TW201342978A - 複合式基地台 - Google Patents
複合式基地台 Download PDFInfo
- Publication number
- TW201342978A TW201342978A TW102105987A TW102105987A TW201342978A TW 201342978 A TW201342978 A TW 201342978A TW 102105987 A TW102105987 A TW 102105987A TW 102105987 A TW102105987 A TW 102105987A TW 201342978 A TW201342978 A TW 201342978A
- Authority
- TW
- Taiwan
- Prior art keywords
- base station
- micro base
- sub
- user equipment
- micro
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/32—Hierarchical cell structures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
- H04W52/0203—Power saving arrangements in the radio access network or backbone network of wireless communication networks
- H04W52/0206—Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/1607—Details of the supervisory signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L2001/0092—Error control systems characterised by the topology of the transmission link
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/04—Large scale networks; Deep hierarchical networks
- H04W84/042—Public Land Mobile systems, e.g. cellular systems
- H04W84/045—Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
一種使用共頻道配置技術之複合式基地台,包含複數子微型基地台及母微型基地台。母微型基地台監控複數子微型基地台。複數子微型基地台上之所有公共頻道使用相同主擾碼作為母微型基地台。複合式基地台應用之技術包含單頻率網路、分空多工存取、次擾碼、分佈式註釋系統、單元間干擾協調、自組織網路、分佈式訊號處理、單元內干擾協調、網路協助之單元內交握、導頻閃爍、使用者設備位置輪詢、非對稱子微型基地台涵蓋範圍及多層單頻率網路。其可降低共頻道干擾、多餘的單元重選、多餘的量測報告要求及一般的微型基地台配置所造成之下行死區。
Description
本發明係與微型基地台有關,特別是關於一種包含一個母微型基地台與複數個子微型基地台之複合式基地台。然而,對習知技藝之人而言,本發明可應用於任何型式的行動基地台。
隨著行動數據傳輸量大幅成長,預計於2015年前達到75 EB之多(1 EB等於十億個十億位元組),容量與吞吐量已成為行動電話營運商(Operator)所面臨的主要問題之一。因此,能夠解決此一問題之微型基地台技術便應運而生。微型基地台結合了兩種傳統的網路設備之功能:無線網路控制器(Radio Network Controller,RNC)與基地台(Basestation)。
微型基地台係以其小尺寸及低功率著稱。然而,微型基地台技術之上述優點實際上卻也對現今的行動通訊網路架構形成不少新的挑戰,例如:
(1)由於微型基地台所涵蓋之範圍過小,導致單元重選之次數過多。
(2)於很多時間下,當微型基地台位於其他較大單元之涵蓋範圍內,並且大單元訊號高於某一準位時,手機無法進行資料卸載至微型基地台。
於行動通訊網路中,手機可處於連線模式或閒置模式(RRC狀態,例如CELL_PCH、URA_PCH及CELL_FACH,係屬於閒置模式的一
部份,而CELL_DCH係屬於連線模式,通常被視為第三代合作計劃(3rd Generation Partnership Project,3GPP)標準。處於閒置模式下的手機需要週期性地執行單元重選之動作,以搜尋到較佳的基地台,供該手機將本身註冊至該較佳的基地台。於第三代合作計劃標準中有討論到摒除單元重選之標準。簡言之,若手機發現到其本身註冊的單元所接收到的訊號長度降低至某一準位以及第三代合作計劃標準所描述之其他情況下,手機應遵循第三代合作計劃標準之規範執行單元重選的動作。由於單元重選之動作涉及於多無線頻率中對各單元進行搜尋,故通常相當耗電。若經常進行單元重選之動作,將會導致電池的電源快速消耗殆盡。
當手機處於連線模式下時,將會啟動一交握程序,並且網路開始發現來自手機的訊號品質將會降低至某一準位。一旦交握程序被啟動,網路將會要求手機進行頻率內量測、頻率間量測或甚至遙控存取工具間量測,並將上述量測結果報告給網路,以進行交握目標之決定。一旦網路選定交握目標,網路會通知手機並將包含有該手機之所有資訊的交握訊息傳送給目標基地台。此一程序將會耗費大量的時間與資源。對於較大的單元(一般基地台)而言,由於不常發生手機交握之情況,故不至於產生負載過重之現象。然而,對於微型基地台而言,若未能採取預防措施,系統將會因為過多的交握要求而產生負載過重之現象。
舉例而言,假設使用者拿著處於閒置狀態的手機開始移動,使用者可能會通過被多個微型基地台所涵蓋的區域,此時,當使用者走出每一微型基地台涵蓋之範圍時,使用者拿著的手機會感知來自該些微型基地台之訊號並須進行多個單元重選程序。若使用者拿著的手機處於連接狀態,從一微型基地台至另一微型基地台之交握將會發生很多次,造成網路與手機的負載過重。於第三代合作計劃UMTS標準中,所有基地台被指派一個獨特的主擾碼以及一組15個獨特的次擾碼。通常,這些次擾碼係使用於波束成形單元或扇形區單元,分離的扇形區不需彼此正交。下行次擾碼可例外應用於該些需要在整個單元中被聽到的共同頻道及/或在原始註冊之前。每個單元或扇形區通常只使用一個擾碼維持不同下行碼頻道之間的正
交。波束透過自適應天線提供額外的空間隔離,使得不同碼頻道之間的正交變得較不重要。然而,在所有的例子中,最佳的策略仍是在單一擾碼下盡量維持愈多使用者愈好,以最小化下行干擾。若單元需使用到次擾碼,則只有那些不符合主擾碼的使用者需要使用次擾碼。正交的最大損失發生於當使用者被分享於兩個不同的擾碼之間時。請參照圖1,圖1繪示不同的次擾碼如何應用於不同的波束。
如圖1所示,大圈代表被主擾碼所干擾之訊號。公共頻道,例如CPICH(共同導頻)及CCPCH(共同控制)頻道,幾乎總是以主擾碼干擾並且不是由波束形成。需注意的是,若要設計很多波束又要能維持波束之間良好的空間距離是相當難的。如圖2所示,確保波束之間較少重疊之一方法是減少波束之數目。不幸的是,上述波束形式並不一致,由於大多數基地台使用扇形區設計,實際上放置三個基地台在同一位置上,每一個基地台分別監控整個圓周的三分之一(亦即120度)。波束形成可透過於相同的扇形區內允許更多的碼樹有效增加下行容量,但由於所有手機仍一起被同一基頻處理器所處理,故上行容量/吞吐量並未增加。
於複合式基地台的觀念中,較大的母微型基地台與較小的子微型基地台使用不同的主擾碼於廣播頻道(P-CCPCH)及公共導頻頻道(P-CPICH)。於UMTS中,下列的下行頻道必須被主擾碼所干擾:P-CPICH、P-CCPCH、S-CCPCH、PICH及AICH。並且下列的頻道必須被次擾碼所干擾:S-CPICH、DL-DPCH、F-DPCH、HS-PDSCH及HS-SCCH。
於先前技術中,複合式基地台之設計需要每一單元(無論是母微型基地台或子微型基地台)使用其本身的主擾碼傳輸它們的P-CPICH及P-CCPCH,導致複合式基地台內之干擾。
因此,本發明提出一種複合式基地台,以解決上述問題。
本發明之一範疇在於使用微型基地台達到類似波束形成之
空分多重存取,但採用較為聰明之方式,可真正同時增加下行及上行容量及吞吐量並消除前述的配置問題(太多單元選擇以及當較大單元之訊號太強時手機無法與微型基地台溝通)。
本發明之另一範疇在於達到複合式基地台中之所有微型基地台均使用母微型基地台所使用之主擾碼進行傳輸。P-CCPCH頻道(BCH頻道)所承載的所有資訊應該相同。這暗示來自複合式基地台中之所有微型基地台的次同步頻道(S-SCH)均相同。當手機(使用者設備)進入複合式基地台時,手機應將來自複合式基地台中之微型基地台的所有訊號當成自相同來源所傳送的多路徑元件。由於所有接收訊號功率會建設性地相加,而不是彼此干擾,所以系統性能會變得較好。
本發明之另一範疇在於提供一種可減少共頻道干擾、多餘的單元重選、多餘的量測報告要求及一般的微型基地台配置所造成之下行死區(Downlink dead zone)之複合式基地台。複合式基地台係自組織的,以利資料卸載並增進下行頻道/上行頻道之性能。其也確保複合式基地台會配置於複合式基地台內,而不是在未知的遙控位置上。複合式基地台為共頻道配置技術,應用之技術包含單頻率網路(Single Frequency Network,SFN)、分空多工存取(Space Division Multiple Access,SDMA)、次擾碼(Secondary Scrambling Code,SSC)、分佈式註釋系統(Distributed Annotation System,DAS)、單元間干擾協調(Inter-Cell Interference Coordination,ICIC)、自組織網路(Self-Organizing Network,SON)、分佈式訊號處理(Distributed Signal Processing System,DSPS)、單元內干擾協調(Intra-Cell Interference Coordination,IaCIC)、網路協助之單元內交握(Network assist intra-cell handover)、導頻閃爍(Pilot flashing)、使用者設備位置輪詢(User equipment Location Polling)、非對稱子微型基地台涵蓋範圍(Asymmetric child femtocell coverage)及多層單頻率網路(Multi-tier SFN)。複合式基地台具有母微型基地台,用以監控複數個子微型基地台。使用者設備端及現存的第三代合作計劃標準均不需作任何改變。複合式基地台中之微型基地台不需複雜的鄰近單元資訊列表。
本發明之另一範疇在於將複合式基地台之概念延伸至第三代合作計劃的長期演進技術(Long Term Evolution,LTE)及長期演進技術升級
版(LTE-A)系統之運作。形成LTE複合式基地台很容易。該些子微型基地台之廣播、導頻及共同頻道均轉換成與母微型基地台相同。母微型基地台與該些子微型基地台將會以同步方式傳輸該些頻道。母微型基地台控制複合式基地台之形成並可拒絕任何子微型基地台加入至複合式基地台。母微型基地台與該些子微型基地台之間可透過有線方式(例如乙太網路或光纖纜線)或無線方式(例如WiFi或3G/4G無線網路)連接。這可避免來自該些子微型基地台之共同頻道之干擾並減少訊號交握。LTE複合式基地台中之母微型基地台負責該些子微型基地台的所有調度決策。LTE複合式基地台應配置eICIC以避免控制頻道與資料頻道之間的干擾。
於本發明之一具體實施例中,使用共頻道配置技術之複合式基地台包含複數子微型基地台及母微型基地台。母微型基地台監控複數子微型基地台。複數子微型基地台上之所有公共頻道使用相同主擾碼作為母微型基地台。
於實際應用中,複合式基地台應用之技術包含單頻率網路、分空多工存取、次擾碼、分佈式註釋系統、單元間干擾協調、自組織網路、分佈式訊號處理、單元內干擾協調、網路協助之單元內交握、導頻閃爍、使用者設備位置輪詢、非對稱子微型基地台涵蓋範圍及多層單頻率網路。其可降低共頻道干擾、多餘的單元重選、多餘的量測報告要求及一般的微型基地台配置所造成之下行死區。
關於本發明之優點與精神可以藉由以下的發明詳述及所附圖式得到進一步的瞭解。
BS‧‧‧基地台
B1~B12‧‧‧波束
RBS‧‧‧基地台涵蓋範圍
PC‧‧‧母微型基地台
CC、CC1~CC5‧‧‧子微型基地台
RPC‧‧‧母微型基地台涵蓋範圍
RCC、RCC1~RCC5‧‧‧子微型基地台涵蓋範圍
UE、UE1~UE4‧‧‧使用者設備
ACK‧‧‧單元準備好處理訊息
FGW‧‧‧微型基地台閘道器
圖1係繪示不同次擾碼如何應用至不同波束。
圖2係繪示減少波束數目以減少波束之間的重疊。
圖3係繪示複合式基地台結構之一實施例。
圖4係繪示使用者設備與複合式基地台中之母微型基地台及子微型基地台相互溝通之一實施例。
圖5係繪示使用者設備與複合式基地台中之子微型基地台相互溝通之一實施例。
圖6係繪示複合式基地台結構之一實施例。
圖7係繪示複合式基地台中之交握的一實施例。
圖8係繪示RACH隨機存取程序之一實施例。
圖9係繪示FACH IaCIC隨機存取程序之一實施例。
(I)複合式基地台設定及運作
當設置複合式基地台時,需將複數個“子微型基地台”設置於作為“母微型基地台”的微型基地台的涵蓋範圍內。請參照圖3,圖3係繪示複合式基地台結構之一實施例。如圖3所示,三角形代表“母微型基地台”PC且星形代表“子微型基地台”CC。其具有位於相同母微型基地台下之複數個一般基地台,稱之為“複合式基地台”。需說明的是,每一微型基地台可被單獨地波束形成以支持於“母微型基地台”下需要較佳覆蓋之區域。
於本發明中,複合式基地台應被設定如下:
(1)每一“子微型基地台”被指派獨特的主擾碼並傳輸PCPICH、PCCPCH、S-CCPCH等頻道,並據以使用該獨特的主擾碼廣播其PRACH的前導簽名(preamble signatures)。
(2)“母微型基地台”亦被指派獨特的主擾碼並傳輸PCPICH、PCCPCH、S-CCPCH等頻道,並據以廣播其PRACH的前導簽名。
(3)每一微型基地台均被指派來自母一微型基地台之次擾碼組的獨特的次擾碼。
(4)複合式基地台中之微型基地台應傳輸被次擾碼所干擾之次共同導頻頻道(S-CPICH)。
(5)所有微型基地台應該宣告它們本身為如同第三代合作計劃或使用其他方法所定義之“保留單元”,以防止任何手持裝置連線至它們。
(6)複合式基地台中之微型基地台的確切位置可根據複合式基地台中所感知到的熱點(hot spots)來調整。
對於進入複合式基地台範圍內之任何手持裝置而言,若其處於閒置模式下,其可僅連結(camp on)至母微型基地台,而不連線至該些子微型基地台。若其處於連線模式下,其可僅初始交握至母微型基地台。
若母微型基地台為工作中的單元(如同第三代合作計劃之定義)且手持裝置處於閒置模式下,手持裝置將會聆聽母微型基地台之PCCPCH頻道,並且其係透過RACH/FACH頻道與母微型基地台溝通。手持裝置無法透過任何方式直接與複合式基地台中之微型基地台溝通。其可使用RACH/FACH啟動專用連接(例如DPCH)或高速資料連接(例如HSPA)。
若母微型基地台為工作中的單元且手持裝置處於連線模式下,與複合式基地台所服務的任何手持裝置之間的任何CELL_DCH模式之連接(例如DPCH或HSPA)均需被母微型基地台所啟動。一旦與母微型基地台處於連線模式下,母微型基地台應根據感知到的頻道差異或訊號的都卜勒效應(Doppler effect)執行手持裝置之移動速度的估算。若手持裝置之移動速度的估算結果低於臨界值(等於5公里/小時),母微型基地台應繼續進行下列步驟以卸載(offload)手持裝置與複合式基地台中之某個微型基地台之連結。母微型基地台應要求來自手持裝置的頻率內量測報告。被要求的手持裝置應執行相同頻率帶的頻率內量測並將量測結果報告給母微型基地台。當母微型基地台檢查完來自手持裝置的量測報告後,母微型基地台將會搜尋對應於複合式基地台中之該些微型基地台的主擾碼之任何單元的ID並於複合式基地台內形成一組偵測到的微型基地台。
母微型基地台根據手持裝置的量測報告選出複合式基地台內最強的偵測到的微型基地台並將其設定為“目標單元”。母微型基地台
應發出交握要求至目標單元並準備好傳送手持裝置相關資訊至目標單元。這些資訊包含但不限於下列:上行擾碼、HSDPA/HSUPA緩衝內容、未完成的HARQ傳輸/接收及上行與下行DPCH OVSF碼的數字。母微型基地台應發出RRC訊息至手持裝置,以要求手持裝置在複合式基地台設定相的期間切換至指派給目標單元的次擾碼。此一切換應發生於母微型基地台將手持裝置資訊傳輸至目標單元完成之後。
若於連線模式下的手持裝置具有進行中的DPCH連接,母微型基地台應執行下列功率控制步驟:(1)計算來自手持裝置量測報告之母微型基地台與目標單元之量測訊號強度間的差異;(2)從目前的外部迴圈功率控制(OLPC)設定點(又稱外部迴圈功率控制SIR目標)減去上述差異;(3)降低外部迴圈功率控制SIR目標,以有效使得手持裝置在切換至子微型基地台於次擾碼之前降低其功率,藉以避免對目標單元現有的使用者造成干擾;(4)估算於相同複合式基地台中之母微型基地台與子微型基地台之間的功率差異,並在下令手持裝置切換至目標單元之前使用功率差異來調整功率。
母微型基地台應透過RRC訊號通知手持裝置自次共同導頻頻道S-CPICH取得其下行參考訊號給HSDPA及下行DPCH。需注意的是,來自目標單元的次共同導頻頻道S-CPICH係被與母微型基地台之主擾碼來自同一群的次擾碼所干擾。母微型基地台亦可命令具有下行DPCH連接的手持裝置將專用導頻視為參考訊號使用於DPCCH。在切換至次擾碼後,手持裝置將會有效地被目標單元服務,但手持裝置仍維持與母微型基地台的連接。於此一新的狀態下,手持裝置與網路之間的所有溝通均透過目標單元而非母微型基地台。一旦手持裝置結束連線模式之連接,其RRC裝置將會由CELL_DCH狀態改變成CELL_FACH狀態、CELL_PCH狀態或URA_PCH
狀態。當RRC連接被釋放時,手持裝置也會切換回主擾碼並變為閒置狀態。
在同一複合式基地台中之該些藉由母微型基地台之協助的微型基地台間的交握可透過下列步驟實現:(1)當連接處於連線模式下之微型基地台之手持裝置的訊號衰減至低於預設臨界值時,目標單元或母微型基地台應命令手持裝置執行頻率內量測;(2)若量測命令係由目標單元下達,其應選取下一個目標單元作為報告中具有最強訊號的微型基地台,並通知母微型基地台將手持裝置的次擾碼切換為指派給新的目標單元之次擾碼。目前的目標單元應計算目前的目標單元與新的目標單元之間的功率偏移資訊,若需要的話(例如下行DPCH連接存在)可調整外部迴圈功率控制SIR目標。接到來自目前的目標單元的手持裝置交握要求之目前目標或母微型基地台應命令手持裝置切換至新的目標單元之次擾碼;(3)若量測命令係由母微型基地台下達,母微型基地台應將新的目標單元之服務存取點通知目前的目標單元,目前的目標單元應準備手持裝置相關資訊並傳送手持裝置相關資訊至新的目標單元。當手持裝置相關資訊從目前的目標單元傳送至新的目標單元後,母微型基地台應下令手持裝置切換至新的目標單元之次擾碼。
(II)時序同步
於同一複合式基地台中之母微型基地台與子微型基地台之間的物理頻道時序同步是相當重要的,藉以確保手持裝置不知主擾碼與次擾碼之間的切換。對手持裝置而言,當在主擾碼與次擾碼之間切換時,手持裝置仍如同被同一複合式基地台服務一樣。對複合式基地台中之單元而言,當手持裝置從主擾碼切換至次擾碼時,手持裝置幾乎被視為從母微型基地台交握至目標單元。因此,於同一複合式基地台中之母微型基地台與子微型基地台之間的物理頻道時序同步是最重要的,可透過下列方式實現:
(1)使用GPS定時:於此例中,複合式基地台中之所有單元均應與接收到之GPS時間同步。
(2)使用嗅探器(sniffer):於此例中,每一微型基地台均應具有網路監控器,以監控母微型基地台的廣播訊號,例如CPICH或PCCPCH,並使用時間/頻率鎖定機制鎖定母微型基地台的訊號定時,例如相位鎖定迴圈(PLL)。
(3)透過回程連結(例如乙太網路連結或光纖連結)使用來自母微型基地台的燈標(beacon)或心跳(heart beat)。
(4)使用來自時間伺服器(例如NTP或PTP(IEEE1588)伺服器)之網路定時,而非來自母微型基地台之定時。複合式基地台中之所有微型基地台均同步至時間伺服器的定時。
(III)回程訊號考量
母微型基地台應具有完整的Uu堆以與手持裝置溝通,並應具有完整的Iu-h堆、Iu堆或IMS-子系統堆以與核心網路節點(例如微型基地台閘道、MSC及SGSN/GGSN等)溝通。複合式基地台中之每一微型基地台均應連接母微型基地台,以進行手持裝置相關資訊的傳輸。此一介面之一例子為Iu-b介面與Iu-r介面之組合或Iu-rh介面。為了便於手持裝置直接從一微型基地台轉移至另一微型基地台,複合式基地台中之各微型基地台間的溝通是必須的。該些連接應具有與Iu-r或Iu-rh類似的協定堆。當手持裝置被切換至目標單元時,若可能的話,相關的Iu-UP資料及任何控制平面訊號亦應被傳送至目標單元。當手持裝置完成在DPCH或HSPA之溝通時,微型基地台應開始中斷DPCH/HSPA與核心網路及手持裝置之連接的程序。當連接中斷後,手持裝置將會自動切換回閒置模式並開始聆聽屬於母微型基地台之主擾碼上的傳呼頻道(paging channel)及廣播頻道(broadcast channel)。於此刻,目標單元與母微型基地台之間不會有任何溝通存在。
(IV)達到空間分割多重存取之行動通訊網路中之複合式基地台的單頻網路操作模式
於此實施例中,複合式基地台中之所有微型基地台均應使用
與母微型基地台相同的主擾碼進行傳輸,並且所有P-CCPCH頻道所攜帶的資訊均應一致。這暗示來自複合式基地台中之所有微型基地台的次同步頻道(S-SCH)均相同。當行動電話(亦即使用者設備)進入複合式基地台內,其應將來自複合式基地台中之微型基地台的所有訊號均視為傳送自相同來源的多路徑元件。由於接收到的總訊號功率會建設性地相加而非互相干擾,故系統性能將會變得較佳。
至於隨機存取程序,既然所有微型基地台廣播相同的資訊,隨機存取簽名會被微型基地台上的RACH接收器所監視。這與先前技術不同,所有隨機存取前言(preamble)及訊息均只被母微型基地台接收及處理。先前技術所遭遇的問題是母微型基地台離使用者設備之距離常比鄰近的微型基地台離使用者設備之距離還遠,導致使用者設備需以較高功率傳輸RACH前言及訊息至母微型基地台,導致對複合式基地台中之子微型基地台造成干擾。為了改善此一現象,本發明允許子微型基地台也從使用者設備UE聆聽RACH傳輸並據以回覆使用者設備,使得使用者設備的RACH傳輸可以較低傳輸功率被偵測及處理,以降低複合式基地台中之整體的雜訊。
潛在的問題是當多個微型基地台偵測到前言並嘗試要透過其AICH頻道傳送ACK(單元準備好處理訊息)或NACK(單元尚未準備好處理訊息)。既然使用者設備將來自不同單元的不同訊號視為不同路徑的相同訊號,使用者設備會試著在不知道訊號內容不同的情況下偵測並組合這些多路徑。最後,資訊的差異(ACK或NACK)將會被組合在一起而形成最後的決定。來自鄰近的微型基地台之較強訊號終於會經過軟組合程序。也就是說,來自鄰近的微型基地台之訊號會趕走來自較遠的基地台之訊號。若ACK被解碼,使用者設備將會開始傳輸PRACH訊息並被發出ACK的基地台所接收並被發出NACK的基地台所忽略。若NACK被解碼,使用者設備將會挪開並稍後重傳。來自多個微型基地台之AICH上的不恆定ACK/NACK之衝擊應該被最小化。假設鄰近的微型基地台告訴使用者設備不要傳送訊息,但較遠的微型基地台告訴使用者設備要傳送訊息,使用者設備較佳地是不要傳送訊息,以避免對鄰近的微型基地台造成干擾。另一方面,若鄰近的微型基地台傳送ACK且較遠的微型基地台傳送NACK,則使用者設備可傳
送訊息,因為較遠的微型基地台所可能受到的干擾通常會較小。
請參照圖4,圖4係繪示使用者設備與複合式基地台中之母微型基地台及子微型基地台相互溝通之一實施例。如圖4所示,當使用者設備UE先連線至複合式基地台時,使用者設備接收複合式基地台中之所有微型基地台所廣播之PCCPCH通道上的廣播資訊。對使用者設備而言,其已註冊至複合式基地台。對複合式基地台而言,使用者設備已連線至複合式基地台而成為一整體。當使用者設備處於閒置模式下,兩者沒有任何物理上連接。網路會傳送來自複合式基地台中之所有微型基地台的傳呼訊號對使用者設備進行傳呼之動作。複合式基地台中之所有微型基地台應分享同一單元ID、PLMNID、路由區碼及位置區碼等。對使用者設備而言,複合式基地台對它好像是一個單獨的微型基地台。
當使用者設備開啟隨機存取程序時,其進入連線模式(CELL_FACH模式)。於此模式中,使用者設備使用隨機存取程序傳送隨機存取。假設鄰近的子微型基地台可接收並偵測到RACH前置功率,故可先謹慎地設定初始RACH前置功率小於達到母微型基地台所需之功率。一旦一個或多個微型基地台偵測到RACH,每個微型基地台應根據是否有另一個RACH程序正在進行透過AICH頻道傳送ACK或NACK至使用者設備。當使用者設備接收到多個AICH頻道後,該些AICH頻道應被視為來自同一來源的多路徑元件。即使資訊不一定相同,使用者設備仍能將具有較強訊號者進行解碼。
(V)傳呼(paging)
關於傳呼,傳呼係透過PICH頻道進行,然後再由S-CCPCH頻道接著進行。於先前技術中,隨機存取程序與傳呼均僅允許母微型基地台而非子微型基地台進行。於此發明中,傳呼可允許子微型基地台進行。有下列兩種可能:
(1)傳呼資訊被傳送至複合式基地台中之所有微型基地台並同時廣播。透過此一方式,使用者設備UE可將來自不同微型基地台的傳呼視為來自相同來源的多路徑。這可被用在處於CELL_PCH或URA_PCH RRC狀態下之使用者設備UF。
(2)若傳呼負責上行的RACH訊息,則僅將傳呼傳送至偵測到RACH前言的微型基地台。這可被用在處於CELL_FACH模式下的使用者設備UE並持續監控FACH及RACH。
跨越不同微型基地台(子微型基地台或母微型基地台)之傳呼及FACH操作必須協調,因為S-CCPCH可僅被主擾碼干擾,若來自不同微型基地台之資訊內容不同,其將會對彼此造成顯著的干擾。若子微型基地台彼此距離很遠而無法聽到彼此的訊號,可根據空間分割方法進行協調。在網路行話中,這有時稱為隱藏單元(節點)。所以一子微型基地台對另一微型基地台隱藏。來自彼此隱藏的該些微型基地台之傳呼及FACH可不同。母微型基地台負責將該些子微型基地台分為複數個互斥的隱藏群組。然後,每一群組可自由地廣播具有獨立資訊內容的S-CCPCH頻道。這可近似於傳呼區域之觀念,但只使用於複合式基地台。隱藏群組之最佳化於此不詳述。
既然所有微型基地台傳送相同的廣播訊號、相同的同步頻道及相同的導頻模式使用者設備會認為其連接的是一整體的複合式基地台。當開始RACH程序,使用者設備將會認為其連接至複合式基地台。
在使用者設備建立與複合式基地台中之任意微型基地台之間的專用連接(DPCH)之前,使用者設備需要先進行隨機存取程序。最可能的是於CELL_FACH、CELL_PCH或IDLE模式與使用者設備溝通的相同子微型基地台將會作為CELL_DCH模式下的專用頻道與HSPA頻道的服務單元。在經RACH/FACH接收到高層交換資訊之後,進行服務的微型基地台將導引使用者設備開始對選取的次擾碼進行下行DPCH接收。於上行方向,僅有進行服務的微型基地台會試著對具有CELL_DCH連接之使用者設備進行解干擾。
若想要的進行服務的微型基地台並非於CELL_FACH模式期間或隨機存取交握相期間與使用者設備溝通的微型基地台,則需進行微型基地台之間的虛擬交握,以使得回程資訊將會重新導向至專用模式進行服務的微型基地台。虛擬交握係代表回程的完整交握操作,使用者設備並未察覺此一改變而仍認為其本身係與複合式基地台溝通。實際上,這將可
透過次擾碼之使用卸載使用者設備對子微型基地台之通訊,而維持母微型基地台繼續服務未在任何子微型基地台範圍內之使用者設備。
當使用者設備透過HSDPA或DPCH完成其通訊時,使用者設備將會自動切換回主擾碼並回到閒置模式。沒有微型基地台重新選擇會發生。
當使用者設備處於閒置模式下,使用者設備執行週期性的量測以確保來自其連線的微型基地台之訊號強度高於某一品質。一旦訊號品質下降,使用者設備執行單元重選程序,進行量測並搜尋具有較強訊號的微型基地台。若找到具有較強訊號的微型基地台,則使用者設備連線至此具有較強訊號的微型基地台。當使用者設備位於複合式基地台內時,此一閒置操作將會發生得較少。當使用者設備於複合式基地台內移動,所有PCPICH及PCCPCH係使用相同的擾碼傳遞,此相同擾碼係為複合式基地台的簽名。使用者設備為相同擾碼所接收的訊號可來自複合式基地台中之任意微型基地台。
當使用者設備處於連線模式下,其具有與複合式基地台中之一微型基地台的主動連結。假設這是一個子微型基地台,當使用者設備遠離目前服務的子微型基地台,當頻道使用僅由服務的子微型基地台所傳送之次擾碼進行連接,其訊號強度會降低。當使用者設備感測到其訊號變弱,其與服務的微型基地台之上行連接將會減弱。結果,服務的微型基地台將會問母微型基地台(若使用集中控制)或直接傳送至與服務的微型基地台相鄰的該些微型基地台,進行使用者設備之上行訊號之多單元量測以判斷是否有任何微型基地台要求進行搜尋以從使用者設備接收具有較佳品質的訊號。多單元搜尋操作可透過開啟鄰近微型基地台的功率控制前置偵測去偵測在搜尋下之使用者設備的UL-DPCCH頻道。目標使用者設備的上行擾碼應被傳送至牽涉到PCP偵測與SIR量測之前的搜尋之這些鄰近微型基地台。一旦偵測到,微型基地台應該根據上行DPCCH產生SIR量測報告給使用者設備。若搜尋導致來自進行服務的微型基地台之外的微型基地台的較強訊號,此搜尋結果可被傳回母微型基地台(集中控制)或回到服務的微型基地台(分佈控制)以進行後續。服務的微型基地台或母微型基地台應決定是否
進行使用者設備與具有較佳訊號接收的微型基地台之間的虛擬交握。虛擬交握涉及微型基地台之間的完整交握操作,以及指派給使用者設備的新次擾碼為了持續與交握的微型基地台之連接。圖5係繪示使用者設備與複合式基地台中之子微型基地台相互溝通之一實施例。
時序與頻率之同步在複合式基地台中是相當重要的。複合式基地台中之每一個複合式基地台中之間的系統幀數目必須完全地同步。時序同步必須精確至晶片等級,以使得傳輸會被視為“單一網路”或“來自同一傳輸器”。時序同步可在空中完成。這意指每一個子微型基地台應該將它們的時鐘鎖於母微型基地台的時序。一旦頻率與時間同步,則幀同步亦可完成。
於此實施例中,複合式基地台被提供。複合式基地台可以減少共頻道干擾、多餘的單元重選、多餘的量測報告要求及一般的微型基地台配置所造成之下行死區(Downlink dead zone)之複合式基地台。複合式基地台係自組織的,以利資料卸載並增進下行頻道/上行頻道之性能。其也確保複合式基地台會配置於複合式基地台內,而不是在未知的遙控位置上。複合式基地台為共頻道配置技術,應用之技術包含單頻率網路(Single Frequency Network,SFN)、分空多工存取(Space Division Multiple Access,SDMA)、次擾碼(Secondary Scrambling Code,SSC)、分佈式註釋系統(Distributed Annotation System,DAS)、單元間干擾協調(Inter-Cell Interference Coordination,ICIC)、自組織網路(Self-Organizing Network,SON)、分佈式訊號處理(Distributed Signal Processing System,DSPS)、單元內干擾協調(Intra-Cell Interference Coordination,IaCIC)、網路協助之單元內交握(Network assist intra-cell handover)、導頻閃爍(Pilot flashing)、使用者設備位置輪詢(User equipment Location Polling)、非對稱子微型基地台涵蓋範圍(Asymmetric child femtocell coverage)及多層單頻率網路(Multi-tier SFN)。複合式基地台具有母微型基地台,用以監控複數個子微型基地台。使用者設備端及現存的第三代合作計劃標準均不需作任何改變。複合式基地台中之微型基地台不需複雜的鄰近單元資訊列表。複數子微型基地台上之所有公共頻道使用相同主擾碼作為母微型基地台。圖6係繪示複合式基地台結構之一實施例。
複合式基地台係為採用許多先進觀念的技術。於共同頻道配置腳本中,它減少來自微型基地台的干擾。它減少由於使用者設備移動跨越多個微型基地台所造成之多餘的單元重選及量測報告。它允許母微型基地台下令使用者設備建立與任何子微型基地台之間的聲音及資料連接,以供資料卸載。其減少了微型基地台進出網路所造成之挑戰。其透過干擾協調增進一般頻道性能。其增進了專用頻道容量及資料吞吐率。其為自組織的。其減少了一般的微型基地台配置所造成之下行死區。
複合式基地台對於現存的UTRAN設定之影響最小甚至沒有。母微型基地台處理子微型基地台所產生的所有活動。其可分佈微型基地台的排列。其亦簡化排列微型基地台所需之努力。數百個微型基地台會較數千個微型基地台來得容易排列。不需要改變巨層(macro layer)設定。不需調整頻率內量測報告臨界值,以使得當HCS使用時能較易與微型基地台層連線。巨層不必動態改變鄰近單元列表CELL INFO LIST以利繳交給微型基地台層。電信商不需擔心微型基地台任意開啟/關閉之問題。
複合式基地台係用於共頻道配置。由於使用者設備執行較少頻率間交握,故共頻道配置是有效的。其傾向於現存網路中製造干擾,需要妥善計畫或複合式基地台之類的技術來管理干擾。
複合式基地台係用於頻率間配置。微型基地台常被視為HCS中之一新層。其對現存網路造成最小擾動,故為較安全的方式。若獨立的微型基地台層被製造,係為具有高度價值的頻率資源之浪費。其牽扯到HCS設定的複雜調整。
可增加至複合式基地台的子微型基地台的數目並無限制。舉例而言,15個SSC根據SDMA再使用。於複合式基地台中,SFN被應用於P-CCPCH及P-CPICH。既然BCH為均質的,大於20%的干擾FAP功率可被轉換成對母微型基地台之建設性的訊號增益,並且處於閒置模式下之使用者設備對於微型基地台進行重選與量測之頻率大幅降低,且微型基地台對鄰近的使用者設備所造成之下行死區也會減少。
於複合式基地台中,IaCIC係使用在S-CCPCH上。其可增進FACH及PCH之性能。母微型基地台協調S-CCPCH及PICH傳輸,並且子
微型基地台被分成空間獨立之多個群組。其可一同最佳化傳呼區域及S-CCPCH廣播區域。S-CCPCH及PICH傳輸於每一廣播群組中被同步化。PICH傳輸於每一競賽區域中被同步化。
可增加RACH容量及性能的DSPS(分佈訊號處理系統)被使用於複合式基地台中。其近似於DAS,但卻會隨著基帶訊號處理增加容量,其近似於先進的繼電器,但能夠大幅增加聲音容量及資料吞吐量。
網路協助單元內交握可大幅減少處於連線模式下之使用者設備量測報告之頻率。其機制類似SDMA/波束形成等成熟的觀念。子微型基地台對HSDPA及DPCH使用次擾碼。複合式基地台中之該些微型基地台並無複雜的鄰近單元資訊列表。母微型基地台以集中方式維持所有的子微型基地台鄰近資訊。於BCH的鄰近微型基地台資訊列表對於複合式基地台中之所有微型基地台均相同,僅包含非子微型基地台資訊。其可消除子微型基地台維持各自鄰近單元資訊列表之需求。
(VI)微型基地台開啟程序
當接收新的子微型基地台時,母微型基地台應組織下列資訊:更新後的子微型基地台鄰近資訊、單元內傳呼區域最佳化、新的子微型基地台之功率最佳化及新的子微型基地台之次擾碼資訊。若一微型基地台之參與要求被拒絕,則該微型基地台不應被允許於該些子微型基地台內傳輸。
(VII)交握
於複合式基地台中,母微型基地台之位置於微型基地台閘道器FGW為已知。請參照圖7,圖7係繪示複合式基地台中之交握的一實施例。
子微型基地台與其他較大單元之間的交握,稱為單元間之交握。使用者設備之分發(hand out)遵循一般程序。於繳納(hand in)時,使用者設備先交握至母微型基地台。母微型基地台開始為使用者設備進行單元範圍的搜尋。若找到的話,母微型基地台將使用者設備切換至適當的子母微型基地台。
該些子微型基地台之間的交握,稱為單元內之交握。使用者
設備於該些子微型基地台看到較強的PCCPCH及PCPICH頻道。母微型基地台不需來自使用者設備的量測報告進行HO決定。當使用者設備處於閒置模式下時,子微型基地台內不會觸發單元重選。使用者設備不知道單元內之交握。當使用者設備從一子微型基地台移至另一子微型基地台時,或從一子微型基地台移至母微型基地台時,使用者設備係由SSC切換至PSC。
(VIII)隨機存取程序
請參照圖8及圖9,圖8係繪示RACH隨機存取程序之一實施例。圖9係繪示FACH IaCIC隨機存取程序之一實施例。於隨機存取程序中,使用者設備從接收到的BCH選取RACH前言。所有的子微型基地台係配置以接收RACH。一旦偵測到,偵測到的前置簽名及RACH訊息係被轉傳至母微型基地台。母微型基地台使用此資訊去建造使用者設備位置資訊。接著,母微型基地台轉傳資訊至核心網路以進行後續處理。一旦接收到FACH,母微型基地台可進行下列步驟之一:傳送FACH資訊至所有為S-CCPCH下行IaICIC偵測到使用者設備之微型基地台;若母微型基地台接收到發出ACK的RACH,母微型基地台可根據SIR所報告之RACH訊息決定只從母微型基地台廣播S-CCPCH。
(IX)PICH及S-CCPCH
PICH傳輸應類似FACH被協調。所有傳呼資訊係繞經母微型基地台。單元內傳呼區域最佳化係由母微型基地台週期性進行及/或當新的子微型基地台被接受時。
(X)導頻閃爍(Pilot flashing)
導頻閃爍係一種降低由於制能次擾碼所引起之子微型基地台的單元內干擾之技術。具有強的母微型基地台訊號的子微型基地台不應傳輸一般的頻道,例如P-CCPCH、S-CCPCH、AICH、PICH及P-CPICH等,只有當母微型基地台訊號夠強時。其可減少對於子微型基地台所服務之使用者設備的干擾。例如,子微型基地台僅在需要時傳輸導頻及一般頻道,以實現IaICIC。下行PCPICH在P-CCPCH、S-CCPCH、AICH或PICH之前被短暫開啟,以允許使用者設備進行頻道估算。使用者設備進行頻道估算所需時間係小於1無線幀(10毫秒)。
(XI)專用及HSDPA頻道
當無線連結配置要求透過RACH/FACH傳送時,母微型基地台指出服務的子微型基地台是可應用的。若母微型基地台也接收RACH並下行傳送AICH,母微型基地台被選為服務的微型基地台。若母微型基地台並未在要求前傳送AICH,母微型基地台從多個子微型基地台接收RACH訊息。
其應選取具有最佳RACH訊息SIR的子微型基地台作為對使用者設備進行服務的子微型基地台。使用者設備使用指派的擾碼(PSC或SSC)建立下行並傳送上行的DPCH以完成設定。其專用ILPC下方的頻道。若上行DPCH功率高於每個使用者設備被允許的上行功率,服務的子微型基地台應指示使用者設備切換回PSC。
(XII)母微型基地台之責任
於複合式基地台中,母微型基地台負責處理下列事項:
(1)回應來自微型基地台之新的要求加入訊息。
(2)同步化BCH資訊。
(3)管理程序決定子微型基地台鄰近資訊。
(4)最佳化S-CCPCH廣播區域及傳呼區域。
(5)協調FACH及PCH傳輸。
(6)決定單元內交握方向以下令子微型基地台將使用者設備交握至另一子微型基地台或母微型基地台。
(7)管理子微型基地台的次擾碼指派。
(8)服務複合式基地台中未被子微型基地台服務之使用者設備。
(9)透過主擾碼進行HSDPA及DPCH傳輸。
在複合式基地台與其他微型基地台之間,來自其他微型基地台的單元間交握決定會交握至哪一個子微型基地台。
(XIII)子微型基地台之責任
於複合式基地台中,子微型基地台負責處理下列事項:
(1)開啟搜尋母微型基地台。
(2)發出要求加入訊息至母微型基地台。
(3)與母微型基地台同步化。
(4)從母微型基地台得到BCH資訊並廣播之。
(5)對RACH前言及訊息進行解碼。
(6)傳輸RACH訊息對應的AICH。
(7)轉達RACH訊息至母微型基地台。
(8)從母微型基地台接收FACH及PCH資訊並廣播之。
(9)以次擾碼服務相關的使用者設備的HSDPA及DPCH。
(10)於上行服務相關的使用者設備的HSDPA及DPCH。
(11)轉達使用者設備的上行資訊至母微型基地台。
在複合式基地台與其他微型基地台之間,單元間繳交係由每一個子微型基地台獨立決定。
(XIV)具有好的大訊號之區域
具有好的大訊號之區域內的微型基地台會產生兩難。微型基地台主要配置以增加容量/吞吐量以及卸載資料流。微型基地台下行造成鄰近的大使用者設備出現死區。處於閒置模式下的使用者設備會出現下列問題:
(1)已連限制大單元的使用者設備並不會自動連線至微型基地台,並且單元重選程序並不會被啟動。
(2)在連接開始後,使用者設備仍可被交握至微型基地台。
處於連線模式下的使用者設備會出現下列問題:
(1)若量測控制被設定為“根據事件”,量測報告將不會被啟動。
(2)這問題可透過將量測控制設定為“週期性”來解決。
(3)這將導致使用者設備的電池耗電更快。
於複合式基地台中,其特徵及好處可摘要如下:
(1)減少共頻道干擾:
(a)SFN
(b)IaICIC
(c)DSPS
(2)增加容量及吞吐率:
(a)SDMA
(b)SSC
(c)DSPS
(3)減少訊號傳輸:
(a)SFN:使用者設備不需執行單元重選及位置更新,當遍歷母微型基地台及子微型基地台
(b)Node B協助的單元內交握
(c)使用者設備位置輪詢
(4)簡化裝置排列:
(a)SFN:對母微型基地台及子微型基地台之單一鄰近單元資訊列表
(b)SON
(5)利於LBS:
(a)使用者設備位置輪詢
(XV)單元內交握
(1)從子微型基地台交握出去:
(a)進行服務的子微型基地台監控連結品質。
(b)當品質低於預設的臨界值時,啟動交握要求至母微型基地台。
(c)母微型基地台啟動量測要求至進行服務的子微型基地台附近的子微型基地台。
(d)所有子微型基地台報告偵測的SIR。
(e)母微型基地台根據報告的SIR做成HO決定並且使用者設備可被交握至母微型基地台或子微型基地台。
(2)從母微型基地台交握至子微型基地台:
於第一種情境下:
(a)母微型基地台監控連結品質。
(b)當品質低於預設的臨界值時,啟動交握要求。
(c)母微型基地台啟動單元範圍之使用者設備搜尋並傳送量測要求至找尋其他單元的使用者設備。
(d)所有子微型基地台報告偵測到的SIR及使用者設備。
於第二種情境下:
(a)母微型基地台提供使用者設備搜尋列表給每一個子微型基地台。
(b)子微型基地台週期性地搜尋列表中之使用者設備。
(c)當偵測到時,報告SIR給母微型基地台。
(d)母微型基地台做成HO決定是否將使用者設備交握至子微型基地台。
(XVI)非對稱的單元覆蓋率
子微型基地台的下行覆蓋率應小於上行覆蓋率。這代表在使用者設備偵測到子微型基地台之前,子微型基地台應能先偵測到使用者設備。當來自使用者設備之上行導頻SIR超過某臨界值時,使用者設備會被子微型基地台偵測到。當使用者設備能夠收集到來自子微型基地台的PCPICH時,使用者設備可偵測到子微型基地台。非對稱的單元覆蓋率係透過使用者設備的上行功率封頂及子微型基地台的下行功率限制之使用而實現。當使用者設備被母微型基地台所服務時,一旦使用者設備被子微型基地台偵測到時,使用者設備應立即交握至子微型基地台。
(XVII)使用者設備位置輪詢
使用者設備位置輪詢是母微型基地台取得使用者設備之大致位置的方法,可用以偵測處於閒置模式下的使用者設備之位置。複合式基地台廣播傳呼資訊至已知位於微型基地台範圍內之使用者設備。使用者設備接收傳呼資訊並傳送上行RACH作為回應。假設任何子微型基地台接收到來自想要的使用者設備的上行RACH,則使用者設備的位置即被得知。使用者設備位置輪詢之好處在於:使用者設備不需進行任何射頻量測,亦不需依靠AGPS計算使用者設備之位置。此外,其速度快,且不會對使用
者設備增加額外的工作負荷,故可減少電池的耗電量。
(XVIII)多層單頻率網路(Multi-tier SFN)
單頻率網路可藉由將子微型基地台共同頻道(例如PCCPCH及PCPICH)轉換為與母微型基地台相同而實現。當母微型基地台訊號很強時,加入子微型基地台至單頻率網路無助於改善PCCPCH及PCPICH之性能,反而會對於使用者設備之次擾碼的使用者造成干擾。因此,當母微型基地台訊號很強時,最好的方法是關閉或減少子微型基地台廣播及導頻頻道功率。子微型基地台的共同/廣播/導頻頻道功率應與接收到的母微型基地台共同訊號強度有關。單頻率網路可分為多層,不同層的子微型基地台分配不同百分比的總功率至其共同/廣播/導頻頻道。
多層單頻率網路透過下列步驟實現:在SON期間的子微型基地台應量測母微型基地台的RSCP;子微型基地台根據接收到的RSCP功率接收來自母微型基地台或HMS的指引,以知道其總功率的多少百分比應被用於PCCPCH/PCPICH頻道或其他下行訊號傳輸頻道。
(XIX)專用及HSDPA頻道
當RRC連接要求/設定係透過RACH/FACH傳送,母微型基地台指出進行服務的微型基地台。若母微型基地台也接收RACH並傳送下行的AICH,則母微型基地台會被選為進行服務的微型基地台。若母微型基地台未在要求之前傳送AICH並且母微型基地台從多個子微型基地台接收RACH訊息,則應選擇具有最佳RACH訊息SIR的子微型基地台作為對使用者設備進行服務的子微型基地台。使用者設備使用被指派的擾碼(主擾碼或次擾碼)建立下行。使用者設備傳送上行的DPCH至進行服務的微型基地台,以完成設定及ILPC下專用頻道。若上行的DPCH功率高於每個使用者設備被允許的上行功率,進行服務的子微型基地台將會通知母微型基地台進行單元內交握程序。母微型基地台通知進行服務的子微型基地台指示使用者設備切換回主擾碼或另一次擾碼。因此,單元內交握即會發生。
(XX)長期演進技術(LTE)之複合式基地台
長期演進技術(LTE)需要eNodeBs之間很多的干擾協調,以減少共頻道干擾。微型基地台製造大量的微型基地台X2之間的訊號傳輸訊
息。微型基地台X2之間的訊號傳輸包含高干擾指示(HI)及過載指示(OLI)。這些指示被傳送給每一資源塊。現有減少干擾的方法包含ICIC及eICIC。ICIC為Re18長期演進技術之選項且eICIC為Re110進階長期演進技術異質網路(HetNet)的一部份。
長期演進技術之複合式基地台可透過下列步驟形成:
(1)將子微型基地台的廣播、導頻及共同頻道轉換為與母微型基地台相同。
(2)母微型基地台與所有子微型基地台以同步方式傳輸這些頻道。
(3)母微型基地台控制複合式基地台之形成並拒絕任何子eNodeB加入複合式基地台。
(4)母微型基地台與子微型基地台使用有線的乙太網路或光纖纜線連接或透過無線的WiFi或3G/4G網路連接。
(5)子微型基地台之間使用有線的乙太網路或光纖纜線連接或透過無線的WiFi或3G/4G網路連接。
上述作法類似於WCDMA的好處在於:避免來自子微型基地台的共同頻道之干擾並減少交握訊號傳輸。於長期演進技術之複合式基地台中的母微型基地台負責子微型基地台的所有排程決定。一對不同的實現係用於使用者排程。長期演進技術之複合式基地台應採用eICIC以避免控制頻道與資料頻道之間的干擾。
(XXI)長期演進技術之ICIC
第三代合作計劃釋出八個額外的特徵。ICIC係為減少鄰近的大基地台之間的干擾之方法。其可降低位於頻率域中之部分次頻道的功率。這些次頻道僅能鄰近於eNodeB被接收。這些次頻道並未干擾使用於鄰近微型基地台之相同次頻道。在這些次頻道上,資料可被較快速的傳送至鄰近微型基地台的行動裝置。其使用於大的eNodeBs之間。良好管理的射頻規畫不適合使用於eNodeBs與微型基地台之間。
(XXII)LTE-A之eICIC
第三代合作計劃的部分異質網路方法釋出10個LTE-A,設
置有大單元及其涵蓋區域內的小單元(例如購物中心或機場內的熱點),大單元發出長程的高功率訊號而小單元僅發出短程的低功率訊號,以減輕大單元與小單元之間的干擾。
eICIC協調了大單元內之位於時間域的次帧的消隱。在這些次帧中沒有來自大單元的干擾,故資料傳輸可以更快。當幾個小單元於單一大單元的涵蓋區域中被使用,由於每一小單元可以使用不被其他小單元干擾的空次帧,故整個系統的容量會增加。若大單元無法使用所有次帧,則大單元的容量會減少。當訊號流量模式改變時,必須採用能夠快速增減指派給小區域額外使用的次帧數目之方法。
於異質網路(HetNet)中,低功率節點(LPNs)被使用於大涵蓋範圍的單元內,例如RRUs/RRHs、小的eNodeBs、家庭eNodeBs或轉傳節點。單元範圍擴張(CRE)允許使用者設備被具有較弱接收功率的單元所服務。該些小單元分擔更多的網路負荷並且他們涵蓋範圍也變大。
於大單元之情境下,於大單元所涵蓋的區域裡,能夠存取小單元的訂戶對於大單元與小單元之間的干擾是脆弱的。當單元範圍擴張(CRE)被使用,並且通常在小單元之角落的訂戶以低接收功率存取小單元,將受到大單元之強烈干擾。
於大微型基地台之情境下,微型基地台係屬於鄰近的訂戶群組(CSG),其存取與服務僅限於獲得授權的訂戶。當大訂戶進入被微型基地台所涵蓋的區域時,微型基地台將受到強烈干擾。
(XXIII)LTE CC之使用者設備調度
方法一:母微型基地台負責複合型基地台內所有的使用者設備排程。子微型基地台排程指令係於每一次帧從母微型基地台傳來。當母eNodeB控制複合型基地台內所發生之所有傳輸為最有效的干擾協調。回程可能無法處理過重的訊號流量。於此例中,子eNodeB應執行排程功能,並且所有使用者設備報告的頻道狀態資訊與連結品質報告都會被立即轉送至母微型基地台以啟動排程。
方法二:母微型基地台負責指派頻率帶寬給所有子微型基地台。母微型基地台決定使用者設備要被哪一個子eNodeB服務或被其本身服
務。母微型基地台係根據使用者設備的QoS配置及每一子eNodeB的負荷指派可用的帶寬給不同的子eNodeB。
適用上述兩種方法:所有子微型基地台將高度干擾指示(HII)及過載指示(OI)報告給母eNodeB以啟動干擾協調。母微型基地台可選擇採用eICIC等排程方案,將會空出幾個次帧給子eNodeB之特定群組。母微型基地台亦可採用協調的多點(COMP)以使複數個子eNodeB能同時傳送相同的資料至相同的使用者設備並從相同的使用者設備接收相同的資料。
藉由以上較佳具體實施例之詳述,係希望能更加清楚描述本發明之特徵與精神,而並非以上述所揭露的較佳具體實施例來對本發明之範疇加以限制。相反地,其目的是希望能涵蓋各種改變及具相等性的安排於本發明所欲申請之專利範圍的範疇內。
PC‧‧‧母微型基地台
CC1~CC2‧‧‧子微型基地台
UE‧‧‧使用者設備
RPC‧‧‧母微型基地台涵蓋範圍
RCC1~RCC2‧‧‧子微型基地台涵蓋範圍
Claims (13)
- 一種複合式基地台,使用一共頻道配置(co-channel deployment)技術,該複合式基地台包含:複數個子微型基地台(Child femtocell);以及一母微型基地台(Parent femtocell),用以監控該複數個子微型基地台;其中,該複數個子微型基地台上之所有公共頻道(Common channel)係使用相同的主擾碼(Primary Scrambling Code,PSC)作為該母微型基地台。
- 如申請專利範圍第1項所述之複合式基地台,其中該複合式基地台應用之技術包含單頻率網路(Single Frequency Network,SFN)、分空多工存取(Space Division Multiple Access,SDMA)、次擾碼(Secondary Scrambling Code,SSC)、分佈式註釋系統(Distributed Annotation System,DAS)、單元間干擾協調(Inter-Cell Interference Coordination,ICIC)、自組織網路(Self-Organizing Network,SON)、分佈式訊號處理(Distributed Signal Processing System,DSPS)、單元內干擾協調(Intra-Cell Interference Coordination,IaCIC)、網路協助之單元內交握(Network assist intra-cell handover)、導頻閃爍(Pilot flashing)、使用者設備位置輪詢(User equipment Location Polling)、非對稱子微型基地台涵蓋範圍(Asymmetric child femtocell coverage)及多層單頻率網路(Multi-tier SFN)。
- 如申請專利範圍第1項所述之複合式基地台,其中該複合式基地台係自組織的,以利資料卸載並增進下行頻道/上行頻道之性能。
- 如申請專利範圍第1項所述之複合式基地台,其中該複合式基地台降低共頻道干擾、多餘的單元重選、多餘的量測報告要求及一般的微 型基地台配置所造成之下行死區(Downlink dead zone)。
- 如申請專利範圍第1項所述之複合式基地台,其中一使用者設備係運作於該複合式基地台,並且該使用者設備與已存在之第三代合作計劃(3rd Generation Partnership Project,3GPP)標準不需任何改變。
- 如申請專利範圍第1項所述之複合式基地台,其中該複合式基地台不需複雜的鄰近單元資訊清單,該母微型基地台以一集中方式維持所有子微型基地台鄰近資訊。
- 如申請專利範圍第1項所述之複合式基地台,其中該複合式基地台所包含之該複數個子微型基地台的數目沒有限制。
- 如申請專利範圍第1項所述之複合式基地台,其中該複數個子微型基地台使用次擾碼進行高速下行封包存取(High Speed Downlink Packet Access,HSDPA)及專用物理頻道(Dedicated Physical Channel,DPCH)。
- 如申請專利範圍第2項所述之複合式基地台,其中該網路協助之單元內交握大幅減少一連線模式使用者設備量測報告之一頻率。
- 如申請專利範圍第1項所述之複合式基地台,其中當該複合式基地台接受了一個新的子微型基地台時,該母微型基地台應組織並更新子微型基地台鄰近資訊、單元內傳呼區域最佳化、新的子微型基地台功率最佳化及新的子微型基地台的次擾碼資訊。
- 如申請專利範圍第1項所述之複合式基地台,其中該子微型基地台與其他較大單元之間的一交握係為一單元間交握(inter-cell handover),該複合式基地台中之一使用者設備先交握至該母微型基地台,該母微型基地台為該使用者設備啟動一單元搜尋,若搜尋到適當的子微型基地 台,該母微型基地台將該使用者設備切換至該適當的子微型基地台。
- 如申請專利範圍第1項所述之複合式基地台,其中於該複數個子微型基地台內之交握係為一單元內交握,一使用者設備於該該複數個子微型基地台中發現強的主要公共控制物理頻道(Primary Common Control Physical CHannel,P-CCPCH)及主要公共導頻頻道(Primary Common Pilot CHannel,P-CPICH),該母微型基地台不需來自該使用者設備的量測報告做決定,當該使用者設備處於一閒置模式時,於該複數個子微型基地台內不會觸發單元重選,該使用者設備與該單元內交握無關,當該使用者設備由一子微型基地台移至另一子微型基地台時,該使用者設備由次擾碼切換至主擾碼,當該使用者設備由一子微型基地台移至該母微型基地台時,該使用者設備由次擾碼切換至主擾碼。
- 如申請專利範圍第2項所述之複合式基地台,其中該導頻閃爍係用以降低啟動該次擾碼所造成之該複數個子微型基地台的該單元內干擾,具有一強母微型基地台訊號的該複數個子微型基地台不透過公共頻道進行傳輸,只有當該母微型基地台訊號夠強時,對該使用者設備之干擾才會降低,該複數個子微型基地台只有在需要時才會傳輸導頻及公共頻道,於主要公共控制物理頻道(P-CCPCH)、次要公共控制物理頻道(S-CCPCH)、獲得指示頻道(Acquisition Indicator CHannel,AICH)或傳呼指示頻道(Paging Indicator CHannel,PICH)之前短暫地開啟下行的主要公共傳呼指示頻道(PCPICH),以允許該使用者設備進行頻道評估,該使用者設備執行頻道評估所需之時間提前量係小於1無線幀(10毫秒)。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261601212P | 2012-02-21 | 2012-02-21 | |
US201261614010P | 2012-03-22 | 2012-03-22 | |
US201261637882P | 2012-04-25 | 2012-04-25 | |
US201261654953P | 2012-06-04 | 2012-06-04 | |
US201261654954P | 2012-06-04 | 2012-06-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201342978A true TW201342978A (zh) | 2013-10-16 |
Family
ID=49006183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102105987A TW201342978A (zh) | 2012-02-21 | 2013-02-21 | 複合式基地台 |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW201342978A (zh) |
WO (1) | WO2013126509A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103841601B (zh) * | 2014-03-19 | 2017-03-08 | 北京胜普多邦通信技术有限公司 | 一种精准评估td‑scdma小区间频率扰码干扰严重等级的方法 |
CN109392091B (zh) * | 2017-08-11 | 2021-10-29 | 北京紫光展锐通信技术有限公司 | 用户终端及其寻呼消息传输方法、计算机可读存储介质 |
CN111492693B (zh) | 2018-01-10 | 2022-05-17 | 中兴通讯股份有限公司 | 更改无线网络中的接入控制参数 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8718652B2 (en) * | 2008-11-05 | 2014-05-06 | Alcatel Lucent | Method for associating a cluster of premier femtocells with user equipment |
EP2197228B1 (en) * | 2008-12-12 | 2011-10-12 | Alcatel Lucent | Method of identification of a femtocell base station as a handover target, and apparatus therefore |
US8121598B2 (en) * | 2009-07-27 | 2012-02-21 | Cisco Technology, Inc. | Scrambling code allocation and hand-in for wireless network radio access points |
-
2013
- 2013-02-21 WO PCT/US2013/027033 patent/WO2013126509A1/en active Application Filing
- 2013-02-21 TW TW102105987A patent/TW201342978A/zh unknown
Also Published As
Publication number | Publication date |
---|---|
WO2013126509A1 (en) | 2013-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2673909B1 (en) | Base station (antenna) selection for receiving uplink transmissions of sounding reference signals, srs, signals from a user equipment, ue | |
JP5291800B2 (ja) | 多地点協調送受信(CoMP)セルにおけるサブセル探索のレートを動的に調節する方法および装置 | |
EP3085193B1 (en) | Small cell clusters for signaling load reduction, time synchronization, kpi filtering and spectrum coordination | |
KR101487355B1 (ko) | 이기종 네트워크에서의 유휴 모드 혼성 이동성 절차 | |
US10039130B2 (en) | Communications network, macro cell, small cell, communications system and communications method | |
US8600389B2 (en) | Method and apparatus for controlling user equipment's residing in a cell | |
WO2016021541A1 (ja) | 通信システム | |
WO2019169359A1 (en) | System and method for hierarchical paging, cell selection and cell reselection | |
US9913179B2 (en) | Method and system to trigger UE handover in a radio communication network | |
US20120004009A1 (en) | Managing Energy Consumption of Base Stations | |
GB2518584A (en) | Power setting | |
EP2709395A1 (en) | Method for dynamically adjusting subframe in wireless communication system, base station, and system | |
WO2018011777A1 (ja) | 通信システム、基地局装置、通信端末装置および通信方法 | |
WO2010093298A1 (en) | Controllling cell activation in a radio communication network | |
KR20140098127A (ko) | 무선 링크 장애 동안 통화 중단 회피 | |
US20160192283A1 (en) | Method for searching wireless lan and method for transferring wireless lan search information | |
EP2448339B1 (en) | Cellular communications network operation | |
WO2009117974A1 (zh) | 无线通信的方法、基站、室内通信系统及切换方法 | |
WO2013120267A1 (en) | Control of device-to-device communication | |
Saeed | Handover in a mobile wireless communication network–A Review Phase | |
TW201342978A (zh) | 複合式基地台 | |
EP2880948B1 (en) | Method and apparatus for use in a mobile communication network | |
WO2014066333A2 (en) | Composite cell | |
EP2557849B1 (en) | Soft handover | |
CN117676732A (zh) | 服务小区选择方法和装置 |