変換される。
【0024】
例えば、光センサとしてCCDを用いた際の結果を、図2を用いて説明する。図2(a)は、光源から出射した光が生体に到達した光照射点を中心に広がり、減衰していく様子を示したイメ−ジ図である。図中X−X’での位置からの光を光センサ4で計測した場合の、光の強度の減衰度合いを図2(b)に示す。このように、光照射点での光強度が最も高く、周辺に広がるに従って減衰している。
【0025】
ここで、例えば最大強度に対して強度が1/100になる距離をdとして、皮下脂肪厚とdとの関係をもとめた。なお、皮下脂肪厚は栄研式キャリパ−を用いて計測した。計測場所は、上腕2頭筋を測定した。その結果、皮下脂肪厚が3mmのときd=20mm、皮下脂肪厚が8mmのときd=25mm、皮下脂肪厚が13mmのときd=30mmと、皮下脂肪厚に相関して、距離dが増大していることが判明した。従って、距離dを計測することで、皮下脂肪厚を容易に測定できることがわかる。
【0026】
このような、演算処理は図1の信号処理部7で行われ、皮下脂肪厚の他、体脂肪率、心拍数、血圧値、酸素飽和度、血糖値等の生体情報が算出される。また、算出結果は、表示部8にて表示される。
【0027】
本実施の形態による生体情報測定装置を用いれば、測定する部位には力は全く加わらず、保持台によって測定位置よりも離れた位置を押し当てるので、測定部位に与える影響を極力抑えることができるため、光源や光センサを生体に密着させて測定していたために起こっていた、組織中を流れる血液量の変化や、皮下脂肪厚の変化を抑制できる効果を有する。
【0028】
また、光源から出射した光を保持台の中央部に照射して、その帰還光を検出しているので、保持台からの力の影響を最小限にできる。
【0029】
また、圧力抑制手段6により生体に加わる圧力を分散でき、測定部に及ぼす影響を低減することができる。
【0030】
レンズ2を用いずに、生体に光を照射させると、光が広がって生体に入射する。入射した光は、その位置を起点として生体内を伝搬していくが、起点が多くなってしまうことで、光センサ4に入射する光は、いろいろな経路を通った光をすべて計測してしまうことになる。レンズ2を設けることで、生体内を伝搬する経路を一定にする効果が得られ、より高精度の測定をすることができる。
【0031】
また、光源1からの出射光だけではなく、光センサ4側にも、レンズ3を設けることで、特定位置からの帰還光を検出することができる。
【0032】
また、生体と光源1及び光センサ4とが非接触であるために、従来のように細い腕の人を測定する場合であっても、生体情報測定装置と生体との密着性による影響がないため、良好な結果を得ることができる。
【0033】
なお、光センサに色フィルタ−等の分光手段を設け、各種色フィルタ−毎に検出した値を用いて生体情報を算出してもよい。
【0034】
(実施の形態2)
図3は、本発明の実施の形態2による生体情報測定装置を示す断面図である。信号処理部及び表示部は実施の形態1と同様であり、省略する。
【0035】
保持台37に光源31と光センサ35が保持され、保持台37の生体と密着する部分には圧力抑制手段38が設けられている。光源31は波長950nmのLED光源で、光源31を出射した光は、レンズ32で集光されて生体に照射される。
【0036】
生体とレンズ32の間には、特定方向の光を通しやすい指向性のフィルタ−である、干渉フィルタ−33を設けている。干渉フィルタ−33は、特定波長成分のみの光を特定の入射角度条件で通過させるもので、光の干渉効果により、入射角度が変化すると、透過率が著しく減少し、光を透過しにくくなる。生体は光拡散体であるために、光照射点に到達した光は、生体内に広がるだけでなく、上の方へも拡散反射する。例えば図3に示すような不要光36が発生し、干渉フィルタ−33がない場合、光センサ35に迷光となって入射する場合がある。これは、測定誤差の原因となり、測定精度を低下させるため好ましくない。しかし、干渉フィルタ−33を用いることにより、入射角度の大きい不要光36は、干渉フィルタ−33で吸収もしくは反射されるため、光センサ35に入射しない。
【0037】
生体内を伝搬した光はレンズ34によって集光され光センサ35に到達し、実施の形態1と同様に、皮下脂肪厚の他、体脂肪率、心拍数、血圧値、酸素飽和度、血糖値等の生体情報が信号処理部で算出され、表示部に表示される。
【0038】
本実施の形態による生体情報測定装置によると、実施の形態1の場合と同様の効果が得られる。それに加えて、干渉フィルタ−33により、光照射点等から斜め成分で入射してくる光や、保持台37の外から入射してくる外部光を遮断できるため、より高精度の測定をすることができる。
【0039】
【発明の効果】
本発明によると、生体の、光源からの出射光が照射される部分には、機械的な圧力が加わることがないため、容易に精度良く生体情報を計測することができる。よって、運動や手作業を日々行う健常人の生体情報を連続的に測定することが可能となる。
【図面の簡単な説明】
【図1】本発明の一実施の形態による生体情報測定装置を示す断面図
【図2】本発明の一実施の形態による生体情報測定装置において得られる検出結果の一例を示す概略図
【図3】本発明の他の実施の形態による生体情報測定装置を示す断面図
【図4】従来の生体情報測定装置を示す斜視図
【符号の説明】
1,31 光源
2,3,32,34 レンズ
4,35 光センサ(CCD)
5,37 保持台
6,38 圧力抑制手段
7 信号処理部
8 表示部
11 本体
12 発光素子
13 受光素子
14 キャップ
15 光学標準板
33 干渉フィルタ
36 不要光
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for measuring biological information such as body fat thickness, body fat rate, heart rate, blood pressure value, oxygen saturation, blood sugar level, etc. of living bodies including humans.
[0002]
[Prior art]
As a conventional device for measuring biological information, for example, US Pat. No. 5,086,229 discloses a device for noninvasively measuring glucose concentration in blood.
[0003]
This living body information measuring device includes a measuring device having a light source and an optical sensor sandwiched between fingertips, emitted from the light source, and then detects the light transmitted through the fingertip with an optical sensor to detect a living body such as a blood sugar level and a pulse. Information is measured.
[0004]
[Problems to be solved by the invention]
However, this conventional biological information measuring device has the following problems.
[0005]
After being emitted from the light source, the amount of light that passes through the fingertip and reaches the optical sensor varies greatly depending on the amount of blood present in the light passage path. Since the amount of blood in the finger changes depending on the pressure applied to the finger, if the fingertip moves during measurement, a large amount of pressure is applied to the fingertip by the biological information measuring device, so the amount of blood in the finger changes. The amount of light detected by the optical sensor changes. Therefore, at the time of measurement, accurate biological information cannot be measured unless the fingertips are moved without being shaken.
[0006]
Also, when the biological information measuring device attached to the fingertip is pressed against another object, the detected light amount has changed greatly as described above.
[0007]
For these reasons, it has been difficult to continuously measure the blood sugar level, pulse, and the like of a healthy person who exercises and performs manual work every day.
[0008]
US Pat. No. 4,990,772 proposes a method for measuring the body fat percentage of a subject using near infrared rays. This method projects near-infrared rays used for component analysis of food or the like to a subject and analyzes a specific wavelength component of light after entering the subject.
[0009]
FIG. 4 shows the configuration of a body fat percentage measuring apparatus using this method. A pair of light emitting elements 12 and light receiving elements 13 are disposed on the end surface of the main body 11. An optical standard plate 15 is disposed on the cap 14 for protecting the end face so as to face the light emitting element 12 and the light receiving element 13. The pair of light emitting elements 12 project near infrared rays toward the subject in close contact with the end surface of the main body 11. The projected light is diffusely reflected after entering the inside of the subject. The light receiving element 13 detects the diffusely reflected light. By measuring with the distance between the light emitting element 12 and the light receiving element 13 fixed and in close contact with the living body, it is possible to detect light that has propagated through the living body by a specific distance.
[0010]
A microcomputer (not shown) incorporated in the main body 11 calculates the body fat percentage of the subject based on the height and weight data of the subject and information on the reflected light detected by the light receiving element 13. . In actual measurement, first, light projection and reflected light detection are performed with the cap 14 attached to the main body 11, and a reference value in subsequent measurements is obtained. Thereafter, projection of light and detection of reflected light are performed toward the subject.
[0011]
However, according to the above-mentioned body fat percentage measuring device, depending on the measurement site of the subject such as a thin arm portion, the light shielding property and the adhesion are insufficient and the measurement accuracy is deteriorated, or the body fat meter is pressed against the subject. The pressure causes changes in the thickness of the fat layer and the blood flow volume, resulting in a problem that measurement accuracy is deteriorated.
[0012]
The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a biological information measuring method and measuring apparatus that can easily obtain biological information with high accuracy.
[0013]
[Means for Solving the Problems]
In order to solve the above problems, a biological information measuring method according to the present invention irradiates a living body with light emitted from a light source, detects return light from the living body with an optical sensor, and converts the detected light amount into the detected light amount. A method for measuring biological information of the living body based on the method, wherein a space portion exists in contact with a portion of the surface of the living body irradiated with the emitted light.
[0014]
In addition, the biological information measuring apparatus according to the present invention includes a light source, an optical sensor, and a holding table that holds the light source and the optical sensor and is in close contact with the living body, and the holding table has a recess.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 3.
[0016]
(Embodiment 1)
FIG. 1 is a sectional view showing a biological information measuring apparatus according to Embodiment 1 of the present invention. Reference numeral 1 denotes an LED light source having a wavelength of 650 nm, and reference numeral 2 denotes a lens, which has a function of condensing light emitted from the light source 1 on a living body.
[0017]
Although it does not specifically limit as the light source 1, The thing of visible light or near-infrared light is preferable.
[0018]
Reference numeral 3 denotes a lens that has a function of collecting feedback light from a specific part of the living body and reaching the optical sensor 4.
[0019]
Although the optical sensor 4 is not specifically limited, For example, a silicon photodiode and a solid-state image sensor are preferable.
[0020]
The holding base 5 has a concave portion, holds the light source 1 and the optical sensor 4 inside the concave portion, fixes the light source 1 and the optical sensor 4, and keeps the light source 1 and the optical sensor 4 in close contact with the living body at the time of measurement. Have a role to play.
[0021]
6 is a pressure suppressing means provided to prevent the pressure on the living body from locally increasing. This prevents the living body from being depressed even when the holding table 5 is pressed against the living body.
[0022]
Next, the operation principle of the present invention will be described.
[0023]
The light emitted from the light source 1 is condensed on the living body via the lens 2. The condensed light propagates in the living body while repeating diffuse reflection in the living body around the focal point. It propagates in the living body and part of it is emitted from the surface of the living body. This light is collected by the lens 3 and collected on the optical sensor 4. The light condensed on the optical sensor 4 is converted into a signal corresponding to the intensity.
[0024]
For example, the results when a CCD is used as an optical sensor will be described with reference to FIG. FIG. 2A is an image diagram showing how the light emitted from the light source spreads around the light irradiation point that reaches the living body and attenuates. FIG. 2B shows the degree of attenuation of the light intensity when light from the position at XX ′ in the figure is measured by the optical sensor 4. In this way, the light intensity at the light irradiation point is the highest and is attenuated as it spreads to the periphery.
[0025]
Here, for example, the distance at which the intensity becomes 1/100 of the maximum intensity is d, and the relationship between the subcutaneous fat thickness and d is obtained. The subcutaneous fat thickness was measured using an Eiken caliper. The measurement place measured the biceps brachii muscle. As a result, when the subcutaneous fat thickness is 3 mm, d = 20 mm, when the subcutaneous fat thickness is 8 mm, d = 25 mm, and when the subcutaneous fat thickness is 13 mm, d = 30 mm, and the distance d increases in relation to the subcutaneous fat thickness. Turned out to be. Therefore, it is understood that the subcutaneous fat thickness can be easily measured by measuring the distance d.
[0026]
Such calculation processing is performed by the signal processing unit 7 in FIG. 1, and biological information such as a body fat rate, a heart rate, a blood pressure value, an oxygen saturation level, and a blood glucose level is calculated in addition to the subcutaneous fat thickness. The calculation result is displayed on the display unit 8.
[0027]
If the biological information measuring apparatus according to the present embodiment is used, no force is applied to the part to be measured, and a position far from the measurement position is pressed by the holding base, so that the influence on the measurement part can be suppressed as much as possible. Therefore, it has an effect of suppressing the change in the amount of blood flowing through the tissue and the change in the thickness of the subcutaneous fat, which occurred because the light source and the optical sensor were measured in close contact with the living body.
[0028]
Further, since the light emitted from the light source is applied to the central portion of the holding table and the return light is detected, the influence of the force from the holding table can be minimized.
[0029]
Further, the pressure applied to the living body by the pressure suppressing means 6 can be dispersed, and the influence on the measurement unit can be reduced.
[0030]
When the living body is irradiated with light without using the lens 2, the light spreads and enters the living body. The incident light propagates in the living body starting from the position, but the number of starting points increases, so that the light incident on the optical sensor 4 measures all the light passing through various paths. It will be. By providing the lens 2, an effect of making the path of propagation in the living body constant can be obtained, and more accurate measurement can be performed.
[0031]
Further, not only the light emitted from the light source 1 but also the lens 3 provided on the optical sensor 4 side, it is possible to detect the return light from a specific position.
[0032]
In addition, since the living body and the light source 1 and the optical sensor 4 are not in contact with each other, even when measuring a person with a thin arm as in the prior art, there is no influence due to the adhesion between the biological information measuring device and the living body. Therefore, good results can be obtained.
[0033]
Note that the optical sensor may be provided with a spectral means such as a color filter, and the biological information may be calculated using values detected for each of the various color filters.
[0034]
(Embodiment 2)
FIG. 3 is a cross-sectional view showing a biological information measuring apparatus according to Embodiment 2 of the present invention. The signal processing unit and the display unit are the same as those in the first embodiment, and are omitted.
[0035]
The light source 31 and the optical sensor 35 are held on the holding table 37, and a pressure suppressing means 38 is provided on a portion of the holding table 37 that is in close contact with the living body. The light source 31 is an LED light source having a wavelength of 950 nm, and the light emitted from the light source 31 is condensed by the lens 32 and irradiated on the living body.
[0036]
Between the living body and the lens 32, an interference filter 33, which is a directional filter that easily transmits light in a specific direction, is provided. The interference filter 33 allows light having only a specific wavelength component to pass under a specific incident angle condition. When the incident angle changes due to the light interference effect, the transmittance is remarkably reduced, making it difficult to transmit light. Since the living body is a light diffuser, the light reaching the light irradiation point not only spreads in the living body but also diffusely reflects upward. For example, when unnecessary light 36 as shown in FIG. 3 is generated and the interference filter 33 is not provided, the light sensor 35 may be incident as stray light. This is not preferable because it causes measurement errors and decreases measurement accuracy. However, by using the interference filter 33, unnecessary light 36 having a large incident angle is not incident on the optical sensor 35 because it is absorbed or reflected by the interference filter 33.
[0037]
The light propagating through the living body is collected by the lens 34 and reaches the optical sensor 35. Similar to the first embodiment, in addition to the subcutaneous fat thickness, the body fat rate, heart rate, blood pressure value, oxygen saturation, blood glucose level. And the like are calculated by the signal processing unit and displayed on the display unit.
[0038]
According to the biological information measuring apparatus according to the present embodiment, the same effect as in the first embodiment can be obtained. In addition, the interference filter 33 can block light incident as an oblique component from a light irradiation point or the like, and external light incident from the outside of the holding table 37, so that more accurate measurement can be performed. Can do.
[0039]
【The invention's effect】
According to the present invention, since the mechanical pressure is not applied to the portion of the living body irradiated with the light emitted from the light source, the biological information can be easily and accurately measured. Therefore, it becomes possible to continuously measure the biological information of a healthy person who performs exercise and manual work every day.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a biological information measuring device according to an embodiment of the present invention. FIG. 2 is a schematic diagram showing an example of a detection result obtained by the biological information measuring device according to an embodiment of the invention. FIG. 4 is a sectional view showing a biological information measuring apparatus according to another embodiment of the present invention. FIG. 4 is a perspective view showing a conventional biological information measuring apparatus.
1,31 Light source 2, 3, 32, 34 Lens 4, 35 Optical sensor (CCD)
5, 37 Holding table 6, 38 Pressure suppression means 7 Signal processing unit 8 Display unit 11 Main body 12 Light emitting element 13 Light receiving element 14 Cap 15 Optical standard plate 33 Interference filter 36 Unnecessary light

Claims (9)

光源からの出射光を生体に照射し、前記生体からの帰還光を光センサで検出して、検出された前記帰還光の光量に基づいて前記生体の生体情報を測定する方法であって、前記生体の表面の前記出射光が照射される部分に接して空間部が存在することを特徴とする生体情報測定方法。A method of irradiating a living body with emitted light from a light source, detecting return light from the living body with an optical sensor, and measuring biological information of the living body based on the detected light amount of the return light, A living body information measuring method, wherein a space portion exists in contact with a portion of the surface of a living body irradiated with the emitted light. 光源、光センサ、並びに前記光源及び前記光センサを保持し生体に密着させる保持台を備え、前記保持台が凹部を有することを特徴とする生体情報測定装置。A biological information measuring device comprising: a light source, an optical sensor, and a holding table that holds the light source and the optical sensor and is in close contact with the living body, and the holding table has a recess. 保持台の生体と密着する部分に、前記生体に加わる圧力を抑制する手段を有することを特徴とする請求項2記載の生体情報測定装置。The living body information measuring apparatus according to claim 2, further comprising means for suppressing a pressure applied to the living body at a portion of the holding table that is in close contact with the living body. 光源からの出射光を集光する第1の集光手段及び生体からの帰還光を集光する第2の集光手段を有することを特徴とする、請求項2または3記載の生体情報測定装置。4. The biological information measuring device according to claim 2, further comprising: a first condensing unit that condenses the light emitted from the light source and a second condensing unit that condenses the return light from the living body. . 光センサに入射した光を分光する分光手段を有することを特徴とする、請求項2〜4のいずれかに記載の生体情報測定装置。The biological information measuring apparatus according to claim 2, further comprising a spectroscopic unit that splits light incident on the optical sensor. 光源として単一波長の光源を用い、少なくとも前記光源及び光センサを覆うように指向性のフィルタ−を有することを特徴とする、請求項2〜5のいずれかに記載の生体情報測定装置。The biological information measuring apparatus according to claim 2, wherein a light source having a single wavelength is used as a light source, and a directional filter is provided so as to cover at least the light source and the optical sensor. 請求項2〜6のいずれかに記載の生体情報測定装置を用い、生体の保持台と密着する部分の外側であって、前記生体の前記部分により囲まれた領域の中央部付近に、光源からの出射光を照射させ、前記生体からの帰還光を光センサで検出して、検出された前記帰還光の光量に基づいて前記生体の生体情報を測定することを特徴とする、生体情報測定方法。Using the biological information measuring device according to any one of claims 2 to 6, a light source is disposed outside a portion that is in close contact with a holding base of a living body and near a central portion of an area surrounded by the portion of the living body. The living body information measuring method is characterized in that the living body information of the living body is measured based on the detected amount of the returning light by irradiating the emitted light of the living body, detecting the returning light from the living body with an optical sensor. . 光源が可視光または近赤外光を出射することを特徴とする、請求項1または7記載の生体情報測定方法。The biological information measuring method according to claim 1, wherein the light source emits visible light or near-infrared light. 光源が可視光または近赤外光を出射することを特徴とする、請求項2〜6のいずれかに記載の生体情報測定装置。The biological information measuring apparatus according to claim 2, wherein the light source emits visible light or near-infrared light.
JP2000103033A 2000-04-05 2000-04-05 Biological information measuring method and measuring device Pending JP2005095193A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000103033A JP2005095193A (en) 2000-04-05 2000-04-05 Biological information measuring method and measuring device
PCT/JP2001/002915 WO2001076486A1 (en) 2000-04-05 2001-04-04 Biological information measuring method and biological information measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000103033A JP2005095193A (en) 2000-04-05 2000-04-05 Biological information measuring method and measuring device

Publications (1)

Publication Number Publication Date
JP2005095193A true JP2005095193A (en) 2005-04-14

Family

ID=18616804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000103033A Pending JP2005095193A (en) 2000-04-05 2000-04-05 Biological information measuring method and measuring device

Country Status (2)

Country Link
JP (1) JP2005095193A (en)
WO (1) WO2001076486A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007319246A (en) * 2006-05-30 2007-12-13 Sharp Corp Electronic appliance and pulse wave detection method using this electronic appliance
JP2013506525A (en) * 2009-10-06 2013-02-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and system for performing photoplethysmography

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060041198A1 (en) * 2004-08-20 2006-02-23 Matsushita Electric Industrial Co., Ltd. Biological information arithmetic apparatus, biological information arithmetic method, computer-executable program, and recording medium

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5477491A (en) * 1977-12-01 1979-06-20 Aroozu Kk Nonnobservation bloor oximeter
EP0160768B1 (en) * 1984-05-04 1989-05-03 Kurabo Industries Ltd. Spectrophotometric apparatus for the non-invasive determination of glucose in body tissues
JPH069609Y2 (en) * 1989-11-25 1994-03-16 コーリン電子株式会社 Reflective oximeter probe
JPH0412736A (en) * 1990-05-02 1992-01-17 Hamamatsu Photonics Kk Biomeasuring instrument
JPH10155775A (en) * 1996-12-02 1998-06-16 Matsushita Electric Ind Co Ltd Blood sugar gauge
JP3564995B2 (en) * 1998-02-26 2004-09-15 オムロンヘルスケア株式会社 Subcutaneous fat thickness measurement device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007319246A (en) * 2006-05-30 2007-12-13 Sharp Corp Electronic appliance and pulse wave detection method using this electronic appliance
JP2013506525A (en) * 2009-10-06 2013-02-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and system for performing photoplethysmography
US10271746B2 (en) 2009-10-06 2019-04-30 Koninklijke Philips N.V. Method and system for carrying out photoplethysmography

Also Published As

Publication number Publication date
WO2001076486A1 (en) 2001-10-18

Similar Documents

Publication Publication Date Title
US20240057883A1 (en) Deep tissue flowmetry using diffuse speckle contrast analysis
EP1013219B1 (en) Living body information measuring apparatus, living body information measuring method, body fat measuring apparatus, body fat measuring method, and program recording medium
JP3599878B2 (en) Blood glucose meter
US9743864B2 (en) Method for non-invasive blood glucose monitoring and method for analysing biological molecule
EP1520514A1 (en) Optical biological information measuring apparatus and method
US9295419B2 (en) Method and system for a non-invasive measurement of optically active component concentration
JP2010540964A (en) Optical device components
JP2022009738A (en) Sensor device
WO2019225612A1 (en) Blood vessel detection device and method therefor
JP2008048987A (en) Pulse wave measuring apparatus
JP4419540B2 (en) Pulse wave detector
EP2749217B1 (en) Apparatus for non-invasive glucose monitoring
CN105596011A (en) Noninvasive blood glucose detection device
JP2005095193A (en) Biological information measuring method and measuring device
JP2003310575A (en) Method for optically measuring skinfold fat thickness and apparatus used for the same
US9724022B2 (en) Apparatus for non-invasive glucose monitoring
US9662004B2 (en) Apparatus for non-invasive glucose monitoring
TWI522086B (en) Apparatus for non-invasive glucose monitoring
EP2749218A1 (en) Apparatus for non-invasive glucose monitoring
TWI495864B (en) Apparatus and method for non-invasive blood glucose monitoring and method for analysing biological molecule
KR102335211B1 (en) Method and apparatus for measuring blood component using self-reference point establishment
JP2000136997A (en) Optical measuring device
JP2005037253A (en) Glucose concentration measuring device
JP2004298547A (en) Glucose concentration measuring apparatus
GB2570945A (en) Skinprint analysis method and apparatus