TW201342102A - System and methods of reducing diffuse reflection of an optical stack - Google Patents

System and methods of reducing diffuse reflection of an optical stack Download PDF

Info

Publication number
TW201342102A
TW201342102A TW102112256A TW102112256A TW201342102A TW 201342102 A TW201342102 A TW 201342102A TW 102112256 A TW102112256 A TW 102112256A TW 102112256 A TW102112256 A TW 102112256A TW 201342102 A TW201342102 A TW 201342102A
Authority
TW
Taiwan
Prior art keywords
optical stack
diffuse
optical
values
calculating
Prior art date
Application number
TW102112256A
Other languages
Chinese (zh)
Inventor
Viktor Podolskiy
Michael A Spaid
Jeffrey Wolk
hai-xia Dai
Original Assignee
Cambrios Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/667,556 external-priority patent/US20130115371A1/en
Priority claimed from US13/831,351 external-priority patent/US20140272105A1/en
Application filed by Cambrios Technologies Corp filed Critical Cambrios Technologies Corp
Priority to SG11201406242YA priority Critical patent/SG11201406242YA/en
Priority to PCT/US2013/035321 priority patent/WO2013152225A1/en
Priority to KR1020147031269A priority patent/KR20140143833A/en
Priority to JP2015504733A priority patent/JP2015515064A/en
Priority to SG10201608386XA priority patent/SG10201608386XA/en
Publication of TW201342102A publication Critical patent/TW201342102A/en

Links

Abstract

The present disclosure relates to a method for improving optical qualities of transparent conductive films including a multilayer optical stack and conductive nanowires embedded therein.

Description

減少光學堆疊之漫反射之系統及方法 System and method for reducing diffuse reflection of optical stack 【相關申請案之交叉參考】[Cross-Reference to Related Applications]

本申請案依據35 U.S.C.§ 119(e)主張2012年4月6日申請之美國臨時申請案第61/621,359號及2012年8月2日申請之美國臨時申請案第61/678,886號及2012年11月2日申請之美國專利申請案第13/667,556號及2013年3月14日申請之美國專利申請案第13/831,351號之權利,該等申請案以全文引用之方式併入本文中。 This application is based on US Provisional Application No. 61/621,359, filed on Apr. 6, 2012, and U.S. Provisional Application No. 61/678,886, filed on August 2, 2012, filed on Apr. 6, 2012. The rights of U.S. Patent Application Serial No. 13/667,556, filed on Nov. 2, and U.S. Pat.

透明傳導薄膜包含塗佈於高透射率表面或基板上之導電材料,且其廣泛用於平板顯示器(例如液晶顯示器(LCD)、觸控面板或感應器)、電致發光裝置(例如,發光二極體)、薄膜光伏打電池中或用作抗靜電層及電磁波屏蔽層。 The transparent conductive film comprises a conductive material coated on a high transmittance surface or a substrate, and is widely used for a flat panel display (such as a liquid crystal display (LCD), a touch panel or an inductor), an electroluminescent device (for example, a light emitting device) In the polar body), the thin film photovoltaic cell is used as an antistatic layer and an electromagnetic wave shielding layer.

目前,真空沈積型金屬氧化物(例如氧化銦錫(ITO))係用於對介電質表面(例如玻璃及聚合物薄膜)提供光學透明性及導電性之工業標準材料。然而,金屬氧化物薄膜較脆且在彎曲或其他物理應力期間易損壞。其等亦需要高沈積溫度及/或高退火溫度以實現高傳導性水準。就某些易於吸收水分之基板(例如塑膠及有機基板(例如聚碳酸酯類))而言,使金屬氧化物薄膜適當黏著係成問題。因此,嚴重限制金屬氧化物薄膜於可撓性基板上之施加。另外,真空沈積係一種昂貴的方法且需要專用設備。 Currently, vacuum deposited metal oxides (such as indium tin oxide (ITO)) are used as industry standard materials for providing optical transparency and electrical conductivity to dielectric surfaces such as glass and polymeric films. However, metal oxide films are relatively brittle and susceptible to damage during bending or other physical stress. They also require high deposition temperatures and/or high annealing temperatures to achieve high conductivity levels. For some substrates that are easily absorbing moisture (for example, plastics and organic substrates (for example, polycarbonates), it is a problem to properly adhere the metal oxide film. Therefore, the application of the metal oxide film on the flexible substrate is severely restricted. In addition, vacuum deposition is an expensive method and requires special equipment.

近年來,藉由金屬奈米線(例如銀奈米線)之複合材料代替平板顯示器中之當前工業標準透明傳導ITO薄膜成為趨勢。通常,透明傳導薄膜係藉由於基板上首先塗佈包括銀奈米線及黏結劑之油墨組合物來形成。然後,可塗佈透明UV或可熱固化聚合物材料以形成保護層。奈米線基塗佈技術係尤其適用於印刷電子學。使用溶液基形式,印刷電子技術可於大面積可撓性基板上製造穩固的電子設備。 In recent years, the replacement of current industry standard transparent conductive ITO films in flat panel displays by composites of metal nanowires (e.g., silver nanowires) has become a trend. Generally, a transparent conductive film is formed by first applying an ink composition including a silver nanowire and a binder on a substrate. The transparent UV or heat curable polymeric material can then be coated to form a protective layer. Nanowire-based coating technology is especially suitable for printed electronics. Using solution-based forms, printed electronics enables the fabrication of robust electronic devices on large-area flexible substrates.

透明傳導薄膜中存在奈米線可出現連續之ITO薄膜中不常遇到的某些光學挑戰。例如,當關閉ITO觸控感應器時,該ITO觸控感應器在周圍光中呈現黑色;而自銀奈米線基透明薄膜製得的觸控感應器可具有「較為乳白」或「較為模糊」之色。該乳白色外觀可影響影像品質(當LCD模組開啟時),以較低對比度或其他影像問題顯現。因此,需要解決奈米線基透明導體獨有的光學挑戰。 The presence of nanowires in transparent conductive films can present some optical challenges that are not often encountered in continuous ITO films. For example, when the ITO touch sensor is turned off, the ITO touch sensor appears black in the surrounding light; and the touch sensor made from the silver nanowire-based transparent film can have a "whiter" or "blurred" The color. This opalescent appearance can affect image quality (when the LCD module is turned on), appearing with lower contrast or other image problems. Therefore, there is a need to address the unique optical challenges inherent in nanowire-based transparent conductors.

本發明提供各種關於藉由減少或最小化光學堆疊(其包括至少一種奈米線基傳導薄膜)中之漫反射來解決奈米線顯示器之乳白色外觀之方法之實施例。 The present invention provides various embodiments of a method for addressing the opalescent appearance of a nanowire display by reducing or minimizing diffuse reflection in an optical stack comprising at least one nanowire-based conductive film.

一實施例係一種方法,其包括對具有奈米線之光學堆疊選擇光學堆疊參數及根據該等光學堆疊參數計算複數個漫反射值,其等各係複數個光學堆疊組態之各自值。該方法另外包括至少根據比較該等漫反射值以選擇該等光學堆疊組態中之一者及根據選定的光學堆疊組態形成光學堆疊層。 An embodiment is a method comprising selecting an optical stacking parameter for an optical stack having a nanowire and calculating a plurality of diffuse reflection values based on the optical stacking parameters, each of which is a respective value of a plurality of optical stack configurations. The method additionally includes forming an optical stack layer based on at least one of the optical stack configurations selected based on comparing the diffuse reflectance values and in accordance with the selected optical stack configuration.

在一實施例中,該方法包括計算複數個鏡面反射值,其等各係該等光學堆疊組態之各自值。 In one embodiment, the method includes calculating a plurality of specular reflection values, each of which is a respective value of the optical stack configurations.

在一實施例中,計算漫反射值包括計算該奈米線之散射截面。 In an embodiment, calculating the diffuse reflectance value comprises calculating a cross section of the nanowire.

在一實施例中,對各光學堆疊組態計算該等漫反射值分別包括計算來自該光學堆疊內奈米線位置的入射光之電磁場及對自該光學堆 疊內奈米線散射的光計算轉移矩陣。 In one embodiment, calculating the diffuse reflectance values for each optical stack configuration includes calculating an electromagnetic field of incident light from a position of a nanowire within the optical stack, respectively, and from the optical stack The light scattered by the intra-nanowire line calculates the transfer matrix.

在一實施例中,計算該漫反射包括根據該散射截面計算自奈米線散射的光量及來自奈米線位置之入射光的場。 In an embodiment, calculating the diffuse reflection comprises calculating a quantity of light scattered from the nanowire and a field of incident light from the nanowire position based on the scattering cross section.

在一實施例中,計算來自入射光的場包括計算來自奈米線位置之漫散射光的電磁場。 In an embodiment, calculating the field from the incident light comprises calculating an electromagnetic field of diffusely scattered light from the position of the nanowire.

在一實施例中,該複數個光學堆疊參數包括光學堆疊之層數目。在一實施例中,該複數個光學堆疊參數包括光學堆疊層之厚度範圍。在一實施例中,該複數個光學堆疊參數包括光學堆疊層之折射率範圍。 In an embodiment, the plurality of optical stacking parameters comprises a number of layers of the optical stack. In an embodiment, the plurality of optical stacking parameters comprises a thickness range of the optical stack layer. In an embodiment, the plurality of optical stacking parameters comprise a refractive index range of the optically stacked layer.

在一實施例中,形成光學堆疊層包括於基板上形成第一層及於該第一層上形成第二層,該奈米線係位於該第一或第二層中。 In one embodiment, forming the optical stack layer includes forming a first layer on the substrate and forming a second layer on the first layer, the nanowire being located in the first or second layer.

在一實施例中,該方法包括根據光學堆疊參數計算複數個鏡面反射值,其等各係該複數個光學堆疊組態之各自值。 In one embodiment, the method includes calculating a plurality of specular reflection values based on the optical stacking parameters, each of which is a respective value of the plurality of optical stack configurations.

在一實施例中,計算該複數個鏡面反射值包括對入射於各光學堆疊組態上之光計算轉移矩陣。 In an embodiment, calculating the plurality of specular reflection values comprises calculating a transfer matrix for the light incident on each of the optical stack configurations.

在一實施例中,選擇該等光學堆疊組態中之一者係部分根據該等鏡面反射值之比較。 In an embodiment, one of the optical stack configurations is selected for comparison based on the specular reflection values.

在一實施例中,選擇該等光學堆疊組態中之一者包括選擇對應於最小漫反射值之光學堆疊組態。 In an embodiment, selecting one of the optical stack configurations includes selecting an optical stack configuration corresponding to a minimum diffuse reflectance value.

一實施例係一種方法,其包括將用於具有奈米線之光學堆疊之輸入光學堆疊參數輸入至處理器中並將該等輸入光學堆疊參數儲存於耦合至該處理器之記憶體電路中。該方法另外包括根據該等光學堆疊參數於該處理器中對複數個各具有各自組態之光學堆疊計算複數個漫反射值。對各組態計算該等漫反射值係分別包括計算來自入射光在光學堆疊內某一位置(對應於該光學堆疊中之奈米線位置)的電磁場值及部分根據該電磁場值計算轉移矩陣,以提供在該光學堆疊表面的漫反 射值。 An embodiment is a method comprising inputting input optical stacking parameters for an optical stack having nanowires into a processor and storing the input optical stacking parameters in a memory circuit coupled to the processor. The method additionally includes calculating a plurality of diffuse reflection values for the plurality of optical stacks each having a respective configuration in the processor based on the optical stacking parameters. Calculating the diffuse reflection values for each configuration includes calculating an electromagnetic field value from a position of the incident light in the optical stack (corresponding to the position of the nanowire in the optical stack) and calculating a transfer matrix based on the electromagnetic field value, respectively. To provide a diffuse surface on the surface of the optical stack Shot value.

在一實施例中,該方法包括相互比較漫反射值及選擇該等漫反射值中之一者。 In an embodiment, the method includes comparing one of the diffuse reflection values to one another and selecting the diffuse reflection values.

在一實施例中,該方法包括自處理器輸出對應於選定的漫反射值之選定的光學堆疊組態。 In an embodiment, the method includes outputting, from the processor, a selected optical stack configuration corresponding to the selected diffuse reflection value.

在一實施例中,該等輸入光學堆疊參數包括光學堆疊中至少一層之折射率範圍。在一實施例中,該選定的光學堆疊組態包括來自該折射率範圍之折射率。在一實施例中,該等輸入光學堆疊參數包括光學堆疊層之厚度範圍。 In an embodiment, the input optical stacking parameters comprise a range of refractive indices of at least one layer of the optical stack. In an embodiment, the selected optical stack configuration includes a refractive index from the range of refractive indices. In an embodiment, the input optical stacking parameters comprise a thickness range of the optical stack layer.

在一實施例中,該選定的光學堆疊組態包括來自該光學堆疊層厚度範圍之厚度。 In an embodiment, the selected optical stack configuration includes a thickness from a range of thicknesses of the optical stack.

在一實施例中,該方法包括根據該選定的光學堆疊組態形成光學堆疊。 In an embodiment, the method includes forming an optical stack in accordance with the selected optical stack configuration.

在一實施例中,計算該等漫反射值包括計算奈米線之散射截面。 In an embodiment, calculating the diffuse reflection values comprises calculating a scattering cross section of the nanowires.

一實施例係一種系統,其包含處理器、耦合至該處理器之記憶體、耦合至該處理器且經組態以接收光學堆疊之第一參數之輸入端。該處理器係經組態以對於對應於光學堆疊中奈米線之位置計算一組入射光電磁場值、計算該奈米線之光散射分佈、計算一組在該光學堆疊表面之漫反射值及估算一組該光學堆疊之第二參數。該等第二參數對應於該組漫反射值之較佳值。輸出端係耦合至該處理器且經組態以接收來自該處理器之第二參數。 An embodiment is a system comprising a processor, a memory coupled to the processor, an input coupled to the processor and configured to receive a first parameter of the optical stack. The processor is configured to calculate a set of incident photoelectric field values for a position corresponding to a nanowire in the optical stack, calculate a light scattering distribution of the nanowire, calculate a set of diffuse reflection values at the optical stack surface, and A second set of parameters of the optical stack is estimated. The second parameters correspond to preferred values of the set of diffuse reflection values. An output is coupled to the processor and configured to receive a second parameter from the processor.

在一實施例中,該系統包括耦合至該輸出端之顯示器,該顯示器係經組態以顯示該等第二參數。 In an embodiment, the system includes a display coupled to the output, the display being configured to display the second parameter.

在一實施例中,該系統包括耦合至該輸出端之沈積裝置,該沈積裝置係經組態以接收該等第二參數及根據該等第二參數以沈積該光 學堆疊之第一光學層。 In one embodiment, the system includes a deposition device coupled to the output, the deposition device configured to receive the second parameter and to deposit the light based on the second parameter Learn the first optical layer of the stack.

一實施例係一種方法,其包括將光學堆疊參數輸入至處理器中、於該處理器中估算一組來自入射光在對應於光學堆疊中奈米線之位置之電磁場值及於該處理器中估算該奈米線之光散射分佈。該方法另外包括根據電磁場值及該散射截面於該處理器中估算一組在該光學堆疊表面的漫反射值及自該處理器輸出對應於選定的漫反射值之光學堆疊組態。 An embodiment is a method comprising inputting optical stacking parameters into a processor, in the processor, estimating a set of electromagnetic field values from incident light at positions corresponding to the nanowires in the optical stack and in the processor The light scattering distribution of the nanowire is estimated. The method additionally includes estimating a set of diffuse reflectance values at the optical stack surface in the processor based on the electromagnetic field value and the cross section and outputting an optical stack configuration corresponding to the selected diffuse reflectance value from the processor.

在一實施例中,估算該組電磁場值包括根據該等光學堆疊參數計算第一轉移矩陣。 In an embodiment, estimating the set of electromagnetic field values comprises calculating a first transfer matrix based on the optical stack parameters.

在一實施例中,估算該組漫反射值包括根據該等光學堆疊參數計算第二轉移矩陣。 In an embodiment, estimating the set of diffuse reflectance values comprises calculating a second transfer matrix based on the optical stacking parameters.

30‧‧‧光學堆疊 30‧‧‧ Optical stacking

32‧‧‧奈米線 32‧‧‧Nami Line

34‧‧‧低折射率層/透明絕緣層 34‧‧‧Low refractive index layer/transparent insulating layer

36‧‧‧基板 36‧‧‧Substrate

37‧‧‧表面 37‧‧‧ surface

38‧‧‧高折射率層 38‧‧‧High refractive index layer

40,42,44‧‧‧邊界 40, 42, 44‧ ‧ border

48,50‧‧‧圖形使用者界面 48, 50‧‧‧ graphical user interface

60‧‧‧系統 60‧‧‧ system

62‧‧‧處理器 62‧‧‧Processor

64‧‧‧記憶體 64‧‧‧ memory

66‧‧‧輸入模組 66‧‧‧Input module

68‧‧‧顯示器 68‧‧‧ display

70‧‧‧製造設備 70‧‧‧Manufacture equipment

120‧‧‧平板裝置 120‧‧‧Table device

在圖式中,相同標號表示相似元件或動作。該等圖式中之元件之尺寸及相對位置不一定呈比例繪製。例如,各種元件之形狀及角度不以比例繪製,且部分此等元件係任意放大且經定位以提高圖式可讀性。此外,所繪製元件之特定形狀無意傳達有關特定元件實際形狀之任何資訊且僅經選擇以便於在該等圖式中的辨認。 In the drawings, the same reference numerals indicate similar elements or acts. The dimensions and relative positions of the elements in the drawings are not necessarily to scale. For example, the shapes and angles of the various elements are not drawn to scale, and some of these elements are arbitrarily enlarged and positioned to improve the readability of the drawings. In addition, the particular shapes of the components are not intended to convey any information about the actual shapes of the particular elements and are only selected to facilitate the recognition in the drawings.

圖1係根據一實施例之包括奈米線之光學堆疊之橫截面。 1 is a cross section of an optical stack including nanowires in accordance with an embodiment.

圖2A係根據一實施例顯示自光學堆疊之鏡面反射。 2A shows specular reflection from an optical stack, in accordance with an embodiment.

圖2B係根據一實施例顯示自光學堆疊之漫反射。 2B shows diffuse reflection from an optical stack in accordance with an embodiment.

圖3A係在光學堆疊中之漫反射曲線。 Figure 3A is a diffuse reflection curve in an optical stack.

圖3B係在光學堆疊中之鏡面反射曲線。 Figure 3B is a specular reflection curve in an optical stack.

圖4A-4C顯示若干波長於各種介質中及各種厚度下的漫反射曲線。 Figures 4A-4C show diffuse reflection curves for several wavelengths in various media and at various thicknesses.

圖5A-5C顯示若干波長於各種介質中及各種厚度下的鏡面反射曲線。 Figures 5A-5C show specular reflection curves for several wavelengths in various media and at various thicknesses.

圖6係根據一實施例之光學堆疊之橫截面。 Figure 6 is a cross section of an optical stack in accordance with an embodiment.

圖7顯示在光學堆疊中之全內反射。 Figure 7 shows total internal reflection in an optical stack.

圖8係根據一實施例之包括三層之光學堆疊之橫截面。 Figure 8 is a cross section of an optical stack comprising three layers, in accordance with an embodiment.

圖9A係根據一實施例顯示在光學堆疊中傳播的頂部及底部模式之光學堆疊之橫截面。 9A is a cross section showing an optical stack of top and bottom modes propagating in an optical stack, in accordance with an embodiment.

圖9B係根據一實施例顯示漫散射光在光學堆疊中傳播的頂部及底部模式之光學堆疊之橫截面。 Figure 9B is a cross section of an optical stack of top and bottom modes showing diffuse scattered light propagating in an optical stack, in accordance with an embodiment.

圖10A顯示根據一實施例之GUI。 FIG. 10A shows a GUI in accordance with an embodiment.

圖10B顯示根據另一實施例之GUI。 FIG. 10B shows a GUI in accordance with another embodiment.

圖10C係根據一實施例之最佳鏡面及漫反射之曲線。 Figure 10C is a graph of optimal specular and diffuse reflections in accordance with an embodiment.

圖10D顯示根據一實施例之GUI。 FIG. 10D shows a GUI in accordance with an embodiment.

圖10E顯示根據另一實施例之GUI。 FIG. 10E shows a GUI in accordance with another embodiment.

圖11係根據一實施例之系統之方塊圖。 Figure 11 is a block diagram of a system in accordance with an embodiment.

圖12係根據一實施例減少來自光學堆疊之漫反射之方法。 Figure 12 is a diagram of a method of reducing diffuse reflection from an optical stack in accordance with an embodiment.

圖13係根據另一實施例減少來自光學堆疊之漫反射之方法。 Figure 13 is a diagram of a method of reducing diffuse reflection from an optical stack in accordance with another embodiment.

圖14顯示根據一實施例之包括光學堆疊之平板裝置。 Figure 14 shows a tablet device including an optical stack, in accordance with an embodiment.

本發明包括奈米線顯示器之「乳白色」外觀之起因、其解決方法及具有更低或無乳白色外觀之光學堆疊。如文中所使用,「光學堆疊」係指其中來自外部或內部源的光行進通過之多層薄膜堆疊,其中一或多層影響光的光學行為。該光學堆疊內的薄膜通常係功能性薄膜(例如透明傳導薄膜、偏光器、濾色器、防眩膜或抗反射薄膜)及保護性塗層及透明黏著劑。該等薄膜可係可撓性(例如,聚合物基板)或剛硬性(例如玻璃基板)。通常將該光學堆疊耦合至另一功能單元(例如顯示器)。除該等薄膜以外,薄膜之間或薄醚與顯示器之間的空隙亦對於光的光學行為有影響且被視為該光學堆疊部分。 The present invention includes the cause of the "milky" appearance of the nanowire display, its solution, and an optical stack with a lower or no milky white appearance. As used herein, "optical stack" refers to a multilayer film stack in which light from an external or internal source travels, one or more of which affect the optical behavior of the light. The film in the optical stack is typically a functional film (eg, a transparent conductive film, a polarizer, a color filter, an anti-glare film, or an anti-reflective film) with a protective coating and a clear adhesive. The films may be flexible (eg, polymeric substrates) or rigid (eg, glass substrates). The optical stack is typically coupled to another functional unit, such as a display. In addition to the films, the interstices between the films or between the thin ether and the display also have an effect on the optical behavior of the light and are considered to be part of the optical stack.

此外,在薄膜定向內容中,「上覆」另一薄膜之薄膜係經組態以比該另一薄膜更接近於外部光源(或觀測者)。例如,上覆該奈米線層之上塗層始終配置於該外部光源(或觀測者)與該奈米線層之間。「下伏於」另一薄膜之薄膜係經組態以比該另一薄膜更遠離該外部光源(或觀測者)。例如,在採用下伏於該奈米線層之下塗層之光學堆疊中,該奈米線層始終配置於該外部光源(或觀測者)與該-下塗層之間。 Moreover, in film oriented content, the film "overlying" another film is configured to be closer to the external source (or observer) than the other film. For example, a coating overlying the nanowire layer is always disposed between the external light source (or observer) and the nanowire layer. The film "underlying" another film is configured to be further from the external source (or observer) than the other film. For example, in an optical stack employing a coating underlying the nanowire layer, the nanowire layer is always disposed between the external light source (or observer) and the undercoat layer.

圖1顯示傳導透明薄膜之光學堆疊30。在該基礎光學堆疊(30)(如同更複雜者(例如,完整觸控面板))中,諸多或全部的該等層或結構元件在某種程度上可構成漫反射。本發明各種實施例係關於藉由控制及改良個別層或結構元件以減少漫反射之方法。然而,應瞭解可組合任何一或多個個別實施例以在進一步減少漫反射中提供附加效益。因此,各實施例係關於包含至少一個奈米線層及至少一個與該奈米線層相鄰之基板之光學堆疊,其中該奈米線層包括複數個傳導奈米線,且其中入射光之漫反射(自該光學堆疊與該入射光同側所觀測)係該入射光之部分百分比。如文中所使用,「相鄰」係指該基板與該奈米線層之相對位置。其等可係直接接觸或以其間介有一或多個中間層的方式相互靠近。 Figure 1 shows an optical stack 30 that conducts a transparent film. In the base optical stack (30) (as in a more complex one (eg, a full touch panel)), many or all of the layers or structural elements may constitute diffuse reflection to some extent. Various embodiments of the present invention relate to methods for reducing diffuse reflection by controlling and modifying individual layers or structural elements. However, it should be appreciated that any one or more of the individual embodiments can be combined to provide additional benefits in further reducing diffuse reflection. Accordingly, embodiments are directed to an optical stack comprising at least one nanowire layer and at least one substrate adjacent to the nanowire layer, wherein the nanowire layer comprises a plurality of conductive nanowires, and wherein the incident light is Diffuse reflection (as observed from the optical stack on the same side as the incident light) is a percentage of the incident light. As used herein, "adjacent" refers to the relative position of the substrate to the layer of nanowires. They may be in direct contact or close to each other in such a manner as to have one or more intermediate layers therebetween.

該光學堆疊30包括嵌埋於透明絕緣層34中之傳導奈米線32。該透明絕緣層34及該等奈米線32係位於基板36上。 The optical stack 30 includes conductive nanowires 32 embedded in a transparent insulating layer 34. The transparent insulating layer 34 and the nanowires 32 are located on the substrate 36.

該光學堆疊30係一種可用於平板顯示器中之類型。因此,希望使該光學堆疊30具有最大地增強該光學堆疊之視覺特徵之性質。如先前所述,包括奈米線32之光學堆疊30可導致乳白色或渾濁品質。此乳白色品質可減損該光學堆疊30之視覺特徵。特定言之,當希望顯示暗色(例如黑色)時,該光學堆疊30可反而顯示損害所顯示影像之品質之乳白色。 The optical stack 30 is a type that can be used in flat panel displays. Therefore, it is desirable to have the optical stack 30 have the property of maximizing the visual characteristics of the optical stack. As previously described, the optical stack 30 comprising the nanowires 32 can result in a milky white or hazy quality. This opalescent quality can detract from the visual characteristics of the optical stack 30. In particular, when it is desired to display a dark color (e.g., black), the optical stack 30 may instead display a milky white that compromises the quality of the displayed image.

此等非所欲特徵之一起因係源自該等奈米線32之漫反射。通 常,當光遇到一表面或物體時,反射角與入射角相等。此係稱為鏡面反射。鏡面反射係顯示於圖2A中。在圖2A中,光線以入射角Φ i 入射於該光學堆疊30之表面37上。該光線自該光學堆疊30之表面37以角Φ r (其等於Φ i )反射。 These undesired features are derived from the diffuse reflection of the nanowires 32. Typically, when light encounters a surface or object, the angle of reflection is equal to the angle of incidence. This is called specular reflection. The specular reflection system is shown in Figure 2A. In Figure 2A, light is incident on surface 37 of optical stack 30 at an angle of incidence Φ i . The light is reflected from the surface 37 of the optical stack 30 at an angle Φ r (which is equal to Φ i ).

然而,如圖2B中所示,照射至該光學堆疊30之表面37或實際上任何表面的部分光亦以複數個角θ r 發生漫反射。此漫反射係指光向諸多方向而非鏡面反射的預期反射角散射。雖然在圖2B中僅一個角標記為θ r ,但漫反射光係以諸多角θ r 反射。在圖2B中,入射於該表面37上的光向諸多方向散射。雖然極小部分的光通常自任何表面漫反射,但圖2B之光學堆疊30因存在奈米線32而導致進一步漫反射。 However, as shown in FIG. 2B, a portion of the light that strikes the surface 37 of the optical stack 30 or virtually any surface is also diffusely reflected at a plurality of angles θ r . This diffuse reflection refers to the expected reflection angle scattering of light in many directions rather than specular reflection. Although only one corner is labeled θ r in FIG. 2B, the diffuse reflection light is reflected at a plurality of angles θ r . In Figure 2B, light incident on the surface 37 is scattered in a number of directions. While a very small portion of the light is typically diffusely reflected from any surface, the optical stack 30 of Figure 2B results in further diffuse reflection due to the presence of the nanowires 32.

當光入射於尺寸小於光波長之物體或結構上時,則光自該物體漫散射。該等奈米線32及該光學堆疊30通常係半徑小於100 nm(例如半徑位於5與100 nm之間)。100 nm比可見光之最小波長小得多。因此,當任何可見光遇到奈米線32時,其自奈米線32漫反射。在一透明薄膜中,入射於表面37上之極大部分光透射過該表面37並到達嵌埋奈米線32之層34中。僅較小百分比的光於該表面反射。然而,與奈米線32相互作用之部分光發生漫反射。此漫反射係乳白色品質之主要起因,該乳白色品質有時可遞減包括奈米線32之光學堆疊30之外觀。已顯示:當光學堆疊30中併有奈米線32時,使用可以若干方式減少自奈米線32之漫反射之計算。 When light is incident on an object or structure having a size smaller than the wavelength of light, light is diffusely scattered from the object. The nanowires 32 and the optical stack 30 typically have a radius of less than 100 nm (e.g., a radius between 5 and 100 nm). 100 nm is much smaller than the minimum wavelength of visible light. Thus, when any visible light encounters the nanowire 32, it diffuses from the nanowire 32. In a transparent film, a substantial portion of the light incident on surface 37 is transmitted through surface 37 and into layer 34 of embedded nanowires 32. Only a small percentage of the light is reflected on the surface. However, part of the light that interacts with the nanowire 32 is diffusely reflected. This diffuse reflection is the primary cause of the milky white quality, which can sometimes be decremented including the appearance of the optical stack 30 of the nanowires 32. It has been shown that when there is a nanowire 32 in the optical stack 30, the calculation of diffuse reflection from the nanowire 32 can be reduced in several ways.

一種該方法係減小嵌埋奈米線32之層34之折射率。圖3A顯示漫反射與入射於奈米線32上之光之波長之曲線。已顯示三條曲線,各自對應於折射率為1.43、1.33及1.23的層。折射率為1.43的曲線的峰值顯著高於n等於1.33及n等於1.23的曲線。就折射率等於1.43的層而言,當光波長約400 nm時,出現漫反射峰值。400 nm係處在可見光譜邊緣,且對應於紫光。人類通常無法看見小於380 nm的波長,其對應 於紫外光。 One such method reduces the refractive index of layer 34 of embedded nanowires 32. FIG. 3A shows a plot of diffuse reflection versus the wavelength of light incident on the nanowire 32. Three curves have been shown, each corresponding to a layer having refractive indices of 1.43, 1.33, and 1.23. The peak of the curve with a refractive index of 1.43 is significantly higher than the curve with n equal to 1.33 and n equal to 1.23. For a layer having a refractive index equal to 1.43, a diffuse reflection peak occurs when the wavelength of light is about 400 nm. The 400 nm line is at the edge of the visible spectrum and corresponds to violet light. Humans usually cannot see wavelengths less than 380 nm, which corresponds to In the ultraviolet light.

當折射率降低至n=1.33時,不僅峰值漫反射減小,且亦偏移至更小波長。就折射率n=1.33的材料而言,峰值減小至約6×10-4且該峰值波長係約370 nm。因此,不僅漫反射出光學堆疊30之表面37的光減少,且反射的大部分光偏移出可見光譜並轉入紫外光譜。此處應注意:在此曲線圖中,漫反射值係呈任意單位,但仍然有利於明白改變光學堆疊30之參數對漫反射具有相當影響。 When the refractive index is lowered to n = 1.33, not only the peak diffuse reflection is reduced, but also shifted to a smaller wavelength. For materials having a refractive index n = 1.33, the peak is reduced to about 6 x 10 -4 and the peak wavelength is about 370 nm. Thus, not only is the light diffusely reflected off the surface 37 of the optical stack 30 reduced, but most of the reflected light is shifted out of the visible spectrum and into the ultraviolet spectrum. It should be noted here that in this graph, the diffuse reflectance values are in arbitrary units, but it is still advantageous to understand that changing the parameters of the optical stack 30 has a considerable influence on the diffuse reflection.

折射率n=1.23的材料之漫反射係三條曲線中之最小者。n=1.23的峰值漫反射係約4.5×10-4,且同樣重要的是,該峰值波長甚至進一步偏移至人眼不可見的紫外區域中。因此,將奈米線32放置於折射率更小的層34中可減少漫反射且使峰值漫反射偏移出可見光譜。 The diffuse reflection of the material having a refractive index n = 1.23 is the smallest of the three curves. The peak diffuse reflection of n = 1.23 is about 4.5 x 10 -4 , and it is equally important that the peak wavelength is even further shifted into the ultraviolet region that is invisible to the human eye. Thus, placing the nanowires 32 in the layer 34 having a lower refractive index reduces diffuse reflection and shifts the peak diffuse reflection out of the visible spectrum.

亦希望儘可能多地減少鏡面反射。圖3B顯示鏡面反射對與圖3A中相同的三種折射率n之光之波長之三條曲線。自圖3B可知,折射率n=1.43的層34之鏡面反射最高。對n=1.43而言,該峰值鏡面反射係約0.04。然而,該峰值係超出可見光範圍,約在300 nm處。對折射率n=1.33的層34而言,該峰值鏡面反射的降低量較小。然而,對大多數可見光譜(相當於約400 nm至700 nm波長)而言,n=1.33的鏡面反射遠低於n=1.43的鏡面反射。因此,雖然本發明之主要關注係減少漫反射,但亦不應忽視鏡面反射。減少鏡面反射及漫反射可最大地增強該光學堆疊30之視覺特徵。 It is also desirable to reduce specular reflection as much as possible. Figure 3B shows three curves of the specular reflection versus the wavelengths of the three refractive indices n of Figure 3A. As can be seen from Fig. 3B, the layer 34 of the refractive index n = 1.43 has the highest specular reflection. For n = 1.43, the peak specular reflection is about 0.04. However, this peak is outside the visible range, around 300 nm. For layer 34 having a refractive index n = 1.33, the amount of reduction in peak specular reflection is small. However, for most of the visible spectrum (equivalent to a wavelength of about 400 nm to 700 nm), the specular reflection of n = 1.33 is much lower than the specular reflection of n = 1.43. Thus, while the primary focus of the present invention is to reduce diffuse reflection, specular reflection should not be overlooked. Reducing specular and diffuse reflections maximizes the visual characteristics of the optical stack 30.

對折射率n=1.23的層34而言,鏡面反射係所有之中最低。不僅峰值鏡面反射減少,大部分可見光譜之鏡面反射亦非常接近於0,其中低點約在500 nm。因此,減小嵌埋奈米線32之層之折射率對漫反射及鏡面反射而言均非常有益。 For the layer 34 having a refractive index n = 1.23, the specular reflection system is the lowest among all. Not only is the peak specular reflection reduced, but the specular reflection of most of the visible spectrum is also very close to zero, with the low point at about 500 nm. Therefore, reducing the refractive index of the layer of embedded nanowires 32 is very beneficial for both diffuse and specular reflections.

可影響鏡面反射及漫反射之光學堆疊30之另一參數係嵌埋奈米線32之層34厚度。圖4A顯示就若干波長及折射率n=1.23而言漫反射與 嵌埋奈米線32之層34厚度之關係曲線。如圖可知,400 nm波長的光之漫反射略高於450、500或650 nm波長的光之漫反射。也許最值得注意的是,任何既定波長的漫反射在層34厚度為約20至400 nm的整個厚度範圍內大體上保持恆定。在圖4A中,400 nm光的漫反射比其他波長的漫反射量值更大且更可變。在其他光學堆疊中,並非如此。實際上,該層厚度在某些組態中可能係十分重要。 Another parameter of the optical stack 30 that can affect specular and diffuse reflection is the thickness of layer 34 of embedded nanowires 32. Figure 4A shows diffuse reflection with respect to several wavelengths and refractive index n = 1.23 The relationship between the thicknesses of the layers 34 of the buried nanowires 32 is shown. As can be seen, the diffuse reflection of light at a wavelength of 400 nm is slightly higher than the diffuse reflection of light at a wavelength of 450, 500 or 650 nm. Perhaps most notably, the diffuse reflection of any given wavelength remains substantially constant over the entire thickness range of layer 34 having a thickness of between about 20 and 400 nm. In FIG. 4A, the diffuse reflection of 400 nm light is larger and more variable than the diffuse reflection values of other wavelengths. In other optical stacks, this is not the case. In fact, this layer thickness may be important in some configurations.

圖4B繪製來自折射率n=1.33的層34中之奈米線32之漫反射。折射率的略微增加導致漫反射量值增加。特定言之,400 nm波長的光之漫反射比450、500或650 nm波長的光之漫反射增加更多。因此,圖3A及3B及圖4A至4C說明漫反射在可見光譜之紫光端附近波動最嚴重。 Figure 4B plots the diffuse reflection of the nanowires 32 in layer 34 from a refractive index n = 1.33. A slight increase in the refractive index results in an increase in the amount of diffuse reflection. In particular, the diffuse reflection of light at 400 nm increases more than the diffuse reflection of light at 450, 500 or 650 nm. Thus, Figures 3A and 3B and Figures 4A through 4C illustrate that diffuse reflection is most severely fluctuating near the violet end of the visible spectrum.

在圖4C中,折射率係n=1.43。隨著折射率增加,400 nm光之漫反射已出現較大增加。450 nm、500 nm及650 nm波長之光之漫反射亦已出現較小增加,但達到小得多的程度。 In Fig. 4C, the refractive index is n = 1.43. As the refractive index increases, the diffuse reflection of 400 nm light has increased significantly. The diffuse reflection of light at wavelengths of 450 nm, 500 nm, and 650 nm has also increased slightly, but to a much smaller extent.

然而,嵌埋奈米線32之層34厚度的改變使鏡面反射大幅度波動。該鏡面反射遵循圖5A中繪製的4種波長光中各者之正弦波圖案。當層34厚度增加時,所有波長光之鏡面反射之量值經歷峰值及谷值。當層厚度接近0時,4種波長光之各者之鏡面反射接近約4%的峰值。 However, the change in the thickness of layer 34 of embedded nanowire 32 causes the specular reflection to fluctuate greatly. This specular reflection follows the sine wave pattern of each of the four wavelengths of light drawn in Figure 5A. As the thickness of layer 34 increases, the magnitude of the specular reflection of all wavelengths of light experiences peaks and valleys. When the layer thickness is close to zero, the specular reflection of each of the four wavelengths of light approaches a peak of about 4%.

當厚度增加至約100 nm時,圖5A中所繪的4種波長均經歷最小鏡面反射。當層34厚度向200 nm增加時,4種波長光均再次接近峰值。根據該堆疊中之層厚度,光將在該整個光學堆疊位置經歷相長干涉及相消干涉。另外,自表面37反射的光可與自下方反射的光呈180度異相。因此,根據層(34,38)之厚度及材料,自下方反射的光可與自表面37反射的光發生相消干涉且由此減少鏡面反射。 When the thickness is increased to about 100 nm, the four wavelengths depicted in Figure 5A experience minimal specular reflection. When the thickness of the layer 34 increases toward 200 nm, the four wavelengths of light again approach the peak. Depending on the thickness of the layer in the stack, light will experience constructive interference at the entire optical stacking position involving destructive interference. Additionally, light reflected from surface 37 may be 180 degrees out of phase with light reflected from below. Thus, depending on the thickness and material of the layers (34, 38), light reflected from below can destructively interfere with light reflected from surface 37 and thereby reduce specular reflection.

在圖5B中,繪製當層34具有1.33的折射率時4種波長光之鏡面反射。峰值及谷值出現在與當折射率為1.23時的大體上相同位置。然而,此時的最小值高於n=1.23時。特定言之,該等最小值僅下降至約 1%鏡面反射,而對n=1.23而言,最小值下降至約0。 In Fig. 5B, specular reflection of four wavelengths of light is illustrated when layer 34 has a refractive index of 1.33. The peaks and valleys appear at substantially the same position as when the refractive index is 1.23. However, the minimum value at this time is higher than n=1.23. In particular, these minimums only drop to approx. 1% specular reflection, while for n = 1.23, the minimum value drops to about zero.

在圖5C中,嵌埋奈米線32之層34之折射率n=1.43。此處的峰值保持在約4%(如同圖5B及5A)。然而,鏡面反射百分比之最小值已增加至約2.5%,而n=1.33為1%及n=1.23為0%。因此,為減少鏡面反射,希望在某些光學堆疊中具有更低的折射率。 In Figure 5C, the layer 34 of embedded nanowire 32 has a refractive index n = 1.43. The peak here is kept at about 4% (as in Figures 5B and 5A). However, the minimum value of the specular reflection percentage has increased to about 2.5%, while n = 1.33 is 1% and n = 1.23 is 0%. Therefore, to reduce specular reflection, it is desirable to have a lower refractive index in certain optical stacks.

圖6顯示根據一實施例之光學堆疊30。根據一實施例,該光學堆疊30包括絕緣層34中之奈米線32。層34係放置於層38上,層38係高折射率層。層38亦係光學上透明。層38可增強來自奈米線32之漫射光之前向散射。當奈米線32放置於具有比層38相對低折射率之層34中時,則促進漫射光之更多前向散射。換言之,當光自奈米線32漫反射時,更多的光將會朝層38前向散射。因此,漫反射回向光學堆疊30之表面37的光將減少。此係部分因為當高折射率層鄰接低折射率層時前向散射相對於後向散射具有高態密度。該高態密度促進如先前所述之前向散射。 FIG. 6 shows an optical stack 30 in accordance with an embodiment. According to an embodiment, the optical stack 30 includes a nanowire 32 in the insulating layer 34. Layer 34 is placed on layer 38, which is a high refractive index layer. Layer 38 is also optically transparent. Layer 38 enhances the forward scatter of the diffused light from nanowire 32. When the nanowires 32 are placed in the layer 34 having a relatively lower refractive index than the layer 38, then more forward scatter of the diffused light is promoted. In other words, as the light diffuses from the nanowire 32, more of the light will be forward scatter toward layer 38. Therefore, the light that diffusely reflects back to the surface 37 of the optical stack 30 will decrease. This is due in part to the fact that forward scatter has a high density of states relative to backscatter when the high refractive index layer is adjacent to the low refractive index layer. This high density of states promotes forward scatter as previously described.

在奈米線32下方具有高折射率層38之另一優點係漫反射光之全內反射可發生在高折射率層38內(如圖7所示)。臨界角θc係入射角,大於該角可發生全內反射。根據折射邊界處的法線測量該入射角。當光自高折射率層38透至低折射率層34時,則照射介於層34與層38之間的界面的光折向高折射率層38。當該入射角足夠大時,低折射率層34中之透射角相對於法線達到90°。此時,光不再透射至低折射率層34中。此相互作用遵循司乃耳法則(Snell's law),其表述為:n 1 sin(θ) 1 =n 2 sin(θ) 2 Another advantage of having a high refractive index layer 38 beneath the nanowire 32 is that total internal reflection of diffusely reflected light can occur within the high refractive index layer 38 (as shown in Figure 7). The critical angle θ c is the angle of incidence above which total internal reflection can occur. The angle of incidence is measured from the normal at the refraction boundary. When light passes from the high refractive index layer 38 to the low refractive index layer 34, the light that illuminates the interface between the layer 34 and the layer 38 is deflected toward the high refractive index layer 38. When the incident angle is sufficiently large, the transmission angle in the low refractive index layer 34 reaches 90° with respect to the normal. At this time, light is no longer transmitted into the low refractive index layer 34. This interaction follows the Snell's law, which is expressed as: n 1 sin(θ) 1 = n 2 sin(θ) 2 .

根據簡單數學,全內反射發生的臨界角θc可如下計算:θ c =arcsin(n 2 /n 1 )According to simple mathematics, the critical angle θ c at which total internal reflection occurs can be calculated as follows: θ c = arcsin(n 2 /n 1 ) .

因此,低折射率層34與高折射率層38的差距越大,則臨界角將越小。當臨界角變得越小時,則一旦到達高折射率層38與低折射率層 34之邊界時,更多的光將經歷全內反射。因此,選擇具有足夠高折射率之層38可進一步減少到達光學堆疊30之表面37之漫反射光的量。因此,促進全內反射與如圖6中所述之增強前向散射有關。特定言之,自奈米線32向前散射至高折射率層38中的光越多,則更多的光將於高折射率層38內發生全內反射且將無法到達該表面而因此導致乳白色增加。 Therefore, the larger the difference between the low refractive index layer 34 and the high refractive index layer 38, the smaller the critical angle will be. When the critical angle becomes smaller, once the high refractive index layer 38 and the low refractive index layer are reached At the boundary of 34, more light will experience total internal reflection. Thus, selecting a layer 38 having a sufficiently high refractive index can further reduce the amount of diffusely reflected light that reaches the surface 37 of the optical stack 30. Thus, promoting total internal reflection is associated with enhanced forward scatter as described in FIG. In particular, the more light that is scattered forward from the nanowire 32 into the high refractive index layer 38, the more light will be totally internally reflected within the high refractive index layer 38 and will not reach the surface and thus result in a milky white increase.

根據圖6及7中所述之原理,圖8揭示根據一實施例之光學堆疊30,如先前所述,其中高折射率層38放置於低折射率層34下方及基板36上方。具有包括低折射率層34、嵌埋在該低折射率層34中且與該低折射率層下方之高折射率層相鄰的奈米線32之光學堆疊30提供如圖6及7所述之增強。已具有的基板36(其通常具有位於低折射率層34與高折射率層38之間的折射率)提供附加結構支撐及允許附著至平板裝置。 6 illustrates an optical stack 30, as previously described, wherein the high refractive index layer 38 is placed below the low refractive index layer 34 and above the substrate 36, in accordance with an embodiment described above. An optical stack 30 having a nanowire 32 including a low refractive index layer 34 embedded in the low refractive index layer 34 and adjacent to the high refractive index layer below the low refractive index layer is provided as described in Figures 6 and 7. Enhanced. The already existing substrate 36, which typically has a refractive index between the low refractive index layer 34 and the high refractive index layer 38, provides additional structural support and allows for attachment to a flat panel device.

雖然光學堆疊30之前述實施例提供各效益,但最佳化光學堆疊以使漫反射及鏡面反射最小化仍非常困難。為提供具有最小漫反射之光學堆疊,利用計算或估算既定組態之層及奈米線的光學堆疊30之漫反射之有效方法係有益。可藉由對光學堆疊30求解麥克斯韋方程式(Maxwell's equations)來計算光學堆疊30之漫反射。描述電場E及磁場B之性質的麥克斯韋方程式之微分形式係如下: 其中ρ係由於自由電荷及極化電荷之電荷密度;J係電流密度;ε 0 係自由空間之電容率及μ 0 係自由空間之磁導率。在計算漫反射之方法中利用麥克斯韋方程式係相當困難,且當欲對諸多光學堆疊30計算漫反射時,可需要大量時間及處理器資源。麥克斯韋方程式之複雜性使求解及計算光學堆疊30之較佳參數非常困難。 While the foregoing embodiments of optical stack 30 provide various benefits, it is still very difficult to optimize the optical stack to minimize diffuse and specular reflection. In order to provide an optical stack with minimal diffuse reflection, an efficient method of calculating the diffuse reflection of the optical stack 30 of the layer and the nanowires of a given configuration is useful. The diffuse reflection of the optical stack 30 can be calculated by solving the optical stack 30 for Maxwell's equations. The differential form of Maxwell's equation describing the properties of electric field E and magnetic field B is as follows: Where ρ is due to the charge density of free charge and polarized charge; J-type current density; ε 0 is the permittivity of free space and the permeability of μ 0 free space. It is quite difficult to utilize Maxwell's equations in the method of calculating diffuse reflection, and when it is desired to calculate diffuse reflection for many optical stacks 30, a large amount of time and processor resources may be required. The complexity of Maxwell's equations makes it difficult to solve and calculate the preferred parameters of the optical stack 30.

另外,每次對光學堆疊30添加新的不同層時,不容易控制麥克斯韋方程式以再提供包括其他參數之光學堆疊30之快速最佳化。在某些情況下,可在奈米線32下方及上方添加諸多層。某些光學堆疊可受特定限制。每次改變光學堆疊30之參數或限制時,則將重新求解麥克斯韋方程式,由此耗費更多時間及處理器資源。 Additionally, each time a new different layer is added to the optical stack 30, it is not easy to control the Maxwell equation to provide a further optimization of the optical stack 30 including other parameters. In some cases, multiple layers can be added below and above the nanowire 32. Certain optical stacks may be subject to specific limitations. Each time the parameters or limits of the optical stack 30 are changed, Maxwell's equations are re-solved, thereby consuming more time and processor resources.

圖9A及9B將描述一種經由轉移矩陣計算光學堆疊之鏡面反射及漫反射之低資源密集方法。由於麥克斯韋方程式為二階偏微分方程式,因此此等方程式的一組全解利用解的一組至少兩個線性無關族(模式)。一實施例定義此等兩族為「頂部」及「底部」模式。該第一組解(頂部模式)對應於可由自頂部入射於該系統上的光引發的場分佈(如在鏡面反射之情況下)。該第二組解(底部模式)描述該結構之基板側的光源(圖9A中之層36下方)可引發的在整個系統中的場分佈。此等解亦存在漫反射過程中。 9A and 9B will describe a low resource intensive method of calculating specular and diffuse reflections of an optical stack via a transfer matrix. Since Maxwell's equations are second-order partial differential equations, a set of total solutions of these equations utilizes a set of at least two linear independent families (patterns) of the solution. One embodiment defines these two families as "top" and "bottom" modes. The first set of solutions (top mode) corresponds to a field distribution that can be induced by light incident on the system from the top (as in the case of specular reflection). This second set of solutions (bottom mode) describes the field distribution throughout the system that can be induced by the light source on the substrate side of the structure (below the layer 36 in Figure 9A). These solutions also exist in the process of diffuse reflection.

現根據圖9A右側箭頭更詳細考慮鏡面反射過程。在此過程中,部分量入射光透射。圖9A顯示根據一實施例之光學堆疊30。奈米線32未顯示於圖9A中,因為進行有關圖9A之光學堆疊之計算時似乎不存在奈米線32。該光學堆疊中之位置y=0對應於奈米線32在該光學堆疊中佔據的位置。該光學堆疊30包括如先前所述之低折射率層34。該低折射率層34係位於高折射率層38上且該高折射率層38係位於基板36上。用光源照射該光學堆疊30。光入射於低折射率層34之表面37上。 The specular reflection process is now considered in more detail in accordance with the arrow on the right side of Figure 9A. During this process, a portion of the incident light is transmitted. FIG. 9A shows an optical stack 30 in accordance with an embodiment. The nanowire 32 is not shown in Figure 9A because the nanowire 32 does not appear to exist when performing the calculations for the optical stack of Figure 9A. The position y = 0 in the optical stack corresponds to the position occupied by the nanowire 32 in the optical stack. The optical stack 30 includes a low refractive index layer 34 as previously described. The low refractive index layer 34 is on the high refractive index layer 38 and the high refractive index layer 38 is on the substrate 36. The optical stack 30 is illuminated with a light source. Light is incident on the surface 37 of the low refractive index layer 34.

假定不存在奈米線來計算在整個多層結構中的EM場分佈。使用轉移矩陣方法進行此等計算,其中各層中的場由一系列在整個系統中 上下移動的平面波(反射/透射波)表示,且將鄰近層中此等波之振幅經由轉移矩陣建立關係。 It is assumed that no nanowires exist to calculate the EM field distribution throughout the multilayer structure. Perform these calculations using the transfer matrix method, where the fields in each layer are made up of a series throughout the system The plane waves (reflected/transmitted waves) moving up and down represent and establish the relationship of the amplitudes of the waves in the adjacent layers via the transfer matrix.

來自光源的光入射於光學堆疊30之表面37上。光學堆疊右側箭頭對應於頂部模式,因為其等攜帶來自該系統頂部之能量。來自該光學堆疊上方光源的部分量的入射光透射通過表面37至低折射率層34中,如圖9A中光學堆疊右側向下進入層34的箭頭所指示。入射於光學堆疊30上的部分百分比的光自表面37反射,如自向下進入層34之箭頭成一角度離開的箭頭表示。此箭頭角度無意代表光自表面反射的角度,僅指示部分光向上返回,而部分通過。就圖9A中所有箭頭而言,此均成立。似乎成一角度的彼等箭頭僅係成一定角度以區別其等與通過邊界的箭頭。實際上,光傳播方向取決於照明源,且由麥克斯韋方程式之解描述。 Light from the source is incident on surface 37 of optical stack 30. The right side of the optical stack corresponds to the top mode because it carries energy from the top of the system. A portion of the incident light from the source above the optical stack is transmitted through surface 37 into low refractive index layer 34, as indicated by the arrows in the optical stack on the right side down into layer 34 in FIG. 9A. A portion of the light incident on the optical stack 30 is reflected from the surface 37 as indicated by the arrow exiting at an angle from the arrow entering the layer 34. This angle of the arrow is not intended to represent the angle at which light is reflected from the surface, only indicating that part of the light is returning upwards and partially passing. This is true for all the arrows in Figure 9A. It seems that the arrows at an angle are only angled to distinguish them from the arrows that pass through the boundary. In fact, the direction of light propagation depends on the illumination source and is described by the solution of Maxwell's equation.

自空氣通過邊界37之部分光繼續在層34中傳播直至到達層34與38之間的邊界44。在邊界44處,部分光通過及部分反射,如右側向下通過邊界44之箭頭及返回至層34中之箭頭(其表示在邊界44處的反射)所指示。此反射光將進一步返回至邊界37,部分構成初次鏡面反射(向上箭頭)及部分構成初次透射(向下箭頭)。在圖9A之內容中,將此等後續再反射及再透射組合在一起且由透射(向下)及反射(向上)箭頭之單一組合表示。根據一實施例,該描述與可用於自動計算總體反射/透射係數之轉移矩陣技術一致。 Part of the light from the air passing through the boundary 37 continues to propagate in the layer 34 until it reaches the boundary 44 between the layers 34 and 38. At boundary 44, a portion of the light passes through and is partially reflected, as indicated by the arrow pointing downward through the boundary 44 and returning to the arrow in layer 34 (which represents the reflection at boundary 44). This reflected light will return further to boundary 37, with portions forming a first specular reflection (upward arrow) and a portion forming a primary transmission (downward arrow). In the context of Figure 9A, these subsequent re-reflections and re-transmissions are combined and represented by a single combination of transmissive (downward) and reflective (upward) arrows. According to an embodiment, the description is consistent with a transfer matrix technique that can be used to automatically calculate the overall reflection/transmission coefficients.

同樣地,在邊界42處,通過層38至邊界42之部分光通過邊界42至層36中。同樣地,入射於邊界42上之部分光反射回到層38中。部分量的光通過邊界40至層36下方之任何層中。 Likewise, at boundary 42, a portion of the light passing through layer 38 to boundary 42 passes through boundary 42 to layer 36. Similarly, a portion of the light incident on boundary 42 is reflected back into layer 38. A portion of the light passes through any of the layers 40 to below layer 36.

假想光源係顯示於光學堆疊30之層36下方。該光學堆疊左側的虛線箭頭源自此光源且對應於「底部模式」,因為其等攜帶來自該系統底部向上的能量。部分量的光通過邊界40傳播至光學堆疊之層36中 朝向邊界42,而部分此光將反射。在邊界42處,部分量的光自層36通過邊界42至層38中。同時,部分光在邊界42處反射回到邊界40。同樣地,在邊界44處,部分光通過至層34中,而部分則於邊界44處反射回到層38中。 The imaginary light source is shown below layer 36 of optical stack 30. The dashed arrow on the left side of the optical stack originates from this source and corresponds to the "bottom mode" because it carries energy from the bottom of the system upwards. A portion of the light propagates through the boundary 40 into the layer 36 of the optical stack It faces the boundary 42 and part of this light will be reflected. At boundary 42, a portion of the light from layer 36 passes through boundary 42 to layer 38. At the same time, part of the light is reflected back to boundary 40 at boundary 42. Likewise, at boundary 44, a portion of the light passes into layer 34 and a portion is reflected back into layer 38 at boundary 44.

最後,在光學堆疊30之表面37處,部分光通過層34至包圍光學堆疊30之空氣中。 Finally, at surface 37 of optical stack 30, a portion of the light passes through layer 34 to the air surrounding optical stack 30.

藉由使用轉移矩陣,可計算在各層中上下傳播的場之振幅。特定言之,對頂部模式而言,自界面37向上反射的光之振幅之計算可用於非常精確地計算全鏡面反射。另外,構成頂部模式之其他波之振幅可用於計算堆疊30內任何既定垂直位置的電磁場。依此方式,可計算奈米線32位置的場。 By using a transfer matrix, the amplitude of the field propagating up and down in each layer can be calculated. In particular, for the top mode, the calculation of the amplitude of the light reflected upward from interface 37 can be used to calculate the full specular reflection very accurately. Additionally, the amplitudes of the other waves that make up the top mode can be used to calculate the electromagnetic field at any given vertical position within the stack 30. In this way, the field at the 32 position of the nanowire can be calculated.

在一實施例中,假定z方向(即,面向該頁面內的方向)的光學堆疊之尺寸係無限。因此,該光學堆疊30中之總場可以具有不同偏振的兩個場之線性組合來表示。該等第一組場(稱為TE波)具有沿z軸之電場分量,因此其磁場僅有x及y分量。同樣地,該等第二組波(TM波)具有與z軸對齊的磁場且其電場位於xy平面內。 In an embodiment, the size of the optical stack in the z-direction (ie, facing the direction within the page) is assumed to be infinite. Thus, the total field in the optical stack 30 can be represented by a linear combination of two fields having different polarizations. The first set of fields (referred to as TE waves) have an electric field component along the z-axis, so their magnetic fields have only x and y components. Likewise, the second set of waves (TM waves) have a magnetic field aligned with the z-axis and their electric field is in the xy plane.

在該光學堆疊30內的兩個任意選定的相鄰層(jj+1)的界面處,假定入射光係波向量具有分量{}之平面波。可藉由考慮電場及磁場的邊界條件來測定相鄰層中平面波之振幅之間的關係。明確言之,就層j及j+1(例如對應於層34及38)之間的界面而言,此關係表示如下: 其中α -α +係分別以負及正y方向傳播之波之振幅;TE偏振波之偏振相關常數K j 表示且TM偏振波之偏振相關常數K j 表示。聯繫鄰近層中之場振幅之矩陣稱為轉移矩陣。該轉移矩陣僅係一種類 型的轉移矩陣,其可用於對光學堆疊30計算鏡面反射、漫反射或光波之振幅。可使用諸多其他類型的轉移矩陣。另外,根據本發明原理,可使用除轉移矩陣以外的其他方法計算漫反射。 At the interface of two arbitrarily selected adjacent layers ( j and j +1) within the optical stack 30, the incident light system wave vector is assumed to have a component { Plane wave of }. The relationship between the amplitudes of the plane waves in adjacent layers can be determined by considering the boundary conditions of the electric field and the magnetic field. Specifically, for the interface between layers j and j+1 (eg, corresponding to layers 34 and 38), this relationship is expressed as follows: Wherein α - and α + are the amplitudes of the waves propagating in the negative and positive y directions respectively; the polarization dependent constant K j of the TE polarized waves is Representing and the polarization dependent constant K j of the TM polarized wave is Said. The matrix that relates the amplitude of the field in the adjacent layer is called the transfer matrix. The transfer matrix is merely one type of transfer matrix that can be used to calculate the amplitude of specular, diffuse, or optical waves to the optical stack 30. Many other types of transfer matrices are available. Additionally, in accordance with the principles of the present invention, diffuse reflection can be calculated using methods other than transfer matrices.

圖9B顯示圖9A之光學堆疊30,在圖9A中,奈米線32已散射入射於圖9A之光學堆疊30上之入射光。圖9A中存在的光源不存在於圖9B中,現在強調的焦點為漫反射而非鏡面反射。因此,奈米線32使光朝複數個方向散射。 Figure 9B shows the optical stack 30 of Figure 9A. In Figure 9A, the nanowires 32 have scattered incident light incident on the optical stack 30 of Figure 9A. The light source present in Figure 9A is not present in Figure 9B, and the focus now emphasized is diffuse reflection rather than specular reflection. Thus, the nanowire 32 scatters light in a plurality of directions.

漫反射對應於自光學堆疊30中存在的奈米線32散射的通過表面37的光量。因此,根據一實施例計算漫反射之方法包括計算自奈米線32朝所有方向散射的光量。如先前所述,當計算轉移矩陣以測定鏡面反射時,亦可計算該光學堆疊中任何位置的場。計算由奈米線32散射的光之一個步驟係計算奈米線32位置的場。 The diffuse reflection corresponds to the amount of light passing through the surface 37 scattered from the nanowires 32 present in the optical stack 30. Thus, a method of calculating diffuse reflection according to an embodiment includes calculating the amount of light scattered from the nanowire 32 in all directions. As previously described, when calculating the transfer matrix to determine specular reflection, the field at any location in the optical stack can also be calculated. One step in calculating the light scattered by the nanowire 32 is to calculate the field at the position of the nanowire 32.

當已計算或估算奈米線位置之場時,可藉由計算或估算奈米線32之散射截面來獲得該奈米線散射的光量。該奈米線之散射截面係可藉由求解針對既定形狀的長圓柱狀線之麥克斯韋方程式來獲得。就具有圓柱橫截面之線而言,可計算該散射截面且對處理器資源不造成極大負荷。亦可針對其他形狀的線(例如具有多邊形或其他橫截面的線)計算散射截面。在該等計算之一實例中,麥克斯韋方程式之解係由一組圓柱形波表示,且利用沿線圓周之邊界條件與此等波之振幅建立關係。在論文(Viktor A.Podolskiy,Evgenii Narimanov,Wei Fang,and Hui Cao,Chaotic microlasers based on dynamical localizatioo,Proc.Nat.Acad.Sci.v.101(29)pp.10498-10500(2004)及其中之參考文獻中)中已描述使用自(例如)介電共振器發射的光來實現該形式。此論文以全文引用之方式併入本文中。一旦發現該關係,則直接建立該線散射的能通量與入射於該線上的能通量的關係,並用此關係計算該線之散射截面。該散射截面描述奈米線32將散射的入射於該奈米線32上之光的 比例。 When the field of the nanowire position has been calculated or estimated, the amount of light scattered by the nanowire can be obtained by calculating or estimating the scattering cross section of the nanowire 32. The scattering cross section of the nanowire can be obtained by solving Maxwell's equation for a long cylindrical line of a given shape. In the case of a line having a cylindrical cross section, the scattering cross section can be calculated without causing a significant load on the processor resources. The scattering cross section can also be calculated for lines of other shapes, such as lines having a polygonal or other cross section. In one example of such calculations, the solution of Maxwell's equation is represented by a set of cylindrical waves, and the boundary conditions along the circumference of the line are used to establish a relationship with the amplitude of the waves. In the paper (Viktor A. Podolskiy, Evgenii Narimanov, Wei Fang, and Hui Cao, Chaotic microlasers based on dynamical localizatioo, Proc. Nat. Acad. Sci. v. 101 (29) pp. 10498-10500 (2004) and This form has been described using light emitted from, for example, a dielectric resonator, in the reference. This paper is incorporated herein by reference in its entirety. Once the relationship is found, the relationship between the energy flux of the line scattering and the energy flux incident on the line is established directly, and the relationship is used to calculate the scattering cross section of the line. The scattering cross section depicts the light incident on the nanowire 32 by the nanowires 32. proportion.

藉由將來自入射於奈米線32上的光的場乘以該奈米線之散射截面,可計算奈米線32散射的光量。可藉由再計算光學堆疊30中奈米線32散射的光之轉移矩陣來計算或估算自光學堆疊30之全漫反射。該漫反射係由奈米線32散射之自表面37離開光學堆疊30的光量。在一實施例中,該奈米線經處理使光似乎朝所有方向均等散射。數學上,漫散射光的光譜A(kx)不取決於波向量kx之x分量。 The amount of light scattered by the nanowires 32 can be calculated by multiplying the field from the light incident on the nanowire 32 by the scattering cross section of the nanowire. The full diffuse reflection from the optical stack 30 can be calculated or estimated by recalculating the transfer matrix of light scattered by the nanowires 32 in the optical stack 30. The diffuse reflection is the amount of light that is scattered from the surface 37 from the optical stack 30 by the nanowires 32. In one embodiment, the nanowires are treated such that the light appears to be equally scattered in all directions. Mathematically, the spectrum A(k x ) of diffusely scattered light does not depend on the x component of the wave vector k x .

與圖9A中的鏡面反射光類似,圖9B中來自奈米線的漫反射光亦透射過該光學堆疊內各邊界及自其反射。針對先前所述之頂部及底部模式計算用於計算漫反射之轉移矩陣。 Similar to the specularly reflected light in Figure 9A, the diffusely reflected light from the nanowires in Figure 9B is also transmitted through and reflected from boundaries within the optical stack. The transfer matrix used to calculate the diffuse reflection is calculated for the top and bottom modes previously described.

如先前所述自奈米線32前向散射的光將入射於層34與38之間的邊界44上。部分此光將反射回表面37。來自奈米線32的部分前向散射光將透射通過邊界44進入層38中。光將再傳播至層38與36之間的邊界44,於該處部分光將透射及部分將向上反射回邊界44。透射通過邊界36之部分光將在邊界40處反射且部分將通過邊界40。通過邊界40之全部光將表示漫透射光。各界面(44,42,40)反射的光將構成漫反射。然而,漫反射之主要貢獻來自發射進入該系統之底部模式的光(圖9B中顯示位於奈米線上方)。透射通過界面37的光量(其將表示由該線散射至底部模式中的全部光及最初發射至頂部模式中且隨後經界面(44,42,40)反射的部分光)表示該系統中的總體漫反射。 Light that is forward scattered from the nanowire 32 as previously described will be incident on the boundary 44 between the layers 34 and 38. Some of this light will be reflected back to surface 37. Part of the forward scattered light from the nanowire 32 will pass through the boundary 44 into the layer 38. The light will again propagate to the boundary 44 between layers 38 and 36 where a portion of the light will transmit and a portion will reflect upward back to boundary 44. Part of the light transmitted through boundary 36 will be reflected at boundary 40 and partially will pass through boundary 40. All of the light passing through the boundary 40 will represent diffuse transmitted light. The light reflected by each interface (44, 42, 40) will constitute a diffuse reflection. However, the main contribution of diffuse reflection comes from the light that is emitted into the bottom mode of the system (shown above the nanowire in Figure 9B). The amount of light transmitted through the interface 37 (which will represent all of the light scattered by the line into the bottom mode and the portion of the light that was originally emitted into the top mode and then reflected by the interface (44, 42, 40)) represents the overall in the system Diffuse reflection.

可以如圖9A中所述般類似於鏡面反射的方式來計算漫反射。即,獲得散射截面並對在該堆疊30內的所有邊界處透射及反射的漫散射光進行轉移矩陣計算。依此方式,可近似總體漫反射且同時使用相對少處理器資源。 Diffuse reflection can be calculated in a manner similar to specular reflection as described in Figure 9A. That is, a scattering cross section is obtained and a transfer matrix calculation is performed on the diffuse scattered light transmitted and reflected at all boundaries within the stack 30. In this way, the overall diffuse reflection can be approximated while using relatively little processor resources.

在一實施例中,奈米線所處位置的場可包括來自入射光的場及來自先前散射光的場。換言之,由奈米線32散射的部分光將於該光學 堆疊30內反射且被奈米線32再次散射。可藉由考慮來自奈米線所處位置的漫散射光的場來提高漫反射計算的精確性。 In an embodiment, the field at which the nanowire is located may include a field from incident light and a field from previously scattered light. In other words, part of the light scattered by the nanowire 32 will be in the optics The stack 30 is internally reflected and is again scattered by the nanowires 32. The accuracy of the diffuse reflection calculation can be improved by considering the field of diffuse scattered light from the position where the nanowire is located.

光散射之計算通常考慮散射光之相。為實現此目的,假定奈米線半徑非常小,因此藉由最低可能柱諧函數控制其散射(經驗計算指示TE散射受m=0[極角無關]圓柱模式控制,而TM散射受m=1[似偶極]圓柱模式控制。因此該等散射波之光譜係與以下成比例: 其中n係包圍該線之材料之折射率;k係波向量且ω係角頻率。注意當該線半徑足夠小時,兩種情況均降低至前述無關kx的光譜。 The calculation of light scattering usually takes into account the phase of the scattered light. To achieve this, it is assumed that the radius of the nanowire is very small, so the scattering is controlled by the lowest possible column harmonic function (empirical calculation indicates that TE scattering is controlled by m=0 [polar angle independent] cylindrical mode, and TM scattering is m=1 [like dipole] cylindrical mode control. Therefore, the spectral spectrum of these scattered waves is proportional to the following: Where n is the refractive index of the material surrounding the line; k is the wave vector and ω is the angular frequency. Note that when the line radius is small enough, both cases are reduced to the aforementioned unrelated k x spectrum.

散射光表示為「發射」波(底部模式為y>0,頂部模式為y<0)之總和加上頂部及底部模式各者之反射分量之總和。由光源發射的頂部及底部模式之振幅係與TE偏振相同且與「偶極」TM偏振相反。當考慮頂部及底部模式之干涉時,發射光之有效振幅對TE波而言變為: The scattered light is expressed as the sum of the "emission" waves (the bottom mode is y > 0, the top mode is y < 0) plus the sum of the reflection components of the top and bottom modes. The amplitudes of the top and bottom modes emitted by the source are the same as the TE polarization and opposite to the "dipole" TM polarization. When considering the interference of the top and bottom modes, the effective amplitude of the emitted light becomes: for the TE wave:

及對TM波而言為: And for the TM wave:

其中a(k x )係發射光之振幅且r t ,r b 係頂部及底部模式之分量之反射係數。 Where a ( k x ) is the amplitude of the emitted light and r t , r b is the reflection coefficient of the components of the top and bottom modes.

為計算反饋場(即,再次入射於奈米線32上之漫散射光),吾人將該等發射場乘以其各自反射係數並將兩者相加。因此,該線位置之場之總振幅對TE波而言變為: 及對TM波而言為: 因子dk x 表示數值計算中利用的波向量光譜中的步階。該奈米線 位置的場之自洽計算可包括來自外部光源之入射光及漫反射光。在自洽求解中,可將該場描述為:a(k x )=A(k x )a tot , 其導致描述發射光譜之矩陣關係: To calculate the feedback field (i.e., the diffuse scattered light incident on the nanowire 32 again), we multiply the emission fields by their respective reflection coefficients and add the two. Therefore, the total amplitude of the field at the line position becomes: And for the TM wave: Factor dk x represents a step in order wave vector spectrum using numerical calculation. The self-consistent calculation of the field at the nanowire position may include incident light and diffuse reflected light from an external source. In a self-consistent solution, the field can be described as: a ( k x )= A ( k x ) a tot , which results in a matrix relationship describing the emission spectra:

其中A(k x , )描述自具有波向量之平面波散射至具有波向量k x 之平面波中,且該(對角)矩陣具有對應於先前所述之atot之係數之分量。 Where A ( k x , Descriptive self-wave vector The plane wave is scattered into a plane wave having a wave vector k x , and the (diagonal) matrix There is a component corresponding to the coefficient of a tot previously described.

如上所述,在當返回至奈米線位置之漫反射光之百分比較小的情況下,可簡化此等計算。在此情況下,漫反射光之譜分量之能通量增強 As described above, such calculations can be simplified in the case where the percentage of diffusely reflected light returning to the position of the nanowire is small. In this case, the energy flux of the spectral component of the diffusely reflected light is enhanced.

在一些應用中,計算或估算部分漫散射光而非全漫反射可係有利。例如,估算朝觀察者漫散射的光量或僅遠離觀察者散射的光量而非朝所有方向漫散射的總光量可係重要。在此等情況下,上文開發的形式可用於計算能通量,因為漫反射係作為入射角及反射角θ γ 之函數。上述用於計算/估算全漫反射的轉移矩陣形式可用於計算或估算該漫反射的角分佈。在此等情況下,入射角及反射角均可經波向量k x 的縱向分量參數化且隨後根據振幅a(k x )的角譜計算表示漫反射的能通量之角分佈。 In some applications, it may be advantageous to calculate or estimate partial diffuse scattered light rather than full diffuse reflection. For example, it may be important to estimate the amount of light diffusely scattered toward the viewer or the amount of light that is only scattered away from the viewer rather than diffusely scattered in all directions. In these cases, the form developed above can be used to calculate the energy flux because the diffuse reflection system acts as the angle of incidence. And a function of the reflection angle θ γ . The transfer matrix form described above for calculating/estimating full diffuse reflection can be used to calculate or estimate the angular distribution of the diffuse reflection. In such cases, the incident angle and the reflection angle may be the longitudinal component of the wave vector k x via parameterization and then represents the angle of the energy flux distribution of the diffuse reflection spectrum calculation in accordance with the amplitude a (k x) of the angle.

為提高估算角度依賴性漫反射之精確性,可將不同的散射概率A(k x , )模型併入該等計算中。特定言之,可使用k x -無關譜、偶極型方向譜、其組合或其他方向譜。在一實施例中,散射概率A係取決於TE偏振波之偏振(其產生方向無關性能通量)及TM偏振波之偶極型輻射模式[具有能通量 cos2(+θ γ )]。在另一實施例中,TE偏振波之能通 量係與成比例,而TM偏振波之能通量係To improve the accuracy of estimating angle-dependent diffuse reflection, different scattering probabilities A ( k x , The model is incorporated into these calculations. Certain words, using k x - independent spectrum, dipole directional spectrum, combinations thereof, or other directional spectrum. In one embodiment, the scattering probability A is dependent on the polarization of the TE polarized wave (which produces a direction-independent performance flux) and the dipole-type radiation pattern of the TM polarized wave [having a flux of energy) Cos 2 ( + θ γ )]. In another embodiment, the energy flux of the TE polarized wave is Proportional, and TM polarized wave energy flux .

可存在諸多不同的散射概率A模型,其等係在本揭示內容之範圍內。當開發此等模型時,記住轉移矩陣模型表示漫散射方法的估算係有用。因此,可藉由使用有限元方法、時域有限差分法、嚴格耦合波近似法或其他方法將轉移矩陣編碼的預測值與麥克斯韋方程式的嚴格(但更加耗時)解予以比較來微調該等係數。 There may be many different scattering probability A models, which are within the scope of the disclosure. When developing these models, it is useful to remember that the transfer matrix model represents an estimate of the diffuse scattering method. Therefore, the coefficients can be fine-tuned by comparing the predicted values of the transfer matrix encoding with the strict (but more time-consuming) solutions of Maxwell's equations using finite element methods, time domain finite difference methods, rigorous coupled wave approximations, or other methods. .

使用習知方法以計算或估算上述光學堆疊之漫反射,可利用最佳化程式以計算諸多具有不同參數之光學堆疊30之漫反射,以尋求提供最低漫反射之光學堆疊30。可使用市售最佳化程式(例如彼等可以Matlab購得者)根據本發明原理對諸多光學堆疊組態進行漫反射最佳化。結合上述用於計算漫反射之方法,該等最佳化程式可協助尋求具有相對低漫反射之光學堆疊。 Using conventional methods to calculate or estimate the diffuse reflection of the optical stack described above, an optimization program can be utilized to calculate the diffuse reflection of a plurality of optical stacks 30 having different parameters to seek for an optical stack 30 that provides the lowest diffuse reflection. Diffuse reflection optimization of a plurality of optical stack configurations can be performed in accordance with the principles of the present invention using commercially available optimization programs (e.g., those available from Matlab). In conjunction with the above methods for calculating diffuse reflection, such optimization programs can assist in the search for optical stacks with relatively low diffuse reflection.

該方法之特定最佳化目標係取決於最終應用。例如,可針對既定波長使該系統之全漫反射最佳化。該等最佳化目標亦可係對應於特定方向的漫反射的加權平均值或具有限制條件為特定方向的漫反射保持低於某一值之加權全漫反射之組合。亦可估算不同波長光的漫反射,並以某一方式(平均、加權平均等)合計此等估算值以實現將係最佳化的最終目標優值。熟習此項技術者可根據本揭示內容實施所有該等組合。 The specific optimization goals of the method depend on the end application. For example, full diffuse reflection of the system can be optimized for a given wavelength. The optimization targets may also be a weighted average of diffuse reflections corresponding to a particular direction or a combination of weighted full diffuse reflections with a constraint that the diffuse reflection of a particular direction remains below a certain value. It is also possible to estimate the diffuse reflection of light of different wavelengths and sum up these estimates in a certain way (average, weighted average, etc.) to achieve the final target figure of merit that will be optimized. Those skilled in the art can implement all such combinations in light of the present disclosure.

雖然上文已描述利用轉移矩陣計算漫反射及鏡面反射,但根據本發明原理可使用除轉移矩陣以外之其他方法以獲得漫反射值。該等其他方法亦包含在本發明範圍內。 Although diffuse and specular reflections have been described using transfer matrices, other methods other than transfer matrices can be used in accordance with the principles of the present invention to obtain diffuse reflectance values. These other methods are also included in the scope of the invention.

該等方法中之一實例包括將本發明方法延伸至使來自併入一組固定厚層(其可包括厚下層(例如,光學黏著劑)或厚上層(例如,保護性玻璃層))的光學堆疊之漫反射及鏡面反射最佳化。此處的「光學 厚」意指層厚度大於或相當於該堆疊中存在之輻射同調長度(coherence length)。 An example of such methods includes extending the method of the present invention to optically from a set of fixed thick layers (which may include a thick underlayer (eg, optical adhesive) or a thick upper layer (eg, a protective glass layer)) The diffuse and specular reflections of the stack are optimized. "Optics here" "Thick" means that the layer thickness is greater than or equal to the coherence length present in the stack.

光通過光學厚層之傳播在某種程度上類似於產生形成上述頂部模式及底部模式之方法。參見(例如)圖9A中所示之頂部模式之鏡面反射。如上所述,通過界面37進入光學堆疊的光將部分反射及部分透射通過此界面。該透射部分將進入層34並到達界面44,到達此處的部分光將透射至層38中,及部分光將反射回到層34中。此反射光將到達界面37,其部分將在此處透射出光學堆疊(構成鏡面反射),及部分反射回到光學堆疊中。當層34係光學厚時,對鏡面反射之第二(及後續)貢獻將不會與由界面37最初反射的光發生干涉。相反地,相應能通量將疊加在一起。可直接根據內層界面之(能通量基)反射率(R)及透射率(T)來計算合併若干光學厚層之堆疊之鏡面反射。 The propagation of light through the optically thick layer is somewhat similar to the method of creating the top and bottom modes described above. See, for example, the specular reflection of the top mode shown in Figure 9A. As described above, light entering the optical stack through interface 37 will be partially reflected and partially transmitted through this interface. The transmissive portion will enter layer 34 and reach interface 44 where a portion of the light will be transmitted into layer 38 and a portion of the light will be reflected back into layer 34. This reflected light will reach interface 37 where portions will be transmitted out of the optical stack (constituting specular reflection) and partially reflected back into the optical stack. When layer 34 is optically thick, the second (and subsequent) contribution to specular reflection will not interfere with the light originally reflected by interface 37. Conversely, the corresponding energy fluxes will be added together. The specular reflection of the stack of several optical thick layers can be calculated directly from the (fluid-based) reflectance (R) and transmittance (T) of the inner interface.

例如,可使用以下遞歸技術。假定圖9A中的層係光學厚。然後,可使用對應菲涅爾係數之絕對值平方來計算界面40之反射率。然後,可將進入界面42之光的反射率計算為: For example, the following recursive techniques can be used. It is assumed that the layer in Fig. 9A is optically thick. The reflectance of interface 40 can then be calculated using the square of the absolute value of the corresponding Fresnel coefficients. The reflectance of the light entering interface 42 can then be calculated as:

其中係自42自層38進入該系統之光之(總體)反射率;係當光自層38行進時界面42之單一界面反射率;係行進進入層38的光之相同界面之反射率(通常=);及係到達界面40的光之總體反射率。然後,可使用相同方程式以計算進入界面44(及最後進入界面37)的光之總體反射率。 among them The (total) reflectivity of light entering the system from 42 from layer 38; a single interface reflectivity of the interface 42 as the light travels from the layer 38; The reflectivity of the same interface that travels into layer 38 (usually = );and The overall reflectivity of the light that reaches the interface 40. The same equation can then be used to calculate the overall reflectivity of light entering interface 44 (and finally entering interface 37).

若該系統含有光學厚層及光學薄層之混合,則可使用轉移矩陣形式計算光學薄層之光學性質(反射率及透射率),隨後可將其近似作為光學厚堆疊中之單一界面(具有已知反射率/透射率)。 If the system contains a mixture of optical thick layers and optical thin layers, the optical properties (reflectance and transmittance) of the optical thin layer can be calculated using the transfer matrix form, which can then be approximated as a single interface in an optical thick stack (with Reflectance/transmittance is known).

可使用類似技術計算光學厚層之存在下之漫反射。 Similar techniques can be used to calculate the diffuse reflection in the presence of an optically thick layer.

圖10A表示電腦可讀媒體中儲存的光學堆疊最佳化軟體程式之圖形使用者界面(GUI)48。該GUI可於耦合至處理器之顯示器上顯示以使技術者實施該最佳化程式,以尋求具有可產生較佳漫反射值之參數之光學堆疊30。該處理器自耦合至該處理器之記憶體電路讀取軟體指令。因此,用於運行最佳化程式以尋求該光學堆疊30之較佳參數之軟體指令儲存於耦合至該處理器之記憶體中。因此,該處理器令顯示器顯示該GUI且技術者可經由滑鼠及鍵盤或任何其他適宜的輸入裝置輸入光學堆疊之參數範圍。該等參數可包括該堆疊中之層數目、基板36之折射率及該光學堆疊30將放置的環境。 Figure 10A shows a graphical user interface (GUI) 48 of an optical stack optimization software program stored in a computer readable medium. The GUI can be displayed on a display coupled to the processor to enable the technician to implement the optimization program for optical stacks 30 having parameters that produce better diffuse reflectance values. The processor reads software instructions from a memory circuit coupled to the processor. Thus, the software instructions for running the optimization program to seek the preferred parameters of the optical stack 30 are stored in memory coupled to the processor. Thus, the processor causes the display to display the GUI and the technician can enter the parameter range of the optical stack via a mouse and keyboard or any other suitable input device. The parameters may include the number of layers in the stack, the refractive index of the substrate 36, and the environment in which the optical stack 30 will be placed.

因此,在圖10A中之示例性GUI 48中,頂襯折射率係1,因為其係空氣。基板折射率列示為1.5且對應於光學堆疊30之基板36。使用者可輸入所需的任何基板或頂襯折射率。亦輸入奈米線32半徑以計算散射截面。根據一實施例之GUI 48中輸入的線半徑係50 nm。然而,根據光學堆疊30中使用的特定奈米線32或其他奈米結構,該線半徑可係任何其他適宜的半徑。使用者可同樣地選擇在光學堆疊30中哪個層定位奈米線32。在圖10A之示例性GUI 48中,已選擇該線層作為第二層,其對應於光學堆疊30之層34。在標記主動層參數之區域中,使用者可輸入對應於GUI 48中第一及第二層之層34及36的最小及最大厚度。在圖10A之實例中,層34及層36均具有50 nm至200 nm的厚度。層34及層36之折射率各位於1.2至2.2內。此等範圍係限制,在該限制中,最佳化程式將對光學堆疊30選擇參數以計算產生最佳漫反射的參數。當該程式執行時,將對層厚度、折射率及光之波長參數位於輸入範圍內的若干光學堆疊計算漫反射及鏡面反射。該最佳化程式根據前述方法或根據本發明原理使用其他適宜方法計算漫反射及鏡面反射。 Thus, in the exemplary GUI 48 of Figure 10A, the topsheet has a refractive index of 1 because it is air. The substrate refractive index is listed as 1.5 and corresponds to the substrate 36 of the optical stack 30. The user can enter any substrate or topsheet refractive index desired. The radius of the nanowire 32 is also input to calculate the scattering cross section. The line radius entered in the GUI 48 according to an embodiment is 50 nm. However, depending on the particular nanowire 32 or other nanostructure used in the optical stack 30, the line radius can be any other suitable radius. The user can likewise select which layer in the optical stack 30 to position the nanowires 32. In the exemplary GUI 48 of FIG. 10A, the line layer has been selected as the second layer, which corresponds to layer 34 of optical stack 30. In the area marking the active layer parameters, the user can enter the minimum and maximum thicknesses corresponding to the layers 34 and 36 of the first and second layers in the GUI 48. In the example of Figure 10A, both layer 34 and layer 36 have a thickness of 50 nm to 200 nm. The refractive indices of layers 34 and 36 are each within 1.2 to 2.2. These ranges are limitations in which the optimization program will select parameters for the optical stack 30 to calculate the parameters that produce the best diffuse reflection. When the program is executed, diffuse and specular reflections are calculated for several optical stacks whose layer thickness, refractive index, and wavelength parameters of light are within the input range. The optimization program calculates diffuse and specular reflections using other suitable methods in accordance with the foregoing methods or in accordance with the principles of the present invention.

在一實施例中,與對輸入範圍內的每個可能迭代計算漫反射相反,該最佳化程式對第一組具有各種既定範圍內的參數之光學堆疊計 算漫反射。接著,該最佳化程式選擇第二組光學堆疊,其具有在某種程度上與彼等在第一組中產生最低漫反射者不同的參數。該最佳化程式繼續依此方式計算光學堆疊之漫反射直至已經得到較佳漫反射。該最佳化程式可有效找到產生較佳漫反射的參數且無需計算每個可能迭代。依此方式,可選出產生相對低漫反射之光學堆疊30之特定組態。此係因為計算或估算光學堆疊30之漫反射之前述較簡單方法而可行。 In one embodiment, in contrast to calculating the diffuse reflection for each possible iteration within the input range, the optimization program is for the first set of optical stacking meters having various parameters within a given range. Calculate diffuse reflection. Next, the optimization program selects a second set of optical stacks that have parameters that are somewhat different than those that produced the lowest diffuse reflections in the first set. The optimization program continues to calculate the diffuse reflection of the optical stack in this manner until better diffuse reflection has been achieved. This optimization program effectively finds the parameters that produce better diffuse reflections without having to calculate every possible iteration. In this manner, a particular configuration of the optical stack 30 that produces relatively low diffuse reflection can be selected. This is possible because of the aforementioned simpler method of calculating or estimating the diffuse reflection of the optical stack 30.

具有低漫反射且同時具有不可接受的高鏡面反射係可能。因此,主動層參數區域下方係標記為最大反射的區域。在此區域中,技術者可指定最大可容許鏡面反射。在此例中,已將該最大鏡面反射選定為1.5%。此意指當對鏡面反射及漫反射進行轉移矩陣時,將針對其中鏡面反射不大於1.5%的最低漫反射結果選擇較佳堆疊組態。 It has the potential for low diffuse reflection and at the same time an unacceptably high specular reflection. Therefore, the area under the active layer parameter area is marked as the area of maximum reflection. In this area, the technician can specify the maximum allowable specular reflection. In this case, the maximum specular reflection has been chosen to be 1.5%. This means that when transferring the matrices for specular and diffuse reflections, a better stacking configuration will be chosen for the lowest diffuse reflection results in which the specular reflection is no more than 1.5%.

在右側區域中,顯示一光學堆疊。該光學堆疊30包括低折射率層34,其包括位於高折射率層38上的奈米線32。層38係位於折射率為1.5的基板36上。該光學堆疊上方之空氣的折射率係1。在層34及38中於各層左側,提供厚度範圍及折射率範圍。此在層34左側標示w2=50 nm至200 nm及n2=1.2至2.2。此等係層34之厚度及折射率之範圍,將在計算轉移矩陣中對該等範圍進行迭代以得到鏡面反射及漫反射。在層38左側同樣指定範圍w1=50 nm至200 nm及n1=1.2至2.2。在層34右側,列出較佳厚度及較佳折射率。特定言之,層34之較佳厚度指定為118.2 nm。層34之較佳折射率係1.2。高折射率層38之較佳厚度係50 nm及較佳折射率係1.7779。在該光學堆疊下方,列出鏡面反射為R0=0.0144或約1.4%。漫反射Rdiffuse列示為5.469×10-5In the right area, an optical stack is displayed. The optical stack 30 includes a low refractive index layer 34 that includes a nanowire 32 on a high refractive index layer 38. Layer 38 is on substrate 36 having a refractive index of 1.5. The refractive index of the air above the optical stack is one. In layers 34 and 38, on the left side of each layer, a range of thicknesses and a range of refractive indices are provided. This is indicated on the left side of layer 34 by w 2 = 50 nm to 200 nm and n 2 = 1.2 to 2.2. The thicknesses and ranges of refractive indices of the tie layers 34 will be iterated over the calculated transfer matrix to obtain specular and diffuse reflections. The range w 1 =50 nm to 200 nm and n 1 =1.2 to 2.2 are also specified on the left side of layer 38. On the right side of layer 34, a preferred thickness and a preferred index of refraction are listed. In particular, the preferred thickness of layer 34 is specified to be 118.2 nm. The preferred refractive index of layer 34 is 1.2. The preferred thickness of the high refractive index layer 38 is 50 nm and the preferred refractive index is 1.7779. Below the optical stack, the specular reflection is listed as R 0 =0.0144 or about 1.4%. The diffuse reflection R diffuse is listed as 5.469 × 10 -5 .

因此,允許使光學堆疊30最佳化之方法操作之GUI 48允許使用者輸入光學堆疊之第一參數或輸入參數且該程式運行,進行計算,且列出較佳鏡面反射及漫反射及產生彼等較佳結果之層厚度及折射率。熟習此項技術者根據本發明將瞭解可對已描述方法及特定GUI及由此 提供的輸入及輸出進行諸多修改。 Thus, the GUI 48 that allows the method of optimizing the optical stack 30 allows the user to input the first parameter or input parameter of the optical stack and the program operates, performs calculations, and lists preferred specular and diffuse reflections and produces The layer thickness and refractive index of the preferred result. Those skilled in the art will be aware of the methods and specific GUIs that may be described in accordance with the present invention and The input and output provided are subject to numerous modifications.

圖10B顯示根據一實施例之GUI 50。該GUI 50係關於一種方法,藉此方法可根據自圖10A之GUI 48中的較佳參數輸出對各種波長計算鏡面反射及漫反射之詳細過程。特定言之,使用者可根據較佳輸出輸入層數目(在此例中為2,基板層36之基板折射率係1.5且頂襯折射率係1)。然後,可選擇主動層,在此例中,強調第二主動層,此意指可將層34之參數輸入於固定參數區域中。自圖10A之GUI 48測得的較佳特徵係層34之厚度為118.2 nm且折射率為1.2。然後可強調該主動層且可輸入根據圖10A之GUI 48對層38算得的較佳特徵。在此例中,較佳特徵係50 nm厚度及1.7779的折射率。可在固定層參數下方之標記為波長(nm)之區域中輸入光波長範圍,其將生成曲線圖。在此例中,最小波長係300 nm及最大波長係800 nm,迭代步為10 nm。 FIG. 10B shows a GUI 50 in accordance with an embodiment. The GUI 50 is directed to a method whereby a detailed process of calculating specular and diffuse reflections for various wavelengths can be output based on the preferred parameters from the GUI 48 of Figure 10A. Specifically, the user can output the number of layers according to the preferred output (in this example, 2, the substrate refractive index of the substrate layer 36 is 1.5 and the top index of refraction is 1). Then, the active layer can be selected, in this case, the second active layer is emphasized, which means that the parameters of layer 34 can be entered in the fixed parameter region. The preferred feature layer 34 measured from the GUI 48 of Figure 10A has a thickness of 118.2 nm and a refractive index of 1.2. The active layer can then be emphasized and the preferred features calculated for layer 38 in accordance with GUI 48 of FIG. 10A can be entered. In this case, the preferred features are a 50 nm thickness and a refractive index of 1.7779. A range of wavelengths of light can be input in the region labeled wavelength (nm) below the fixed layer parameters, which will generate a graph. In this example, the minimum wavelength is 300 nm and the maximum wavelength is 800 nm, and the iteration step is 10 nm.

圖10C顯示由圖10B之GUI 50生成之曲線圖。特定言之,圖10C係圖10B中所指定波長範圍之鏡面及漫反射之曲線圖。該鏡面及漫反射在紫外線範圍內均經歷短暫的400 nm峰值。該鏡面反射下降且在500 nm處達到最低約1%且隨後逐步上升至800 nm處的約2.5%。該漫反射下降且亦在500 nm附近達到低點,但直到800 nm處始終保持相當平坦,只是逐漸地向上傾斜。在此例中,對可見光譜之大部分而言,已使漫反射保持至約5×10-5。對可見光譜之大部分而言,已使該鏡面反射保持在1%與2%之間。 Figure 10C shows a graph generated by the GUI 50 of Figure 10B. In particular, Figure 10C is a plot of specular and diffuse reflection for the wavelength range specified in Figure 10B. The specular and diffuse reflections experience a brief 400 nm peak in the UV range. The specular reflection drops and reaches a minimum of about 1% at 500 nm and then gradually increases to about 2.5% at 800 nm. The diffuse reflection drops and also reaches a low point around 500 nm, but remains fairly flat until 800 nm, but gradually slopes upwards. In this case, the diffuse reflection has been maintained to about 5 x 10 -5 for most of the visible spectrum. For most of the visible spectrum, the specular reflection has been maintained between 1% and 2%.

在儲存於記憶體中之軟體指令中,光之某些波長可比光之其他波長具有更高權重。當計算轉移矩陣時,除層厚度及層折射率範圍以外,對波長範圍進行各轉移矩陣。當計算較佳漫反射時,在一實施例中,某些波長的反射可比其他波長的反射具有更高權重。人眼對某些波長比其他波長更敏感。因此,對某些光學堆疊而言,較不突出之波長的漫反射在某種程度上更高,而較突出之波長接近最小。在該情況 下,儘管某些波長不接近最小漫反射,但該漫反射可係較佳漫反射。因此,可希望對某些波長之漫反射提供更高權重。在一實例中,以50 nm增量分割位於400至700 nm之間的可見光譜。可修改儲存用於計算漫反射之程式之軟體以對各種波長提供較高或較低相對權重。例如,在一實例中,位於450 nm至600 nm之間的波長比其他波長具有更高權重。理所當然,技術者可改變儲存於記憶體中之編碼來選擇權重。亦可實施該權重以計算鏡面反射。 In software instructions stored in memory, certain wavelengths of light may have a higher weight than other wavelengths of light. When calculating the transfer matrix, each transfer matrix is subjected to a wavelength range in addition to the layer thickness and the layer refractive index range. When calculating a preferred diffuse reflection, in one embodiment, the reflection of certain wavelengths may have a higher weight than the reflection of other wavelengths. The human eye is more sensitive to certain wavelengths than other wavelengths. Thus, for some optical stacks, the diffuse reflection of the less prominent wavelength is somewhat higher, while the more prominent wavelength is near minimum. In this case Next, although some wavelengths are not close to the minimum diffuse reflection, the diffuse reflection may be a better diffuse reflection. Therefore, it may be desirable to provide higher weight for diffuse reflection of certain wavelengths. In one example, the visible spectrum between 400 and 700 nm is segmented in 50 nm increments. The software that stores the program used to calculate the diffuse reflection can be modified to provide higher or lower relative weights for various wavelengths. For example, in one example, wavelengths between 450 nm and 600 nm have higher weights than other wavelengths. Of course, the technician can change the code stored in the memory to select the weight. This weight can also be implemented to calculate specular reflection.

圖10D顯示根據一實施例之經組態以尋求具有相對低漫反射之光學堆疊之軟體程式之GUI。圖10D之GUI允許使用者選擇光學堆疊30之層數目及定位奈米線32層。圖10D之實例中之層數目係3且奈米線係第2層。在已選擇奈米線層之後,使用者可輸入光學堆疊30中其他層之厚度及折射率範圍。然而,在圖10D之實施例中,藉由使用該GUI無法改變該奈米線層之厚度及折射率;此等參數在圖10D之實施例中係固定。可藉由選擇第1層作為主動層來輸入第1層參數,隨後在標記區域中輸入厚度及折射率範圍。可以相同方式輸入第3層參數。在圖10D中,使用者已對第1層及第3層之厚度選定為30-300 nm的範圍。已對第1層及第3層之折射率選定為1.2-2.2的範圍。此等範圍係其中最佳化程式在最佳化常式期間將對各層選擇厚度及折射率值的範圍。 Figure 10D shows a GUI configured to seek a software program of an optical stack with relatively low diffuse reflection, in accordance with an embodiment. The GUI of Figure 10D allows the user to select the number of layers of the optical stack 30 and locate the 32 layers of nanowires. The number of layers in the example of Fig. 10D is 3 and the nanowire is the second layer. After the nanowire layer has been selected, the user can enter the thickness and refractive index range of the other layers in the optical stack 30. However, in the embodiment of Fig. 10D, the thickness and refractive index of the nanowire layer cannot be changed by using the GUI; these parameters are fixed in the embodiment of Fig. 10D. The first layer parameter can be input by selecting the first layer as the active layer, and then the thickness and refractive index range are input in the marked area. Layer 3 parameters can be entered in the same way. In Fig. 10D, the user has selected the thickness of the first layer and the third layer to be in the range of 30-300 nm. The refractive indices of the first layer and the third layer have been selected to be in the range of 1.2 to 2.2. These ranges are those in which the optimization program will select thickness and refractive index values for each layer during the optimization routine.

亦可藉由在該等標記區域中輸入值來選擇頂襯及基板折射率。此等在圖10D之實例中已各自選定為1及1.5。一旦已經選定此等參數,光學堆疊30之層之基本圖式即將顯示於該GUI右側,其指示各層位置、奈米線層位置、折射率及厚度之範圍及頂襯及基板折射率。 The topsheet and substrate refractive index can also be selected by inputting values in the marked regions. These have been selected to be 1 and 1.5, respectively, in the example of Figure 10D. Once these parameters have been selected, the basic pattern of the layers of the optical stack 30 will be displayed on the right side of the GUI, indicating the position of each layer, the position of the nanowire layer, the range of refractive index and thickness, and the refractive index of the top liner and substrate.

使用者亦可藉由在最佳化區域內核對適當選擇來選擇該最佳化常式是否最佳化漫反射或鏡面反射。若選擇最佳化漫反射,則隨後亦可藉由在最大鏡面反射區域中輸入數值來選擇最大鏡面反射。該程式 將會選擇具有低漫反射及等於或低於所選定最大值之鏡面反射之光學堆疊。或者,若使用者選擇最佳化鏡面反射,則隨後使用者可對光學堆疊輸入最大漫反射值。 The user can also choose whether the optimization routine optimizes diffuse or specular reflection by appropriate selection of the kernel pair in the optimized region. If you choose to optimize diffuse reflection, you can then choose the maximum specular reflection by entering a value in the maximum specular reflection area. The program An optical stack with low diffuse reflection and specular reflection equal to or lower than the selected maximum value will be selected. Alternatively, if the user chooses to optimize specular reflection, then the user can enter the maximum diffuse value for the optical stack.

最後,使用者可點擊開始按鈕以進行該最佳化程式。該最佳化程式隨後將針對諸多可能的光學堆疊計算漫反射及鏡面反射並選擇具有相對低漫反射及低於所選定最大值之鏡面反射之光學堆疊。然後將輸出所選定的光學堆疊之參數。使用者亦可藉由點擊適當按鈕儲存該最佳光學堆疊或載入先前儲存的光學堆疊。 Finally, the user can click on the start button to proceed with the optimization program. The optimization program will then calculate diffuse and specular reflections for a number of possible optical stacks and select an optical stack with relatively low diffuse reflection and specular reflection below the selected maximum. The parameters of the selected optical stack will then be output. The user can also store the optimal optical stack or load the previously stored optical stack by clicking on the appropriate button.

圖10E顯示根據另一實施例計算及繪製漫反射及鏡面反射之GUI。圖10E之GUI允許使用者選擇光學堆疊30之層數目及定位奈米線32層。圖10E之實例中之層數目係3且奈米線係第2層。藉由使用該GUI無法改變厚度及折射率;此等參數在圖10E之實施例中係固定。在已選擇奈米線層之後,使用者可輸入光學堆疊30中其他層之厚度及折射率。藉由選擇第3層作為固定層來輸入第3層參數,隨後在下方標記區域中輸入厚度及折射率。可以相同方式輸入第1層參數。亦可選擇頂襯及基板折射率;已將其等分別選定為1及1.5。一旦已經選定此等參數,光學堆疊30之層之基本圖式係顯示於該GUI右側。在圖10E之實例中,該奈米線層係第2層。 FIG. 10E shows a GUI for computing and rendering diffuse and specular reflections in accordance with another embodiment. The GUI of Figure 10E allows the user to select the number of layers of the optical stack 30 and locate the 32 layers of nanowires. The number of layers in the example of Fig. 10E is 3 and the nanowire is the second layer. The thickness and refractive index cannot be changed by using the GUI; these parameters are fixed in the embodiment of Fig. 10E. After the nanowire layer has been selected, the user can input the thickness and refractive index of the other layers in the optical stack 30. The third layer parameter is input by selecting the third layer as a fixed layer, and then the thickness and refractive index are input in the lower mark region. The first layer parameters can be entered in the same way. The top liner and the refractive index of the substrate can also be selected; they have been selected to be 1 and 1.5, respectively. Once these parameters have been selected, the basic pattern of layers of optical stack 30 is shown to the right of the GUI. In the example of Figure 10E, the nanowire layer is the second layer.

亦可輸入波長範圍及用於計算及繪製之步長。在圖10E之實例中,選定的波長範圍係300至800 nm,步長為10 nm。在已填寫所有區域後,使用者可點擊開始按鈕以開始計算常式。針對所有波長計算鏡面反射及漫反射。可輸出顯示各波長之鏡面反射及漫反射之圖表。亦可輸出顯示波長範圍內之各波長間距(wavelength step)之漫反射及鏡面反射之數值之表格。根據本發明將明白可能的諸多其他GUI組態。所有該等其他組態係在本發明範圍內。 You can also enter the wavelength range and the step size for calculation and plotting. In the example of Figure 10E, the selected wavelength range is 300 to 800 nm in steps of 10 nm. After all the fields have been filled in, the user can click the start button to start the calculation routine. Specular and diffuse reflections are calculated for all wavelengths. A graph showing the specular and diffuse reflections of each wavelength can be output. A table of values of diffuse reflection and specular reflection for each wavelength step in the display wavelength range can also be output. Many other GUI configurations are possible in accordance with the present invention. All such other configurations are within the scope of the invention.

如先前所述,可針對選定的相對於光學堆疊30之表面的漫反射 角或漫反射角範圍計算漫反射。在一些應用中,知曉以相對於光學堆疊30之表面的特定角漫反射的光量係有用。因此,在一實施例中,最佳化軟體之使用者可選擇複數個角(將針對該等角估算各光學堆疊組態之漫反射)。 Diffuse reflections may be selected for selected surfaces relative to optical stack 30, as previously described The angular or diffuse angle range is used to calculate the diffuse reflection. In some applications, it is useful to know the amount of light that is diffusely reflected at a particular angle relative to the surface of the optical stack 30. Thus, in an embodiment, the user of the optimized software may select a plurality of angles (the diffuse reflection of each optical stack configuration will be estimated for the equal angle).

在一實施例中,就光學堆疊參數的每次迭代而言,計算或估算一組漫反射值。各組漫反射值包括針對相對於光學堆疊30之選定角的複數個漫反射值。該最佳化常式可經組態以根據該等漫反射值組來選擇光學堆疊組態。特定言之,可相互比較該等漫反射值組且該最佳化常式可根據該比較選擇光學堆疊組態。該最佳化常式亦可經組態以比較各個角的漫反射值與臨限值。該最佳化常式隨後可部分根據與該等臨限值之比較選擇該等組漫反射值中之一者。 In one embodiment, a set of diffuse values are calculated or estimated for each iteration of the optical stacking parameters. Each set of diffuse values includes a plurality of diffuse values for a selected angle relative to the optical stack 30. The optimization routine can be configured to select an optical stack configuration based on the set of diffuse reflection values. In particular, the sets of diffuse reflection values can be compared to each other and the optimization routine can select an optical stack configuration based on the comparison. The optimization routine can also be configured to compare the diffuse values and thresholds of the individual corners. The optimization routine can then select one of the sets of diffuse reflection values based in part on the comparison with the thresholds.

在一實例中,技術人員可選擇用於計算漫反射的11個不同反射角。該11個角可包括(相對於法線)75°、60°、45°、30°、15°、0°(即法線)、-15°、-30°、-45°、-60°及-75°。各組漫反射值將包括針對各選定角的漫反射值。在此實例中,各組漫反射值將包括11個漫反射值。當然,可選擇更多或更少個角。上文特定角及角數量係僅以實例方式提供。 In one example, the technician can select 11 different reflection angles for calculating the diffuse reflection. The 11 corners may include (relative to the normal) 75°, 60°, 45°, 30°, 15°, 0° (ie normal), -15°, -30°, -45°, -60° And -75°. Each set of diffuse values will include diffuse values for each selected angle. In this example, each set of diffuse values will include 11 diffuse values. Of course, you can choose more or fewer corners. The specific angles and angular numbers above are provided by way of example only.

在一實例中,相對於法線的較大反射角比更靠近法線的角具有更高臨限值。換言之,在相對於法線的較大角下可容許更高漫反射。此係因為在一些實施例中,該光學堆疊30可包含在顯示器螢幕中,其中該顯示器在極靠近法線的角下具有高品質係更加重要。相對於法線的較大角係對應於包括光學堆疊30的顯示器螢幕的周邊視角且在此等角度下保持高光學品質可係不太重要。因此,在靠近法線的角下的漫反射臨限值可比針對遠離於法線之角的臨限值小得多。此係因為自靠近相對於顯示器螢幕之法線的角度觀看顯示器係更普遍。 In an example, a larger reflection angle relative to the normal has a higher threshold than an angle closer to the normal. In other words, higher diffuse reflections can be tolerated at larger angles relative to the normal. This is because in some embodiments, the optical stack 30 can be included in a display screen, where it is more important to have a high quality system at an angle very close to the normal. A larger angle relative to the normal corresponds to the peripheral viewing angle of the display screen including the optical stack 30 and maintaining high optical quality at such angles may be less important. Thus, the diffuse reflection threshold at an angle near the normal can be much smaller than the threshold for an angle away from the normal. This is because it is more common to view the display system from an angle relative to the normal to the display screen.

在一實施例中,若特定組中的任一漫反射值超過各自之漫反射 臨限值,則不選擇與該特定組有關的光學堆疊組態。 In an embodiment, if any of the diffuse reflection values in a particular group exceeds the respective diffuse reflections For thresholds, the optical stack configuration associated with that particular group is not selected.

或者,可將各組漫反射值與單一漫反射臨限值作比較。若特定組中的任一漫反射值超過該漫反射臨限值,則不選擇與該特定組有關的光學堆疊組態。 Alternatively, each set of diffuse reflectance values can be compared to a single diffuse reflectance threshold. If any of the diffuse values in a particular group exceeds the diffuse threshold, the optical stack configuration associated with that particular group is not selected.

在一實施例中,可計算各組漫反射值的總漫反射值。該最佳化常式可選擇對應於最低總漫反射值的光學堆疊組態。計算該總漫反射值可包括對該等漫反射值求和。或者,計算該總漫反射值可包括對各反射角分配相對權重因子。 In an embodiment, the total diffuse reflection value of each set of diffuse reflection values can be calculated. This optimization routine selects an optical stack configuration that corresponds to the lowest total diffuse reflectance value. Calculating the total diffuse reflectance value can include summing the equal diffuse reflectance values. Alternatively, calculating the total diffuse reflectance value can include assigning a relative weighting factor to each of the reflection angles.

在一實施例中,可計算各組的平均漫反射值。各組的平均漫反射係對應於該組的漫反射計算值的平均值。該最佳化常式可根據各組的平均漫反射選擇光學堆疊組態。 In an embodiment, the average diffuse reflectance of each group can be calculated. The average diffuse reflectance of each group corresponds to the average of the calculated values of the diffuse reflections of the set. This optimization routine selects the optical stack configuration based on the average diffuse reflection of each group.

該最佳化常式可經組態以對某些角度下的漫反射值提供較大權重而對其他角度下的漫反射值提供較低權重。該最佳化常式亦可對各種角度下的特定波長光提供較大權重。該最佳化常式可藉由考慮在各反射角下的大量波長的漫反射來選擇光學堆疊組態。 This optimization routine can be configured to provide greater weight for diffuse values at certain angles and lower weight values for diffuse values at other angles. This optimization routine can also provide greater weight for specific wavelengths of light at various angles. This optimization routine can select an optical stack configuration by considering diffuse reflection of a large number of wavelengths at various reflection angles.

可實施用於計算或估算各種角度下的漫反射的諸多其他最佳化常式、軟體程式及方法。所有該等其他常式、程式及方法係包括在本發明之範圍內。 Many other optimization routines, software programs, and methods for calculating or estimating diffuse reflection at various angles can be implemented. All such other routines, programs, and methods are included within the scope of the invention.

圖11顯示根據一實施例之系統60。該系統60包括處理器62,其經組態以執行儲存於記憶體電路64中之軟體指令。該記憶體電路64儲存可被該處理器讀取以執行前述最佳化方法之資料。輸入模組66亦耦合至處理器62。操作該系統60之技術者可於輸入模組66輸入光學堆疊30之輸入參數,接著該處理器62將最佳化該等參數並輸出反映該最佳化之參數。顯示器68耦合至處理器62。處理器62可令GUI 48或50顯示於顯示器60上。隨後操作該輸入模組66之技術者可藉由視覺觀察顯示器68上的GUI 48或50來輸入適當區域。該等最佳化參數亦可顯示於顯示 器68上。 Figure 11 shows a system 60 in accordance with an embodiment. The system 60 includes a processor 62 that is configured to execute software instructions stored in the memory circuit 64. The memory circuit 64 stores information that can be read by the processor to perform the aforementioned optimization methods. Input module 66 is also coupled to processor 62. A technician operating the system 60 can input input parameters to the optical stack 30 at the input module 66, and the processor 62 will then optimize the parameters and output parameters reflecting the optimization. Display 68 is coupled to processor 62. Processor 62 can cause GUI 48 or 50 to be displayed on display 60. A technician operating the input module 66 can then enter the appropriate area by visually viewing the GUI 48 or 50 on the display 68. These optimization parameters can also be displayed on the display On the 68.

在一實施例中,該系統60包括耦合至處理器62之製造設備70。在該實施例中,處理器62將輸出參數直接輸出至該製造設備,其隨後如最佳化輸出中所述沈積適當層及厚度。例如,對包括低折射率層34(其嵌埋奈米線32)及高折射率層38(其位於低折射率層34下方)及基板36(其位於高折射率層38下方)之光學堆疊30而言,可將該等最佳化輸出提供至製造設備70,其可隨後於基板36上沈積層38及於層38上沈積層34。該前述系統60係以實例方式提供。可包含文中未描述的諸多其他組件及軟體指令。當使用者操作輸入模組66以輸入該等輸入參數時,則該等輸入參數可被儲存於耦合至處理器62之記憶體64中。 In an embodiment, the system 60 includes a manufacturing device 70 coupled to the processor 62. In this embodiment, processor 62 outputs the output parameters directly to the fabrication facility, which then deposits the appropriate layers and thicknesses as described in Optimizing the Output. For example, optical stacking includes a low refractive index layer 34 (which embeds nanowires 32) and a high refractive index layer 38 (which is located below the low refractive index layer 34) and a substrate 36 (which is located below the high refractive index layer 38). 30. The optimized outputs can be provided to manufacturing apparatus 70, which can then deposit layer 38 on substrate 36 and layer 34 on layer 38. The foregoing system 60 is provided by way of example. Many other components and software instructions not described herein may be included. When the user operates the input module 66 to input the input parameters, the input parameters can be stored in the memory 64 coupled to the processor 62.

在一實施例中,該記憶體64可包括EEPROM、ROM、SRAM、DRAM或任何其他適宜的記憶體。進行該最佳化方法之軟體指令可被儲存於記憶體64中。該等輸入指令可被暫時儲存於記憶體64或耦合至該處理器之單獨的緩衝記憶體中。可使用以處理器62可讀取的方式儲存輸入參數及軟體指令之任何適宜組件。或者,可使用來自用於選擇光學參數之方法之輸出以製造該光學堆疊且無需實體耦合至用於選擇光學堆疊參數之電路之製造設備。 In one embodiment, the memory 64 can include EEPROM, ROM, SRAM, DRAM, or any other suitable memory. The software instructions for performing the optimization method can be stored in the memory 64. The input instructions can be temporarily stored in memory 64 or in a separate buffer memory coupled to the processor. Any suitable components for input parameters and software instructions can be stored in a manner readable by processor 62. Alternatively, an output from a method for selecting optical parameters can be used to fabricate the optical stack without the need to physically couple to the fabrication equipment of the circuitry for selecting optical stacking parameters.

圖12係顯示一種最佳化光學堆疊30之參數之方法之流程圖。於80,技術者對處理器輸入層參數。該等輸入參數隨後被儲存於耦合至該處理器之記憶體中。該等輸入參數可包括光學堆疊30之層數目、光學堆疊30中層之厚度範圍、光學堆疊30中層之折射率範圍、欲用於計算漫反射及鏡面反射之波長範圍及欲對波長範圍內各種波長提供的相對權重值。於82,處理器計算光學堆疊30中奈米線32位置的場。可藉由使用轉移矩陣或可在奈米線32位置提供場之任何其他適宜計算進行奈米線位置之場計算。在另一實施例中,如先前所述,奈米線位置之場計算可包括來自先前散射光之場。 FIG. 12 is a flow chart showing a method of optimizing parameters of optical stack 30. At 80, the technician inputs layer parameters to the processor. The input parameters are then stored in a memory coupled to the processor. The input parameters may include the number of layers of the optical stack 30, the thickness range of the layers in the optical stack 30, the refractive index range of the layers in the optical stack 30, the wavelength range to be used for calculating the diffuse and specular reflections, and the various wavelengths in the desired wavelength range. The relative weight value provided. At 82, the processor calculates the field at the position of the nanowire 32 in the optical stack 30. The field calculation of the nanowire position can be performed by using a transfer matrix or any other suitable calculation that can provide a field at the nanowire 32 position. In another embodiment, as previously described, the field calculation of the nanowire position may include a field from previously scattered light.

於84,計算奈米線32之散射截面。該奈米線32之散射截面指示來自奈米線32的漫反射光之散射方向及量值。奈米線32可使光向任何方向漫反射。於86,該處理器根據在奈米線位置所算得的場及散射截面計算漫反射。在一實施例中,藉由計算漫反射光在光學堆疊30中各層邊界及通過各層之透射及反射之轉移矩陣來估算該漫反射。 At 84, the scattering cross section of the nanowire 32 is calculated. The scattering cross section of the nanowire 32 indicates the direction and magnitude of scattering of the diffusely reflected light from the nanowire 32. The nanowire 32 allows the light to be diffusely reflected in any direction. At 86, the processor calculates diffuse reflection based on the field and scattering cross sections calculated at the nanowire position. In one embodiment, the diffuse reflection is estimated by calculating the boundary of the layers of diffusely reflected light in the optical stack 30 and the transfer matrix through the transmission and reflection of the layers.

於88,對涵蓋一系列輸入參數之諸多光學堆疊30重複計算奈米線32位置的場、奈米線32之散射截面及到達該表面之漫反射光。在一實施例中,對第一組光學堆疊進行漫反射計算。該第一組光學堆疊可具有層厚度、層折射率等值,其等值經選擇以提供涵蓋可能輸入範圍之光學堆疊的廣泛第一取樣。例如,該第一組光學堆疊可包括第一層分別具有最小厚度、最大厚度及分佈於其間的一些厚度之光學堆疊。針對該第一組計算漫反射並相互比較。 At 88, the field at the 32-bit position of the nanowire, the scattering cross section of the nanowire 32, and the diffuse reflected light reaching the surface are repeatedly calculated for a plurality of optical stacks 30 covering a series of input parameters. In an embodiment, a diffuse reflection calculation is performed on the first set of optical stacks. The first set of optical stacks can have a layer thickness, a layer index of refraction, etc., the values of which are selected to provide a broad first sample of the optical stack covering the range of possible inputs. For example, the first set of optical stacks can include an optical stack in which the first layers each have a minimum thickness, a maximum thickness, and some thickness distributed therebetween. Diffuse reflections are calculated for this first set and compared to each other.

隨後針對第二組光學堆疊計算漫反射。在一實施例中,部分根據該第一組之漫反射選擇該第二組光學堆疊之參數。例如,該第二組光學堆疊包括具有一或多個參數之光學堆疊,該等參數接近於產生最低漫反射值之第一組光學堆疊中的一或多個參數。此允許該處理器尋求較佳漫反射值且無需計算該等範圍內的每個可能的光學堆疊。相反地,該處理器可分析最可能具有低漫反射之參數之光學堆疊。只要時間及計算能力允許,該過程可視需要持續以獲得周全的最佳化過程。最後,該處理器可選擇具有產生最佳漫反射值之參數之光學堆疊。於92,藉由沈積具有對應於最佳輸出參數之特徵的層來形成該光學堆疊30。 The diffuse reflection is then calculated for the second set of optical stacks. In an embodiment, the parameters of the second set of optical stacks are selected based in part on the diffuse reflection of the first set. For example, the second set of optical stacks includes an optical stack having one or more parameters that are close to one or more parameters in the first set of optical stacks that produce the lowest diffuse reflectance values. This allows the processor to seek better diffuse reflection values without having to calculate every possible optical stack within the ranges. Conversely, the processor can analyze the optical stack that is most likely to have low diffuse reflection parameters. As long as time and computing power allow, the process can continue as needed to achieve a comprehensive optimization process. Finally, the processor can select an optical stack with parameters that produce the best diffuse reflectance values. At 92, the optical stack 30 is formed by depositing a layer having features corresponding to optimal output parameters.

可用於根據本發明製造的光學堆疊之層之材料係此項技術中已知。該等材料之實例包括(例如)TiO2(RD=1.8)、聚醯亞胺(RD=1.7)及包含高折射率顆粒(例如ZnO、ZrO2及TiO2)之透明聚合物。 Materials that can be used in layers of optical stacks made in accordance with the present invention are known in the art. Examples of such materials include, for example, TiO 2 (R D = 1.8), polyimine (R D = 1.7), and transparent polymers containing high refractive index particles such as ZnO, ZrO 2 , and TiO 2 .

表1顯示諸多可用於根據本發明製造的光學堆疊之層之相對低折 射率光學材料。 Table 1 shows a number of relatively low folds of layers that can be used in optical stacks made in accordance with the present invention. Emissivity optical material.

表2顯示諸多可用於根據本發明製造的光學堆疊之層之相對高折射率光學材料。 Table 2 shows a number of relatively high refractive index optical materials that can be used in layers of optical stacks made in accordance with the present invention.

使用塗佈、印刷、濺射或其他技術沈積具有所需厚度之光學層之方法係此項技術中已知。尤其就塗佈技術而言,Edward Cohen及Edgar Gutoff的「Modern coating and Drying Technology」(John Wiley&Sons,1992,參見第11頁及第25-28頁)(其以引用之方式併入本文中)討論具有所需濕膜厚度之塗層。自既定濕膜厚度形成的乾膜厚度取決於所用塗佈溶液之組成且為一般技術者所知。塗佈及印刷奈米線傳導層之方法揭示於(例如)美國專利案第8,094,247號及美國專利申請案第12/380,293號及第12/380,294號中,該等案件各以引用之方式併入本文中。 Methods of depositing optical layers having the desired thickness using coating, printing, sputtering or other techniques are known in the art. Especially in terms of coating technology, Edward Cohen and Edgar Gutoff's "Modern coating and Drying Technology" (John Wiley & Sons, 1992, see pages 11 and 25-28) (which is incorporated herein by reference) A coating with the desired wet film thickness. The dry film thickness formed from a given wet film thickness depends on the composition of the coating solution used and is known to those of ordinary skill. A method of coating and printing a nanowire conductive layer is disclosed in, for example, U.S. Patent No. 8,094,247, and U.S. Patent Application Serial No. 12/380,293, the entire disclosure of each of In this article.

圖13顯示根據一實施例之一種光學堆疊30之參數最佳化之方法。於94,將光學堆疊輸入參數輸入至處理器中,其將該等輸入參數儲存於記憶體電路中。該處理器執行該記憶體中儲存的軟體指令以開始最佳化該光學堆疊參數之方法。於96,該處理器對入射於光學堆疊上的光計算轉移矩陣,該光學堆疊具有在步驟94輸入至該處理器中的參數範圍內之值。藉由計算該等轉移矩陣,可獲得自光學堆疊30之表 面37之鏡面反射。在計算該等轉移矩陣後,可計算堆疊30內奈米線32位置之場(於98)。 FIG. 13 shows a method of parameter optimization of an optical stack 30 in accordance with an embodiment. At 94, the optical stack input parameters are input to a processor, which stores the input parameters in a memory circuit. The processor executes software instructions stored in the memory to begin a method of optimizing the optical stacking parameters. At 96, the processor calculates a transfer matrix for the light incident on the optical stack, the optical stack having a value within a range of parameters input to the processor at step 94. The table from the optical stack 30 can be obtained by calculating the transfer matrices Specular reflection of face 37. After calculating the transfer matrices, the field of the position of the nanowire 32 within the stack 30 can be calculated (at 98).

於99,計算奈米線32之散射截面。奈米線32之散射截面指示光學堆疊30內朝各方向散射的漫反射光的量值。於100,對自光學堆疊30內的奈米線32朝所有方向散射之漫反射光計算轉移矩陣。該等轉移矩陣提供到達光學堆疊30之表面37之漫反射光部分。 At 99, the scattering cross section of the nanowire 32 is calculated. The scattering cross section of the nanowire 32 indicates the amount of diffusely reflected light scattered in each direction within the optical stack 30. At 100, a transfer matrix is calculated for the diffusely reflected light scattered from the nanowires 32 within the optical stack 30 in all directions. The transfer matrices provide a portion of the diffusely reflected light that reaches surface 37 of optical stack 30.

於102,該處理器校對以確定該等輸入參數是否需要更多迭代。在一實施例中,該處理器將對第一組光學堆疊進行漫反射計算。例如,若該第一層之可能厚度範圍係50 nm至200 nm,則該處理器可在保持其他參數不變之情況下對最小及最大厚度及對其間之一些厚度計算漫反射值。比較該等漫反射值且該處理器根據比較第一組光學堆疊之漫反射選擇值之下一迭代。該處理器選擇用於下一迭代之參數(於104)且該處理器對一組新參數進行鏡面反射、奈米線位置之場及漫反射之計算。於106,該處理器自已針對輸入參數範圍計算之該組漫反射選擇較佳漫反射並輸出產生較佳漫反射之光學堆疊30之特別佳參數。 At 102, the processor collates to determine if the input parameters require more iterations. In an embodiment, the processor will perform a diffuse reflection calculation on the first set of optical stacks. For example, if the first layer has a possible thickness range of 50 nm to 200 nm, the processor can calculate the diffuse reflection values for the minimum and maximum thicknesses and some thickness therebetween, while maintaining other parameters. The diffuse values are compared and the processor follows an iteration based on comparing the diffuse reflection selection values of the first set of optical stacks. The processor selects parameters for the next iteration (at 104) and the processor performs specular reflection on a new set of parameters, field of nanowire position, and calculation of diffuse reflection. At 106, the processor selects a preferred diffuse reflection from the set of diffuse reflections that have been calculated for the input parameter range and outputs a particularly good parameter for the optical stack 30 that produces better diffuse reflection.

圖14顯示根據一實施例在觸控螢幕顯示器中包括光學堆疊30之平板裝置120。已製造的該光學堆疊30具有如先前所述自最佳化方法獲得之層參數。該平板裝置120之顯示器不經歷如先前所述之乳白色或渾濁度。 FIG. 14 shows a tablet device 120 including an optical stack 30 in a touch screen display in accordance with an embodiment. The optical stack 30 that has been fabricated has layer parameters obtained from the optimization method as previously described. The display of the tablet device 120 does not experience milky white or turbidity as previously described.

雖然文中已描述光學堆疊30之特定層、厚度及性質,但諸多其他適宜的光學堆疊組態係可行,其包括更多或更少層、多層的奈米結構或任何其他適宜特徵。所有該等堆疊包含在本發明範圍內。 While specific layers, thicknesses, and properties of optical stack 30 have been described herein, many other suitable optical stack configurations are possible, including more or fewer layers, multiple layers of nanostructures, or any other suitable feature. All such stacks are included within the scope of the invention.

同樣地,雖然本發明已揭示最佳化光學堆疊30之光學特徵之特定方法,但在該方法中諸多其他適宜變型係可行。例如,可在仍包含於本發明範圍內的情況下以其他方式近似場、鏡面反射及漫反射。可 將更多、更少或不同參數輸入至處理器中以最佳化該堆疊。同樣地,可對除鏡面及漫反射以外之其他參數進行最佳化。字詞最佳不應理解為意指最可行組態,而指優於其他值或組態之值或組態。同樣地,最佳反射不一定指最低反射,而是指此等可行反射中之所需反射。 As such, although the present invention has disclosed a particular method of optimizing the optical characteristics of optical stack 30, many other suitable variations are possible in the method. For example, field, specular, and diffuse reflections may be approximated in other ways while still being included within the scope of the invention. can Enter more, fewer, or different parameters into the processor to optimize the stack. Similarly, parameters other than specular and diffuse reflections can be optimized. The word best should not be understood to mean the most feasible configuration, but refers to values or configurations that are superior to other values or configurations. Similarly, optimal reflection does not necessarily mean the lowest reflection, but rather the desired reflection in such feasible reflections.

可結合上述各種實施例以提供其他實施例。此說明書中所引用及/或申請案資料單(Application Data Sheet)中所列示之美國專利案、美國專利申請公開案、美國專利申請案、外國專利案、外國專利申請案及非專利公開案之全部係以全文引用之方式併入本文中。若有必要欲採用各種專利案、申請案及公開案之概念時,則可修改該等實施例之態樣以提供其他實施例。 Other embodiments may be provided in conjunction with the various embodiments described above. U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patent cases, foreign patent applications, and non-patent publications cited in the Application Data Sheet cited in this specification and/or application data sheet All of them are incorporated herein by reference in their entirety. If it is necessary to adopt the concepts of various patents, applications, and disclosures, the embodiments may be modified to provide other embodiments.

可根據以上詳細描述對該等實施例進行此等及其他改變。通常,在以下申請專利範圍中,所使用之項目不應理解為將該等專利申請範圍限於本說明書及該等專利申請範圍中所揭示之具體實施例,而應理解為包括所有可能的實施例及該等申請專利範圍享有的等效物之全部範圍。因此,該等申請專利範圍不受本揭示內容限制。 These and other changes can be made to the embodiments in light of the above detailed description. In general, the following items are not to be construed as limiting the scope of the patent application to the specific embodiments disclosed in the specification and the scope of the claims. And the full scope of equivalents of such patent applications. Therefore, the scope of such patent applications is not limited by the disclosure.

60‧‧‧系統 60‧‧‧ system

62‧‧‧處理器 62‧‧‧Processor

64‧‧‧記憶體 64‧‧‧ memory

66‧‧‧輸入模組 66‧‧‧Input module

68‧‧‧顯示器 68‧‧‧ display

70‧‧‧製造設備 70‧‧‧Manufacture equipment

Claims (31)

一種方法,其包括:對具有奈米線之光學堆疊選擇光學堆疊參數;根據該等光學堆疊參數對複數個光學堆疊組態中之各者計算複數組漫反射值,各組漫反射值包括針對自該光學堆疊反射之各自反射角之複數個漫反射值;至少部分根據比較針對該複數個角的該等漫反射值組選擇該等光學堆疊組態中之一者;及根據選定的光學堆疊組態形成光學堆疊層。 A method comprising: selecting an optical stacking parameter for an optical stack having a nanowire; calculating a complex array of diffuse reflection values for each of the plurality of optical stacking configurations according to the optical stacking parameters, each set of diffuse reflection values including a plurality of diffuse reflection values from respective reflection angles of the optical stack reflection; selecting one of the optical stack configurations based at least in part on comparing the sets of diffuse reflection values for the plurality of angles; and according to the selected optical stack The configuration forms an optical stack. 如請求項1之方法,其包括針對各光學堆疊組態之複數個反射角計算複數個鏡面反射值。 A method of claim 1, comprising calculating a plurality of specular reflection values for a plurality of reflection angles for each optical stack configuration. 如請求項1之方法,其包括:計算各針對各自光學堆疊組態之複數個鏡面反射值;將該等鏡面反射值與預定鏡面反射值作比較;及根據與該預定鏡面反射值之比較選擇該等光學堆疊組態中之一者。 The method of claim 1, comprising: calculating a plurality of specular reflection values for respective optical stack configurations; comparing the specular reflection values to predetermined specular reflection values; and selecting a comparison with the predetermined specular reflection values One of these optical stack configurations. 如請求項2之方法,其中選擇該等光學堆疊組態中之一者包括選擇鏡面反射值低於該預定鏡面反射值之光學堆疊組態。 The method of claim 2, wherein selecting one of the optical stack configurations comprises selecting an optical stack configuration having a specular value below the predetermined specular value. 如請求項1之方法,其包括:將各組漫反射值與至少一個預定漫反射值作比較;及至少部分根據與該至少一個預定漫反射值之比較選擇該等光學堆疊組態中之一者。 The method of claim 1, comprising: comparing each set of diffuse reflectance values to at least one predetermined diffuse reflectance value; and selecting one of the optical stack configurations based at least in part on a comparison with the at least one predetermined diffuse reflectance value By. 如請求項5之方法,其中選擇該等光學堆疊組態中之一者包括選擇其中各反射角之漫反射值低於該至少一個預定漫反射臨限值之光學堆疊組態。 The method of claim 5, wherein selecting one of the optical stack configurations comprises selecting an optical stack configuration in which a diffuse reflectance value of each of the reflected angles is below the at least one predetermined diffuse reflectance threshold. 如請求項1之方法,其中選擇該等光學堆疊組態中之一者係包括選擇對應於最小漫反射值之光學堆疊組態。 The method of claim 1, wherein selecting one of the optical stack configurations comprises selecting an optical stack configuration corresponding to a minimum diffuse reflectance value. 如請求項1之方法,其包括:計算各組的各自總漫反射值;及選擇對應於最小總漫反射值之光學堆疊組態。 The method of claim 1, comprising: calculating a respective total diffuse reflection value for each group; and selecting an optical stack configuration corresponding to the minimum total diffuse reflection value. 如請求項8之方法,其中計算各組的各自總漫反射值係包括對該組漫反射值求和。 The method of claim 8, wherein calculating the respective total diffuse reflectance values for each of the groups comprises summing the set of diffuse reflectance values. 如請求項8之方法,其中計算該各自總漫反射值係包括根據各反射角對該漫反射分配各自的權重因子。 The method of claim 8, wherein calculating the respective total diffuse reflection values comprises assigning respective weighting factors to the diffuse reflections according to respective reflection angles. 如請求項1之方法,其包括:計算複數個各自漫反射平均值,各漫反射平均值對應於各自組漫反射值之平均值;及至少部分根據該複數個漫反射平均值選擇該光學堆疊組態。 The method of claim 1, comprising: calculating a plurality of respective diffuse reflection average values, each diffuse reflection average value corresponding to an average of respective sets of diffuse reflection values; and selecting the optical stack based at least in part on the plurality of diffuse reflection average values configuration. 如請求項1之方法,其中計算該等漫反射值係包括計算該奈米線之散射截面。 The method of claim 1, wherein calculating the diffuse reflectance values comprises calculating a cross section of the nanowire. 如請求項1之方法,其中對於各光學堆疊組態計算該等漫反射值係分別包括:計算來自該光學堆疊內奈米線位置的入射光之電磁場;及對自該光學堆疊內奈米線散射的光計算轉移矩陣。 The method of claim 1, wherein calculating the diffuse reflectance values for each optical stack configuration comprises: calculating an electromagnetic field of incident light from a position of a nanowire within the optical stack; and correcting a nanowire from the optical stack The scattered light calculates the transfer matrix. 如請求項13之方法,其中計算該等漫反射值係包括根據該散射截面計算自該奈米線散射的光量及來自在該奈米線位置的入射光之場。 The method of claim 13, wherein calculating the diffuse reflectance values comprises calculating an amount of light scattered from the nanowire and a field of incident light from the nanowire position based on the scattering cross section. 如請求項14之方法,其中計算來自入射光的場係包括計算來自在該奈米線位置的漫散射光之電磁場。 The method of claim 14, wherein calculating the field from the incident light comprises calculating an electromagnetic field from the diffuse scattered light at the location of the nanowire. 如請求項1之方法,其中該複數個光學堆疊參數包括光學堆疊之層數目。 The method of claim 1, wherein the plurality of optical stacking parameters comprises a number of layers of the optical stack. 如請求項1之方法,其中形成該等光學堆疊層係包括:於基板上形成第一層;及於該第一層上形成第二層,該奈米線係位於該第一或第二層中。 The method of claim 1, wherein forming the optical stack layer comprises: forming a first layer on the substrate; and forming a second layer on the first layer, the nanowire being located in the first or second layer in. 一種方法,其包括:將該等輸入光學堆疊參數儲存於耦合至該處理器之記憶體電路中;根據該等光學堆疊參數於該處理器中對複數個各具有各自組態之光學堆疊計算複數組漫反射值,各組漫反射值包括針對自該光學堆疊表面反射之各自反射角之複數個漫反射值,對各組態計算該等組漫反射值係分別包括:計算來自光學堆疊內對應於該光學堆疊中之奈米線位置之一位置的入射光之電磁場值;及部分根據該電磁場值計算轉移矩陣,以提供自該光學堆疊表面反射的複數個反射角的複數個漫反射值;根據該等漫反射值選擇一光學堆疊組態。 A method comprising: storing the input optical stack parameters in a memory circuit coupled to the processor; calculating, in the processor, a plurality of optical stacks having respective configurations in the processor according to the optical stacking parameters The set of diffuse reflection values, each set of diffuse reflection values includes a plurality of diffuse reflection values for respective reflection angles reflected from the surface of the optical stack, and calculating the set of diffuse reflection values for each configuration includes: calculating corresponding from the optical stack An electromagnetic field value of incident light at a position of a nanowire position in the optical stack; and a portion of calculating a transfer matrix based on the electromagnetic field value to provide a plurality of diffuse reflection values of the plurality of reflection angles reflected from the optical stack surface; An optical stack configuration is selected based on the diffuse reflectance values. 如請求項18之方法,其中選擇該光學堆疊組態係包括選擇對應於最小漫反射值的光學堆疊組態。 The method of claim 18, wherein selecting the optical stacking configuration comprises selecting an optical stacking configuration corresponding to a minimum diffuse reflection value. 如請求項18之方法,其包括:計算各組的各自總漫反射值;及選擇對應於最小總漫反射值的光學堆疊組態。 The method of claim 18, comprising: calculating a respective total diffuse reflectance value for each group; and selecting an optical stack configuration corresponding to the minimum total diffuse reflectance value. 如請求項18之方法,其中該等輸入光學堆疊參數係包括該光學堆疊之至少一層之折射率範圍。 The method of claim 18, wherein the input optical stacking parameters comprise a refractive index range of at least one layer of the optical stack. 如請求項21之方法,其中該選定的光學堆疊組態包括來自該折射率範圍的折射率。 The method of claim 21, wherein the selected optical stack configuration comprises a refractive index from the range of refractive indices. 如請求項18之方法,其中該等輸入光學堆疊參數包括光學堆疊 層的厚度範圍。 The method of claim 18, wherein the input optical stacking parameters comprise optical stacking The thickness range of the layer. 如請求項23之方法,其中該選定的光學堆疊組態包括來自該光學堆疊層之厚度範圍的厚度。 The method of claim 23, wherein the selected optical stack configuration comprises a thickness from a range of thicknesses of the optical stack. 如請求項17之方法,其中計算該等組漫反射值係包括據計算該奈米線之散射截面。 The method of claim 17, wherein calculating the set of diffuse reflectance values comprises calculating a cross section of the nanowire. 一種系統,其包含:處理器;耦合至該處理器之記憶體;耦合至該處理器且經組態以接收光學堆疊之第一參數之輸入端,該處理器係經組態以對於對應於該光學堆疊中奈米線之位置計算一組入射光電磁場值、計算該奈米線之光散射分佈、計算複數組在該光學堆疊表面之漫反射值及估算該光學堆疊之一組第二參數,該等第二參數對應於較佳的一組漫反射值,各組漫反射值包括針對自該光學堆疊表面反射之各自反射角之複數個漫反射值;及耦合至該處理器且經組態以接收來自該處理器之第二參數之輸出端。 A system comprising: a processor; a memory coupled to the processor; an input coupled to the processor and configured to receive a first parameter of the optical stack, the processor configured to correspond to Calculating a set of incident photoelectric field values in the optical stack, calculating a light scattering distribution of the nanowire, calculating a diffuse reflection value of the complex array on the optical stack surface, and estimating a second parameter of the optical stack The second parameter corresponds to a preferred set of diffuse reflection values, each set of diffuse reflection values comprising a plurality of diffuse reflection values for respective reflection angles reflected from the optical stack surface; and coupled to the processor and grouped State to receive the output of the second parameter from the processor. 如請求項26之系統,其包括耦合至該輸出端之顯示器,該顯示器係經組態以顯示該等第二參數。 A system as claimed in claim 26, comprising a display coupled to the output, the display being configured to display the second parameters. 如請求項26之系統,其包括耦合至該輸出端之沈積裝置,該沈積裝置係經組態以接收該等第二參數及根據該等第二參數以沈積該光學堆疊之第一光學層。 The system of claim 26, comprising a deposition device coupled to the output, the deposition device configured to receive the second parameter and to deposit a first optical layer of the optical stack based on the second parameter. 一種方法,其包括:將光學堆疊參數輸入至處理器中;於該處理器中估算一組來自對應於該光學堆疊中奈米線之位置之入射光的電磁場值; 於該處理器中估算該奈米線之光散射分佈;根據該等電磁場值及該散射截面於該處理器中估算複數組在該光學堆疊表面的漫反射值,各組漫反射值包括針對自該光學堆疊表面反射之各自反射角之複數個漫反射值;及自該處理器輸出對應於選定組的漫反射值之光學堆疊組態。 A method comprising: inputting an optical stacking parameter into a processor; estimating, in the processor, a set of electromagnetic field values from incident light corresponding to a position of a nanowire in the optical stack; Estimating a light scattering distribution of the nanowire in the processor; estimating, according to the electromagnetic field value and the scattering cross section, a diffuse reflection value of the complex array on the optical stack surface in the processor, each set of diffuse reflection values including a plurality of diffuse reflection values of respective reflection angles of the optical stack surface reflection; and an optical stack configuration output from the processor corresponding to the selected set of diffuse reflection values. 如請求項29之方法,其中估算該組電磁場值係包括根據該等光學堆疊參數計算第一轉移矩陣。 The method of claim 29, wherein estimating the set of electromagnetic field values comprises calculating a first transfer matrix based on the optical stack parameters. 如請求項30之方法,其中估算該等組漫反射值係包括根據該等光學堆疊參數計算第二轉移矩陣。 The method of claim 30, wherein estimating the set of diffuse reflectance values comprises calculating a second transfer matrix based on the optical stacking parameters.
TW102112256A 2012-04-06 2013-04-03 System and methods of reducing diffuse reflection of an optical stack TW201342102A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
SG11201406242YA SG11201406242YA (en) 2012-04-06 2013-04-04 System and methods of calculating diffuse reflection of an optical stack with a nanowire
PCT/US2013/035321 WO2013152225A1 (en) 2012-04-06 2013-04-04 System and methods of calculating diffuse reflection of an optical stack with a nanowire
KR1020147031269A KR20140143833A (en) 2012-04-06 2013-04-04 System and methods of calculating diffuse reflection of an optical stack with a nanowire
JP2015504733A JP2015515064A (en) 2012-04-06 2013-04-04 System and method for calculating diffuse reflection of an optical stack with nanowires
SG10201608386XA SG10201608386XA (en) 2012-04-06 2013-04-04 System and methods of calculating diffuse reflection of an optical stack with a nanowire

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261621359P 2012-04-06 2012-04-06
US201261678886P 2012-08-02 2012-08-02
US13/667,556 US20130115371A1 (en) 2011-11-04 2012-11-02 System and methods of reducing diffuse reflection of an optical stack
US13/831,351 US20140272105A1 (en) 2013-03-14 2013-03-14 System and methods of reducing diffuse reflection of an optical stack

Publications (1)

Publication Number Publication Date
TW201342102A true TW201342102A (en) 2013-10-16

Family

ID=49771447

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102112256A TW201342102A (en) 2012-04-06 2013-04-03 System and methods of reducing diffuse reflection of an optical stack

Country Status (5)

Country Link
JP (1) JP2015515064A (en)
KR (1) KR20140143833A (en)
CN (1) CN104428771A (en)
SG (2) SG11201406242YA (en)
TW (1) TW201342102A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101795866B1 (en) * 2015-11-20 2017-11-09 연세대학교 산학협력단 Nanowire bundle array, membrane comprising the same and method for manufacturing of the membrane and steam generator using the membrane
TW201940323A (en) 2018-03-09 2019-10-16 日商大日本印刷股份有限公司 Electroconductive film, sensor, touch panel, and image display device
CN113743031B (en) * 2021-08-31 2023-05-16 北京航空航天大学 Gas molecule scattering speed calculation method based on hdCLL model

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101336414A (en) * 2005-11-30 2008-12-31 3M创新有限公司 Method and apparatus for simulation of optical systems
EP2477229B1 (en) * 2007-04-20 2021-06-23 Cambrios Film Solutions Corporation Composite transparent conductors and methods of forming the same
US8329247B2 (en) * 2009-02-19 2012-12-11 Toyota Motor Engineering & Manufacturing North America, Inc. Methods for producing omni-directional multi-layer photonic structures
CN102947759B (en) * 2010-06-15 2016-03-02 卡尔蔡司Smt有限责任公司 For the mask of EUV lithography, EUV lithography system and the method for the imaging of optimizing mask

Also Published As

Publication number Publication date
KR20140143833A (en) 2014-12-17
JP2015515064A (en) 2015-05-21
SG11201406242YA (en) 2014-10-30
CN104428771A (en) 2015-03-18
SG10201608386XA (en) 2016-11-29

Similar Documents

Publication Publication Date Title
US9766376B2 (en) Optical film
US10042481B2 (en) Transparent electroconductive laminate and transparent touch panel
WO2018171178A1 (en) Fingerprint identification device, control method, touch display panel and touch display device
Böttler et al. Texture‐etched ZnO as a versatile base for optical back reflectors with well‐designed surface morphologies for application in thin film solar cells
US9719770B2 (en) Touchscreen sensor
CN105528119B (en) OLED display panel and touch panel
US20160303838A1 (en) Transparent conductive multilayer assembly
CN102378685A (en) Transparent conductive laminate and transparent touch panel
TWI571779B (en) Touching-sensitive unit and touching-sensitive device
CN104040644A (en) Transparent electroconductive film
KR20140001468U (en) Touch panel
US20150022743A1 (en) Touchscreen sensor
TW201342102A (en) System and methods of reducing diffuse reflection of an optical stack
TWM507020U (en) Display touch device
TW201337615A (en) System and methods of reducing diffuse reflection of an optical stack
US20140272105A1 (en) System and methods of reducing diffuse reflection of an optical stack
CN203759671U (en) Touch screen and display device
Sever et al. Rigorous modelling of light scattering in solar cells based on finite element method and Huygens’ expansion
Kang et al. Numerical modeling of the effect of multiple incoherent layers in Cu (In, Ga) Se 2 solar cells based on the equispaced thickness averaging method
WO2013152225A1 (en) System and methods of calculating diffuse reflection of an optical stack with a nanowire
Sahraei et al. Optimum feature size of randomly textured glass substrates for maximum scattering inside thin-film silicon solar cells
JP2016078395A (en) Laminate, conductive laminate and touch panel
CN208589006U (en) A kind of touch-control sensor and touch-control display panel
JP4245339B2 (en) Method for producing conductive transparent substrate with multilayer film
JP4989367B2 (en) Design method of organic electroluminescence device