TW201326466A - Method of preparing an electrode material under lower temperature and shorter reaction time - Google Patents

Method of preparing an electrode material under lower temperature and shorter reaction time Download PDF

Info

Publication number
TW201326466A
TW201326466A TW100148539A TW100148539A TW201326466A TW 201326466 A TW201326466 A TW 201326466A TW 100148539 A TW100148539 A TW 100148539A TW 100148539 A TW100148539 A TW 100148539A TW 201326466 A TW201326466 A TW 201326466A
Authority
TW
Taiwan
Prior art keywords
electrode material
material according
rapidly synthesizing
carbon
ionic liquid
Prior art date
Application number
TW100148539A
Other languages
Chinese (zh)
Other versions
TWI434959B (en
Inventor
Ren-Yang Horng
Min-Chao Chang
Hsin Shao
Po-I Liu
Li-Ching Chung
Meng-Shun Huang
Teh-Ming Liang
Gaw-Hao Huang
Chih-Chun Chen
Shu-Fang Hsu
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW100148539A priority Critical patent/TWI434959B/en
Priority to CN201110456157.1A priority patent/CN103172146B/en
Publication of TW201326466A publication Critical patent/TW201326466A/en
Application granted granted Critical
Publication of TWI434959B publication Critical patent/TWI434959B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Abstract

A novel method of preparing an electrode material under lower temperature and shorter reaction time is proposed. This method includes providing a carbon substrate to mix with an alcohol solvent, an ionic liquid (IL), water and a precursor of TiO2 to perform a microwave heating process to form TiO2 crystalline nano-particles uniformly dispersed and fixed on the carbon substrate to synthesize an electrode material. The electrode material can be used for a capacitive deionization (CDI) or a supercapacitor.

Description

低溫快速合成電極材料的方法Method for rapidly synthesizing electrode material at low temperature

本發明係有關於一種電極材料的新穎合成方法,特別有關於以低溫快速方式合成出二氧化鈦結晶奈米顆粒並固定於碳材上的方法。The present invention relates to a novel synthesis method of an electrode material, and more particularly to a method for synthesizing titanium dioxide crystal nanoparticle in a rapid low temperature manner and fixing it on a carbon material.

電容脫鹽(capacitive deionization,CDI)技術以多孔性電極材料在常壓及低耗能條件下,利用電雙層(electrical double layer,EDL)吸附水中離子的原理達到脫鹽效果,具有取代逆滲透(reverse osmosis,RO)、電透析(electrodialysis,ED)或離子交換樹脂等脫鹽技術的潛力。電容脫鹽的電極材料中以碳材為主要材料,為了要提高碳材(如活性碳、奈米碳管或其他)電極的電容能力,常須進行電極材料的改質。以活性碳電極材料的改質為例,可加鹼(如KOH或NaOH)改變活性碳的親水性(wettability),或者添加金屬氧化物改善活性碳的離子電吸附及脫附性能,後者是被認為最有商業化的可行性。於活性碳電極材料上添加金屬氧化物(metal oxide)的方式包含混摻(blending)、化學沈澱法(precipitation)或溶膠凝膠法(sol-gel)等方式,然而,混摻和化學沈澱法容易造成金屬氧化物聚集,無法均勻分散在活性碳表面上,而傳統的溶膠凝膠法則需要在高溫(200-500℃)及高壓的條件下才能得到具結晶相的金屬氧化物,不但耗能及耗時,而且其合成步驟繁雜,不符合節能減碳的環保需求。Capacitive deionization (CDI) technology uses a porous electrode material to achieve the desalination effect by using an electric double layer (EDL) to absorb ions in water under normal pressure and low energy consumption conditions, and has a reverse reverse osmosis (reverse). Potential for desalination techniques such as osmosis, RO), electrodialysis (ED) or ion exchange resins. In the electrode material for capacitor desalination, carbon material is the main material. In order to improve the capacitance of the carbon material (such as activated carbon, carbon nanotube or other) electrode, it is often necessary to modify the electrode material. Taking the modification of the activated carbon electrode material as an example, the alkalitity (such as KOH or NaOH) may be used to change the hydrophilicity of the activated carbon, or the addition of the metal oxide may improve the ion electrosorption and desorption properties of the activated carbon, the latter being Think of the most commercial feasibility. The method of adding metal oxide to the activated carbon electrode material includes blending, chemical precipitation or sol-gel, however, mixing and chemical precipitation It is easy to cause metal oxide to aggregate and cannot be uniformly dispersed on the surface of activated carbon. However, the traditional sol-gel method requires high-temperature (200-500 ° C) and high pressure to obtain metal oxide with crystal phase, which not only consumes energy. It is time consuming and complicated in its synthesis steps, which does not meet the environmental protection requirements of energy saving and carbon reduction.

本發明使用離子液體(ionic liquid,IL)及微波(microwave)加熱進行溶膠凝膠反應(sol-gel reaction),相較於傳統的溶膠凝膠法,本發明之方法可以在常壓和150℃以下的低溫條件,以2小時以內的反應時間合成出二氧化鈦結晶奈米顆粒(titanium dioxide crystalline nano-particles)均勻地分散且固定於碳材(carbon substrates)表面,可以作為電容脫鹽或超級電容(supercapacitors)的電極材料,有效地提升電極的電吸附性能(電容特性)及延長電極的使用壽命。The invention adopts ionic liquid (IL) and microwave heating to perform sol-gel reaction, and the method of the invention can be at normal pressure and 150 ° C compared with the conventional sol-gel method. Under the following low temperature conditions, titanium dioxide crystalline nano-particles are synthesized and dispersed uniformly on the surface of carbon substrates, which can be used as capacitor desalination or supercapacitors. The electrode material effectively enhances the electrode's electrosorption performance (capacitance characteristics) and prolongs the life of the electrode.

本發明之實施例提供以低溫快速方式合成出此種電極材料的方法,包括:將碳材、二氧化鈦前驅物、離子液體、水和醇類溶劑的混合物進行第一階段微波加熱;以及添加醇類溶劑、離子液體和水,進行第二階段微波加熱,合成出複數個二氧化鈦結晶奈米顆粒並固定於碳材上,此電極材料為製備電極的關鍵材料。Embodiments of the present invention provide a method for synthesizing such an electrode material in a rapid low temperature manner, comprising: subjecting a mixture of a carbon material, a titanium dioxide precursor, an ionic liquid, a water, and an alcohol solvent to a first stage microwave heating; and adding an alcohol The solvent, the ionic liquid and the water are subjected to the second stage microwave heating to synthesize a plurality of titanium dioxide crystal nano particles and are fixed on the carbon material, and the electrode material is a key material for preparing the electrode.

為了讓本發明之上述目的、特徵、及優點能更明顯易懂,以下配合實施方式,作詳細說明如下:In order to make the above objects, features, and advantages of the present invention more comprehensible, the following embodiments are described in detail below:

本發明之實施方法可分為兩個階段:(1)二氧化鈦的水解縮合反應(hydrolysis-condensation reaction)階段,將碳材與醇類溶劑、離子液體、水以及二氧化鈦前驅物混合,進行第一階段的微波加熱,其中碳材:醇類溶劑:二氧化鈦前驅物的重量比(weight ratio)範圍在1-60:60-120:0.2-2,而離子液體:水:二氧化鈦前驅物的莫耳比(molar ratio)範圍在1-12:10-60:1-10。(2)二氧化鈦的結晶(crystallization)階段,將第一階段的產物中再添加醇類溶劑、離子液體和水,進行第二階段的微波加熱,其中碳材:醇類溶劑的重量比(weight ratio)範圍在1-10:30-80,而離子液體:水的莫耳比(molar ratio)範圍在1-12:10-60。The method of the present invention can be divided into two stages: (1) a hydrolysis-condensation reaction stage of titanium dioxide, mixing a carbon material with an alcohol solvent, an ionic liquid, water, and a titanium dioxide precursor to carry out the first stage. Microwave heating, wherein the carbon material: alcohol solvent: titanium dioxide precursor weight ratio ranges from 1-60:60-120:0.2-2, while ionic liquid: water: titanium dioxide precursor molar ratio ( The molar ratio ranges from 1-12:10-60:1-10. (2) In the crystallization stage of titanium dioxide, an alcohol solvent, an ionic liquid and water are further added to the product of the first stage, and the second stage of microwave heating is performed, wherein the carbon material: weight ratio of the alcohol solvent (weight ratio) The range is from 1-10:30-80, while the ionic liquid:water molar ratio ranges from 1-12:10-60.

第一階段微波加熱和第二階段微波加熱的微波功率為200-2000 W,微波頻率在0.3 GHz至300 GHz之間,第一階段微波加熱的時間約為30分鐘以內,第二階段微波加熱的時間約為60分鐘以內。The microwave power of the first stage microwave heating and the second stage microwave heating is 200-2000 W, the microwave frequency is between 0.3 GHz and 300 GHz, the first stage microwave heating time is about 30 minutes, and the second stage microwave heating The time is about 60 minutes.

在第一階段所使用的醇類溶劑、離子液體、水以及二氧化鈦前驅物的混合物,在微波加熱下進行溶膠凝膠(sol-gel)反應,其中二氧化鈦前驅物水解後可直接與碳材表面的官能基例如-COOH或-OH等進行縮合反應,使得水解縮合反應形成的二氧化鈦可均勻地分散並直接固定於碳材表面上。在一實施例中,二氧化鈦前驅物與碳材的重量比(weight ratio)介於1:60至1:1之間。由二氧化鈦前驅物與碳材的重量比可調控固定於碳材上的二氧化鈦含量,二氧化鈦前驅物的重量比例越高,則形成的二氧化鈦的含量越高。同時,二氧化鈦前驅物與水的莫耳比(molar ratio)亦可以控制二氧化鈦的粒徑(particle size)。另外,添加醇類溶劑與離子液體以及控制水的添加莫耳比,可減緩形成TiO2的水解縮合反應速率,有助於增加合成初期的TiOH含量及增加親水性,避免產生大顆粒的非結晶(amorphous)TiO2,且有利於TiO2的溶解再結晶反應(dissolution-recrystallization),可合成出銳鈦型(anatase)的二氧化鈦奈米顆粒(nano-particles)固定在碳材表面。在一實施例中,於第一階段和第二階段的微波加熱步驟中所使用的離子液體與水的莫耳比介於1:60至1:10之間。A mixture of an alcohol solvent, an ionic liquid, water, and a titanium dioxide precursor used in the first stage is subjected to a sol-gel reaction under microwave heating, wherein the titanium dioxide precursor is directly hydrolyzed to the surface of the carbon material. The functional group such as -COOH or -OH is subjected to a condensation reaction so that the titanium oxide formed by the hydrolysis condensation reaction can be uniformly dispersed and directly fixed on the surface of the carbon material. In one embodiment, the weight ratio of the titanium dioxide precursor to the carbon material is between 1:60 and 1:1. The content of titanium dioxide fixed on the carbon material can be controlled by the weight ratio of the titanium dioxide precursor to the carbon material. The higher the weight ratio of the titanium dioxide precursor, the higher the content of titanium dioxide formed. At the same time, the molar ratio of the titanium dioxide precursor to water can also control the particle size of the titanium dioxide. In addition, the addition of alcohol solvent and ionic liquid and the addition of molar ratio of controlled water can slow down the rate of hydrolytic condensation reaction of TiO 2 formation, help to increase the content of TiOH in the initial stage of synthesis and increase the hydrophilicity, and avoid the generation of large particles of non-crystal. (amorphous) TiO 2, TiO 2 and dissolved beneficial recrystallization reaction (dissolution-recrystallization), can be synthesized anatase (anatase) titanium dioxide nanometer particles (nano-particles) is fixed to the surface of carbon material. In one embodiment, the molar ratio of ionic liquid to water used in the microwave heating step of the first and second stages is between 1:60 and 1:10.

在一實施例中,碳材可以是活性碳、竹碳、奈米碳管(carbon nanotube,CNT)、石墨烯(graphene)或前述之混合物,碳材的比表面積較佳為大於300 m2/g,且碳材的孔洞直徑較佳為介於1 nm-1000 nm之間。醇類溶劑可以是乙醇(ethanol)、異丙醇(isopropanol)或丁醇(n-butanol),二氧化鈦前驅物為四異丙醇鈦(titanium tetraisopropoxide,TTIP)或四正丁醇鈦(titanium butoxide)。In one embodiment, the carbon material may be activated carbon, bamboo carbon, carbon nanotube (CNT), graphene or a mixture thereof, and the specific surface area of the carbon material is preferably greater than 300 m 2 / g, and the diameter of the carbon material is preferably between 1 nm and 1000 nm. The alcohol solvent may be ethanol, isopropanol or n-butanol, and the titanium dioxide precursor is titanium tetraisopropoxide (TTIP) or titanium butoxide. .

第二階段使用的離子液體可吸收微波能量,能促進二氧化鈦的結晶(crystallization)反應,以形成二氧化鈦結晶奈米顆粒且固定於碳材上,二氧化鈦的含量約為碳材的30%(重量比)以下。The ionic liquid used in the second stage absorbs microwave energy and promotes the crystallization reaction of titanium dioxide to form titanium dioxide crystal nanoparticles and is fixed on the carbon material. The content of titanium dioxide is about 30% by weight of the carbon material. the following.

在一實施例中,離子液體由陽離子端及陰離子端所組成,其中陽離子端例如為1-乙基-3-甲基咪唑(1-ethyl-3-methylimidazolium;[EMIM]+)或1-丁基-3-甲基咪唑(1-butyl-3-methylimidazolium;[BMIM]+);陰離子端例如為四氟硼酸鹽(BF4 -)或三氟甲磺酸鹽(CF3SO3 -)。In one embodiment, the ionic liquid consists of a cationic end and an anionic end, wherein the cationic end is, for example, 1-ethyl-3-methylimidazolium ([EMIM] + ) or 1-butyl 1-Benzyl-3-methylimidazolium ([BMIM] + ); the anion end is, for example, tetrafluoroborate (BF 4 - ) or triflate (CF 3 SO 3 - ).

由於本發明之實施例使用離子液體及微波加熱方式進行溶膠凝膠反應,溫度控制在150℃以下,且反應時間少於2小時,即可形成二氧化鈦結晶奈米顆粒固定於碳材上,相較於傳統的溶膠凝膠法需要高溫及高壓方式才能形成二氧化鈦結晶奈米顆粒,本發明之實施例的方法屬於常壓、低溫、省時且低耗能的製備方式,此電極材料為製備電極的關鍵材料。Since the embodiment of the present invention uses the ionic liquid and the microwave heating method to carry out the sol-gel reaction, the temperature is controlled below 150 ° C, and the reaction time is less than 2 hours, the titanium dioxide crystal nano-particles can be formed and fixed on the carbon material. In the conventional sol-gel method, a high-temperature and high-pressure method is required to form titanium dioxide crystal nano-particles, and the method of the embodiment of the invention belongs to a normal pressure, low temperature, time-saving and low-energy production method, and the electrode material is used for preparing an electrode. Key material.

依據本發明之實施例所合成的電極材料為二氧化鈦結晶奈米顆粒均勻地分佈且固定於碳材上,由於二氧化鈦會佔據碳材表面的極性基位置,有助於減少碳材表面的不可逆吸附現象,增加碳材的電吸附量,此電極材料可應用在電容脫鹽或超級電容上,有助於提昇電極的電容量、脫鹽效率以及增加電極使用壽命。The electrode material synthesized according to the embodiment of the present invention is that the titanium dioxide crystal nano particles are uniformly distributed and fixed on the carbon material, and the titanium dioxide will occupy the polar base position on the surface of the carbon material, thereby contributing to the reduction of the irreversible adsorption phenomenon on the surface of the carbon material. To increase the amount of carbon adsorption, this electrode material can be applied to capacitor desalination or supercapacitor, which helps to increase the electrode's capacitance, desalination efficiency and increase the electrode life.

以下列舉各實施例說明以低溫快速方式合成出電極材料的方法以及電容特性:The following examples illustrate various methods for synthesizing electrode materials in a low-temperature rapid manner and capacitance characteristics:

【實施例1】[Example 1]

使用的試劑包括去離子水(deionized water)、二氧化鈦前驅物為四異丙醇鈦(titanium tetraisopropoxide;TTIP,Merck),醇類溶劑為異丙醇(isopropanol;IPA,Merck),離子液體(ionic liquid,IL)為1-丁基-3-甲基咪唑啉四氟硼酸(1-butyl-3-methylimidazolium tetrafluoroborate;[Bmim]+[BF4]-,Merck)等。The reagents used include deionized water, the titanium dioxide precursor is titanium tetraisopropoxide (TTIP, Merck), the alcohol solvent is isopropanol (IPA, Merck), and the ionic liquid , IL) is 1-butyl-3-methylimidazolium tetrafluoroborate; [Bmim] + [BF 4 ] - , Merck).

首先於反應瓶中置入2克的活性碳,利用200毫升(mL)的IPA使活性碳均勻分散,先加入TTIP:IL莫耳比(molar ratio)為1:1的二氧化鈦前驅物四異丙醇鈦和離子液體[Bmim]+[BF4]-。然後添加不同TTIP:水莫耳比的去離子水,本實施例使用的TTIP:水的莫耳比分別為1:30、1:15及1:5。使用的微波功率為800 W,微波頻率為2.45 GHz,進行微波加熱30分鐘,得到第一階段的產物,以溫度計測量反應溫度約為100℃。First, 2 g of activated carbon was placed in the reaction flask, and 200 ml (mL) of IPA was used to uniformly disperse the activated carbon. First, a TTIP:IL molar ratio of 1:1 titanium dioxide precursor tetraisopropyl was added. Titanol and ionic liquid [Bmim] + [BF 4 ] - . Then, different TTIP: water molar ratio deionized water was added, and the molar ratio of TTIP:water used in this example was 1:30, 1:15, and 1:5, respectively. The microwave power used was 800 W, the microwave frequency was 2.45 GHz, and microwave heating was carried out for 30 minutes to obtain a product of the first stage, and the reaction temperature was measured by a thermometer to be about 100 °C.

然後,在第一階段的產物中添加80毫升的IPA、離子液體及去離子水,實施例1使用的IL:水的莫耳比為1:18,使用的微波功率為800 W,微波頻率為2.45 GHz,進行微波加熱60分鐘,得到第二階段的產物,以溫度計測量反應溫度約為100℃。Then, 80 ml of IPA, ionic liquid and deionized water were added to the product of the first stage. The IL:water used in Example 1 had a molar ratio of 1:18, a microwave power of 800 W, and a microwave frequency of At 2.45 GHz, microwave heating was carried out for 60 minutes to obtain the product of the second stage, and the reaction temperature was measured by a thermometer to be about 100 °C.

將實施例1的第二階段合成產物(使用TTIP:水的莫耳比為1:30的條件)所得到的乾燥粉末,利用拉曼(Raman)光譜儀進行檢測,結果如第1圖所示,可看出在活性碳上合成的二氧化鈦屬於銳鈦型(Anatase)結晶相。相同合成條件(使用TTIP:水的莫耳比為1:30的條件)所得到的乾燥粉末利用X射線能量散佈分析儀(Energy Dispersive X-ray Spectrometer;EDS)進行檢測,結果如第2圖所示,可看出二氧化鈦均勻地分散的固定於活性碳上。The dry powder obtained in the second-stage synthesis product of Example 1 (using TTIP: water molar ratio of 1:30) was detected by a Raman spectrometer, and the results are shown in Fig. 1. It can be seen that the titanium dioxide synthesized on the activated carbon belongs to the anatase crystal phase. The dry powder obtained under the same synthesis conditions (using TTIP: water molar ratio of 1:30) was detected by an Energy Dispersive X-ray Spectrometer (EDS), and the results are shown in Fig. 2. It can be seen that the titanium dioxide is uniformly dispersed and fixed on the activated carbon.

將實施例1合成產物(使用TTIP:水的莫耳比為1:30的條件)的粉末與聚二氟乙烯(polyvinylidene fluoride;PVDF,分子量534 k,固含量5 wt%)及石墨粉粒(粒徑2.7 μm)混合,合成產物:聚二氟乙烯:石墨粉粒的重量比為65:15:25,將N-甲基咯烷酮(N-methyl-2-pyrrolidone;NMP)溶劑加入上述混合物均勻攪拌成糊狀漿料,使用塗佈機以300 μm刮刀將糊狀漿料均勻塗佈在厚度25 μm的鋁箔上,置於140℃烘箱中乾燥2小時,再於同片鋁箔的反面塗佈一次糊狀漿料,再置於140℃烘箱中烘乾2小時,即完成電極的製備。A powder of the synthesized product of Example 1 (using a TTIP: water molar ratio of 1:30) and polyvinylidene fluoride (PVDF, molecular weight 534 k, solid content 5 wt%) and graphite powder ( Mixed with a particle size of 2.7 μm, the product of the synthesis: polydifluoroethylene: graphite powder has a weight ratio of 65:15:25, and a solvent of N-methyl-2-pyrrolidone (NMP) is added as described above. The mixture was uniformly stirred into a paste slurry, and the paste slurry was uniformly coated on a 25 μm-thick aluminum foil using a coater with a 300 μm doctor blade, and dried in an oven at 140 ° C for 2 hours, and then on the opposite side of the same piece of aluminum foil. The paste slurry was applied once and then dried in an oven at 140 ° C for 2 hours to complete the preparation of the electrode.

對實施例1中使用TTIP:水的莫耳比為1:15的條件合成的電極材料(AC/TiO2),以及未含TiO2的活性碳電極材料(AC)所製備的電極進行電容能力試驗。試驗方法為使用循環伏安法(cyclic voltammetry;CV),電解液為0.5 M Na2SO4,掃瞄範圍為-0.5 V~0.5 V,結果如第3圖所示,其顯示經由TiO2改質的活性碳電極材料(AC/TiO2)可有效提升電極的電容能力,相較於未添加TiO2改質的活性碳電極,電容值可提升約3.5-4倍。Capacitance of an electrode prepared by using an electrode material (AC/TiO 2 ) synthesized using a TTIP:water molar ratio of 1:15 and an activated carbon electrode material (AC) not containing TiO 2 in Example 1 test. The test method is to use cyclic voltammetry (CV), the electrolyte is 0.5 M Na 2 SO 4 , and the scanning range is -0.5 V to 0.5 V. The results are shown in Fig. 3, which shows that it is modified by TiO 2 . The active carbon electrode material (AC/TiO 2 ) can effectively increase the capacitance of the electrode, and the capacitance value can be increased by about 3.5-4 times compared with the activated carbon electrode without the modification of TiO 2 .

以熱重量分析儀(thermogravimetric analyzer;TGA)對實施例1合成產物的粉末進行檢測,在空氣下以每分鐘20℃的升溫速度從30℃升溫至800℃,結果如第4圖所示。由第4圖的TGA分析結果可計算出實施例1合成產物的粉末中固定於活性碳後的TiO2含量,結果如第5圖所示,可看出利用TTIP:水的不同莫耳比1:30、1:15及1:5,合成並固定於活性碳上的TiO2含量(以活性碳重量為基準)分別為7.62 wt%、5.41 wt%及4.65 wt%。另外,第5圖顯示電極之比電容值(specific capacitance),其中以TTIP:水的莫耳比為1:15所製備的電極之比電容值最高。The powder of the product of the synthesis of Example 1 was examined by a thermogravimetric analyzer (TGA), and was heated from 30 ° C to 800 ° C at a temperature increase rate of 20 ° C per minute under air. The results are shown in Fig. 4. From the TGA analysis results in Fig. 4, the content of TiO 2 immobilized on activated carbon in the powder of the product of Example 1 can be calculated. As a result, as shown in Fig. 5, it can be seen that different molar ratios of TTIP:water are used. : 30, 1:15 and 1:5, the TiO 2 content (based on the weight of activated carbon) synthesized and fixed on activated carbon was 7.62 wt%, 5.41 wt% and 4.65 wt%, respectively. In addition, Fig. 5 shows the specific capacitance of the electrode, wherein the electrode prepared by the TTIP: water molar ratio of 1:15 has the highest specific capacitance value.

雖然本發明已揭露較佳實施例如上,然其並非用以限定本發明,任何熟悉此項技藝者,在不脫離本發明之精神和範圍內,當可做些許更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定為準。Although the present invention has been disclosed in its preferred embodiments, it is not intended to limit the invention, and the invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application attached.

第1圖顯示實施例1(使用TTIP:水的莫耳比為1:30的條件)所合成的電極材料粉末之拉曼光譜圖;1 is a Raman spectrum of an electrode material powder synthesized in Example 1 (using TTIP: a molar ratio of water of 1:30);

第2圖顯示實施例1(使用TTIP:水的莫耳比為1:30的條件)所合成的電極材料粉末之X射線能量散佈分析結果;Fig. 2 is a view showing the results of X-ray energy dispersion analysis of the electrode material powder synthesized in Example 1 (using TTIP: water molar ratio of 1:30);

第3圖顯示實施例1(使用TTIP:水的莫耳比為1:15的條件)所合成的電極材料(AC/TiO2)與未含TiO2的活性碳電極(AC)的電容值比較;Figure 3 shows the capacitance values of the electrode material (AC/TiO 2 ) synthesized in Example 1 (using TTIP: water molar ratio of 1:15) and the activated carbon electrode (AC) not containing TiO 2 . ;

第4圖顯示實施例1所合成的電極材料粉末之熱重量分析結果;以及Figure 4 is a graph showing the results of thermogravimetric analysis of the electrode material powder synthesized in Example 1;

第5圖顯示實施例1所合成的電極材料的TiO2含量和用其製備的電極之比電容值。Fig. 5 shows the TiO 2 content of the electrode material synthesized in Example 1 and the specific capacitance value of the electrode prepared therewith.

Claims (15)

一種低溫快速合成電極材料的方法,包括:提供一碳材;加入一醇類溶劑、一離子液體、水和一二氧化鈦前驅物混合,進行一第一階段微波加熱;以及再加入該醇類溶劑、該離子液體和水,進行一第二階段微波加熱,合成出複數個二氧化鈦結晶奈米顆粒且固定於該碳材上。A method for rapidly synthesizing an electrode material at a low temperature, comprising: providing a carbon material; adding an alcohol solvent, an ionic liquid, water and a titanium dioxide precursor to perform a first stage microwave heating; and further adding the alcohol solvent, The ionic liquid and water are subjected to a second-stage microwave heating to synthesize a plurality of titanium dioxide crystal nanoparticles and fixed on the carbon material. 如申請專利範圍第1項所述之低溫快速合成電極材料的方法,其中該碳材包括活性碳、竹碳、奈米碳管、石墨烯或前述之混合物。The method of rapidly synthesizing an electrode material according to claim 1, wherein the carbon material comprises activated carbon, bamboo carbon, carbon nanotubes, graphene or a mixture thereof. 如申請專利範圍第1項所述之低溫快速合成電極材料的方法,其中該碳材的形狀包括粉末狀、顆粒狀、纖維狀、布狀或球狀。The method of rapidly synthesizing an electrode material according to claim 1, wherein the shape of the carbon material comprises powder, granule, fiber, cloth or sphere. 如申請專利範圍第1項所述之低溫快速合成電極材料的方法,其中該碳材的比表面積大於300 m2/g,且該碳材的孔洞平均直徑介於1 nm-1000 nm之間。The method for rapidly synthesizing an electrode material according to claim 1, wherein the carbon material has a specific surface area of more than 300 m 2 /g, and the carbon material has an average pore diameter of between 1 nm and 1000 nm. 如申請專利範圍第1項所述之低溫快速合成電極材料的方法,其中該離子液體包括陽離子端及陰離子端。The method of rapidly synthesizing an electrode material according to claim 1, wherein the ionic liquid comprises a cationic end and an anionic end. 如申請專利範圍第5項所述之低溫快速合成電極材料的方法,其中該離子液體中的陽離子端包括1-乙基-3-甲基咪唑([EMIM]+)或1-丁基-3-甲基咪唑([BMIM]+)。The method of rapidly synthesizing an electrode material according to claim 5, wherein the cation end of the ionic liquid comprises 1-ethyl-3-methylimidazole ([EMIM] + ) or 1-butyl-3 -methylimidazole ([BMIM] + ). 如申請專利範圍第5項所述之低溫快速合成電極材料的方法,其中該離子液體中的陰離子端包括四氟硼酸鹽(BF4 -)或三氟甲磺酸鹽(CF3SO3 -)。The method of rapidly synthesizing an electrode material according to claim 5, wherein the anion end of the ionic liquid comprises tetrafluoroborate (BF 4 - ) or trifluoromethanesulfonate (CF 3 SO 3 - ) . 如申請專利範圍第1項所述之低溫快速合成電極材料的方法,其中該第一階段微波加熱和該第二階段微波加熱的微波功率介於200-2000 W,微波頻率介於0.3 GHz至300 GHz之間。The method for rapidly synthesizing an electrode material according to claim 1, wherein the microwave power of the first stage microwave heating and the second stage microwave heating is between 200 and 2000 W, and the microwave frequency is between 0.3 GHz and 300. Between GHz. 如申請專利範圍第1項所述之低溫快速合成電極材料的方法,其中該醇類溶劑包括乙醇(ethanol)、異丙醇(isopropanol)或丁醇(n-butanol)。The method of rapidly synthesizing an electrode material according to claim 1, wherein the alcohol solvent comprises ethanol, isopropanol or n-butanol. 如申請專利範圍第1項所述之低溫快速合成電極材料的方法,其中該二氧化鈦前驅物包括四異丙醇鈦(titanium tetraisopropoxide)或四正丁醇鈦(titanium butoxide)。The method of rapidly synthesizing an electrode material according to claim 1, wherein the titania precursor comprises titanium tetraisopropoxide or titanium butoxide. 如申請專利範圍第1項所述之低溫快速合成電極材料的方法,其中該二氧化鈦前驅物與該碳材的重量比介於1:60至1:1之間。The method of rapidly synthesizing an electrode material according to claim 1, wherein the weight ratio of the titanium dioxide precursor to the carbon material is between 1:60 and 1:1. 如申請專利範圍第1項所述之低溫快速合成電極材料的方法,其中該離子液體與水的莫耳比介於1:60至1:10之間。The method of rapidly synthesizing an electrode material according to claim 1, wherein the ionic liquid to water has a molar ratio of between 1:60 and 1:10. 如申請專利範圍第1項所述之低溫快速合成電極材料的方法,其中反應溫度低於150℃,反應時間少於2小時。A method for rapidly synthesizing an electrode material according to claim 1, wherein the reaction temperature is lower than 150 ° C and the reaction time is less than 2 hours. 如申請專利範圍第1項所述之低溫快速合成電極材料的方法,其中該電極材料中的該些二氧化鈦結晶奈米顆粒的含量為該碳材的30%(重量比)以下。The method of rapidly synthesizing an electrode material according to claim 1, wherein the content of the titanium dioxide crystal nanoparticles in the electrode material is less than 30% by weight of the carbon material. 如申請專利範圍第1項所述之低溫快速合成電極材料的方法,其中該電極材料應用於電容脫鹽或超級電容。The method of rapidly synthesizing an electrode material according to claim 1, wherein the electrode material is applied to a capacitor desalination or a supercapacitor.
TW100148539A 2011-12-26 2011-12-26 Method of preparing an electrode material under lower temperature and shorter reaction time TWI434959B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW100148539A TWI434959B (en) 2011-12-26 2011-12-26 Method of preparing an electrode material under lower temperature and shorter reaction time
CN201110456157.1A CN103172146B (en) 2011-12-26 2011-12-30 Method for quickly synthesizing electrode material at low temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100148539A TWI434959B (en) 2011-12-26 2011-12-26 Method of preparing an electrode material under lower temperature and shorter reaction time

Publications (2)

Publication Number Publication Date
TW201326466A true TW201326466A (en) 2013-07-01
TWI434959B TWI434959B (en) 2014-04-21

Family

ID=48632427

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100148539A TWI434959B (en) 2011-12-26 2011-12-26 Method of preparing an electrode material under lower temperature and shorter reaction time

Country Status (2)

Country Link
CN (1) CN103172146B (en)
TW (1) TWI434959B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115093012A (en) * 2022-06-27 2022-09-23 陕西科技大学 TiO 2 2 -black kojiMould carbonized carbon compound and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105435766B (en) * 2015-11-04 2018-02-13 长安大学 A kind of flower-shaped TiO2The preparation method and applications of/graphene photo-catalyst

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI247345B (en) * 2004-11-22 2006-01-11 Ind Tech Res Inst Nano-porous carbon composite for used as an ultracapacitor electrode material and preparation thereof
CN100464432C (en) * 2006-12-21 2009-02-25 华侨大学 High-property metal/graphite compound counter electrode for dye sensitization solar battery and preparation method thereof
CN101820061B (en) * 2010-03-30 2011-12-28 哈尔滨工业大学 Preparation method of multi-stage nanopore electrode material of lithium ion battery
CN102074681B (en) * 2010-12-03 2013-06-12 广东工业大学 Method for preparing carbon nano tube doped lithium titanate composite electrode material
CN102074377B (en) * 2011-01-11 2012-06-27 中国科学院过程工程研究所 Active carbon/low-dimensional titanium oxide composite electrode material for super capacitor
CN102222573B (en) * 2011-03-25 2012-06-13 华中科技大学 Method for preparing titanium dioxide nanocrystalline electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115093012A (en) * 2022-06-27 2022-09-23 陕西科技大学 TiO 2 2 -black kojiMould carbonized carbon compound and preparation method and application thereof
CN115093012B (en) * 2022-06-27 2023-11-17 陕西科技大学 TiO (titanium dioxide) 2 Aspergillus niger carbonized carbon compound and preparation method and application thereof

Also Published As

Publication number Publication date
TWI434959B (en) 2014-04-21
CN103172146B (en) 2014-12-10
CN103172146A (en) 2013-06-26

Similar Documents

Publication Publication Date Title
Lv et al. Carbon quantum dot-induced MnO2 nanowire formation and construction of a binder-free flexible membrane with excellent superhydrophilicity and enhanced supercapacitor performance
Hegde et al. Biowaste sago bark based catalyst free carbon nanospheres: waste to wealth approach
Huang et al. Mn3O4 nanoflakes/rGO composites with moderate pore size and (O=) CO-Mn bond for enhanced supercapacitor performance
Wang et al. Co-gelation synthesis of porous graphitic carbons with high surface area and their applications
Yuan et al. Chitosan-derived hybrid porous carbon with the novel tangerine pith-like surface as supercapacitor electrode
Xu et al. Nitrogen-enriched, double-shelled carbon/layered double hydroxide hollow microspheres for excellent electrochemical performance
Pu et al. Fe 3 O 4@ C core–shell microspheres: synthesis, characterization, and application as supercapacitor electrodes
Mohammadi et al. Defective mesoporous carbon/MnO2 nanocomposite as an advanced electrode material for supercapacitor application
Lv et al. Coal-based 3D hierarchical porous carbon aerogels for high performance and super-long life supercapacitors
Han et al. Facile approach to prepare hollow core–shell NiO microspherers for supercapacitor electrodes
Fan et al. CuO nanoparticles supported on carbon microspheres as electrode material for supercapacitors
Kim et al. Super-capacitive performance depending on different crystal structures of MnO 2 in graphene/MnO 2 composites for supercapacitors
Li et al. Preparation and supercapacitor application of the single crystal nickel hydroxide and oxide nanosheets
Liu et al. Effects of activated carbon characteristics on the electrosorption capacity of titanium dioxide/activated carbon composite electrode materials prepared by a microwave-assisted ionothermal synthesis method
Mohapatra et al. Designing binder-free, flexible electrodes for high-performance supercapacitors based on pristine carbon nano-onions and their composite with CuO nanoparticles
Thomas et al. Facile synthesis of PANI-MWCNT-Ni (OH) 2 ternary composites and study of their performance as electrode material for supercapacitors
Yang et al. Coupled ultrasonication-milling synthesis of hierarchically porous carbon for high-performance supercapacitor
CN107032329A (en) A kind of three-dimensional grapheme of nano-micrometre classification pore passage structure and preparation method thereof
Zhang et al. 3D porous oxygen-enriched graphene hydrogels with well-balanced volumetric and gravimetric performance for symmetric supercapacitors
Xiong et al. Hydrothermal synthesis of high specific capacitance electrode material using porous bagasse biomass carbon hosting MnO 2 nanospheres
Vivek et al. Facile synthesis of 2D Ni (OH) 2 anchored g-C3N4 as electrode material for high-performance supercapacitor
Mombeshora et al. Metal‐organic chemical vapor deposition of anatase titania on multiwalled carbon nanotubes for electrochemical capacitors
TWI487661B (en) Method of modifying carbon-based electrode material and carbon-based electrode material formed thereby
Lin et al. SDBS induced glucose urea derived microporous 2D carbon nanosheets as supercapacitor electrodes with excellent electrochemical performances
TWI434959B (en) Method of preparing an electrode material under lower temperature and shorter reaction time