TW201342855A - 用於無線網路可擴展及可縮放控制通道之方法及裝置 - Google Patents

用於無線網路可擴展及可縮放控制通道之方法及裝置 Download PDF

Info

Publication number
TW201342855A
TW201342855A TW101141624A TW101141624A TW201342855A TW 201342855 A TW201342855 A TW 201342855A TW 101141624 A TW101141624 A TW 101141624A TW 101141624 A TW101141624 A TW 101141624A TW 201342855 A TW201342855 A TW 201342855A
Authority
TW
Taiwan
Prior art keywords
control channel
wireless
frequency
control
epdcch
Prior art date
Application number
TW101141624A
Other languages
English (en)
Other versions
TWI492594B (zh
Inventor
Sassan Ahmadi
Original Assignee
Apple Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apple Inc filed Critical Apple Inc
Publication of TW201342855A publication Critical patent/TW201342855A/zh
Application granted granted Critical
Publication of TWI492594B publication Critical patent/TWI492594B/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

致能無線網路之一可擴展及可縮放控制通道之方法及裝置。在一實施例中,揭示一種藉由靈活數目個實體資源區塊(PRB)實施之增強型實體下行鏈路控制通道(ePDCCH)。舉例而言,與先前技術之PDCCH解決方案相比,該ePDCCH之優點包括:更有效率之頻譜利用、在多個伺服實體(例如,基地台及遠端無線電頭端)上之較好頻率管理及可縮放以適應較高或較低控制資訊有效負載之可擴展有效負載能力。

Description

用於無線網路可擴展及可縮放控制通道之方法及裝置
本發明大體係關於無線通信及資料網路之領域。更明確而言,在一例示性態樣中,本發明係有關用於無線網路之可擴展及可縮放控制通道之方法及裝置。
本申請案主張2012年7月24日申請之題為「METHODS AND APPARATUS FOR AN EXTENSIBLE AND SCALABLE CONTROL CHANNEL FOR WIRELESS NETWORKS」的美國專利申請案第13/557,121號之優先權,該美國專利申請案主張2011年11月8日申請之題為「METHODS AND APPARATUS FOR AN EXTENSIBLE AND SCALABLE CONTROL CHANNEL FOR WIRELESS NETWORKS」的美國臨時專利申請案第61/557,329號之優先權,前述兩個申請案中之每一者被以引用之方式全部併入本文中。
蜂巢式網路業者經由(例如)蜂巢式基地台(BS)、基地台控制器、基礎架構節點等之網路基礎架構向一群蜂巢式使用者器件提供行動電信服務。蜂巢式網路操作之一重要態樣係關於網路資源之控制及管理。在某些蜂巢式技術內,所謂「控制通道」專用於在蜂巢式基地台與該群蜂巢式使用者設備之間交換控制資訊。
控制通道設計面臨許多挑戰。詳言之,直至器件已成功解碼控制通道之後,器件方意識到網路操作。由於此原因,先前技術控制通道已配置預定資源集合以用於控制通 道操作。因此,即使行動器件不具有關於網路之其他資訊,行動器件仍可基於已知預定資源集合來尋找控制通道。
然而,雖然控制通道對於網路操作為必要的,但其減少了可用於資料傳送的資源之量。因此,給定現有控制通道實施之預定本質,現有網路通常效率低下,此係由於預定控制資源為故意保守的,且並非始終經充分利用。
更進一步,歸因於控制通道資訊之重要性,花費大量努力,從而確保控制通道資訊由接收器準確接收到。現有解決方案使用多個對策保護控制通道遞送,包括(例如)穩固編碼方案及針對控制通道之相對較高的傳輸功率。不幸地,此等對策亦對網路之不充分利用有影響。舉例而言,穩固編碼方案係基於增加冗餘(亦即,由冗餘資訊填補有用資料);類似地,較高傳輸功率可增加其他通道中的干擾。較高控制通道功率亦可不利地影響(例如)行動蜂巢式器件中之電池壽命。
因此,需要針對現有及未來蜂巢式網路內之控制通道操作的改良之解決方案。改良之控制通道操作將理想地:(i)增加控制通道容量;(ii)改良控制通道可縮放性;(iii)提供干擾避免協調;及(iv)減少控制通道附加項。
本發明藉由提供用於無線網路之可擴展及可縮放控制通道之經改良裝置及方法來滿足前述需要。
首先,揭示一種操作一無線網路之方法。在一實施例 中,該方法包括:將一或多個頻率資源分割成許多頻率分割區,其中每一頻率分割區含有一或多個控制通道區;將一或多個行動器件指派至該一或多個控制通道區中之一對應者;及經由該一或多個控制通道區中之該對應者傳輸與該經指派之一或多個行動器件相關聯的控制資訊。
在一變型中,每一控制通道區包括整數數目個實體連續或邏輯連續之實體資源區塊。在一實例情形中,每一控制通道區經指派至與巨型小區相關聯之一或多個遠端無線電實體。在一個此情形中,器件根據分時雙工(TDD)方案操作。或者,器件根據分頻雙工(FDD)方案操作。
在另一變型中,根據時間間隔進一步分割一或多個頻率資源。在一個此變型中,時間間隔為時槽。或者,時間間隔為子訊框。
在另一實施例中,該方法包括:傳輸具有一容量之一或多個控制通道區,其中該一或多個控制通道區與一組用戶端器件相關聯;及回應於用於該組用戶端器件的控制通道附加項之改變,調整該一或多個控制通道區之容量。
在一變型中,經調整之容量包括擴大該一或多個控制通道區之頻率範圍。在另一變型中,經調整之容量包括擴大該一或多個控制通道區之時間範圍。
在另一變型中,控制通道附加項之改變包括對該群用戶端器件之改變。或者,控制通道附加項之改變包括對一或多個訊息格式之改變。
在又一實施例中,該方法包括:將一或多個頻率資源分 割成許多頻率分割區,其中每一頻率分割區含有一或多個控制通道區;經由一第一地理位置中之一第一頻率分割區傳輸一第一控制通道區;經由一第二地理位置中之該第一頻率分割區傳輸一第二控制通道區;其中該第一地理位置及該第二地理位置為空間上截然不同的;且其中該第一控制通道區及該第二控制通道區共用一共同小區識別符。
在一變型中,該一或多個頻率分割區經進一步分割成一或多個時間分割區。在另一變型中,該一或多個控制通道區包括複數個實體資源區塊(PRB)。在一個此變型中,該複數個PRB經進一步排列且分配至一或多個用戶端器件之一群。
在其他變型中,第一地理位置由第一遠端無線電頭端(RRH)服務,且第二地理位置由第二RRH服務。
在再一實施例中,該方法包括:對於複數個時間間隔:在一控制通道區之一或多個資源區塊上排列與一或多個行動器件相關聯之一或多個控制資訊;及經由該控制通道區之該一或多個資源區塊傳輸該經排列之一或多個控制資訊。
在一變型中,排列經組態以使一或多個控制資訊之頻率分集最大化。或者,使排列隨機化。
在另一變型中,控制通道區具有為整個頻率範圍之一子集的頻率範圍。在一替代變型中,控制通道區具有為整個時間範圍之一子集的時間範圍。
亦揭示一種無線操作之方法。在一實例中,該方法包 括:將一或多個頻率資源分割成許多頻率分割區,其中每一頻率分割區含有一或多個控制通道區;將一或多個行動器件指派至該一或多個控制通道區中之一對應者;及經由複數個天線波束成形與該經指派之一或多個行動器件相關聯的一或多個控制資訊傳輸。
在一變型中,控制資訊傳輸包括具體針對經指派之一或多個行動器件中之一對應者的一或多個參考信號。
進一步揭示一種無線傳輸器。在一實例中,該無線傳輸器包括:一無線介面,該無線介面經組態以與一或多個行動器件通信;一處理器;及一非暫時性電腦可讀裝置,其具有一儲存媒體,該儲存媒體具有儲存於其上之至少一電腦程式,該至少一電腦程式經組態以在於該處理器上執行時:使一或多個行動器件與對應之一或多個控制通道區相關聯;及經由該對應之一或多個控制通道區傳輸與該相關聯之一或多個行動器件相關聯的控制資訊。
在一變型中,無線傳輸器為耦接至外部演進型節點B(eNB)之遠端無線電頭端(RRH)。在一替代性變型中,無線傳輸器為演進型節點B(eNB)。
在再其他變型中,至少一電腦程式進一步經組態以將一或多個頻率資源分割成許多頻率分割區,其中至少一頻率分割區含有該一或多個控制通道區。在另一變型中,至少一電腦程式經進一步組態以將該一或多個行動器件指派至該一或多個控制通道區中之一對應者。
在另一變型中,根據時間間隔進一步分割該一或多個頻 率資源。在一個此變型中,時間間隔為時槽或者子訊框。
本文中亦揭示一種無線接收器。在一實施例中,該無線接收器包括:一無線介面,該無線介面經組態以與一或多個基地台器件通信;一處理器;及一非暫時性電腦可讀裝置,其具有一儲存媒體,該儲存媒體具有儲存於其上之至少一電腦程式,該至少一電腦程式經組態以在於該處理器上執行時:識別由該一或多個基地台器件傳輸的與該無線接收器相關聯之一或多個控制通道區;及解碼該識別之一或多個控制通道區內的控制資訊。
在一變型中,該識別之一或多個控制通道區包括為整個頻率範圍之一子集的頻率範圍。
在另一變型中,該識別之一或多個控制通道區包括為整個時間範圍之一子集的時間範圍。舉例而言,在一情形中,時間範圍為時槽。或者,時間範圍可為子訊框。
在一變型中,經解碼之控制資訊包括具體針對無線接收器之一或多個參考信號。在再其他變型中,一或多個控制通道區之識別係基於自該一或多個基地台器件中之至少一者接收之訊息。
一般熟習此項技術者參看附加圖式及如下文給出之例示性實施例的詳細描述將立即認識到本發明之其他特徵及優點。
現參看圖式,其中相似數字始終指代相似部分。
所有Figures ©版權2012歸Apple Inc.所有。保留所有權 利。
例示性實施例之詳細描述
現詳細描述本發明之例示性實施例。雖然此等實施例主要在第三代UMTS無線網路(3G)之情況下且更具體而言在對LTE之一變型(3.9G)及第四代LTE-A(4G)網路中予以論述,但一般熟習此項技術者將認識到,本發明並不受如此限制。實際上,本發明之各種態樣適用於可受益於本文中所描述之用於無線網路之可擴展及可縮放控制通道的任何無線網路中。
如本文中所使用,術語「無線」意謂包括(但不限於)以下各者之任何無線信號、資料、通信或其他介面:Wi-Fi、藍芽、3G(例如,3GPP、3GPP2及UMTS)、HSDPA/HSUPA、TDMA、CDMA(例如,IS-95A、WCDMA等)、FHSS、DSSS、GSM、PAN/802.15、WiMAX(802.16)、802.20、窄頻帶/FDMA、OFDM、PCS/DCS、類比蜂巢式、CDPD、衛星系統、毫米波或微波系統、聲學及紅外線(亦即,IrDA)。
此外,如本文中所使用,術語「網路」通常指包括(但不限於)以下各者之任何類型之資料、電信或其他網路:資料網路(包括MAN、PAN、WAN、LAN、WLAN、微型網路、微微網路、網際網路及企業內部網路)、衛星網路、蜂巢式網路等。
先前技術實體下行鏈路控制通道(PDCCH)-
現參看圖1,展示先前技術長期演進(LTE)控制通道結構 100之一說明。每一訊框跨越10 ms且由十(10)個子訊框(編號#0至#9)組成;其中每一子訊框由兩(2)個時槽(編號#0、#1)組成,且每一時槽由七(7)個OFDM符號(編號#0至#6)組成。整個LTE頻寬經分裂成N個「副載波」,其中N表示FFT/IFFT之大小。根據此時間-頻率「資源網格」傳送LTE資料。如所示,下行鏈路控制發信號位於每一下行鏈路子訊框之開始處,且可跨越至多前三(3)個OFDM符號。
下行鏈路控制發信號由三個實體通道組成:(i)實體控制格式指示符通道(PCFICH);(ii)實體混合ARQ(自動重複請求)指示符通道(PHICH);及(iii)實體下行鏈路共同控制通道(PDCCH)。下文更詳細描述前述中之每一者。
PCFICH指示此子訊框中用於控制發信號之正交分頻多工(OFDM)符號的數目(1、2或3)。PCFICH含有對應於PDCCH之適當長度的碼字。PCFICH在存在時映射至第一OFDM符號上,然而,當用於PDCCH的OFDM符號之數目大於零時,僅傳輸PCFICH。
PHICH含有針對上行鏈路資料傳輸之應答(ACK)或非應答(NACK)。PHICH位於每一子訊框之第一OFDM符號中,且在於若干者上HARQ傳輸之後被發送四(4)個子訊框(例如,若上行鏈路傳輸發生於子訊框n中,則對應的PHICH將在子訊框n+4中)。PHICH由若干資源要素群組(REG)攜載;簡言之,每一REG含有四(4)個時間-頻率資源要素(RE),且每一RE對應於由副載波及符號界定之特定時間-頻率單位。多個PHICH可使用正交展頻序列共用同一組 REG作為所謂的「PHICH群組」。每一PHICH由兩個參數來識別:PHICH群組號,及群組內之正交序列索引。
PDCCH攜載針對每一UE之下行鏈路排程指派及上行鏈路排程授予。稍微更詳細地,在一或多個連續控制通道要素(CCE)上傳輸PDCCH,其中一CCE對應於九(9)的倍數個資源要素群組(REG)。簡言之,PDCCH以下行鏈路控制資訊(DCI)訊息形式攜載排程指派及其他控制資訊。基於包括以下各者之一組參數產生每一DCI:下行鏈路資源區塊(RB)之數目、DCI格式等。DCI訊息經處理(例如,經通道編碼、經擾頻、經調變、經預編碼且經映射至複合符號),且經映射至RE上。針對每一下行鏈路控制發信號傳輸配置之REG/CCE由此等所得RE構成。
如先前所提及,子訊框之控制區(例如,跨越整個頻帶之前一個、兩個或三個OFDM符號)含有多個UE之PDCCH,因此每一UE必須監視相當大區域以擷取其自己的控制資訊(其為整個控制區之僅小部分)。由於UE並不提前知曉控制通道結構,因此UE必須解碼整個控制區(整個頻譜頻寬之前三個符號)。此情形對UE強加實質負擔;控制通道解碼之顯著負擔增加了組件複雜性(及成本),且亦降低UE之效能且在一定程度上增加了電池消耗。
一般而言,現有PDCCH結構經設計以基於每巨型小區使用情形一單一傳輸點來提供針對使用者設備(UE)之控制發信號及資源指派。然而,不屬於單一傳輸點範例之許多使用情形已顯現。下文更詳細描述此等情形中之若干者。
在一個此實例中,重要的研究已有關致能來自多個小區站點的信號之傳輸及接收的多點協調(CoMP)技術。在各種CoMP情形下,多個小區站點可協調異動。舉例而言,在所謂的「CoMP情形4」(如在被以引用的方式全部併入之在2011年9月出版的3GPP TR 36.819 Technical Specification Group Radio Access Network;Coordinated multi-point operation for LTE physical layer aspects(版本11)內所描述)中,具有同一實體小區識別符(小區ID)之若干遠端無線電頭端(RRH)部署於單一巨型小區內。RRH之現有實施可被視作由eNB經由光纖(或其他高速資料鏈路)控制之地理上截然不同的天線。由於每一RRH具有同一小區ID,因此UE不能將RRH與eNB區分。因此,每一RRH在不同實體位置處提供實際上相同之無線電介面,此導致區域內小區之改良的實體涵蓋。雖然CoMP情形4提供改良之涵蓋,但CoMP情形4並不提供容量之任何增加。
在另一此實例中,在所謂的「CoMP情形3」內,每一RRH相對於相關聯之巨型小區具有不同小區ID。由於eNB與RRH共用同樣的時間/頻率資源,但不再不能彼此區分,因此eNB與RRH將彼此干擾,從而引起顯著的小區內干擾。此外,在CoMP情形3之情況下,對應於每一RRH之資源指派處於eNB之控制下;每一指派必須被同時傳輸至RRH,以確保適當協調。然而,此控制附加項造成資源指派之數目的顯著增加,且減少了每子訊框可用控制通道要素(CCE)之數目。因此,CoMP情形3之要求可顯著損耗現 有PDCCH操作之有限容量。此外,在此情況下,用於偵測子訊框中具有強干擾之現有PDCCH結構的技術可能不能令人滿意。所提議之解決方案包括(例如)在一個節點中排程幾乎空白子訊框(ABS)以減少其他節點正傳輸時之干擾。不幸地,ABS方案需要消隱網路節點以減小其自己在ABS中之活動性(例如,傳輸功率),此情形自頻譜利用觀點看極無效率。如同CoMP情形4,CoMP情形3消耗顯著控制通道容量。
此外,自初始PDCCH設計起已進行了若干改良(PDCCH在被以引用的方式全部併入之在2011年9月出版的3GPP TS 36.300「Technical Specification Group Radio Access Network;Evolved Universal Terrestrial Radio Access(E-UTRA)and Evolved Universal Terrestrial Radio Access Network(E-UTRAN);Overall description;Stage 2(版本11)」中描述)。具體而言,新傳輸模式已基於已經設計以支援多使用者多輸入多輸出(MU-MIMO)之UE特定參考信號來實施或提議。舉例而言,預期到,所謂的「傳輸模式9」在未來部署中將被廣泛使用(傳輸模式9在被以引用的方式併入之在2012年3月出版之3GPP TS 36.213 Technical Specification Group Radio Access Network;Evolved Universal Terrestrial Radio Access(E-UTRA);Physical layer procedures內予以描述)。傳輸模式9致能單一使用者MIMO(SU-MIMO)與MU-MIMO之間的順暢切換。不幸地,供傳輸模式9使用之下行鏈路控制資訊(DCI)格式(亦即, DCI格式2C)具有極大之有效負載大小。由於現有PDCCH結構具有固定格式(僅子訊框之前面數個OFDM符號中的1、2或3個OFDM符號),因此PDCCH必須以較少資源指派(亦即,每子訊框較少CCE)來操作,以便支援(例如)DCI格式2C的大有效負載。因此,現有PDCCH結構不良地適宜於處置新有效負載結構及/或顯著大小之有效負載結構。
此外,在某些環境中,鄰近傳輸節點可彼此干擾。LTE之較早版本中的現有PDCCH機制對於密集且互異之部署中的控制通道之穩固傳輸可能並不足夠。舉例而言,在被以引用的方式全部併入之2012年3月出版之3GPP TS 36.213 Technical Specification Group Radio Access Network;Evolved Universal Terrestrial Radio Access(E-UTRA);Physical layer procedures中,經由對高優先權情形之改良之通道狀態資訊(CSI)回饋的MIMO效能之增強並非直接為回饋增強之目標。實際上,多個(例如,四(4)個)傳輸天線以橫向極化組態操作之情形尚未在同質及異質情形中進行研究。雖然當前並不知曉現有解決方案是否可提供足夠效能,但當前解決方案提供不足之干擾避免協調為可能的。
此外,歸因於現有PDCCH結構之容量限制,一些資料資源可能並未被及時地配置。舉例而言,現有PDCCH結構使用雜湊函數來在所謂「控制區」內映射CCE。一般熟習此項有關技術者將認識到,雜湊函數並不保證唯一映射,且 在一些狀況下兩個或兩個以上候選集合可衝突。當UE選擇大於一之聚集等級時,衝突之機率進一步加劇。在衝突期間,可在PDCCH上傳輸的指派之數目為有限的(亦即,傳輸候選集合中之僅一者),此減小總使用者輸送量且增加總傳輸延時。
另外,現有PDCCH結構基於每一時槽/子訊框中之假設單一頻率分割區與頻率再用因數一來設計。通俗地,此被稱為「硬」頻率分割。相反,「軟」頻率分割方案可在軟體上動態改變,以調整至不同分割方案並容納不同頻率再用方案。硬頻率分割不能供分頻再用(Fractional Frequency Reuse,FFR)技術使用。與軟頻率分割結合之FFR可用以減輕干擾,從而導致控制及資料發信號的改良之穩固性及可靠性。此外,資料及控制區之分頻多工使用將允許對每一通道之更細功率控制。
更進一步,現有PDCCH操作依賴於用於通道估計及相干偵測之小區特定參考信號(CRS)。經驗上,CRS方案需要顯著附加項(例如,CRS並不含有任何有用資訊且以顯著功率進行廣播),且對於某些應用(例如,閉環預編碼技術、波束成形及多使用者多輸入多輸出(MU-MIMO))無效。
最終,現有PDCCH操作係基於用於PDCCH的一個、兩個或三個OFDM符號之資源配置精細度。每一OFDM符號消耗大致7%之網路附加項;此資源配置精細度相當大,且對過多量之浪費資源有影響。
LTE PDCCH之現有解決方案具有顯著限制,包括:(i)有 限容量;(ii)有限有效負載能力;(iii)不足干擾避免協調;(iv)不良使用者輸送量;(v)不夠之頻率再用能力;(vi)無波束成形能力;及(vii)過多附加項。因此,需要針對現有及未來蜂巢式網路內之控制通道操作的改良之可擴展且可縮放解決方案。
「增強型」實體下行鏈路控制通道-
鑒於現有PDCCH結構之不足,需要針對增強型實體下行鏈路控制通道(ePDCCH)之新且改良之解決方案。理想地,改良之ePDCCH應展現以下屬性中的一或多者:(i)支援增加之控制通道容量;(ii)支援頻域增強型小區間干擾協調(eICIC);(iii)達成控制通道資源之改良之空間再用;(iv)支援波束成形及/或分集;(v)在新載波類型上操作且支援對諸如多播廣播單頻網路(MBSFN)子訊框之實體層特徵的未來增強(見例如被以引用的方式全部併入之2011年3月出版的3GPP TS 36.211 Technical Specification Group Radio Access Network;Evolved Universal Terrestrial Radio Access(E-UTRA);Physical Channels and Modulation(版本10));(vi)在同一載波技術上與舊版UE共存;及/或(vii)使用頻率選擇性排程減輕小區間干擾。
因此,在本發明之一例示性實施例中,按時域及頻域界定ePDCCH區。不同於受限於每一子訊框之前少數符號且在小區之整個頻譜頻寬上傳輸的先前技術PDCCH通道結構,在一變型中,根據頻率、時間及/或傳輸器貫穿頻譜頻寬分佈ePDCCH。在一個此變型中,向每一遠端無線電 頭端(RRH)配置根據一或多個增強型CCE(eCCE)之一集合來定義的ePDCCH區,其中每一eCCE進一步囊封於每一時槽/子訊框中之單一實體資源區塊(PRB)內。每一例示性PRB由單一時槽之十二(12)個連續副載波組成。此外,每一RRH與小區之使用者的一子集相關聯;因此每一ePDCCH區可被減小至僅對於伺服與RRH相關聯之使用者之子集所必要的頻譜資源。
簡言之,PRB為例示性LTE演進型NodeB(eNB)可排程之頻譜資源的最小精細度。視eCCE之大小而定,在一PRB內可存在一或多個eCCE。如下文更詳細描述,此可組態結構藉由(諸如)實體下行鏈路共用通道(PDSCH)之其他通道致能尤其ePDCCH之分頻多工。舉例而言,PDSCH可有利地交錯至未由ePDCCH使用之頻譜頻寬內(且反之亦然)。
另外,靈活eCCE結構可容納對於支援當前及未來應用及增強之模式(例如,多輸入多輸出(MIMO)等)必要的多個DCI格式。此外,用於ePDCCH之資源區塊可以區域化或分散式方式進行排列及配置,以採用頻率分集增益。
在一例示性變型中,解調變參考信號(DM-RS)排他性地用於指派至特定使用者之資源區塊內的通道估計及相干偵測。藉由移除針對通道估計及相干偵測之對小區特定參考信號(CRS)之相依性,本發明之各種實施例可藉由用於提供ePDCCH之MU-MIMO及波束成形方案經進一步充分利用。具體而言,UE可根據根據現有波束成形技術之現有DM-RS發信號來調整接收。使用波束成形加權向量,UE 可自伺服BS接收ePDCCH。接收經波束成形之ePDCCH的能力大大改良了網路可靠性及涵蓋。
此外,在一回溯相容變型中,ePDCCH可被進一步再分成「偶數區」及「奇數區」。偶數區ePDCCH與舊版PDCCH格式共用偶數編號之時槽。奇數區ePDCCH佔用奇數編號之時槽。此組態確保回溯相容性及舊版支援,同時引入新的經分頻多工(FDM)之控制結構。
在一個此實施例中,版本11 UE之搜尋空間(共同搜尋空間及UE特定搜尋空間兩者)與較早版本之彼等搜尋空間分離。此允許版本11 UE及eNB在所謂的「綠地」部署(亦即,尚未部署先前網路基礎架構之情況)中之獨立操作,而不取決於舊版組態,此情形導致較低附加項。
另外,應瞭解,類似(若非相同)結構可用於分時雙工(TDD)及分頻雙工(FDD)網路。ePDCCH在TDD及FDD操作中之此雙重本質之結構可減少多模式器件之成本及複雜性。
最終,由於一些網路具有有利小尺寸之小區及小範圍密集部署,因此一些變型可將諸如16 QAM(正交調幅)之較高調變階數用於控制通道之基頻處理。具體而言,由本發明之各種態樣致能的較低路徑損耗及較高操作SINR(信號對干擾加雜訊比)特別良好地適宜於小且密集之小區部署,但決不限於此。
現於本文中更詳細地描述滿足當前預期同時亦保持針對未來改良及修改可擴展及可縮放的增強型實體下行鏈路控 制通道(ePDCCH)結構之一例示性實施例。圖2A說明一例示性增強型NodeB(eNB)202及遠端無線電頭端(RRH)204之一陣列,該等遠端無線電頭端(RRH)204用以提供針對一群使用者設備(UE)206的改良之涵蓋。如所示,每一RRH提供小涵蓋區域,該小涵蓋區域使由eNB提供之小區擴增。然而,注意到每一RRH之涵蓋面積(~100 ft)顯著小於小區之範圍(例如,高達一英里)為重要的。
圖2B說明例示性ePDCCH結構及設計250之一個高階概念化。每一時槽(或取決於所要的時域精細度及傳輸時間間隔(TTI)之選擇的子訊框)中之頻率資源經分割成許多頻率分割區(FP),其中每一頻率分割區含有一或多個ePDCCH區。每一ePDCCH區由整數數目個實體連續(區域化)或邏輯連續(分散式)實體資源區塊(PRB)組成。可將每一ePDCCH區指派至與巨型小區相關聯之一或多個遠端無線電頭端(RRH)。
如圖2B中所展示,ePDCCH區252位於相同或不同頻率分割區254中。在一例示性實施例中,頻率資源之分割為靈活的,且可經動態組態,例如,頻率資源可基於小區特定之半靜態或動態型樣隨時間而改變。ePDCCH區位於預定(可組態)頻率分割區中,且基於自參考位置之頻率偏移(FO)256計算每一區之開始。
現參看圖2C,說明用於形成頻率分割區及ePDCCH區之例示性程序260。在方法260之步驟262處,在整個可用系統頻寬上排列PRB以採用頻率分集增益。經排列之PRB經 再分組並形成頻率分割區FP0至FPK(步驟264)。頻率分割區之數目為可組態的,且取決於網路部署參數及拓撲。在步驟266處,第二階排列可應用於每一頻率分割區內之PRB以進一步採用頻率分集增益。一旦PRB已均勻分佈於頻譜頻寬上,在步驟268處,便可將每一分割內之經排列PRB分割成一或多個ePDCCH區。ePDCCH區之分組及數目取決於巨型小區內可或不可共用同一小區ID的RRH之數目及相對位置。在一例示性實施例中,緊密靠近彼此之RRH將具有不同ePDCCH區以使ePDCCH干擾最小化。
圖3進一步詳細地說明一例示性ePDCCH區。如所示,每一ePDCCH區302含有對應於由eNB伺服之UE的一或多個ePDCCH 304(例如,ePDCCH1對應於UE1,ePDCCH2對應於UE2等)。ePDCCH區之位置及個別ePDCCH通道在相鄰eNB上協調以減少小區間干擾(例如,在多個eNB上,每一eNB之ePDCCH配置經排程以便使與相鄰eNB之衝突最小化)。在每一小區內,eNB協調對應於在小區內管理之遠端無線電頭端(RRH)的ePDCCH區。視所要的聚集等級而定,每一ePDCCH被映射至許多增強型控制通道要素(eCCE)306。一或多個eCCE被映射至一或多個PRB 308。
圖4說明包括解調變參考信號(DM-RS)的實體資源區塊(PRB)之一例示性結構。如所示,例示性PRB 402為12個副載波乘以7個符號。對於36個副載波(或者資源要素)之例示性eCCE,例示性PRB(其由84個資源要素組成)可保持至多兩個eCCE。如所示,解調變參考信號(DM-RS)位置係基於 同一正交涵蓋碼(OCC)用於對應於兩個傳輸天線之兩個DM-RS之多工的一例示性情形。較高階天線組態將包括較多DM-RS信號以支援(例如)UE特定控制通道之波束成形。具體而言,較高階天線組態可使用額外DM-RS以藉由調整天線功率以相長地干擾(亦即,在波束涵蓋面內)及相消地干擾(亦即,在波束涵蓋面外)來產生更強烈且/或更複雜之波束涵蓋面。此外,在多個eCCE聚集在一起之情況下(在多個eCCE針對一ePDCCH分組之情況下),經聚集之eCCE單元可經映射至不同PRB以確保頻率分集之最大使用。
現參看圖5,說明兩個例示性組態(500、550),第一組態500保持與舊版設備相容,且第二組態550與舊版設備不相容。由於在子訊框上按PRB對配置使用者訊務,因此考慮下行鏈路鏈路預算,ePDCCH可或可不存在於每一下行鏈路時槽中。對於較小小區大小變型,1 ms之現有最小傳輸時間間隔(TTI)可被進一步減小至0.5 ms(一個時槽)。此較短之TTI進一步減小使用者平面及控制平面延時,且增加頻譜效率。在此等變型中,對於每一下行鏈路時槽需要一ePDCCH,從而致能基於逐個時槽之資源配置。此外,認識到,此結構對於TDD及FDD雙工方案為相同的。舉例而言,視TDD訊框組態模式而定,類似於FDD系統之訊框組態模式,ePDCCH可在下行鏈路時槽(或子訊框)中進行傳輸。
現參照第一組態500中,每一子訊框經分裂成偶數時槽及奇數時槽。在偶數時槽期間,傳輸舊版PDCCH及 ePDCCH。在奇數時槽期間,可傳輸ePDCCH。應瞭解,舊版器件在第一組態內可正常地解碼舊版PDCCH;然而,此外,增強型器件可根據本發明之各種態樣解碼ePDCCH。此外,應瞭解,經由舊版PDCCH提供的資訊之量可大大地減少至僅對於服務舊版器件所必要之資訊,且增強型器件可主要依賴於ePDCCH。此外,由於DPCCH具有相對大精細度(例如,7%),因此應瞭解,增強型器件之子集可經由PDCCH接收資訊以充分利用所配置之PDCCH資源(與經由ePDCCH接收資訊相反,同時使未經配置之PDCCH資源未使用)。
與第一組態500相反,第二組態550僅依賴於用於控制資訊發信號之ePDCCH。第二組態之操作需要一群經致能之使用者器件,或者排除存取舊版器件,或前述兩者之組合。在一些變型中,第二組態之操作可經與具體服務僅舊版器件之第二級頻寬合作地提供(亦即,提供第一頻寬用於經致能之使用者,且提供第二頻寬用於舊版使用者)。
與先前技術PDCCH結構相比較,ePDCCH有利地更靈活且可縮放的得多。舉例而言,eDPCCH可支援來自巨型小區部署內多個傳輸點之控制發信號及資源指派。結合根據本發明之各種態樣的ePDCCH操作考慮多點協調(CoMP)情形3及CoMP情形4操作(上文所描述);每一RRH可傳輸ePDCCH指派而不干擾其他RRH,此係因為其對應的ePDCCH之時間頻率資源並不在相鄰RRH之間共用(亦即,鄰近RRH經指派至不同ePDCCH區)。由於每一RRH並不干 擾其鄰居RRH,因此可經由現存干擾減輕來更有效得多地處置干擾避免協調。具體而言,由於鄰居RRH僅影響無關干擾,因此可有效地將其傳輸作為不相關雜訊對待。
類似地,可藉由在必要時配置更多eCCE來適應任意大之有效負載。此靈活有效負載能力可適應較大格式DCI(例如,傳輸模式9等)。此外,由於ePDCCH區之大小可較大(或較小),因此在不同小區上之衝突及小區間干擾可更有效且靈活地減輕。
此外,ePDCCH可適應多個頻率分割區以支援(例如)軟頻率分割及/或分頻再用(FFR)技術。具體而言,ePDCCH可在各種PRB上靈活地配置以支援包括(例如)每一時槽/子訊框中之若干軟及可組態頻率分割區及控制及資料區之分頻多工的各種頻率配置。資料及控制區之分頻多工允許分開每一通道類型之功率控制。
此外,ePDCCH之各種實施例經由具體針對一用戶器件之解調變參考信號(DM-RS)執行通道估計及相干偵測,因此減輕基於小區特定參考信號(CRS)之方案(其對於整個小區為均勻的,且並非使用者特定的)之效率低下中的許多者。另外,DM-RS(而非CRS)之使用對於致能控制通道之波束成形為必要的;詳言之,使用者特定DM-RS可基於逐個天線組態以產生經波束成形之傳輸。不存在對小區特定且在整個小區上使用之CRS波束成形之此益處。
最後,基於PRB之ePDCCH的控制通道附加項比先前技術解決方案有效率得多。舉例而言,先前技術解決方案在 整個系統頻寬上保留一或多個OFDM符號,該一或多個OFDM符號消耗用於每一OFDM符號的大致7%之總系統頻寬。相反,本發明之例示性實施例中的資源配置精細度(每PRB之L1/L2附加項)對於10 MHz系統為2%,且在20 MHz系統中為僅1%。
其他情形
此外,一般熟習此項有關技術者將進一步認識到,給定本發明之內容,本發明之各種態樣進一步適用於其他申請案。舉例而言,在基於載波聚集(CA)之增強型小區間干擾協調(eICIC)及異質網路中,巨型節點及低功率節點之ePDCCH可在不同分量載波上進行傳輸。簡言之,CA藉由聚集多個較小頻寬來允許網路提供大塊頻寬。因此,在一例示性實施例中,針對經具備CA功能之UE可提供跨載波(cross-carrier)排程。在跨載波排程中,ePDCCH提供於第一載波中,且提供關於CA系統之第二載波之操作的資訊。在一變型中,經橫向排程之載波上的ePDCCH資源受到限制(因此,經橫向排程之載波維持用於其自己之訊務操作的一些資源等)。在一些其他變型中,ePDCCH資源限制可經調整以取決於藉由基於CA之異質網路中之載波聚集組態的UE之數目。
在另一此實例中,頻帶間載波聚集功能性包括較低頻率頻帶與較高頻率頻帶聚集之情形。通常,歸因於較低頻率頻帶的合乎需要之傳播損耗阻性而在較低頻率頻帶上達成較大涵蓋。因此,經由自較低頻率頻帶上之ePDCCH的跨 載波排程而增加較高頻率頻帶上之訊務通道涵蓋為可能的。具體而言,不同於將固定配置用於提供PDCCH之先前技術解決方案,ePDCCH可在各種頻率頻帶內經靈活配置。
在又一實例中,在未來系統(例如,版本11)中可支援額外載波類型。舉例而言,未來版本可能並非回溯相容的;亦即,在未來頻譜上可能不能傳輸舊版PDCCH。在無下行鏈路控制通之進一步增強的情況下,非回溯相容載波上之PDSCH/PUSCH通道可僅依賴於來自回溯相容載波之跨載波排程。假定頻寬及連接至非回溯相容載波的UE之數目可類似於回溯相容載波,則跨載波排程載波上(亦即,發送PDCCH處)之PDCCH資源可顯著受到限制。藉由由ePDCCH提供更多靈活性,未來版本不再限於自回溯相容載波的跨載波排程。
新ePDCCH結構亦可支援各種增強型MIMO模式。新ePDCCH實質上改良了控制通道之穩固性,且因此減輕密集且互異部署中之相鄰傳輸節點之間的干擾。因此,ePDCCH結構藉由使相鄰小區中之UE正交化來允許干擾避免/協調。另外,CoMP情形3及4將受益於ePDCCH結構靈活性及容量。針對載波聚集之下行鏈路控制增強主要用於應用跨載波排程的情形中。每一載波聚集情形中藉由跨載波排程組態的UE之數目將決定是否需要ePDCCH來支援載波聚集情形。
在版本8、版本9及版本10中,PDCCH之控制區僅支援傳 輸分集傳輸模式。傳輸分集方案為穩固傳輸方案,但效率可能不如基於空間資訊之波束成形(尤其在相關環境中)。不幸地,增加傳輸天線之數目對於基於傳輸分集之PDCCH傳輸可能不產生較高MIMO增益,事實上在一些初步測試中,傳輸分集在一些情形下實際上導致效能降級。本發明之各種實施例支援應進一步改良涵蓋之波束成形。
最後,在版本8、版本9及版本10中,PDCCH僅支援QPSK調變。ePDCCH應顯著改良鏈路品質(例如,歸因於預編碼/波束成形),因此,ePDCCH亦應支援高SINR區中的較高階調變。較高階調變將增加頻譜效率,且減少控制通道之總系統附加項。在SINR較高之小型小區及密集部署中,ePDCCH可支援針對控制通道之較高階調變(例如,16 QAM)。
例示性使用者設備(UE)裝置-
現參看圖6,說明適用於實施本發明之方法之例示性用戶端或UE裝置600。如本文中所使用,術語「用戶端」及「UE」可包括(但不限於)蜂巢式電話;智慧型電話(諸如,iPhone TM);個人電腦(PC),諸如,iMac TMMac Pro TMMac Mini TMMacBook TM及迷你型電腦,不管為桌上型電腦、膝上型電腦抑或其他電腦;以及行動器件,諸如手持型電腦(例如,iPad TM)、PDA,諸如iPod TM之個人媒體器件(PMD);或前述各者之任何組合。控制通道接收之組態較佳以軟體來執行,但亦預見到韌體及/或硬體實施例;本文中隨後關於圖6來描述此裝置。
UE裝置600包括一處理器子系統605,諸如,數位信號處理器、微處理器、場可程式化閘陣列或安裝於一或多個基板608上之複數個處理組件。處理子系統亦可包括一內部快取記憶體。處理子系統605連接至包括記憶體之記憶體子系統607,該記憶體可(例如)包括SRAM、快閃記憶體及SDRAM組件。記憶體子系統可實施DMA型硬體中之一或多者,以便有助於如在此項技術中熟知之資料存取。在所說明之實施例中,處理子系統另外包括用於實施本文中先前所描述之增強型控制通道功能性的子系統或模組。此等子系統可以軟體或耦接至處理子系統之硬體來實施。或者,在另一變型中,子系統可直接耦接至數位基頻。
在一例示性實施例中,UE另外經組態以根據一或多個預定方案來識別控制資訊區。在一些實施例中,可能需要用戶端器件來嘗試解碼多個「假設」以判定控制通道資訊的位置。舉例而言,UE可經組態以識別含有或有可能含有控制通道資訊之一或多個實體資源。雖然盲目地搜尋控制區不合需要,但搜尋小假設集合可顯著減少網路協調要求而無UE操作中的不適當效能損耗。然而,應瞭解,裝置亦可使用外部或所提供資訊來幫助識別所關注之控制資訊區。
在一例示性實施例中,UE經組態以根據靈活頻率分割來判定控制區。在一個此變型中,頻率分割經動態組態,例如,資源可基於小區特定之半靜態或動態型樣而隨時間改變。在其他變型中,頻率分割為固定的,但對於每一傳 輸器為截然不同的。舉例而言,在小區特定之方案中,UE可能能夠根據控制區連接至之特定小區識別符來判定控制區(例如,基於雜湊函數基於小區識別符等選擇控制區)。應進一步瞭解,控制區可適用於小區之僅一子集;例如,遠端無線電頭端(RRH)可僅提供對整個小區之一子集的足夠涵蓋。
在再其他實施例中,應瞭解,先前所描述之控制通道結構的可組態性基於資源、使用及/或網路考慮而致能動態解碼。舉例而言,UE可解碼ePDCCH之各種要素以支援某些應用或操作及/或針對不必要之應用或操作的ePDCCH之其他要素不予處理。
一般熟習此項相關技術者易於瞭解本發明之各種其他態樣。
例示性基地台(BS)裝置-
現參看圖7,說明適用於實施本發明之方法之例示性伺服器或基地台(BS)裝置700。如本文中所使用,術語「伺服器」及「BS」包括(但不限於)基地台(例如,NodeB、eNodeB等)、存取點、中繼台等。控制通道傳輸之組態較佳以軟體來執行,但亦預見到韌體及/或硬體實施例;本文中隨後關於圖7來描述此裝置。
BS裝置700包括一處理器子系統705,諸如,數位信號處理器、微處理器、場可程式化閘陣列或安裝於一或多個基板708上之複數個處理組件。處理子系統亦可包括一內部快取記憶體。處理子系統705連接至包括記憶體之記憶體 子系統707,該記憶體可(例如)包括SRAM、快閃記憶體及SDRAM組件。記憶體子系統可實施DMA型硬體中之一或多者,以便有助於如在此項技術中熟知之資料存取。在所說明之實施例中,處理子系統另外包括用於實施本文中先前所描述之增強型控制通道功能性的子系統或模組。此等子系統可以軟體或耦接至處理子系統之硬體來實施。或者,在另一變型中,子系統可直接耦接至數位基頻。
在一例示性實施例中,BS另外經組態以根據一或多個預定方案來傳輸一或多個動態可組態控制資訊區。在一些變型中,動態可組態控制資訊區擴增用於控制資訊區之現有舊版方案。在其他變型中,動態可組態控制資訊整個取代舊版控制資訊區;此等區可由網路組態及/或傳信以輔助較快速獲取。
在一例示性實施例中,使用者設備(UE)經組態以根據靈活頻率分割來判定控制區。在一個此變型中,頻率分割經動態組態,例如,資源可基於小區特定之半靜態或動態型樣而隨時間改變。在其他變型中,頻率分割為固定的,但對於每一傳輸器為截然不同的。舉例而言,在小區特定之方案中,UE可能能夠根據控制區連接至之特定小區識別符來判定控制區(例如,基於雜湊函數基於小區識別符等選擇控制區)。應進一步瞭解,控制區可適用於小區之僅一子集;例如,遠端無線電頭端(RRH)可僅提供對整個小區之一子集的足夠涵蓋。
在再其他實施例中,應瞭解,先前所描述之控制通道結 構的可組態性基於資源、使用及/或網路考慮而致能動態解碼。舉例而言,UE可解碼ePDCCH之各種要素以支援某些應用或操作及/或針對不必要之應用或操作的ePDCCH之其他要素不予處理。在又其他實施例中,UE經組態以識別含有或有可能含有控制通道資訊之一或多個實體資源。舉例而言,UE可試圖解碼多個「假設」;盲目地搜尋控制區不合需要,搜尋小假設集合可顯著減少網路協調要求而無對UE之不適當負擔。具體而言,網路具有提供控制資訊以解決(例如)資源競爭、網路擁塞、網路擴張等之一些靈活性。
一般熟習此項技術者易於瞭解本發明之各種其他態樣。
方法-
現參看圖8,說明並描述用於在無線網路之可擴展及可縮放控制通道內傳輸控制資訊的資源之動態配置之一般化方法800之一實施例。
在本發明之一態樣中,無線網路之可擴展及可縮放控制通道係基於分頻多工(FDM)方案。具體而言,根據相關頻率範圍來對每一控制區劃出界線。此外,隨著頻寬增大或減小,控制區可相應地擴大或收縮。在替代實施例中,控制區可基於分時多工(TDM)方案,其中每一控制區係根據相關時間範圍來指定。
在本發明之第二態樣中,控制區經空間分佈以便在同一小區內減小對彼此之干擾。舉例而言,考慮具有多個RRH之小區;每一RRH可被指派至一控制區以便使對其相鄰 RRH之干擾最小化(對於基於FDM之方案而言,向每一RRH指派不同頻譜範圍)。此外,應瞭解,歸因於每一RRH之相對低傳輸功率(與在43 dBm至49 dBm下傳輸之eNB相比,典型RRH在大致20 dBm下傳輸),小區可含有多個RRH,該多個RRH被指派至同一控制區,但其經充分分離以避免干擾。
在第三態樣中,應瞭解,在每一控制區內,指派至每一使用者之實體資源區塊(PRB)可經進一步邏輯排列以便使每一使用者之頻率分集最大化。更直接地,此隨機化確保影響僅少許PRB之任何干擾源的效應將分佈於由該控制區服務之該群使用者之間。
在第四態樣中,向行動器件通知其相關聯之控制區。在一實例中,小區管理實體判定(對於其經服務之群的至少一子集)行動器件之適當控制區。小區管理實體經進一步組態以隨著行動器件自RRH移動至RRH而更新相關聯之控制區。視某些行動性考慮而定,行動器件可被指派至一特定RRH(例如,對於指明數目個傳輸時間間隔(TTI)等)或eNB。舉例而言,在行動器件正快速移動之情況下,小區管理實體可根本不將行動器件指派至RRH。相反,在行動器件在很大程度上靜止之情況下,控制實體可將行動器件指派至RRH及/或特定控制區(對於大量TTI)。
此外,一般熟習此項技術者將認識到,不同於係基於在每一子訊框之開始處之許多OFDM符號的控制通道操作之舊版方案(例如,見先前技術實體下行鏈路控制通道 (PDCCH)),本發明之各種實施例將在精細度之可變程度上操作。舉例而言可基於TTI、基於時槽、基於子訊框、基於訊框等來指定,行動器件之控制區。可根據各種網路考慮使控制通道附加項最佳化。舉例而言,在行動器件管理需要顯著控制附加項之情況下,網路可切換至針對控制區之較短時間間隔(例如,基於時槽之傳輸)。相反,在控制通道附加項低之情況下,網路可選擇較長時間間隔(例如,基於子訊框之傳輸)。
在本發明之第五態樣中,針對每一行動器件對控制區之精細控制致能波束成形能力。簡言之,舊版控制通道操作受限於控制資訊在每一子訊框之開始處之若干符號上的廣播。需要先前技術行動器件:(i)解碼實體控制格式指示符通道(PCFICH);(ii)解碼小區特定參考信號(CRS);(iii)基於CRS執行通道估計;及(iv)解碼控制符號。詳言之,CRS經作為小區特定信號廣播,且並非器件特定的。相反,本發明之各種實施例可經組態以便使用具有適當控制區之器件特定參考信號(例如,解調變參考信號(DM-RS))。詳言之,一特定控制區之DM-RS具體針對一特定器件。此特定性可由網路及器件充分利用以調整傳輸及接收權重,以便致能器件特定控制通道之波束成形。
在步驟802處,判定用於一群器件之一或多個控制資訊。控制資訊之常見實例包括(但不限於)排程資訊、操作資訊、格式化資訊等。舉例而言,排程資訊可包括:資源請求、資源授予、資源配置等。用於在無線網路中使用之 典型資源包括:時槽、頻率頻帶、展頻碼或前述各者之任何組合。操作資訊可包括:所支援之特徵、不被支援之特徵、識別資訊(例如,網路識別、伺服台識別等)。格式化資訊可包括:對輸送格式之請求、對輸送格式之授予、對輸送格式之指派等。在一例示性實施例中,資源係基於時槽與頻率副載波之組合。
在一例示性實施例中,控制通道資訊針對傳輸經格式化為下行鏈路控制資訊(DCI)訊息。基於包括以下各者之一組參數產生DCI:下行鏈路資源區塊(RB)之數目、DCI格式等。
在步驟804處,判定合適數目個經動態判定之資源以用於承載一或多個控制資訊之至少一子集。通常,控制通道資訊係基於當前網路活動來判定,且分配給該群器件以使網路效能最佳化。在一實例中,動態判定之資源之合適數目係基於一群舊版器件。在其他實施例中,動態判定之資源之合適數目係基於控制資訊之類型。在再其他實施例中,動態判定之資源之數目係基於網路組態。此外,應瞭解,在一些實施例中,動態判定之資源足夠用於所有控制資訊。
在步驟806處,將一或多個控制資訊之至少子集中的每一者動態指派至資源。在一例示性實施例中,一或多個控制資訊被指派至可由接收用戶端器件快速識別之資源。具體而言,限制用戶端器件之總解碼負擔可能為合乎需要的。在一些實施例中,可能需要用戶端器件嘗試解碼仍顯 著小於整個頻寬的多個「假設」。藉由將控制資訊之分佈限於僅少許假設,用戶端器件可嘗試每一假設來判定控制通道資訊之位置。
舉例而言,在一個此變型中,每一時槽中之頻率資源經分割成許多頻率分割區(FP),其中每一頻率分割區含有一或多個控制資訊區。每一區由整數數目個實體連續或邏輯連續之資源組成。在一些實施例中,每一控制資訊區可進一步與傳輸器網路中之一傳輸器相關聯。舉例而言,在一例示性實施例中,增強型實體下行鏈路控制通道(ePDCCH)區與蜂巢式網路小區之遠端無線電頭端(RRH)相關聯。在前述系統內,用戶端器件並不必須搜尋整個頻譜頻寬來尋找適當控制資訊,相反,用戶端器件可快速識別控制區內之適當控制資訊,並相應地解碼該適當控制資訊。
在一例示性實施例中,資源之分割為靈活的,且可經動態組態,例如,資源可基於小區特定之半靜態或動態型樣隨時間而改變。舉例而言,資源分割可基於(例如)總網路複雜性、網路能力、器件能力、器件群大小等。動態定大小可用以支援任意大之有效負載;舉例而言,在LTE網路內,靈活有效負載能力可適應較大格式DCI(例如,傳輸模式9等)。此外,由於ePDCCH區之大小可為較大的(或較小的),因此在不同小區上之衝突及小區間干擾可被更有效且靈活地減輕。
在某些方案中,可在網路資源上分佈控制資訊以使分集 技術最大化。舉例而言,藉由貫穿可用時間及資源之頻率範圍排列控制資訊(且在一些狀況下,冗餘控制資訊),影響某些資源之接收問題(例如,影響時槽及/或副載波之瞬時干擾)可被減輕。舉例而言,在一例示性實施例中,ePDCCH區含有一或多個ePDCCH,其中每一ePDCCH經映射至許多增強型控制通道要素(eCCE),且每一eCCE經映射至一或多個實體資源區塊(PRB)。PRB在時間及頻率兩者上經分佈,使得若遺失一或多個PRB,則剩餘PRB可用以重建構ePDCCH。
另外,認識到,控制資訊之靈活配置可支援包括軟頻率分割及/或分頻再用(FFR)技術的特徵。舉例而言,控制資訊可在頻率上靈活配置以產生控制及資料區中的可組態頻率分割區。頻率分割區可特別適用於聚集之頻譜資源(例如,在總網路頻寬由多個全異頻率頻帶構成之情況下)。舉例而言,頻率分割可在聚集之頻寬的僅一子集上提供控制資訊,其中用戶端器件並不必須接收整個聚集之頻譜來判定控制資訊。另外,頻率控制可用以控制經分配以用於提供資料及控制的功率之量。舉例而言,在先前技術LTE網路中,在整個頻譜頻寬上傳輸PDCCH,因此功率之改變將影響整個頻寬。本發明之各種實施例可增加用於ePDCCH之僅控制區的傳輸功率。
提供可組態控制資訊之一益處為,控制資訊並不必須在整個小區上進行廣播。詳言之,控制資訊需要僅在可適用使用者之相對附近內傳輸。為此,並非在小區內針對所有 器件廣播控制資訊,本發明之各種實施例特別適用於實施使用者特定控制資訊。在一例示性實施例中,RRH僅傳輸適用於其服務之用戶之集合的控制資訊。此可對總網路資源利用有極大的影響。
另外,某些使用者特定功能性可經充分利用以用於進一步改良。舉例而言,控制資訊可與使用者特定參考信號一起提供至用戶。舉例而言,在一例示性實施例中,將ePDCCH與解調變參考信號(DM-RS)一起提供以輔助特定用戶器件之通道估計及相干偵測。每一使用者特定DM-RS對於特定使用者可另外經波束成形。在波束成形期間,傳輸器修改來自每一天線之傳輸功率,以便在目標接收器處相長地干擾,且在一些狀況下針對非吾人所欲之接收器減少干擾。波束成形DM-RS可大大地改良通道估計等。
在再一實施例中,控制資訊可基於由通信網路提供之最精細資料精細度而提供至使用者。舉例而言,在LTE網路內,資料傳輸之最小增量為實體資源區塊(PRB)。每一PRB對於10 MHz系統為頻寬資源之大致2%,且在20 MHz系統中為頻寬資源之僅1%。提供較高精細度控制資源可減小網路資源之不充分利用。考慮可僅配置一個、兩個或三個OFDM符號用於控制資料(例如,分別為網路資源之7%、14%及21%)之先前技術LTE網路,若PDCCH超出一個OFDM符號之容量,則PDCCH步進至下一增量。若傳輸僅邊上較多之資訊,則大多數彼新配置之OFDM符號被浪費。相反,本發明之例示性實施例可僅配置提供額外 ePDCCH資訊所必要之額外PRB。
返回參看圖8,在步驟808處,根據經指派之資源傳輸一或多個控制資訊。在一例示性實施例中,自多個傳輸點傳輸控制資訊,其中傳輸點不需要具有對於控制資訊相同的傳輸排程。舉例而言,在蜂巢式網路內,多個遠端無線電頭端(RRH)可根據個別截然不同之排程各自傳輸控制資訊。
一般熟習本發明技術者將認識到用於實施資源之動態配置的無數其他方案。
應認識到,雖然就方法之特定步驟序列來描述了本發明之某些態樣,但此等描述僅說明本發明之較廣泛方法,且可按需要由特定應用修改。在某些情形下,可致使某些步驟不必要或可選。另外,可將某些步驟或功能性添加至所揭示之實施例,或可排列兩個或兩個以上步驟之執行次序。所有此等變化被視為涵蓋於本發明及本文中之申請專利範圍內。
雖然以上詳細描述已展示、描述及指出了如適用於各種實施例的本發明之新穎特徵,但應理解,熟習此項技術者可在不脫離本發明的情況下進行所說明之器件或程序之形式及細節上的各種省略、取代及改變。前述描述具有當前預期到之最佳模式。此描述決不意謂為限制性的,而是應視為說明本發明之一般原理。本發明之範疇應參照申請專利範圍來判定。
100‧‧‧先前技術長期演進(LTE)控制通道結構
202‧‧‧例示性增強型NodeB(eNB)
204‧‧‧遠端無線電頭端(RRH)
206‧‧‧使用者設備(UE)
250‧‧‧例示性增強型實體下行鏈路控制通道(ePDCCH)結構及設計
252‧‧‧ePDCCH區
254‧‧‧頻率分割區
256‧‧‧頻率偏移(FO)
260‧‧‧用於形成頻率分割區及ePDCCH區之例示性程序/方法
302‧‧‧ePDCCH區
304‧‧‧ePDCCH
306‧‧‧增強型控制通道要素(eCCE)
308‧‧‧實體資源區塊(PRB)
402‧‧‧PRB
500‧‧‧例示性組態/第一組態
550‧‧‧例示性組態/第二組態
600‧‧‧例示性用戶端/UE裝置
605‧‧‧處理器子系統
607‧‧‧記憶體子系統
608‧‧‧基板
700‧‧‧例示性伺服器或基地台(BS)裝置
705‧‧‧處理器子系統
707‧‧‧記憶體子系統
708‧‧‧基板
圖1為先前技術長期演進(LTE)控制通道結構之圖解說明。
圖2A說明結合本發明之各種態樣有用的一例示性增強型節點B(eNB)及遠端無線電頭端(RRH)之一陣列,該等遠端無線電頭端(RRH)用以提供針對一群使用者設備(UE)的改良之涵蓋。
圖2B為根據本發明之增強型實體下行鏈路控制通道(ePDCCH)區之結構的一實施例之圖解說明。
圖2C為根據本發明之一實施例的用於在一時槽上形成ePDCCH區之一例示性程序之圖解表示。
圖3為根據本發明之一實施例的ePDCCH區之內容之圖解表示。
圖4為根據本發明之一實施例的實體資源區塊之結構之圖解表示。
圖5為根據本發明之一實施例的呈回溯相容及非回溯相容載波類型的ePDCCH在時間及頻率上之相對位置之圖解表示。
圖6為說明併有本發明之增強型控制通道功能性的用戶端或使用者器件之一實施例之功能方塊圖。
圖7為說明併有本發明之增強型控制通道功能性的伺服器器件之一實施例之功能方塊圖。
圖8為根據本發明的說明用於在無線網路之可擴展及可縮放控制通道內傳輸控制資訊的資源之動態配置之方法之一實施例之功能方塊圖。
260‧‧‧用於形成頻率分割區及ePDCCH區之例示性程序/方法

Claims (21)

  1. 一種無線器件,其包含:一無線介面,該無線介面經組態以與一無線網路通信;一處理器;及一電腦可讀裝置,其具有一儲存媒體,該儲存媒體具有儲存於其上之至少一電腦程式,該至少一電腦程式經組態以在由該處理器執行時使該無線器件:判定一或多個頻率分割區,其中每一頻率分割區含有一或多個控制通道區,且每一控制通道區包含資源區塊之一邏輯映射;識別該一或多個控制通道區中的用於接收控制通道資訊之一對應者;及基於資源區塊之該邏輯映射自該一或多個控制通道區中的該識別之對應者擷取控制通道資訊。
  2. 如請求項1之無線器件,其中在許多實體資源區塊上排列資源區塊之該邏輯映射。
  3. 如請求項1之無線器件,其中動態執行該一或多個頻率分割區之該判定。
  4. 如請求項1之無線器件,其中該擷取之控制通道資訊包含具體針對該無線器件之一或多個參考信號。
  5. 如請求項1之無線接收器,其中該一個控制通道區之該識別係至少基於自該無線網路接收到一訊息。
  6. 一種無線器件,其包含: 一無線介面,該無線介面經組態以與一無線網路通信;經組態以判定一或多個頻率分割區之邏輯,其中每一頻率分割區含有一或多個控制通道區,且每一控制通道區包含資源區塊之一邏輯映射;經組態以識別該一或多個控制通道區中的用於接收控制通道資訊之至少一控制通道區之邏輯;及經組態以基於該識別之至少一控制區的資源區塊之該邏輯映射自該識別之至少一控制區擷取控制通道資訊之邏輯。
  7. 如請求項6之無線器件,其中該擷取之控制通道資訊包含具體針對該無線器件之一或多個參考信號。
  8. 如請求項6之無線接收器,其中一或多個控制通道區之該識別至少基於自該無線網路接收到之一訊息。
  9. 一種用於接收控制資訊之方法,其包含:判定一或多個頻率分割區,其中每一頻率分割區含有一或多個控制通道區,且每一控制通道區包含資源區塊之一邏輯映射;識別該一或多個控制通道區中的用於接收控制通道資訊之一對應者;及基於資源區塊之該邏輯映射自該一或多個控制通道區中的該識別之對應者擷取控制通道資訊。
  10. 如請求項9之方法,其中在許多實體資源區塊上排列資源區塊之該邏輯映射。
  11. 如請求項9之方法,其中資源區塊之該邏輯映射在許多傳輸上改變。
  12. 如請求項9之方法,其中資源區塊之該邏輯映射為固定的。
  13. 一種傳輸控制資訊之方法,其包含:將一或多個頻率資源分割成許多頻率分割區,其中每一頻率分割區含有一或多個控制通道區,且每一控制通道區包含資源區塊之一邏輯映射;使一或多個無線器件與該一或多個控制通道區中之一對應者相關聯;將該一或多個控制通道區中之該對應者指派至一或多個遠端無線電實體;及傳輸用於該相關聯之一或多個無線器件之控制資訊。
  14. 如請求項13之方法,其中動態判定資源區塊之該邏輯映射。
  15. 如請求項13之方法,其中:該一或多個遠端無線電實體在地理上截然不同;且一或多個無線器件與該一或多個控制通道區中之該對應者的該關聯至少部分基於該一或多個無線器件之一位置。
  16. 如請求項13之方法,其中該一或多個遠端無線電實體共用一共同識別符。
  17. 如請求項13之方法,其中在許多傳輸上排列該邏輯映射。
  18. 一種無線網路裝置,其包含:一無線介面,該無線介面經組態以與一或多個無線器件通信;一網路介面,該網路介面經組態以與相關聯於該無線網路裝置的複數個遠端無線電實體通信;經組態以將一或多個頻率資源分割成許多頻率分割區之邏輯,其中每一頻率分割區包含一或多個控制通道區,且每一控制通道區包含資源區塊之一邏輯映射;經組態以使一第一組無線器件與一第一控制通道區相關聯之邏輯;經組態以將該第一控制通道區指派至與該無線網路裝置相關聯之一第一遠端無線電實體之邏輯;及經組態以引起用於該第一組無線器件之控制資訊在該第一控制通道區中之傳輸之邏輯。
  19. 一種基地台裝置,其包含:一無線介面,該無線介面經組態以與複數個行動器件通信;一網路介面,該網路介面經組態以與相關聯於該基地台裝置相關聯的複數個遠端無線電實體通信;一處理器;及一電腦可讀裝置,其與該處理器資料通信且具有一儲存媒體,該儲存媒體具有儲存於其上之至少一電腦程式,該至少一電腦程式經組態以在由該處理器執行時使該基地台裝置: 將一或多個頻率資源分割成許多頻率分割區,其中每一頻率分割區包含一或多個控制通道區,且每一控制通道區包含資源區塊之一邏輯映射;使該複數個行動器件中之一或多個無線器件與該一或多個控制通道區中之一對應者相關聯;將該對應之一控制通道區指派至與該基地台裝置相關聯的至少一遠端無線電實體;及經由該一或多個控制通道區中之該對應者傳輸用於該相關聯之一或多個行動器件的控制資訊。
  20. 如請求項19之基地台裝置,其中該至少一遠端無線電實體與該基地台裝置共用一共同識別符。
  21. 如請求項19之基地台裝置,其中該經傳輸之控制資訊包括具體針對該相關聯之一或多個行動器件中的至少一者之至少一參考信號。
TW101141624A 2011-11-08 2012-11-08 用於無線網路可擴展及可縮放控制通道之方法及裝置 TWI492594B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161557329P 2011-11-08 2011-11-08
US13/557,121 US9705654B2 (en) 2011-11-08 2012-07-24 Methods and apparatus for an extensible and scalable control channel for wireless networks

Publications (2)

Publication Number Publication Date
TW201342855A true TW201342855A (zh) 2013-10-16
TWI492594B TWI492594B (zh) 2015-07-11

Family

ID=48223629

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101141624A TWI492594B (zh) 2011-11-08 2012-11-08 用於無線網路可擴展及可縮放控制通道之方法及裝置

Country Status (9)

Country Link
US (3) US9705654B2 (zh)
EP (2) EP3902185A1 (zh)
KR (2) KR101654653B1 (zh)
CN (2) CN104025496B (zh)
AU (1) AU2012335765B2 (zh)
RU (1) RU2624003C2 (zh)
SG (1) SG11201402905RA (zh)
TW (1) TWI492594B (zh)
WO (1) WO2013070918A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI556660B (zh) * 2013-11-01 2016-11-01 財團法人工業技術研究院 無線涵蓋擴展的方法以及使用所述方法的基地台
TWI711291B (zh) * 2016-01-15 2020-11-21 美商蘋果公司 使用者設備的裝置、演進型Node B的裝置、及電腦可讀取儲存媒體

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9516636B2 (en) * 2011-12-07 2016-12-06 Lg Electronics Inc. Method and apparatus for transceiving a downlink control channel in a wireless communication system
TWI478524B (zh) * 2011-12-20 2015-03-21 Htc Corp 用於無線通訊系統中控制通道之盲解碼方法
US9603125B2 (en) * 2012-01-19 2017-03-21 Samsung Electronics Co., Ltd. Reference signal design and association for physical downlink control channels
KR102021590B1 (ko) 2012-06-04 2019-09-18 삼성전자주식회사 무선 통신 시스템에서 제어 정보 송수신 방법 및 장치
US20150181568A1 (en) * 2012-06-05 2015-06-25 Lg Electronics Inc. Method and apparatus for receiving control information in wireless communication system
WO2014019121A1 (zh) * 2012-07-30 2014-02-06 华为技术有限公司 一种lte系统中的干扰协调方法
GB2505489A (en) * 2012-08-31 2014-03-05 Sony Corp A mobile communications device for use in a virtual narrowband carrier within a wideband carrier of a mobile communications system
CN103796309A (zh) * 2012-10-31 2014-05-14 华为终端有限公司 控制信息的传输方法、基站及用户设备
KR102155390B1 (ko) * 2012-12-03 2020-09-11 소니 주식회사 Lte에 대한 그룹 기반의 pdcch 능력
US9768929B2 (en) * 2012-12-21 2017-09-19 Blackberry Limited Method and apparatus for identifying interference type in time division duplex systems
US9871636B2 (en) 2013-01-18 2018-01-16 Qualcomm Incorporated Enhanced control channel element (ECCE) based physical downlink shared channel (PDSCH) resource allocation for long-term evolution (LTE)
JP5970396B2 (ja) * 2013-03-07 2016-08-17 株式会社Nttドコモ 無線基地局、ユーザ端末、無線通信方法及び無線通信システム
US10448351B2 (en) * 2013-04-02 2019-10-15 Qualcomm Incorporated Employing neighboring cell assistance information for interference mitigation
US9088397B2 (en) * 2013-05-09 2015-07-21 Nokia Solutions And Networks Oy Carrier type for time division communication
EP3020144B1 (en) 2013-07-08 2021-07-07 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data in a communication system using beamforming
US9674863B2 (en) * 2013-09-27 2017-06-06 Alcatel Lucent Methods and systems for distributed coordination
US9648584B2 (en) 2013-10-31 2017-05-09 Motorola Solutions, Inc. Single frequency network broadcast for mission-critical services on LTE
WO2015062918A1 (en) * 2013-10-31 2015-05-07 Sony Corporation Network element and method of communicating using a plurality of controls channels modules
US9565577B2 (en) 2013-11-21 2017-02-07 At&T Intellectual Property I, L.P. Method and apparatus for maximizing network capacity of cell sites in a wireless network
EP3094026B1 (en) * 2014-01-29 2022-11-16 Huawei Technologies Co., Ltd. Data transmission method and communication device
US10862634B2 (en) 2014-03-07 2020-12-08 Huawei Technologies Co., Ltd. Systems and methods for OFDM with flexible sub-carrier spacing and symbol duration
US10362525B2 (en) * 2014-09-15 2019-07-23 Intel IP Corporation Apparatus, system and method of relay backhauling with millimeter wave carrier aggregation
US11212779B2 (en) * 2014-09-22 2021-12-28 Qualcomm Incorporated Ultra-low latency LTE downlink communications
US9794922B2 (en) * 2014-09-26 2017-10-17 Qualcomm Incorporated Downlink channel design for LTE with low latency
US10064165B2 (en) * 2014-10-03 2018-08-28 Qualcomm Incorporated Downlink and uplink channel with low latency
US10021677B2 (en) * 2014-10-31 2018-07-10 Qualcomm Incorporated Two-stage PDCCH with DCI flag and DCI format size indicator
WO2016153137A1 (ko) * 2015-03-20 2016-09-29 엘지전자 주식회사 Short tti의 주파수 대역에 다이나믹하게 자원을 할당하는 방법 및 이를 사용한 기기
WO2017000307A1 (en) * 2015-07-02 2017-01-05 Nokia Solutions And Networks Oy Method, apparatus and system
CN106341890B (zh) * 2015-07-08 2019-09-17 电信科学技术研究院 一种物理信道传输方法及设备
WO2017018758A1 (ko) * 2015-07-24 2017-02-02 엘지전자 주식회사 하향링크 제어 정보 수신 방법 및 사용자기기와, 하향링크 제어 정보 전송 방법 및 기지국
CN106664702B (zh) 2015-08-12 2020-09-04 华为技术有限公司 一种数据传输方法、装置及系统
WO2017028054A1 (zh) * 2015-08-14 2017-02-23 华为技术有限公司 下行信息的处理方法、用户设备、基站和通信系统
JP6679713B2 (ja) * 2015-08-21 2020-04-15 華為技術有限公司Huawei Technologies Co.,Ltd. 無線通信方法およびシステム、ネットワーク装置、ならびにユーザ機器
CN106488410A (zh) * 2015-09-01 2017-03-08 中兴通讯股份有限公司 发送、接收低时延业务的配置信息的方法和装置
CN106550459B (zh) * 2015-09-18 2020-03-13 中兴通讯股份有限公司 一种下行控制方法及装置
US10128998B2 (en) * 2015-10-06 2018-11-13 Lg Electronics Inc. Method and device for performing channel estimation in wireless communication system
US10873420B2 (en) 2015-10-07 2020-12-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and terminal for data transmission
CN111800245B (zh) * 2015-10-22 2022-02-11 华为技术有限公司 一种发送下行控制信息dci的方法及装置
CN105430755A (zh) * 2015-10-27 2016-03-23 魅族科技(中国)有限公司 用于超密集网络的数据传输方法及数据传输装置
CN105246164A (zh) * 2015-10-27 2016-01-13 魅族科技(中国)有限公司 用于超密集网络的数据传输方法及数据传输装置
EP3371917B1 (en) 2015-11-04 2021-07-14 Telefonaktiebolaget LM Ericsson (PUBL) Payload transmission in a subframe
CA2997527A1 (en) * 2015-11-13 2017-05-18 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method of allocating radio resource and device utilizing the same
US11357036B2 (en) 2016-01-29 2022-06-07 Nec Corporation Method and apparatus for communication based on short transmission time intervals in a wireless communication system
EP3370358B1 (en) 2016-03-18 2020-11-25 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data transmission method, terminal device, and network device
CN107294647B (zh) * 2016-04-01 2020-10-09 华为技术有限公司 一种下行传输的方法及装置
US10420079B2 (en) * 2016-04-01 2019-09-17 Hfi Innovation Inc. Efficient control and data multiplexing in communication systems
CN106793100B (zh) * 2016-05-09 2020-06-02 展讯通信(上海)有限公司 用户设备、网络侧设备及用户设备的控制方法
US10523394B2 (en) * 2016-05-13 2019-12-31 Telefonaktiebolaget Lm Ericsson (Publ) TTI switching for multicarrier HSUPA
CN107396442B (zh) * 2016-05-15 2019-10-01 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
CN106131963A (zh) * 2016-06-12 2016-11-16 珠海市魅族科技有限公司 资源配置方法及装置、基站
US10264566B2 (en) * 2016-07-22 2019-04-16 Qualcomm Incorporated Enhanced control channel for DL sub-band scheduling
CN107666377B (zh) * 2016-07-28 2020-01-03 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
CN107690188B (zh) * 2016-08-05 2019-12-24 上海朗帛通信技术有限公司 一种无线传输中的方法和装置
CN107690160B (zh) 2016-08-05 2019-01-08 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
CN107734665B (zh) * 2016-08-11 2020-12-04 中国移动通信有限公司研究院 资源指示、确定方法及装置、网络侧设备及移动通信终端
US10631329B2 (en) * 2016-08-12 2020-04-21 Qualcomm Incorporated Non-coherent joint transmission techniques
US10985891B2 (en) * 2016-09-30 2021-04-20 Motorola Mobility Llc Method and apparatus for reporting channel state information
US10034292B1 (en) * 2016-10-19 2018-07-24 Sprint Spectrum L.P. Resource allocation in wireless networks
US11089550B2 (en) * 2016-11-04 2021-08-10 Telefonaktiebolaget Lm Ericsson (Publ) Configuration restriction for radio frequency operation for shortened transmission time interval patterns
US10499416B2 (en) 2017-01-10 2019-12-03 Qualcomm Incorporated Downlink channel rate matching of synchronization signal block transmissions in a new radio wireless communication system
US10757581B2 (en) 2017-03-22 2020-08-25 Mediatek Inc. Physical downlink control channel design for NR systems
US20180279273A1 (en) * 2017-03-24 2018-09-27 Mediatek Inc. Downlink Control Signal Design In Mobile Communications
US10123322B1 (en) * 2017-09-18 2018-11-06 Qualcomm Incorporated Transmission of beam switch commands through control channel signaling
JP7238799B2 (ja) * 2018-01-31 2023-03-14 ソニーグループ株式会社 送信装置、および送信方法、受信装置、および受信方法、並びに通信システム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7664091B2 (en) 2005-10-03 2010-02-16 Motorola, Inc. Method and apparatus for control channel transmission and reception
US7737896B1 (en) 2006-08-16 2010-06-15 Kyocera Corporation System and method for optimized use of a dual mode wireless communication device
GB0707355D0 (en) * 2007-04-16 2007-05-23 Nxp Bv Channel estimation
US9137821B2 (en) * 2007-05-02 2015-09-15 Qualcomm Incorporated Flexible signaling of resources on a control channel
WO2009037328A2 (en) 2007-09-19 2009-03-26 Nokia Siemens Networks Oy Scalable control channel design for ofdm-based wireless systems
WO2009038350A1 (en) * 2007-09-21 2009-03-26 Lg Electronics Inc. Method of mapping physical resource to logical resource in wireless communication system
US9107239B2 (en) 2008-04-07 2015-08-11 Qualcomm Incorporated Systems and methods to define control channels using reserved resource blocks
JP5109787B2 (ja) * 2008-05-02 2012-12-26 富士通株式会社 データ伝送システム、プログラム及び方法
JP5421393B2 (ja) * 2009-01-16 2014-02-19 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Pdcchを制限することによるpucchの負荷を制御する方法および装置
EP3474621B1 (en) * 2009-09-25 2022-05-04 BlackBerry Limited System and method for multi-carrier network operation
US8804586B2 (en) * 2010-01-11 2014-08-12 Blackberry Limited Control channel interference management and extended PDCCH for heterogeneous network
US20120106465A1 (en) 2010-04-30 2012-05-03 Interdigital Patent Holdings, Inc. Downlink control in heterogeneous networks
US9559884B2 (en) * 2011-02-07 2017-01-31 Intel Corporation Co-phasing of transmissions from multiple infrastructure nodes
CN102186251B (zh) * 2011-04-29 2016-09-28 中兴通讯股份有限公司 下行控制信息的传输方法及系统
CN102215094B (zh) 2011-06-01 2013-11-20 电信科学技术研究院 上行反馈信息发送及接收方法、系统和设备
US8537862B2 (en) * 2011-06-30 2013-09-17 Blackberry Limited Transmit downlink control information with higher order modulation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI556660B (zh) * 2013-11-01 2016-11-01 財團法人工業技術研究院 無線涵蓋擴展的方法以及使用所述方法的基地台
US9515772B2 (en) 2013-11-01 2016-12-06 Industrial Technology Research Institute Method of radio coverage extension and base station using the same
TWI711291B (zh) * 2016-01-15 2020-11-21 美商蘋果公司 使用者設備的裝置、演進型Node B的裝置、及電腦可讀取儲存媒體

Also Published As

Publication number Publication date
EP2777209B1 (en) 2021-03-10
CN104025496B (zh) 2017-10-31
RU2624003C2 (ru) 2017-06-30
AU2012335765B2 (en) 2015-11-26
CN107612673B (zh) 2021-03-12
TWI492594B (zh) 2015-07-11
US20200036496A1 (en) 2020-01-30
RU2014123307A (ru) 2015-12-20
US20170353281A1 (en) 2017-12-07
AU2012335765A1 (en) 2014-07-03
EP2777209A1 (en) 2014-09-17
US10432379B2 (en) 2019-10-01
US10887068B2 (en) 2021-01-05
WO2013070918A1 (en) 2013-05-16
KR20160105994A (ko) 2016-09-08
CN104025496A (zh) 2014-09-03
US20130114525A1 (en) 2013-05-09
CN107612673A (zh) 2018-01-19
SG11201402905RA (en) 2014-10-30
EP3902185A1 (en) 2021-10-27
KR101654653B1 (ko) 2016-09-06
KR101789598B1 (ko) 2017-10-25
KR20140090253A (ko) 2014-07-16
US9705654B2 (en) 2017-07-11

Similar Documents

Publication Publication Date Title
US10887068B2 (en) Methods and apparatus for an extensible and scalable control channel for wireless networks
KR102489699B1 (ko) 연속 프리코딩에 의한 송신 특성들의 동적 조정
US9065600B2 (en) Aggregation for a new carrier type
US20180288781A1 (en) Methods and apparatus for supporting frequency division multiplexing of multiple waveforms
JP6243435B2 (ja) 無線通信システムにおいて下りリンク制御信号を受信又は送信するための方法及びそのための装置
TW201832575A (zh) 用於共享頻譜的廣播控制通道
US11510107B2 (en) Multiplexing interlaces with a single carrier waveform
EP3488652B1 (en) Enhanced control channel for dl sub-band scheduling
US11411791B2 (en) Intra-symbol multiplexing with a single carrier waveform
KR20220046567A (ko) 뉴 라디오-비허가 (nr-u) 를 위한 구성된 허여 업링크 제어 정보 (uci) 멀티플렉싱
US11456904B2 (en) Numerologies for distributing an excess cyclic prefix during orthogonal frequency-division multiplexing
US20220070891A1 (en) Transmitter direct current subcarrier location indication in wireless communication
US20230370231A1 (en) Techniques for sounding reference signal phase coherency
US20230396347A1 (en) Delay pre-compensation in wireless communication system
US20240056134A1 (en) Enhancements for non-collocated intra-band deployments
WO2024040026A1 (en) Enhancements for non-collocated intra-band deployments
CN117223249A (zh) 跨多个时隙的探测参考信号资源集
OA19663A (en) Transmission of control information using more than one beam pair link.