TW201330710A - Vertical switching voltage switchable dielectric material formation and structure - Google Patents

Vertical switching voltage switchable dielectric material formation and structure Download PDF

Info

Publication number
TW201330710A
TW201330710A TW101134632A TW101134632A TW201330710A TW 201330710 A TW201330710 A TW 201330710A TW 101134632 A TW101134632 A TW 101134632A TW 101134632 A TW101134632 A TW 101134632A TW 201330710 A TW201330710 A TW 201330710A
Authority
TW
Taiwan
Prior art keywords
vsd material
layer
conductive
vsdm
substrate
Prior art date
Application number
TW101134632A
Other languages
Chinese (zh)
Other versions
TWI473542B (en
Inventor
Robert Fleming
Michael Glickman
Bhret Graydon
Jun-Jun Wu
Daniel Vasquez
Original Assignee
Shocking Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shocking Technologies Inc filed Critical Shocking Technologies Inc
Publication of TW201330710A publication Critical patent/TW201330710A/en
Application granted granted Critical
Publication of TWI473542B publication Critical patent/TWI473542B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0288Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using passive elements as protective elements, e.g. resistors, capacitors, inductors, spark-gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/1013Thin film varistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/60Protection against electrostatic charges or discharges, e.g. Faraday shields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/041Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage using a short-circuiting device
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0254High voltage adaptations; Electrical insulation details; Overvoltage or electrostatic discharge protection ; Arrangements for regulating voltages or for using plural voltages
    • H05K1/0257Overvoltage protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G7/00Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture
    • H01G7/06Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture having a dielectric selected for the variation of its permittivity with applied voltage, i.e. ferroelectric capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/525Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections
    • H01L23/5252Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections comprising anti-fuses, i.e. connections having their state changed from non-conductive to conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/044Physical layout, materials not provided for elsewhere
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0254High voltage adaptations; Electrical insulation details; Overvoltage or electrostatic discharge protection ; Arrangements for regulating voltages or for using plural voltages
    • H05K1/0257Overvoltage protection
    • H05K1/0259Electrostatic discharge [ESD] protection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/07Electric details
    • H05K2201/073High voltage adaptations
    • H05K2201/0738Use of voltage responsive materials, e.g. voltage switchable dielectric or varistor materials

Abstract

Embodiments disclosed herein generally relate to structures, methods and devices employing a voltage switch able dielectric material to achieve vertical and/or dual switching protection against ESD and other over voltage events.

Description

垂直切換的電壓調變介電材質構造及結構 Vertically switched voltage modulation dielectric material structure and structure

本發明涉及一種應用電壓調變介電(Voltage Switchable Dielectric,VSD)材質的構造、方法和設備,用以實現垂直切換以防止靜電放電(Electrostatic Discharge,ESD)或其它過電壓情況。 The present invention relates to a structure, method and apparatus for applying a Voltage Switchable Dielectric (VSD) material for vertical switching to prevent Electrostatic Discharge (ESD) or other overvoltage conditions.

電子設備往往是通過組裝和連接各種組件(例如:積體電路、被動元件、晶片和其相似者,以下通稱為晶片)所製成。許多組件,特別是半導體,在所謂過電壓條件下對施加過大電壓的電氣情況很敏感。過電壓條件的來源包含靜電放電(Electrostatic Discharge,ESD)、反電動勢(back electromotive force,EMF)、雷電、太陽風、開關的電磁感應負載,如電動機和電磁鐵、開關的阻抗負載、大電流充電、電磁脈衝及其相似者。過電壓條件可能導致高電壓在含有主動及/或被動電子組件或電路元件的裝置中,如半導體積體電路晶片,這可能導致大電流通過或存在組件中。大電流可能對主動元件或被動元件或電路元件的功能性造成破壞或負面影響。 Electronic devices are often made by assembling and connecting various components (eg, integrated circuits, passive components, wafers, and the like, hereinafter collectively referred to as wafers). Many components, particularly semiconductors, are sensitive to electrical conditions where excessive voltages are applied under so-called overvoltage conditions. Sources of overvoltage conditions include Electrostatic Discharge (ESD), back electromotive force (EMF), lightning, solar wind, electromagnetic induction loads of switches, such as electric motors and electromagnets, impedance loads of switches, high current charging, Electromagnetic pulses and their similarities. Overvoltage conditions can result in high voltages in devices containing active and/or passive electronic components or circuit components, such as semiconductor integrated circuit wafers, which can cause large currents to pass through or exist in the assembly. Large currents can cause damage or negative effects on the functionality of active or passive components or circuit components.

有些晶片包含整合針對一些過電壓情況(如:輕微的ESD情況)的保護,過電壓情況可在晶片的封裝或各電子裝置的操作(例如:防護人體放電模式的情況)期間被預期。 Some wafers contain integration protection against some overvoltage conditions (eg, mild ESD conditions) that can be expected during wafer packaging or operation of various electronic devices (eg, in the case of protection against human discharge modes).

一個晶片可能被封裝(例如:連接到基板)。封裝後的晶片可連接到額外的(如:晶片外的)過電壓保護裝 置,用以保護封裝晶片預防更嚴重(例如:高電壓)的過電壓情況。由於晶片上及晶片外的過電壓保護裝置皆在電通信中,晶片外的過電壓保護裝置可能需要保護晶片上的過電壓保護裝置。晶片外的過電壓保護裝置使用分散的組件很難在基板的製造過程中增加。除此之外,晶片上的保護難以最佳化完整的系統或子系統。ESD測試規範的例子包含“IEC 61000-4-2”及“JESD22-A114E”。 A wafer may be packaged (eg, connected to a substrate). The packaged wafer can be connected to an additional (eg, off-chip) overvoltage protection device To protect the packaged wafer from overvoltage conditions such as high voltage (eg high voltage). Since the overvoltage protection devices on and off the wafer are in electrical communication, the overvoltage protection device outside the wafer may need to protect the overvoltage protection device on the wafer. Over-wafer overvoltage protection devices are difficult to add to the fabrication of substrates using discrete components. In addition, protection on the wafer is difficult to optimize a complete system or subsystem. Examples of ESD test specifications include "IEC 61000-4-2" and "JESD22-A114E".

印刷電路板、印刷線路板或相似的基板(以下也簡稱為PCB)可被用於組裝、支撐及連接電子組件。PCB上通常包含絕緣材質的基板及一個或多個導線以提供各種附加元件、晶片及其同類元件進行電氣傳導。通常情況下,金屬導線的圖案是鍍(例如:使用如絲網印刷的印刷技術)在電介質基板上用以提供電氣連接。另外,金屬層(如:銅、銀、金的層)應用在基板且部分的金屬層會被移除(例如:蝕刻)形成所需的圖案。導電圖案及/或電介質材料(或稱為介電材質)的多個層可能被設置在PCB上,這些層則可使用通孔連接。印刷電路板包含“14”層或更多層的比比皆是。 A printed circuit board, a printed wiring board, or a similar substrate (hereinafter also referred to simply as a PCB) can be used to assemble, support, and connect electronic components. The PCB typically includes an insulating substrate and one or more wires to provide electrical conduction for various additional components, wafers, and the like. Typically, the pattern of metal wires is plated (e.g., using a printing technique such as screen printing) to provide electrical connections on a dielectric substrate. In addition, a metal layer (eg, a layer of copper, silver, gold) is applied to the substrate and a portion of the metal layer is removed (eg, etched) to form the desired pattern. A plurality of layers of conductive patterns and/or dielectric materials (or dielectric materials) may be disposed on the PCB, and the layers may be connected using vias. Printed circuit boards contain "14" or more layers abound.

PCB通常用於支撐或連接各種電子元件,如:晶片、封裝物、及其它積體裝置。PCB也可支撐及連接分離的元件,如:電阻、電容、電感及其相似物,以及提供積體裝置與分離元件連接。在PCB中的導電模式及/或層,以及其它在電子裝置中的元件或區域有時提供路徑以引導可能損害或對元件造成負面影響的過電壓情況。 PCBs are commonly used to support or connect various electronic components such as wafers, packages, and other integrated devices. The PCB can also support and connect separate components such as resistors, capacitors, inductors and the like, as well as providing integrated devices to separate components. Conductive patterns and/or layers in the PCB, as well as other components or regions in the electronic device, sometimes provide a path to guide an overvoltage condition that may damage or adversely affect the component.

在以往的技術中存在各種結構、方法及裝置提供給電子裝置(例如:將分離的突波抑制組件表面安裝在印刷電路板)進行過電壓保護,但是以往的技術在製造、效能、工作特性及成本上通常具有各種限制。 In the prior art, various structures, methods, and devices are provided to an electronic device (for example, a surface of a separated surge suppressing component is mounted on a printed circuit board) for overvoltage protection, but the prior art is in manufacturing, performance, and operating characteristics. There are usually various restrictions on cost.

本發明揭露一種垂直切換的電壓調變介電材質(VSDM)構造及結構。 The invention discloses a vertically switched voltage modulation dielectric material (VSDM) structure and structure.

首先,本發明揭露一種垂直切換的電壓調變介電材質構造,形成在基板中,此構造包含第一導電元件用以設置在基板的第一水平層及第二導電元件設置在第二水平層,所述第二水平層不同於第一水平層;VSDM結構具有特徵電壓及垂直厚度,此VSDM結構設置在基板的第三水平層,此第三水平層不同於第一水平層及第二水平層;電路元件嵌入基板至少一部分,此電路元件具有阻抗;及其中VSDM結構用以成為跨越垂直厚度的基本傳導,並且在第一導電元件及第二導電元件之間傳導電流以響應超過特徵電壓的ESD脈衝。 First, the present invention discloses a vertically-switched voltage-modulated dielectric material structure formed in a substrate, the structure including a first conductive element for being disposed on a first horizontal layer of the substrate and a second conductive element disposed on the second horizontal layer The second horizontal layer is different from the first horizontal layer; the VSDM structure has a characteristic voltage and a vertical thickness, and the VSDM structure is disposed on a third horizontal layer of the substrate, the third horizontal layer being different from the first horizontal layer and the second horizontal layer a circuit component embedded in at least a portion of the substrate, the circuit component having an impedance; and wherein the VSDM structure is configured to be substantially conductive across a vertical thickness and conducting current between the first conductive component and the second conductive component in response to exceeding a characteristic voltage ESD pulse.

另外,本發明揭露一種包含基板及垂直切換的電壓調變介電材質構造的電子裝置,此VSDM構造結合在基板中,此基板包含不同的三個水平層,所述VSDM構造包含:第一導電元件用以設置在第一水平層,以及第二導電元件設置在第二水平層;VSDM結構具有特徵電壓及垂直厚度,此VSDM結構設置在第三水平層;電路元件嵌入基板至少一部分,此電路元件具有阻抗;及其中,所述VSDM結構用以成為跨越垂直厚度的基本傳導,並且在第一導電元件及第二導電元件之間傳導電流以響應超過特徵電壓的ESD脈衝,所述VSDM構造為電子裝置提供ESD防護。 In addition, the present invention discloses an electronic device including a substrate and a vertically-switched voltage-modulated dielectric material structure. The VSDM structure is incorporated in a substrate, the substrate includes different three horizontal layers, and the VSDM structure includes: a first conductive The component is disposed on the first horizontal layer, and the second conductive component is disposed on the second horizontal layer; the VSDM structure has a characteristic voltage and a vertical thickness, the VSDM structure is disposed in the third horizontal layer; and the circuit component is embedded in at least a portion of the substrate, the circuit The element has an impedance; and wherein the VSDM structure is to be substantially conductive across a vertical thickness and conducts a current between the first conductive element and the second conductive element in response to an ESD pulse exceeding a characteristic voltage, the VSDM being configured as Electronic devices provide ESD protection.

另外,本發明揭露一種垂直切換的電壓調變介電材質結構,其包含:第一導電元件及第二導電元件,此第一導電元件及第二導電元件設置在第一水平層;互連層用以設置在第二水平層;第三導電元件用以連接第二導電元件至互連層;及VSD材質構造用以設置在第三水平層,此VSD材質構造具有特徵電壓,形成在第一導電元件及互連層之間跨越垂直間隙;其中,所述VSD材質構造用以垂直切換跨越垂直間隙以響應超過特徵電壓的ESD脈衝。 In addition, the present invention discloses a vertically-switched voltage-modulated dielectric material structure including: a first conductive element and a second conductive element, the first conductive element and the second conductive element being disposed in a first horizontal layer; The second conductive layer is configured to connect the second conductive element to the interconnect layer; and the VSD material is configured to be disposed on the third horizontal layer, the VSD material structure has a characteristic voltage, formed in the first A vertical gap is spanned between the conductive element and the interconnect layer; wherein the VSD material is configured to vertically switch across the vertical gap in response to an ESD pulse that exceeds the characteristic voltage.

100‧‧‧水平切換結構 100‧‧‧ horizontal switching structure

110‧‧‧電壓源 110‧‧‧voltage source

112‧‧‧ESD脈衝 112‧‧‧ESD pulse

120、122‧‧‧電極 120, 122‧‧‧ electrodes

130、132‧‧‧通孔 130, 132‧‧‧through holes

140‧‧‧VSD材質層 140‧‧‧VSD material layer

142‧‧‧箭頭 142‧‧‧ arrow

150‧‧‧間隙 150‧‧‧ gap

160‧‧‧基板 160‧‧‧Substrate

170‧‧‧絕緣層 170‧‧‧Insulation

200‧‧‧水平切換的筒狀結構 200‧‧‧ horizontally switched cylindrical structure

210‧‧‧電壓源 210‧‧‧voltage source

212‧‧‧ESD信號 212‧‧‧ESD signal

230、232‧‧‧導電平面 230, 232‧‧‧ conductive plane

240‧‧‧VSD材質 240‧‧‧VSD material

242‧‧‧線段 242‧‧ ‧ line segment

250‧‧‧間隙 250‧‧‧ gap

300‧‧‧印刷電路板 300‧‧‧Printed circuit board

400‧‧‧VSDM構造 400‧‧‧VSDM construction

430‧‧‧導電結構 430‧‧‧Electrical structure

432‧‧‧導電層 432‧‧‧ Conductive layer

434‧‧‧互連層 434‧‧‧Interconnect layer

440‧‧‧VSD材質層 440‧‧‧VSD material layer

442‧‧‧電極 442‧‧‧electrode

450、452‧‧‧導電結構 450, 452‧‧‧ conductive structure

460、462‧‧‧基板層 460, 462‧‧‧ substrate layer

470、472‧‧‧導電層 470, 472‧‧‧ conductive layer

474、476‧‧‧導電層 474, 476‧‧‧ conductive layer

478、479‧‧‧導電層 478, 479‧‧‧ conductive layer

480‧‧‧預浸填料 480‧‧‧Pre-dip filler

482‧‧‧核心 482‧‧‧ core

484‧‧‧預浸填料 484‧‧‧Pre-dip filler

486‧‧‧核心 486‧‧‧ core

488‧‧‧預浸填料 488‧‧‧Pre-dip filler

490‧‧‧VSDM構造 490‧‧‧VSDM construction

498‧‧‧VSD材質層 498‧‧‧VSD material layer

499‧‧‧互連層 499‧‧‧Interconnect layer

500‧‧‧VSDM構造 500‧‧‧VSDM construction

510‧‧‧電壓源 510‧‧‧voltage source

512‧‧‧ESD脈衝 512‧‧‧ESD pulse

520、522‧‧‧導電層 520, 522‧‧‧ conductive layer

530、532‧‧‧互連層 530, 532‧‧‧ interconnection layer

540‧‧‧VSD材質 540‧‧‧VSD material

542‧‧‧間隙 542‧‧‧ gap

600‧‧‧VSD材質構造 600‧‧‧VSD material construction

610‧‧‧電壓源 610‧‧‧voltage source

612‧‧‧ESD脈衝 612‧‧‧ESD pulse

620、622‧‧‧導電層 620, 622‧‧‧ conductive layer

630‧‧‧互連層 630‧‧‧Interconnect layer

640‧‧‧VSD材質 640‧‧‧VSD material

642‧‧‧間隙 642‧‧‧ gap

680、682‧‧‧聚酰亞胺基板 680, 682‧‧‧ polyimide substrate

800‧‧‧圖形 800‧‧‧ graphics

802、804‧‧‧局部 802, 804‧‧‧ local

810、812‧‧‧信號 810, 812‧‧‧ signals

820、822‧‧‧電壓響應曲線 820, 822‧‧‧ voltage response curve

900‧‧‧VSD材質構造 900‧‧‧VSD material construction

910‧‧‧電源 910‧‧‧Power supply

912‧‧‧ESD脈衝 912‧‧‧ESD pulse

920、922‧‧‧電極 920, 922‧‧‧ electrodes

930‧‧‧通孔 930‧‧‧through hole

940‧‧‧VSD材質 940‧‧‧VSD material

942‧‧‧間隙 942‧‧‧ gap

970‧‧‧互連層 970‧‧‧Interconnect layer

980‧‧‧預浸料 980‧‧‧Prepreg

982‧‧‧核心 982‧‧‧ core

1000‧‧‧VSD材質構造 1000‧‧‧VSD material construction

1010‧‧‧電壓源 1010‧‧‧voltage source

1012‧‧‧ESD脈衝 1012‧‧‧ESD pulse

1020、1022‧‧‧電極 1020, 1022‧‧‧ electrodes

1030‧‧‧通孔 1030‧‧‧through hole

1040‧‧‧VSD材質 1040‧‧‧VSD material

1042‧‧‧間隙 1042‧‧‧ gap

1044‧‧‧VSD材質 1044‧‧‧VSD material

1046‧‧‧間隙 1046‧‧‧ gap

1070‧‧‧導電層 1070‧‧‧ Conductive layer

1080‧‧‧預浸料 1080‧‧‧Prepreg

1082‧‧‧核心 1082‧‧‧ core

1100‧‧‧VSD材質構造 1100‧‧‧VSD material construction

1110‧‧‧電壓源 1110‧‧‧voltage source

1112‧‧‧ESD脈衝 1112‧‧‧ESD pulse

1120、1122‧‧‧電極 1120, 1122‧‧‧ electrodes

1140‧‧‧VSD材質 1140‧‧‧VSD material

1142‧‧‧間隙 1142‧‧‧ gap

1170‧‧‧導電的預浸料 1170‧‧‧ Conductive prepreg

1182‧‧‧核心 1182‧‧‧ core

1200、1202‧‧‧VSD材質構造 1200, 1202‧‧‧VSD material construction

1212‧‧‧ESD信號 1212‧‧‧ESD signal

1220、1224‧‧‧電極 1220, 1224‧‧‧ electrodes

1228、1229‧‧‧電極 1228, 1229‧‧‧ electrodes

1230‧‧‧預浸料層 1230‧‧‧Prepreg layer

1240‧‧‧VSD材質層 1240‧‧‧VSD material layer

1242‧‧‧間隙 1242‧‧‧ gap

1250‧‧‧通孔 1250‧‧‧through hole

1270‧‧‧導電層 1270‧‧‧ Conductive layer

1280‧‧‧互連層 1280‧‧‧Interconnecting layer

1290‧‧‧ESD放電路徑 1290‧‧‧ESD discharge path

1296、1297‧‧‧嵌入式阻抗 1296, 1297‧‧‧ embedded impedance

1298、1299‧‧‧電子組件 1298, 1299‧‧‧ Electronic components

1300‧‧‧VSD材質構造 1300‧‧‧VSD material construction

1312‧‧‧ESD脈衝ESD 1312‧‧‧ESD pulse ESD

1340‧‧‧VSD材質結構 1340‧‧‧VSD material structure

1342‧‧‧間隙 1342‧‧‧ gap

1350‧‧‧通孔 1350‧‧‧through hole

1370、1372‧‧‧導電層 1370, 1372‧‧‧ conductive layer

1374、1376‧‧‧導電層 1374, 1376‧‧‧ conductive layer

1378、1379‧‧‧導電層 1378, 1379‧‧‧ conductive layer

1400‧‧‧VSD材質構造 1400‧‧‧VSD material construction

1412‧‧‧ESD脈衝ESD 1412‧‧‧ESD pulse ESD

1440‧‧‧VSD材質結構 1440‧‧‧VSD material structure

1442‧‧‧間隙 1442‧‧‧ gap

1470、1472‧‧‧導電層 1470, 1472‧‧‧ conductive layer

1474‧‧‧導電層 1474‧‧‧ Conductive layer

1490‧‧‧電氣路徑 1490‧‧‧Electrical Path

1500‧‧‧VSD材質構造 1500‧‧‧VSD material construction

1502‧‧‧VSD材質構造 1502‧‧‧VSD material construction

1510‧‧‧電壓源 1510‧‧‧voltage source

1512‧‧‧ESD脈衝 1512‧‧‧ESD pulse

1520、1522‧‧‧電極 1520, 1522‧‧‧ electrodes

1529‧‧‧電極 1529‧‧‧electrode

1540‧‧‧VSD材質結構 1540‧‧‧VSD material structure

1542‧‧‧間隙 1542‧‧‧ gap

1570、1572‧‧‧互連層 1570, 1572‧‧‧ interconnection layer

1582‧‧‧核心 1582‧‧‧ core

1592、1593‧‧‧元件 1592, 1593‧‧‧ components

1597‧‧‧嵌入式阻抗 1597‧‧‧Embedded impedance

1599‧‧‧電子組件 1599‧‧‧Electronic components

1600‧‧‧VSD材質構造 1600‧‧‧VSD material construction

1601‧‧‧VSD材質構造 1601‧‧‧VSD material construction

1612‧‧‧ESD脈衝 1612‧‧‧ESD pulse

1620、1622‧‧‧電極 1620, 1622‧‧‧ electrodes

1624、1626‧‧‧電極 1624, 1626‧‧‧ electrodes

1628‧‧‧連接器 1628‧‧‧Connector

1629‧‧‧電極 1629‧‧‧electrode

1640‧‧‧VSD材質 1640‧‧‧VSD material

1642‧‧‧間隙 1642‧‧‧ gap

1646‧‧‧VSD材質結構 1646‧‧‧VSD material structure

1648‧‧‧間隙 1648‧‧‧ gap

1670、1672‧‧‧互連層 1670, 1672‧‧‧ interconnection layer

1682、1683‧‧‧核心 1682, 1683‧‧ core

1696‧‧‧嵌入式阻抗 1696‧‧‧Embedded impedance

1698‧‧‧電子組件 1698‧‧‧Electronic components

1700‧‧‧雙向切換結構 1700‧‧‧bidirectional switching structure

1720、1726‧‧‧電極 1720, 1726‧‧‧ electrodes

1728‧‧‧電極 1728‧‧‧electrodes

1740‧‧‧VSD材質結構 1740‧‧‧VSD material structure

1742、1744‧‧‧間隙 1742, 1744‧‧ ‧ gap

1746‧‧‧間隙 1746‧‧‧ gap

1770‧‧‧互連層 1770‧‧‧Interconnect layer

1772‧‧‧通孔 1772‧‧‧through hole

1782‧‧‧互連層 1782‧‧‧Interconnecting layer

步驟700‧‧‧產生導電結構的流程 Step 700‧‧‧ Flow of conductive structure

步驟710‧‧‧將VSD材質應用到基板 Step 710‧‧‧ Apply VSD material to the substrate

步驟720‧‧‧將非導電層應用在VSD材質頂端 Step 720‧‧‧ Apply a non-conductive layer to the top of the VSD material

步驟730‧‧‧圖案化該非導電層 Step 730‧‧‧ pattern the non-conductive layer

步驟740‧‧‧施加電壓以轉換VSD材質為基本導電 Step 740‧‧‧ Apply voltage to convert the VSD material to basic conduction

步驟750‧‧‧在VSD材質的曝光區域中進行離子沉積 Step 750‧‧‧Ion deposition in the exposed area of the VSD material

第1圖為水平切換的VSDM構造,包含可為電子組件提供ESD防護的VSD材質之示意圖。 Figure 1 is a horizontally switched VSDM construction with a schematic representation of a VSD material that provides ESD protection for electronic components.

第2圖為水平切換的筒狀構造,包含可為電子組件提供ESD防護的VSD材質之示意圖。 Figure 2 is a horizontally-switched cylindrical structure containing a schematic representation of a VSD material that provides ESD protection for electronic components.

第3圖為印刷電路板和在各種實施例中相關方向的參考之示意圖。 Figure 3 is a schematic illustration of a printed circuit board and references in related directions in various embodiments.

第4A圖為根據一個實施例顯示使用VSD材質實現垂直切換的VSDM構造且可被整合在基板裝置之示意圖。 4A is a schematic diagram showing a VSDM configuration for implementing vertical switching using a VSD material and integrated into a substrate device, according to one embodiment.

第4B圖為根據一個實施例顯示包含VSD材質層的VSDM構造,其可整合在印刷電路板或另一基板且實現垂直切換之示意圖。 FIG. 4B is a schematic diagram showing a VSDM configuration including a VSD material layer that can be integrated on a printed circuit board or another substrate and that implements vertical switching, in accordance with one embodiment.

第5圖為根據一個實施例顯示VSDM構造,其使用VSD材質實現垂直切換之示意圖。 Figure 5 is a schematic diagram showing a VSDM configuration using a VSD material to implement vertical switching, in accordance with one embodiment.

第6圖為根據一個實施例顯示VSDM構造,其使用VSD材質實現垂直切換之示意圖。 Figure 6 is a schematic diagram showing the VSDM construction using a VSD material to implement vertical switching, in accordance with one embodiment.

第7圖為根據一個實施例顯示在垂直切換的VSDM構造中提供一個或多個導電結構,如互連層的方法流程圖。 Figure 7 is a flow diagram showing a method of providing one or more conductive structures, such as interconnect layers, in a vertically switched VSDM configuration, in accordance with one embodiment.

第8圖為根據一個實施例顯示用於垂直切換的VSDM構造的樣本響應電壓平均之示意圖。 Figure 8 is a diagram showing sample response voltage averaging for a VSDM configuration for vertical switching, in accordance with one embodiment.

第9圖為根據一個實施例顯示使用VSD材質實現垂直切換的VSD材質構造之示意圖。 Figure 9 is a schematic diagram showing the VSD material construction for vertical switching using a VSD material, according to one embodiment.

第10圖為根據一個實施例顯示使用VSD材質實現垂直切換的VSD材質構造之示意圖。 Figure 10 is a schematic diagram showing the construction of a VSD material using a VSD material for vertical switching, in accordance with one embodiment.

第11圖為根據一個實施例顯示使用VSD材質實現垂直切換的VSD材質構造之示意圖。 Figure 11 is a schematic diagram showing the construction of a VSD material using a VSD material for vertical switching, in accordance with one embodiment.

第12A圖為根據一個實施例顯示使用VSD材質實現垂直切換的VSD材質構造之示意圖。 Figure 12A is a schematic diagram showing the construction of a VSD material using a VSD material for vertical switching, in accordance with one embodiment.

第12B圖為根據一個實施例顯示使用VSD材質實現垂直切換的VSD材質構造之示意圖。 Figure 12B is a schematic diagram showing the construction of a VSD material using a VSD material for vertical switching, in accordance with one embodiment.

第13圖為根據一個實施例顯示包含可整合在印刷電路板或另一基板的VSD材質層,並且實現垂直切換的VSDM構造之示意圖。 Figure 13 is a schematic diagram showing a VSDM configuration including a VSD material layer that can be integrated on a printed circuit board or another substrate and that implements vertical switching, in accordance with one embodiment.

第14圖為根據一個實施例顯示包含可整合在印刷電路板或另一基板且適用於實現垂直切換的VSD材質構造的VSDM構造之示意圖。 Figure 14 is a schematic diagram showing a VSDM construction including a VSD material construction that can be integrated on a printed circuit board or another substrate and that is suitable for vertical switching, in accordance with one embodiment.

第15A圖為根據一個實施例顯示使用VSD材質連接一個或多個電路元件,並且實現垂直切換的VSD材質構造之示意圖。 15A is a diagram showing a VSD material construction that uses a VSD material to connect one or more circuit components and implement vertical switching, in accordance with one embodiment.

第15B圖為根據一個實施例顯示使用VSD材質連接一個或多個電路元件實現垂直切換的VSD材質構造。 Figure 15B is a diagram showing a VSD material construction that uses a VSD material to connect one or more circuit elements for vertical switching, in accordance with one embodiment.

第16圖為根據一個實施例顯示使用多個VSD材質結構實現垂直切換的VSD材質構造。 Figure 16 is a diagram showing a VSD material construction that implements vertical switching using multiple VSD material structures in accordance with one embodiment.

第17圖為根據一個實施例顯示使用VSD材質同時實現垂直切換和水平切換之雙向切換的VSD材質構造。 Figure 17 is a diagram showing a VSD material construction for bidirectional switching of vertical switching and horizontal switching using a VSD material in accordance with one embodiment.

以下將配合圖式及實施例來詳細說明本發明之實施方式,藉此對本發明如何應用技術手段來解決技術問題 並達成技術功效的實現過程能充分理解並據以實施。 The embodiments of the present invention will be described in detail below with reference to the drawings and embodiments, thereby illustrating how to apply the technical means to solve the technical problems. And the realization process of achieving technical efficacy can be fully understood and implemented accordingly.

為了保護預防基板裝置的ESD及其它過電壓情況,按照本發明所述的各種具體實施例,其電子組件及/或電子裝置可包含整合電壓調變介電材質(“VSD材質”或“VSDM”)於各基板及/或裝置中。在本技術領域中的通常知識者能夠確認過電壓情況,此過電壓情況包含許多情況所組成,在文中ESD則可被稱為過電壓情況。 In order to protect the ESD and other overvoltage conditions of the substrate device, in accordance with various embodiments of the present invention, the electronic components and/or electronic devices may include an integrated voltage modulation dielectric material ("VSD material" or "VSDM"). ) in each substrate and / or device. A person of ordinary skill in the art is able to confirm an overvoltage condition, which includes a number of situations, and ESD can be referred to herein as an overvoltage condition.

在一個實施例中,VSD材質被嵌入在裝置中作為一層或其它結構,其適用於傳導通過裝置的ESD信號的至少一部分至接地或其它預定的點。 In one embodiment, the VSD material is embedded in the device as a layer or other structure that is adapted to conduct at least a portion of the ESD signal through the device to ground or other predetermined point.

在一個實施例中,電路元件,如:過濾器,其設置在垂直切換的VSDM構造及電子組件之間,用以減少或防止由ESD情況產生的高頻電壓部分流入電子組件。電路元件可被嵌入在基板裝置中作為層、結構或通孔,或是可附著在基板作為表面安裝元件。 In one embodiment, a circuit component, such as a filter, is disposed between the vertically switched VSDM configuration and the electronic component to reduce or prevent portions of the high frequency voltage generated by the ESD condition from flowing into the electronic component. The circuit component can be embedded in the substrate device as a layer, structure or via, or can be attached to the substrate as a surface mount component.

根據本發明各種具體實施例中的VSD材質,其材質呈現非線性電阻作為電壓函數。雖然VSD材質表現出非線性電阻,但並非所有非線性電阻的材質都是VSD材質。舉例來說,材質的電阻變化作為溫度函數,但不會大幅改變電壓函數,所以將不會被解釋成本發明具體實施例中的VSD材質。在各具體實施例中,VSD材質呈現非線性電阻的變化作為電壓函數,並且額外處理參數,如:電流、電場密度、光或其它電磁輻射輸入及/或其它類似的參數。 According to various embodiments of the present invention, the VSD material exhibits a nonlinear resistance as a function of voltage. Although the VSD material exhibits a non-linear resistance, not all non-linear resistors are made of VSD material. For example, the resistance change of the material acts as a function of temperature, but does not significantly change the voltage function, so it will not be explained to the VSD material in the specific embodiment of the invention. In various embodiments, the VSD material exhibits a change in nonlinear resistance as a function of voltage and additional processing parameters such as current, electric field density, light or other electromagnetic radiation input, and/or other similar parameters.

VSD材質的電阻變化作為電壓函數呈現,其包含從高電阻狀態過渡到低電阻狀態。這種轉變發生在一個特定的電壓值,其可簡稱為“特徵電壓(characteristic voltage)”、“特徵電壓水平(characteristic voltage level)”、“開關電壓(switching voltage)”或“開關電壓水平(switching voltage level)”。所述特徵電壓可能隨不同VSD材質的配方而有所不同,但對於已知配方而言其相對穩定。對於特定配 方的特徵電壓可能會加上額外的參數,如:溫度及/或不同波長附帶的電磁能量包含光、紅外線、紫外線或微波。 The resistance change of the VSD material is presented as a function of voltage, which involves transitioning from a high resistance state to a low resistance state. This transition occurs at a specific voltage value, which can be simply referred to as "characteristic voltage", "characteristic voltage level", "switching voltage" or "switching voltage level (switching) Voltage level)". The characteristic voltage may vary with the formulation of the different VSD materials, but is relatively stable for known formulations. For a specific match The characteristic voltage of the square may be supplemented with additional parameters such as temperature and/or electromagnetic energy incident with different wavelengths including light, infrared, ultraviolet or microwave.

對於特定的VSD材質成分,特徵電壓可定義相應的“特徵電場”或“特徵場”來表示每單位長度(如:每密耳伏特數“V/mil”、每微米伏特數“V/um”)電壓。 For a particular VSD material composition, the characteristic voltage can define a corresponding "characteristic electric field" or "feature field" to represent per unit length (eg, volts per volt "V/mil", volts per micron "V/um" )Voltage.

除非另有明確說明,否則所述名詞:“VSD材質的結構”、“VSD材質結構”或“VSDM結構”是指具有特定物理尺寸的任意數量VSD材質,其可執行電氣開關功能。以VSD材質的結構為例,包含VSD材質層(設置在基板上或是作為一個獨立的層)、VSD材質的體積介於兩個或多個電極之間、VSD材質的體積通過兩個或兩個以上的絕緣或半導體結構、或其它任意元件或VSD材質的配置,其可於足夠大的電壓變化時在非導電和導電狀態之間切換。 Unless specifically stated otherwise, the terms "structure of VSD material", "VSD material structure" or "VSDM structure" refer to any number of VSD materials having a specific physical size that perform electrical switching functions. Take the structure of the VSD material as an example, including the VSD material layer (set on the substrate or as a separate layer), the volume of the VSD material is between two or more electrodes, and the volume of the VSD material passes two or two. More than one insulating or semiconductor structure, or any other component or VSD material configuration that switches between non-conductive and conductive states when the voltage is varied sufficiently.

在一個具體的實施例中,VSD材質架構可能透過結合具有一定體積且具有第一特徵電壓的第一VSD材質來產生,所述具有第一特徵電壓的第一VSD材質的體積介於兩個具不同特徵電壓的VSD材質的體積間,此兩個不同體積的VSD材質其特徵電壓不同於第一特徵電壓(此兩個不同體積的VSD材質的特徵電壓可能會或可能不會彼此相等)。 In a specific embodiment, the VSD material structure may be generated by combining a first VSD material having a volume and having a first characteristic voltage, wherein the volume of the first VSD material having the first characteristic voltage is between two Between the volumes of VSD materials with different characteristic voltages, the characteristic voltages of the two different volume VSD materials are different from the first characteristic voltage (the characteristic voltages of the two different volume VSD materials may or may not be equal to each other).

在一個具體實施上,VSD材質結構可能透過結合具有一定體積且具有第一特徵電壓的第一VSD材質來產生,所述具有第一特徵電壓的第一VSD材質的體積介於(a)兩個具不同特徵電壓的VSD材質的體積間,以及(b)一個或多個電極、絕緣結構及/或半導體結構之間。 In a specific implementation, the VSD material structure may be generated by combining a first VSD material having a volume and having a first characteristic voltage, wherein the volume of the first VSD material having the first characteristic voltage is between (a) two Between the volumes of VSD materials having different characteristic voltages, and (b) between one or more electrodes, insulating structures and/or semiconductor structures.

一個VSD材質結構的例子,VSD材質層設置在銅箔上(但不包括銅箔),其複合構造包含VSD材質層及銅箔兩者,並可表示成“VSDM構造”。更複雜的VSDM構造將在稍後作說明。 An example of a VSD material structure, the VSD material layer is placed on the copper foil (but not including the copper foil), and the composite structure includes both the VSD material layer and the copper foil, and can be expressed as a "VSDM structure". A more complex VSDM construct will be explained later.

VSD材質構造的另一個例子是塗料、板材或其它VSD材質的佈局設成在PCB中的水平層,並且介於PCB中的 兩個相鄰水平層之間(即一個水平層在VSD材質結構上,以及一個水平層在VSD材質結構下)。其複合構造包含VSD材質結構及結合兩個相鄰的水平層以形成此VSD材質(VSDM)構造的例子。 Another example of a VSD material construction is that the layout of the paint, sheet, or other VSD material is set to a horizontal layer in the PCB and is interposed in the PCB. Between two adjacent horizontal layers (ie one horizontal layer on the VSD material structure and one horizontal layer in the VSD material structure). The composite structure includes a VSD material structure and an example of combining two adjacent horizontal layers to form the VSD material (VSDM) structure.

VSD材質構造的另一個例子是將一定體積的VSD材質設置在PCB中的水平層且介於同樣設置在相同水平層的四個結構(即四個蝕刻通道所劃定的VSD材質結構),並且介於兩個電極之間,所述電極設置在兩個相鄰的水平層(即:導電層在上而絕緣層在下),組成的構造包含VSD材質結構及結合四個結構及兩個電極以形成此VSD材質構造的例子。 Another example of a VSD material construction is to place a certain volume of VSD material in a horizontal layer in the PCB and in four structures (ie, VSD material structures defined by four etching channels) that are also disposed in the same horizontal layer, and Between two electrodes, the electrodes are disposed in two adjacent horizontal layers (ie, the conductive layer is above and the insulating layer is below), and the structure comprises a VSD material structure and combining four structures and two electrodes An example of forming this VSD material structure.

對於已知兩個施加電壓點位置的VSD材質結構(例如:當電壓通過VSD材質層的厚度或是穿過VSD材質結構的另一間隙),特徵電壓可被定義為特定的電壓值(例如:此VSD材質結構的特徵電壓可被定為一個特定的電壓值)。 For a VSD material structure where two voltage point locations are known (eg, when the voltage passes through the thickness of the VSD material layer or through another gap in the VSD material structure), the characteristic voltage can be defined as a specific voltage value (eg: The characteristic voltage of this VSD material structure can be set to a specific voltage value).

因此,VSD材質結構的特徵電壓在特徵電場的術語中可被稱為每個單位長度的電壓值,或是作為特徵電壓表示當VSD材質被視為具有某些已知尺寸特徵的特定體積時的特定電壓值(例如:穿過電壓開關的VSD材質結構,可能具有特定的厚度)。在各情況下,本發明描述可在各具體實施例中參考VSD材質的特徵電場或特徵電壓,並且在各情況下,相應的特徵電場(每單位長度的伏特)或特徵電壓(在伏特的術語中)可在考慮到各VSD材質結構的尺寸特徵而獲得適當的轉換。舉例來說,一般在VSD材質結構中標準的特徵電場,其VSD材質結構中特徵電壓的計算可以透過將VSD材質結構中的特徵電場(伏特/密耳)與穿過電壓開關的間隙(密耳)相乘後獲得。更簡單的理解是,一般在VSD材質結構中非標準的特徵電場,其VSD材質結構中特徵電壓的計算可以透過將VSD材質結構中的特徵電場與穿過電壓開關的間隙進行積分運算後獲得。在一些實施例中,對於一些公式化的VSD 材質表述方式及穿過電壓開關之間隙的物理特徵來說,穿過電壓開關間隙的VSD材質的特徵電壓可能不會與各間隙大小直接或線性相關(例如:在此實施例中,各特徵電壓可通過直接測量或通過更複雜的模擬或近似法)。 Therefore, the characteristic voltage of the VSD material structure can be referred to as the voltage value per unit length in the term of the characteristic electric field, or as the characteristic voltage when the VSD material is regarded as a specific volume having certain known size characteristics. Specific voltage values (eg, VSD material structures that pass through the voltage switch may have a specific thickness). In each case, the present invention describes a characteristic electric field or characteristic voltage of a VSD material that can be referenced in various embodiments, and in each case, a corresponding characteristic electric field (volts per unit length) or characteristic voltage (in terms of volts) The appropriate conversion can be obtained taking into account the dimensional characteristics of each VSD material structure. For example, the standard characteristic electric field in a VSD material structure is generally calculated by the characteristic voltage in the VSD material structure by the characteristic electric field (volts/mil) in the VSD material structure and the gap through the voltage switch (mil) ) obtained after multiplication. A simpler understanding is that the non-standard characteristic electric field in the VSD material structure is generally obtained by calculating the characteristic voltage in the VSD material structure by integrating the characteristic electric field in the VSD material structure with the gap passing through the voltage switch. In some embodiments, for some formulated VSDs The characteristic voltage of the VSD material passing through the voltage switch gap may not be directly or linearly related to the gap size (for example, in this embodiment, the characteristic voltages) Can be measured directly or through more complex simulations or approximations).

在一般情況下,VSD材質結構的特徵電壓可能是一個數量、截面積、體積、深度、厚度、寬度及/或VSD材質結構的長度之函數,也可能是相對的形狀、幾何尺寸、密度變化和其它關於VSD材質結構的類似變量之函數。 In general, the characteristic voltage of a VSD material structure may be a function of number, cross-sectional area, volume, depth, thickness, width, and/or length of the VSD material structure, or may be relative shape, geometry, density variation, and Other functions related to variables of the VSD material structure.

VSD材質在電壓低於各特徵電壓水平時具有顯著的非傳導性(即:顯著的絕緣特性),在此情況下,VSD材質的行為是絕緣體(insulator)或電介質(dielectric)。這種狀態可被稱為不導電或絕緣的狀態,電壓在VSD材質的特徵電壓水平下可稱為低電壓(至少相對於上述特徵電壓水平而言)。在特徵電壓水平下,VSD材質在本發明的實施例中可被解釋為具有半導體特性,類似於半導體材質作為半導體製造工藝的基板。各具體實施例中,施加正負電壓時VSD材質在電壓幅度低於特徵電壓水平時可表現為絕緣體。 The VSD material has significant non-conductivity (ie, significant insulation properties) when the voltage is below the characteristic voltage level. In this case, the behavior of the VSD material is an insulator or a dielectric. This state can be referred to as a non-conducting or insulating state, and the voltage can be referred to as a low voltage (at least relative to the above-described characteristic voltage level) at a characteristic voltage level of the VSD material. At the characteristic voltage level, the VSD material can be interpreted as having semiconductor characteristics in an embodiment of the present invention, similar to a semiconductor material as a substrate for a semiconductor fabrication process. In various embodiments, the VSD material can behave as an insulator when the voltage amplitude is below the characteristic voltage level when positive and negative voltages are applied.

當電壓高於特徵電壓水平,VSD材質在本發明各實施例中表現為導體,其沒有電阻或相對低的電阻,這稱為導電狀態。電壓高於特徵電壓水平可稱為高電壓,施加正負電壓時VSD材質在電壓幅度高於特徵電壓水平時可表現為導電或大幅導電。特徵電壓取決於電壓極性可能為正或為負,當VSD材質成為導電而回應電壓超過其特徵電壓時,VSD材質能夠稱為“開關開啟(switch on)”,當VSD材質在移除高於其特徵電壓的電壓後成為非導電之後,VSD材質可稱為“開關關閉”,當VSD材質切換為開或關時,VSD材質可簡稱為“開關”。 When the voltage is above the characteristic voltage level, the VSD material behaves as a conductor in various embodiments of the invention, which has no resistance or relatively low resistance, which is referred to as a conductive state. The voltage above the characteristic voltage level can be referred to as a high voltage, and the VSD material can exhibit conduction or large electrical conduction when the voltage amplitude is higher than the characteristic voltage level when a positive or negative voltage is applied. The characteristic voltage depends on whether the voltage polarity may be positive or negative. When the VSD material becomes conductive and the response voltage exceeds its characteristic voltage, the VSD material can be called “switch on” when the VSD material is removed above it. After the voltage of the characteristic voltage becomes non-conductive, the VSD material can be called “switch off”. When the VSD material is switched on or off, the VSD material can be simply referred to as “switch”.

在一個理想的模式,於本發明各實施例中的VSD材質運作在電壓低於特徵電壓時是近似無限電阻,而在電壓高於特徵電壓時電阻值為零。在一般的工作條件中,雖然VSD 材質通常為高電位,但在電壓低於特徵電壓為有限電阻(finite resistance),且為低電位,而電壓高於特徵電壓為非零電阻(nonzero resistance)。以特定的VSD材質為例,電阻率在低電壓至高電壓可預期有一個很大的值(例如:103、106、109、1012或更高的範圍)。在一個理想的模式中,此一比例可近似於無限或以其它方式成為非常高。 In an ideal mode, the VSD material in various embodiments of the present invention operates at an approximately infinite resistance when the voltage is lower than the characteristic voltage, and the resistance value is zero when the voltage is higher than the characteristic voltage. In general working conditions, although VSD The material is usually high, but the voltage is lower than the characteristic voltage and the finite resistance is low, and the voltage is higher than the characteristic voltage is nonzero resistance. Taking a specific VSD material as an example, the resistivity can be expected to have a large value at a low voltage to a high voltage (for example, a range of 103, 106, 109, 1012 or higher). In an ideal mode, this ratio can be approximated to be infinite or otherwise very high.

VSD材質在本發明不同的實施例中展現高重複性(即:可逆性),其工作在低電壓及高電壓兩者。在一些實施例中,VSD材質在電壓低於特徵電壓水平時,實際上為絕緣體或電介質(即:實際上是不導電,展現出非常高或無限大的電阻),當電壓高於特徵電壓水平時所述VSD材質切換成導電,而在電壓低於特徵電壓水平時則再次成為絕緣體或電介質。倘若輸入電壓水平在電壓低於特徵電壓及高於特徵電壓之間轉換,VSD材質能夠無限次的持續在這兩種工作狀態進行切換。雖然VSD材質在這兩種工作狀態之間切換可能受到一定程度的遲滯,其可能會在一定程度上改變特徵電壓水平、開關反應時間或VSD材質的其它工作特性。 VSD materials exhibit high repeatability (i.e., reversibility) in different embodiments of the invention, which operate at both low voltage and high voltage. In some embodiments, the VSD material is actually an insulator or dielectric when the voltage is below the characteristic voltage level (ie, is actually non-conductive, exhibiting a very high or infinite resistance) when the voltage is above the characteristic voltage level. The VSD material is switched to conduct electricity, and when the voltage is lower than the characteristic voltage level, it becomes an insulator or a dielectric again. If the input voltage level is switched between the voltage below the characteristic voltage and above the characteristic voltage, the VSD material can continue to switch between the two operating states indefinitely. Although the VSD material may be subject to a certain degree of hysteresis between the two operating states, it may change the characteristic voltage level, the switching reaction time, or other operating characteristics of the VSD material to some extent.

所述轉換介於第一(低電位)電壓(當VSD材質為絕緣)及第二(高電位)電壓(當VSD材質為導電)之間。在本發明實施例中,實際上可預見及預計一般侷限在信號振幅的有限包絡(envelope)、開關時間的有限範圍。在理想的模式中,VSD材質從絕緣狀態轉換到導電狀態的時間反應輸入級函數信號(input step function signal)其上升高於特徵電壓可能近似於零。也就是說,轉換的過渡可能在一瞬間。同樣地,在一個理想的模式中,VSD材質從導電狀態轉換到非導電狀態的時間反應輸入級函數信號(input step function signal)其下降低於特徵電壓可能近似於零,這種反向過渡也可能在一瞬間。但在正常工作條件下,VSD材質的這兩種過渡時間都不為零。在一般情況下,過渡時間是短暫且進可能地短(例如:在約10-6、10-9、10-12或更小的範圍內)。VSD 材質的詳細構造及特性請參考揭露在美國專利號“7,872,251”(申請人為“Kosowsky,et al”;公告日為2011年1月18日;名稱為“Formulations for Voltage Switchable Dielectric Material Having a Stepped Voltage Response and Methods for Making the Same”)的專利。 The conversion is between a first (low potential) voltage (when the VSD material is insulated) and a second (high potential) voltage (when the VSD material is electrically conductive). In the embodiments of the present invention, it is actually foreseen and expected to be limited to a limited range of signal amplitudes and a limited range of switching times. In the ideal mode, the time-reactive input step function signal of the VSD material transitioning from the insulative state to the conductive state is higher than the characteristic voltage and may be approximately zero. That is to say, the transition of the transition may be in an instant. Similarly, in an ideal mode, the time-reactive input step function signal of the VSD material transitioning from a conductive state to a non-conducting state is lower than the characteristic voltage, which may be approximately zero. Maybe in an instant. However, under normal working conditions, the two transition times of the VSD material are not zero. In general, the transition time is short and may be as short as possible (eg, in the range of about 10-6, 10-9, 10-12 or less). VSD For the detailed structure and characteristics of the material, please refer to the disclosure in US Patent No. 7,872,251 (applicant is "Kosowsky, et al"; the announcement date is January 18, 2011; the name is "Formulations for Voltage Switchable Dielectric Material Having a Stepped Voltage Response" And Methods for Making the Same").

當在導電狀態時,各具體實施例的VSD材質可直接引導電氣信號至各電路、基板或電子裝置的接地或另一個指定接點以保護電子組件。在各具體實施例中,所述指定接點是接地、虛接地、屏蔽、安全接地及其相似者。以電子組件為例,其可透過本發明各具體實施例中的VSD材質運作及/或保護,所述電子組件包含(a)電路元件、電路結構、表面設置的電子組件(如:電阻、電容、電感)、PCB或其它電路板、電子裝置、電子子系統、電氣系統、(b)任何其它電子、電磁、微機電結構(MEMS)或相似元件、結構、組件、系統及/或裝置、(c)任何其它單元處理或傳輸數據以及使用電氣信號或受電氣信號損壞、(d)由上述(a)、(b)及/或(c)的組合。 When in the conductive state, the VSD material of each embodiment can directly direct electrical signals to the ground of the respective circuit, substrate or electronic device or another designated contact to protect the electronic components. In various embodiments, the designated contacts are grounded, virtual grounded, shielded, safely grounded, and the like. Taking an electronic component as an example, it can be operated and/or protected by a VSD material in various embodiments of the present invention, the electronic component comprising (a) a circuit component, a circuit structure, and an electronic component disposed on a surface (eg, a resistor, a capacitor) , inductance), PCB or other circuit board, electronic device, electronic subsystem, electrical system, (b) any other electronic, electromagnetic, microelectromechanical structure (MEMS) or similar component, structure, component, system and / or device, ( c) any other unit processes or transmits data and uses electrical signals or is damaged by electrical signals, (d) by a combination of (a), (b) and/or (c) above.

在一般情況下,VSD材質能在高信號電壓、電流強度、能量或功率水平破壞之前限制傳導電流或其它操作,其破壞為不可逆的。此外,倘若持續太長時間,VSD材質通常在操作規範中也可能被電氣信號損毀(例如:VSD材質在傳導信號可能升溫,最終導致分解)。舉例來說,當在小於一百奈秒時間內持續接觸具有一萬伏特電壓水平的輸入信號時VSD材質可能還能正常工作,但如果信號持續施加超過幾毫秒則可能被損壞。VSD材質能夠在損壞之前容忍高的電壓、電流、功率或能量水平,其可能取決於各種因素,例如:特定的VSD材質成分、相應VSD材質的具體特徵(即:具有較大物理尺寸的VSD材質結構能夠引導更高的電流密度)、相應的電路架構、其它存在的ESD防護元件及包含VSD材質的裝置之特性。 In general, VSD materials can limit conduction current or other operations before high signal voltage, current strength, energy or power levels are destroyed, and their damage is irreversible. In addition, if it lasts for too long, the VSD material may be damaged by electrical signals in the operating specifications (for example, the VSD material may heat up in the conduction signal and eventually cause decomposition). For example, a VSD material may still function properly when continuously in contact with an input signal having a voltage level of 10,000 volts in less than one hundred nanoseconds, but may be damaged if the signal continues to be applied for more than a few milliseconds. VSD materials can tolerate high voltage, current, power or energy levels before damage, depending on various factors such as the specific VSD material composition and the specific characteristics of the corresponding VSD material (ie VSD material with a larger physical size) The structure is capable of guiding higher current densities), the corresponding circuit architecture, other existing ESD protection components, and the characteristics of devices containing VSD materials.

在不同具體實施例中的VSD材質為高分子複合材質,並可能包括如:金屬、半導體、陶瓷和其類似的微粒材質。所述VSD材質可按照不同具體實施例使用各種成分,例如:美國專利申請號“12/953,309”,名稱為“Formulations for Voltage Switchable Dielectric Materials Having a Stepped Voltage Response and Methods for Making the Same”、美國專利申請號“12/832,040”,名稱為“Light-Emitting Diode Device For Voltage Switchable Dielectric Material Having High Aspect Ratio Particles”、美國專利申請號“12/717,102”,名稱為“Voltage Switchable Dielectric Material Having High Aspect Ratio Particles”,以及美國專利號“7,981,325”,名稱為“Electronic Device For Voltage Switchable Dielectric Material Having High Aspect Ratio Particles”。 The VSD material in different embodiments is a polymer composite material and may include, for example, metals, semiconductors, ceramics, and the like. The VSD material can use various components according to different embodiments, for example, US Patent Application No. "12/953,309", entitled "Formulations for Voltage Switchable Dielectric Materials Having a Stepped Voltage Response and Methods for Making the Same", US Patent Application No. "12/832,040", entitled "Light-Emitting Diode Device For Voltage Switchable Dielectric Material Having High Aspect Ratio Particles", US Patent Application No. "12/717,102", entitled "Voltage Switchable Dielectric Material Having High Aspect Ratio Particles" And U.S. Patent No. 7,981,325, entitled "Electronic Device For Voltage Switchable Dielectric Material Having High Aspect Ratio Particles."

根據不同實施例,VSD材質可能包括基質材料(matrix material)及一個或多個類型的有機及/或無機粒子分散於基質材料中。 According to various embodiments, the VSD material may include a matrix material and one or more types of organic and/or inorganic particles dispersed in the matrix material.

不同實施例的VSD材質中的基質材料可能包含有機聚合物,如:酚醛樹脂、有機矽聚合物、環氧樹脂(例如:“EPON樹脂828(EPON Resin 828)”、“丙二酚A(difunctional bisphenol A)或環氧氯丙烷(epichlorohydrin)製成的液態環氧樹脂”)、聚氨酯(polyurethane)、聚甲基(poly(meth))、丙烯酸酯(acrylate)、聚酰胺(polyamide)、聚酯(polyester)、聚碳酸酯(polycarbonate)、聚丙烯酰胺(polyacrylamides)、聚酰亞胺(polyimide)、聚乙烯(polyethylene)、聚丙烯(polypropylene)、聚苯醚(polyphenylene oxide)、聚碸(polysulphone)、有機奈米陶瓷(ceramer)(一種溶凝膠/聚合物的複合材料)及聚苯碸(polyphenylene sulfone)。所述基質材料的其它例子則包括無機聚合物(inorganic polymers)如:矽氧烷(siloxane)及聚偶磷氮(polyphosphazines)。 The matrix material in the VSD material of different embodiments may contain organic polymers such as phenolic resin, organic germanium polymer, epoxy resin (for example: "EPON resin 828 (EPON Resin 828)", "difunctional A (difunctional) Bisphenol A) or liquid epoxy resin made of epichlorohydrin"), polyurethane, poly(meth), acrylate, polyamide, polyester (polyester), polycarbonate, polyacrylamides, polyimide, polyethylene, polypropylene, polyphenylene oxide, polysulphone ), organic ceramics (ceramer) (a lyogel/polymer composite) and polyphenylene sulfone. Other examples of the matrix material include inorganic polymers such as siloxanes and polyphosphazines.

以加入VSD材質的顆粒為例,在各具體實施例中可包含導電及/或半導體材質,包含:銅(copper)、鋁(aluminum)、鎳(nickel)、銀(silver)、金(gold)、鈦(titanium)、不銹鋼(stainless steel)、鉻(chrome)、其它金屬合金、鈦(T)、矽(Si)、氧化鎳(NiO)、碳化矽(SiC)、氧化鋅(ZnO)、氮化硼(BN)、碳(C)(包括鑽石、納米管、和/或富勒烯(fullerenes)的形式)、硫化鋅(ZnS)、氧化鉍(Bi2O3)、氧化鐵(Fe2O3)、氧化鈰(CeO2)、二氧化鈦(TiO2)、氮化鋁(AlN)、銦硒化合物。在一些具體實施例中,二氧化鈦可能未摻雜或摻雜,如:三氧化鎢(WO3),其中摻雜可能包括表面塗層。這種顆粒可從球形高度拉長,包括:高縱橫比(high-aspect ratios,HAR)的顆粒、碳奈米管(單壁及/或多壁)、富勒烯、金屬奈米棒或金屬奈米線。以材質為例,其可形成奈米棒及/或奈米粒,包含:氮化硼(boron nitride)、氧化銻錫(antimony tin oxide)、二氧化鈦(titanium dioxide)、銀(silver)、銅(copper)、錫(tin)、金(gold)。 For example, a particle of a VSD material may be included, and in various embodiments, a conductive and/or semiconductor material may be included, including: copper, aluminum, nickel, silver, gold. , titanium, stainless steel, chrome, other metal alloys, titanium (T), bismuth (Si), nickel oxide (NiO), niobium carbide (SiC), zinc oxide (ZnO), nitrogen Boron (BN), carbon (C) (including diamonds, nanotubes, and / or fullerenes), zinc sulfide (ZnS), bismuth oxide (Bi2O3), iron oxide (Fe2O3), cerium oxide (CeO2), titanium dioxide (TiO2), aluminum nitride (AlN), indium selenium compound. In some embodiments, the titanium dioxide may be undoped or doped, such as: tungsten trioxide (WO3), where the doping may include a surface coating. Such particles can be elongated from a spherical height, including: high-aspect ratios (HAR) particles, carbon nanotubes (single and/or multi-wall), fullerenes, metal nanorods or metals Nano line. Taking a material as an example, it can form a nanorod and/or a nanoparticle, and includes: boron nitride, antimony tin oxide, titanium dioxide, silver, copper (copper). ), tin (tin), gold (gold).

在各具體實施例中,存在於VSD材質的一些顆粒的縱橫比率超過“3:1”、“10:1”、“100:1”及“1000:1”。具有高的縱橫比率之材質有時也稱為“高縱橫比”顆粒或“HAR”顆粒。奈米碳管就是具有超級高縱橫比顆粒的例子,其具有“1000:1”甚至更高的縱橫比。任何具有較低縱橫比的材質都可以在不同的實施例中被用來混合至VSD材質,其中包含黑碳煙(carbon black)顆粒(縱橫比在10:1)以及碳纖維(carbon fiber)顆粒(縱橫比在100:1)。 In various embodiments, the aspect ratio of some of the particles present in the VSD material exceeds "3:1", "10:1", "100:1", and "1000:1". Materials with high aspect ratios are sometimes referred to as "high aspect ratio" particles or "HAR" particles. Nano carbon tubes are examples of super high aspect ratio particles with an aspect ratio of "1000:1" or higher. Any material with a lower aspect ratio can be used in different embodiments to mix into VSD materials, including black carbon particles (with an aspect ratio of 10:1) and carbon fiber particles ( The aspect ratio is at 100:1).

在各具體實施例中,VSD材質中混合顆粒可能有各種尺寸,包括由最小尺寸“500奈米”甚至更小(如:最小尺寸小於“100奈米”或“50奈米”的顆粒)。 In various embodiments, the mixed particles in the VSD material may be of various sizes, including particles having a minimum size of "500 nm" or even smaller (eg, particles having a minimum size of less than "100 nm" or "50 nm").

在各具體實施例中,VSD材質中的顆粒可能包含有機材質,VSD材質結合有機材質可使VSD材質提高熱膨脹率和熱導率、更好的介電常數、提高韌性、更佳的壓縮強度 以及提高金屬附著能力。以有機半導體材質為例,其可結合各具體實施例中的VSD材質,包含碳的形成如:導電的半導體碳奈米管及富勒烯(例如,“C60”和“C70”)。所述富勒烯及碳奈米管可以在一些具體實施例中作修改以功能化來包含共價鍵的化學群組或官能基(moiety)。以其它有機半導體為例,其可結合在各具體實施例中的VSD材質,包含:聚三己基塞吩(poly-3-hexylthiophene)、聚塞吩(polythiophene)、聚乙炔(polyacteylene)、聚3,4-乙烯二氧噻吩(poly(3,4-ethylenedioxythiophene))、聚對苯乙烯磺酸(poly(styrenesulfonate))、五苯(pentacene)、8-羥基喹啉鋁((8-hydroxyquinolinolato)aluminum(III))及NPD(N,N′-di-[(naphthalenyl)-N,N′diphenyl]-1,1′-biphenyl-4 and 4′-diamine)。此外,有機半導體可以從單體(monomers)、噻吩的低聚物及聚合物(oligomers and polymers of thiophene)、苯胺(analine)、次苯基(phenylene)、亞乙烯基(vinylene)、芴(fluorene)、萘(naphthalene)、吡咯(pyrrole)、乙炔(acetylene)、咔唑(carbazole)、吡咯烷酮(pyrrolidone)、氰基材料(cyano materials)、蒽(anthracene)、五苯(pentacene)、紅熒烯(rubrene)、苝(perylene)及噁二唑(oxadizole)得到。這些有機材質可能是光活性有機材料如:聚噻吩(polythiophene)。 In various embodiments, the particles in the VSD material may comprise an organic material, and the VSD material combined with the organic material may increase the thermal expansion rate and thermal conductivity of the VSD material, better dielectric constant, improve toughness, and better compressive strength. And improve metal adhesion. Taking an organic semiconductor material as an example, it can be combined with the VSD material in each specific embodiment, including carbon formation such as conductive semiconductor carbon nanotubes and fullerenes (for example, "C60" and "C70"). The fullerene and carbon nanotubes can be modified in some embodiments to functionalize to include chemical groups or moieties of covalent bonds. Taking other organic semiconductors as an example, it can be combined with VSD materials in various embodiments, including: poly-3-hexylthiophene, polythiophene, polyacteylene, poly 3 ,4-(ethylenedioxythiophene), poly(styrenesulfonate), pentacene, 8-hydroxyquinolinolatoaluminum (III)) and NPD (N,N'-di-[(naphthalenyl)-N,N'diphenyl]-1,1'-biphenyl-4 and 4'-diamine). In addition, the organic semiconductor may be derived from monomers, oligomers and polymers of thiophene, analine, phenylene, vinylene, fluorene. ), naphthalene, pyrrole, acetylene, carbazole, pyrrolidone, cyano materials, anthracene, pentacene, rubrene (rubrene), perylene and oxadizole are obtained. These organic materials may be photoactive organic materials such as polythiophene.

關於VSD材質中聚合物的顆粒之分布,其分布顆粒“substantially uniformly”是指顆粒均勻地及/或隨機分布在材質中,但可能在有限的部分發生不均勻地及/或不隨機的顆粒聚集。實際上,即使經過廣泛的混合後,這種顆粒的聚集通常會在一個非零的統計機率可能發生在VSD材質的有限體積內,而且這可能發生在VSD材質的所有階段,包含:當VSD材質在形成之前處於液體或半流質時用於基板、之後設置在基板(例如:透過塗佈)以及/或之後加熱固化(無論是在基板上或以其它方式)。但總體而言,在考量VSD 材質的整體體積(或VSD材質中足夠大的各部分),各顆粒可被視為均勻地或隨機地分布在混合物內,並且在對各VSD材質的行為建立模型時,顆粒可被建模為均勻地或隨機地分布。 Regarding the distribution of particles of a polymer in a VSD material, the distribution of particles "substantially uniformly" means that the particles are uniformly and/or randomly distributed in the material, but uneven and/or non-random particle aggregation may occur in a limited portion. . In fact, even after extensive mixing, the aggregation of such particles will usually occur in a finite volume of VSD material in a non-zero statistical probability, and this can occur at all stages of the VSD material, including: when VSD material It is used for the substrate when it is in liquid or semi-fluid prior to formation, then after placement on the substrate (eg, through coating) and/or after heat curing (whether on the substrate or otherwise). But overall, consider VSD The overall volume of the material (or portions of the VSD material that are large enough), the particles can be considered to be evenly or randomly distributed within the mixture, and when modeling the behavior of each VSD material, the particles can be modeled as Distribute evenly or randomly.

在各具體實施例中,設在兩個接觸VSD材質的電極之間的VSD材質結構中的特徵電場,會因為兩個電極之間的距離減少而降低。兩個電極之間穿過VSD材質的距離可以依照大到足以視為“厚度(thickness)”、“有效厚度(effective thickness)”、“間隙(gap)”、“開關間隙(switching gap)”或“有效的間隙(effective gap)”的電壓變化,而在實質導電與實質絕緣的不同狀態中進行切換。倘若兩個電極設在實質上的水平面,VSD材質結構的有效的間隙可以被視為水平,倘若兩個電極設置在不同的垂直平面及/或倘若電壓開關主要發生在垂直方向,則VSD材質結構的有效的間隙可以被視為垂直。 In various embodiments, the characteristic electric field in the VSD material structure disposed between the two electrodes contacting the VSD material is reduced by the reduced distance between the two electrodes. The distance between the two electrodes through the VSD material can be as large as sufficient to be considered "thickness", "effective thickness", "gap", "switching gap" or The "effective gap" voltage changes, and switches between different states of substantial and substantial insulation. If the two electrodes are placed in a substantially horizontal plane, the effective gap of the VSD material structure can be considered horizontal, provided that the two electrodes are placed in different vertical planes and/or if the voltage switch is primarily in the vertical direction, then the VSD material structure The effective gap can be considered vertical.

「第1圖」顯示水平切換的VSDM結構100,包含可為電子組件提供ESD防護的VSD材質。在「第1圖」的實施例中,電極120及電極122分別電性連接通孔130及通孔132。 "Figure 1" shows a horizontally switched VSDM structure 100 containing VSD material that provides ESD protection for electronic components. In the embodiment of FIG. 1, the electrode 120 and the electrode 122 are electrically connected to the through hole 130 and the through hole 132, respectively.

一般而言,術語“電極”可以是或可以包括任何導電結構,以電極或導電結構為例,其包括墊片、鉛、電路、通孔(例如:透孔、盲孔、埋孔)、電線、導電薄膜、信號層、導電層、導電印刷電路板層(例如:導電黏合片或填充層)或任何其它連接器,其被設計成導電性且在任何基板(例如:此基板可包括任何印刷電路板或半導體封裝)中提供電氣互連功能。 In general, the term "electrode" may be or may include any electrically conductive structure, exemplified by electrodes or conductive structures, including spacers, lead, circuits, vias (eg, through holes, blind vias, buried vias), wires , a conductive film, a signal layer, a conductive layer, a conductive printed circuit board layer (eg, a conductive adhesive sheet or fill layer) or any other connector that is designed to be electrically conductive and on any substrate (eg, the substrate can include any printing) Electrical interconnect functionality is provided in a circuit board or semiconductor package.

在各實施例中,一個或兩個電極(120、122)可以被省略,只要通過通孔130及/或通孔132的電性連接能被建立。電極120及/或電極122也可以由銅或其它合適的導電材料來製造,電極120及/或電極122可透過沉積、絲 網印刷、黏合或其它接合方式製成,無論是機械、化學或其它方式。 In various embodiments, one or both of the electrodes (120, 122) may be omitted as long as electrical connections through the vias 130 and/or vias 132 can be established. Electrode 120 and/or electrode 122 may also be fabricated from copper or other suitable electrically conductive material, electrode 120 and/or electrode 122 being permeable to deposition, silk Web printing, bonding or other joining methods, whether mechanical, chemical or otherwise.

在各種實施例中,電極120及電極122可被封裝材料或形成如絕緣層所覆蓋。在「第1圖」中,電極120及電極122被嵌入在絕緣層170中 In various embodiments, electrode 120 and electrode 122 may be covered by an encapsulating material or formed as an insulating layer. In "FIG. 1", the electrode 120 and the electrode 122 are embedded in the insulating layer 170.

通孔130及通孔132為導電結構,其可全部或部分的穿過或完整地越過VSD材質140。通孔130及/或通孔132可能是一個透孔、盲孔、埋孔、電路或任何其它導電結構,其被設計為導電且在電子裝置中促進信號傳播。通孔130及/或通孔132可由銅或其它合適的導電材料來製造,通孔130及/或通孔132可透過沉積、絲網印刷、黏合或其它接合方式製成,無論是機械、化學或其它方式。通孔130及/或通孔132可以是固體(例如:固態的金屬結構)、中空的(例如:導電圓筒狀構造)或可能是中空的且部分或全部填充有合適的導電材料(例如:部分填充有導電材質的中空圓筒狀構造)。 The vias 130 and the vias 132 are electrically conductive structures that may pass through or completely across the VSD material 140 in whole or in part. Vias 130 and/or vias 132 may be a through hole, a blind via, a buried via, a circuit, or any other conductive structure that is designed to conduct electricity and facilitate signal propagation in an electronic device. The vias 130 and/or vias 132 may be fabricated from copper or other suitable electrically conductive material, and the vias 130 and/or vias 132 may be formed by deposition, screen printing, bonding, or other bonding, whether mechanical or chemical. Or other means. The vias 130 and/or vias 132 can be solid (eg, solid metal structures), hollow (eg, conductive cylindrical structures), or can be hollow and partially or fully filled with a suitable conductive material (eg, Partially filled with a hollow cylindrical structure of conductive material).

在一個實施例中,通孔130及/或通孔132部分地或完全地填充VSD材質而不是僅僅導電。在此實施例中,通孔130及/或通孔132可為垂直或水平切換構造,在某種意義上,各通孔通常可視為一個絕緣結構,但在電壓超過VSD材質的特徵電壓時將變成導電。在此實施例中,所述切換可以是垂直沿著各通孔或水平穿過各通孔。 In one embodiment, the vias 130 and/or vias 132 partially or completely fill the VSD material rather than being electrically conductive only. In this embodiment, the through holes 130 and/or the through holes 132 may be vertically or horizontally switched. In a sense, each of the through holes may be generally regarded as an insulating structure, but when the voltage exceeds the characteristic voltage of the VSD material, Becomes conductive. In this embodiment, the switching may be vertically along each of the through holes or horizontally through the respective through holes.

在「第1圖」的實施例中,VSD材質140是設置在基板160上,所述基板160可為導電基板(例如:銅或其它導電材料的層、薄片或箔),或是絕緣基板(例如:印刷電路板黏合片層)。在一個實施例中,基板160可以是一個具可變導電性的基板,如VSD材質層。 In the embodiment of "FIG. 1", the VSD material 140 is disposed on the substrate 160, and the substrate 160 may be a conductive substrate (for example, a layer of copper or other conductive material, a sheet or a foil), or an insulating substrate ( For example: printed circuit board bonding sheet). In one embodiment, the substrate 160 can be a substrate having a variable conductivity, such as a VSD material layer.

在「第1圖」的實施例中,可以連接一個電壓源,因此,其產生電極120及電極122的電壓差。電壓源110如「第1圖」所示意作為一個獨立的電壓源,它也可以是一個電流源,或是任何其它電能的來源。在測試裝配中或在特定 的架構佈局中可能會遇到這樣的安排,所述特定的架構佈局的VSD材質是為了在增加由電壓源110產生的電壓時刻意被啟動。所述電壓源110如「第1圖」所示連接至通孔130以與電極122電接觸。在各種替代的應用和實施例中,所述電壓源110可用於通孔132而接地則用於通孔130。 In the embodiment of "Fig. 1", a voltage source can be connected, and therefore, a voltage difference between the electrode 120 and the electrode 122 is generated. Voltage source 110 is illustrated as an independent voltage source as shown in Figure 1, which can also be a current source or a source of any other electrical energy. In a test assembly or in a specific Such an arrangement may be encountered in the architectural layout in which the VSD material of the particular architectural layout is intended to be activated at the moment of increasing the voltage generated by voltage source 110. The voltage source 110 is connected to the via 130 as shown in FIG. 1 to be in electrical contact with the electrode 122. In various alternative applications and embodiments, the voltage source 110 can be used for vias 132 and grounded for vias 130.

更一般而言,電壓施加在電極120及電極122之間可以是任何電壓信號或其它電器信號,包含由ESD情況產生的電壓,如「第1圖」所示意的ESD脈衝112。在終端用戶裝置,如:行動電話,正常的操作情況下,ESD脈衝112可以被預期具有高的電壓幅度(例如:超過幾百伏特,且可能是幾千伏特),以及短暫的持續時間(例如:幾奈秒與幾微秒之間)。儘管短暫的持續時間,由ESD脈衝112產生的電流可望達到超過十安培的大振幅,倘若「第1圖」的實施例的結構用於ESD保護,電極120或電極122可以直接或間接地連接到接地(或受到保護的電路或裝置中的另一預定點),假如ESD脈衝112到達另一電極,ESD脈衝112可通過連接至接地的電極或預定點被引導至接地或所述預定點。 More generally, the voltage applied between electrode 120 and electrode 122 can be any voltage signal or other electrical signal, including the voltage generated by the ESD condition, such as ESD pulse 112 as depicted in FIG. In an end user device, such as a mobile phone, under normal operating conditions, the ESD pulse 112 can be expected to have a high voltage amplitude (eg, over a few hundred volts, and possibly thousands of volts), and a short duration (eg, : between a few nanoseconds and a few microseconds). The current produced by the ESD pulse 112 is expected to reach a large amplitude in excess of ten amps despite a short duration. If the structure of the embodiment of "Fig. 1" is used for ESD protection, the electrode 120 or electrode 122 can be directly or indirectly connected. To ground (or another predetermined point in the protected circuit or device), if the ESD pulse 112 reaches the other electrode, the ESD pulse 112 can be directed to ground or the predetermined point by an electrode or predetermined point connected to ground.

假設透過電壓源(或ESD脈衝112)施加的電壓不超過VSD材質140的特徵電壓,VSD材質140基本上不導電,並且沒有顯著的電流通過VSD材質140在電極120及電極122之間傳導(除了一部份的漏電流,其原因是為了不影響電子裝置的性能,通常在水平切換結構100的部署時VSD材質140會被設計成最小化)。 Assuming that the voltage applied through the voltage source (or ESD pulse 112) does not exceed the characteristic voltage of the VSD material 140, the VSD material 140 is substantially non-conductive and that no significant current is conducted between the electrode 120 and the electrode 122 through the VSD material 140 (except A portion of the leakage current is due to not affect the performance of the electronic device, and the VSD material 140 is typically designed to be minimized when the horizontal switching structure 100 is deployed.

為了圖解說明電壓源110及ESD脈衝112可以存在於替代方案中且用於一般性描述的目的,電極120及電極122之間的連接線以虛線表示,在一般情況下,可施加任何電壓源、ESD信號或其它電源、過電壓信號或兩個電極(120、122)之間的電壓電位。兩電極中的任何一個也可連接至接地或另一個參考電壓電平的點。所述電壓源110的極性可以是電極120及電極122之間的任一方向。 To illustrate that voltage source 110 and ESD pulse 112 may be present in an alternative and for purposes of general description, the lines of connection between electrode 120 and electrode 122 are indicated by dashed lines, and in general, any voltage source may be applied, ESD signal or other power source, over voltage signal or voltage potential between two electrodes (120, 122). Either of the two electrodes can also be connected to a point of ground or another reference voltage level. The polarity of the voltage source 110 can be any direction between the electrode 120 and the electrode 122.

假如透過電壓源(或ESD脈衝112)施加的電壓超過VSD材質140的特徵電壓,VSD材質140切換成實際導電,並且有顯著的電流通過VSD材質140在電極120及電極122之間傳導。 If the voltage applied through the voltage source (or ESD pulse 112) exceeds the characteristic voltage of the VSD material 140, the VSD material 140 switches to actual conduction, and significant current is conducted between the electrode 120 and the electrode 122 through the VSD material 140.

在「第1圖」的實施例中,VSD材質140可稱為在水平方向或橫向方向切換。所述水平或橫向方向的定義是相對於基板160,因為電流流動通過VSD材質140發生在通孔130及通孔132之間,主要是在與基板160的主平面平行的方向。在一個實施例中,基板160為印刷電路板的一層,在這種情況下,水平切換方式的電流流動通過VSD材質140主要發生在印刷電路板的主表面平行方向,其主表面上設置了大部分的組件及電子元件(或上下兩表面,在此情況下的印刷電路板上下兩表面均連接有組件)。 In the embodiment of "Fig. 1", the VSD material 140 can be said to be switched in the horizontal direction or the lateral direction. The horizontal or lateral direction is defined relative to the substrate 160 because current flow through the VSD material 140 occurs between the vias 130 and the vias 132, primarily in a direction parallel to the major plane of the substrate 160. In one embodiment, the substrate 160 is a layer of a printed circuit board. In this case, the horizontal switching current flows through the VSD material 140 mainly in the parallel direction of the main surface of the printed circuit board, and the main surface is provided with a large Part of the components and electronic components (or upper and lower surfaces, in this case the components are connected to the lower surface of the printed circuit board).

在各實施例中,VSD材質140被設計成在電極120及電極122之間的兩個方向容納電流,這取決於電極120及電極122之間施加的電壓的極性。在「第1圖」的實施例中,VSD材質140的水平切換方向以箭頭142表示,由於基板160(例如:印刷電路板或印刷電路板核心)實際上是一個三維結構,具有較大的二維平面(即:連接組件的印刷電路板表面或限定的平面)及較小的高度尺寸,在電極120及電極122之間的水平流動的電流可以發生在任何方向,基本上是與較大的二維平面平行。換句話說,如「第1圖」的實施例所示意,電流由左到右或由右到左流動,考慮到基板的三維尺寸,如裝置封裝或印刷電路板,電流的流動可能發生在任何方向上,其基本上是與基板160的主表面所形成的二維平面平行。 In various embodiments, the VSD material 140 is designed to accommodate current in both directions between the electrode 120 and the electrode 122, depending on the polarity of the voltage applied between the electrode 120 and the electrode 122. In the embodiment of "FIG. 1", the horizontal switching direction of the VSD material 140 is indicated by an arrow 142, since the substrate 160 (eg, a printed circuit board or a printed circuit board core) is actually a three-dimensional structure having a larger two. The plane of the dimension (ie, the printed circuit board surface or the defined plane of the connecting component) and the smaller height dimension, the horizontal current flowing between the electrode 120 and the electrode 122 can occur in any direction, substantially with a larger The two-dimensional plane is parallel. In other words, as shown in the embodiment of "Fig. 1", the current flows from left to right or from right to left. Considering the three-dimensional size of the substrate, such as device package or printed circuit board, the flow of current may occur in any In the direction, it is substantially parallel to the two-dimensional plane formed by the main surface of the substrate 160.

請參考「第3圖」的實施例,水平切換方式,其電流會在任意方向流動且基本上與「第3圖」所示意的X-Y平面平行。實現上,電流通過介質一般涉及電荷的三維流動,水平切換並不意味著所有的電荷必須只在水平和平面方向流 動,相反地,所述水平切換或發生在水平方向的切換意味著電荷的運動主要是沿著與基板的二維主要平面相互平行的平面,但它當然可能且預期至少會有一部分的電流將表現出一定數量的垂直運動。電荷的垂直運動可能更容易偵測到,假設模擬或分析在微觀層級(micro-level)進行。然而,在一般情況下,水平切換方式其至少有兩個導電結構,如:通孔130及通孔132被設置在相對於基板垂直的維度,並且電流流動發生在兩個通孔之間,主要是在與基板的主要二維平面平行的方向。 Please refer to the embodiment of "Fig. 3". In the horizontal switching mode, the current flows in any direction and is substantially parallel to the X-Y plane shown in Fig. 3. In practice, the current passing through the medium generally involves three-dimensional flow of charge. Horizontal switching does not mean that all charges must flow only in the horizontal and planar directions. Moving, conversely, the horizontal switching or switching in the horizontal direction means that the movement of the charge is mainly along a plane parallel to the two-dimensional main plane of the substrate, but it is of course possible and expected that at least a part of the current will Showing a certain amount of vertical motion. The vertical motion of the charge may be easier to detect, assuming that the simulation or analysis is performed at the micro-level. However, in general, the horizontal switching mode has at least two conductive structures, such as: the through hole 130 and the through hole 132 are disposed in a dimension perpendicular to the substrate, and current flow occurs between the two through holes, mainly It is in a direction parallel to the main two-dimensional plane of the substrate.

在「第1圖」的實施例中,在電極120及電極122之間的距離定義為VSD材質140的間隙,此間隙如「第1圖」的間隙150所示意。在一般情況下,水平切換的VSDM構造的水平間隙是由橫跨VSD材質的結構的最短電氣路徑所決定,並且在「第1圖」中,此最短電氣路徑是由具有VSD材質140界面上的電極120及電極122的邊緣所決定。如果在一個實施例中,電極120及電極122並非朝向彼此延伸,如「第1圖」所示意的間隙150小於通孔130及通孔132之間的距離,VSD材質140可以改為在通孔130與通孔132之間的水平間隙中切換。 In the embodiment of "Fig. 1", the distance between the electrode 120 and the electrode 122 is defined as the gap of the VSD material 140, and the gap is indicated by the gap 150 of "Fig. 1". In general, the horizontal gap of the horizontally switched VSDM structure is determined by the shortest electrical path of the structure across the VSD material, and in "1", this shortest electrical path is made by the interface with the VSD material 140. The edges of the electrodes 120 and 122 are determined. If, in one embodiment, the electrode 120 and the electrode 122 do not extend toward each other, the gap 150 as illustrated in FIG. 1 is smaller than the distance between the through hole 130 and the through hole 132, and the VSD material 140 can be changed to the through hole. The horizontal gap between 130 and the through hole 132 is switched.

在一個實施例中,VSD材質140的特徵電場定義為伏特/密耳,在此實施例中,透過定義一個特定間隙尺寸的間隙150,設置在通孔130及通孔132之間的VSD材質140結構的特徵電壓實際可以伏特為單位。 In one embodiment, the characteristic electric field of the VSD material 140 is defined as volts/mil. In this embodiment, the VSD material 140 disposed between the via 130 and the via 132 is defined by a gap 150 defining a particular gap size. The characteristic voltage of the structure can actually be in volts.

在一個實施例中,如「第1圖」所示意的結構包含矩形結構(例如:VSD材質層140可以建置為矩形結構)。在一個實施例中,如「第1圖」所示意的結構包含彎曲結構(例如:VSD材質層140可建置為圓筒狀的構造)。 In one embodiment, the structure as illustrated in "FIG. 1" includes a rectangular structure (eg, the VSD material layer 140 can be constructed as a rectangular structure). In one embodiment, the structure as illustrated in "Fig. 1" includes a curved structure (for example, a structure in which the VSD material layer 140 can be formed into a cylindrical shape).

「第2圖」顯示水平切換的筒狀結構200,其包含設置在兩個導電平面(例如:銅面)的VSD材質240,可用於電子組件的ESD防護,所述兩個導電平面表示為導電平 面230及導電平面232。結構200大致等同於「第1圖」的實施例之結構,但說明了如「第1圖」所示意的各方面如何可以實現在一個彎曲架構。所述導電平面230及導電平面232基本上是以VSD材質的體積分開的同心導電結構。為了簡單起見,基板及電極並未在圖中進行示意。 "Picture 2" shows a horizontally-switched tubular structure 200 comprising a VSD material 240 disposed on two conductive planes (eg, copper faces) for ESD protection of electronic components, said two conductive planes being electrically conductive level Face 230 and conductive plane 232. The structure 200 is substantially identical to the structure of the embodiment of "Fig. 1", but illustrates how aspects of the "Figure 1" can be implemented in a curved structure. The conductive plane 230 and the conductive plane 232 are substantially concentric conductive structures separated by a volume of a VSD material. For the sake of simplicity, the substrate and electrodes are not shown in the figures.

在一個實施例中,「第2圖」所示意的結構200為實現於印刷電路板中的結構剖視圖。請參閱「第3圖」的實施例,在「第2圖」所示意的環形帶(annulus)介於導電平面230及導電平面232之間,基本上將被設置與「第3圖」所示的X-Y平面大致平行。以三維的角度來看,導電平面230及導電平面232在垂直方向延伸,兩者在印刷電路板中基本上與「第3圖」的實施例所示意的Z軸平行。 In one embodiment, the structure 200 illustrated in "Fig. 2" is a cross-sectional view of the structure implemented in a printed circuit board. Referring to the embodiment of "Fig. 3", the annular band (annulus) shown in "Fig. 2" is interposed between the conductive plane 230 and the conductive plane 232, and is basically set as shown in "Fig. 3". The XY planes are roughly parallel. From a three-dimensional perspective, the conductive plane 230 and the conductive plane 232 extend in a vertical direction, which are substantially parallel to the Z-axis illustrated in the embodiment of "Fig. 3" in the printed circuit board.

在「第2圖」的實施例中,電壓源210或ESD信號212會產生一個介於導電平面230及導電平面232的電壓。假設此電壓超過VSD材質240的特徵電壓,所述VSD材質將切換為導通,而且VSD材質將從不導電改變為導電。在此情況下,顯著的電流將在導電平面230及導電平面232之間流動。對於如「第2圖」所示意的同心結構,電流主要是發生在線段242所示意的徑向(radial direction)。請參閱「第3圖」的實施例,「第2圖」所示的水平切換結構意味著電流將在導電平面230及導電平面232之間流動,主要是沿著與「第3圖」所示意的X-Y平面大致平行的平面。同樣地,有關「第1圖」的實施例,水平切換並不意味著電流將嚴格限制在沿著與基板的主要二維平面大致平行的平面上流動,反而因為通孔、VSD材質結構及微觀層級效應(micro-level effects)的三維物體而可被預期有一定數量的電流將會發生在垂直維度。然而,水平切換意味著電流確實會發生在與基板的主要二維平面平行方向的平面,例如:通過VSD材質240在水平方向上使用電流可以實現有用的電氣功能。 In the embodiment of FIG. 2, voltage source 210 or ESD signal 212 produces a voltage between conductive plane 230 and conductive plane 232. Assuming that this voltage exceeds the characteristic voltage of the VSD material 240, the VSD material will switch to conduction and the VSD material will change from non-conducting to conducting. In this case, significant current will flow between the conductive plane 230 and the conductive plane 232. For a concentric structure as illustrated in "Fig. 2", the current is primarily in the radial direction indicated by line segment 242. Please refer to the embodiment of "Fig. 3". The horizontal switching structure shown in "Fig. 2" means that current will flow between the conductive plane 230 and the conductive plane 232, mainly along the meaning of "Fig. 3". The XY plane is approximately parallel to the plane. Similarly, in the embodiment of "Fig. 1", horizontal switching does not mean that the current will be strictly limited to flow along a plane substantially parallel to the main two-dimensional plane of the substrate, but because of the through-hole, VSD material structure and microscopic Three-dimensional objects of micro-level effects can be expected to have a certain amount of current that will occur in the vertical dimension. However, horizontal switching means that the current does occur in a plane parallel to the main two-dimensional plane of the substrate. For example, the use of current in the horizontal direction by the VSD material 240 can achieve useful electrical functions.

在一個實施例中,VSD材質240的特徵電場定義 為伏特/密耳,在此實施例中,透過定義一個特定間隙尺寸的間隙250,設置在導電平面230及導電平面232之間的VSD材質240結構的特徵電壓實際上可以伏特為單位。在「第2圖」的實施例,結構200的彎曲架構更複雜於在「第1圖」實施例的結構100的矩形架構,也因此結構200要確定實際的特徵電壓更為困難。然而,在一個實施例中,VSD材質240的特徵電壓與間隙250的尺寸相關聯,並且可在一定程度上作為以伏特為單位的值。 In one embodiment, the characteristic electric field definition of the VSD material 240 For volts/mils, in this embodiment, the characteristic voltage of the VSD material 240 structure disposed between the conductive plane 230 and the conductive plane 232 can be substantially in volts by defining a gap 250 of a particular gap size. In the embodiment of "Fig. 2", the curved structure of the structure 200 is more complicated than the rectangular structure of the structure 100 of the "Fig. 1" embodiment, and therefore it is more difficult for the structure 200 to determine the actual characteristic voltage. However, in one embodiment, the characteristic voltage of the VSD material 240 is associated with the size of the gap 250 and may be somewhat a value in volts.

「第3圖」為印刷電路板和在各種實施例中相關方向的參考之示意圖,「第3圖」所示意的印刷電路板300具有一個定義在X軸及Y軸的主要水平平面,以及一個定義在Z軸的垂直維度。此參考座標系統是定義為在物理空間的印刷電路板的實際定位,使印刷電路板旋轉在空間中不改變水平平面及垂直維度。此參考系統將在關於印刷電路板,如「第3圖」所示的印刷電路板300之中更詳細的說明,但也適用於相似的任何其它基板。 "Fig. 3" is a schematic diagram of a reference of a printed circuit board and related directions in various embodiments, and the printed circuit board 300 illustrated in "Fig. 3" has a main horizontal plane defined on the X-axis and the Y-axis, and a Define the vertical dimension of the Z axis. This reference coordinate system is defined as the actual positioning of the printed circuit board in physical space so that the printed circuit board rotates in space without changing the horizontal plane and vertical dimensions. This reference system will be described in more detail in relation to a printed circuit board, such as the printed circuit board 300 shown in Figure 3, but is also applicable to any other substrate similar.

一般而言,“基板裝置(substrate device)”可被針對ESD或其它過電壓情況的VSDM構造所保護,或是在其中摻入VSDM構造,基板裝置是指任何印刷電路板、單層或多層印刷電路板、半導體裝置的封裝、發光二極體基板、積體電路(integrated circuit,IC)基板、插板(interposer)或連接兩個或多個電子組件、裝置或基板(這種連接可以是垂直及/或水平)的其它平台、任何其它堆疊封裝規格(如:插板、晶圓級封裝、封裝內封裝(package-in-package)、系統級封裝或至少兩個封裝或基板的堆疊組合)或任何其它可附著VSD材質構造或在其中摻入VSD材質構造的基板。為了簡單起見,“基板裝置”有時可表示為“基板(substrate)”。 In general, a "substrate device" can be protected by a VSDM configuration for ESD or other overvoltage conditions, or a VSDM configuration can be incorporated therein, and the substrate device refers to any printed circuit board, single layer or multilayer printing. a circuit board, a package of a semiconductor device, a light emitting diode substrate, an integrated circuit (IC) substrate, an interposer or a connection of two or more electronic components, devices or substrates (this connection may be vertical) And/or horizontal) of other platforms, any other stacked package specifications (eg, board, wafer level package, package-in-package, system-in-package or stacked combination of at least two packages or substrates) Or any other substrate to which a VSD material construction can be attached or in which a VSD material construction is incorporated. For the sake of simplicity, the "substrate device" may sometimes be referred to as a "substrate."

使用此參考座標系統,水平切換方向定義在「第2圖」實施例中的線段142及「第3圖」實施例中的線段242,將沿著與印刷電路板300的主要二維平面大致平行的平面, 所述印刷電路板300的主要二維平面定義在「第3圖」所示意的X-Y平面。 Using this reference coordinate system, the horizontal switching direction is defined by the line segment 142 in the "Fig. 2" embodiment and the line segment 242 in the "Fig. 3" embodiment, which will be substantially parallel to the main two-dimensional plane of the printed circuit board 300. Plane, The main two-dimensional plane of the printed circuit board 300 is defined in the X-Y plane shown in "Fig. 3".

「第4A圖」為根據一個實施例顯示使用VSD材質實現垂直切換的VSDM構造400,且其可被整合在基板裝置,如:印刷電路板、可撓式電路(flexible circuit)或半導體晶片的封裝。VSDM構造包含多層,其至少一層為VSD材質層,有時也被稱作為VSDM構造或簡單地VSDM構造。所述構造400可以用剖視圖顯示印刷電路板、半導體封裝或另一基板裝置中的各層。一般而言,適用於實現垂直切換的VSDM構造也可以被稱為“垂直切換的VSDM構造(vertical switching VSDM formation)”。 "FIG. 4A" is a VSDM configuration 400 showing vertical switching using a VSD material according to an embodiment, and which can be integrated in a substrate device such as a printed circuit board, a flexible circuit or a semiconductor wafer package. . The VSDM construction consists of multiple layers, at least one of which is a VSD material layer, sometimes referred to as a VSDM construction or simply a VSDM construction. The configuration 400 can show the layers in a printed circuit board, a semiconductor package, or another substrate device in a cross-sectional view. In general, a VSDM configuration suitable for implementing vertical switching may also be referred to as "vertical switching VSDM formation."

有一些垂直切換的VSDM構造揭露在美國專利申請號“12/417,589”,其為“Shocking Technologies,Inc.”在“2009/4/2”提出申請,其全部內容通過引用併入本文。 VSDM constructions having a number of vertical switchings are disclosed in U.S. Patent Application Serial No. 12/417,589, the disclosure of which is incorporated herein by reference in its entirety in its entirety in

「第4A圖」顯示的構造400包含兩個基板層460及462,兩者為絕緣層整合在印刷電路板中、一個VSD材質層440、一個導電結構430及一個導電層432。 The structure 400 shown in FIG. 4A includes two substrate layers 460 and 462, which are integrated in a printed circuit board, a VSD material layer 440, a conductive structure 430, and a conductive layer 432.

所述導電結構430可為通孔(如:鐳射鑽孔的通孔)、墊片、電路或任何其它結構,其被設計為導電且方便電氣信號傳播。 The electrically conductive structure 430 can be a through hole (eg, a through hole for laser drilling), a shim, a circuit, or any other structure that is designed to be electrically conductive and facilitate electrical signal propagation.

導電層432可作為信號層或接地層並整合在印刷電路板中,在一個實施例中,導電層432為預先設置有VSD材質440的導電結構(例如:一個已塗佈和固化VSD材質440的銅箔)。 The conductive layer 432 can be used as a signal layer or a ground layer and integrated in a printed circuit board. In one embodiment, the conductive layer 432 is a conductive structure pre-configured with a VSD material 440 (eg, a coated and cured VSD material 440). Copper foil).

「第4A圖」所示意的VSDM構造400是沿著印刷電路板的垂直維度,如Z軸所示而設置。請參閱「第3圖」的實施例,「第4A圖」所示的Z軸與「第3圖」所示的Z軸相同。 The VSDM construction 400 illustrated in Figure 4A is disposed along the vertical dimension of the printed circuit board as indicated by the Z-axis. Referring to the embodiment of "Fig. 3", the Z axis shown in "Fig. 4A" is the same as the Z axis shown in Fig. 3.

以「第1圖」及「第2圖」實施例中的水平切換 的方向來類推,垂直切換方式其電流在與基板的垂直方向平行的平面流動。 Horizontal switching in the "1st" and "2nd" embodiments The direction is analogous, and the vertical switching mode has its current flowing in a plane parallel to the vertical direction of the substrate.

請參閱「第3圖」實施例,垂直切換的結構顯示在「第4A圖」的實施例,其方式是假設VSD材質400因為電壓超過其特徵電壓而切換成導電,電流將在導電結構430及導電層432之間流動,主要是在與「第3圖」所示意的Z軸平行的方向。同樣地,如「第1圖」及「第2圖」實施例中所述的水平切換,垂直切換並不意味著電流將嚴格限制在與基板的Z軸(或垂直軸)大致平行的方向流動。相反地,由於導體的三維物體、印刷電路板佈局的三維結構、三維物理特性及VSD材質結構的形狀、在VSD材質本身的微觀層級效應(如:電流在VSD材質內分散的顆粒之內及/或之間傳播)、發生在水平維度的一定數量的電流、至少在VSD材質中的局部體積而可被預期。然而,垂直切換方式其電流主要將發生在與印刷電路板或其它基板的Z軸(或垂直軸)大致平行的方向,以便透過VSD材質440垂直方向的電流實現有用的電氣功能。 Referring to the embodiment of FIG. 3, the vertical switching structure is shown in the embodiment of FIG. 4A, which assumes that the VSD material 400 is switched to conduct electricity because the voltage exceeds its characteristic voltage, and the current will be in the conductive structure 430 and The flow between the conductive layers 432 is mainly in a direction parallel to the Z-axis indicated by "Fig. 3". Similarly, as with the horizontal switching described in the "Fig. 1" and "Fig. 2" embodiments, vertical switching does not mean that the current will be strictly limited to flow in a direction substantially parallel to the Z axis (or vertical axis) of the substrate. . Conversely, due to the three-dimensional object of the conductor, the three-dimensional structure of the printed circuit board layout, the three-dimensional physical characteristics and the shape of the VSD material structure, the microscopic level effect of the VSD material itself (eg, the current is dispersed within the particles of the VSD material and/or Or between propagation, a certain amount of current occurring in the horizontal dimension, at least in the VSD material, can be expected. However, the vertical switching mode will primarily occur in a direction substantially parallel to the Z-axis (or vertical axis) of the printed circuit board or other substrate to achieve a useful electrical function through the vertical direction of the VSD material 440.

在一個實施例中,VSDM構造400更包含互連層434(layered interconnect),其設置來接觸導電結構430及VSD材質440。所述互連層434為導電特性,也可以添加在各實施例中,以便增加導電結構和VSD材質構造之間的邊界之橫截面傳導區域,例如:「第4A圖」所示意的導電結構430及VSD材質440之間的邊界。此外,互連層在這樣的邊界可提升各導電結構的能力以攜帶更多的電流,特別是假如邊界具有小的物理特性,否則可能導致電流集中(concentration of currents)或電場集中(concentration of electrical fields)。這可能更理想,舉例來說,如果導電結構430具有小的橫截面區域接觸VSD材質440的位置。 In one embodiment, VSDM construction 400 further includes a layered interconnect 434 that is configured to contact conductive structure 430 and VSD material 440. The interconnect layer 434 is electrically conductive and may be added to various embodiments to increase the cross-sectional conductive region of the boundary between the conductive structure and the VSD material structure. For example, the conductive structure 430 illustrated in FIG. 4A. And the boundary between the VSD material 440. In addition, the interconnect layer can enhance the ability of each conductive structure to carry more current at such a boundary, especially if the boundary has small physical properties, which may result in concentration of currents or concentration of electrical. Fields). This may be more desirable, for example, if the conductive structure 430 has a small cross-sectional area that contacts the location of the VSD material 440.

一般而言,互連層被設置在導電元件及VSD材質結構之間,例如:「第4A圖」所示意的互連層434可提供 增強導電結構及VSD材質之間的電流、提高導電結構及VSD材質之間的界面的機械性能(如:增加黏著或貼合、更好的溫度係數……等等)、改善導電結構及VSD材質之間的電氣連接、以及其它類似的優點。 In general, the interconnect layer is disposed between the conductive element and the VSD material structure. For example, the interconnect layer 434 illustrated in FIG. 4A can provide Enhance the current between the conductive structure and the VSD material, improve the mechanical properties of the interface between the conductive structure and the VSD material (eg, increase adhesion or fit, better temperature coefficient, etc.), improve the conductive structure and VSD material Electrical connections between, and other similar advantages.

在各實施例中,此互連層434的設置可以從VSD材質440完全地或部分地分離導電結構430,或可設置在另一導電結構430的邊界以提供導電結構430及VSD材質440之間的額外的電氣路徑(例如:垂直)。 In various embodiments, the arrangement of the interconnect layer 434 can completely or partially separate the conductive structure 430 from the VSD material 440, or can be disposed at the boundary of the other conductive structure 430 to provide between the conductive structure 430 and the VSD material 440. Additional electrical path (eg vertical).

在一個實施例中,互連層434實體分離導電結構430及VSD材質440。為了製造此實施例,互連層434能夠形成在VSD材質440的頂端,以及導電結構430能形成在互連層434上方,避免互連層434經由導電結構430完整的滲透。 In one embodiment, interconnect layer 434 physically separates conductive structure 430 from VSD material 440. To fabricate this embodiment, an interconnect layer 434 can be formed on top of the VSD material 440, and a conductive structure 430 can be formed over the interconnect layer 434 to prevent complete penetration of the interconnect layer 434 via the conductive structure 430.

在一個實施例中,互連層434物理接觸VSD材質440,並且在VSD材質440的界面,互連層434封裝了一部分的導電結構430。為了製造此實施例,互連層434能夠形成在VSD材質440的頂端,以及導電結構430能形成在互連層434上方,然後穿透互連層434以建立導電結構430及VSD材質440之間的直接物理接觸(例如:以鐳射鑽一個洞穿過互連層434直到VSD材質440,之後使用導電材質填補這個洞以產生一個導電通孔)。 In one embodiment, interconnect layer 434 physically contacts VSD material 440, and at the interface of VSD material 440, interconnect layer 434 encapsulates a portion of conductive structure 430. To fabricate this embodiment, an interconnect layer 434 can be formed on top of the VSD material 440, and a conductive structure 430 can be formed over the interconnect layer 434 and then penetrate the interconnect layer 434 to create a structure between the conductive structure 430 and the VSD material 440. Direct physical contact (eg, laser drilling a hole through interconnect layer 434 until VSD material 440, then filling the hole with a conductive material to create a conductive via).

「第4B圖」根據一個實施例顯示包含VSD材質層498的VSDM構造490,其可整合在印刷電路板或另一基板且實現垂直切換。在一個實施例中,「第4B圖」所示意的VSDM構造490包含「第4A圖」所示意的結構430的結構組件以及一些附加特性及層。 "FIG. 4B" shows a VSDM construction 490 comprising a VSD material layer 498 that can be integrated on a printed circuit board or another substrate and that implements vertical switching, according to one embodiment. In one embodiment, the VSDM structure 490 illustrated in FIG. 4B includes the structural components of the structure 430 illustrated in FIG. 4A and some additional features and layers.

「第4B圖」所示意的VSDM構造490包含一些基板層,其一般為絕緣(或介電質),表示為預浸填料480、核心482、預浸填料484、核心486及預浸填料488。 The VSDM structure 490 illustrated in FIG. 4B includes a plurality of substrate layers, typically insulating (or dielectric), designated as prepreg filler 480, core 482, prepreg filler 484, core 486, and prepreg filler 488.

「第4B圖」所示意的VSDM構造490也包含一 些導電信號層,表示為L1~L6導電層且編號為導電層470、472、474、476、478及479。這些信號層可在印刷電路板中、或是連接在印刷電路板的組件及電路元件來傳導電氣信號、或用作接地或其它電壓參考點。 The VSDM structure 490 shown in "Fig. 4B" also contains a These conductive signal layers are denoted as L1~L6 conductive layers and are numbered as conductive layers 470, 472, 474, 476, 478 and 479. These signal layers can be used to conduct electrical signals in printed circuit boards, or components and circuit components connected to printed circuit boards, or as ground or other voltage reference points.

「第4B圖」所示意的VSDM構造490也包含兩個導電結構,表示為導電結構450及452。任一個或兩個導電結構450及452可為通孔、墊片、電路或任何其它結構,其設計為導電且方便電信號傳播。「第4B圖」所示意的VSDM構造490沿著印刷電路板的垂直維度設置,如Z軸所示。請參閱「第3圖」的實施例,「第4A圖」所示的Z軸與「第3圖」所示的Z軸相同。 The VSDM structure 490 illustrated in FIG. 4B also includes two conductive structures, designated as conductive structures 450 and 452. Either or both of the conductive structures 450 and 452 can be through holes, pads, circuits, or any other structure that is designed to be electrically conductive and facilitate electrical signal propagation. The VSDM construction 490 illustrated in Figure 4B is placed along the vertical dimension of the printed circuit board, as indicated by the Z-axis. Referring to the embodiment of "Fig. 3", the Z axis shown in "Fig. 4A" is the same as the Z axis shown in Fig. 3.

在「第4B圖」的實施例中,互連層499設置在導電結構452及VSD材質498之間的界面。在各具體實施例中,互連層499相似於「第4A圖」的實施例的互連層434。互連層499可對介於導電結構452及VSD材質498的界面提供各種優點,包含在「第4A圖」的實施例中所提到的那些優點。 In the embodiment of FIG. 4B, interconnect layer 499 is disposed at an interface between conductive structure 452 and VSD material 498. In various embodiments, interconnect layer 499 is similar to interconnect layer 434 of the "FIG. 4A" embodiment. Interconnect layer 499 can provide various advantages to the interface between conductive structure 452 and VSD material 498, including those mentioned in the "FIG. 4A" embodiment.

假如VSD材質層498接觸到介於導電結構452及導電層474之間的電壓,其超過VSD材質層498的特徵電壓,包含在VSD材質層498的VSD材質將切換為導通,並且將成為導電。在此狀況下,電流主要是在垂直方向流動,介於導電結構452及導電層474之間。假設此一狀況發生,VSD材質層498具有垂直切換。 If the VSD material layer 498 contacts the voltage between the conductive structure 452 and the conductive layer 474, which exceeds the characteristic voltage of the VSD material layer 498, the VSD material included in the VSD material layer 498 will be switched to be conductive and will become conductive. In this case, the current mainly flows in the vertical direction between the conductive structure 452 and the conductive layer 474. Assuming this condition occurs, the VSD material layer 498 has a vertical switch.

在一個實施例中,類似於「第1圖」及「第2圖」實施例,在以伏特為單位測量VSD材質層498的特徵電壓時,與VSD材質的間隙大小有關。如「第4B圖」的實施例,間隙大小會與導電結構452及導電層474的距離大致相等,也正好與VSD材質498的厚度相等。雖然以間隙大小來計算VSD材質的特徵電壓的確切公式會受到一些變數的影響(例如:確切的VSD材質配方、VSD材質結構或層的完整體積、 透過實現切換的VSD材質結構的實際形狀、連接到VSD材質的任何電路元件的阻抗……等等)。但在各種實施例中使用的VSD材質配方,較小的VSD材質的間隙通常導致較小的特徵電壓,較小的特徵電壓在某些應用可能是最好的(例如:應用在VSD材質將切換至較低的電壓)。 In one embodiment, similar to the "Fig. 1" and "Fig. 2" embodiments, when the characteristic voltage of the VSD material layer 498 is measured in volts, it is related to the gap size of the VSD material. As in the embodiment of "FIG. 4B", the gap size is approximately equal to the distance between the conductive structure 452 and the conductive layer 474, and is also equal to the thickness of the VSD material 498. Although the exact formula for calculating the characteristic voltage of a VSD material by the gap size is affected by some variables (for example, the exact VSD material recipe, the VSD material structure, or the full volume of the layer, Through the actual shape of the VSD material structure that is switched, the impedance of any circuit component connected to the VSD material, etc.). However, in the VSD material formulations used in various embodiments, the gap of the smaller VSD material usually results in a smaller characteristic voltage, and the smaller characteristic voltage may be the best in some applications (eg, the application will switch in the VSD material). To a lower voltage).

在一般的設計考量中,減少VSD材質的間隙大小必須平衡VSD材質結構變得太小因此失去其理想的操作特性的風險(例如:太薄的VSD材質結構在快速連續地接觸到類似的觸發電壓時可能會在重複性的一致性上呈現降低、可能遇到散熱能力下降、或是遭受短路或損毀的風險較高)。 In general design considerations, reducing the gap size of the VSD material must balance the risk that the VSD material structure becomes too small to lose its ideal operating characteristics (eg, a too thin VSD material structure is in rapid and continuous contact with similar trigger voltages). There may be a decrease in repeatability consistency, a potential loss of heat dissipation, or a higher risk of being short-circuited or damaged.

垂直切換相較於水平切換的一個優點是,在某些製造環境中,比起水平切換構造,其可更容易控制垂直切換構造的間隙大小。舉例來說,使用目前技術同時考量製造成本來產生水平VSD材質間隙,如「第1圖」實施例的間隙150,以及「第2圖」實施例的間隙250,所能容許的公差可能還不是足夠小的,或可能難以維持透過一個大的商業化生產線所生產的印刷電路板的精確性。因此,水平切換的VSDM構造在不同印刷電路板、或即使在相同印刷電路板,不希望在各自的特徵電壓及/或操作穩健性呈現出高統計變化,而且這樣的變化可能會更加難以使用當前生產線的標準製造技術和工藝來解決。 One advantage of vertical switching over horizontal switching is that in some manufacturing environments it is easier to control the gap size of the vertical switching configuration than the horizontal switching configuration. For example, using the current technology while considering the manufacturing cost to produce a horizontal VSD material gap, such as the gap 150 of the "Fig. 1" embodiment, and the gap 250 of the "Fig. 2" embodiment, the tolerances that may be tolerated may not be Small enough, or it may be difficult to maintain the accuracy of a printed circuit board produced through a large commercial production line. Therefore, horizontally switched VSDMs are constructed on different printed circuit boards, or even on the same printed circuit board, and do not wish to exhibit high statistical variations in their respective characteristic voltages and/or operational robustness, and such changes may be more difficult to use. The production line is manufactured using standard manufacturing techniques and processes.

反之,在一些實施例中,對於VSD材質構造的垂直公差,如「第4A圖」所示意的VSD材質構造400,可能更容易保持準確。舉例來說,如果VSD材質設置在導電層的處理可以確保VSD材質厚度一致和準確,間隙442將具有相對一致和準確的間隙大小。在實際實施上,這可採用先進的塗佈技術再加上適當的檢驗、計量和監測流程來實現。 Conversely, in some embodiments, the vertical tolerance for the VSD material construction, such as the VSD material construction 400 illustrated in Figure 4A, may be easier to maintain accurate. For example, if the VSD material is placed in a conductive layer to ensure consistent and accurate VSD material thickness, the gap 442 will have a relatively consistent and accurate gap size. In practice, this can be achieved using advanced coating techniques coupled with appropriate inspection, metering and monitoring processes.

垂直切換相對於水平切換的另一個優點是VSD材質結構用以執行垂直切換可以在VSD材質成為導電時產生較大的橫截面面積使電流流過。較大的橫截面面積能夠傳導 更多的電流,因而導致更好的性能特性和VSD材質結構的耐久性。舉例來說,在「第1圖」的實施例中,VSD材質140的橫截面切換區域與VSD材質層在垂直方向測量的厚度成正比,其通常很小且往往會產生較小的橫截面面積。與此相反,在「第9圖」的實施例中,VSD材質940的橫截面切換區域與在X-Y平面測定的電極920的表面積成正比,這往往會產生較大的橫截面面積。 Another advantage of vertical switching versus horizontal switching is that the VSD material structure is used to perform vertical switching to create a large cross-sectional area for current flow when the VSD material becomes conductive. Larger cross-sectional area can conduct More current, resulting in better performance characteristics and durability of the VSD material structure. For example, in the embodiment of "FIG. 1", the cross-sectional switching area of the VSD material 140 is proportional to the thickness measured in the vertical direction of the VSD material layer, which is usually small and tends to produce a small cross-sectional area. . In contrast, in the "Fig. 9" embodiment, the cross-sectional switching area of the VSD material 940 is proportional to the surface area of the electrode 920 measured in the X-Y plane, which tends to result in a larger cross-sectional area.

要處理基板上的VSD材質層,如「第1圖」的實施例中,基板160上的VSD材質140或「第4A圖」的實施例中,導電層432上的VSD材質440,VSD材質可被塗佈和固化在所述基板上。以「第4A圖」的實施例為例,處理導電層432上的VSD材質層440,VSD材質可被塗佈及固化在導電薄片的材質(如:銅)。然後,得到的固化VSDM構造可作為印刷電路板中的化合物層,包含成為導電層432的導電薄片的材質以及成為VSD材質層440的VSD材質。「第4A圖」顯示的其它特徵可在製造過程中通過各種製造步驟形成。 To process the VSD material layer on the substrate, in the embodiment of "Fig. 1", in the embodiment of the VSD material 140 or "4A" on the substrate 160, the VSD material 440 on the conductive layer 432, the VSD material can be It is coated and cured on the substrate. Taking the embodiment of FIG. 4A as an example, the VSD material layer 440 on the conductive layer 432 is processed, and the VSD material can be coated and cured on the material of the conductive sheet (eg, copper). Then, the obtained cured VSDM structure can be used as a compound layer in a printed circuit board, and includes a material of a conductive sheet to be the conductive layer 432 and a VSD material to be the VSD material layer 440. Other features shown in "Fig. 4A" can be formed by various manufacturing steps during the manufacturing process.

除非特別明確指出,否則術語“VSD材質構造”、“VSDM構造”、“VSD材質的構造”、“VSDM的構造”、“VSD材質的構造”、“VSD材質堆疊”或“VSDM堆疊”是指任意的組合、排列或其它結構,包含(a)至少一個VSD材質結構及(b)下列其中之一或一個以上:(i)絕緣元件(如:一個預浸填料或其它絕緣層或結構中的印刷電路板,在半導體封裝中的絕緣層或結構等)、(ii)電極(如:印刷電路板中的導電通孔或在半導體封裝中的導電連接器)、(iii)半導體元件(如:半導體材料製造出的結構)及/或(iv)不同的VSD材質結構。以VSD材質構造為例,其更簡單的配置是VSDM結構(如:VSD材質層)的組合設置在銅箔上及銅箔本身。 Unless otherwise specifically stated, the terms "VSD material construction", "VSDM construction", "VSD material construction", "VSDM construction", "VSD material construction", "VSD material stacking" or "VSDM stacking" refer to Any combination, arrangement or other structure comprising (a) at least one VSD material structure and (b) one or more of the following: (i) an insulating element (eg, a prepreg or other insulating layer or structure) a printed circuit board, an insulating layer or structure in a semiconductor package, etc.), (ii) an electrode (eg, a conductive via in a printed circuit board or a conductive connector in a semiconductor package), (iii) a semiconductor component (eg: Structures made of semiconductor materials) and/or (iv) different VSD material structures. Taking the VSD material structure as an example, the simpler configuration is that the combination of the VSDM structure (such as the VSD material layer) is set on the copper foil and the copper foil itself.

更複雜的VSD構造的其它例子是垂直切換的VSDM構造,其在本專利的各實施例中描述及/或權利要求, 包含「第4A圖」實施例的VSDM構造400、「第4B圖」實施例的VSDM構造490、「第5圖」實施例的VSDM構造500、「第6圖」實施例的VSD材質構造600、「第9圖」實施例的VSD材質構造900、「第10圖」實施例的VSD材質構造1000、「第11圖」實施例的VSD材質構造1100、「第12A圖」實施例的VSD材質構造1200、「第13圖」實施例的VSD材質構造1300、「第14圖」實施例的VSD材質構造1400、「第15A圖」實施例的VSD材質構造1500、「第16圖」實施例的VSD材質構造1600以及「第17圖」實施例的雙向切換結構1700。 Other examples of more complex VSD configurations are vertically switched VSDM configurations, which are described and/or claimed in various embodiments of the patent. The VSDM structure 490 of the embodiment of the "FIG. 4A" embodiment, the VSDM structure 490 of the "FIG. 4B" embodiment, the VSDM structure 500 of the "fifth figure" embodiment, and the VSD material structure 600 of the "FIG. 6" embodiment. The VSD material structure 900 of the "Fig. 9" embodiment, the VSD material structure 1000 of the "10th figure" embodiment, the VSD material structure 1100 of the "11th figure" embodiment, and the VSD material structure of the "12A figure" embodiment. 1200, VSD material structure 1300 of the "Fig. 13" embodiment, VSD material structure 1400 of the "Fig. 14" embodiment, VSD material structure 1500 of the "15A figure" embodiment, and VSD of the "16th figure" embodiment The material structure 1600 and the bidirectional switching structure 1700 of the "17th embodiment" embodiment.

塗佈和固化VSD材質結構於基板,如VSD材質層,可透過一系列的步驟來達成。舉例來說,請參閱「第4A圖」的實施例,處理VSD材質層,如VSD材質440,在基板上最終會成為導電層432,其可使用如下步驟:(1)將VSD材質點膠(dispense)在基板,此VSD材質是液體或半液體狀態(例如:由於分散在VSD材質內的顆粒和其它材料,VSD材質的黏度會傾向高於純水等液體的黏度,因此流動較慢);(2)在基板上的一層中擴展VSD材質,同時保持VSD材質的厚度在理想範圍及橫跨基板表面的公差內;(3)監控、檢查及/或測試塗佈在基板大表面的VSD材質的厚度,以確保VSD材質的厚度維持在理想範圍及公差內;(4)固化(cure)VSD材質,將其暴露在熱環境(如:透過烤箱處理塗佈在基板上的VSD材質,烤箱的溫度能夠控制及/或變化在理想範圍內);(5)移除較早前的製造工序中所使用的溶劑或其它材質,並且設計為在此時移除以方便後續處理;以及(6)監控、檢查及/或測試產生的VSD材質構造,包含設置在基板上的固化VSD材質層,用以確保此固化的VSD材質層在厚度、一致性、缺陷密度、切換電壓、物理 彈性、黏附性、靈活性或其它物理屬性、熱耐久性或其它熱屬性,及/或其它相關參數方面具有預期的特性及公差。 Coating and curing the VSD material structure on the substrate, such as the VSD material layer, can be achieved through a series of steps. For example, please refer to the embodiment of FIG. 4A. The VSD material layer, such as the VSD material 440, will eventually become the conductive layer 432 on the substrate. The following steps can be used: (1) Dispense the VSD material ( Dispensing) On the substrate, the VSD material is in a liquid or semi-liquid state (for example, due to particles and other materials dispersed in the VSD material, the viscosity of the VSD material tends to be higher than that of a liquid such as pure water, so the flow is slow); (2) Extend the VSD material in a layer on the substrate while maintaining the thickness of the VSD material within the desired range and tolerances across the surface of the substrate; (3) monitor, inspect, and/or test the VSD material applied to the large surface of the substrate. Thickness to ensure that the thickness of the VSD material is maintained within the desired range and tolerance; (4) Curing the VSD material and exposing it to a hot environment (eg, processing the VSD material coated on the substrate through the oven, oven) The temperature can be controlled and/or varied within the desired range; (5) removing the solvent or other material used in the earlier manufacturing process and designed to be removed at this point for subsequent processing; and (6) Generated by monitoring, inspection and/or testing VSD material construction, including a cured VSD material layer on the substrate to ensure thickness, consistency, defect density, switching voltage, and physicality of the cured VSD material layer Expected characteristics and tolerances in terms of elasticity, adhesion, flexibility or other physical properties, thermal durability or other thermal properties, and/or other relevant parameters.

除了塗佈之外,其它方法可用於將VSD材質結構部署在基板上,如VSD材質層,這樣的方法包括:沉積、絲網印刷、晶粒封膠、刮刀式塗佈、壓合、機械黏附(如:過預先固化VSD材質於一層,然後將其附於基板)、或透過任何其它結合方式,無論是機械、化學或其它方式。無論使用何種方法,得到的VSD材質構造將包含設置在基板(無論是否導電)頂端的VSD材質層,VSD材質在固化狀態且能夠執行電壓切換功能。 In addition to coating, other methods can be used to deploy the VSD material structure on a substrate, such as a VSD material layer, such as: deposition, screen printing, die seal, blade coating, press bonding, mechanical adhesion. (eg, pre-cured VSD material on one layer and then attached to the substrate), or through any other means of bonding, whether mechanical, chemical or otherwise. Regardless of the method used, the resulting VSD material construction will include a VSD material layer placed on top of the substrate (whether conductive or not), and the VSD material will be in a cured state and capable of performing a voltage switching function.

在一個實施例中,替代生產VSD材質構造的方法包含一個提前固化在基板上的VSD材質層,然後將此VSD材質構造整合至印刷電路板中,所述VSD材質在印刷電路板實際的製造過程中可被塗佈在印刷電路板的一層。以「第4B圖」為例,L3導電層474在VSDM構造490的製造過程中可以附著至預浸填料484,接著VSD材質層498可設置及固化在L3導電層474上,然後互連層434可形成(如:絲網印刷)在VSD材質498的頂端,之後核心482附著在VSD材質層498,導電結構452隨後形成在核心482之中或在核心482附著前已經產生在其中。 In one embodiment, the method of fabricating a VSD material construction includes a VSD material layer pre-cured on the substrate, and then integrating the VSD material structure into a printed circuit board, the VSD material being physically fabricated in the printed circuit board. It can be coated on one layer of a printed circuit board. Taking "FIG. 4B" as an example, the L3 conductive layer 474 can be attached to the prepreg filler 484 during the fabrication of the VSDM structure 490, and then the VSD material layer 498 can be disposed and cured on the L3 conductive layer 474, and then the interconnect layer 434. A top end of the VSD material 498 can be formed (e.g., screen printed), after which the core 482 is attached to the VSD material layer 498, which is then formed in the core 482 or has been produced prior to attachment of the core 482.

「第5圖」為根據一個實施例顯示VSDM構造500,其使用VSD材質實現垂直切換。「第5圖」的VSDM構造可整合在基板裝置中,如:印刷電路板、可撓式電路或半導體晶片的封裝。 "Figure 5" shows a VSDM fabric 500 that implements vertical switching using a VSD material, in accordance with one embodiment. The VSDM construction of Figure 5 can be integrated into a substrate device such as a printed circuit board, a flexible circuit, or a semiconductor wafer package.

所述「第5圖」的VSDM構造500包含一組導電層520及522,其可為印刷電路板中的導電信號層或其它電極,「第5圖」的VSDM構造500更包含VSD材質層540。 The VSDM structure 500 of FIG. 5 includes a set of conductive layers 520 and 522, which may be conductive signal layers or other electrodes in a printed circuit board. The VSDM structure 500 of FIG. 5 further includes a VSD material layer 540. .

互連層530設置在導電層520及VSD材質540之間,互連層532設置在VSD材質540及導電層522之間。在一個替代的實施方式,互連層530及532兩者任一或兩者 不存在,在此情況下,VSD材質540直接物理接觸一個或兩個導電層。 The interconnect layer 530 is disposed between the conductive layer 520 and the VSD material 540, and the interconnect layer 532 is disposed between the VSD material 540 and the conductive layer 522. In an alternate embodiment, either or both of interconnect layers 530 and 532 Not present, in this case, the VSD material 540 is in direct physical contact with one or two conductive layers.

在一個實施例中,互連層是任意的導電結構,其可作為結構的一部分,或是連接具有垂直切換的VSDM構造以沿著電氣路徑傳遞電壓及/或電流,電氣路徑包含一個或多個VSDM結構。在一些實施例中,互連層設置在水平方向(如:在一個水平層內)以提供導電。在一些實施例中,互連層設置在垂直方向(如:越過一個或多個水平層,及/或介於兩個或兩個以上的水平層)以提供導電。在一些實施例中,將互連層同時設置在水平和垂直方向,及/或斜向。 In one embodiment, the interconnect layer is any conductive structure that can be part of the structure or connect a VSDM configuration with vertical switching to transfer voltage and/or current along the electrical path, the electrical path including one or more VSDM structure. In some embodiments, the interconnect layers are disposed in a horizontal direction (eg, within one horizontal layer) to provide electrical conduction. In some embodiments, the interconnect layers are disposed in a vertical direction (eg, over one or more horizontal layers, and/or between two or more horizontal layers) to provide electrical conduction. In some embodiments, the interconnect layers are simultaneously disposed in horizontal and vertical directions, and/or obliquely.

在各種實現中,互連層,如「第5圖」的互連層530或532,可以使用任何合適的工藝,包括透過絲網印刷、模板印刷、沉積、黏附、使用熱及/或壓力壓合、透過任何其它物理連接(如:膠合或黏合)、或透過預先建立互連層至基板內(如:設置互連層作為印刷電路板中的一個層、結構、導電核心或預浸填料,或作為半導體封裝內的一個層、導電結構)。在一個實施例中,附著VSD材質層的基板(例如:使用銅箔作為VSD材質層的基板)可作為互連層以便在印刷電路板或其它基板內提供水平傳導。在一般情況下,互連層適用於各垂直切換的VSDM構造的實施例,其可透過任何機械的、化學的或其它適合的沉積方式生產。 In various implementations, the interconnect layer, such as the interconnect layer 530 or 532 of FIG. 5, can be applied using any suitable process, including through screen printing, stencil printing, deposition, adhesion, use of heat and/or pressure. Coupling, through any other physical connection (eg, gluing or bonding), or by pre-establishing an interconnect layer into the substrate (eg, setting the interconnect layer as a layer, structure, conductive core, or prepreg in the printed circuit board, Or as a layer in a semiconductor package, conductive structure). In one embodiment, a substrate to which a VSD material layer is attached (eg, a substrate using copper foil as a VSD material layer) can serve as an interconnect layer to provide horizontal conduction within a printed circuit board or other substrate. In general, the interconnect layer is suitable for use with embodiments of each vertically switched VSDM configuration that can be produced by any mechanical, chemical or other suitable deposition method.

在各種實施例中,互連層可具有阻抗範圍。舉例來說,在一些實施例中,最好具有可忽略的阻抗(如:導電性高的薄膜,其具有非常低的電阻且不引入任何顯著的電壓降)。在另一個例子中,互連層可以有意地構成具有較高的阻抗,並且當電流流過它時引入一個特定的電壓降(如:互連層可設計為一個嵌入式電路元件,或可包含一個嵌入式電路元件)。以一個具有電阻的互連層為例,其電阻通常不被認為可忽略不計,將是具有一個介於“25~1000”歐姆的電阻的導電薄膜。在一個實施例中,互連層可構成「第15A圖」實 施例中的元件1592或可被建模以運作為「第15A圖」實施例中的元件1592。 In various embodiments, the interconnect layer can have a range of impedances. For example, in some embodiments, it is preferred to have negligible impedance (eg, a highly conductive film that has very low resistance and does not introduce any significant voltage drop). In another example, the interconnect layer can be intentionally constructed to have a higher impedance and introduce a specific voltage drop when current flows through it (eg, the interconnect layer can be designed as an embedded circuit component, or can include An embedded circuit component). Taking a resistive interconnect layer as an example, its resistance is generally not considered negligible and will be a conductive film with a resistance of between 25 and 1000 ohms. In one embodiment, the interconnect layer may constitute "figure 15A". Element 1592 in the embodiment may be modeled to function as element 1592 in the "Phase 15A" embodiment.

在各實施例中,互連層有一個使用碳填充環氧樹脂(carbon filled epoxy)或作為沉積在銅上的鎳鉻合金(如:一個熱薄膜電阻層沉積在銅箔)製成不可忽略的電阻率。 In various embodiments, the interconnect layer is made of a carbon filled epoxy or a nickel-chromium alloy deposited on copper (eg, a thermal thin film resistor layer deposited on the copper foil) to be non-negligible. Resistivity.

在各實施例中,互連層可被具高介電常數的材料或材料組合製造出來,這將使互連層具有較高的電容。 In various embodiments, the interconnect layer can be fabricated from a material or combination of materials having a high dielectric constant, which will result in a higher capacitance of the interconnect layer.

在各種實施例中,互連層可被任何材料或材料組合製成,其可傳導電流且適用於基板應用。 In various embodiments, the interconnect layer can be made of any material or combination of materials that can conduct current and be suitable for substrate applications.

在本發明的實施例中,以一個製成互連層的材料為例,如互連層530或532為“3M公司”製造的Z軸導電帶,市場上銷售的商品名為“3MTM Z-Axis Electrically Conductive Tape 9703”。當設置為一個基本上水平的層時,Z軸導電帶呈現出各向異性(anisotropic)沿著Z軸垂直導電,當沿著Z軸傳導電流時,基本上是導電性但水平絕緣。 In the embodiment of the present invention, a material for forming an interconnect layer is exemplified, for example, the interconnect layer 530 or 532 is a Z-axis conductive tape manufactured by "3M Company", and the market name is "3M TM Z". -Axis Electrically Conductive Tape 9703”. When set to a substantially horizontal layer, the Z-axis conductive strip exhibits anisotropic conductivity along the Z-axis and, when conducting current along the Z-axis, is substantially conductive but horizontally insulating.

其它可使用在本發明實施例作為互連層的材料之例子,如:互連層530或520為銀膏、銅膏以及其它黏貼的金屬類型、塗佈銀的銅層、碳層、鐵性材質或包括鐵氧體、導電環氧樹脂或聚合物的化合物、或是其它能夠傳導電流的材質層、結構或連接器。在一般情況下,除非互連層具有各向異性導電率,互連層可用於各實施例的垂直切換的VSDM構造以使電流在水平、垂直及/或傾斜方向傳導,這取決於各實施例的特定結構。 Other examples of materials that can be used as interconnect layers in embodiments of the present invention, such as interconnect layer 530 or 520 are silver paste, copper paste, and other adhered metal types, silver coated copper layers, carbon layers, and iron. Material or compound including ferrite, conductive epoxy or polymer, or other material layer, structure or connector capable of conducting current. In general, unless the interconnect layer has anisotropic conductivity, the interconnect layer can be used in the vertically switched VSDM configuration of the various embodiments to conduct current in horizontal, vertical, and/or oblique directions, depending on various embodiments. The specific structure.

在「第5圖」的實施例中,電壓源可連接於導電層520及522之間,「第5圖」的電壓源510作為一個獨立的電壓源,它也可以是一個電流源或任何其它電能的來源。這樣的佈置可在測試步驟或特定的架構佈局中遇到,其中整合有VSD材質以便透過電壓源510增加電壓來使VSD材質導電。 In the embodiment of "figure 5", a voltage source may be connected between the conductive layers 520 and 522. The voltage source 510 of "Fig. 5" serves as an independent voltage source, which may also be a current source or any other. The source of electrical energy. Such an arrangement can be encountered in a test step or a particular architectural layout in which a VSD material is integrated to increase the voltage through voltage source 510 to make the VSD material conductive.

在更一般的意義上,施加在導電層520及522的 電壓可以是任何電壓信號或其它電氣信號,包括由ESD放電產生的電壓,如「第5圖」實施例中所示意的ESD脈衝512。在正常操作情況下,它通常由終端用戶裝置所遭遇,如:行動電話,ESD脈衝512可被預期有高的電壓大小(例如:超過幾百伏特,甚至可能是幾千伏特)及短暫的持續時間(例如:介於奈秒及微秒之間)。儘管持續的時間很短,由ESD脈衝512產生的電流可預計可能超過十安培的較大振幅。如果「第5圖」實施例的結構用於ESD防護,導電層520及522可被連接至接地平面(或在被保護的電路或裝置中的另一個預定點),並且ESD脈衝512可被引導至接地或所述預定點。 In a more general sense, applied to conductive layers 520 and 522 The voltage can be any voltage signal or other electrical signal, including the voltage generated by the ESD discharge, such as the ESD pulse 512 illustrated in the "Fig. 5" embodiment. Under normal operating conditions, it is typically encountered by end user devices, such as mobile phones, ESD pulses 512 can be expected to have a high voltage level (eg, over a few hundred volts, or even thousands of volts) and short duration Time (for example: between nanoseconds and microseconds). Although the duration is short, the current produced by the ESD pulse 512 can be expected to exceed a large amplitude of ten amps. If the structure of the "Fig. 5" embodiment is used for ESD protection, conductive layers 520 and 522 can be connected to a ground plane (or another predetermined point in the protected circuit or device) and ESD pulse 512 can be directed To ground or the predetermined point.

如果透過電壓源510(或由ESD脈衝512)施加的電壓不超過VSD材質540的特徵電壓,VSD材質540基本上不導通,且沒有顯著的電流通過互連層530及532,以及通過VSD材質540(除了一部份的漏電流,其原因是為了不影響電子裝置的性能,通常在所述結構500的部署時VSD材質540會被設計成最小化)在導電層520及522之間傳導。 If the voltage applied through voltage source 510 (or by ESD pulse 512) does not exceed the characteristic voltage of VSD material 540, VSD material 540 is substantially non-conductive and has no significant current flow through interconnect layers 530 and 532, as well as through VSD material 540. (In addition to a portion of the leakage current, the reason is that the VSD material 540 is designed to be minimized during conduction of the structure 500) to conduct between the conductive layers 520 and 522 in order not to affect the performance of the electronic device.

為了圖解說明電壓源510和ESD脈衝512可出現在替代方案,並且用於一般性描述目的,每個導電層520及522之間的連接線以虛線來表示。在一般情況下,電壓源、ESD信號或其它電氣來源、過電壓信號或電壓電位可施加在導電層520及522之間。這兩個導電層也可以被連接到接地或連接到另一個參考電壓電平的點。 To illustrate that voltage source 510 and ESD pulse 512 may be present in an alternative, and for general description purposes, the connecting lines between each of conductive layers 520 and 522 are indicated by dashed lines. In general, a voltage source, an ESD signal, or other electrical source, an overvoltage signal, or a voltage potential can be applied between conductive layers 520 and 522. These two conductive layers can also be connected to ground or to a point of another reference voltage level.

如果透過電壓源510(或由ESD脈衝512替代)施加的電壓超過VSD材質540的特徵電壓,VSD材質540基本上切換成導電,且有不小的電流量通過VSD材質540在導電層520及522之間傳導。 If the voltage applied by the voltage source 510 (or replaced by the ESD pulse 512) exceeds the characteristic voltage of the VSD material 540, the VSD material 540 is substantially switched to be conductive, and there is a small amount of current passing through the VSD material 540 at the conductive layers 520 and 522. Conducted between.

如果對於一個給定的VSD材質成分,VSD材質的特徵電場被定義在每密耳伏特(V/mil)(或以其它方式定義在每單位長度伏特),具有一給定厚度的VSD材質的特徵電壓可被確定為一個特定電壓值,舉例來說,假設VSD材質層 540的厚度跨越「第5圖」實施例表示為T的間隙542,且VSD材質層540的特徵電場表示為每密耳伏特ECH,對應的特徵電壓值以伏特為單為表示成VCH,並且可表示為如下公式:VCH(V)=ECH(V/mil)* T(mil) 公式一 If for a given VSD material composition, the characteristic electric field of the VSD material is defined in volts per volt (V/mil) (or otherwise defined in volts per unit length), the characteristics of a VSD material with a given thickness The voltage can be determined as a specific voltage value, for example, assuming a VSD material layer The thickness of 540 is represented as a gap 542 of T in the embodiment of FIG. 5, and the characteristic electric field of the VSD material layer 540 is expressed as ECH per mil, and the corresponding characteristic voltage value is expressed as VCH in volts, and can be Expressed as the following formula: VCH (V) = ECH (V / mil) * T (mil) Formula One

假設特徵電場ECH的數值是常數,或是近似於厚度T的常數,公式一的計算式成立。 Assuming that the value of the characteristic electric field ECH is a constant or a constant approximate to the thickness T, the formula of Equation 1 holds.

一般而言,在整個相應的VSD材質的間隙,特徵電場ECH可能不是常數,並且因不同VSD材質厚度而產生變化的值。在一定程度上,特徵電場ECH在VSD材質的間隙上不是常數,特徵電壓VCH可以通過特徵電場ECH與相應的厚度T的積而得出。 In general, the characteristic electric field ECH may not be constant over the gap of the corresponding VSD material and will vary depending on the thickness of the VSD material. To a certain extent, the characteristic electric field ECH is not constant over the gap of the VSD material, and the characteristic voltage VCH can be obtained by the product of the characteristic electric field ECH and the corresponding thickness T.

從公式一可以看出,透過減少VSD材質層540的厚度,VSD材質結構540的特徵電壓也相對地降低,一個範例值可在行動電話的工業應用中用於VSD材質540的厚度,包含低於二密耳的數值,為了進一步降低特徵電壓,VSD材質層540的厚度可以減少到低於一密耳。 As can be seen from Equation 1, by reducing the thickness of the VSD material layer 540, the characteristic voltage of the VSD material structure 540 is also relatively reduced. An example value can be used for the thickness of the VSD material 540 in industrial applications of mobile phones, including lower than For a second mil value, to further reduce the characteristic voltage, the thickness of the VSD material layer 540 can be reduced to less than one mil.

假設互連層530及532以及導電層520及522的阻抗可以忽略不計,這些導電層和互連層沒有顯著的電壓降,並因此在由電壓源510或ESD脈衝512產生的電壓達到VSD材質540的特徵電壓之後,VSD材質540切換為導通且成為導電。 Assuming that the impedance of interconnect layers 530 and 532 and conductive layers 520 and 522 are negligible, these conductive layers and interconnect layers do not have a significant voltage drop, and thus the voltage generated by voltage source 510 or ESD pulse 512 reaches VSD material 540. After the characteristic voltage, the VSD material 540 is switched to be conductive and conductive.

「第6圖」為根據一個實施例顯示VSDM構造600,其使用VSD材質實現垂直切換。「第6圖」的VSDM構造可被整合在基板裝置,如:印刷電路板、可撓式電路或半導體晶片的封裝。 "Figure 6" shows a VSDM construction 600 that implements vertical switching using a VSD material in accordance with one embodiment. The VSDM structure of "Fig. 6" can be integrated in a substrate device such as a printed circuit board, a flexible circuit or a semiconductor wafer package.

「第6圖」的VSDM構造600,包含一組導電層620及622,其可為印刷電路板中的導電信號層或其它電極,「第6圖」的VSDM構造600更包含VSD材質結構640,它 是被設置為與間隙642的厚度T大致相同的一層。 The VSDM structure 600 of FIG. 6 includes a set of conductive layers 620 and 622, which may be conductive signal layers or other electrodes in a printed circuit board. The VSDM structure 600 of FIG. 6 further includes a VSD material structure 640. it It is a layer that is set to be substantially the same as the thickness T of the gap 642.

互連層630設置在導電層620及VSD材質結構540之間,導電層622物理及電氣接觸VSD材質640。 The interconnect layer 630 is disposed between the conductive layer 620 and the VSD material structure 540, and the conductive layer 622 physically and electrically contacts the VSD material 640.

根據各種實施例,除了常規的硬板,如:硬性印刷電路板及硬性半導體封裝,垂直切換的VSDM構造也可實現於軟性電路、軟性基板、軟性半導體封裝及其它軟性裝置。為了實現此一目標,對使用的VSD材質構造進行調整以呈現增強彈性性能,舉例來說,一般的準則是降低在VSD材質內的金屬顆粒含量(例如:透過減少或消除分散在VSD材料中的金屬顆粒),降低固化後的VSD材質的脆性,並因此使得VSD材質更適合用於軟性應用。 According to various embodiments, in addition to conventional hard boards, such as rigid printed circuit boards and rigid semiconductor packages, vertically switched VSDM configurations can also be implemented in flexible circuits, flexible substrates, flexible semiconductor packages, and other flexible devices. To achieve this goal, the VSD material construction used is adjusted to exhibit enhanced elastic properties. For example, the general rule is to reduce the amount of metal particles in the VSD material (eg, by reducing or eliminating dispersion in the VSD material). Metal particles) reduce the brittleness of the cured VSD material and thus make the VSD material more suitable for soft applications.

垂直切換的VSD材質構造可透過加入一個或多個具有適當的機械及/或環境耐力屬性進一步適用於軟性應用的實施例中,以「第6圖」的實施例所示意的VSD材質構造600為例,兩個額外加入的層為聚酰亞胺(polyimide)基板680及682。 The vertically-switched VSD material structure can be further adapted to soft applications by adding one or more attributes with appropriate mechanical and/or environmental endurance properties. The VSD material construction 600 illustrated in the embodiment of "FIG. 6" is For example, two additional layers are added to polyimide substrates 680 and 682.

聚酰亞胺材質通常是輕量級與軟性的,具有較高的力學延展性和拉伸強度,而且往往可以更好地抵禦高溫和化學反應。聚酰亞胺材質被用在電子工業中來製造軟性電纜、在數位半導體和微機電系統晶片中的製程中作為絕緣層或鈍化層、作為絕緣薄膜、作為高溫黏合劑、用於醫療導管的應用、以及用於其它可撓性、低重量及提升環境韌性所需的應用。 Polyimide materials are generally lightweight and soft, have high mechanical ductility and tensile strength, and tend to better resist high temperatures and chemical reactions. Polyimide materials are used in the electronics industry to make flexible cables, as insulating or passivation layers in processes in digital semiconductor and MEMS wafers, as insulating films, as high temperature adhesives, for medical catheter applications And for other applications that require flexibility, low weight, and improved environmental toughness.

另一個VSD材質構造的應用,其採用耐熱材料,如作為「第6圖」實施例的VSD材質構造600所包含的聚酰亞胺基板680及682為高熱能應用,例如:LED面板或電子應用操作的區域具有較高的環境溫度(如:炎熱的氣候)或在裝置中具有有限的通風(如:封閉或嵌入式電子裝置或系統具有有限或沒有散熱)。 Another VSD material construction application uses a heat resistant material, such as the polyimide substrate 680 and 682 included in the VSD material structure 600 of the "Fig. 6" embodiment for high thermal energy applications, such as LED panels or electronic applications. The area of operation has a higher ambient temperature (eg, a hot climate) or limited ventilation in the device (eg, closed or embedded electronics or systems with limited or no heat dissipation).

「第6圖」所示意的VSDM構造600的運作和 電氣行為大致上與「第5圖」所示意的VSDM構造500類似。特別的是,當在導電層620及622之間施加電壓時,只要各自的阻抗忽略不計,沒有顯著的電壓降發生在導電層620及622或在互連層630之中,因此,當通過電壓源610(或者通過ESD脈衝612)施加的電壓超過VSD材質640的特徵電壓時,VSD材質640將切換為導通且成為導電,VSD材質640的特徵電壓與VSD材質640的厚度T成比例。 "Figure 6" shows the operation of the VSDM construct 600 and The electrical behavior is roughly similar to the VSDM construction 500 illustrated in Figure 5. In particular, when a voltage is applied between the conductive layers 620 and 622, as long as the respective impedances are negligible, no significant voltage drop occurs in the conductive layers 620 and 622 or in the interconnect layer 630, and thus, when the voltage is passed. When the voltage applied by the source 610 (or by the ESD pulse 612) exceeds the characteristic voltage of the VSD material 640, the VSD material 640 is switched to be conductive and conductive, and the characteristic voltage of the VSD material 640 is proportional to the thickness T of the VSD material 640.

「第7圖」為根據一個實施例顯示垂直切換的VSDM構造的形成方法,其包括互連層或其它電極。如「第7圖」所示,方法700包含可用於產生一個或多個導電結構的步驟,例如:一個或多個互連層或其它電極存在於垂直切換的VSDM構造中。額外的選擇性步驟能用以進一步完善產生的VSDM構造。 "FIG. 7" is a method of forming a vertical switching VSDM structure according to one embodiment, including an interconnect layer or other electrodes. As shown in FIG. 7, method 700 includes the steps that can be used to generate one or more conductive structures, such as one or more interconnect layers or other electrodes present in a vertically switched VSDM configuration. Additional optional steps can be used to further refine the resulting VSDM construction.

一個生產各裝置的方法,如LED裝置透過電鍍VSD材質的方法揭露在美國專利公告號“7,825,491”,專利名稱為“Light-emitting device using voltage switchable dielectric material”,在此通過引用將其全部併入。 A method of producing a device, such as an LED device, is disclosed in U.S. Patent Publication No. 7,825,491, entitled "Light-emitting device using voltage switchable dielectric material", which is incorporated herein by reference. .

在「第7圖」的實施例中,在步驟710,一個VSD材質設置在基板或表面(如:銅箔)。在步驟720,一個非導電材質層設置在VSD材質(如:光阻劑材質層)之上。 In the embodiment of "Fig. 7", in step 710, a VSD material is disposed on a substrate or surface (e.g., copper foil). In step 720, a non-conductive material layer is disposed on the VSD material (eg, photoresist layer).

在步驟730,非導電材質層被圖案化一個特定圖案,其將定義一個或多個導電結構,如:互連層或其它電極。舉例來說,在步驟730圖案化可定義「第4A圖」實施例中互連層的位置和形狀,其設置在VSD材質440的頂端。在一個實施例中,非導電層是一個光阻劑材質層,並且藉由曝光光阻劑使鐳射通過光罩,接著透過蝕刻處理產生圖案。無論是本領域中已知的正性或負性的光阻劑處理皆可使用。步驟730的結果是VSD材質的一個或多個區域將通過非導電層對應圖案的一個或多個部分而曝光。 At step 730, the layer of non-conductive material is patterned into a particular pattern that will define one or more conductive structures, such as interconnect layers or other electrodes. For example, patterning at step 730 may define the location and shape of the interconnect layer in the "FIG. 4A" embodiment, which is disposed at the top of the VSD material 440. In one embodiment, the non-conductive layer is a layer of photoresist material, and the laser is passed through the reticle by exposing the photoresist, followed by etching to produce a pattern. Both positive or negative photoresist treatments known in the art can be used. The result of step 730 is that one or more regions of the VSD material will be exposed through one or more portions of the non-conductive layer corresponding pattern.

在步驟740,施加超過VSD材質的特徵電壓的電 壓,因此,VSD材質轉為導電,此電壓可直接施加至VSD材質或設置在VSD材質上的導電基板(如:銅箔)兩者其一。所施加的電壓可以是恆定或可變的電壓(如:脈衝)。 At step 740, an electrical voltage exceeding a characteristic voltage of the VSD material is applied. Pressure, therefore, the VSD material is converted to conductive, this voltage can be directly applied to either the VSD material or a conductive substrate (such as copper foil) placed on the VSD material. The applied voltage can be a constant or variable voltage (eg, a pulse).

雖然VSD材質是導電性,一個離子沉積過程發生在步驟750用以在VSD材質圖案的曝光區域內形成導電結構(例如:一個互連層,如「第4A圖」實施例的互連層434)。也可以透過各種已知的沉積工藝,用以將離子介質沉積到定義在VSD材質露出的圖案的至少一些曝光區域中。在一個實施例中,進行電鍍處理的過程,其VSD材質的曝光區域被淹沒在電解溶液中。 Although the VSD material is electrically conductive, an ion deposition process occurs in step 750 for forming a conductive structure in the exposed regions of the VSD material pattern (eg, an interconnect layer, such as interconnect layer 434 of the "FIG. 4A" embodiment). . It is also possible to deposit an ionic medium into at least some of the exposed regions defined by the VSD material exposed pattern by various known deposition processes. In one embodiment, the plating process is performed with the exposed areas of the VSD material submerged in the electrolytic solution.

在預備的實施方案,使用粉末塗料工藝進行離子沉積,在此過程中,電力粒子充電且施加在基本上為導電狀態的VSD材質的曝光區域。此粉末的應用可以透過在曝光區域上沉積粉末或將基板浸入粉浴(powder bath)來實現。 In a preliminary embodiment, ion deposition is performed using a powder coating process in which power particles are charged and applied to an exposed region of a substantially conductive VSD material. The application of this powder can be achieved by depositing powder on the exposed areas or immersing the substrate in a powder bath.

更進一步,另一種實施方式可以使用電噴霧工藝,離子介質可以帶電離子的形式於溶液中,可以將溶液施加在基板上而VSD材質為導電,噴霧的應用可包含油墨或油漆。 Still further, another embodiment may use an electrospray process in which the ionic medium may be in the form of charged ions, the solution may be applied to the substrate and the VSD material to be electrically conductive, and the application of the spray may comprise ink or paint.

在各種實施例中,也可以使用其它沉積技術在基本上為導電狀態的VSD材質的曝光區域上進行離子沉積,例如:真空蒸鍍法(如:物理氣相沉積(Physical Vapor Deposition,PVD)或化學氣相沉積(Chemical Vapor Deposition,CVD)),舉例來說,在物理氣相沉積中,金屬離子被引入到一個腔室與氣體離子結合。VSD材質的曝光區域可以做出具有相反電荷的導電性,以便吸引及黏著腔室的離子。在CVD中,離子材質的薄膜可以施加在基板表面上的VSD材質。 In various embodiments, other deposition techniques may also be used to perform ion deposition on an exposed region of a substantially conductive VSD material, such as vacuum evaporation (eg, Physical Vapor Deposition (PVD) or Chemical Vapor Deposition (CVD), for example, in physical vapor deposition, metal ions are introduced into a chamber to combine with gas ions. The exposed areas of the VSD material can make oppositely charged electrical conductivity to attract and adhere to the chamber ions. In CVD, an ion-based film can be applied to a VSD material on the surface of a substrate.

在步驟760,非導電材質可任意的從基板上移除,以便留下形成的導電結構(例如:使用在垂直切換的VSDM構造中的一個互連層或另一電極)。在一個實施例中,當光阻劑材質是由非導電材質製成時,將鹼性溶液(如:KOH)或 水施加在基板以移除光阻劑材質。 At step 760, the non-conductive material can be arbitrarily removed from the substrate to leave the formed conductive structure (eg, using one interconnect layer or another electrode in a vertically switched VSDM configuration). In one embodiment, when the photoresist material is made of a non-conductive material, an alkaline solution (eg, KOH) or Water is applied to the substrate to remove the photoresist material.

在一個實施例中,在移除光阻劑層後,可於形成的VSDM構造施加一個拋光步驟。在一個實施例中,使用化學機械拋光以對形成的VSDM構造的基板進行拋光。 In one embodiment, after the photoresist layer is removed, a polishing step can be applied to the formed VSDM structure. In one embodiment, chemical mechanical polishing is used to polish the formed VSDM constructed substrate.

「第8圖」為根據一個實施例顯示如:「第5圖」所示意的VSDM構造500或「第6圖」所示意的VSDM構造600等用於垂直切換的VSDM構造的樣本響應電壓平均之圖形800。「第8圖」所示意的電壓響應曲線820是透過測量具有二密耳的垂直間隙的VSD材質層的電壓,同時以傳輸線脈衝(Transmission Line Pulse,TLP)的形式重複施加輸入電壓而取得。舉例來說,在「第5圖」實施例中,這種測量能夠透過測量導電層520與相對的導電層522來實現,其具有電壓源510施加所述TLP。 The "8th figure" is an average of the sample response voltages of the VSDM structure for vertical switching, such as the VSDM structure 500 shown in "Fig. 5" or the VSDM structure 600 shown in "Fig. 6", according to an embodiment. Graphic 800. The voltage response curve 820 shown in Fig. 8 is obtained by measuring the voltage of the VSD material layer having a vertical gap of two mils and repeatedly applying an input voltage in the form of a transmission line pulse (TLP). For example, in the "figure 5" embodiment, such measurements can be achieved by measuring conductive layer 520 and opposing conductive layer 522 having a voltage source 510 to apply the TLP.

在一個實施例中,VSDM構造的響應電壓的測量,可使用TLP產生器處理相應的TLP,且示波器顯示如下:(1)TLP產生器傳送脈衝沿著同軸電纜傳輸線朝向VSDM構造的電極,其中有一個與特徵電壓對應的間隙;(2)示波器截取朝向VSDM構造的靶電極的TLP;(3)TLP到達VSDM構造的靶電極,部分來自TLP的能量被反射回作為回波;(4)示波器截取反射回波;以及(5)一計算機用以處理TLP及反射信號來評估橫跨間隙的VSDM構造的特徵電壓。 In one embodiment, the measurement of the response voltage of the VSDM configuration can be processed using a TLP generator, and the oscilloscope displays as follows: (1) The TLP generator transmits pulses along the coaxial cable transmission line toward the VSDM constructed electrode, among a gap corresponding to the characteristic voltage; (2) the oscilloscope intercepts the TLP toward the target electrode of the VSDM structure; (3) the TLP reaches the target electrode of the VSDM structure, and some of the energy from the TLP is reflected back as an echo; (4) the oscilloscope intercepts Reflecting the echo; and (5) a computer processing the TLP and the reflected signal to evaluate the characteristic voltage of the VSDM structure across the gap.

響應曲線820顯示在一個較長的時間尺度的圖的局部802,響應曲線822顯示在一個十六奈秒的較短時間尺度的圖的局部804,TLP電壓輸入顯示為信號810以及信號812。 Response curve 820 shows portion 802 of the graph on a longer time scale, and response curve 822 is displayed at portion 804 of the graph on a shorter time scale of sixteen nanoseconds, the TLP voltage input being shown as signal 810 and signal 812.

如圖形800所示,當輸入信號810開始增加時,VSD材質層兩端的電壓開始跟著輸入電壓上升,但在VSD材 質開始傳導越來越多的電流後開始出現發散。在某些時候,VSD材質切換為大幅導電,並且響應信號穩定在低於200伏特的值,儘管輸入信號810持續增加。VSD材質層的特徵電壓可估計在150伏特及220伏特之間。 As shown in the figure 800, when the input signal 810 begins to increase, the voltage across the VSD material layer begins to rise with the input voltage, but in the VSD material. The mass begins to conduct more and more current and then begins to diverge. At some point, the VSD material switches to a large electrical conduction and the response signal stabilizes at a value below 200 volts, although the input signal 810 continues to increase. The characteristic voltage of the VSD material layer can be estimated to be between 150 volts and 220 volts.

「第9圖」為根據一個實施例顯示使用VSD材質實現垂直切換的VSD材質構造900。「第9圖」所述的垂直切換的VSD材質構造900可以整合在任何電子裝置,其包含基板裝置,如:印刷電路板、可撓式電路或半導體晶片的封裝,用以提供保護避免ESD及其它過電壓情況,「第9圖」顯示一個VSD材質構造在基板,如印刷電路板的垂直方向的剖面圖。 "FIG. 9" is a VSD material construction 900 showing vertical switching using a VSD material according to one embodiment. The vertically switched VSD material construction 900 described in FIG. 9 can be integrated into any electronic device including a substrate device such as a printed circuit board, a flexible circuit or a semiconductor wafer package to provide protection against ESD and For other overvoltage conditions, "Fig. 9" shows a cross-sectional view of a VSD material constructed on a substrate, such as a printed circuit board in the vertical direction.

「第9圖」的VSD材質構造900包含一組電極920及922,所述電極920及922設置於接觸VSD材質結構940,其顯示為「第9圖」實施例的一個層。VSD材質層940具有與間隙942大致相同的厚度,表示為T。在商業上的實現,T可採用一個數值範圍,這取決於VSD材質940的構造及特徵電壓與其它VSD材質940所需的物理或操作性能。T的具體數值包括2密耳、1.5密耳、1密耳及0.5密耳。在一般情況下,較小的T數值可在VSD材質結構940提供較低的特徵電壓。 The VSD material structure 900 of Fig. 9 includes a set of electrodes 920 and 922 disposed in contact with the VSD material structure 940, which is shown as a layer of the "Fig. 9" embodiment. The VSD material layer 940 has substantially the same thickness as the gap 942 and is represented as T. In commercial implementations, T can take a range of values depending on the construction and characteristic voltage of the VSD material 940 and the physical or operational performance required of other VSD materials 940. Specific values for T include 2 mils, 1.5 mils, 1 mil, and 0.5 mils. In general, a smaller T value can provide a lower characteristic voltage in the VSD material structure 940.

通孔930穿過VSD材質層940且接觸電極922,通孔930基本上為導電,互連層970被設置用以接觸VSD材質層940,沿著與電極920及922相對的水平面,各互連層能夠被用於實施互連層970,其在「第5圖」的實施例中進行了描述,不同的是,Z軸互連層可以防止在水平方向上有效的電流流動將不適用於這個特定的實現。 The via 930 passes through the VSD material layer 940 and contacts the electrode 922. The via 930 is substantially electrically conductive, and the interconnect layer 970 is disposed to contact the VSD material layer 940 along the horizontal plane opposite to the electrodes 920 and 922. Layers can be used to implement interconnect layer 970, which is described in the embodiment of FIG. 5, except that the Z-axis interconnect layer prevents current flow in the horizontal direction from being unsuitable for this Specific implementation.

互連層970被設置在預浸料層980,預浸料980是基板裝置如印刷電路板的一部分,並且物理連接基板的另一層,即核心982。預浸料980基本上為絕緣。 Interconnect layer 970 is disposed on prepreg layer 980, which is part of a substrate device such as a printed circuit board and physically connects another layer of the substrate, core 982. Prepreg 980 is substantially insulating.

通孔930及互連層970基本上是導電且通常假設 阻抗可忽略不計。因此,電壓在電極922和互連層970之間沒有顯著的損失。 Via 930 and interconnect layer 970 are substantially electrically conductive and are generally assumed The impedance is negligible. Therefore, there is no significant loss of voltage between electrode 922 and interconnect layer 970.

如果由電壓源910或由介於電極920及922的ESD脈衝912施加的電壓超過VSD材質結構940的特徵電壓,VSD材質結構940基本上成為導電,因為電極922及互連層970基本上將在相同的電壓電平,電流流過VSD材質940主要會發生在電極920及互連層970之間的垂直方向。其中一個原因是電流趨向選擇具有最小阻抗的路徑來傳導,並且垂直穿過互連層970及電極920之間的VSD材質層940,一般來說其為最低阻抗的路徑。 If the voltage applied by voltage source 910 or by ESD pulse 912 between electrodes 920 and 922 exceeds the characteristic voltage of VSD material structure 940, VSD material structure 940 is substantially electrically conductive because electrode 922 and interconnect layer 970 will be substantially the same The voltage level at which the current flows through the VSD material 940 primarily occurs in the vertical direction between the electrode 920 and the interconnect layer 970. One reason for this is that the current tends to select the path with the least impedance to conduct and vertically through the VSD material layer 940 between the interconnect layer 970 and the electrode 920, which is generally the path of the lowest impedance.

實際上在「第9圖」實施例中的VSD材質結構940為垂直切換,並不意味著電流將嚴格地且僅僅沿著Z軸穿過間隙942。相反地,由於如「第3圖」實施例中所描述的各種影響,有一定程度的電流流動可能會發生在VSD材質結構940中的水平方向。但一般情況下,在「第9圖」實施例中,當VSD材質940基本上切換成導電時,電流流動主要將位於與各基板的Z軸(垂直軸)大致平行的方向。 In fact, the VSD material structure 940 in the "Fig. 9" embodiment is a vertical switch, and does not mean that the current will pass through the gap 942 strictly and only along the Z axis. Conversely, due to various effects as described in the "Fig. 3" embodiment, a certain degree of current flow may occur in the horizontal direction in the VSD material structure 940. In general, however, in the "Fig. 9" embodiment, when the VSD material 940 is substantially switched to conduct electricity, the current flow will mainly be in a direction substantially parallel to the Z-axis (vertical axis) of each substrate.

因為電流在「第9圖」實施例中的VSD材質結構940內流動,主要會發生在垂直方向穿過間隙942,VSD材質結構的特徵電壓將透過間隙942的厚度T來確定。對於一些VSD材質的配方,這些特徵電壓可根據公式一而被確定。 Since the current flows in the VSD material structure 940 in the "Fig. 9" embodiment, it mainly occurs in the vertical direction through the gap 942, and the characteristic voltage of the VSD material structure is determined by the thickness T of the gap 942. For some VSD material formulations, these characteristic voltages can be determined according to Equation 1.

一個「第9圖」實施例的垂直切換的VSDM構造900的優點是電極920及922在水平方向的設置上並不需要非常的精確,這是因為它們的水平設置位置不是關鍵,只要電極920及互連層970之間存在足夠的重疊,以及電極922與通孔930有良好的電接觸。 An advantage of the vertically switched VSDM configuration 900 of the "Fig. 9" embodiment is that the electrodes 920 and 922 do not need to be very precise in the horizontal arrangement because their horizontal placement is not critical as long as the electrodes 920 and There is sufficient overlap between the interconnect layers 970 and the electrodes 922 have good electrical contact with the vias 930.

「第9圖」實施例的垂直切換的VSDM構造900的另一個優點是其金屬電極(如:由銅所製成),如:電極920及922可設置在外層,因此有利於LED裝置或其它裝置的散熱及/或功率傳導,能夠受益於更好的散熱。 Another advantage of the vertically switched VSDM construction 900 of the "Fig. 9" embodiment is that its metal electrodes (e.g., made of copper), such as electrodes 920 and 922, can be disposed on the outer layer, thereby facilitating LED devices or other The heat dissipation and/or power transfer of the device can benefit from better heat dissipation.

在各實施例中,「第9圖」所示意的垂直切換的VSDM構造在實現上可以包含額外可導電、絕緣及半導電的各種其它層及特徵,只要遵照一般工作原則,即其電流在VSD材質結構傳導時基本上沒有損失(如:通過一組相互電接觸的導電特徵),而且當VSD材質基本上成為導電時,將穿越VSD材質結構的垂直厚度來運行。在一般的設計方式中,VSD材質的特徵電壓透過形成的VSD材質的垂直厚度來確定。 In various embodiments, the vertically-switched VSDM configuration illustrated in FIG. 9 may include various other layers and features that are electrically conductive, insulating, and semi-conductive in implementation, as long as the general operating principle is followed, ie, the current is at VSD. There is essentially no loss in material structure conduction (eg, through a set of conductive features that are in electrical contact with each other), and when the VSD material is substantially conductive, it will travel across the vertical thickness of the VSD material structure. In the general design approach, the characteristic voltage of the VSD material is determined by the vertical thickness of the formed VSD material.

「第10圖」為根據一個實施例顯示使用VSD材質實現垂直切換的VSD材質構造1000。「第10圖」的垂直切換的VSD材質構造1000可被整合在任何電子裝置,其包含基板,如:印刷電路板、可撓式電路或半導體晶片的封裝,用以提供保護來防止ESD及其它過電壓情況,「第10圖」顯示在基板如印刷電路板的垂直方向的VSD材質構造的剖面。 "Figure 10" is a VSD material construction 1000 showing vertical switching using a VSD material, according to one embodiment. The vertically switched VSD material construction 1000 of Figure 10 can be integrated into any electronic device that includes a substrate, such as a printed circuit board, a flexible circuit, or a semiconductor wafer package to provide protection against ESD and other In the case of overvoltage, "Fig. 10" shows a cross section of a VSD material structure in the vertical direction of a substrate such as a printed circuit board.

「第10圖」的垂直切換的VSD材質構造1000大致與「第9圖」的VSD材質構造900相似,不同的地方在於它並非「第9圖」實施例的單一VSD材質構造900。「第10圖」實施例中的VSD材質構造具有兩個VSD材質結構:一個具有垂直厚度T1的VSD材質層1040穿過間隙1042以及一個具有垂直厚度T2的VSD材質層1044穿過間隙1046。在商業實現上,T1和T2可以採用的範圍數值取決於VSD材質1040和1044的配方,以及取決於所述VSD材質結構1040和1044所需的特徵電壓和其它物理或操作性能。在各種實施例中,VSD材質1040和1044的配方可能會或可能不會相同。同樣地,在各種實施例中,VSD材質1040及1044各自的垂直厚度T1和T2可能會或可能不會相同。T1和T2加總的具體範例數值包含2密耳、1.5密耳、1密耳及0.5密耳。在一般情況下,預計較小的T1及/或T2數值可以使VSD材質結構1040及/或1042提供較低的特徵電壓。 The vertical switching VSD material structure 1000 of "Fig. 10" is substantially similar to the VSD material structure 900 of "Fig. 9", except that it is not a single VSD material structure 900 of the "Fig. 9" embodiment. The VSD material construction in the "Fig. 10" embodiment has two VSD material structures: a VSD material layer 1040 having a vertical thickness T1 passes through the gap 1042 and a VSD material layer 1044 having a vertical thickness T2 passes through the gap 1046. In commercial implementation, the range of values that T1 and T2 can take depends on the formulation of VSD materials 1040 and 1044, as well as the characteristic voltages and other physical or operational properties required depending on the VSD material structures 1040 and 1044. In various embodiments, the formulations of VSD materials 1040 and 1044 may or may not be the same. Likewise, in various embodiments, the respective vertical thicknesses T1 and T2 of the VSD materials 1040 and 1044 may or may not be the same. Specific examples of T1 and T2 totals include 2 mils, 1.5 mils, 1 mil, and 0.5 mils. In general, a smaller T1 and/or T2 value is expected to provide a lower characteristic voltage for the VSD material structure 1040 and/or 1042.

在一般情況下,兩個或更多個VSD材質結構被用來產生一組VSD材質結構作為垂直切換的VSDM構造的一 部分,例如:VSD材質1040及1044被用來製造VSDM構造1000,可能具有相同的、基本上相同的或彼此相互不同屬性,包括:介電常數、黏合特性、剛度、柔韌性、組合物和厚度。 In general, two or more VSD material structures are used to create a set of VSD material structures as one of the vertically switched VSDM constructs. In part, for example, VSD materials 1040 and 1044 are used to fabricate VSDM construction 1000, which may have the same, substantially identical, or mutually different properties, including: dielectric constant, adhesion characteristics, stiffness, flexibility, composition, and thickness. .

「第10圖」的VSD材質構造1000包含一組電極1020及1022,所述電極1020及1022被設置來接觸第一VSD材質結構,其顯示在「第10圖」作為VSD材質層1040。一個通孔1030穿過VSD材質層1040及1044,並且接觸電極1022,所述通孔1030基本上為導電。導電層1070被設置為沿著與電極1020及1022相對的水平面以接觸VSD材質層1044。導電層可以使用導電材質(如:銅)製成或可能是一個互連層,各互連層能夠用來實現導電層1070,其已於「第5圖」的實施例中作描述。不同的是,Z軸互連層有效防止水平方向的電流流動將不適用於此。 The VSD material structure 1000 of FIG. 10 includes a set of electrodes 1020 and 1022 that are disposed to contact the first VSD material structure and are displayed in FIG. 10 as the VSD material layer 1040. A via 1030 passes through the VSD material layers 1040 and 1044 and contacts the electrode 1022, which is substantially electrically conductive. Conductive layer 1070 is disposed along a horizontal plane opposite electrodes 1020 and 1022 to contact VSD material layer 1044. The conductive layer may be made of a conductive material (e.g., copper) or may be an interconnect layer, and each interconnect layer can be used to implement the conductive layer 1070, which is described in the embodiment of Figure 5. The difference is that the Z-axis interconnect layer effectively prevents horizontal current flow from being used for this purpose.

導電層1070被設置於與預浸料層1080相鄰,所述預浸料1080為基板裝置的一部分,如:印刷電路板或可撓式電路,並且物理連接在基板的另一層,即:核心1082。預浸料1080基本上為絕緣。 A conductive layer 1070 is disposed adjacent to the prepreg layer 1080, which is part of a substrate device, such as a printed circuit board or a flexible circuit, and is physically connected to another layer of the substrate, ie, the core 1082. Prepreg 1080 is substantially insulating.

通孔1030及導電層1070基本上是導電且通常能假設其阻抗可忽略不計,因此,電壓在電極1022及導電層1070之間傳導沒有顯著的損失。 Via 1030 and conductive layer 1070 are substantially electrically conductive and can generally assume a negligible impedance, and thus, there is no significant loss in voltage conduction between electrode 1022 and conductive layer 1070.

假如透過電壓源1010或ESD脈衝1012施加的電壓超過VSD材質結構1040和1044的特徵電壓總合,VSD材質1040和1044基本上將成為導電。因為電極1022及導電層1070基本上將在相同的電壓電位,電流穿過VSD材質1040及1044流動主要將發生在介於電極1020及導電層1070之間的垂直方向。其中一個原因是,電流趨向選擇最小阻抗的路徑傳播,並且在導電層1070及電極1020之間垂直地穿過VSD材質層1040及1044,一般來說其為最低阻抗的路徑。 If the voltage applied through voltage source 1010 or ESD pulse 1012 exceeds the sum of the characteristic voltages of VSD material structures 1040 and 1044, VSD materials 1040 and 1044 will be substantially electrically conductive. Since electrode 1022 and conductive layer 1070 will be substantially at the same voltage potential, current flow through VSD material 1040 and 1044 will primarily occur in a vertical direction between electrode 1020 and conductive layer 1070. One reason for this is that the current tends to propagate with a path that selects the smallest impedance and passes vertically through the VSD material layers 1040 and 1044 between the conductive layer 1070 and the electrode 1020, which is generally the path of the lowest impedance.

因此,「第10圖」實施例的VSDM構造1000將垂直切換,其電流流動主要發生在VSD材質結構1040及1044 且方向與各基板的Z軸(或垂直軸)大致平行。 Therefore, the VSDM structure 1000 of the "Fig. 10" embodiment will be switched vertically, and the current flow mainly occurs in the VSD material structures 1040 and 1044. The direction is substantially parallel to the Z axis (or vertical axis) of each substrate.

因為電流在「第10圖」實施例的VSD材質結構1040及1044之間流動,基本上將發生在垂直方向穿過間隙1042及1046,由兩個不同的VSD材質結構1040及1044形成的化合物VSD材質結構的特徵電壓,將透過兩個VSD材質的配方及間隙1042的厚度T1和間隙1046的厚度T2被確定。對於VSD材質的一些配方。此特徵電壓可透過加入分別穿過間隙1042及間隙1046的VSD材質結構1040及1044的各特徵電壓來確定。 Since the current flows between the VSD material structures 1040 and 1044 of the "Fig. 10" embodiment, substantially the compound VSD formed by the two different VSD material structures 1040 and 1044 passing through the gaps 1042 and 1046 in the vertical direction will occur. The characteristic voltage of the material structure is determined by the formulation of the two VSD materials and the thickness T1 of the gap 1042 and the thickness T2 of the gap 1046. Some recipes for VSD materials. This characteristic voltage can be determined by adding the characteristic voltages of the VSD material structures 1040 and 1044 that pass through the gaps 1042 and 1046, respectively.

一般而言,兩個或更多VSD材質結構的化合物構造經由垂直切換的發生,無論是否彼此直接物理接觸,一組VSDM結構化合物的有效特徵電壓與各VSD材質結構的厚度的總和相關,這樣一來,總化合物厚度增加,所得到的化合物特徵電壓也勢必增加。 In general, the structure of a compound of two or more VSD material structures occurs via vertical switching, regardless of whether they are in direct physical contact with each other, and the effective characteristic voltage of a group of VSDM structural compounds is related to the sum of the thicknesses of the VSD material structures, such that As a result, the total compound thickness increases, and the characteristic voltage of the obtained compound also tends to increase.

在各實施例中,「第10圖」的垂直切換的VSDM構造在實現上可以包含額外可導電、絕緣及半導電的各種其它層及特徵,只要遵照一般工作原則,即其電流在兩個或更多形成垂直的VSD材質結構傳導時基本上沒有損失(如:通過一組相互電接觸的導電特徵),而且當各VSD材質基本上成為導電時,將穿越兩個或更多的VSD材質結構的垂直厚度來運行。在一般的設計方式中,一組複合式VSD材質結構的特徵電壓透過各VSD材質結構的總垂直厚度及每一VSD材質的特徵電壓來確定。 In various embodiments, the vertically switched VSDM configuration of "Fig. 10" may include various other layers and features that are electrically conductive, insulating, and semiconductive in implementation, as long as the general operating principle is followed, that is, the current is in two or More vertical VSD material structures are substantially free of conduction (eg, through a set of conductive features that are in electrical contact with each other), and when each VSD material is substantially conductive, it will traverse two or more VSD material structures. The vertical thickness is to run. In the general design approach, the characteristic voltage of a composite VSD material structure is determined by the total vertical thickness of each VSD material structure and the characteristic voltage of each VSD material.

「第11圖」為根據一個實施例顯示使用VSD材質實現垂直切換的VSD材質構造1100。「第11圖」的垂直切換的VSD材質構造1100可被整合在任何電子裝置,其包含基板裝置用以提供保護來防止ESD及其它過電壓情況,以基板裝置為例,VSD材質構造1100可被整合在包含印刷電路板及半導體晶片封裝的各實施例中,「第11圖」顯示在基板的垂直方向的VSD材質構造的剖面。 "11th" is a VSD material construction 1100 that uses a VSD material to achieve vertical switching, according to one embodiment. The vertically switched VSD material structure 1100 of "Fig. 11" can be integrated into any electronic device including a substrate device for providing protection against ESD and other overvoltage conditions. For example, in the substrate device, the VSD material structure 1100 can be In each of the embodiments including the printed circuit board and the semiconductor chip package, "Fig. 11" shows a cross section of the VSD material structure in the vertical direction of the substrate.

「第11圖」的垂直切換的VSD材質構造1100大致與「第10圖」的VSD材質構造1000相似,不同的地方在於它並非「第10圖」實施例的兩個VSD材質結構。「第11圖」實施例採用單一個VSD材質層1140,其具有垂直厚度T穿過間隙1142。然而,在不同實施例中,多個VSD材質層可被利用,如「第10圖」實施例所描述。在商業實現上,T可以採用的範圍數值取決於VSD材質1140的配方,以及取決於所述VSD材質結構1140所需的特徵電壓和其它物理或操作性能。厚度T的具體範例數值可在生產過程中被考量,包括:2密耳、1.5密耳、1密耳、0.5密耳、0.2密耳及更小。在一般情況下,預計較小數值的T可以使VSD材質結構1140提供較低的特徵電壓。 The vertical switching VSD material structure 1100 of "Fig. 11" is substantially similar to the VSD material structure 1000 of "Fig. 10", except that it is not the two VSD material structures of the "Fig. 10" embodiment. The "11th" embodiment employs a single VSD material layer 1140 having a vertical thickness T through the gap 1142. However, in various embodiments, multiple VSD material layers may be utilized, as described in the "Figure 10" embodiment. In commercial implementation, the range of values that T can take depends on the formulation of the VSD material 1140 and the characteristic voltages and other physical or operational properties required depending on the VSD material structure 1140. Specific numerical values for thickness T can be considered during the manufacturing process, including: 2 mils, 1.5 mils, 1 mil, 0.5 mils, 0.2 mils, and less. In general, a smaller value of T is expected to allow the VSD material structure 1140 to provide a lower characteristic voltage.

「第11圖」的VSD材質構造1100包含一組電極1120及1122,所述電極1120及1122被設置來接觸VSD材質結構1140。導電的預浸料層1170被設置為沿著與電極1120及1122相對的水平面以接觸VSD材質層1140。導電的預浸料層1170可以為基板裝置,如:印刷電路板、可撓式電路或半導體裝置封裝中的一層。導電的預浸料層1170是(或包括)一層及/或一組導電結構,適用於很少或沒有損失的電流傳導。導電的預浸料層1170為物理接觸基板的另一層,即:核心1182,所述核心1180基本上為絕緣。 The VSD material structure 1100 of FIG. 11 includes a set of electrodes 1120 and 1122 that are disposed to contact the VSD material structure 1140. Conductive prepreg layer 1170 is disposed along a horizontal plane opposite electrodes 1120 and 1122 to contact VSD material layer 1140. The electrically conductive prepreg layer 1170 can be a substrate device such as a printed circuit board, a flexible circuit, or a layer in a semiconductor device package. The electrically conductive prepreg layer 1170 is (or includes) a layer and/or a set of electrically conductive structures suitable for little or no loss of current conduction. The electrically conductive prepreg layer 1170 is another layer that physically contacts the substrate, ie, the core 1182, which is substantially insulated.

假如透過電壓源1110或ESD脈衝1112施加的電壓超過VSD材質結構1140的特徵電壓,VSD材質1140基本上將成為導電。電流流過VSD材質1140主要將發生在介於電極1120及導電的預浸料層1170之間以及介於電極1122及導電的預浸料層1170之間的垂直方向。一旦來自電極1120或1122兩者任一的電流在特定的垂直方向流過VSD材質結構1140,電流會沿著最小或沒有損失的導電的預浸料層1170傳播,然後電流會在相反的垂直方向上穿過VSD材質結構1140朝向所述兩個電極1120或1122中的另一個流動。電流 主要傳播在垂直方向上穿過VSD材質層1140的原因是電流趨向選擇最小阻抗的路徑傳播,並且在任一電極1120或1122與導電的預浸料1170之間垂直穿過VSD材質層1140,一般來說其為最低阻抗的路徑。如果兩個電極1120及1122之間的距離減少,使其媲美間隙1142,則VSD材質1140可在水平方向傳導更多電流。在一些實施例中,這可以透過產生可呈現各向異性的傳導性,使得在沿著Z軸傳導時基本上為導電,但在水平基本上為絕緣的VSD材質1140的組合物來減少。 If the voltage applied through voltage source 1110 or ESD pulse 1112 exceeds the characteristic voltage of VSD material structure 1140, VSD material 1140 will be substantially conductive. Current flowing through the VSD material 1140 will primarily occur between the electrode 1120 and the electrically conductive prepreg layer 1170 and between the electrode 1122 and the electrically conductive prepreg layer 1170. Once current from either of the electrodes 1120 or 1122 flows through the VSD material structure 1140 in a particular vertical direction, current will propagate along the conductive prepreg layer 1170 with minimal or no loss, and then the current will be in the opposite vertical direction. The flow through the VSD material structure 1140 toward the other of the two electrodes 1120 or 1122. Current The reason for the main propagation through the VSD material layer 1140 in the vertical direction is that the current tends to propagate through the path of the selected minimum impedance and vertically passes through the VSD material layer 1140 between either of the electrodes 1120 or 1122 and the conductive prepreg 1170, generally Said to be the path of the lowest impedance. If the distance between the two electrodes 1120 and 1122 is reduced to match the gap 1142, the VSD material 1140 can conduct more current in the horizontal direction. In some embodiments, this can be achieved by creating a conductivity that exhibits anisotropy such that the composition is substantially electrically conductive when conducting along the Z-axis, but is substantially insulating at the level of the VSD material 1140.

因此,「第11圖」實施例的VSDM構造1100將垂直切換,其電流流動主要發生在VSD材質結構1140且方向與各基板的Z軸(或垂直軸)大致平行。 Therefore, the VSDM structure 1100 of the "Fig. 11" embodiment will be vertically switched, and the current flow mainly occurs in the VSD material structure 1140 and the direction is substantially parallel to the Z axis (or vertical axis) of each substrate.

在各實施例中,「第11圖」的垂直切換的VSDM構造在實現上可包含額外可導電、絕緣及半導電的各種其它層及特徵,只要遵守一般工作原則,即當各VSD材質結構基本上成為導電時,其電流首先在一個垂直方向上穿過一個或更多的VSD材質結構,在水平方向傳導則很少或沒有損失,並且當傳導在相反的垂直方向上穿過一個或更多的VSD材質結構時,各VSD材質結構基本上保持導電。在一般的設計方式中,一個或多個VSD材質層的特徵電壓是透過各VSD材質結構的總垂直厚度及每一VSD材質的特徵電壓來確定。 In various embodiments, the vertically switched VSDM structure of "Fig. 11" may include various other layers and features that are electrically conductive, insulating, and semi-conductive in implementation, as long as the general working principle is adhered to, that is, when the VSD material structure is basically When it becomes conductive, its current first passes through one or more VSD material structures in a vertical direction, with little or no loss in the horizontal direction, and when conduction passes through one or more in the opposite vertical direction. The VSD material structure remains substantially conductive when the VSD material structure is used. In a typical design, the characteristic voltage of one or more VSD material layers is determined by the total vertical thickness of each VSD material structure and the characteristic voltage of each VSD material.

「第12A圖」為根據一個實施例顯示使用VSD材質實現垂直切換的VSD材質構造1200。「第12A圖」的垂直切換的VSD材質構造1200可被整合在任何電子裝置,其包含基板裝置用以提供保護來防止ESD及其它過電壓情況,以基板裝置為例,VSD材質構造1200可被整合在包含印刷電路板及半導體晶片封裝的各實施例中,「第12A圖」顯示在基板的垂直方向的VSD材質構造的剖面。 "FIG. 12A" is a VSD material construction 1200 showing vertical switching using a VSD material, according to one embodiment. The vertically switched VSD material construction 1200 of FIG. 12A can be integrated into any electronic device that includes a substrate device for providing protection against ESD and other overvoltage conditions. For example, in the substrate device, the VSD material structure 1200 can be In each of the embodiments including the printed circuit board and the semiconductor chip package, "12A" shows a cross section of the VSD material structure in the vertical direction of the substrate.

「第12A圖」的垂直切換的VSD材質構造1200包含一個VSD材質層1240,其具有垂直厚度T穿過間隙 1242。在各實施例中,多個VSD材質層可被利用,如「第10圖」實施例中所描述。在商業實現上,T可以採用的範圍數值取決於VSD材質1240的配方,以及取決於所述VSD材質1240所需的特徵電壓和其它物理或操作性能。厚度T的具體範例數值可在生產過程中被考量,包括:2密耳、1.5密耳、1密耳、0.5密耳、0.2密耳及更小。在一般情況下,預計較小數值的T可以使VSD材質結構1240提供較低的特徵電壓。 The vertically switched VSD material construction 1200 of Figure 12A includes a VSD material layer 1240 having a vertical thickness T through the gap. 1242. In various embodiments, multiple VSD material layers can be utilized, as described in the "Figure 10" embodiment. In commercial implementation, the range of values that T can take depends on the formulation of the VSD material 1240 and the characteristic voltages and other physical or operational properties that are required depending on the VSD material 1240. Specific numerical values for thickness T can be considered during the manufacturing process, including: 2 mils, 1.5 mils, 1 mil, 0.5 mils, 0.2 mils, and less. In general, a smaller value of T is expected to provide a lower characteristic voltage for the VSD material structure 1240.

「第12A圖」的VSD材質構造1200包含一組電極1120、1122及1124,其被設置來接觸VSD材質結構1240。導電層1270被設置為與預浸料層1230相鄰,預浸料層1230設置在導電層1270及VSD材質層1240之間,被設置的互連層1280接觸VSD材質層1240。在一個實施例中,如「第12A圖」所示意,互連層1280形成在預浸料層1230之中。在一個實施例中,互連層1280可設置為獨立的層(即:不形成在預浸料層1230之中)從VSD材質1240與預浸料層1230分離。預浸料層1230可以是基板裝置,如印刷電路板、可撓式電路或半導體裝置封裝中的一層。 The VSD material construction 1200 of FIG. 12A includes a set of electrodes 1120, 1122, and 1124 that are configured to contact the VSD material structure 1240. The conductive layer 1270 is disposed adjacent to the prepreg layer 1230. The prepreg layer 1230 is disposed between the conductive layer 1270 and the VSD material layer 1240. The interconnect layer 1280 is disposed in contact with the VSD material layer 1240. In one embodiment, an interconnect layer 1280 is formed in the prepreg layer 1230 as illustrated in FIG. 12A. In one embodiment, the interconnect layer 1280 can be disposed as a separate layer (ie, not formed in the prepreg layer 1230) from the VSD material 1240 from the prepreg layer 1230. The prepreg layer 1230 can be a substrate device such as a printed circuit board, a flexible circuit, or a layer in a semiconductor device package.

通孔1250穿過預浸料層1230且電氣連接互連層1280,以及建立導電層1270與互連層1280之間的電氣連接。 Vias 1250 pass through prepreg layer 1230 and electrically connect interconnect layer 1280, and establish an electrical connection between conductive layer 1270 and interconnect layer 1280.

在「第12A圖」的實施例中,電極1220及電極1224連接至接地。在一些實施例中,一個或兩個電極能在電路中連接至不同的點,其中可能包括連接至電壓源、電路元件或組件、或另一針對ESD脈衝的基準電壓電位或直接連接的其它電壓。 In the embodiment of Figure 12A, electrode 1220 and electrode 1224 are connected to ground. In some embodiments, one or both electrodes can be connected to different points in the circuit, which may include connection to a voltage source, circuit element or component, or another reference voltage potential for ESD pulses or other voltage directly connected .

假如在導電層1270的ESD脈衝1212(或透過電壓源)施加的電壓超過VSD材質結構1240的特徵電壓,VSD材質1240基本上將成為導電。電流流過VSD材質1240主要將發生在介於互連層1280及電極1220及/或電極1224之間。 If the voltage applied by the ESD pulse 1212 (or through the voltage source) of the conductive layer 1270 exceeds the characteristic voltage of the VSD material structure 1240, the VSD material 1240 will be substantially electrically conductive. Current flowing through the VSD material 1240 will primarily occur between the interconnect layer 1280 and the electrode 1220 and/or the electrode 1224.

因此,「第12A圖」實施例的VSDM構造1200將垂直切換,其電流流動主要發生在VSD材質結構1240且 方向與各基板的Z軸(或垂直軸)大致平行,隨後,對應於ESD信號1212的電流流經VSDM構造1200的電氣路徑如「第12A圖」所示意表示為ESD放電路徑1290。 Therefore, the VSDM structure 1200 of the "12A" embodiment will be vertically switched, and its current flow mainly occurs in the VSD material structure 1240. The direction is substantially parallel to the Z-axis (or vertical axis) of each substrate. Subsequently, the electrical path through which the current corresponding to the ESD signal 1212 flows through the VSDM structure 1200 is indicated as "ESA discharge path 1290" as shown in FIG. 12A.

「第12A圖」的實施例更顯示出表示為嵌入式阻抗1296的電路元件。在各實施例中,此電路元件可被整合在部分地或完全地納入VSD構造1200內或可與VSDM構造1200通信(例如:它可以嵌入在相同的印刷電路板作為VSDM構造1200,或是安裝在印刷電路板表面以與VSDM構造1200結合)。 The embodiment of "Fig. 12A" further shows a circuit element shown as embedded impedance 1296. In various embodiments, this circuit component can be integrated into or partially integrated into VSD fabric 1200 or can communicate with VSDM fabric 1200 (eg, it can be embedded in the same printed circuit board as VSDM fabric 1200, or installed) On the surface of the printed circuit board to be combined with the VSDM construction 1200).

在「第12A圖」的實施例中,嵌入式阻抗1296顯示為電路元件,其至少一部分嵌入於VSDM構造1200內。具體而言,「第12A圖」顯示嵌入式阻抗1296至少部分嵌入預浸料層1230內。在替代或補充的實施例中,嵌入式阻抗1296可設置在基板內或VSDM構造1200內的其它位置。舉例來說,嵌入式阻抗1296可設置在VSD材質結構1240內、在另一印刷電路板層內、或在另一基板內如,半導體封裝。 In the embodiment of FIG. 12A, embedded impedance 1296 is shown as a circuit component, at least a portion of which is embedded within VSDM fabric 1200. In particular, "Fig. 12A" shows that the embedded impedance 1296 is at least partially embedded within the prepreg layer 1230. In an alternative or additional embodiment, the embedded impedance 1296 can be disposed within the substrate or at other locations within the VSDM construction 1200. For example, the embedded impedance 1296 can be disposed within the VSD material structure 1240, within another printed circuit board layer, or within another substrate, such as a semiconductor package.

在各實施例中,嵌入式阻抗1296由一個或多個電路元件所組成,或包括一個或多個電路元件。在各實施例中,嵌入式電路元件阻抗1296可包含一個或多個電阻、一個或多個電感、一個或多個電容、一個或多個鐵性電路元件(如:嵌入式鐵性電路元件,其可能會或可能不會包含VSD材質)、一個或多個二極體、一個或多個電晶體、一個或多個濾波器(如:一個或多個低通、帶通、高通濾波器或濾波級的各種組合)、任何被動或主動的電路元件或電子組件、任何具有可忽略不計的阻抗的互連層、任何具有不可忽略阻抗的互連層(如:高介電材質層)、任何具有不可忽略阻抗的電極或其它導電結構及/或上述任意組合。 In various embodiments, embedded impedance 1296 is comprised of one or more circuit elements or includes one or more circuit elements. In various embodiments, embedded circuit component impedance 1296 can include one or more resistors, one or more inductors, one or more capacitors, one or more ferroelectric circuit components (eg, embedded ferroelectric circuit components, It may or may not contain a VSD material, one or more diodes, one or more transistors, one or more filters (eg one or more low pass, band pass, high pass filters or Various combinations of filter stages), any passive or active circuit or electronic component, any interconnect layer with negligible impedance, any interconnect layer with non-negligible impedance (eg high dielectric material layer), any Electrodes or other electrically conductive structures having non-negligible impedance and/or any combination of the above.

嵌入式阻抗1296可用於連接VSD材質結構1240以對電子組件提供部分地或完全地ESD保護,如「第12A圖」所示意的電子組件1298。在「第12A圖」中,電子組件1298 透過電極1228連接至嵌入式阻抗,所述嵌入式阻抗1296也電性連接至導電層1270。在沒有VSD材質1240的情況下,ESD脈衝或其它大電壓施加在導電層1270上將導致大電壓及/或電流透過嵌入式阻抗1296傳播到電子組件1298。在存在VSD材質1240時,當相應的大電壓超過垂直切換的VSD材質結構1240的特徵電壓時,垂直切換的VSD材質結構1240切換為導通,接著透過電極1220將至少部分地ESD脈衝轉移至接地,否則將到達電子組件1298。因此,垂直切換的結構1200採用嵌入式阻抗1296保護電子組件1298避免遭受到導電層1270潛在的破壞性ESD脈衝或其它過電壓情況。 The embedded impedance 1296 can be used to connect the VSD material structure 1240 to provide partial or complete ESD protection to the electronic components, such as the electronic component 1298 illustrated in FIG. 12A. In "Figure 12A", electronic component 1298 Connected to the embedded impedance through electrode 1228, the embedded impedance 1296 is also electrically coupled to conductive layer 1270. Without the VSD material 1240, an ESD pulse or other large voltage applied to the conductive layer 1270 will cause large voltages and/or currents to propagate through the embedded impedance 1296 to the electronic component 1298. When the VSD material 1240 is present, when the corresponding large voltage exceeds the characteristic voltage of the vertically switched VSD material structure 1240, the vertically switched VSD material structure 1240 is switched to be turned on, and then at least part of the ESD pulse is transferred to the ground through the electrode 1220. Otherwise electronic component 1298 will be reached. Thus, the vertically switched structure 1200 protects the electronic component 1298 with embedded impedance 1296 from potential destructive ESD pulses or other overvoltage conditions of the conductive layer 1270.

電路的架構及操作可用於連接至VSD材質結構1240作為垂直切換的結構1200的一部分以對電子組件提供部分地或完全地ESD保護,如「第12A圖」所示意的電子組件1298,其詳細揭露在美國專利申請號“13/096,860”,其於“2011/04/28”提出申請,專利名稱為“Embedded Protection Against Spurious Electrical Events”,並透過引用將其全部內容併入本文。本發明所述的垂直切換的VSDM結構及/或權利要求可用於美國專利申請號“13/096,860”所公開的實施例及權利範圍內,用以提供增強的保護避免電子組件遭受到ESD及其它過電壓情況。 The circuitry and operation of the circuitry can be used to connect to the VSD material structure 1240 as part of the vertically switched fabric 1200 to provide partial or complete ESD protection of the electronic components, such as the electronic component 1298 illustrated in FIG. 12A, which is disclosed in detail. U.S. Patent Application Serial No. <RTIgt;''''''''"""""""""""" The vertically-switched VSDM structure and/or the claims of the present invention can be used in the embodiments and claims disclosed in U.S. Patent Application Serial No. 13/096,860 to provide enhanced protection against electronic components from being subjected to ESD and others. Overvoltage condition.

在一個實施例中,電子組件1298可被嵌入在VSDM構造1200內。在一個實施例中,電子組件1298可被嵌入在同樣整合有VSDM構造1200的基板(如:同樣的印刷電路板)。在一個實施例中,電子組件1298可連接在同樣整合有VSDM構造1200的基板之表面。在一個實施例中,電子組件1298可被整合在不同電子裝置,其電性連接至整合有VSDM構造1200的基板(如:VSDM構造1200可被整合在連接器,其被安裝到一個包含電子組件的電子裝置)。在一個實施例中,VSDM構造1200包含在電子組件1298的封裝內,或以其它方式連接到或納入到基板與電子組件1298物理連接 或電氣通信。 In one embodiment, electronic component 1298 can be embedded within VSDM fabric 1200. In one embodiment, electronic component 1298 can be embedded in a substrate (eg, the same printed circuit board) that also incorporates VSDM construction 1200. In one embodiment, electronic component 1298 can be attached to the surface of a substrate that is also integrated with VSDM construction 1200. In one embodiment, the electronic component 1298 can be integrated into a different electronic device that is electrically coupled to a substrate that incorporates the VSDM fabric 1200 (eg, the VSDM fabric 1200 can be integrated into a connector that is mounted to an electronic component Electronic device). In one embodiment, the VSDM fabric 1200 is included within the package of the electronic component 1298, or otherwise connected or incorporated into the substrate and physically coupled to the electronic component 1298. Or electrical communication.

在各實施例中,電子組件1298可以是下列中的任一個或多個:一個半導體晶片或其它積體電路(Integrated Circuit,IC)(如:微處理器、控制器、記憶體晶片、射頻電路、基頻處理器......等等)、一個發光二極體(Light Emitting Diode,LED)、一個微機電系統晶片或基板、或設置在電子裝置內部的任何其它組件或電路元件。 In various embodiments, electronic component 1298 can be any one or more of the following: a semiconductor wafer or other integrated circuit (IC) (eg, microprocessor, controller, memory chip, RF circuit) , a baseband processor, etc.), a Light Emitting Diode (LED), a MEMS wafer or substrate, or any other component or circuit component disposed within the electronic device.

在一個實施例中,嵌入式阻抗1296可使用鐵性電路元件來實現,其包含部分嵌入在鐵性材質的導電結構。鐵性電路元件包含鐵性VSD材質,而適用於嵌入的實現已揭露在美國專利申請號“13/115,068”,其於“2011/05/24”提出申請,並透過引用將其全部內容併入本文。在各實施例中,嵌入式阻抗1296可被實現作為嵌入式鐵性電感器、嵌入式鐵性VSD材質電感器、嵌入式鐵性電容、嵌入式鐵性VSD材質電容、或作為任何其它嵌入式鐵性電路元件或嵌入式鐵性VSD材質電路元件。 In one embodiment, the embedded impedance 1296 can be implemented using a ferroelectric circuit component that includes a conductive structure that is partially embedded in an ferrous material. The ferritic circuit component comprises an iron-based VSD material, and an implementation suitable for embedding is disclosed in U.S. Patent Application Serial No. 13/115, 068, filed on This article. In various embodiments, the embedded impedance 1296 can be implemented as an embedded ferromagnetic inductor, an embedded ferroelectric VSD material inductor, an embedded ferroelectric capacitor, an embedded ferro VSD material capacitor, or as any other embedded Iron circuit components or embedded iron VSD material circuit components.

「第12B圖」為根據一個實施例顯示使用VSD材質實現垂直切換的VSD材質構造1202。「第12A圖」及「第12B圖」所示意的實施例大致相同,不同的地方在於「第12B圖」的實施例的嵌入式阻抗1296被嵌入式阻抗1297所取代、電極1228被電極1229所取代。在「第12B圖」中,嵌入式阻抗1297不再嵌入預浸料層1230,而是透過導電層1270從預浸料層1230中分離。一個可選的電極1229連接嵌入式阻抗1297與電子組件1299。 "12B" is a VSD material construction 1202 that displays vertical switching using a VSD material in accordance with one embodiment. The embodiments shown in "Fig. 12A" and "Fig. 12B" are substantially the same, except that the embedded impedance 1296 of the embodiment of Fig. 12B is replaced by the embedded impedance 1297, and the electrode 1228 is replaced by the electrode 1229. Replace. In "Fig. 12B", the embedded impedance 1297 is no longer embedded in the prepreg layer 1230, but is separated from the prepreg layer 1230 through the conductive layer 1270. An optional electrode 1229 connects the embedded impedance 1297 to the electronic component 1299.

在各實施例中,嵌入式阻抗1297及電子組件1299的架構、實現及功能基本上可以分別與所述「第12A圖」實施例的嵌入式阻抗1296及電子組件1298相同,差別在於嵌入式阻抗1297及電子組件1299是被設置在所述「第12B圖」中描述。 In various embodiments, the embedded impedance 1297 and the electronic component 1299 can be substantially the same as the embedded impedance 1296 and the electronic component 1298 of the "12A" embodiment, respectively, with the difference being the embedded impedance. 1297 and the electronic component 1299 are set as described in the "Fig. 12B".

在一個實施例中,「第12B圖」所示意的嵌入式 阻抗1297不是嵌入在VSDM構造1200中,但嵌入在同樣結合有VSDM構造1200的基板(如:同樣的印刷電路板)。在一個實施例中,嵌入式阻抗1297及/或電子組件1299可被連接在同樣結合有VSDM構造1200的基板之表面。在一個實施例中,嵌入式阻抗1297及/或電子組件1299可被結合在不同的電子裝置,其電性連接在結合有VSDM構造1200的基板(如:VSDM構造1200可被結合在連接器,其被安裝在包含嵌入式阻抗1297及/或電子組件1299的電子裝置)。在一個實施例中,VSDM構造1200及嵌入式阻抗1297被包含在電子組件1298的封裝,或以其它方式連接到或納入到基板與電子組件1298物理連接或電氣通信。 In one embodiment, "12B" shows the embedded Impedance 1297 is not embedded in VSDM construction 1200, but is embedded in a substrate (eg, the same printed circuit board) that also incorporates VSDM construction 1200. In one embodiment, the embedded impedance 1297 and/or the electronic component 1299 can be attached to the surface of the substrate that also incorporates the VSDM construction 1200. In one embodiment, the embedded impedance 1297 and/or the electronic component 1299 can be combined in a different electronic device that is electrically coupled to a substrate that incorporates the VSDM fabric 1200 (eg, the VSDM fabric 1200 can be bonded to the connector, It is mounted on an electronic device that includes embedded impedance 1297 and/or electronic component 1299. In one embodiment, VSDM fabric 1200 and embedded impedance 1297 are included in the package of electronic component 1298, or otherwise connected or incorporated into the substrate for physical or electrical communication with electronic component 1298.

「第13圖」為根據一個實施例顯示包含可整合在印刷電路板或另一基板的VSD材質層1340,並且實現垂直切換的VSDM構造1300。 "FIG. 13" shows a VSDM construction 1300 comprising a VSD material layer 1340 that can be integrated on a printed circuit board or another substrate and that implements vertical switching, according to one embodiment.

「第13圖」所示的VSDM構造1300包含一些導電信號層,表示為L1~L6導電層,並且編號為導電層1370、1372、1374、1376、1378及1379。這些信號層可在印刷電路板內傳導電氣信號,或將電氣信號傳導至安裝在印刷電路板上的組件及電路元件,或傳導來自安裝在印刷電路板上的組件及電路元件的電氣信號,或用作接地或其它電壓參考點。這些信號層基本上被一些內建在基板裝置(在「第13圖」中沒有明確定義)的絕緣層或介電層所隔離。針對印刷電路板,所述絕緣層可包括:預浸填料、核心、疊合層(laminated layer)或任何其它相似的薄膜或結構。「第13圖」所示意的VSDM構造1300沿著印刷電路板或其它基板的垂直方向設置。 The VSDM structure 1300 shown in FIG. 13 includes conductive signal layers, denoted as L1~L6 conductive layers, and numbered as conductive layers 1370, 1372, 1374, 1376, 1378, and 1379. These signal layers can conduct electrical signals within the printed circuit board, or conduct electrical signals to components and circuit components mounted on the printed circuit board, or conduct electrical signals from components and circuit components mounted on the printed circuit board, or Used as a ground or other voltage reference point. These signal layers are essentially isolated by an insulating or dielectric layer built into the substrate device (not explicitly defined in Figure 13). For printed circuit boards, the insulating layer can comprise: a prepreg filler, a core, a laminated layer, or any other similar film or structure. The VSDM structure 1300 shown in Fig. 13 is disposed along the vertical direction of the printed circuit board or other substrate.

「第13圖」所示的VSDM構造1300也包含通孔1350。在各實施例中,通孔1350可為通孔、墊片、電路或任何其它結構,其被設置為導電且方便電信號傳播。通孔1350與L1層1370及L2層1372電氣連接。 The VSDM structure 1300 shown in Fig. 13 also includes a through hole 1350. In various embodiments, the vias 1350 can be vias, pads, circuits, or any other structure that is configured to be electrically conductive and facilitate electrical signal propagation. The through hole 1350 is electrically connected to the L1 layer 1370 and the L2 layer 1372.

「第13圖」所示的VSDM構造1300還包含VSD材質結構,顯示為VSD材質結構1340。所述VSD材質結構1340被設置在水平方向及穿過VSDM構造1300的多個導電層。如「第13圖」所示意,VSD材質結構1340穿過L2導電層1374及L3導電層1376。在各實施例中,VSD材質結構1340可穿過基板(如:印刷電路板、可撓式電路或半導體封裝)內的兩個或多個導電層或其它導電結構。在一個實施例中,VSD材質結構1340可透過填充VSD材質至通孔(如:埋孔)或任何其它在基板(如:印刷電路板、可撓式電路或半導體封裝)內的可用的體積來產生。在一個實施例中,VSD材質結構1340透過在基板製造一個孔(如:使用機械或鐳射),然後填充VSD材質在此孔而產生。在一個實施例中,VSD材質結構1340可在基板的製造過程中(如:透過對準先前已在印刷電路板的不同相鄰層產生的間隙或孔,用以在印刷電路板建立一個垂直腔,然後注入VSD材質以及將VSD材質固化在此垂直腔),透過沉積VSD材質於基板中預先建置的空白空間內來產生。 The VSDM structure 1300 shown in Fig. 13 also includes a VSD material structure, which is shown as a VSD material structure 1340. The VSD material structure 1340 is disposed in a horizontal direction and through a plurality of conductive layers of the VSDM structure 1300. As shown in FIG. 13, the VSD material structure 1340 passes through the L2 conductive layer 1374 and the L3 conductive layer 1376. In various embodiments, the VSD material structure 1340 can pass through two or more conductive layers or other conductive structures within a substrate such as a printed circuit board, a flexible circuit, or a semiconductor package. In one embodiment, the VSD material structure 1340 can be filled with a VSD material to a via (eg, a buried via) or any other available volume within a substrate (eg, a printed circuit board, a flexible circuit, or a semiconductor package). produce. In one embodiment, the VSD material structure 1340 is created by making a hole in the substrate (eg, using mechanical or laser) and then filling the VSD material in the hole. In one embodiment, the VSD material structure 1340 can be used to create a vertical cavity in the printed circuit board during fabrication of the substrate (eg, by aligning gaps or holes previously created in different adjacent layers of the printed circuit board). Then, the VSD material is injected and the VSD material is solidified in the vertical cavity, and is formed by depositing a VSD material in a pre-built blank space in the substrate.

假如ESD脈衝1312到達L1層1370(或另一電壓源被施加在L1層1370),相應的電壓將很少或沒有損失地傳播至L2層1372。在L2層1372,ESD脈衝1312響應產生的電壓到達VSD材質結構1340。假如穿過特定垂直間隙到達VSD材質結構1340的電壓超過VSD材質結構1340的特徵電壓,穿過此間隙的VSD材質將切換為導通並且基本上將成為導電。 If the ESD pulse 1312 reaches the L1 layer 1370 (or another voltage source is applied to the L1 layer 1370), the corresponding voltage will propagate to the L2 layer 1372 with little or no loss. At L2 layer 1372, ESD pulse 1312 reaches the VSD material structure 1340 in response to the generated voltage. If the voltage across the VSD material structure 1340 through a particular vertical gap exceeds the characteristic voltage of the VSD material structure 1340, the VSD material passing through the gap will switch to conduct and will substantially become conductive.

在「第13圖」的實施例中,L3導電層1374連接至接地。在其它實施方式中,L3導電層1374(或另一導電結構或層,其電性連接於相應的VSD材質結構)可被連接至朝向被傳導的ESD信號的另一點,例如:任意的電壓參考點或電路元件或組件。 In the embodiment of Fig. 13, the L3 conductive layer 1374 is connected to the ground. In other embodiments, the L3 conductive layer 1374 (or another conductive structure or layer electrically connected to the corresponding VSD material structure) can be connected to another point toward the conducted ESD signal, eg, any voltage reference Point or circuit component or component.

因為在「第13圖」的實施例中,L3導電層1374 被連接至接地且ESD脈衝1312傳播到L2導電層1372,有效間隙將在VSD材質結構1340內觸發垂直切換,其實質上為間隙1342,具有有效厚度T,藉由近似於L2導電層1372及L3接地層1374之間的垂直間距來決定。厚度T將決定至少部分的VSD材質結構1340的特徵電壓(如:根據公式一)。在一些實施例中,超過一個VSD材質結構可被垂直堆疊(無論是在相鄰或在物理隔離的層)或可被水平連接(如:透過互連層),如本專利其它實施例中所述。 Because in the embodiment of "Fig. 13", the L3 conductive layer 1374 Connected to ground and the ESD pulse 1312 propagates to the L2 conductive layer 1372, the effective gap will trigger a vertical switch within the VSD material structure 1340, which is substantially the gap 1342, having an effective thickness T, by approximating the L2 conductive layers 1372 and L3 The vertical spacing between ground planes 1374 is determined. The thickness T will determine the characteristic voltage of at least a portion of the VSD material structure 1340 (eg, according to Equation 1). In some embodiments, more than one VSD material structure can be stacked vertically (whether adjacent or physically separated) or can be horizontally connected (eg, through an interconnect layer), as in other embodiments of the patent. Said.

一旦「第13圖」實施例所示的VSD材質結構1340切換為導通,並且基本上成為導電穿過間隙1342,電流主要將在穿過L2導電層1372及L3接地層1374之間的間隙1342的垂直方向上流動。假如此情況發生,VSDM構造1300已經垂直切換。 Once the VSD material structure 1340 shown in the "Fig. 13" embodiment is switched to be conductive and substantially electrically conductive through the gap 1342, the current will primarily flow through the gap 1342 between the L2 conductive layer 1372 and the L3 ground plane 1374. Flow in the vertical direction. If this happens, the VSDM fabric 1300 has been switched vertically.

「第14圖」根據一個實施例顯示VSDM構造1400,其包含可整合在印刷電路板或另一基板且適用於實現垂直切換的VSD材質構造1440。在一個實施例中,「第14圖」表示為「第13圖」的VSDM構造1300的放大視圖。 "FIG. 14" shows a VSDM construction 1400 that includes a VSD material construction 1440 that can be integrated on a printed circuit board or another substrate and that is suitable for vertical switching, in accordance with one embodiment. In one embodiment, "Fig. 14" shows an enlarged view of the VSDM structure 1300 of "Fig. 13".

「第14圖」所示意的VSDM材質構造1400包含三個導電信號層,表示為L1~L3導電層,編號為導電層1470、1472及1474。導電層1474被連接至接地。另外,導電層1474可被連接至電路元件或組件,或連接至另一電壓參考點。這三個信號層透過建置在各基板裝置中的一些絕緣層或介電層分離(「第14圖」中並未明確指定)。針對印刷電路板,這些絕緣層可包含預浸填料、核心、疊合層或其它相似的薄膜或結構。「第14圖」所示意的VSDM構造1400沿著印刷電路板或其它基板的垂直方向設置。 The VSDM material structure 1400 shown in Fig. 14 includes three conductive signal layers, denoted as L1~L3 conductive layers, numbered as conductive layers 1470, 1472 and 1474. Conductive layer 1474 is connected to ground. Additionally, conductive layer 1474 can be connected to a circuit component or component, or to another voltage reference point. The three signal layers are separated by some insulating layer or dielectric layer built in each substrate device (not explicitly specified in "Fig. 14"). For printed circuit boards, these insulating layers may comprise prepreg fillers, cores, laminate layers or other similar films or structures. The VSDM structure 1400 shown in Fig. 14 is disposed along the vertical direction of the printed circuit board or other substrate.

「第14圖」所示的VSDM構造1400也包含通孔1450。在各實施例中,通孔1450可為通孔、墊片、電路或任何其它結構,其被設置為導電且方便電信號傳播。通孔1450與L11層1470及L2層1472電氣連接。 The VSDM structure 1400 shown in Fig. 14 also includes a through hole 1450. In various embodiments, the vias 1450 can be vias, pads, circuits, or any other structure that is configured to be electrically conductive and facilitate electrical signal propagation. The through hole 1450 is electrically connected to the L11 layer 1470 and the L2 layer 1472.

「第14圖」所示的VSDM構造1400還包含VSD材質結構,顯示為VSD材質結構1440。所述VSD材質結構1440被設置在水平方向且電性連接於L2導電層1474及L3導電層1476。在各實施例中,VSD材質結構1440可穿過基板(如:印刷電路板、可撓式電路或半導體封裝)內的兩個或多個導電層或其它導電結構。在一個實施例中,VSD材質結構1440可透過填充VSD材質至通孔(如:埋孔)或任何其它在基板(如:印刷電路板、可撓式電路或半導體封裝)內的可用的體積來產生。 The VSDM structure 1400 shown in Fig. 14 also includes a VSD material structure, which is shown as a VSD material structure 1440. The VSD material structure 1440 is disposed in a horizontal direction and electrically connected to the L2 conductive layer 1474 and the L3 conductive layer 1476. In various embodiments, the VSD material structure 1440 can pass through two or more conductive layers or other conductive structures within a substrate such as a printed circuit board, a flexible circuit, or a semiconductor package. In one embodiment, the VSD material structure 1440 can be filled with a VSD material to a via (eg, a buried via) or any other available volume within a substrate (eg, a printed circuit board, a flexible circuit, or a semiconductor package). produce.

假如ESD脈衝1412到達L1層1470(或另一電壓源被施加在L1層1470),相應的電壓將很少或沒有損失地經由通孔1450傳播至L2層1472。在L2層1472,ESD脈衝1412響應產生的電壓到達VSD材質結構1440。假如穿過特定垂直間隙到達VSD材質結構1440的電壓超過VSD材質結構1440的特徵電壓,穿過此間隙的VSD材質將切換為導通並且基本上將成為導電。 If ESD pulse 1412 reaches L1 layer 1470 (or another voltage source is applied to L1 layer 1470), the corresponding voltage will propagate to via hole 1450 to L2 layer 1472 with little or no loss. At L2 layer 1472, ESD pulse 1412 reaches the VSD material structure 1440 in response to the generated voltage. If the voltage across the VSD material structure 1440 through a particular vertical gap exceeds the characteristic voltage of the VSD material structure 1440, the VSD material that passes through the gap will switch to conduct and will substantially become conductive.

因為在「第14圖」的實施例中,L3導電層1474被連接至接地且ESD脈衝1412傳播到L2導電層1472,有效間隙將在VSD材質結構1440內觸發垂直切換,其實質上為間隙1442,具有有效厚度T,藉由近似於L2導電層1472及L3接地層1474之間的垂直間距來決定。厚度T將決定至少部分的VSD材質結構1440的特徵電壓(如:根據公式一)。在一些實施例中,超過一個VSD材質結構可被垂直堆疊(無論是在相鄰或在物理隔離的層)或可被水平連接(如:透過互連層),如本專利其它實施例中所述。 Because in the embodiment of FIG. 14, the L3 conductive layer 1474 is connected to ground and the ESD pulse 1412 propagates to the L2 conductive layer 1472, the effective gap will trigger a vertical switch within the VSD material structure 1440, which is substantially the gap 1442. The effective thickness T is determined by approximating the vertical spacing between the L2 conductive layer 1472 and the L3 ground layer 1474. The thickness T will determine the characteristic voltage of at least a portion of the VSD material structure 1440 (eg, according to Equation 1). In some embodiments, more than one VSD material structure can be stacked vertically (whether adjacent or physically separated) or can be horizontally connected (eg, through an interconnect layer), as in other embodiments of the patent. Said.

當「第14圖」實施例所示的VSD材質結構1440切換為導通且成為導電穿過間隙1442,電流主要將在穿過L2導電層1472及L3接地層1474之間的間隙1442的垂直方向上流動。假如此情況發生,VSDM構造1400已經垂直切換。ESD脈衝1412(或另一電壓源)被施加在L1層1470且電壓 超過VSD材質結構的特徵電壓,電流基本上將沿著「第14圖」所示意的電氣路徑1490流動。 When the VSD material structure 1440 shown in the "Fig. 14" embodiment is switched to be conductive and becomes conductive through the gap 1442, the current will mainly flow in the vertical direction through the gap 1442 between the L2 conductive layer 1472 and the L3 ground layer 1474. flow. If this happens, the VSDM fabric 1400 has been switched vertically. ESD pulse 1412 (or another voltage source) is applied to L1 layer 1470 and voltage Exceeding the characteristic voltage of the VSD material structure, the current will basically flow along the electrical path 1490 shown in Figure 14.

「第15A圖」為根據一個實施例顯示使用VSD材質連接一個或多個電路元件實現垂直切換的VSD材質構造1500。「第15A圖」的垂直切換的VSD材質構造1500可被整合在任何電子裝置,其包含基板裝置用以提供保護來防止ESD及其它過電壓情況,以基板裝置為例,VSD材質構造1500可被整合在包含印刷電路板、可撓式電路及半導體晶片封裝的各實施例中,「第15A圖」顯示在基板的垂直方向的VSD材質構造的剖面。 "Fig. 15A" is a VSD material construction 1500 showing vertical switching using one or more circuit elements connected using a VSD material, according to one embodiment. The vertically switched VSD material structure 1500 of FIG. 15A can be integrated into any electronic device including a substrate device for providing protection against ESD and other overvoltage conditions. For example, in the substrate device, the VSD material structure 1500 can be In each of the embodiments including the printed circuit board, the flexible circuit, and the semiconductor chip package, "Fig. 15A" shows a cross section of the VSD material structure in the vertical direction of the substrate.

「第15A圖」的垂直切換的VSD材質構造1500大致與「第11圖」的VSD材質構造1100相似,不同的地方在於它不用「第11圖」實施例中導電的預浸料1170。「第15A圖」實施例中採用兩個互連層1570及1572,兩者透過電路元件1592連接。電路元件1592具有不可忽略的阻抗,在「第15A圖」中表示為H。在各實施例中,互連層1570及1572可能是或可能包含電極、互連層或部分的互連層、導電層或部分的導電層、或任何其它導電結構。 The vertically switched VSD material structure 1500 of "Fig. 15A" is substantially similar to the VSD material structure 1100 of "Fig. 11" except that it does not use the conductive prepreg 1170 of the "Fig. 11" embodiment. In the embodiment of Fig. 15A, two interconnect layers 1570 and 1572 are used, which are connected by circuit element 1592. Circuit element 1592 has a non-negligible impedance and is represented as H in "Fig. 15A". In various embodiments, interconnect layers 1570 and 1572 may be or may comprise electrodes, interconnect layers or portions of interconnect layers, conductive layers or portions of conductive layers, or any other conductive structure.

「第15A圖」所示的VSDM構造1500包含VSD材質結構1540,其被設置在電極1520及互連層1572之間,而且也分別介於電極1522及互連層1570之間。「第5圖」的VSD材質結構1540具有一個垂直厚度,其基本上為均勻的水平層面且大致相等於間隙1542,表示為T。 The VSDM structure 1500 shown in FIG. 15A includes a VSD material structure 1540 disposed between the electrode 1520 and the interconnect layer 1572, and also between the electrode 1522 and the interconnect layer 1570, respectively. The VSD material structure 1540 of "figure 5" has a vertical thickness that is substantially uniform horizontal and substantially equal to the gap 1542, denoted T.

互連層1570及1572被設置在相鄰的基板層,即核心1582,其基本上為絕緣或介電質。額外的層可以存在於基板裝置與VSDM構造1500結合(如:一個或多個預浸料層)。 Interconnect layers 1570 and 1572 are disposed on adjacent substrate layers, core 1582, which are substantially insulating or dielectric. Additional layers may be present in the substrate device in combination with the VSDM construction 1500 (eg, one or more prepreg layers).

由ESD脈衝1512(或透過電壓源1510)產生的電壓介於電極1520及1522時,VSD材質結構1540可切換為導通且基本上成為導電。有效間隙將在VSD材質結構1540內觸發垂直切換,其實質上為間隙1542的兩倍,具有有效厚 度近似於T值的兩倍(這是因為當VSDM構造1500垂直切換時,電流會穿越間隙1542兩次,這兩次的方向相反)。厚度T將決定VSD材質結構1540至少部分的特徵電壓(如:根據公式一)。假如元件1592的阻抗為零或可忽略不計,或者在沒有元件1592的情況下,最小電壓必須由ESD脈衝在VSD材質結構切換為導通之前產生,其大小幾乎等於VSD材質結構1540的特徵電壓的兩倍(因為要完成介於兩個電極1520及1522之間的電路,電流必須穿越兩次間隙1542,兩次為不同的垂直方向)。 When the voltage generated by the ESD pulse 1512 (or through the voltage source 1510) is between the electrodes 1520 and 1522, the VSD material structure 1540 can be switched to be conductive and substantially conductive. The effective gap will trigger a vertical switch within the VSD material structure 1540, which is essentially twice the gap 1542, with an effective thickness The degree is approximately twice the value of T (this is because when the VSDM construction 1500 is switched vertically, the current will cross the gap 1542 twice, the opposite of the two directions). The thickness T will determine at least a portion of the characteristic voltage of the VSD material structure 1540 (eg, according to Equation 1). If the impedance of component 1592 is zero or negligible, or in the absence of component 1592, the minimum voltage must be generated by the ESD pulse before the VSD material structure is switched to conduct, the size of which is approximately equal to the characteristic voltage of VSD material structure 1540. Multiple (because the circuit between the two electrodes 1520 and 1522 is to be completed, the current must travel through the gap 1542 twice, twice in different vertical directions).

在具有不可忽略阻抗的元件1592存在時,最小電壓必須由ESD脈衝1512在VSD材質結構1540切換為導通之前產生,其大約等於元件1592兩端的電壓降。舉例來說,假如元件1592為電阻,當ESD脈衝1512的電壓約等於兩倍的VSD材質結構1540的特徵電壓再加上元件1592兩端的電壓降,VSD材質結構1540將切換為導通且基本上成為導電。 In the presence of an element 1592 having a non-negligible impedance, the minimum voltage must be generated by the ESD pulse 1512 before the VSD material structure 1540 is switched to conduct, which is approximately equal to the voltage drop across the element 1592. For example, if element 1592 is a resistor, when the voltage of ESD pulse 1512 is approximately equal to twice the characteristic voltage of VSD material structure 1540 plus the voltage drop across element 1592, VSD material structure 1540 will switch to conduction and substantially become Conductive.

在各實施例中,電路元件1592可能是或可包含一個或多個電阻、一個或多個電感、一個或多個電容、一個或多個鐵性電路元件(如:嵌入式鐵性電路元件,其可能會或可能不會包含VSD材質)、一個或多個二極體、一個或多個電晶體、一個或多個濾波器(如:高通、帶通、低通濾波器或濾波級的各種組合)、任何其它被動或主動電路元件或電子組件、任何具有不可忽略不計的阻抗的互連層、電極或其它導電結構,以及上述任意組合。所述電路元件1592可包含信號電子組件及電子組件的任意組合,以及可用於與VSD材質結構1540連接,用以在具備此整合的VSDM構造1500的電子裝置或基板裝置中提供部分或全部的ESD防護。 In various embodiments, circuit component 1592 may be or may include one or more resistors, one or more inductors, one or more capacitors, one or more ferroelectric circuit components (eg, embedded ferroelectric circuit components, It may or may not contain VSD material), one or more diodes, one or more transistors, one or more filters (eg high pass, band pass, low pass filter or filter stage) Combination), any other passive or active circuit component or electronic component, any interconnect layer, electrode or other conductive structure having a non-negligible impedance, and any combination of the above. The circuit component 1592 can include any combination of signal electronics components and electronic components, and can be used in conjunction with the VSD material structure 1540 to provide some or all of the ESD in an electronic device or substrate device having the integrated VSDM fabric 1500. Protection.

在一個實施例中,電路元件1592嵌入在基板,如:印刷電路板、可撓式電路或半導體裝置的封裝。請參閱「第15A圖」,舉例來說,元件1592可被嵌入在整合有VSDM構造1500的印刷電路板層(如:電路元件1592可被整合在 核心層、預浸料層、疊合層或在印刷電路板的任何其它層)。在一個實施例中,元件1592可為電子組件或電路元件,其安裝在整合有VSDM構造1500的印刷電路板。在一個實施例中,元件1592可為電路元件,其整合在半導體晶片,透過整合VSDM構造的封裝基板提供保護。 In one embodiment, circuit component 1592 is embedded in a substrate, such as a printed circuit board, a flexible circuit, or a package of semiconductor devices. Please refer to FIG. 15A. For example, component 1592 can be embedded in a printed circuit board layer integrated with VSDM construction 1500 (eg, circuit component 1592 can be integrated in Core layer, prepreg layer, laminate layer or any other layer on the printed circuit board). In one embodiment, component 1592 can be an electronic component or circuit component that is mounted on a printed circuit board incorporating VSDM construction 1500. In one embodiment, component 1592 can be a circuit component that is integrated into a semiconductor wafer and provides protection through a package substrate that incorporates a VSDM construction.

在「第15A圖」的實施例中,所示意的元件1592連接在互連層1570及1572之間,在替代或補充的實施例中,元件1592或其它電路元件可被設置在基板內或VSDM構造1500內的其它位置,舉例來說,元件1592或其它電路元件可被設置在電極1520及VSD材質結構1540之間、在電極1522及VSD材質結構1540之間、在電壓到達電極1520或電極1522前由ESD脈衝1512產生的電壓的電氣路徑中、或在VSDM結構1500及一個或多個被保護防止ESD情況的電子組件的電氣連接中。 In the embodiment of Figure 15A, the illustrated component 1592 is coupled between interconnect layers 1570 and 1572. In an alternative or additional embodiment, component 1592 or other circuit component can be disposed within the substrate or VSDM. Other locations within the structure 1500, for example, component 1592 or other circuit components can be disposed between electrode 1520 and VSD material structure 1540, between electrode 1522 and VSD material structure 1540, at voltage reaching electrode 1520 or electrode 1522 The electrical path of the voltage previously generated by the ESD pulse 1512, or in the electrical connection of the VSDM structure 1500 and one or more electronic components that are protected from ESD conditions.

在一個實施例中,元件1592可使用嵌入式電路元件實現,透過在至少部分鐵性材質內嵌入導電結構,鐵性材質被嵌入在至少部分的基板內。鐵性電路元件包含鐵性VSD材質,而適用於嵌入的實現已揭露在美國專利申請號“13/115,068”。 In one embodiment, the component 1592 can be implemented using embedded circuit components that are embedded in at least a portion of the substrate by embedding a conductive structure in at least a portion of the ferric material. The ferroelectric circuit component comprises an iron VSD material, and an implementation suitable for embedding is disclosed in U.S. Patent Application Serial No. 13/115,068.

當「第15A圖」實施例所示的VSD材質結構1540切換為導通,並且基本上成為導電穿過間隙1542,電流主要將在間隙1542的垂直方向上流動,一次在電極1520及互連層1572之間,一次則是在相對面,介於電極1522及互連層1570之間。 When the VSD material structure 1540 shown in the embodiment of FIG. 15A is switched to be conductive and substantially conductive through the gap 1542, the current will mainly flow in the vertical direction of the gap 1542, once at the electrode 1520 and the interconnect layer 1572. Between once, on the opposite side, between the electrode 1522 and the interconnect layer 1570.

在一個實施例中,取代一個單一VSD材質結構1540,所述VSDM構造1500包含具有不同垂直厚度的兩個VSD材質結構,使得電極1522及互連層1570之間的間隙不同於電極1520及互連層1572之間的間隙。 In one embodiment, instead of a single VSD material structure 1540, the VSDM construction 1500 includes two VSD material structures having different vertical thicknesses such that the gap between the electrodes 1522 and the interconnect layer 1570 is different from the electrodes 1520 and interconnects. The gap between layers 1572.

在一些實施方式中,一個以上的VSD材質結構可被垂直堆疊(不論是否相鄰或物理上隔離的層)。 In some embodiments, more than one VSD material structure can be stacked vertically (whether adjacent or physically separated layers).

在商業上的實現,間隙1542的厚度T可採用一個數值範圍,取決於VSD材質1540的構造及特徵電壓與所述VSD材質1540的其它物理或操作性能。考慮到VSDM構造1500的有效厚度為兩倍的T值,在生產過程中,厚度T的具體數值可包括1密耳、0.75密耳、0.5密耳、0.25密耳、0.1密耳或更小。在一般情況下,較小的T數值可在VSD材質結構1540提供較低的特徵電壓。 In a commercial implementation, the thickness T of the gap 1542 can take a range of values depending on the configuration and characteristic voltage of the VSD material 1540 and other physical or operational properties of the VSD material 1540. Considering that the effective thickness of the VSDM construction 1500 is twice the value of T, the specific value of the thickness T may include 1 mil, 0.75 mil, 0.5 mil, 0.25 mil, 0.1 mil or less during production. In general, a smaller T value can provide a lower characteristic voltage in the VSD material structure 1540.

「第15B圖」為根據一個實施例顯示VSD材質構造1502,其適用於使用VSD材質、具有第一阻抗的電路元件及具有第二阻抗的嵌入式阻抗元件來實現垂直切換。「第15A圖」和「第15B圖」的實施例大致相同,其差異在於「第15B圖」實施例以元件1593取代元件1592,並且電路元件顯示為嵌入在VSD材質結構1540中的嵌入式阻抗1597,電子組件1599電性連接於嵌入式阻抗1597,此電性連接可透過可選用的電極1529來實現。 "FIG. 15B" shows a VSD material construction 1502 that is adapted to achieve vertical switching using a VSD material, a circuit component having a first impedance, and an embedded impedance component having a second impedance, in accordance with one embodiment. The embodiments of "Fig. 15A" and "Fig. 15B" are substantially the same, with the difference that the "Fig. 15B" embodiment replaces the component 1592 with the component 1593, and the circuit component is shown as an embedded impedance embedded in the VSD material structure 1540. 1597, the electronic component 1599 is electrically connected to the embedded impedance 1597, and the electrical connection can be realized through the optional electrode 1529.

在各實施例中,元件1593的架構、實現及功能基本上可以與所述「第15A圖」實施例的元件1592相同,差別在於元件1593具有表示為H1的阻抗,嵌入式阻抗1597具有表示為H2的阻抗。在各實施例中,元件1593及嵌入式阻抗1597可能會或可能不會是相同類型的電路元件(如:它們可能都是電感器,或其中之一可以是電阻,而另一個可能是電容)。在各種實施方式中,阻抗H1和H2可能會或可能不會相同。 In various embodiments, the architecture, implementation, and functionality of component 1593 can be substantially the same as component 1592 of the "15A" embodiment, with the difference that component 1593 has an impedance expressed as H1 and embedded impedance 1597 has The impedance of H2. In various embodiments, component 1593 and embedded impedance 1597 may or may not be the same type of circuit component (eg, they may all be inductors, or one of them may be a resistor and the other may be a capacitor) . In various embodiments, the impedances H1 and H2 may or may not be the same.

在各實施例中,元件1597及電子組件1599的架構、實現及功能基本上可分別與所述「第12A圖」實施例的嵌入式阻抗1296及電子組件1298相同,差別在於被設置的元件1597及電子組件1599是描述在「第12B圖」中,並且用以與具垂直切換的VSDM構造1502連接。 In various embodiments, the structure, implementation, and function of the component 1597 and the electronic component 1599 are substantially the same as the embedded impedance 1296 and the electronic component 1298 of the "12A" embodiment, respectively, with the difference that the component 1597 is provided. And electronic component 1599 is described in "FIG. 12B" and is used to interface with VSDM fabric 1502 with vertical switching.

如「第15B圖」所示,嵌入式阻抗1597整合在至少部分的VSD材質結構1540內,並且電性連接於電極 1522。在沒有VSD材質結構1540的情況下,大電壓施加在電極1522將透過嵌入式阻抗1597傳導至電子組件1599,可能損壞電子組件1599。 As shown in Figure 15B, the embedded impedance 1597 is integrated into at least a portion of the VSD material structure 1540 and is electrically connected to the electrodes. 1522. Without the VSD material structure 1540, a large voltage applied to the electrode 1522 will conduct through the embedded impedance 1597 to the electronic component 1599, possibly damaging the electronic component 1599.

假如VSD材質結構1540存在且在足夠大的ESD脈衝1512被施加在電極1522上時切換為導通,流過電子組件1599的電流將有至少一部分流過VSD材質1540至互連層1597。其結果是電子組件1599也可能是嵌入式阻抗1597被保護以免遭到過電壓損壞。 If the VSD material structure 1540 is present and switched to conduct when a sufficiently large ESD pulse 1512 is applied to the electrode 1522, at least a portion of the current flowing through the electronic component 1599 will flow through the VSD material 1540 to the interconnect layer 1597. The result is that the electronic component 1599 may also be embedded impedance 1597 protected from overvoltage damage.

如「第12B圖」實施例所述的嵌入式阻抗1297,其並非嵌入在VSD材質層1540中,嵌入式阻抗1597可替換為整合在VSDM構造1502的相同基板(如:相同的印刷電路板)。在一個實施例中,嵌入式阻抗1597及/或電子組件1599可被安裝於VSDM構造1502的相同基板的表面。在一個實施例中,嵌入式阻抗1597及/或電子組件1599可被整合在不同電子裝置,其與整合有VSDM構造1502的基板電性連接(如:VSDM構造1502可被整合在連接器,其安裝在包含嵌入式阻抗1597及/或電子組件1599的電子裝置)。在一個實施例中,VSDM構造1502及嵌入式阻抗1597被包含在電子組件1599的封裝,或以其它方式安裝或納入基板,其與電子組件1599物理連接或電氣通信。 The embedded impedance 1297 as described in the "12B" embodiment is not embedded in the VSD material layer 1540, and the embedded impedance 1597 can be replaced with the same substrate integrated in the VSDM structure 1502 (eg, the same printed circuit board). . In one embodiment, embedded impedance 1597 and/or electronic component 1599 can be mounted to the surface of the same substrate of VSDM construction 1502. In one embodiment, the embedded impedance 1597 and/or the electronic component 1599 can be integrated into different electronic devices that are electrically coupled to the substrate in which the VSDM configuration 1502 is integrated (eg, the VSDM configuration 1502 can be integrated into the connector, Mounted in an electronic device including embedded impedance 1597 and/or electronic component 1599). In one embodiment, VSDM construction 1502 and embedded impedance 1597 are included in the package of electronic component 1599, or otherwise mounted or incorporated into a substrate that is physically or in electrical communication with electronic component 1599.

「第16圖」為根據一個實施例顯示垂直切換的VSD材質構造1600與水平切換的VSD材質構造1601的結合。在「第10圖」的實施例中,VSDM構造1000包含兩個被設置在水平層的VSD材質結構,其連同垂直切換。在「第16圖」的實施例中,VSD材質構造1600及1601結合一個VSD材質結構1646,其被設置為穿過間隙1648進行垂直切換,以及一個VSD材質結構1640其被設置為穿過間隙1642以進行水平切換。 "16th" is a combination of a vertically switched VSD material construction 1600 and a horizontally switched VSD material construction 1601, according to one embodiment. In the embodiment of "Fig. 10", the VSDM construction 1000 includes two VSD material structures disposed in a horizontal layer, which are switched in conjunction with vertical. In the "16th embodiment" embodiment, the VSD material constructions 1600 and 1601 incorporate a VSD material structure 1646 that is configured to be vertically switched through the gap 1648, and a VSD material structure 1640 that is configured to pass through the gap 1642. For horizontal switching.

在一個實施例中,垂直切換的VSD材質構造1600及水平切換的VSD材質構造1601整合在不同基板,並 透過連接器1628連接。在一個實施例中,垂直切換的VSD材質構造1600及水平切換的VSD材質構造1601其中之一或兩者是整合在可撓式基板,並且連接器1628為可撓式連接器。 In one embodiment, the vertically switched VSD material construction 1600 and the horizontally switched VSD material construction 1601 are integrated on different substrates, and Connected through connector 1628. In one embodiment, one or both of the vertically switched VSD material construction 1600 and the horizontally switched VSD material construction 1601 are integrated into a flexible substrate, and the connector 1628 is a flexible connector.

在「第16圖」的實施例中,水平切換的VSD材質構造1600包含兩個為一組的電極1620及1622與VSD材質結構1646。電極1620及1622連接至VSD材質結構1646,其跨越具有厚度T1的間隙1648。互連層1670被設置為連接VSD材質結構1646且與電極1620的連接面相反。「第16圖」所示的電極1622穿過VSD材質層1670。在另一個實施方式中,電極1622可以完全不穿過VSD材質層1622,在這種情況下,可能存在穿過VSD材質1646的第二個垂直間隙(其厚度等於或小於厚度T1)穿過垂直切換發生處。 In the "16th embodiment" embodiment, the horizontally switched VSD material construction 1600 includes two sets of electrodes 1620 and 1622 and a VSD material structure 1646. Electrodes 1620 and 1622 are connected to a VSD material structure 1646 that spans a gap 1648 having a thickness T1. Interconnect layer 1670 is configured to connect VSD material structure 1646 and is opposite the connection surface of electrode 1620. The electrode 1622 shown in Fig. 16 passes through the VSD material layer 1670. In another embodiment, the electrode 1622 may not pass through the VSD material layer 1622 at all, in which case there may be a second vertical gap through the VSD material 1646 (the thickness of which is equal to or less than the thickness T1) through the vertical The switch takes place.

在「第16圖」的實施例中,水平切換的VSD材質構造1601包含兩個電極1624及1626與VSD材質結構1640。所述電極1624及1626連接VSD材質結構1640,並橫跨具有厚度T2的垂直間隙1642。互連層1672被設置連接VSD材質結構1640,其連接面與電極1624及1626的連接面相反。 In the embodiment of "figure 16", the horizontally-switched VSD material structure 1601 includes two electrodes 1624 and 1626 and a VSD material structure 1640. The electrodes 1624 and 1626 are connected to the VSD material structure 1640 and span the vertical gap 1642 having a thickness T2. The interconnect layer 1672 is configured to connect to the VSD material structure 1640 with its connection surface opposite the connection surface of the electrodes 1624 and 1626.

在「第16圖」的實施例中,導電結構表示為連接器1628,其連接垂直切換的VSD材質構造1600的電極1622與水平切換的VSD材質構造1601的電極1624。連接器1628可為通孔、墊片、電路、互連層或任何其它結構,其被設置為導電且傳播電氣信號。在一個實施例中,連接器1628為可撓式電連接器。 In the embodiment of "figure 16", the electrically conductive structure is shown as connector 1628 that connects electrode 1622 of vertically switched VSD material construction 1600 with electrode 1624 of horizontally switched VSD material construction 1601. Connector 1628 can be a via, pad, circuit, interconnect layer, or any other structure that is configured to conduct and propagate electrical signals. In one embodiment, the connector 1628 is a flexible electrical connector.

在「第16圖」的垂直切換的VSD材質構造1600及水平切換的VSD材質構造1601可被整合在任何電子裝置,其包含基板裝置以提供保護防止ESD及其它過電壓情況。以垂直切換的VSD材質構造1600及水平切換的VSD材質構造1601的基板裝置為例,其可被整合在各實施例中,包含透過可撓式連接器組合成兩個相互連接的印刷電路板、透過可撓式連接器相互連接印刷電路板及半導體封裝、或透過 可撓式連接器相互連接兩個半導體封裝。可撓式連接器的應用可能會發生在可撓式電子裝置,包含:具有可轉動或移動表面的電子裝置(如:具有鍵盤或可調螢幕的行動電話或平板)或被設計為可撓式的電子裝置(如:可撓式LED顯示器)。 The vertically switched VSD material construction 1600 and the horizontally switched VSD material construction 1601 in "Figure 16" can be integrated into any electronic device that includes a substrate device to provide protection against ESD and other overvoltage conditions. For example, a substrate device of a vertically-switched VSD material structure 1600 and a horizontally-switched VSD material structure 1601 can be integrated into various embodiments, including combining two flexible printed circuit boards through a flexible connector. Interconnecting printed circuit boards and semiconductor packages, or through, through flexible connectors The flexible connectors interconnect two semiconductor packages. Flexible connector applications may occur in flexible electronic devices, including: electronic devices with rotatable or moving surfaces (eg, mobile phones or tablets with a keyboard or adjustable screen) or designed to be flexible Electronic devices (eg, flexible LED displays).

「第16圖」顯示每一個垂直切換的VSD材質構造1600及水平切換的VSD材質構造1601的剖面,每一個垂直切換的VSD材質構造1600及水平切換的VSD材質構造1601可被嵌入單獨的基板裝置,印刷電路板、可撓式電路或半導體封裝。「第16圖」顯示額外的基板層,如:核心1682及核心1683。 "Figure 16" shows a cross section of each vertically switched VSD material structure 1600 and horizontally switched VSD material structure 1601. Each vertically switched VSD material structure 1600 and horizontally switched VSD material structure 1601 can be embedded in a separate substrate device. , printed circuit boards, flexible circuits or semiconductor packages. Figure 16 shows additional substrate layers such as core 1682 and core 1683.

在一個實施例中,每一個垂直切換的VSD材質構造1600及水平切換的VSD材質構造1601獨立運作以響應對應的ESD脈衝,如:ESD脈衝1612。這個垂直切換的VSD材質構造1600會發生於ESD脈衝1612被施加在電極1620且電極1622為接地(或以其它方式設置在特定電壓電位),或是假如ESD脈衝1612被施加在電極1622且電極1620為接地(或以其它方式設置在特定電壓電位)。至於水平切換的VSD材質構造1601會發生於ESD脈衝1612被施加在電極1624且電極1626為接地(或以其它方式設置在特定電壓電位),或是假如ESD脈衝1612被施加在電極1626且電極1624為接地(或以其它方式設置在特定電壓電位)。 In one embodiment, each vertically switched VSD material construction 1600 and horizontally switched VSD material construction 1601 operate independently in response to a corresponding ESD pulse, such as ESD pulse 1612. This vertically switched VSD material construction 1600 can occur when the ESD pulse 1612 is applied to the electrode 1620 and the electrode 1622 is grounded (or otherwise placed at a particular voltage potential), or if the ESD pulse 1612 is applied to the electrode 1622 and the electrode 1620 Grounded (or otherwise set at a specific voltage potential). The horizontally switched VSD material configuration 1601 may occur when the ESD pulse 1612 is applied to the electrode 1624 and the electrode 1626 is grounded (or otherwise placed at a particular voltage potential), or if the ESD pulse 1612 is applied to the electrode 1626 and the electrode 1624 Grounded (or otherwise set at a specific voltage potential).

在「第16圖」所示的實施例中,垂直切換的VSD材質構造1600及水平切換的VSD材質構造1601可以共同操作以響應ESD脈衝,如:ESD脈衝1612,假如兩個構造一起切換,其可實現於電極1626接地(或以其它方式設置在特定電壓電位)且ESD脈衝1612被施加在電極1620,或是電極1620接地(或以其它方式設置在特定電壓電位)且ESD脈衝1612被施加在電極1626。在此情況下,VSD材質結構1646可垂直切換穿過間隙1648,以及VSD材質結構1640可水平切換穿過間隙1642。 In the embodiment shown in FIG. 16, the vertically switched VSD material construction 1600 and the horizontally switched VSD material construction 1601 can operate in response to an ESD pulse, such as an ESD pulse 1612, if the two configurations are switched together, It may be implemented that the electrode 1626 is grounded (or otherwise disposed at a particular voltage potential) and the ESD pulse 1612 is applied to the electrode 1620, or the electrode 1620 is grounded (or otherwise disposed at a particular voltage potential) and the ESD pulse 1612 is applied Electrode 1626. In this case, the VSD material structure 1646 can be vertically switched through the gap 1648, and the VSD material structure 1640 can be horizontally switched through the gap 1642.

對於電極1620及電極1626之間的垂直切換的VSD材質構造1600及水平切換的VSD材質構造1601一起切換的情況,所述VSD材質結構1640及1648兩者必需切換為導通,為了做到這點,響應於ESD脈衝1612的電極1620及1626之間的電壓差必須等於或超過VSD材質結構1640及1648的特徵電壓總和。 In the case where the vertically switched VSD material structure 1600 between the electrode 1620 and the electrode 1626 and the horizontally switched VSD material structure 1601 are switched together, the VSD material structures 1640 and 1648 must be switched to be turned on, in order to do this, The voltage difference between electrodes 1620 and 1626 in response to ESD pulse 1612 must equal or exceed the sum of the characteristic voltages of VSD material structures 1640 and 1648.

當VSD材質結構1640及1646兩者切換為導通且兩者基本上成為導電時,電流將垂直傳播穿過間隙1648,以及水平穿過間隙1642。 When both VSD material structures 1640 and 1646 are switched to conduct and both are substantially conductive, current will propagate vertically through gap 1648 and horizontally through gap 1642.

在一個實施例中,每一個VSD材質結構1640及1646具有不同組成和特徵電壓(以伏特為單位表示)。在一個實施例中,兩個VSD材質結構1640及1646具有相同的組成。所述VSD材質結構1640及1646可能會或可能不會有相同特徵電壓,這取決於實施方式。 In one embodiment, each VSD material structure 1640 and 1646 has a different composition and characteristic voltage (in volts). In one embodiment, the two VSD material structures 1640 and 1646 have the same composition. The VSD material structures 1640 and 1646 may or may not have the same characteristic voltage, depending on the implementation.

在商業實施上,間隙1648及1642的厚度T1及T2可以採用的數值範圍取決於VSD材質結構1646及1640的配方,以及取決於描述在VSDM構造1600及1601的特徵電壓及其它物理或操作特性。T1及T2的具體範例數值包含2密耳、1.5密耳、1密耳或更小數值。在一般情況下,較小的數值T可以使VSD材質結構1646及1640提供較低的特徵電壓。 In commercial implementation, the range of values for the thicknesses T1 and T2 of the gaps 1648 and 1642 may depend on the formulation of the VSD material structures 1646 and 1640, as well as the characteristic voltages and other physical or operational characteristics described in the VSDM configurations 1600 and 1601. Specific example values for T1 and T2 include values of 2 mils, 1.5 mils, 1 mil or less. In general, a smaller value T allows the VSD material structures 1646 and 1640 to provide lower characteristic voltages.

在各實施例中,所述垂直切換的VSDM構造及/或本專利的權利要求可實現在水平切換構造的基板,包含如「第16圖」所述。舉例來說,垂直切換的VSDM(如:「第15A圖」所述結構)及水平切換的VSDM(如:「第2圖」所述結構),兩者可被嵌入在基板中,且兩個VSDM構造可一起用於(如:透過連接電極122至電極1620)保護特定電子組件,或可單獨使用(如:不直接接觸兩個結構)以保護單一電子組件或不同的電子組件。 In various embodiments, the vertically-switched VSDM configuration and/or the claims of the present patent can be implemented in a horizontally-switched configuration substrate, as described in FIG. For example, a vertically switched VSDM (such as the structure described in "Figure 15A") and a horizontally switched VSDM (such as the structure described in "Fig. 2") can be embedded in the substrate, and two The VSDM construction can be used together (eg, via connection electrode 122 to electrode 1620) to protect a particular electronic component, or can be used alone (eg, not in direct contact with two structures) to protect a single electronic component or a different electronic component.

「第16圖」的實施例還顯示一個電路元件表示 為嵌入式阻抗1696,在各實施例中,此電路元件可被部分地或完全地整合在垂直切換的在VSDM構造1600中,或可與垂直切換的VSDM構造1600通信(其可嵌入在相同的印刷電路板作為垂直切換的VSDM構造1600,或可被安裝在整合有垂直切換的VSDM構造1600的印刷電路板)。在替代或補充的實施例中,嵌入式阻抗1696或另一個相似的電路元件可以部分地或完全地被納入水平切換的VSDM構造1601,或可與水平切換的VSDM構造1601通信(其可嵌入在相同的印刷電路板作為VSDM構造1601,或可被安裝在整合有VSDM構造1601的印刷電路板)。 The embodiment of "Fig. 16" also shows a circuit component representation For embedded impedance 1696, in various embodiments, this circuit component can be partially or fully integrated in the vertically switched VSDM fabric 1600, or can communicate with the vertically switched VSDM fabric 1600 (which can be embedded in the same The printed circuit board acts as a vertically switched VSDM fabric 1600 or can be mounted on a printed circuit board incorporating a vertically switched VSDM fabric 1600). In an alternative or additional embodiment, the embedded impedance 1696 or another similar circuit element may be partially or fully incorporated into the horizontally switched VSDM configuration 1601 or may be in communication with the horizontally switched VSDM configuration 1601 (which may be embedded in The same printed circuit board is used as the VSDM construction 1601, or can be mounted on a printed circuit board incorporating the VSDM construction 1601).

在「第16圖」的實施例中,嵌入式阻抗1696顯示為電路元件,其至少部分被嵌入在VSDM構造1600中,具體來說,「第16圖」顯示嵌入式阻抗1696至少部分地被嵌入在VSD材質結構1646中。在替代或補充的實施例中,嵌入式阻抗1696可以被設置在基板或VSDM構造1600內的其它位置。 In the embodiment of "figure 16", the embedded impedance 1696 is shown as a circuit component that is at least partially embedded in the VSDM fabric 1600. Specifically, "figure 16" shows that the embedded impedance 1696 is at least partially embedded. In the VSD material structure 1646. In an alternative or additional embodiment, the embedded impedance 1696 can be placed at other locations within the substrate or VSDM construction 1600.

在各實施例中,電路元件至少部分嵌入在基板,如:「第16圖」中的嵌入式阻抗1696,由一個或多個電路元件組成、或包含一個或多個電路元件。在各實施例中,嵌入式阻抗1696可包含一個或多個電阻、一個或多個電感、一個或多個電容、一個或多個鐵性電路元件(如:嵌入式鐵性電路元件,其可能會或可能不會包含VSD材質)、一個或多個二極體、一個或多個電晶體、一個或多個濾波器(如:一個或多個低通、帶通、高通濾波器或濾波級的各種組合)、任何被動或主動的電路元件或電子組件、任何互連層、任何具有不可忽略阻抗的電極或其它導電結構及任何上述組合。 In various embodiments, the circuit components are at least partially embedded in a substrate, such as embedded impedance 1696 in "Figure 16," consisting of one or more circuit components, or one or more circuit components. In various embodiments, the embedded impedance 1696 can include one or more resistors, one or more inductors, one or more capacitors, one or more ferroelectric circuit components (eg, embedded ferroelectric circuit components, which may Will or may not contain VSD material), one or more diodes, one or more transistors, one or more filters (eg one or more low pass, band pass, high pass filters or filter stages) Various combinations), any passive or active circuit or electronic component, any interconnect layer, any electrode or other conductive structure having non-negligible impedance, and any combination thereof.

所述嵌入式阻抗1696可被用於VSD材質結構1640及1646,並且提供電子組件部分或完全的ESD防護,如:「第16圖」所示意的電子組件1698。在「第16圖」中,電子組件1698顯示為透過電極1629被連接在嵌入式組件 1696,嵌入式阻抗1696也電性連接至電極1620。在沒有VSD材質1640的情況下,ESD脈衝或其它大電壓被施加在電極1620將導致大電壓及/或大電流經過嵌入式阻抗1696傳導至電子組件1698。然而,在存在VSD材質1648的情況下,垂直切換的VSDM構造1600如上述切換為導通,之後透過互連層1670轉移至少部分的ESD脈衝,否則將到達電子組件1698。因此,垂直切換的結構1600採用嵌入式阻抗1696來保護電子組件1698避免電極1620潛在的破壞性ESD脈衝或其它過電壓情況。 The embedded impedance 1696 can be used for VSD material structures 1640 and 1646 and provides partial or complete ESD protection of the electronic components, such as the electronic component 1698 illustrated in FIG. In "Figure 16," electronic component 1698 is shown as being connected to the embedded component via the electrode 1629. 1696, embedded impedance 1696 is also electrically coupled to electrode 1620. Without the VSD material 1640, an ESD pulse or other large voltage applied to the electrode 1620 would cause a large voltage and/or large current to pass through the embedded impedance 1696 to the electronic component 1698. However, in the presence of the VSD material 1648, the vertically switched VSDM fabric 1600 is switched to turn on as described above, after which at least a portion of the ESD pulses are transferred through the interconnect layer 1670, which would otherwise reach the electronic component 1698. Thus, the vertically switched structure 1600 employs an embedded impedance 1696 to protect the electronic component 1698 from potentially damaging ESD pulses or other overvoltage conditions of the electrode 1620.

電路的架構及操作可用於連接至VSDM構造1600及1601以對電子組件提供部分地或完全地ESD保護,如「第16圖」所示意的電子組件1698,其詳細揭露在美國專利申請號“13/096,860”。 The architecture and operation of the circuitry can be used to connect to VSDM fabrics 1600 and 1601 to provide partial or complete ESD protection for electronic components, such as the electronic component 1698 illustrated in FIG. 16, which is disclosed in detail in U.S. Patent Application Serial No. /096,860".

在一個實施例中,電子組件1698可被嵌入在VSDM構造1600內。在一個實施例中,電子組件1698可被嵌入在同樣整合有VSDM構造1600的基板(如:同樣的印刷電路板)。在一個實施例中,電子組件1698可連接在同樣整合有VSDM構造1600的基板之表面。在一個實施例中,電子組件1698可被整合在不同電子裝置,其電性連接至整合有VSDM構造1600的基板(如:VSDM構造1600可被整合在連接器,其被安裝到一個包含電子組件的電子裝置)。在一個實施例中,VSDM構造1600包含在電子組件1698的封裝內,或以其它方式連接到或納入到基板與電子組件1698物理連接或電氣通信。在一個實施例中,電極1629為可撓式連接器,並且電子組件1698設置在不同基板作為可撓式電子裝置的一部分。 In one embodiment, electronic component 1698 can be embedded within VSDM fabric 1600. In one embodiment, the electronic component 1698 can be embedded in a substrate (eg, the same printed circuit board) that also incorporates the VSDM construction 1600. In one embodiment, electronic component 1698 can be attached to the surface of a substrate that is also integrated with VSDM construction 1600. In one embodiment, electronic component 1698 can be integrated into different electronic devices that are electrically coupled to a substrate that incorporates VSDM construction 1600 (eg, VSDM construction 1600 can be integrated into a connector that is mounted to an electronic component Electronic device). In one embodiment, the VSDM fabric 1600 is included within the package of the electronic component 1698, or otherwise connected or incorporated into the substrate for physical or electrical communication with the electronic component 1698. In one embodiment, the electrode 1629 is a flexible connector and the electronic component 1698 is disposed on a different substrate as part of the flexible electronic device.

在各實施例中,嵌入式阻抗1696及電子組件1698的架構、實現及功能基本上可以分別與所述「第12A圖」實施例的嵌入式阻抗1296及電子組件1298相同,差別在於嵌入式阻抗1696及電子組件1698是被設置在所述「第16圖」 中描述。 In various embodiments, the embedded impedance 1696 and the electronic component 1698 can be substantially the same as the embedded impedance 1296 and the electronic component 1298 of the "12A" embodiment, respectively, with the difference being the embedded impedance. 1696 and electronic component 1698 are disposed in the "16th figure" Described in.

在一個實施例中,嵌入式阻抗1696可使用鐵性電路元件來實現,其包含部分嵌入在鐵性材質的導電結構。在各實施例中,嵌入式阻抗1296可被實現作為嵌入式鐵性電感器、嵌入式鐵性VSD材質電感器、嵌入式鐵性電容、嵌入式鐵性VSD材質電容、或作為任何其它嵌入式鐵性電路元件或嵌入式鐵性VSD材質電路元件。 In one embodiment, the embedded impedance 1696 can be implemented using a ferroelectric circuit component that includes a conductive structure that is partially embedded in an ferrous material. In various embodiments, the embedded impedance 1296 can be implemented as an embedded ferromagnetic inductor, an embedded ferroelectric VSD material inductor, an embedded ferroelectric capacitor, an embedded ferro VSD material capacitor, or as any other embedded Iron circuit components or embedded iron VSD material circuit components.

「第17圖」為根據一個實施例顯示使用VSD材質同時實現垂直切換和水平切換的VSD材質構造1700 "17th" is a VSD material construction 1700 showing vertical and horizontal switching using a VSD material according to one embodiment.

一種VSD材質構造其使用VSD材質適用於進行垂直切換及水平切換,表示為“雙向切換的VSDM構造”或“雙切換的VSDM構造”。在各種實施例中,雙向切換的VSDM構造,如:「第17圖」所示意的雙向切換的VSDM構造1700,可被採用於相似的應用及實現如同本專利中所述及/或權利要求的各種垂直切換的VSDM構造,不同的是,雙向切換的VSDM構造可以額外執行水平切換功能。 A VSD material structure using VSD material is suitable for vertical switching and horizontal switching, and is expressed as "two-way switching VSDM structure" or "double switching VSDM structure". In various embodiments, a two-way switched VSDM configuration, such as the two-way switched VSDM fabric 1700 illustrated in FIG. 17, can be employed in similar applications and implementations as described and/or claimed in this patent. The various vertical switching VSDM configurations differ in that the VSDM configuration of the bidirectional switching can additionally perform horizontal switching functions.

在各種實施例中,雙向切換的VSDM構造包含有利於垂直切換的VSD材質設置方式,如同在本專利中被描述及/或權利要求的一般所述各垂直切換的VSDM構造,此外,在這樣的實施例中,各VSD材質結構也將電性連接至少一電極,其有利於水平切換如一般於「第1圖」及/或「第2圖」中所描述。 In various embodiments, the bidirectionally switched VSDM configuration includes a VSD material setting that facilitates vertical switching, as described in the patent and/or claims generally for each of the vertically switched VSDM configurations, in addition, In an embodiment, each VSD material structure is also electrically connected to at least one electrode, which facilitates horizontal switching as generally described in FIG. 1 and/or FIG. 2 .

「第17圖」所示的VSD材質構造1700包含電極1720(如:墊片或互連層),其電性連接於VSD材質結構1740(如:VSD材質層),VSD材質構造1700更包含電極1726及電極1728,兩者也電性連接於VSD材質結構1740。在一個實施例,電極1726可直接電性連接於互連層1770(如:電極1726可穿越VSD材質層1740或通孔將電極1726連接至互連層1770)。在各實施例中,電極1726及1728兩者或兩者任一可省略,在此情況下,由省略的電極提供相應的水平切 換功能將不存在。 The VSD material structure 1700 shown in Figure 17 includes an electrode 1720 (such as a spacer or an interconnect layer) electrically connected to a VSD material structure 1740 (eg, a VSD material layer), and the VSD material structure 1700 further includes an electrode. 1726 and electrode 1728 are also electrically connected to the VSD material structure 1740. In one embodiment, the electrode 1726 can be directly electrically connected to the interconnect layer 1770 (eg, the electrode 1726 can traverse the VSD material layer 1740 or the via to connect the electrode 1726 to the interconnect layer 1770). In various embodiments, either or both of electrodes 1726 and 1728 may be omitted, in which case the corresponding horizontal cut is provided by the omitted electrodes. The change function will not exist.

在一個實施例中,電極1726電性連接於電極1728(如:它們可以是相同導電平面的一部分,或是可由印刷電路板或其它連接器直接連接)。 In one embodiment, the electrodes 1726 are electrically connected to the electrodes 1728 (eg, they may be part of the same conductive plane or may be directly connected by a printed circuit board or other connector).

VSD材質結構1740有一個具有垂直厚度T1(如:單位為密耳)的垂直間隙1742。被設置的互連層1770(如:電極或互連層)電性連接VSD材質結構1740及電極1726。核心層1782被設置相鄰於互連層1770且可為整合有雙向切換結構1700的基板中的一層(如:印刷電路板或半導體封裝)。 The VSD material structure 1740 has a vertical gap 1742 having a vertical thickness T1 (eg, in mils). The interconnect layer 1770 (eg, an electrode or interconnect layer) is electrically connected to the VSD material structure 1740 and the electrode 1726. The core layer 1782 is disposed adjacent to the interconnect layer 1770 and may be one of the substrates (eg, a printed circuit board or a semiconductor package) incorporating the bidirectional switching structure 1700.

一個可選的通孔1772或任何其它導電結構可穿越一個或多個基板的層,並且建立與互連層1782的電性連接。此通孔可透過鐳射鑽孔或任何其它適合的製造方式來產生。 An optional via 1772 or any other conductive structure can traverse the layers of one or more of the substrates and establish an electrical connection with the interconnect layer 1782. This through hole can be created by laser drilling or any other suitable manufacturing method.

在一個實施例中,電極1726、電極1728及通孔1772皆連接至接地。在另一個實施例中,互連層1770不連接至接地(如:通孔1772不存在或不連接至接地),這此情況下,介於互連層1770及電極1720之間的垂直切換將不會發生。在另一個實施例中,電極1726或電極1728不連接至接地,在此情況下,介於未連接的電極及電極1720之間的水平切換將不會發生。 In one embodiment, electrode 1726, electrode 1728, and via 1772 are all connected to ground. In another embodiment, interconnect layer 1770 is not connected to ground (eg, via 1772 is not present or not connected to ground), in which case vertical switching between interconnect layer 1770 and electrode 1720 will will not happen. In another embodiment, electrode 1726 or electrode 1728 is not connected to ground, in which case horizontal switching between the unconnected electrode and electrode 1720 will not occur.

「第17圖」實施例的雙切換VSDM構造1700能夠在電極1726、電極1728及互連層1770皆連接至接地或另一參考電壓電位的情況下進行水平和垂直兩種切換。在此實施例中,有三種可能的切換方向:(1)穿過電極1726及1720之間的間隙1744(具有水平厚度G1)的水平切換;(2)穿過電極1728及1720之間的間隙1746(具有水平厚度G2)的水平切換;及(3)穿過電極1720及互連層1770之間的間隙1742(具有垂直厚度T1)的垂直切換。間隙穿越的位置其VSD材質構造1740的特徵電壓為最低處,將決定發生切換的位置。 假如VSD材質的構造同樣穿越三個間隙1742、1744及1746,且特徵電壓與間隙大小相關,則切換將發生在最小的間隙。 The dual-switching VSDM configuration 1700 of the "FIG. 17" embodiment is capable of both horizontal and vertical switching with electrodes 1726, electrodes 1728, and interconnect layer 1770 all connected to ground or another reference voltage potential. In this embodiment, there are three possible switching directions: (1) horizontal switching through the gap 1744 (having a horizontal thickness G1) between the electrodes 1726 and 1720; (2) through the gap between the electrodes 1728 and 1720 Horizontal switching of 1746 (having a horizontal thickness G2); and (3) vertical switching through a gap 1742 (having a vertical thickness T1) between the electrode 1720 and the interconnect layer 1770. The position where the gap traverses is the lowest of the characteristic voltage of the VSD material structure 1740, and the position at which the switching occurs is determined. If the VSD material structure also traverses three gaps 1742, 1744, and 1746, and the characteristic voltage is related to the gap size, the switching will occur at the smallest gap.

在一個實施例中,間隙1744及1746基本上是相同的且VSDM構造1700水平切換穿過兩間隙1744及1746。在一個實施例中,間隙1742、1744及1746是相同的且VSDM構造1700垂直切換穿過間隙1742,以及水平切換穿過間隙1744及1746。在一個實施例中,間隙1742及1744基本上是相同的且VSDM構造1700垂直切換穿過間隙1742及水平切換穿過間隙1744。在一個實施例中,間隙1742及1746基本上是相同的且VSDM構造1700垂直切換穿過間隙1742及水平切換穿過間隙1746。 In one embodiment, the gaps 1744 and 1746 are substantially identical and the VSDM configuration 1700 is horizontally switched across the two gaps 1744 and 1746. In one embodiment, the gaps 1742, 1744, and 1746 are identical and the VSDM configuration 1700 is vertically switched through the gap 1742 and horizontally through the gaps 1744 and 1746. In one embodiment, the gaps 1742 and 1744 are substantially identical and the VSDM configuration 1700 is vertically switched through the gap 1742 and horizontally through the gap 1744. In one embodiment, the gaps 1742 and 1746 are substantially identical and the VSDM configuration 1700 is vertically switched through the gap 1742 and horizontally through the gap 1746.

在一些實施例中,對於VSD材質的一些配方和水平及/或垂直間隙的某些物理特性,特徵電壓穿過此間隙可能不會直接與間隙大小有關。因此,在這樣的實施例中,兩個具有不同厚度的間隙的特徵電壓仍然可能是相同的。在一個實施例中,穿過間隙1744及1746的特徵電壓基本上是相同且VSDM構造1700水平切換穿過間隙1744及1746。在一個實施例中,特徵電壓穿過間隙1742、1744及1746基本上是相同的,並且VSDM構造1700垂直切換穿過間隙1742及水平切換間隙1744及1746。在一個實施例中,特徵電壓穿過間隙1742及1744基本上是相同的,並且VSDM構造1700垂直切換穿過間隙1742及垂直切換間隙1744。在一個實施例中,特徵電壓穿過間隙1742及1746基本上是相同的,並且VSDM構造1700垂直切換穿過間隙1742及垂直切換間隙1746。 In some embodiments, for some formulations of VSD materials and certain physical characteristics of horizontal and/or vertical gaps, the characteristic voltage across the gap may not be directly related to the gap size. Thus, in such an embodiment, the characteristic voltages of the two gaps having different thicknesses may still be the same. In one embodiment, the characteristic voltages across gaps 1744 and 1746 are substantially the same and VSDM configuration 1700 is horizontally switched through gaps 1744 and 1746. In one embodiment, the characteristic voltages are substantially the same across gaps 1742, 1744, and 1746, and VSDM construction 1700 is vertically switched through gap 1742 and horizontal switching gaps 1744 and 1746. In one embodiment, the characteristic voltages are substantially the same across gaps 1742 and 1744, and VSDM construction 1700 is vertically switched through gap 1742 and vertical switching gap 1744. In one embodiment, the characteristic voltages are substantially the same across gaps 1742 and 1746, and VSDM construction 1700 is vertically switched through gap 1742 and vertical switching gap 1746.

在本專利所述及/或權利要求的垂直或雙向切換的VSDM構造,如:「第4A圖」實施例的基板400、「第4B圖」實施例的VSDM構造490、「第5圖」實施例的VSDM構造500、「第6圖」實施例的VSD材質構造600、「第9圖」實施例的VSD材質構造900、「第10圖」實施例的VSD材質 構造1000、「第11圖」實施例的VSD材質構造1100、「第12A圖」實施例的VSD材質構造1200、「第13圖」實施例的VSD材質構造1300、「第14圖」實施例的VSD材質構造1400、「第15A圖」實施例的VSD材質構造1500、「第16圖」實施例的VSD材質構造1600及「第17圖」實施例的雙向切換結構1700可在電子電路及裝置中被用於電路元件及組件的ESD保護。以電子組件為例,其可透過如垂直切換的VSDM構造被保護,包含下列一個或多個:半導體晶片或另一積體電路(IC)(如:微處理器、控制器、記憶體晶片、射頻電路、基頻處理器……等等)、發光二極體(LED)、微機電系統晶片或基板、或任何設置在電子裝置內的其它組件或電路元件。 The VSDM structure of the vertical or bidirectional switching described in the present patent and/or the claims is implemented in the substrate 400 of the embodiment of FIG. 4A and the VSDM structure 490 and FIG. 5 of the embodiment of FIG. 4B. Example VSD material structure 500, VSD material structure 600 of the "Fig. 6" embodiment, VSD material structure 900 of the "Fig. 9" embodiment, and VSD material of the "10th figure" embodiment The structure of the VSD material structure 1100 of the embodiment of the "Fig. 11", the VSD material structure 1200 of the "12A" embodiment, the VSD material structure 1300 of the "Fig. 13" embodiment, and the "fourth figure" embodiment The VSD material structure 1500 of the VSD material structure 1400, the "FIG. 15A" embodiment, the VSD material structure 1600 of the "16th embodiment" embodiment, and the bidirectional switching structure 1700 of the "17th embodiment" embodiment can be used in electronic circuits and devices. Used for ESD protection of circuit components and components. Taking an electronic component as an example, it can be protected by a VSDM configuration such as vertical switching, including one or more of the following: a semiconductor wafer or another integrated circuit (IC) (eg, a microprocessor, a controller, a memory chip, RF circuit, baseband processor, etc.), light emitting diode (LED), MEMS wafer or substrate, or any other component or circuit component disposed within the electronic device.

所述範例電路(exemplary circuits)的架構及運作,其可利用揭露於美國專利申請案號“13/096,860”及“13/115,068”兩申請案之垂直切換的VSDM構造以進行ESD保護。雖然這些應用中所公開的模範電路可能已經設想到水平切換的VSDM構造,此水平切換構造可被所述專利中的垂直切換的VSDM構造替換,同時保留一般ESD防護功能。 The architecture and operation of the exemplary circuits utilizes a vertically switched VSDM configuration disclosed in U.S. Patent Application Serial Nos. 13/096,860 and 13/115,068 for ESD protection. While the exemplary circuit disclosed in these applications may have envisioned a horizontally switched VSDM configuration, this horizontal switching configuration can be replaced by the vertically switched VSDM configuration in the patent while retaining the general ESD protection function.

在本專利所述及/或權利要求的垂直切換的VSDM構造及雙切換的VSDM構造,可被用於基板裝置的ESD保護,如:印刷電路板的一層或一組層、半導體裝置的封裝、或任何其它基板可安裝垂直切換的VSD材質構造,或將整合有垂直切換的VSD材質構造納入基板。 The vertically-switched VSDM configuration and the dual-switched VSDM configuration described and/or claimed in this patent can be used for ESD protection of substrate devices, such as one or a group of layers of a printed circuit board, a package of a semiconductor device, Or any other substrate can be mounted with a vertically switched VSD material construction, or a VSD material construction incorporating vertical switching can be incorporated into the substrate.

在本專利所述及/或權利要求的垂直切換的VSDM構造及雙切換的VSDM構造可被用於電子裝置的ESD保護,此VSDM構造被整合在其中(如:透過納入一個基板,被包含在所述電子裝置),或是此VSDM構造被連接(當此VSDM構造納入被安裝在所述電子裝置的一個連接器或電纜,或當此VSDM構造被包含在一個裝置,其連接所述電子裝置)。 The vertically-switched VSDM configuration and the dual-switched VSDM configuration described and/or claimed in this patent can be used for ESD protection of an electronic device in which the VSDM configuration is integrated (eg, by incorporating a substrate, included) The electronic device) or the VSDM structure is connected (when the VSDM configuration incorporates a connector or cable mounted on the electronic device, or when the VSDM configuration is included in a device that connects the electronic device ).

以電子裝置為例,其可透過所述垂直切換的 VSDM構造或雙切換的VSDM構造被保護,或其可包含基板裝置、電子組件或電路元件,這些透過所述垂直切換或雙切換的VSDM構造被保護,包含行動電話、平板、閱讀器、行動電腦(如:筆記型電腦)、桌上型電腦、伺服器電腦(如:伺服器、刀鋒伺服器、多處理器的超級計算機)、電視機、視訊顯示器、音樂播放器(如:可攜式MP3播放器)、個人健康管理裝置(如:脈搏監測器、心臟監測器、距離監測器、溫度監測器、或任何其它應用在健康管理的感測器)、發光二極體(LEDs)及包含發光二極體的裝置、發光模組、及任何其它消費性及/或工業裝置,其使用電氣或機電信號處理或以其它方式儲存資料,其它例子包括衛星、軍事設備、航空儀表、船用設備。 Taking an electronic device as an example, it can be switched through the vertical The VSDM configuration or dual-switched VSDM configuration is protected, or it may include a substrate device, an electronic component, or a circuit component that is protected by the vertical or double-switched VSDM configuration, including a mobile phone, tablet, reader, mobile computer (eg notebook computer), desktop computer, server computer (eg server, blade server, multi-processor supercomputer), TV, video display, music player (eg portable MP3) Player), personal health management device (eg pulse monitor, heart monitor, distance monitor, temperature monitor, or any other sensor used in health management), LEDs and LEDs Diode devices, lighting modules, and any other consumer and/or industrial devices that use electrical or electromechanical signals to process or otherwise store data, other examples include satellites, military equipment, aerospace instruments, marine equipment.

在各實施例中,本專利所述及/或權利要求的垂直切換的VSDM構造及雙切換的VSDM構造可被整合在連接器,此連接器可被安裝在電子裝置以提供保護防止ESD或其它過電壓情況。以此連接器為例,包含電源連接器、USB連接器、乙太網路電纜連接器、HDMI連接器、或任何其它連接器,其便於串列、並列或其它類型的資料、信號或電力傳輸。 In various embodiments, the vertically-switched VSDM configuration and dual-switched VSDM configuration described and/or claimed in this patent can be integrated into a connector that can be mounted on an electronic device to provide protection against ESD or other Overvoltage condition. This connector, for example, includes a power connector, a USB connector, an Ethernet cable connector, an HDMI connector, or any other connector that facilitates serial, side-by-side, or other types of data, signal, or power transmission. .

本說明書詳細描述了各種實施例及實現本發明,而且本發明公開了額外的實施例及實現,進一步改進及可替換結構。還有,本發明並未將其限制在揭露的特定實施例和實現中,相反地,本發明涵蓋所有修改、等同物和替代的實施例及實現,這些皆落入權利要求的範圍內。 The present invention describes various embodiments and implementations of the invention in detail, and further embodiments and implementations, further improvements and alternative constructions are disclosed. In addition, the present invention is not limited to the specific embodiments and implementations disclosed, but the invention is intended to cover all modifications, equivalents and alternative embodiments and implementations.

在本說明書中,一集合是指任何具有一、兩個或多個項目的群組。同樣地,一子集合意味著相對於N個項目的一個群組,其任一群組是由N-1或更少的相應項目所組成。 In this specification, a collection refers to any group having one, two or more items. Similarly, a subset means that a group of N items is composed of N-1 or less corresponding items.

在本說明書所使用的術語“包含”、“包括”、“舉例來說”、“範例”、“如”及其相似語法,並非用以作文義上的限制而是應伴隨著“不限於”或具有相似涵義的文字。本發明說明書中所定義、以及所有標頭、標題及副標 題是為了便於理解的目的所作的描述,但不適用於限制本發明的權利要求範圍。每個定義都應涵蓋其他對等的項目、技術或詞彙,或熟悉該項技藝者所知悉或能知悉且認知為對等或者可替換的對應項目、技術或詞彙。除非文義另有規定,否則動詞“可能”表示相應的動作、步驟或實現方式可能達成的機會,而非強調相應的動作、步驟或實現方式必須要發生,也並非強調相應的動作、步驟或實現方式必須依照所描述的內容達成。 The terms "comprising", "including", "comprising", "example", "such as", and the like, are used in this specification and are not intended to Or words with similar meanings. As defined in the specification of the present invention, as well as all headers, headings and sub-labels The description is made for the purpose of facilitating the understanding, but is not intended to limit the scope of the claims of the invention. Each definition should cover other equivalent projects, techniques, or vocabulary, or be familiar with the corresponding project, technology, or vocabulary that the learner knows or can recognize and recognize as equivalent or replaceable. Unless the context requires otherwise, the verb “may” indicates an opportunity that may be achieved by the corresponding action, step, or implementation, rather than emphasizing that the corresponding action, step, or implementation must occur, and does not emphasize the corresponding action, step, or implementation. The method must be achieved in accordance with what is described.

雖然本發明所揭露之實施方式如上,惟所述之內容並非用以直接限定本發明之專利保護範圍。任何本發明所屬技術領域中具有通常知識者,在不脫離本發明所揭露之精神和範圍的前提下,可以在實施的形式上及細節上作些許之更動,然本發明之專利保護範圍,仍須以所附之申請專利範圍所界定者為準。此外,無論是以一實施例個別提出或是作為實施例之一部分的獨有特徵,可與其它個別提出或是作為其它實施例一部分的特徵相結合,縱然那些獨有特徵未被其它特徵或實施例所提及,因此,那些未描述到的組合特徵不應被排除於本發明之權利保護範圍之外。 While the embodiments of the present invention have been described above, the above description is not intended to limit the scope of the invention. Any person skilled in the art to which the invention pertains may make some modifications in the form and details of the embodiments without departing from the spirit and scope of the invention. This shall be subject to the definition of the scope of the attached patent application. Furthermore, individual features, whether individually presented as part of an embodiment or as part of an embodiment, may be combined with other features which are individually or as part of other embodiments, even if those unique features are not. It is to be understood that the combination of features not described is not to be excluded from the scope of the invention.

1200‧‧‧VSD材質構造 1200‧‧‧VSD material construction

1212‧‧‧ESD信號 1212‧‧‧ESD signal

1220、1224‧‧‧電極 1220, 1224‧‧‧ electrodes

1228‧‧‧電極 1228‧‧‧electrode

1230‧‧‧預浸料層 1230‧‧‧Prepreg layer

1240‧‧‧VSD材質層 1240‧‧‧VSD material layer

1242‧‧‧間隙 1242‧‧‧ gap

1250‧‧‧通孔 1250‧‧‧through hole

1270‧‧‧導電層 1270‧‧‧ Conductive layer

1280‧‧‧互連層 1280‧‧‧Interconnecting layer

1290‧‧‧ESD放電路徑 1290‧‧‧ESD discharge path

1296‧‧‧嵌入式阻抗 1296‧‧‧Embedded impedance

1298‧‧‧電子組件 1298‧‧‧Electronic components

Claims (20)

一種垂直切換的電壓調變介電材質(VSDM)構造,形成在一基板中,該垂直切換的電壓調變介電材質構造包含:a.一第一導電元件用以設置在該基板的一第一水平層以及一第二導電元件設置在該基板的一第二水平層,該第二水平層不同於該第一水平層;b.一VSDM結構具有一特徵電壓及一垂直厚度,該VSDM結構設置在該基板的一第三水平層,該第三水平層不同於該第一水平層及該第二水平層;c.一電路元件至少一部分嵌入該基板,該電路元件具有一阻抗;及d.其中,該VSDM結構用以成為跨越垂直厚度的基本傳導,並且在該第一導電元件及該第二導電元件之間傳導電流以響應超過該特徵電壓的一ESD脈衝。 A vertically-switched voltage-modulated dielectric material (VSDM) structure is formed in a substrate, and the vertically-switched voltage-modulated dielectric material structure comprises: a. a first conductive element for being disposed on the substrate a horizontal layer and a second conductive element disposed on a second horizontal layer of the substrate, the second horizontal layer being different from the first horizontal layer; b. a VSDM structure having a characteristic voltage and a vertical thickness, the VSDM structure a third horizontal layer disposed on the substrate, the third horizontal layer being different from the first horizontal layer and the second horizontal layer; c. at least a portion of a circuit component is embedded in the substrate, the circuit component having an impedance; and d Wherein the VSDM structure is used to become substantially conductive across a vertical thickness and conduct current between the first conductive element and the second conductive element in response to an ESD pulse exceeding the characteristic voltage. 如申請專利範圍第1項所述之垂直切換的電壓調變介電材質構造,其中該第一導電元件為互連層、Z軸導電帶、銀膏、銅膏、塗銀的銅層、碳層、導電環氧樹脂、導電聚合物、電極、墊片、鉛、電路、通孔、電線或信號層。 The vertically-switched voltage-modulated dielectric material structure according to claim 1, wherein the first conductive element is an interconnect layer, a Z-axis conductive strip, a silver paste, a copper paste, a silver-coated copper layer, and a carbon. Layer, conductive epoxy, conductive polymer, electrode, gasket, lead, circuit, via, wire or signal layer. 如申請專利範圍第1項所述之垂直切換的電壓調變介電材質構造,其中該垂直厚度小於2密耳(mils)。 A vertically-switched voltage-modulated dielectric material construction as described in claim 1 wherein the vertical thickness is less than 2 mils. 如申請專利範圍第1項所述之垂直切換的電壓調變介電材質構造,其中該基板為一印刷電路板、單層或多層的印刷電路板、半導體裝置的封裝、發光二極體基板、積體電路基板、插板(interposer)、連接兩個或多個電子組件的平台、堆疊封裝規格、晶圓級封裝、封裝內封裝(package-in-package)、系統級封裝或至少兩個封裝或基板的堆疊組合。 The vertically-switched voltage-modulated dielectric material structure according to claim 1, wherein the substrate is a printed circuit board, a single-layer or multi-layer printed circuit board, a package of a semiconductor device, a light-emitting diode substrate, Integrated circuit substrate, interposer, platform for connecting two or more electronic components, stacked package specifications, wafer level package, package-in-package, system-in-package, or at least two packages Or a stacked combination of substrates. 如申請專利範圍第1項所述之垂直切換的電壓調變介電材質構造,其中更包含一電子裝置。 The vertically-switched voltage-modulated dielectric material structure as described in claim 1 further includes an electronic device. 如申請專利範圍第5項所述之垂直切換的電壓調變介電材 質構造,其中該電子裝置為一行動電話、平板電腦、電子閱讀器、行動電腦、桌上型電腦、伺服器、電視機、視訊顯示器、音樂播放器、個人健康管理裝置、發光二極體、包含至少一發光二極體或照明模組的裝置。 Vertically switched voltage-modulated dielectric material as described in claim 5 Qualitative structure, wherein the electronic device is a mobile phone, a tablet computer, an e-reader, a mobile computer, a desktop computer, a server, a television, a video display, a music player, a personal health management device, a light emitting diode, A device comprising at least one light emitting diode or a lighting module. 如申請專利範圍第1項所述之垂直切換的電壓調變介電材質構造,其中該電路元件包含電阻、電感、電容、鐵性電路元件、鐵性(ferroic)VSDM電路元件、二極體、電晶體、過濾器或具有阻抗的互連層至少其中之一。 The vertically-switched voltage-modulated dielectric material structure as described in claim 1, wherein the circuit component comprises a resistor, an inductor, a capacitor, a ferroelectric circuit component, a ferroic VSDM circuit component, a diode, At least one of a transistor, a filter, or an interconnect layer having an impedance. 一種包含基板及垂直切換的電壓調變介電材質(VSDM)構造的電子裝置,該VSDM構造結合在該基板中,該基板包含不同的三個水平層,該VSDM構造包含:a.一第一導電元件用以設置在該第一水平層,以及一第二導電元件設置在該第二水平層;b.一VSDM結構具有一特徵電壓及一垂直厚度,該VSDM結構設置在該第三水平層;c.一電路元件至少一部分嵌入該基板,該電路元件具有一阻抗;及d.其中,該VSDM結構用以成為跨越垂直厚度的基本傳導,並且在該第一導電元件及該第二導電元件之間傳導電流以響應超過該特徵電壓的一ESD脈衝,該VSDM構造為該電子裝置提供ESD防護。 An electronic device comprising a substrate and a vertically switched voltage-modulated dielectric material (VSDM) structure, the VSDM structure being incorporated in the substrate, the substrate comprising three different horizontal layers, the VSDM structure comprising: a. a conductive element is disposed on the first horizontal layer, and a second conductive element is disposed on the second horizontal layer; b. a VSDM structure has a characteristic voltage and a vertical thickness, and the VSDM structure is disposed in the third horizontal layer C. at least a portion of a circuit component embedded in the substrate, the circuit component having an impedance; and d. wherein the VSDM structure is used to become substantially conductive across a vertical thickness, and the first conductive component and the second conductive component are A current is conducted between them in response to an ESD pulse that exceeds the characteristic voltage, the VSDM configuration providing ESD protection for the electronic device. 如申請專利範圍第8項所述之電子裝置,其中該電子裝置為一行動電話、平板電腦、電子閱讀器、行動電腦、桌上型電腦、伺服器、電視機、視訊顯示器、音樂播放器、個人健康管理裝置、發光二極體、包含至少一發光二極體或照明模組的裝置。 The electronic device of claim 8, wherein the electronic device is a mobile phone, a tablet computer, an e-reader, a mobile computer, a desktop computer, a server, a television, a video display, a music player, A personal health management device, a light emitting diode, a device comprising at least one light emitting diode or a lighting module. 如申請專利範圍第8項所述之電子裝置,其中該第一導電元件為互連層、Z軸導電帶、銀膏、銅膏、塗銀的銅層、碳層、導電環氧樹脂、導電聚合物、電極、墊片、鉛、電路、通孔、電線或信號層。 The electronic device of claim 8, wherein the first conductive element is an interconnect layer, a Z-axis conductive strip, a silver paste, a copper paste, a silver coated copper layer, a carbon layer, a conductive epoxy, and a conductive Polymer, electrode, gasket, lead, circuit, via, wire or signal layer. 如申請專利範圍第8項所述之電子裝置,其中該垂直厚度小於2密耳(mils)。 The electronic device of claim 8, wherein the vertical thickness is less than 2 mils. 如申請專利範圍第8項所述之電子裝置,其中該基板為一印刷電路板、單層或多層的印刷電路板、半導體裝置的封裝、發光二極體基板、積體電路基板、插板(interposer)、連接兩個或多個電子組件的平台、堆疊封裝規格、晶圓級封裝、封裝內封裝(package-in-package)、系統級封裝或至少兩個封裝或基板的堆疊組合。 The electronic device of claim 8, wherein the substrate is a printed circuit board, a single-layer or multi-layer printed circuit board, a package of a semiconductor device, a light-emitting diode substrate, an integrated circuit substrate, and a board ( Interposer), a platform that connects two or more electronic components, a stacked package specification, a wafer level package, a package-in-package, a system-in-package, or a stacked combination of at least two packages or substrates. 如申請專利範圍第8項所述之電子裝置,其中該電路元件包含電阻、電感、電容、鐵性電路元件、鐵性(ferroic)VSDM電路元件、二極體、電晶體、過濾器或具有阻抗的互連層至少其中之一。 The electronic device of claim 8, wherein the circuit component comprises a resistor, an inductor, a capacitor, a ferroelectric circuit component, a ferroic VSDM circuit component, a diode, a transistor, a filter, or an impedance. At least one of the interconnect layers. 一種垂直切換的電壓調變介電(VSD)材質結構,其包含:a.一第一導電元件及一第二導電元件,該第一導電元件及該第二導電元件設置在一第一水平層;b.一互連層用以設置在一第二水平層;c.一第三導電元件,用以連接該第二導電元件至該互連層;及d.一VSD材質構造,用以設置在一第三水平層,該VSD材質構造具有一特徵電壓,跨越形成在該第一導電元件及該互連層之間的一垂直間隙;e.其中,該VSD材質構造用以垂直切換跨越該垂直間隙以響應超過該特徵電壓的一ESD脈衝。 A vertically-switched voltage-modulated dielectric (VSD) material structure comprising: a. a first conductive element and a second conductive element, the first conductive element and the second conductive element being disposed in a first horizontal layer b. an interconnect layer for being disposed in a second horizontal layer; c. a third conductive element for connecting the second conductive element to the interconnect layer; and d. a VSD material structure for setting In a third horizontal layer, the VSD material structure has a characteristic voltage spanning a vertical gap formed between the first conductive element and the interconnect layer; e. wherein the VSD material is configured to vertically switch across the The vertical gap is in response to an ESD pulse that exceeds the characteristic voltage. 如申請專利範圍第14項所述之結構,其中該第一導電元件為互連層、Z軸導電帶、銀膏、銅膏、塗銀的銅層、碳層、導電環氧樹脂、導電聚合物、電極、墊片、鉛、電路、通孔、電線或信號層。 The structure of claim 14, wherein the first conductive element is an interconnect layer, a Z-axis conductive strip, a silver paste, a copper paste, a silver coated copper layer, a carbon layer, a conductive epoxy resin, and a conductive polymerization. Object, electrode, gasket, lead, circuit, via, wire or signal layer. 如申請專利範圍第14項所述之結構,其中該垂直厚度小於2密耳(mils)。 The structure of claim 14, wherein the vertical thickness is less than 2 mils. 如申請專利範圍第14項所述之結構,其中該結構為包含 在一基板中。 The structure of claim 14, wherein the structure is included In a substrate. 如申請專利範圍第17項所述之結構,其中該基板為一印刷電路板、單層或多層的印刷電路板、半導體裝置的封裝、發光二極體基板、積體電路基板、插板(interposer)、連接兩個或多個電子組件的平台、堆疊封裝規格、晶圓級封裝、封裝內封裝(package-in-package)、系統級封裝或至少兩個封裝或基板的堆疊組合。 The structure of claim 17, wherein the substrate is a printed circuit board, a single or multi-layer printed circuit board, a package of a semiconductor device, a light-emitting diode substrate, an integrated circuit substrate, and an interposer. A platform that connects two or more electronic components, a stacked package specification, a wafer level package, a package-in-package, a system-in-package, or a stacked combination of at least two packages or substrates. 如申請專利範圍第14項所述之結構,其中該結構為包含在一電子裝置中。 The structure of claim 14, wherein the structure is included in an electronic device. 如申請專利範圍第19項所述之結構,其中該電子裝置為一行動電話、平板電腦、電子閱讀器、行動電腦、桌上型電腦、伺服器、電視機、視訊顯示器、音樂播放器、個人健康管理裝置、發光二極體、包含至少一發光二極體或照明模組的裝置。 The structure of claim 19, wherein the electronic device is a mobile phone, a tablet computer, an e-reader, a mobile computer, a desktop computer, a server, a television, a video display, a music player, and an individual. A health management device, a light emitting diode, and a device including at least one light emitting diode or a lighting module.
TW101134632A 2011-09-21 2012-09-21 Vertical switching voltage switchable dielectric material formation and structure TWI473542B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201161537490P 2011-09-21 2011-09-21

Publications (2)

Publication Number Publication Date
TW201330710A true TW201330710A (en) 2013-07-16
TWI473542B TWI473542B (en) 2015-02-11

Family

ID=47915104

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101134632A TWI473542B (en) 2011-09-21 2012-09-21 Vertical switching voltage switchable dielectric material formation and structure

Country Status (6)

Country Link
EP (1) EP2758992A4 (en)
JP (3) JP2014535157A (en)
KR (1) KR101923760B1 (en)
CN (1) CN103999217B (en)
TW (1) TWI473542B (en)
WO (1) WO2013044096A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI558290B (en) * 2015-08-24 2016-11-11 欣興電子股份有限公司 Manufacturing method of circuit board

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9214433B2 (en) * 2013-05-21 2015-12-15 Xilinx, Inc. Charge damage protection on an interposer for a stacked die assembly
US9401353B2 (en) 2014-08-08 2016-07-26 Qualcomm Incorporated Interposer integrated with 3D passive devices
US9583481B2 (en) 2014-09-30 2017-02-28 Taiwan Semiconductor Manufacturing Company Limited Semiconductor device comprising plurality of conductive portions disposed within wells and a nanowire coupled to conductive portion
KR102452045B1 (en) 2017-12-28 2022-10-07 (주)아모텍 Device for protecting overvoltage and method for manufacturing the same
KR102576106B1 (en) 2018-06-19 2023-09-08 주식회사 아모텍 Device for protecting overvoltag
KR20200028622A (en) 2018-09-07 2020-03-17 주식회사 아모텍 Device for reducing noise
KR102586946B1 (en) 2018-10-23 2023-10-10 주식회사 아모텍 Device for protecting overvoltage
KR20200073643A (en) 2018-12-14 2020-06-24 삼성전자주식회사 Semiconductor package and method of manufacturing semiconductor package
CN110055126A (en) * 2019-05-31 2019-07-26 青岛科技大学 A kind of MOF-Ti/TiOx core-shell type nano composite particles ER fluid and preparation method thereof
CN110794273A (en) * 2019-11-19 2020-02-14 哈尔滨理工大学 Potential time domain spectrum testing system with high-voltage driving protection electrode
IT202000016699A1 (en) * 2020-07-09 2022-01-09 Ingelva Srl EQUIPMENT AND METHOD FOR THE PREVENTION AND DAMPING OF VOLTAGE AND CURRENT PEAKS OF EXTERNAL AND INTERNAL ORIGIN FOR MEDIUM, HIGH AND VERY HIGH VOLTAGE POWER LINES

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2953309A (en) 1958-05-29 1960-09-20 Harry W Moore Apparatus for and method of winding stator coils
US7825491B2 (en) 2005-11-22 2010-11-02 Shocking Technologies, Inc. Light-emitting device using voltage switchable dielectric material
US7695644B2 (en) * 1999-08-27 2010-04-13 Shocking Technologies, Inc. Device applications for voltage switchable dielectric material having high aspect ratio particles
US20120195018A1 (en) * 2005-11-22 2012-08-02 Lex Kosowsky Wireless communication device using voltage switchable dielectric material
AU6531600A (en) * 1999-08-27 2001-03-26 Lex Kosowsky Current carrying structure using voltage switchable dielectric material
JP2001237586A (en) * 2000-02-25 2001-08-31 Matsushita Electric Ind Co Ltd Circuit board, module incorporating circuit part, and manufacturing method thereof
DE10392524B4 (en) * 2002-04-08 2008-08-07 OTC Littelfuse, Inc., Des Plaines Devices with voltage variable material for direct application
US6981319B2 (en) * 2003-02-13 2006-01-03 Shrier Karen P Method of manufacturing devices to protect election components
US7218492B2 (en) 2004-09-17 2007-05-15 Electronic Polymers, Inc. Devices and systems for electrostatic discharge suppression
KR100576872B1 (en) * 2004-09-17 2006-05-10 삼성전기주식회사 Nitride semiconductor light emitting diode with esd protection capacity
US20060152334A1 (en) * 2005-01-10 2006-07-13 Nathaniel Maercklein Electrostatic discharge protection for embedded components
JP2008533699A (en) * 2005-02-16 2008-08-21 サンミナ−エスシーアイ コーポレーション Selective deposition of embedded transient protection for printed circuit boards
CN101578710B (en) * 2005-11-22 2013-05-22 肖克科技有限公司 A light-emitting device using voltage switchable dielectric material
US7968014B2 (en) 2006-07-29 2011-06-28 Shocking Technologies, Inc. Device applications for voltage switchable dielectric material having high aspect ratio particles
MY145875A (en) 2006-09-24 2012-05-15 Shocking Technologies Inc Formulations for voltage switchable dielectric material having a stepped voltage response and methods for making the same
EP2067145A2 (en) * 2006-09-24 2009-06-10 Shocking Technologies, Inc. Technique for plating substrate devices using voltage switchable dielectric material and light assistance
US20120119168A9 (en) * 2006-11-21 2012-05-17 Robert Fleming Voltage switchable dielectric materials with low band gap polymer binder or composite
EP1990834B1 (en) 2007-05-10 2012-08-15 Texas Instruments France Local integration of non-linear sheet in integrated circuit packages for ESD/EOS protection
US7793236B2 (en) * 2007-06-13 2010-09-07 Shocking Technologies, Inc. System and method for including protective voltage switchable dielectric material in the design or simulation of substrate devices
US8203421B2 (en) * 2008-04-14 2012-06-19 Shocking Technologies, Inc. Substrate device or package using embedded layer of voltage switchable dielectric material in a vertical switching configuration
US20100047535A1 (en) * 2008-08-22 2010-02-25 Lex Kosowsky Core layer structure having voltage switchable dielectric material
US20100065785A1 (en) * 2008-09-17 2010-03-18 Lex Kosowsky Voltage switchable dielectric material containing boron compound
US8399773B2 (en) * 2009-01-27 2013-03-19 Shocking Technologies, Inc. Substrates having voltage switchable dielectric materials
US9226391B2 (en) * 2009-01-27 2015-12-29 Littelfuse, Inc. Substrates having voltage switchable dielectric materials
CN102550132A (en) * 2009-03-26 2012-07-04 肖克科技有限公司 Components having voltage switchable dielectric materials
US9224728B2 (en) * 2010-02-26 2015-12-29 Littelfuse, Inc. Embedded protection against spurious electrical events
US9320135B2 (en) * 2010-02-26 2016-04-19 Littelfuse, Inc. Electric discharge protection for surface mounted and embedded components

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI558290B (en) * 2015-08-24 2016-11-11 欣興電子股份有限公司 Manufacturing method of circuit board

Also Published As

Publication number Publication date
KR101923760B1 (en) 2018-11-29
JP2014535157A (en) 2014-12-25
TWI473542B (en) 2015-02-11
EP2758992A2 (en) 2014-07-30
JP2020080419A (en) 2020-05-28
JP2017152711A (en) 2017-08-31
CN103999217B (en) 2017-06-06
CN103999217A (en) 2014-08-20
JP6860718B2 (en) 2021-04-21
KR20140110838A (en) 2014-09-17
WO2013044096A2 (en) 2013-03-28
EP2758992A4 (en) 2015-08-12
WO2013044096A3 (en) 2013-07-04

Similar Documents

Publication Publication Date Title
TWI473542B (en) Vertical switching voltage switchable dielectric material formation and structure
Zhou et al. Stretchable high-permittivity nanocomposites for epidermal alternating-current electroluminescent displays
TWI510148B (en) System for protecting an electronic component against an electrostatic discharge (esd) pulse
Jing et al. Freestanding functional structures by aerosol‐jet printing for stretchable electronics and sensing applications
US9076884B2 (en) Compliant printed circuit semiconductor package
US9184145B2 (en) Semiconductor device package adapter
US9054097B2 (en) Compliant printed circuit area array semiconductor device package
JP2015517196A (en) Flexible circuit and flexible substrate having dielectric material switchable by voltage
US20150013901A1 (en) Matrix defined electrical circuit structure
CN102550132A (en) Components having voltage switchable dielectric materials
US20120200963A1 (en) System and method for protecting a computing device using vsd material, and method for designing same
TWI533775B (en) Wiring substrate with customization layers
TW201236135A (en) Light-emitting devices comprising non-linear electrically protective material and circuit thereof
CN104952741B (en) Electric circuit on flexible base board
Das et al. Nano‐and micro‐filled conducting adhesives for z‐axis interconnections: new direction for high‐speed, high‐density, organic microelectronics packaging
WO2012043795A1 (en) Circuit board, power supply structure, method for manufacturing circuit board, and method for manufacturing power supply structure
KR20200030520A (en) Interdigitated 2-d positive temperature coefficient device
KR102650021B1 (en) Squid sensor and manufacturing method thereof
TW201223349A (en) Embedded protection against spurious electrical events
CN116940176A (en) Backboard, flexible circuit board, display module and display device
Lee et al. Backside bonding for extremely narrow bezel at the bottom of flexible displays