TW201330127A - Metal layer structure of semiconductor device as well as manufacturing method of metal layer structure and semiconductor device using metal layer structure - Google Patents

Metal layer structure of semiconductor device as well as manufacturing method of metal layer structure and semiconductor device using metal layer structure Download PDF

Info

Publication number
TW201330127A
TW201330127A TW101131180A TW101131180A TW201330127A TW 201330127 A TW201330127 A TW 201330127A TW 101131180 A TW101131180 A TW 101131180A TW 101131180 A TW101131180 A TW 101131180A TW 201330127 A TW201330127 A TW 201330127A
Authority
TW
Taiwan
Prior art keywords
layer
conductive
semiconductor device
metal layer
bump
Prior art date
Application number
TW101131180A
Other languages
Chinese (zh)
Other versions
TWI527135B (en
Inventor
bu-dong You
Original Assignee
Silergy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Silergy Corp filed Critical Silergy Corp
Publication of TW201330127A publication Critical patent/TW201330127A/en
Application granted granted Critical
Publication of TWI527135B publication Critical patent/TWI527135B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

The present invention relates to a metal layer structure of a semiconductor device as well as a manufacturing method of the metal layer structure and the semiconductor device using the metal layer structure. The metal layer structure of the semiconductor device comprises a first conductive layer located on a wafer, wherein the first conductive layer comprises one group of separated first conductive sub-layers, the group of separated first conductive sub-layers are provided with n different electric polarities, and n is more than or equal to 2; a first isolating layer arranged on the first conductive layer, wherein the first isolating layer comprises one group of first through holes for exposing the upper surfaces of the first conductive sub-layers selectively and partially; a second conductive layer located on the first isolating layer, wherein the second conductive layer comprises one group of separated second conductive sub-layers, the second conductive sub-layers are connected with the exposed upper surfaces of the first conductive sub-layers with the same electric polarity through the first through holes; a second isolating layer arranged on the second conductive layer and the first isolating layer, wherein the second isolating layer comprises one group of second through holes for exposing the upper surfaces of the second conductive sub-layers selectively and partially exposed; and a bump layer located at the second through holes for leading out the n different electric polarities.

Description

半導體裝置的金屬層結構、製造方法及應用其的半導體裝置 Metal layer structure of semiconductor device, manufacturing method and semiconductor device using same

本發明關於一種集成半導體裝置,尤其關於一種半導體裝置的金屬層結構及其製造方法。 The present invention relates to an integrated semiconductor device, and more particularly to a metal layer structure of a semiconductor device and a method of fabricating the same.

對於大電流的電源積體電路而言,如單片集成的電壓調節器等,可以採用凸塊連接的倒裝封裝方式來取代傳統的帶引線的壓焊封裝方式(wire bonding)。由於採用倒裝封裝結構的集成裝置具有非常低的外部連接電阻,所以,裝置內部連接結構的電阻就變得至關重要。要降低功率損耗獲得高的效率,則必須降低裝置內部連接結構的電阻。大多數的電源積體電路都是採用0.25um以上的現有的成熟的半導體製造程序來製造的。這些成熟的半導體製造程序採用鋁,包括鋁合金,如鋁銅,作為連接結構的主要金屬材料。由於厚的金屬層能夠減小金屬電阻,因此,為了降低連接結構的電阻,通常採用厚的鋁金屬層,比如厚度2um及以上的鋁金屬層,作為這樣的內部連接結構。一般,在這些成熟的製造程序的多層金屬層中,只有其中的最頂部的一層金屬層可以採用厚的鋁金屬層。 For high-current power integrated circuits, such as monolithic integrated voltage regulators, bump-connected flip-chip packages can be used to replace traditional lead-bonded wire bonding. Since the integrated device with the flip-chip package structure has a very low external connection resistance, the resistance of the internal connection structure of the device becomes critical. To reduce power loss for high efficiency, the resistance of the internal connection structure of the device must be reduced. Most power integrated circuits are manufactured using existing mature semiconductor manufacturing processes above 0.25 um. These mature semiconductor manufacturing processes use aluminum, including aluminum alloys, such as aluminum and copper, as the primary metal material for the joint structure. Since the thick metal layer can reduce the metal resistance, in order to lower the resistance of the connection structure, a thick aluminum metal layer such as an aluminum metal layer having a thickness of 2 um or more is usually employed as such an internal connection structure. Generally, of the multilayer metal layers of these mature manufacturing processes, only the topmost metal layer may be a thick aluminum metal layer.

參見圖1a,所示為現有的一種採用凸塊結構的半導體裝置的金屬層結構。其包括晶片101,位於晶片之上的金屬焊墊102,第一隔離層103覆蓋所述晶片101的剩餘區域,第一隔離層103上的通孔103-1使所述金屬焊墊102 裸露;凸塊下金屬層(UBM)106沉積在通孔103-1處;凸塊(如焊錫球)設置在通孔103-1處的凸塊下金屬層UBM上,以將金屬焊墊102的電極性向外引出。可見,採用這種半導體裝置結構,只有所述金屬焊墊102所表示的一層金屬層;並且,每一凸塊107只允許在其正下方的單一的金屬焊墊102(電極)和一個通孔103-1;再者,凸塊107、通孔103-1和金屬焊墊102的尺寸通常情況下很大,而具有電極性的金屬焊墊102所表示的一層金屬層上的電極的佈局、大小和間距受正上方凸塊的限制;因此,這樣的半導體裝置金屬層結構,不同電極之間無法實現優化的低阻抗連接。 Referring to FIG. 1a, there is shown a metal layer structure of a conventional semiconductor device using a bump structure. It includes a wafer 101, a metal pad 102 on the wafer, a first isolation layer 103 covering the remaining area of the wafer 101, and a via 103-1 on the first isolation layer 103 to the metal pad 102. Exposed; a bump under metal layer (UBM) 106 is deposited at the via hole 103-1; a bump (such as a solder ball) is disposed on the under bump metal layer UBM at the via hole 103-1 to bond the metal pad 102 The polarity of the electrode is taken out. It can be seen that with such a semiconductor device structure, only one metal layer is represented by the metal pad 102; and each bump 107 only allows a single metal pad 102 (electrode) and a via hole directly under it. 103-1; further, the size of the bump 107, the via hole 103-1, and the metal pad 102 is generally large, and the layout of the electrode on a metal layer represented by the electrode metal pad 102, The size and spacing are limited by the bumps directly above; therefore, such a semiconductor device metal layer structure, an optimized low impedance connection between different electrodes cannot be achieved.

參考圖1b,所示為現有的另一種採用銅線路重布層(RDL)的半導體裝置的金屬層結構。其包括晶片101,位於晶片之上的金屬焊墊102,第一隔離層103覆蓋所述晶片101的剩餘區域,第一隔離層103上的通孔103-1使所述金屬焊墊102裸露;銅金屬層104位於所述第一隔離層103之上,並透過通孔103-1與所述金屬焊墊102實現電連接;第二隔離層105覆蓋所述銅金屬層104和第一隔離層103的剩餘區域,另一通孔105-1處作為新的金屬焊墊區域,以沉積凸塊。透過這種金屬層結構,銅金屬層103沿垂直方向A-A’透過第一隔離層103的通孔103-1與晶片上的原有金屬焊墊102接觸;而新的金屬焊墊區域105-1則沿另一垂直方向B-B’,以將金屬焊墊102的電極從另一方向引出,從而用於外部連接。可見,採用這種 半導體裝置的金屬層結構,可沉積凸塊的通孔105-1的正下方無法允許第一隔離層103上的通孔103-1的存在;與圖1a所示的實施例類似,通孔103-1和通孔105-1的尺寸和間距均較大,因此,這樣的帶有銅金屬層的半導體裝置的金屬層結構,同樣無法實現不同電極之間的優化的低阻抗內部連接。 Referring to FIG. 1b, there is shown another metal layer structure of a semiconductor device using a copper line redistribution layer (RDL). It includes a wafer 101, a metal pad 102 on the wafer, a first isolation layer 103 covering the remaining area of the wafer 101, and a via 103-1 on the first isolation layer 103 exposes the metal pad 102; A copper metal layer 104 is disposed on the first isolation layer 103 and electrically connected to the metal pad 102 through the via hole 103-1; the second isolation layer 105 covers the copper metal layer 104 and the first isolation layer The remaining area of 103, another via 105-1, acts as a new metal pad area to deposit bumps. Through the metal layer structure, the copper metal layer 103 is in contact with the original metal pad 102 on the wafer through the through hole 103-1 of the first isolation layer 103 in the vertical direction A-A'; and the new metal pad region 105 -1 is in the other vertical direction BB' to take the electrodes of the metal pad 102 from the other direction for external connection. Visible, using this The metal layer structure of the semiconductor device, directly under the via hole 105-1 where the bump can be deposited, cannot allow the presence of the via hole 103-1 on the first isolation layer 103; similar to the embodiment shown in FIG. 1a, the via 103 Both -1 and via 105-1 are relatively large in size and spacing, and therefore, the metal layer structure of such a semiconductor device with a copper metal layer cannot achieve an optimized low-impedance internal connection between different electrodes.

可見,採用現有技術的半導體裝置的金屬層結構,均無法獲得低的內部連接阻抗。對大電流半導體裝置(如功率裝置)而言,這種缺陷將會更加顯著,功率損耗將會更大。 It can be seen that the low internal connection resistance cannot be obtained by the metal layer structure of the prior art semiconductor device. For high current semiconductor devices (such as power devices), this defect will be more significant and power loss will be greater.

但是,對大多數的電源類積體電路而言,尤其對於含有單片集成功率裝置的積體電路,需要兩層較低電阻值的金屬層才能實現優化的內部連接結構。集成功率裝置通常包括成千上萬的裝置元胞,這些裝置元胞的電極透過金屬層連接在一起。功率裝置的每一裝置元胞都具有兩個功率電極,透過這兩個功率電極大電流流入或者流出所述功率裝置。例如,對於應用最廣泛的集成功率裝置MOSFET橫向雙擴散金屬氧化物半導體場效應電晶體而言,兩個功率電極分別為裝置的汲極和源極。如果該積體電路裝置的金屬層結構能夠包括兩層低電阻值的金屬層,並且所述兩層低電阻值的金屬層上的電極的佈局能夠保證所述低電阻值的金屬層與裝置元胞的兩個功率電極之間可以實現優化的直接連接,則可以降低裝置內部的總的連接電阻,從而能夠減小功率損耗。 However, for most power-integrated circuits, especially for integrated circuits with monolithic integrated power devices, two layers of lower resistance metal layers are required to achieve an optimized internal connection structure. Integrated power devices typically include thousands of device cells whose electrodes are connected together through a metal layer. Each device cell of the power device has two power electrodes through which a large current flows into or out of the power device. For example, for the most widely used integrated power device MOSFET lateral double-diffused metal oxide semiconductor field effect transistor, the two power electrodes are the drain and source of the device, respectively. If the metal layer structure of the integrated circuit device can include two layers of low resistance metal layers, and the layout of the electrodes on the two low resistance metal layers can ensure the low resistance metal layer and the device element An optimized direct connection between the two power electrodes of the cell reduces the overall connection resistance inside the device, thereby reducing power loss.

一些先進的半導體製造程序,如線寬0.18um或者以下,透過複雜的大馬士革銅互聯線程序可以實現多個低阻值的銅金屬層。但是,對大多數線寬0.25um以上的成本較低的成熟的製造程序而言,大馬士革銅互聯線程序並不能在這些程序中使用。 Some advanced semiconductor manufacturing processes, such as line widths of 0.18um or less, enable multiple low-resistance copper metal layers through the complex Damascus copper interconnect process. However, for most mature manufacturing processes where the line width is 0.25 um or less, the Damascus Copper Interconnect program cannot be used in these programs.

有鑒於此,本發明的目的在於在現有的成熟的半導體製造程序中提供一種成本相對較小的可實現優化的低阻抗連接的具有兩層低阻值的金屬層的帶有凸塊的裝置內部連接結構。 In view of the above, it is an object of the present invention to provide a bump-like device interior having a relatively low-impedance metal layer having two layers of low resistance in an existing mature semiconductor manufacturing process. Connection structure.

依據本發明一實施例的一種半導體裝置的金屬層結構製造方法,包括以下步驟:在晶片上沉積第一導電層,所述第一導電層包括一組分離的第一導電子層,所述第一導電子層具有n種不同的電極性,n2;在所述第一導電層上沉積第一隔離層,所述第一隔離層具有一組第一通孔,以選擇性的將所述第一導電子層的部分上表面裸露;在所述第一隔離層上沉積第二導電層,所述第二導電層包括一組分離的第二導電子層,所述第二導電子層透過所述第一通孔與極性相同的所述第一導電子層的裸露的上表面連接;在所述第二導電層和所述第一隔離層上沉積第二隔離 層,所述第二隔離層具有一組第二通孔,以選擇性的將所述第二導電子層的部分上表面裸露,所述每一第二通孔在多個所述第一通孔的正上方;在所述第二通孔處沉積一凸塊,以形成凸塊層,從而將所述n種不同的電極性引出。 A method of fabricating a metal layer structure of a semiconductor device according to an embodiment of the invention includes the steps of: depositing a first conductive layer on a wafer, the first conductive layer comprising a plurality of separated first conductive sub-layers, the first A conductive sublayer has n different electrode properties, n Depositing a first isolation layer on the first conductive layer, the first isolation layer having a set of first via holes to selectively expose a portion of the upper surface of the first conductive sub-layer; Depositing a second conductive layer on the first isolation layer, the second conductive layer includes a set of separated second conductive sub-layers, the second conductive sub-layer passing through the first via and the same polarity a bare upper surface connection of a conductive sub-layer; a second isolation layer deposited on the second conductive layer and the first isolation layer, the second isolation layer having a set of second vias for selective Excluding a portion of the upper surface of the second conductive sub-layer, each of the second via holes directly above the plurality of the first via holes; depositing a bump at the second via hole to form a bump layer to extract the n different electrode properties.

較佳的,所述第二導電子層與多個所述第一導電子層的裸露的上表面連接。 Preferably, the second conductive sub-layer is connected to the exposed upper surface of the plurality of first conductive sub-layers.

較佳的,所述第二通孔在多個不同電極性的所述第一導電子層的正上方。 Preferably, the second via hole is directly above the plurality of first conductive sub-layers of different polarity.

較佳的,所述第一導電層為由濺射程序形成的厚鋁金屬層。 Preferably, the first conductive layer is a thick aluminum metal layer formed by a sputtering process.

較佳的,所述第一導電層和所述晶片之間包括一層或者多層與所述第一導電層不同的金屬層。 Preferably, the first conductive layer and the wafer comprise one or more metal layers different from the first conductive layer.

較佳的,所述第一隔離層包括半導體裝置的鈍化保護層。 Preferably, the first isolation layer comprises a passivation protective layer of the semiconductor device.

較佳的,所述第一隔離層還包括位於所述鈍化保護層之上的聚醯亞胺層。 Preferably, the first isolation layer further comprises a polyimide layer on the passivation protective layer.

較佳的,所述第二導電層為由電鍍程序形成的銅導電層。 Preferably, the second conductive layer is a copper conductive layer formed by a plating process.

較佳的,所述凸塊為錫凸塊或者銅柱凸塊或者金凸塊。 Preferably, the bump is a tin bump or a copper stud bump or a gold bump.

依據本發明一實施例的一種半導體裝置的金屬層結構,包括:位於晶片之上的第一導電層,所述第一導電層包括一 組分離的第一導電子層,所述一組第一導電子層具有n種不同的電極性,n2;在所述第一導電層上的第一隔離層,所述第一隔離層具有一組第一通孔,以選擇性的將所述第一導電子層的部分上表面裸露;在所述第一隔離層上的第二導電層,所述第二導電層包括一組分離的第二導電子層,所述第二導電子層透過所述第一通孔與極性相同的所述第一導電子層的裸露的上表面連接;在所述第二導電層和所述第一隔離層上的第二隔離層,所述第二隔離層具有一組第二通孔,以選擇性的將所述第二導電子層的部分上表面裸露,所述第二通孔在多個所述第一通孔的正上方;位於所述第二通孔處的凸塊層,以將所述n種不同的電極性引出。 A metal layer structure of a semiconductor device according to an embodiment of the invention includes: a first conductive layer on a wafer, the first conductive layer comprising a plurality of separated first conductive sublayers, the first set The electron conducting layer has n different kinds of electrodes, n 2; a first isolation layer on the first conductive layer, the first isolation layer has a set of first via holes to selectively expose a portion of the upper surface of the first conductive sub-layer; a second conductive layer on the first isolation layer, the second conductive layer includes a plurality of separated second conductive sub-layers, and the second conductive sub-layer passes through the first via hole and has the same polarity a bare upper surface of a conductive sub-layer; a second isolation layer on the second conductive layer and the first isolation layer, the second isolation layer having a second set of vias for selective Excluding a portion of the upper surface of the second conductive sub-layer, the second via being directly above the plurality of the first vias; a bump layer at the second via to n different electrode conductances.

較佳的,所述第二通孔在多個不同電極性的所述第一導電子層的正上方。 Preferably, the second via hole is directly above the plurality of first conductive sub-layers of different polarity.

較佳的,所述第一導電層為由濺射程序形成的厚鋁金屬層。 Preferably, the first conductive layer is a thick aluminum metal layer formed by a sputtering process.

進一步的,所述金屬層結構還包括位於所述第一導電層和所述晶片之間的一層或者多層與所述第一導電層不同的金屬層。 Further, the metal layer structure further includes one or more metal layers different from the first conductive layer between the first conductive layer and the wafer.

較佳的,所述第一隔離層包括半導體裝置的鈍化保護層。 Preferably, the first isolation layer comprises a passivation protective layer of the semiconductor device.

較佳的,所述第一隔離層還包括位於所述鈍化保護層之上的聚醯亞胺層。 Preferably, the first isolation layer further comprises a polyimide layer on the passivation protective layer.

較佳的,所述第二導電層包括由電鍍程序形成的一銅金屬層。 Preferably, the second conductive layer comprises a copper metal layer formed by a plating process.

較佳的,所述凸塊為錫凸塊或者銅柱凸塊或者金凸塊。 Preferably, the bump is a tin bump or a copper stud bump or a gold bump.

依據本發明一實施例的一種半導體裝置,包括上述任一金屬層結構,以將所述半導體裝置的不同電極透過所述凸塊層向外引出。 A semiconductor device according to an embodiment of the invention includes any of the above metal layer structures for guiding different electrodes of the semiconductor device outward through the bump layer.

較佳的,所述半導體裝置的金屬層結構中,相鄰的第二導電子層的邊緣呈彎折形狀以形成突出區域,所述突出區域透過所述第一通孔連接至相應的第一導電子層的突出區域。 Preferably, in the metal layer structure of the semiconductor device, edges of adjacent second conductive sub-layers are bent to form a protruding region, and the protruding regions are connected to the corresponding first through the first through holes. The protruding area of the electron guiding layer.

依據本發明實施例的半導體裝置的金屬層結構及其連接方法,第二隔離層上的通孔直接在第一隔離層的多個通孔之上;並且,第一導電層上的多個不同電極性的第一導電子層在凸塊的正下方,從而低電阻值的第一導電層上的第一導電子層的佈局、大小和第一導電子層之間的間距不再受上方凸塊的限制,減小了大電流路徑的電阻值,降低了功率損耗。對集成功率裝置而言實現了非常小的內部連接電阻值,大大減小了功率損耗,提高了效率。 According to the metal layer structure of the semiconductor device and the method of connecting the same according to the embodiment of the present invention, the via holes on the second isolation layer are directly over the plurality of via holes of the first isolation layer; and, the plurality of different layers on the first conductive layer The first conductive sub-layer of the electrode is directly under the bump, so that the layout and size of the first conductive sub-layer on the first conductive layer of low resistance value and the spacing between the first conductive sub-layers are no longer convex The block limit reduces the resistance of the large current path and reduces the power loss. A very small internal connection resistance value is achieved for the integrated power device, which greatly reduces power loss and improves efficiency.

以下結合附圖對本發明的幾個較佳實施例進行詳細描 述,但本發明並不僅僅限於這些實施例。本發明涵蓋任何在本發明的精髓和範圍上做的替代、修改、等效方法以及方案。為了使公眾對本發明有徹底的瞭解,在以下本發明較佳實施例中詳細說明了具體的細節,而對本領域技術人員來說沒有這些細節的描述也可以完全理解本發明。 DETAILED DESCRIPTION OF THE INVENTION Several preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. However, the invention is not limited to only these embodiments. The present invention encompasses any alternatives, modifications, equivalents and alternatives to the spirit and scope of the invention. The details of the invention are described in detail in the preferred embodiments of the present invention, and the invention may be fully understood by those skilled in the art.

以下結合具體實施例詳細說明依據本發明的半導體裝置的金屬層結構的製造方法。 Hereinafter, a method of manufacturing a metal layer structure of a semiconductor device according to the present invention will be described in detail with reference to specific embodiments.

結合附圖2所示的依據本發明的一種半導體裝置的金屬層結構的製造方法的一較佳實施例的流程圖以及圖3a-圖3e所示的一種實現半導體裝置的金屬層製造方法的示意圖來詳細說明本發明。在該實施例中,為了方便圖示說明,僅僅示出了其中的一個金屬層結構單元,本領域技術人員可以得知,所述半導體裝置的金屬層結構包括多個所述金屬層結構單元。依據本發明的該實施例的金屬層結構的製造方法,包括以下步驟: S201:在晶片上沉積第一導電層;所述第一導電層包括一組分離的第一導電子層,所述第一導電子層具有n種不同的電極性,n2;S202:在所述第一導電層上沉積第一隔離層;所述第一隔離層具有一組第一通孔,以選擇性的將所述第一導電子層的部分上表面裸露;S203:在所述第一隔離層上沉積第二導電層;所述第二導電層包括一組分離的第二導電子層,所述第二導電子層透過所述第一通孔與極性相同的所述第一導 電子層的裸露的上表面連接;S204:在所述第二導電層和所述第一隔離層上沉積第二隔離層;所述第二隔離層具有一組第二通孔,以選擇性的將所述第二導電子層的部分上表面裸露;S205:在所述第二通孔處沉積凸塊,以形成凸塊層,從而將所述n種不同的電極性引出。 A flowchart of a preferred embodiment of a method for fabricating a metal layer structure of a semiconductor device according to the present invention, and a schematic diagram of a method for fabricating a metal layer for implementing a semiconductor device, shown in FIGS. 3a-3e, in conjunction with FIG. The invention will be described in detail. In this embodiment, for convenience of illustration, only one of the metal layer structural units is shown, and those skilled in the art will appreciate that the metal layer structure of the semiconductor device includes a plurality of the metal layer structural units. A method of fabricating a metal layer structure according to this embodiment of the present invention includes the following steps: S201: depositing a first conductive layer on a wafer; the first conductive layer includes a set of separated first conductive sub-layers, the first A conductive sublayer has n different electrode properties, n 2: S202: depositing a first isolation layer on the first conductive layer; the first isolation layer has a set of first via holes to selectively expose a portion of the upper surface of the first conductive sub-layer; S203: depositing a second conductive layer on the first isolation layer; the second conductive layer includes a set of separated second conductive sub-layers, the second conductive sub-layer passing through the first via hole and having the same polarity a bare upper surface of the first conductive sub-layer is connected; S204: depositing a second isolation layer on the second conductive layer and the first isolation layer; the second isolation layer has a second pass a hole for selectively exposing a portion of the upper surface of the second conductive sub-layer; S205: depositing a bump at the second via to form a bump layer, thereby the n different kinds of electrodes Lead out.

透過圖2所示的各導電層和隔離層之間的連接方法,利用凸塊層實現與晶片上的電極的電性連接,從而將電極信號引出來進行外部電連接。 Through the connection method between the conductive layers and the isolation layers shown in FIG. 2, the bump layers are used to electrically connect the electrodes on the wafer, thereby guiding the electrode signals for external electrical connection.

其中,在步驟S201中,第一導電層302可以為由濺射程序形成的金屬層,如厚鋁金屬層,或者為由不同屬性的多層金屬層疊加組成。所述第一導電層的厚度可以為3um;所述第一導電子層302-1根據所述第一通孔303-1的尺寸大小依次排列在所述晶片301上。例如,所述第一通孔303-1的尺寸為40um,其小於現有技術中如圖1a所採用的通孔尺寸(如採用直徑300um的錫球凸塊,圖1a所採用的通孔大約為240um)。這樣,所述第一導電層中兩個間隔的相同電極型的第一導電子層302-1之間的最大距離不超過50um,與上方凸塊的直徑大小無關。 Wherein, in step S201, the first conductive layer 302 may be a metal layer formed by a sputtering process, such as a thick aluminum metal layer, or a multi-layer metal layer superposed by different properties. The thickness of the first conductive layer may be 3 um; the first conductive sub-layer 302-1 is sequentially arranged on the wafer 301 according to the size of the first via 303-1. For example, the size of the first through hole 303-1 is 40 um, which is smaller than the through hole size used in FIG. 1a in the prior art (for example, a solder ball bump having a diameter of 300 μm is used, and the through hole used in FIG. 1a is approximately 240um). Thus, the maximum distance between the two first conductive sub-layers 302-1 of the same electrode type in the first conductive layer does not exceed 50 um, regardless of the diameter of the upper bump.

在步驟S202中,所述第一通孔303-1的尺寸小於所述第一導電子層302-1的尺寸,以選擇性的將所述第一導電子層302-1的部分上表面裸露;所述第一隔離層303除去第一通孔303-1的區域外,完全覆蓋第一導電層302和 晶片301的剩餘的裸露區域。 In step S202, the size of the first via hole 303-1 is smaller than the size of the first conductive sub-layer 302-1 to selectively expose a part of the upper surface of the first conductive sub-layer 302-1. The first isolation layer 303 is completely covered by the first conductive layer 302 and removed from the area of the first via hole 303-1. The remaining bare areas of the wafer 301.

所述第一隔離層303可以為半導體裝置的鈍化保護層,如可以為由CVD程序形成的保護層;所述保護層可以為二氧化矽或者磷矽酸玻璃或者氮化矽或者SOG或者其任意組合。 The first isolation layer 303 may be a passivation protective layer of a semiconductor device, such as a protective layer formed by a CVD process; the protective layer may be cerium oxide or phosphoric acid glass or tantalum nitride or SOG or any of them. combination.

較佳的,所述第一隔離層303在所述鈍化保護層的基礎上,還可以包括一聚醯亞胺層幫助使第一導電層和鈍化保護層後形成後的不平整矽表面平坦化。此時,所述第一通孔303-1可以由兩部分組成,其中,第一部分為所述鈍化保護層上的第一隔離通孔,第二部分為所述聚醯亞胺層上的第二隔離通孔;所述第一隔離通孔和所述第二隔離通孔沿垂直方向對齊,並且,兩者的尺寸可以相同或者不相同,以共同形成所述第一通孔303-1。 Preferably, the first isolation layer 303 may further include a polyimide layer on the basis of the passivation protective layer to help planarize the uneven surface after the first conductive layer and the passivation protective layer are formed. . At this time, the first through hole 303-1 may be composed of two parts, wherein the first portion is the first isolated through hole on the passivation protective layer, and the second portion is the first on the polyimide layer Two isolation vias; the first isolation vias and the second isolation vias are aligned in a vertical direction, and both may be the same or different in size to collectively form the first vias 303-1.

第一隔離層303不僅能夠為第一導電層302和第二導電層304提供隔離;並且,可以為第二導電層304和凸塊層306提供機械支撐。所述聚醯亞胺層可以釋放由第二導電層304引起的應力。 The first isolation layer 303 can not only provide isolation for the first conductive layer 302 and the second conductive layer 304; and, can provide mechanical support for the second conductive layer 304 and the bump layer 306. The polyimide layer may release stress caused by the second conductive layer 304.

另外,由聚醯亞胺層和鈍化保護層組成的第一隔離層可以幫助使矽表面平坦化,方便後續的第二導電層304的沉積。 In addition, a first spacer layer composed of a polyimide layer and a passivation protective layer can help planarize the surface of the crucible to facilitate deposition of the subsequent second conductive layer 304.

其中,所述鈍化保護層可以由0.5um的磷矽酸玻璃和0.7um的氮化矽組成;所述聚醯亞胺層的厚度可以為5um。 Wherein, the passivation protective layer may be composed of 0.5 um phosphoric acid glass and 0.7 um tantalum nitride; the polyimide layer may have a thickness of 5 um.

在步驟S203中,所述第二導電層304的形成可以包 括以下步驟:在所述第一隔離層303上沉積凸塊下金屬層;在所述凸塊下金屬層上沉積一層光阻劑,使用掩模版,利用光刻蝕技術在光阻劑上蝕刻出一定圖案,暴露出部分的凸塊下金屬層;在沒有被所述光阻劑覆蓋的暴露的所述凸塊下金屬層上電鍍一層金屬層;移除剩餘的所述光阻劑;蝕刻無所述金屬層覆蓋的凸塊下金屬層部分,以形成不同的第二導電子層;所述凸塊下金屬層和所述金屬層一起作為所述第二導電層304。 In step S203, the formation of the second conductive layer 304 may be packaged. The method includes the steps of: depositing a lower under bump metal layer on the first isolation layer 303; depositing a photoresist on the under bump metal layer, etching the photoresist on the photoresist by using a reticle Forming a pattern to expose a portion of the under bump metal layer; plating a metal layer on the exposed under bump metal layer not covered by the photoresist; removing the remaining photoresist; etching The portion of the under bump metal layer covered by the metal layer is not formed to form a different second conductive sub-layer; the under bump metal layer and the metal layer together serve as the second conductive layer 304.

其中,所述金屬層可以為由電鍍程序形成的銅金屬層;所述銅金屬層的厚度為10um。所述金屬層可以幫助使第一隔離層和第一通孔形成後的不平整矽表面平坦化,為後續建立在第一隔離層的多個通孔之上的凸塊層306的沉積提供可能。 Wherein, the metal layer may be a copper metal layer formed by a plating process; the copper metal layer has a thickness of 10 um. The metal layer can help planarize the uneven surface of the first isolation layer and the first via hole, and provide a possibility for deposition of the bump layer 306 which is subsequently established over the plurality of via holes of the first isolation layer. .

所述第二導電層304完全覆蓋所述第一通孔302-1;所述第二導電子層304-1與多個同極性的所述第一導電子層302-1的裸露的上表面連接。 The second conductive layer 304 completely covers the first through hole 302-1; the second conductive sub-layer 304-1 and the exposed upper surface of the plurality of first conductive sub-layers 302-1 of the same polarity connection.

在步驟S204中,所述第二隔離層305為由鍍膜程序形成的聚醯亞胺層;所述第二隔離層305的厚度可以為10um。 In step S204, the second isolation layer 305 is a polyimide layer formed by a coating process; the second isolation layer 305 may have a thickness of 10 um.

在步驟S205中,所述凸塊層306可以為錫凸塊,銅 柱凸塊,或者金凸塊;其中錫凸塊的形成步驟可以為:在所述第二通孔區域植入焊錫;所述焊錫回流,凝固,從而形成焊錫球。 In step S205, the bump layer 306 may be a tin bump, copper. a pillar bump, or a gold bump; wherein the tin bump may be formed by implanting solder in the second via region; the solder reflows and solidifies to form a solder ball.

另外,在步驟S205之前,還可以包括,在所述第二隔離層305上沉積另一凸塊下金屬層和/或另一金屬層,作為黏附層、阻障層以及濕潤層,以提高凸塊連接的可靠性。 In addition, before step S205, the method further includes: depositing another under bump metal layer and/or another metal layer on the second isolation layer 305 as an adhesion layer, a barrier layer, and a wet layer to improve the convexity. The reliability of the block connection.

按照圖2和圖3a-圖3e所示的半導體裝置的金屬層製造方法的流程圖和示意圖,可以把第二隔離層305上的第二通孔305-1直接置於第一隔離層303的多個第一通孔303-1之上;以及,第一導電層302上的多個第一導電子層302-1置於凸塊306的正下方;透過這些連接關係和結構設置,從而實現了一種成本相對較小的具有兩層低阻值的導電層的連接結構,減小了傳遞大電流路徑的電阻,減小了功率損耗,提高了效率。 According to the flowchart and the schematic diagram of the metal layer manufacturing method of the semiconductor device shown in FIG. 2 and FIG. 3a to FIG. 3e, the second via hole 305-1 on the second isolation layer 305 can be directly placed on the first isolation layer 303. a plurality of first via holes 303-1; and a plurality of first conductive sub-layers 302-1 on the first conductive layer 302 are disposed directly under the bumps 306; through these connection relationships and structural settings, A relatively low cost connection structure having two layers of low resistance conductive layers reduces the resistance of the large current path, reduces power loss, and improves efficiency.

以下結合具體實施例詳細說明的依據本發明的一種半導體裝置的金屬層結構。 The metal layer structure of a semiconductor device according to the present invention, which will be described in detail below in conjunction with the specific embodiments.

透過以上半導體裝置的金屬層結構製造方法,獲得了如圖3e所示的依據本發明的一種半導體裝置的金屬層結構。以下結合該實施例對依據本發明的半導體裝置的金屬層結構進行說明,所述金屬層結構包括:位於晶片301之上的第一導電層302,所述第一導電層具有一組分離的第一導電子層302-1,所述第一導電子層具有不小於兩種的不同的電極性。 Through the metal layer structure manufacturing method of the above semiconductor device, a metal layer structure of a semiconductor device according to the present invention as shown in FIG. 3e is obtained. The metal layer structure of the semiconductor device according to the present invention will be described below in conjunction with the embodiment, the metal layer structure comprising: a first conductive layer 302 over the wafer 301, the first conductive layer having a set of separated A conductive sub-layer 302-1 having a different electrode polarity of not less than two.

位於所述第一導電層302之上的第一隔離層303,所述第一隔離層303具有一組第一通孔303-1,以選擇性的使所述第一導電子層302-1的部分上表面裸露;所述第一通孔的尺寸小於相應的第一導電子層302-1的尺寸;所述第一隔離層303除去第一通孔303-1的區域外,完全覆蓋第一導電層302和晶片301的剩餘的裸露區域。 a first isolation layer 303 over the first conductive layer 302, the first isolation layer 303 has a set of first vias 303-1 to selectively enable the first conductive sub-layer 302-1 a portion of the upper surface is bare; the size of the first through hole is smaller than the size of the corresponding first conductive sub-layer 302-1; and the first isolation layer 303 is completely covered by the area except the first through hole 303-1. A conductive layer 302 and remaining bare areas of the wafer 301.

位於所述第一隔離層303之上的第二導電層304,所述第二導電層304包括一組相互分離的第二導電子層304-1;所述第二導電層304完全覆蓋所述第一通孔302-1以與多個同極性的所述第一導電子層302-1的裸露的上表面連接,從而使所述第二導電子層304-1具有相應的不同的電極性。 a second conductive layer 304 over the first isolation layer 303, the second conductive layer 304 includes a plurality of second conductive sub-layers 304-1 separated from each other; the second conductive layer 304 completely covers the The first via hole 302-1 is connected to the exposed upper surface of the plurality of first conductive sub-layers 302-1 of the same polarity, so that the second conductive sub-layer 304-1 has a corresponding different polarity. .

位於所述第二導電層304和所述第一隔離層303的剩餘區域之上的第二隔離層305,所述第二隔離層305具有一組第二通孔305-1,以裸露所選擇的所述第二導電層304的部分上表面。 a second isolation layer 305 over the remaining regions of the second conductive layer 304 and the first isolation layer 303, the second isolation layer 305 having a set of second vias 305-1, selected by bare a portion of the upper surface of the second conductive layer 304.

在所述第二通孔305-1處的一組凸塊,以形成位於所述第二隔離層304之上的凸塊層306,所述凸塊層306透過所述第二通孔305-1與所述第二導電層304進行電連接。 a set of bumps at the second via 305-1 to form a bump layer 306 over the second isolation layer 304, the bump layer 306 passing through the second via 305- 1 is electrically connected to the second conductive layer 304.

其中,所述第一導電層302可以為由濺射程序形成的金屬層,例如3um厚度的鋁金屬層;所述第一導電層302和晶片301之間還可以包括多層金屬層。 The first conductive layer 302 may be a metal layer formed by a sputtering process, for example, a 3 um thick aluminum metal layer; and the first conductive layer 302 and the wafer 301 may further include a plurality of metal layers.

所述第一隔離層303可以為半導體裝置的鈍化保護 層,如可以為由CVD程序形成的保護層;所述保護層可以為二氧化矽或者磷矽酸玻璃或者氮化矽或者SOG或者其任意組合。 The first isolation layer 303 can be passivated protection of a semiconductor device The layer, as may be a protective layer formed by a CVD process; the protective layer may be cerium oxide or phosphoric acid glass or tantalum nitride or SOG or any combination thereof.

進一步的,所述第一隔離層303在所述鈍化保護層的基礎上,還可以包括一聚醯亞胺層。此時,所述第一通孔303-1可以由兩部分組成,其中,第一部分為所述鈍化保護層上的第一隔離通孔,第二部分為所述聚醯亞胺層上的第二隔離通孔;所述第一隔離通孔和所述第二隔離通孔沿垂直方向對齊,並且,兩者的尺寸可以相同或者不相同,以共同形成所述第一通孔303-1。 Further, the first isolation layer 303 may further include a polyimine layer on the basis of the passivation protective layer. At this time, the first through hole 303-1 may be composed of two parts, wherein the first portion is the first isolated through hole on the passivation protective layer, and the second portion is the first on the polyimide layer Two isolation vias; the first isolation vias and the second isolation vias are aligned in a vertical direction, and both may be the same or different in size to collectively form the first vias 303-1.

第一隔離層303不僅能夠為第一導電層302和第二導電層304提供隔離;並且,可以為第二導電層304和凸塊層306提供機械支撐。所述聚醯亞胺層可以釋放由第二導電層304引起的應力。 The first isolation layer 303 can not only provide isolation for the first conductive layer 302 and the second conductive layer 304; and, can provide mechanical support for the second conductive layer 304 and the bump layer 306. The polyimide layer may release stress caused by the second conductive layer 304.

另外,由聚醯亞胺層和鈍化保護層組成的第一隔離層可以幫助使矽表面平坦化,方便後續的第二導電層304的沉積。 In addition, a first spacer layer composed of a polyimide layer and a passivation protective layer can help planarize the surface of the crucible to facilitate deposition of the subsequent second conductive layer 304.

其中,所述鈍化保護層可以由0.5um的磷矽酸玻璃和0.7um的氮化矽組成;所述聚醯亞胺層的厚度可以為5um。 Wherein, the passivation protective layer may be composed of 0.5 um phosphoric acid glass and 0.7 um tantalum nitride; the polyimide layer may have a thickness of 5 um.

其中,不同電極性的所述第一導電子層302-1相互間隔分佈在所述第一導電層302上。如,第一通孔303-2的尺寸可以為40um,小於現有技術中的通常選擇的通孔尺寸;所述第一導電子層302-1可以間隔40um-50um排列在 第一導電層302上。 The first conductive sub-layers 302-1 of different electrical properties are spaced apart from each other on the first conductive layer 302. For example, the size of the first through hole 303-2 may be 40 um, which is smaller than the commonly selected through hole size in the prior art; the first conductive sublayer 302-1 may be arranged at intervals of 40 um to 50 um. On the first conductive layer 302.

較佳的,所述第二導電層304可以包括由電鍍程序形成的銅金屬層和凸塊下金屬層,以實現凸塊層306的連接,並可以使矽表面平坦化,方便凸塊層306的沉積。 Preferably, the second conductive layer 304 may include a copper metal layer and an under bump metal layer formed by a plating process to realize the connection of the bump layer 306, and may planarize the surface of the germanium to facilitate the bump layer 306. Deposition.

所述第二隔離層305可以為由鍍膜程序(coating)形成的聚醯亞胺層,厚度可以為10um。 The second isolation layer 305 may be a polyimide layer formed by a coating process and may have a thickness of 10 um.

較佳的,所述第二通孔305-1在多個所述第一通孔303-1的正上方;並且在不同電極性的多個第一導電子層302-1的正上方。 Preferably, the second through holes 305-1 are directly above the plurality of the first through holes 303-1; and directly above the plurality of first conductive sub-layers 302-1 of different polarity.

所述凸塊層306可以為銅柱凸塊或者錫凸塊或者金凸塊。 The bump layer 306 may be a copper stud bump or a tin bump or a gold bump.

較佳的,在所述凸塊層306和所述第二隔離層305之間還包括另一凸塊下金屬層和/或金屬層,例如銅,以協助凸塊的形成,提高凸塊連接的可靠性。 Preferably, another under bump metal layer and/or a metal layer, such as copper, is further included between the bump layer 306 and the second isolation layer 305 to assist in the formation of bumps and improve bump connections. Reliability.

採用圖3e所示的依據本發明的一實施例的半導體裝置的金屬層結構,第二隔離層305上的第二通孔305-1直接在第一隔離層303的多個第一通孔303-1之上;以及,第一導電層302上的多個不同電極性的第一導電子層302-1在相應的凸塊306的正下方。低電阻值的第一導電層上的不同電極性的第一導電子層的佈局、大小和間距不再受凸塊的限制,減小了大電流路徑的電阻值,降低了功率損耗。對集成功率裝置而言實現了非常小的連接電阻值。 With the metal layer structure of the semiconductor device according to an embodiment of the present invention shown in FIG. 3e, the second via hole 305-1 on the second isolation layer 305 is directly on the plurality of first via holes 303 of the first isolation layer 303. Above -1; and a plurality of different conductivity first conductive sub-layers 302-1 on the first conductive layer 302 are directly under the corresponding bumps 306. The layout, size and spacing of the first conductive sub-layers of different polarity on the first conductive layer of low resistance value are no longer limited by the bumps, reducing the resistance value of the large current path and reducing the power loss. Very small connection resistance values are achieved for integrated power devices.

以下結合一具體應用實施例來詳細說明採用本發明的一實施例的金屬層結構的半導體裝置。 Hereinafter, a semiconductor device using a metal layer structure according to an embodiment of the present invention will be described in detail in conjunction with a specific application embodiment.

參考圖4A和圖4B,所示為採用本發明的一實施例的金屬層結構的MOSFET橫向雙擴散金屬氧化物半導體場效應電晶體的結構示意圖以及其剖面示意圖。 Referring to FIG. 4A and FIG. 4B, there is shown a schematic structural view of a MOSFET lateral double-diffused metal oxide semiconductor field effect transistor having a metal layer structure according to an embodiment of the present invention and a cross-sectional view thereof.

半導體裝置即MOSFET電晶體包括第一金屬層結構401和第二金屬層結構402。第一金屬層結構401和第二金屬層結構402可以為依據本發明的一實施例的圖3e所示的金屬層結構或者其他依據本發明的金屬層結構。 The semiconductor device, ie, the MOSFET transistor, includes a first metal layer structure 401 and a second metal layer structure 402. The first metal layer structure 401 and the second metal layer structure 402 may be the metal layer structure shown in FIG. 3e or other metal layer structure according to the present invention in accordance with an embodiment of the present invention.

為方便說明,在圖4a中,省略了第一隔離層和第二隔離層,僅示出了第一導電層和第二導電層;但是圖4b中,完整的示出了金屬層結構的所有組成部分。MOSFET橫向雙擴散金屬氧化物半導體場效應電晶體需要流過大電流的兩個電極分別為汲極A和源極B。第一金屬層結構401用於將汲極電極A引出,第二金屬層結構402用於將源極電極B引出。 For convenience of explanation, in FIG. 4a, the first isolation layer and the second isolation layer are omitted, only the first conductive layer and the second conductive layer are shown; but in FIG. 4b, all of the metal layer structure is completely shown. component. The two electrodes of the MOSFET lateral double-diffused metal oxide semiconductor field effect transistor that need to flow a large current are the drain A and the source B, respectively. The first metal layer structure 401 is used to lead the drain electrode A, and the second metal layer structure 402 is used to lead the source electrode B.

在該實施例中,第一導電層上的第一導電子層的分佈方式為: In this embodiment, the first conductive sub-layer on the first conductive layer is distributed in the following manner:

在第一金屬層結構401中,相互分離的一組第一導電子層401-1的電極性為汲極電極A;剩餘區域的第一導電子層401-2的電極性為源極電極B。 In the first metal layer structure 401, the polarity of the set of first conductive sub-layers 401-1 separated from each other is the drain electrode A; the polarity of the first conductive sub-layer 401-2 of the remaining area is the source electrode B .

在第二金屬層結構402中,相互分離的一組第一導電子層402-1的電極性為源極電極B;剩餘區域的第一導電子層402-2的電極性為汲極電極A。 In the second metal layer structure 402, the polarity of the first set of first conductive sub-layers 402-1 separated from each other is the source electrode B; the polarity of the first conductive sub-layer 402-2 of the remaining area is the drain electrode A .

在該實施例中,第一隔離層上的第一通孔的分佈方式為: In this embodiment, the first through holes on the first isolation layer are distributed in the following manner:

在第一金屬層結構401中,第二導電子層401-4透過一組第一通孔401-3電性連接至電極性為汲極電極A的第一導電子層401-1。 In the first metal layer structure 401, the second conductive sub-layer 401-4 is electrically connected to the first conductive sub-layer 401-1 whose polarity is the gate electrode A through a set of first via holes 401-3.

在第二金屬層結構402中,第二導電子層402-4透過一組第一通孔402-3電性連接至電極性為源極電極B的第一導電子層402-1。 In the second metal layer structure 402, the second conductive sub-layer 402-4 is electrically connected to the first conductive sub-layer 402-1 whose source is the source electrode B through a set of first via holes 402-3.

在該實施例中,為了方便將第二金屬層結構402中的汲極電極A引出,以及將第一金屬層結構401中的源極電極B引出,第一導電子層401-2與第一導電子層402-2間隔一定的距離a,兩者相鄰的區域設置為互補的彎折形狀。相應的,第二導電子層401-4和第二導電子層402-4也設置為彎折形狀,間隔為b。第一金屬層結構401中的第二導電層401-4中的突出區域透過第一通孔401-3-1與第二金屬層結構402中的第一導電子層402-2(汲極電極A)電性連接。第二金屬層結構402中的第二導電層402-4的突出區域透過第一通孔402-3-1與第一金屬層結構401中的第一導電子層401-2(源極電極B)電性連接。 In this embodiment, in order to facilitate the extraction of the drain electrode A in the second metal layer structure 402 and the extraction of the source electrode B in the first metal layer structure 401, the first conductive sub-layer 401-2 and the first The electron-conducting layers 402-2 are spaced apart by a certain distance a, and the adjacent regions are disposed in complementary curved shapes. Correspondingly, the second conductive sub-layer 401-4 and the second conductive sub-layer 402-4 are also disposed in a bent shape with an interval b. The protruding region in the second conductive layer 401-4 in the first metal layer structure 401 passes through the first via hole 401-4- and the first conductive sub-layer 402-2 in the second metal layer structure 402 (dip electrode A) Electrical connection. The protruding region of the second conductive layer 402-4 in the second metal layer structure 402 passes through the first via hole 402-3-1 and the first conductive sub-layer 401-2 in the first metal layer structure 401 (source electrode B) ) Electrical connection.

參考圖4B所示的圖4A中所示的MOSFET電晶體沿軸線A-A’和軸線B-B’的剖面示意圖,所述MOSFET電晶體的金屬層結構如下: Referring to the cross-sectional view of the MOSFET transistor shown in Fig. 4A shown in Fig. 4A along the axis A-A' and the axis B-B', the metal layer structure of the MOSFET transistor is as follows:

位於晶片400A之上的第一導電層400B,所述第一導電層400B包括一組分離的具有不同電極性的第一導電子層,如第一金屬層結構401中的第一導電子層401-1和401-2,以及第二金屬層結構402中的第一導電子層402-1 和402-2。 a first conductive layer 400B over the wafer 400A, the first conductive layer 400B comprising a plurality of separate first conductive sub-layers having different electrical properties, such as the first conductive sub-layer 401 in the first metal layer structure 401 -1 and 401-2, and the first conductive sub-layer 402-1 in the second metal layer structure 402 And 402-2.

位於所述第一導電層400B之上的第一隔離層400C,其上具有多個第一通孔,包括第一金屬層結構401中的第一通孔401-3和第二金屬層結構402中的第二通孔402-3,以選擇性的將第一導電子層的部分上表面裸露;除去第一通孔的剩餘第一隔離層區域完全覆蓋所述第一導電層和裸露的部分晶片區域的上表面。 a first isolation layer 400C over the first conductive layer 400B having a plurality of first vias thereon, including a first via 401-3 and a second metal layer 402 in the first metal layer structure 401 a second via hole 402-3 to selectively expose a portion of the upper surface of the first conductive sub-layer; the remaining first isolation layer region of the first via hole completely covers the first conductive layer and the bare portion The upper surface of the wafer area.

位於所述第一隔離層400C之上的由一組不同電極性的第二導電子層組成的第二導電層400D;其包括第一金屬層結構401中的第一導電子層401-4和第二金屬層結構402中的第二導電子層402-4;所述第二導電層400D透過所述第一通孔與所述第一導電子層形成電性連接;第一通孔401-3-1將第一金屬層結構401中的第二導電子層401-4的突出區域與第二金屬層結構402中的第一導電子層402-2連接;第一通孔402-3-1將第二金屬層結構402中的第二導電子層402-4的突出區域與第一金屬層結構401中的第一導電子層401-2連接。 a second conductive layer 400D composed of a plurality of second conductive sub-layers of different polarity above the first isolation layer 400C; the first conductive sub-layer 401-4 of the first metal layer structure 401 and a second conductive sub-layer 402-4 in the second metal layer structure 402; the second conductive layer 400D is electrically connected to the first conductive sub-layer through the first through hole; the first through hole 401- 3-1 connecting the protruding region of the second conductive sub-layer 401-4 in the first metal layer structure 401 to the first conductive sub-layer 402-2 in the second metal layer structure 402; the first via 402-3- 1 The protruding region of the second conductive sub-layer 402-4 in the second metal layer structure 402 is connected to the first conductive sub-layer 401-2 in the first metal layer structure 401.

位於第二導電層400D之上的第二隔離層400E,其上具有第一金屬層結構401中的第二通孔401-5和第二金屬層結構402中的第二通孔402-5;除去第二通孔的剩餘的第二隔離層區域完全覆蓋所述第二導電層400D和裸露的第一隔離層400C的剩餘區域;較佳的,所述第二通孔在多個第一通孔的正上方;較佳的,所述第二通孔在多個不同電極性的第一導電 子層的正上方;位於第二通孔處的凸塊層400F,包括第一金屬層結構401中的凸塊401-6和第二金屬層結構402中的凸塊402-6,從而透過凸塊401-6將汲極電極A引出,透過凸塊402-6將源極電極B引出。 a second isolation layer 400E located on the second conductive layer 400D, having a second via hole 401-5 in the first metal layer structure 401 and a second via hole 402-5 in the second metal layer structure 402; The remaining second isolation layer region of the second via hole completely covers the remaining regions of the second conductive layer 400D and the exposed first isolation layer 400C; preferably, the second via hole is in the plurality of first vias Directly above the hole; preferably, the second through hole is in a plurality of different conductivity first conductive Directly above the sub-layer; the bump layer 400F at the second via hole includes the bump 401-6 in the first metal layer structure 401 and the bump 402-6 in the second metal layer structure 402, thereby transmitting the bump Block 401-6 draws the drain electrode A and pulls the source electrode B through the bump 402-6.

本領域技術人員可以輕易得知,第二導電子層的數目可以不限於本實施例中的兩個,凸塊的數目也相應的不限於本實施例中的兩個,兩者的數目可以根據實際需要優化設置。並且,第二導電子層的形狀可以為任何合適形式的形狀。 A person skilled in the art can easily know that the number of the second conductive sub-layers is not limited to two in the embodiment, and the number of the bumps is not limited to two in the embodiment, and the number of the two may be Actually you need to optimize the settings. Also, the shape of the second conductive sub-layer may be any suitable form of shape.

另外,在所述晶片400A和第一導電層400B之間還可以包括一層或者多層其他類型的金屬層;在第二導電層和凸塊層之間還可以包括一凸塊下金屬層;所述第二導電層可以包括一銅金屬層和一凸塊下金屬層。 In addition, one or more layers of other types of metal layers may be further included between the wafer 400A and the first conductive layer 400B; and a bump under metal layer may be further included between the second conductive layer and the bump layer; The second conductive layer may include a copper metal layer and a bump under metal layer.

在該實施例中,所述第一導電層400B呈矩形形狀,在第一金屬層結構401中,除去極性為汲極A的第一導電子層401-1,剩餘的第一導電層為極性為源極B的第二導電子層401-2;本領域技術人員根據本發明的教導,可以輕易得知,第一導電層可以為任何合適的形狀;第一導電子層的排布也可以為其他合適形式的方式。 In this embodiment, the first conductive layer 400B has a rectangular shape. In the first metal layer structure 401, the first conductive sub-layer 401-1 having the polarity of the drain A is removed, and the remaining first conductive layer is of a polarity. The second conductive sub-layer 401-2 of the source B; those skilled in the art can easily know that the first conductive layer can be any suitable shape according to the teachings of the present invention; the arrangement of the first conductive sub-layer can also For other suitable forms of the way.

透過圖4a和圖4b所示的採用依據本發明的金屬層結構的MOSFET半導體裝置,優化了低阻值的第一導電層上的汲極電極A和源極電極B的分佈,尤其是凸塊層下方的區域。這對具有大尺寸凸塊的大電流的集成功率裝置而言 是至關重要的,例如,凸塊的尺寸為300um。在現有的半導體裝置結構中,在第一導電層上只允許在凸塊下僅有一個電極,這意味著這些區域的功率裝置跟其他電極之間的連接不是低電阻值的連接結構。但是在本發明中,低電阻值的第一導電層上的不同電極性的第一導電子層的佈局、尺寸和間距不再受凸塊的限制;如第一通孔的尺寸為40um,小於現有技術中如圖1a的通孔尺寸,則電極在第一導電層上可以間隔40um-50um依次分佈,從而對集成功率裝置而言實現了非常小的電阻值。 Optimizing the distribution of the drain electrode A and the source electrode B on the low-resistance first conductive layer, particularly the bumps, by using the MOSFET semiconductor device of the metal layer structure according to the present invention shown in FIGS. 4a and 4b The area below the layer. For integrated power devices with large currents with large bumps It is crucial, for example, that the size of the bump is 300um. In the existing semiconductor device structure, only one electrode under the bump is allowed on the first conductive layer, which means that the connection between the power device and the other electrodes in these regions is not a low resistance connection structure. However, in the present invention, the layout, size and spacing of the first conductive sub-layers of different polarity on the first conductive layer of low resistance value are no longer limited by the bumps; for example, the size of the first via hole is 40 um, which is smaller than In the prior art, as shown in the through-hole size of FIG. 1a, the electrodes may be sequentially spaced on the first conductive layer by 40 um to 50 um, thereby achieving a very small resistance value for the integrated power device.

綜上所述,依照本發明所揭示的半導體裝置的金屬層結構及其連接方法,在現有半導體製造程序的基礎上,提供了一種成本相對較小的具有兩層低阻值的導電層的連接結構,減小了大電流路徑的電阻值,降低了功率損耗。 In summary, the metal layer structure of the semiconductor device and the connection method thereof according to the present invention provide a relatively low cost connection of a conductive layer having two low-resistance values on the basis of the existing semiconductor manufacturing process. The structure reduces the resistance value of the large current path and reduces the power loss.

以上對依據本發明的較佳實施例的半導體裝置的金屬層結構及其連接方法進行了詳盡描述,本領域普通技術人員據此可以推知其他技術或者結構以及電路佈局、元件等均可應用於所述實施例。 The metal layer structure and the connection method of the semiconductor device according to the preferred embodiment of the present invention have been described in detail above, and those skilled in the art can infer that other techniques or structures, circuit layouts, components, etc. can be applied to The embodiment is described.

依照本發明的實施例如上文所述,這些實施例並沒有詳盡敍述所有的細節,也不限制該發明僅為所述的具體實施例。顯然,根據以上描述,可作很多的修改和變化。本說明書選取並具體描述這些實施例,是為了更好地解釋本發明的原理和實際應用,從而使所屬技術領域技術人員能很好地利用本發明以及在本發明基礎上的修改使用。本發明僅受申請專利範圍及其全部範圍和等效物的限制。 The embodiments in accordance with the present invention are not described in detail, and are not intended to limit the invention. Obviously, many modifications and variations are possible in light of the above description. The present invention has been chosen and described in detail to explain the principles and embodiments of the present invention so that those skilled in the <RTIgt; The invention is limited only by the scope of the claims and the full scope and equivalents thereof.

301‧‧‧晶片 301‧‧‧ wafer

302‧‧‧第一導電層 302‧‧‧First conductive layer

302-1‧‧‧電極 302-1‧‧‧electrode

303‧‧‧第一隔離層 303‧‧‧First isolation layer

303-1‧‧‧第一通孔 303-1‧‧‧First through hole

304‧‧‧第二導電層 304‧‧‧Second conductive layer

305‧‧‧第二隔離層 305‧‧‧Second isolation

305-1‧‧‧第二通孔 305-1‧‧‧Second through hole

306‧‧‧凸塊 306‧‧‧Bumps

圖1a所示為採用現有技術的一種半導體裝置的連接結構;圖1b所示為採用現有技術的另一種半導體裝置的連接結構;圖2所示為依據本發明的一種半導體裝置的金屬層製造方法的一較佳實施例的流程圖;圖3a-圖3e所示為圖2所示的依據本發明的半導體裝置的金屬層製造方法的各步驟的示意圖;圖4a所示為依據本發明的一種半導體裝置的一實施例的結構示意圖;圖4b所示為圖4a所示的依據本發明一實施例的半導體裝置的剖面示意圖;在下文中,相同的標號表示相同的部件。 1a shows a connection structure of a semiconductor device using the prior art; FIG. 1b shows a connection structure of another semiconductor device using the prior art; and FIG. 2 shows a method for manufacturing a metal layer of a semiconductor device according to the present invention. A flow chart of a preferred embodiment; FIGS. 3a-3e are schematic views showing the steps of the metal layer manufacturing method of the semiconductor device according to the present invention shown in FIG. 2; and FIG. 4a is a view of the present invention. A schematic structural view of an embodiment of a semiconductor device; and FIG. 4b is a cross-sectional view of the semiconductor device according to an embodiment of the present invention shown in FIG. 4a; in the following, the same reference numerals denote the same components.

晶片301;第一導電層302;電極302-1;第一隔離層303;第一通孔303-1;第二導電層304;第二隔離層305;第二通孔305-1;凸塊306。 Wafer 301; first conductive layer 302; electrode 302-1; first isolation layer 303; first via 303-1; second conductive layer 304; second isolation layer 305; second via 305-1; bump 306.

301‧‧‧晶片 301‧‧‧ wafer

302‧‧‧第一導電層 302‧‧‧First conductive layer

302-1‧‧‧電極 302-1‧‧‧electrode

303‧‧‧第一隔離層 303‧‧‧First isolation layer

303-1‧‧‧第一通孔 303-1‧‧‧First through hole

304‧‧‧第二導電層 304‧‧‧Second conductive layer

305‧‧‧第二隔離層 305‧‧‧Second isolation

305-1‧‧‧第二通孔 305-1‧‧‧Second through hole

306‧‧‧凸塊 306‧‧‧Bumps

Claims (18)

一種半導體裝置的金屬層結構製造方法,其特徵在於,該方法包括:在晶片上沉積第一導電層,該第一導電層包括一組分離的第一導電子層,該第一導電子層具有n種不同的電極性,n2;在該第一導電層上沉積第一隔離層,該第一隔離層具有一組第一通孔,以選擇性的將該第一導電子層的部分上表面裸露;在該第一隔離層上沉積第二導電層,該第二導電層包括一組分離的第二導電子層,該第二導電子層透過該第一通孔與極性相同的該第一導電子層的裸露的上表面連接;在該第二導電層和該第一隔離層上沉積第二隔離層,該第二隔離層具有一組第二通孔,以選擇性的將該第二導電子層的部分上表面裸露,該第二通孔在多個該第一通孔的正上方;以及在該第二通孔處沉積一凸塊,以形成凸塊層,從而將該n種不同的電極性引出。 A method of fabricating a metal layer structure of a semiconductor device, the method comprising: depositing a first conductive layer on a wafer, the first conductive layer comprising a plurality of separated first conductive sub-layers, the first conductive sub-layer having n different electrode properties, n Depositing a first isolation layer on the first conductive layer, the first isolation layer having a set of first via holes to selectively expose a portion of the upper surface of the first conductive sub-layer; Depositing a second conductive layer on the layer, the second conductive layer comprising a plurality of separated second conductive sub-layers, the second conductive sub-layer passing through the first via and the bare first of the first conductive sub-layers having the same polarity a surface connection; depositing a second isolation layer on the second conductive layer and the first isolation layer, the second isolation layer having a set of second vias to selectively select a portion of the upper surface of the second conductive sub-layer Exposed, the second via hole is directly above the plurality of the first via holes; and a bump is deposited at the second via hole to form a bump layer, thereby extracting the n different electrode properties. 根據申請專利範圍第1項所述的半導體裝置的金屬層結構製造方法,其中,該第二通孔在多個不同電極性的該第一導電子層的正上方。 The method of manufacturing a metal layer structure of a semiconductor device according to claim 1, wherein the second via hole is directly above the plurality of first conductive sub-layers having different polarity. 根據申請專利範圍第1項所述的半導體裝置的金屬層結構製造方法,其中,該第一導電層為由濺射程序形成的厚鋁金屬層。 The method of manufacturing a metal layer structure of a semiconductor device according to claim 1, wherein the first conductive layer is a thick aluminum metal layer formed by a sputtering process. 根據申請專利範圍第1項所述的半導體裝置的金屬層結構製造方法,其中,該第一導電層和該晶片之間包括一層或者多層與該第一導電層不同的金屬層。 The method for fabricating a metal layer structure of a semiconductor device according to claim 1, wherein the first conductive layer and the wafer include one or more metal layers different from the first conductive layer. 根據申請專利範圍第1項所述的半導體裝置的金屬層結構製造方法,其中,該第一隔離層包括半導體裝置的鈍化保護層。 The method of fabricating a metal layer structure of a semiconductor device according to claim 1, wherein the first isolation layer comprises a passivation protective layer of the semiconductor device. 根據申請專利範圍第5項所述的半導體裝置的金屬層結構製造方法,其中,該第一隔離層還包括位於該鈍化保護層之上的聚醯亞胺層。 The method for fabricating a metal layer structure of a semiconductor device according to claim 5, wherein the first isolation layer further comprises a polyimide layer on the passivation protective layer. 根據申請專利範圍第1項所述的半導體裝置的金屬層結構製造方法,其中,該第二導電層為由電鍍程序形成的銅導電層。 The method for fabricating a metal layer structure of a semiconductor device according to claim 1, wherein the second conductive layer is a copper conductive layer formed by a plating process. 根據申請專利範圍第1項所述的半導體裝置的金屬層結構製造方法,其中,該凸塊為錫凸塊或者銅柱凸塊或者金凸塊。 The method for fabricating a metal layer structure of a semiconductor device according to claim 1, wherein the bump is a tin bump or a copper bump or a gold bump. 一種半導體裝置的金屬層結構,其特徵在於,包括:位於晶片之上的第一導電層,所述第一導電層包括一組分離的第一導電子層,該一組第一導電子層具有n種不同的電極性,n2;在該第一導電層上的第一隔離層,該第一隔離層具有一組第一通孔,以選擇性的將該第一導電子層的部分上表面裸露;在該第一隔離層上的第二導電層,該第二導電層包括 一組分離的第二導電子層,該第二導電子層透過該第一通孔與極性相同的該第一導電子層的裸露的上表面連接;在該第二導電層和該第一隔離層上的第二隔離層,該第二隔離層具有一組第二通孔,以選擇性的將該第二導電子層的部分上表面裸露,該第二通孔在多個該第一通孔的正上方;以及位於該第二通孔處的凸塊層,以將該n種不同的電極性引出。 A metal layer structure of a semiconductor device, comprising: a first conductive layer on a wafer, the first conductive layer comprising a plurality of separated first conductive sublayers, the set of first conductive sublayers having n different electrode properties, n 2; a first isolation layer on the first conductive layer, the first isolation layer has a set of first via holes to selectively expose a portion of the upper surface of the first conductive sub-layer; in the first isolation a second conductive layer on the layer, the second conductive layer comprising a plurality of separated second conductive sub-layers, the second conductive sub-layer passing through the first via and the bare first of the first conductive sub-layers having the same polarity a surface connection; a second isolation layer on the second conductive layer and the first isolation layer, the second isolation layer having a set of second vias to selectively select a portion of the upper surface of the second conductive sub-layer Exposed, the second via hole is directly above the plurality of the first via holes; and a bump layer located at the second via hole to extract the n different electrode characteristics. 根據申請專利範圍第9項所述的半導體裝置的金屬層結構,其中,該第二通孔在多個不同電極性的該第一導電子層的正上方。 The metal layer structure of the semiconductor device according to claim 9, wherein the second via hole is directly above the plurality of first conductive sub-layers having different polarity. 根據申請專利範圍第9項所述的半導體裝置的金屬層結構,其中,該第一導電層為由濺射程序形成的厚鋁金屬層。 The metal layer structure of the semiconductor device according to claim 9, wherein the first conductive layer is a thick aluminum metal layer formed by a sputtering process. 根據申請專利範圍第9項所述的半導體裝置的金屬層結構,其中,還包括位於該第一導電層和該晶片之間的一層或者多層與該第一導電層不同的金屬層。 The metal layer structure of the semiconductor device of claim 9, further comprising one or more metal layers different from the first conductive layer between the first conductive layer and the wafer. 根據申請專利範圍第9項所述的半導體裝置的金屬層結構,其中,該第一隔離層包括半導體裝置的鈍化保護層。 The metal layer structure of the semiconductor device according to claim 9, wherein the first isolation layer comprises a passivation protective layer of the semiconductor device. 根據申請專利範圍第13項所述的半導體裝置的金屬層結構,其中,該第一隔離層還包括位於該鈍化保護層之上的聚醯亞胺層。 The metal layer structure of the semiconductor device according to claim 13, wherein the first isolation layer further comprises a polyimide layer on the passivation protective layer. 根據申請專利範圍第9項所述的半導體裝置的金 屬層結構,其中,該第二導電層包括由電鍍程序形成的一銅金屬層。 Gold of the semiconductor device according to claim 9 of the patent application scope The layer structure, wherein the second conductive layer comprises a copper metal layer formed by a plating process. 根據申請專利範圍第9項所述的半導體裝置的金屬層結構,其中,該凸塊為錫凸塊或者銅柱凸塊或者金凸塊。 The metal layer structure of the semiconductor device according to claim 9, wherein the bump is a tin bump or a copper bump or a gold bump. 一種半導體裝置,其特徵在於,包括如申請專利範圍第9-16項所述的任一金屬層結構,以將該半導體裝置的不同電極透過該凸塊層向外引出。 A semiconductor device comprising any of the metal layer structures as described in claim 9-16, wherein different electrodes of the semiconductor device are led out through the bump layer. 根據申請專利範圍第17項所述的半導體裝置,其中,相鄰的第二導電子層的邊緣呈彎折形狀以形成突出區域,所述突出區域透過所述第一通孔連接至相應的第一導電子層的突出區域。 The semiconductor device according to claim 17, wherein an edge of the adjacent second conductive sub-layer has a bent shape to form a protruding region, and the protruding region is connected to the corresponding first through the first through hole A protruding area of a conductive sub-layer.
TW101131180A 2012-01-13 2012-08-28 A metal layer structure of a semiconductor device, a manufacturing method thereof, and a semiconductor device to which the semiconductor device is used TWI527135B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210009879.7A CN102543717B (en) 2012-01-13 2012-01-13 Semiconductor device

Publications (2)

Publication Number Publication Date
TW201330127A true TW201330127A (en) 2013-07-16
TWI527135B TWI527135B (en) 2016-03-21

Family

ID=46350298

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101131180A TWI527135B (en) 2012-01-13 2012-08-28 A metal layer structure of a semiconductor device, a manufacturing method thereof, and a semiconductor device to which the semiconductor device is used

Country Status (2)

Country Link
CN (1) CN102543717B (en)
TW (1) TWI527135B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7397127B2 (en) * 2006-10-06 2008-07-08 Taiwan Semiconductor Manufacturing Co., Ltd. Bonding and probing pad structures
US7586132B2 (en) * 2007-06-06 2009-09-08 Micrel, Inc. Power FET with low on-resistance using merged metal layers
KR20090075347A (en) * 2008-01-04 2009-07-08 삼성전자주식회사 Bonding pad structure and method of manufacturing the bonding pad structure, and semiconductor package having the bonding pad structure
US8138616B2 (en) * 2008-07-07 2012-03-20 Mediatek Inc. Bond pad structure
CN201336308Y (en) * 2009-01-16 2009-10-28 Bcd半导体制造有限公司 Integrated circuit chip structure

Also Published As

Publication number Publication date
CN102543717B (en) 2014-03-12
CN102543717A (en) 2012-07-04
TWI527135B (en) 2016-03-21

Similar Documents

Publication Publication Date Title
US8937009B2 (en) Far back end of the line metallization method and structures
TWI595535B (en) Integrated circuit structure and method for manufacturing the same
JP5455285B2 (en) Solder bump structure for flip chip semiconductor device and manufacturing method thereof
US8039385B1 (en) IC devices having TSVS including protruding tips having IMC blocking tip ends
TWI502667B (en) Joint structure of semiconductor device and method of forming semiconductor device
US8680676B1 (en) Semiconductor package with under bump metallization routing
TWI595612B (en) Wafer level chip scale package having continuous tsv configuration and its fabrication method
US9893036B2 (en) Semiconductor device and manufacturing method of semiconductor device
TWI720233B (en) Semiconductor device and manufacturing method thereof
JP2008258499A (en) Electrode structure and semiconductor device
US9768135B2 (en) Semiconductor device having conductive bump with improved reliability
CN105470235A (en) Interposer and method of manufacturing the same
CN110310918A (en) It is used to form the method and photosensor integrated circuits of the photosensor arrays of encapsulation
US20120153460A1 (en) Bump structure and manufacturing method thereof
US9673125B2 (en) Interconnection structure
US20120119364A1 (en) Adding cap to copper passivation flow for electroless plating
TWI527135B (en) A metal layer structure of a semiconductor device, a manufacturing method thereof, and a semiconductor device to which the semiconductor device is used
US9078373B1 (en) Integrated circuit structures having off-axis in-hole capacitor and methods of forming
CN105489581A (en) Semiconductor structure and fabrication method thereof
CN109037089B (en) Method for testing rewiring layer
TWI830763B (en) Chip structure and fabrication method thereof
US9293429B2 (en) Electronic chip comprising connection pillars and manufacturing method
JP2000243771A (en) Semiconductor device
CN106505060A (en) Semiconductor device and its manufacture method
KR20150033115A (en) Semiconductor packages and method for fabricating the same