TWI487661B - Method of modifying carbon-based electrode material and carbon-based electrode material formed thereby - Google Patents

Method of modifying carbon-based electrode material and carbon-based electrode material formed thereby Download PDF

Info

Publication number
TWI487661B
TWI487661B TW101149247A TW101149247A TWI487661B TW I487661 B TWI487661 B TW I487661B TW 101149247 A TW101149247 A TW 101149247A TW 101149247 A TW101149247 A TW 101149247A TW I487661 B TWI487661 B TW I487661B
Authority
TW
Taiwan
Prior art keywords
carbon material
stage
carbon
titanium dioxide
electrode
Prior art date
Application number
TW101149247A
Other languages
Chinese (zh)
Other versions
TW201425215A (en
Inventor
Teh Ming Liang
Ren Yang Horng
Min Chao Chang
Hsin Shao
Po I Liu
Chia Hua Ho
Li Ching Chung
Chen Chi Ma
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW101149247A priority Critical patent/TWI487661B/en
Priority to CN201210585459.3A priority patent/CN103879983B/en
Publication of TW201425215A publication Critical patent/TW201425215A/en
Application granted granted Critical
Publication of TWI487661B publication Critical patent/TWI487661B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Description

電極用碳材的改質方法及其製成的電極用碳材Method for modifying carbon material for electrode and carbon material for electrode made thereof

本發明係有關於電極用碳材的改質方法,特別有關於利用共融混合液結合微波加熱的溶膠凝膠法形成氫氧化鈦及銳鈦礦晶相二氧化鈦固定於碳材上的方法。The present invention relates to a method for modifying a carbon material for an electrode, and more particularly to a method for forming titanium hydroxide and anatase crystal phase titanium dioxide fixed on a carbon material by a sol-gel method using a eutectic mixed liquid in combination with microwave heating.

目前以碳為基礎的材料已廣泛應用於纖維材料、鋰電池、燃料電池、超級電容器、電容脫鹽及儲氫裝置等領域上,常用的碳材包括多孔性活性碳粉末、奈米碳纖維、碳氣溶膠、奈米碳管、網狀結構活性碳等,其中多孔性活性碳常應用於電極材料上。At present, carbon-based materials have been widely used in the fields of fiber materials, lithium batteries, fuel cells, supercapacitors, capacitor desalination and hydrogen storage devices. Commonly used carbon materials include porous activated carbon powder, nano carbon fiber, carbon. Aerosols, carbon nanotubes, network-structured activated carbon, etc., in which porous activated carbon is often used on electrode materials.

然而,當活性碳應用在電極材料時,會對電解液中的一些成分產生不可逆的物理性吸附,進而降低電極材料的電容能力及使用壽命,因此需對活性碳進行改質。目前活性碳材料的改質方式之一為化學改質,例如加鹼(如KOH或NaOH),其主要作用為改質活性碳的親水性(wettability),使活性碳表面含有極性官能基而增加其表面親水性,以利水系電解質溶液易於接近碳材電極,但是極性官能基的增加會降低碳材的導電性,不利於電極材料中電子的轉移,或者會造成碳材的表面極化現象,而且此改質方式無法同時提升碳材的親水性與導電性。However, when activated carbon is applied to the electrode material, it irreversibly physically adsorbs some components in the electrolyte, thereby reducing the capacitance and service life of the electrode material, so the activated carbon needs to be modified. At present, one of the reforming methods of activated carbon materials is chemical modification, such as adding alkali (such as KOH or NaOH), the main function of which is to modify the hydrophilicity of the activated carbon, so that the surface of the activated carbon contains polar functional groups and increases The surface is hydrophilic, so that the aqueous electrolyte solution is easy to access the carbon material electrode, but the increase of the polar functional group reduces the conductivity of the carbon material, is not conducive to the transfer of electrons in the electrode material, or may cause surface polarization of the carbon material. Moreover, this modification method cannot simultaneously improve the hydrophilicity and conductivity of the carbon material.

另一種改質方式為添加奈米金屬氧化物,使用混摻(blending)、化學沈澱法或溶膠凝膠法(sol-gel)等方式將奈米金屬氧化物加入或固定於活性碳材料上,去除碳材表面 的極性官能基,以增加碳材的導電性,但是此改質方法容易使碳材表面成為疏水性,而且混摻、化學沈澱法或溶膠凝膠法會有金屬氧化物分佈不均、顆粒過大或合成步驟繁雜、費時、需要後處理高溫(200-500℃)繞結等問題,不符合節能減碳的環保需求,而且此改質方式無法同時提升碳材的親水性與導電性。Another modification method is to add a nano metal oxide, and use a blending, a chemical precipitation method or a sol-gel method to add or fix a nano metal oxide to the activated carbon material. Remove carbon material surface a polar functional group to increase the conductivity of the carbon material, but this modification method tends to make the surface of the carbon material hydrophobic, and the mixing, chemical precipitation or sol-gel method may have uneven distribution of metal oxides and excessive particle size. Or the synthesis step is complicated, time-consuming, and requires post-treatment high temperature (200-500 ° C) winding and other problems, does not meet the environmental protection needs of energy saving and carbon reduction, and this modification method cannot simultaneously improve the hydrophilicity and conductivity of the carbon material.

本揭示提供使用共融混合液(deep eutectic solvents;DES)結合微波(microwave)加熱的溶膠凝膠法對碳材進行改質的方法,可於80℃至100℃的低溫及1大氣壓(atm)的常壓條件下,在30至120分鐘的短時間內,同時形成氫氧化鈦(TiOH)及銳鈦礦晶相二氧化鈦(anatase-TiO2 )與碳材反應產生鍵結,並且所形成的氫氧化鈦(TiOH)及銳鈦礦晶相二氧化鈦係均勻分佈於碳材的表面或孔洞內部,可以同時增加碳材的親水性及電子傳遞性,是一種符合環保要求且低成本的碳材改質方法。The present disclosure provides a method for modifying a carbon material by a sol-gel method using deep eutectic solvents (DES) in combination with microwave heating, at a low temperature of 80 ° C to 100 ° C and at 1 atmosphere (atm) At normal pressure, in the short time of 30 to 120 minutes, the simultaneous formation of titanium hydroxide (TiOH) and anatase crystal phase titanium dioxide (anatase-TiO 2 ) reacts with the carbon material to form a bond, and the formed hydrogen Titanium oxide (TiOH) and anatase phase titanium dioxide are uniformly distributed on the surface or inside the carbon material, which can simultaneously increase the hydrophilicity and electron transport of the carbon material. It is an environmentally friendly and low-cost carbon material modification. method.

同時,當此改質碳材應用於電極材料時,可以提高電極材料的電容能力及使用壽命,並且可增加電極材料的充放電速率及使用效率。At the same time, when the modified carbon material is applied to the electrode material, the capacitance capability and the service life of the electrode material can be improved, and the charge and discharge rate and the use efficiency of the electrode material can be increased.

依據一實施例,提供碳材的改質方法,此方法包括:將碳材與二氧化鈦前驅物、共融混合液(DES)、水和醇類溶劑混合,進行第一階段微波加熱,將產生的第一階段產物過濾;再於過濾後的第一階段產物中加入前述共融混合液、水和前述醇類溶劑,進行第二階段微波加熱,合成出 含有氫氧化鈦及銳鈦礦晶相二氧化鈦固定於碳材上的複合碳材。According to an embodiment, a method for modifying a carbon material is provided, the method comprising: mixing a carbon material with a titanium dioxide precursor, a eutectic mixture (DES), water, and an alcohol solvent, and performing the first stage microwave heating, which is generated. Filtration of the first stage product; adding the aforementioned eutectic mixture, water and the aforementioned alcohol solvent to the filtered first stage product, and performing the second stage microwave heating to synthesize A composite carbon material comprising titanium hydroxide and anatase crystal phase titanium dioxide fixed on a carbon material.

為了讓本發明之上述目的、特徵、及優點能更明顯易懂,以下配合實施方式,作詳細說明如下:In order to make the above objects, features, and advantages of the present invention more comprehensible, the following embodiments are described in detail below:

本揭示之改質方法的實施可分為兩個階段:(1)第一階段為調控共融混合液的含量來抑制二氧化鈦(TiO2 )的水解縮合反應(hydrolysis-condensation reaction),藉此控制氫氧化鈦(TiOH)的生成量;(2)第二階段為二氧化鈦的成核結晶(crystallization)反應,藉此促進二氧化鈦的結晶化,形成銳鈦礦晶相二氧化鈦(anatase-TiO2 )。The implementation of the modified method of the present disclosure can be divided into two stages: (1) The first stage is to control the content of the eutectic mixture to inhibit the hydrolysis-condensation reaction of titanium dioxide (TiO 2 ), thereby controlling The amount of titanium hydroxide (TiOH) formed; (2) The second stage is a crystallization reaction of titanium dioxide, thereby promoting crystallization of titanium dioxide to form anatase-TiO 2 .

在第一階段的步驟中,先利用醇類溶劑使碳材均勻分散於溶劑中,而後再加入由二氧化鈦前驅物、共融混合液(DES)和水所配製之不同比例的試劑。在一實施例中,碳材與醇類溶劑的重量比可約為1:80,且碳材與二氧化鈦前驅物的重量比可約為4:1至2:1,而二氧化鈦前驅物與共融混合液(DES)的莫耳比可介於約1:0.25~1:1.5,且二氧化鈦前驅物與水的莫耳比則為1:5~1:30之間。於低溫(100℃以下)及常壓(1atm)下進行第一階段的微波加熱,在一實施例中,第一階段的微波加熱時間可約為30分鐘。In the first stage of the step, the carbon material is uniformly dispersed in the solvent by using an alcohol solvent, and then a different ratio of the reagent prepared from the titanium dioxide precursor, the eutectic mixture (DES) and water is added. In one embodiment, the weight ratio of the carbon material to the alcohol solvent may be about 1:80, and the weight ratio of the carbon material to the titanium dioxide precursor may be about 4:1 to 2:1, and the titanium dioxide precursor and the incorporation The molar ratio of the mixed solution (DES) may be between about 1:0.25 and 1:1.5, and the molar ratio of the titanium dioxide precursor to water is between 1:5 and 1:30. The first stage of microwave heating is carried out at a low temperature (below 100 ° C) and at a normal pressure (1 atm). In one embodiment, the microwave heating time of the first stage may be about 30 minutes.

在第二階段的步驟中,將第一階段的合成產物經過濾程序後,加入如同前述之共融混合液(DES)、水及醇類溶劑所調配的試劑,在一實施例中,過濾後之第一階段的合成 產物與醇類溶劑的重量比為1:30,而共融混合液(DES)與水的莫耳比則可介於約1:0~1:18之間,且過濾後之第一階段的合成產物與共融混合液(DES)的重量比可約為1:3.6,於低溫(100℃以下)及常壓(1atm)下進行第二階段的微波加熱,在一實施例中,第二階段的微波加熱時間可約為60分鐘。In the second stage of the step, after the first stage of the synthesis product is subjected to a filtration process, a reagent such as the aforementioned eutectic mixture (DES), water and an alcohol solvent is added. In one embodiment, after filtration, First stage synthesis The weight ratio of the product to the alcohol solvent is 1:30, and the molar ratio of the eutectic mixture (DES) to water can be between about 1:0 and 1:18, and the first stage after filtration The weight ratio of the synthesized product to the eutectic mixture (DES) may be about 1:3.6, and the second stage of microwave heating is performed at a low temperature (below 100 ° C) and at a normal pressure (1 atm). In one embodiment, the second The microwave heating time of the stage can be about 60 minutes.

第一階段和第二階段微波加熱的微波功率可為800W,微波頻率可為2.45GHz,且第一階段與第二階段微波加熱時間的總和可為30至120分鐘。The microwave power of the first stage and the second stage microwave heating may be 800 W, the microwave frequency may be 2.45 GHz, and the sum of the microwave heating time of the first stage and the second stage may be 30 to 120 minutes.

本揭示所使用的共融混合液(DES)是由四級胺鹽鹵化物(quaternary ammonium salts)與氫鍵提供者所組成,其中四級胺鹽鹵化物例如為氯化膽鹼(choline chloride;ChCl),氫鍵提供者包括多元醇(polyalcohols)、羧酸(carboxylic acids)、胺(amines)或醯胺(amides),例如為尿素(urea)或甘油(glycerol),且四級胺鹽鹵化物與氫鍵提供者混合的莫耳比可約為1:1~1:8,在此比例範圍下,四級胺鹽鹵化物與氫鍵提供者的融點可降至其共融點,呈現液態混合物。The eutectic mixture (DES) used in the present disclosure is composed of a quaternary ammonium salt and a hydrogen bond provider, wherein the quaternary amine salt halide is, for example, choline chloride (ChCl). The hydrogen bond provider includes polyalcohols, carboxylic acids, amines or amides, such as urea or glycerol, and quaternary amine salt halides and hydrogen. The molar ratio of the bond provider can be about 1:1 to 1:8. In this ratio range, the melting point of the quaternary amine salt halide and the hydrogen bond provider can be reduced to its inflection point, presenting a liquid mixture.

本揭示所改質的碳材可以是活性碳(activated carbon)、竹碳(bamboo charcoal)、奈米碳管(carbon nanotube,CNT)或石墨烯(graphene)。此外,活性碳也可以是活性碳布(activated carbon cloth)的形式。碳材的比表面積為大於300 m2 /g,且碳材的孔洞直徑為介於1 nm-1000 nm之間。The carbon material modified in the present disclosure may be activated carbon, bamboo charcoal, carbon nanotube (CNT) or graphene. Further, the activated carbon may also be in the form of an activated carbon cloth. The carbon material has a specific surface area of more than 300 m 2 /g, and the carbon material has a pore diameter of between 1 nm and 1000 nm.

本揭示所使用的醇類溶劑可以是乙醇(ethanol)、異丙醇 (isopropanol;IPA)或丁醇(n-butanol),本揭示所使用的二氧化鈦前驅物例如為四異丙醇鈦(titanium tetraisopropoxide;TIP)或四正丁醇鈦(titanium butoxide)。The alcohol solvent used in the present disclosure may be ethanol or isopropanol. (isopropanol; IPA) or n-butanol, the titanium dioxide precursor used in the present disclosure is, for example, titanium tetraisopropoxide (TIP) or titanium butoxide.

以下列舉各實施例說明本揭示之碳材的改質方法以及改質碳材製成電極的相關電性特性:The following examples illustrate the modification of the carbon material of the present disclosure and the related electrical characteristics of the electrode made of the modified carbon material:

【製備例1】[Preparation Example 1]

合成銳鈦礦晶相二氧化鈦(anatase-TiO2 )粉末之二氧化鈦前驅物與共融混合液的比例調控Ratio Control of Titanium Dioxide Precursor and Inorganic Mixture of Synthesized Anatase Crystalline Anatase-TiO 2 Powder

使用氯化膽鹼(ChCl)與甘油(Glycerol)混合莫耳比為1:2配製成共融混合液(DES),二氧化鈦前驅物為四異丙醇鈦(TIP),醇類溶劑為異丙醇(IPA)。The chelating ratio of choline chloride (ChCl) to glycerol (Glycerol) is 1:2 to prepare a eutectic mixture (DES), the titanium dioxide precursor is titanium tetraisopropoxide (TIP), and the alcohol solvent is different. Propanol (IPA).

以二氧化鈦前驅物(TIP):醇類溶劑(IPA):水的莫耳比為1:3:100,並且二氧化鈦前驅物(TIP):共融混合液(DES)的莫耳比分別為1:0.25、1:0.50、1:0.75、1:1.0、1:1.5,在80~85℃及1atm的常壓下進行微波加熱90分鐘。Titanium dioxide precursor (TIP): alcohol solvent (IPA): water molar ratio of 1:3:100, and titanium dioxide precursor (TIP): eutectic mixture (DES) molar ratio of 1: 0.25, 1:0.50, 1:0.75, 1:1.0, 1:1.5, microwave heating at 80 to 85 ° C and 1 atm under normal pressure for 90 minutes.

利用X光繞射儀(X-ray Diffraction;XRD)分析以上述條件製備而成的合成產物,結果如第1圖所示。由第1圖的XRD分析結果可得知,二氧化鈦前驅物(TIP):共融混合液(DES)的莫耳比在1:0.25~1:1.5之間皆可以合成出銳鈦礦晶相二氧化鈦(anatase-TiO2 )的奈米結晶。The synthesized product prepared under the above conditions was analyzed by X-ray Diffraction (XRD), and the results are shown in Fig. 1. From the results of XRD analysis in Fig. 1, it can be known that the titanium dioxide precursor (TIP): eutectic mixture (DES) can synthesize anatase crystal phase titanium dioxide at a molar ratio of 1:0.25 to 1:1.5. Nanocrystals of (anatase-TiO 2 ).

【製備例2】[Preparation Example 2]

合成銳鈦礦晶相二氧化鈦(anatase-TiO2 )粉末的微波加 熱時間調控Microwave heating time regulation of synthetic anatase crystal phase titanium dioxide (anatase-TiO 2 ) powder

使用氯化膽鹼(ChCl)與尿素(Urea)混合莫耳比為1:2配製成共融混合液(DES),二氧化鈦前驅物為四異丙醇鈦(TIP),醇類溶劑為異丙醇(IPA)。The chelating ratio of choline chloride (ChCl) to urea (Urea) is 1:2 to prepare a eutectic mixture (DES), the titanium dioxide precursor is titanium tetraisopropoxide (TIP), and the alcohol solvent is different. Propanol (IPA).

以二氧化鈦前驅物(TIP):醇類溶劑(IPA):共融混合液(DES):水的莫耳比為1:3:1:100,在80~85℃及1atm的常壓下分別進行微波加熱30、60、90、120分鐘。Titanium dioxide precursor (TIP): alcohol solvent (IPA): eutectic mixture (DES): water molar ratio of 1:3:1:100, at 80-85 ° C and 1 atm under normal pressure Microwave heating for 30, 60, 90, 120 minutes.

利用X光繞射儀(XRD)分析以上述微波加熱時間條件製備而成的合成產物,結果如第2圖所示。由第2圖的XRD分析結果可得知,微波加熱時間在30至120分鐘之間都可以合成出銳鈦礦晶相二氧化鈦(anatase-TiO2 )的奈米結晶。The synthesized product prepared under the above microwave heating time conditions was analyzed by X-ray diffractometer (XRD), and the results are shown in Fig. 2. From the results of XRD analysis in Fig. 2, it can be known that nanocrystals of anatase-TiO 2 can be synthesized by microwave heating for 30 to 120 minutes.

【製備例3】[Preparation Example 3] 添加共融混合液(DES)對合成銳鈦礦晶相二氧化鈦(anatase-TiO2 )粉末的效果比較Comparison of the effects of adding eutectic mixture (DES) on the synthesis of anatase-TiO 2 powder

使用氯化膽鹼(ChCl)與甘油(Glycerol)混合莫耳比為1:2配製成第一種共融混合液(DES-glycerol),使用氯化膽鹼(ChCl)與尿素(Urea)混合莫耳比為1:2配製成第二種共融混合液(DES-urea),二氧化鈦前驅物為四異丙醇鈦(TIP),醇類溶劑為異丙醇(IPA)。Use choline chloride (ChCl) and glycerol (Glycerol) mixed with a molar ratio of 1:2 to make the first fused mixture (DES-glycerol), using choline chloride (ChCl) and urea (Urea) The mixed molar ratio was 1:2 to prepare a second eucalyptus mixture (DES-urea), the titanium dioxide precursor was titanium tetraisopropoxide (TIP), and the alcohol solvent was isopropyl alcohol (IPA).

以二氧化鈦前驅物(TIP):醇類溶劑(IPA):水的莫耳比為1:3:100,並且分別以二氧化鈦前驅物(TIP):共融混合液(DES)的莫耳比為1:0,二氧化鈦前驅物(TIP):第一種共融混合液(DES-glycerol)的莫耳比為1:1,二氧化鈦前 驅物(TIP):第二種共融混合液(DES-urea)的莫耳比為1:1,在80~85℃及1atm的常壓下分別進行微波加熱90分鐘。Titanium dioxide precursor (TIP): alcohol solvent (IPA): water molar ratio of 1:3:100, and the molar ratio of titanium dioxide precursor (TIP): eutectic mixture (DES) is 1 :0, Titanium Dioxide Precursor (TIP): The first eutectic mixture (DES-glycerol) has a molar ratio of 1:1, before titanium dioxide Drive (TIP): The second blended solution (DES-urea) has a molar ratio of 1:1 and is heated by microwave for 90 minutes at 80-85 ° C and 1 atm atmospheric pressure.

利用X光繞射儀(XRD)分析以上述條件製備而成的合成產物,結果如第3圖所示。由第3圖的XRD分析結果可得知,未添加共融混合液無法合成出銳鈦礦晶相二氧化鈦(anatase-TiO2 ),而添加第一種或第二種共融混合液皆可合成出銳鈦礦晶相二氧化鈦(anatase-TiO2 ),因此添加共融混合液有助於低溫快速形成銳鈦礦晶相二氧化鈦。The synthesized product prepared under the above conditions was analyzed by X-ray diffractometer (XRD), and the results are shown in Fig. 3. From the results of XRD analysis in Fig. 3, it can be known that anatase crystal phase titanium dioxide (anatase-TiO 2 ) cannot be synthesized without adding a eutectic mixture, and the first or second eutectic mixture can be synthesized. Anatase-TiO 2 is formed, so the addition of the eutectic mixture helps to form anatase crystal phase titanium dioxide at a low temperature.

【實施例1-3與比較例1】[Examples 1-3 and Comparative Example 1] 以銳鈦礦晶相二氧化鈦改質的活性碳與未改質的活性碳之比較Comparison of activated carbon modified with anatase phase titanium dioxide and unmodified activated carbon

使用氯化膽鹼(ChCl)與甘油(Glycerol)混合莫耳比為1:2配製成共融混合液(DES),二氧化鈦前驅物為四異丙醇鈦(TIP),醇類溶劑為異丙醇(IPA)。The chelating ratio of choline chloride (ChCl) to glycerol (Glycerol) is 1:2 to prepare a eutectic mixture (DES), the titanium dioxide precursor is titanium tetraisopropoxide (TIP), and the alcohol solvent is different. Propanol (IPA).

首先於反應瓶中置入2克的活性碳,利用200毫升(mL)的異丙醇(IPA)使活性碳均勻分散,碳材與醇類溶劑的重量比約為1:80,接著加入TIP:DES的莫耳比分別為1:0.25、1:0.75、1:1,且TIP:H2 O的莫耳比為1:15之TIP、DES和H2 O混合比例不同的三種試劑,於80~85℃及1atm的常壓下進行第一階段的微波加熱30分鐘,微波功率為800W,頻率為2.45GHz,將得到的第一階段的合成產物過濾。First, 2 g of activated carbon was placed in the reaction flask, and the activated carbon was uniformly dispersed by using 200 ml (mL) of isopropyl alcohol (IPA). The weight ratio of the carbon material to the alcohol solvent was about 1:80, followed by the addition of TIP. : The molar ratio of DES is 1:0.25, 1:0.75, 1:1, and the TIP:H 2 O molar ratio is 1:15. The three reagents with different mixing ratios of TIP, DES and H 2 O are The first stage of microwave heating was carried out at 80 to 85 ° C and 1 atm under normal pressure for 30 minutes, the microwave power was 800 W, and the frequency was 2.45 GHz, and the obtained first stage synthesis product was filtered.

在過濾後的第一階段之合成產物中再加入醇類溶劑, 其中過濾後的第一階段之合成產物與醇類溶劑的重量比為1:30,之後再加入DES:H2 O的莫耳比為1:18的試劑,且其中過濾後的第一階段之合成產物與DES的重量比為1:3.6,於80~85℃及1atm的常壓下進行第二階段的微波加熱60分鐘,微波功率為800W,頻率為2.45GHz,完成實施例1-3之改質活性碳的製備。Further, an alcohol solvent is further added to the synthesized product in the first stage after the filtration, wherein the weight ratio of the first stage synthesis product to the alcohol solvent after filtration is 1:30, and then the DES:H 2 O molar is added. The ratio is 1:18 reagent, and wherein the weight ratio of the synthesized product of the first stage after filtration to DES is 1:3.6, and the second stage of microwave heating is performed for 60 minutes at 80-85 ° C and 1 atm atmospheric pressure. The microwave power was 800 W and the frequency was 2.45 GHz, and the preparation of the modified activated carbon of Examples 1-3 was completed.

比較例1為未改質的活性碳。Comparative Example 1 is an unmodified activated carbon.

利用X光繞射儀(XRD)分析實施例1-3的改質活性碳AC/TiO2 -TIP:DES=1:0.25、AC/TiO2 -TIP:DES=1:0.75、AC/TiO2 -TIP:DES=1:1與比較例1的未改質活性碳(AC),結果如第4圖所示。由第4圖的XRD分析結果可得知,比較例1之未改質活性碳(AC)在角度(2 θ)為25.4°處並無明顯的波峰,而實施例1-3之改質活性碳在角度(2 θ)為25.4°處的波峰強度則明顯增加,此結果表示實施例1-3的改質可有效固定具銳鈦礦晶相二氧化鈦(anatase-TiO2 )於活性碳上,且由圖4的結果發現,當改質活性碳所使用的TIP:DES的莫耳比為1:0.75時,其銳鈦礦晶相二氧化鈦(anatase-TiO2 )的結晶強度最高,此結果與製備例1合成銳鈦礦晶相二氧化鈦(anatase-TiO2 )粉末的結果相符。The modified activated carbon AC/TiO 2 -TIP of Examples 1-3 was analyzed by X-ray diffractometer (XRD): DES = 1:0.25, AC/TiO 2 -TIP: DES = 1:0.75, AC/TiO 2 -TIP: DES = 1:1 and unmodified activated carbon (AC) of Comparative Example 1, and the results are shown in Fig. 4. From the results of XRD analysis in Fig. 4, it was found that the unmodified activated carbon (AC) of Comparative Example 1 had no significant peak at an angle (2 θ) of 25.4°, and the modification activity of Examples 1-3 was obtained. The peak intensity of carbon at an angle (2 θ) of 25.4° is significantly increased. This result indicates that the modification of Examples 1-3 can effectively immobilize anatase-TiO 2 on activated carbon. From the results of FIG. 4, it is found that when the molar ratio of TIP:DES used for modifying activated carbon is 1:0.75, the anatase crystal phase of titanium dioxide (anatase-TiO 2 ) has the highest crystal strength, and the result is the same as Preparation Example 1 The results of synthesizing anatase crystal phase titanium dioxide (anatase-TiO 2 ) powder were consistent.

【實施例4】[Embodiment 4] 以銳鈦礦晶相二氧化鈦改質的活性碳Activated carbon modified with anatase phase titanium dioxide

使用氯化膽鹼(ChCl)與尿素(Urea)混合莫耳比為1:2配製成共融混合液(DES),二氧化鈦前驅物為四異丙醇鈦 (TIP),醇類溶劑為異丙醇(IPA)。The chelating ratio of choline chloride (ChCl) to urea (Urea) is 1:2 to prepare a eutectic mixture (DES), and the titanium dioxide precursor is titanium tetraisopropoxide. (TIP), the alcohol solvent is isopropyl alcohol (IPA).

首先於反應瓶中置入2克的活性碳,利用200毫升(mL)的異丙醇(IPA)使活性碳均勻分散,碳材與醇類溶劑的重量比約為1:80,接著加入TIP:DES的莫耳比為1:1,且TIP:H2 O的莫耳比為1:15之TIP、DES和H2 O的混合試劑,於80~85℃及1atm的常壓下進行第一階段的微波加熱30分鐘,微波功率為800W,頻率為2.45GHz,將得到的第一階段的合成產物進行過濾程序。First, 2 g of activated carbon was placed in the reaction flask, and the activated carbon was uniformly dispersed by using 200 ml (mL) of isopropyl alcohol (IPA). The weight ratio of the carbon material to the alcohol solvent was about 1:80, followed by the addition of TIP. : DES has a Mohr ratio of 1:1, and the TIP:H 2 O molar ratio of 1:15 TIP, DES and H 2 O mixed reagents are carried out at 80-85 ° C and 1 atm atmospheric pressure. The first stage of the microwave was heated for 30 minutes, the microwave power was 800 W, and the frequency was 2.45 GHz. The obtained first stage synthesis product was subjected to a filtration procedure.

在過濾後的第一階段合成產物中再加入醇類溶劑,過濾後的第一階段合成產物與醇類溶劑的重量比為1:30,之後再加入DES:H2 O的莫耳比為1:18的試劑,且過濾後的第一階段合成產物與DES的重量比為1:3.6,於80~85℃及1atm的常壓下進行第二階段的微波加熱60分鐘,微波功率為800W,頻率為2.45GHz,完成實施例4之改質活性碳的製備。An alcohol solvent is further added to the first stage synthesis product after filtration, and the weight ratio of the first stage synthesis product to the alcohol solvent after filtration is 1:30, and then the molar ratio of DES:H 2 O is 1 The reagent of 18: and the weight ratio of the first stage synthesis product to the DES after filtration is 1:3.6, and the second stage microwave heating is performed for 60 minutes at a normal pressure of 80 to 85 ° C and 1 atm, and the microwave power is 800 W. The preparation of the modified activated carbon of Example 4 was completed at a frequency of 2.45 GHz.

【實施例5-7與比較例2】[Examples 5-7 and Comparative Example 2]

以實施例1和實施例3-4之銳鈦礦晶相二氧化鈦改質活性碳與比較例1之未改質活性碳製作電極,並進行電極之電容特性比較,其中實施例3-4之改質活性碳所使用的TIP:DES的莫耳比為1:1且TIP:H2 O的莫耳比為1:15。The anatase crystal phase titanium dioxide modified activated carbon of Example 1 and Example 3-4 was used to prepare an electrode with the unmodified activated carbon of Comparative Example 1, and the capacitance characteristics of the electrode were compared, wherein the modification of Example 3-4 was carried out. TIP used for the activated carbon: DES has a molar ratio of 1:1 and TIP:H 2 O has a molar ratio of 1:15.

電極製作程序方面,將實施例1和實施例3-4之改質活性碳以及比較例1之未改質活性碳,分別與聚二氟乙烯(polyvinylidene fluoride;PVDF,分子量534 k,固含量5 wt%) 及石墨粉粒(粒徑2.7 μm)混合,其中改質活性碳或未改質活性碳:聚二氟乙烯:石墨粉粒的重量比為80:10:10,將N-甲基咯烷酮(N-methyl-2-pyrrolidone;NMP)溶劑加入上述混合物中均勻攪拌成糊狀漿料,使用塗佈機以200 μm刮刀將糊狀漿料均勻塗佈在厚度50 μm的鈦箔上,送入130℃烘箱中烘乾2小時,完成實施例5-7與比較例2之電極的製作,其中實施例5-7的電極分別由實施例1、實施例3-4之改質活性碳製成,而比較例2之電極則由比較例1之未改質活性碳製成。For the electrode preparation procedure, the modified activated carbon of Example 1 and Example 3-4 and the unmodified activated carbon of Comparative Example 1 were respectively mixed with polyvinylidene fluoride (PVDF, molecular weight 534 k, solid content 5). Wt%) And graphite powder (particle size 2.7 μm) mixed, wherein the modified activated carbon or unmodified activated carbon: polydifluoroethylene: graphite powder weight ratio of 80:10:10, N-methylrrolidone (N-methyl-2-pyrrolidone; NMP) solvent was added to the above mixture and uniformly stirred into a paste slurry, and the paste slurry was uniformly coated on a titanium foil having a thickness of 50 μm using a coater with a 200 μm doctor blade, and sent. The electrodes of Examples 5-7 and Comparative Example 2 were prepared by drying in an oven at 130 ° C for 2 hours, wherein the electrodes of Examples 5-7 were respectively made of modified activated carbon of Example 1 and Example 3-4. The electrode of Comparative Example 2 was prepared from the unmodified activated carbon of Comparative Example 1.

測量實施例6-7之電極(由實施例3-4之改質活性碳製成)與比較例2之電極的電阻率(bulk resistivity,μΩ.cm)和比電容值(specific capacitance,F.g-1 ),結果如表1所示。The electrodes of Examples 6-7 (made of the modified activated carbon of Example 3-4) and the electrode of Comparative Example 2 were evaluated for bulk resistivity (μΩ.cm) and specific capacitance (Fg - 1 ), the results are shown in Table 1.

另外,以熱重量分析儀(thermogravimetric analyzer;TGA)對實施例3-4之改質活性碳進行檢測,在氧氣下以每分鐘20℃的升溫速度從30℃升溫至800℃,由TGA分析結果可計算出在實施例3-4之改質活性碳中,固定於活性碳上的銳鈦礦晶相二氧化鈦(anatase-TiO2 )的含量(重量百分比,wt%),結果如表1所示。In addition, the modified activated carbon of Example 3-4 was detected by a thermogravimetric analyzer (TGA), and the temperature was raised from 30 ° C to 800 ° C at a temperature increase rate of 20 ° C per minute under oxygen, and the result of TGA analysis was analyzed. The content (% by weight, wt%) of anatase-TiO 2 immobilized on the activated carbon in the modified activated carbon of Example 3-4 can be calculated, and the results are shown in Table 1. .

表1的結果顯示經由本揭示之改質方法所製備的實施例3-4之改質活性碳所含有的銳鈦礦晶相二氧化鈦(anatase-TiO2 )的含量分別為7.18%及5.99%。The results in Table 1 show that the contents of the anatase-TiO 2 contained in the modified activated carbon of Example 3-4 prepared by the modification method of the present disclosure were 7.18% and 5.99%, respectively.

此外,相較於由比較例1之未改質活性碳所製備的電極之電阻值為107.3μΩ.cm,由實施例3-4之改質活性碳所製備的電極之電阻值可降至95.0μΩ.cm。Further, the resistance value of the electrode prepared from the modified activated carbon of Example 3-4 was lowered to 95.0 as compared with the resistance value of the electrode prepared by the unmodified activated carbon of Comparative Example 1 of 107.3 μΩ·cm. μΩ.cm.

而在電容能力方面,相較於由比較例1之未改質活性碳所製備的電極之比電容值,由實施例3-4之改質活性碳所製備的電極之比電容值可提升約1.3倍。In terms of capacitance, the specific capacitance of the electrode prepared from the modified activated carbon of Example 3-4 can be improved by about the specific capacitance value of the electrode prepared by the unmodified activated carbon of Comparative Example 1. 1.3 times.

由表1的結果可證明經由本揭示之改質方法可將銳鈦礦晶相二氧化鈦(anatase-TiO2 )固定於活性碳上,並且當此改質方法所製備的改質活性碳應用於電極材料時,可以有效地提升電極的導電性及電容能力。From the results of Table 1, it can be confirmed that the anatase crystal phase titanium dioxide (anatase-TiO 2 ) can be immobilized on the activated carbon by the modification method of the present disclosure, and the modified activated carbon prepared by the modification method is applied to the electrode. When the material is used, the conductivity and capacitance of the electrode can be effectively improved.

另外,對實施例1和實施例3之改質活性碳進行X射線光電子能譜(X-ray photoelectron spectroscopy,XPS)分析,並且測量由實施例1和實施例3之改質活性碳製備而成的電極(實施例5和實施例6的電極)之比電容值,結果如表2所列。Further, X-ray photoelectron spectroscopy (XPS) analysis was performed on the modified activated carbons of Example 1 and Example 3, and the modified activated carbons of Examples 1 and 3 were measured. The specific capacitance values of the electrodes (electrodes of Example 5 and Example 6) are shown in Table 2.

由表2的結果可得知,利用改變共融混合液(DES)的添加量,能有效控制形成銳鈦礦晶相二氧化鈦(anatase-TiO2 )的水解縮合反應,進而可調控TiOH的生成量。當共融混合液(DES)的添加量增加時,銳鈦礦晶相二氧化鈦(anatase-TiO2 )的含量並無太大變化,但是其TiOH的生成量則會相對增加。TiOH的生成量增加會使得水系電解質溶液中的水合離子較易於接近電極表面,進而使得電極的比電容值增加,如表2的結果所示,當共融混合液(DES)的添加比例由0.25增加為1時,則其製備而成的改質活性碳所製作的電極之比電容值也由46.4 F.g-1 提升至53.4 F.g-1It can be seen from the results in Table 2 that by changing the amount of addition of the eutectic mixed solution (DES), the hydrolysis condensation reaction of anatase-TiO 2 can be effectively controlled, and the amount of TiOH formed can be controlled. . When the addition amount of the eutectic mixed solution (DES) is increased, the content of anatase-TiO 2 is not changed much, but the amount of formation of TiOH is relatively increased. The increase in the amount of TiOH produced makes the hydrated ions in the aqueous electrolyte solution easier to access the electrode surface, which in turn increases the specific capacitance of the electrode. As shown in the results of Table 2, when the fused mixture (DES) is added by 0.25 When the increase is 1, the specific capacitance of the electrode prepared by the modified activated carbon prepared is also increased from 46.4 Fg -1 to 53.4 Fg -1 .

本揭示之改質方法使用共融混合液結合微波加熱,由於共融混合液可吸收微波,並且具有促進二氧化鈦結晶化的功能,因此有助於低溫(100℃以下)、常壓(1atm)及短時間(少於2小時)內,同時形成氫氧化鈦(TiOH)及銳鈦礦晶相二氧化鈦(anatase-TiO2 )奈米結晶粒固定於碳材上,因此可同時增加碳材的導電性與親水性。The modification method of the present disclosure uses a eutectic liquid mixture in combination with microwave heating, and the eutectic mixture liquid absorbs microwaves and has a function of promoting crystallization of titanium dioxide, thereby contributing to low temperature (below 100 ° C), normal pressure (1 atm), and In a short time (less than 2 hours), simultaneous formation of titanium hydroxide (TiOH) and anatase crystal phase titanium dioxide (anatase-TiO 2 ) nanocrystals are fixed on the carbon material, thereby simultaneously increasing the conductivity of the carbon material. With hydrophilicity.

此外,經由對改質活性碳進行熱重量分析(TGA)以及X射線光電子能譜(XPS)的分析結果可得知,依據本揭示之改質方法製成的複合碳材中含有銳鈦礦晶相二氧化鈦的重量比約為4-10%的,且含有氫氧化鈦的重量比約為15-50%。In addition, it can be known from the analysis of thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) of modified activated carbon that the composite carbon material prepared according to the modified method of the present disclosure contains anatase crystal The weight ratio of the titanium dioxide is about 4-10%, and the weight ratio of the titanium hydroxide is about 15-50%.

另外,依據本揭示之改質方法,可利用共融混合液的添加量控制銳鈦礦晶相二氧化鈦的水解縮合反應速率,進而可調控改質後複合碳材中的氫氧化鈦含量。In addition, according to the modification method of the present disclosure, the hydration condensation reaction rate of the anatase crystal phase titanium dioxide can be controlled by the addition amount of the eutectic liquid mixture, and the titanium oxyhydroxide content in the modified composite carbon material can be regulated.

同時,本揭示之改質方法所使用的共融混合液為高極性與非揮發性之溶劑,具有生物可分解、無毒性、製作簡易、成本低廉等優點,因此本揭示之改質方法為綠色低成本的碳材改質方法。At the same time, the eutectic mixture used in the modification method of the present disclosure is a highly polar and non-volatile solvent, which has the advantages of biodegradability, non-toxicity, simple manufacture, low cost, etc., so the modification method of the present disclosure is green. Low-cost carbon material upgrading method.

此改質後的複合碳材可應用於超級電容、電容脫鹽或儲能裝置的電極材料,減少電極材料表面的不可逆吸附現象及增加電子傳導性,以提升電極的離子吸/脫附能力,並且還有利於水系電解液中的離子易於靠近碳材電極表面,達到提高電極電容之效用,增加電極的充放電速率及使用效率。The modified composite carbon material can be applied to an electrode material of a supercapacitor, a capacitor desalination or an energy storage device, reducing irreversible adsorption on the surface of the electrode material and increasing electron conductivity to enhance the ion absorption/desorption of the electrode, and It is also beneficial for the ions in the aqueous electrolyte to be easily close to the surface of the carbon electrode electrode, thereby improving the effect of the electrode capacitance, increasing the charge and discharge rate and the use efficiency of the electrode.

此外,相較傳統上使用混摻(blending)、化學沈澱法或溶膠凝膠法(sol-gel)等方式將奈米金屬氧化物加入或固定於活性碳的方式,本揭示之改質方法更可達到使氫氧化鈦和銳鈦礦晶相二氧化鈦均勻分佈於碳材表面或孔洞內部的效果,減少銳鈦礦晶相二氧化鈦因奈米化而造成的聚集現象。In addition, the modification method of the present disclosure is more conventional than the method of adding or fixing a nano metal oxide to activated carbon by means of blending, chemical precipitation or sol-gel. The effect of uniformly distributing titanium hydroxide and anatase crystal phase titanium dioxide on the surface of the carbon material or inside the pore can be achieved, and the aggregation phenomenon caused by nanocrystallization of the anatase crystal phase titanium oxide can be reduced.

雖然本發明已揭露較佳實施例如上,然其並非用以限定本發明,任何熟悉此項技藝者,在不脫離本發明之精神和範圍內,當可做些許更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定為準。Although the present invention has been disclosed in its preferred embodiments, it is not intended to limit the invention, and the invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application attached.

第1圖顯示製備例1之使用不同的共融混合液(DES)添加比例對合成出銳鈦礦晶相二氧化鈦(anatase-TiO2 )粉末的效果比較之X光繞射儀(XRD)分析圖譜;第2圖顯示製備例2之使用不同的微波加熱時間對合成出銳鈦礦晶相二氧化鈦(anatase-TiO2 )粉末的效果比較之X光繞射儀(XRD)分析圖譜;第3圖顯示製備例3之添加與未添加共融混合液對合成出銳鈦礦晶相二氧化鈦(anatase-TiO2 )粉末的效果比較之X光繞射儀(XRD)分析圖譜;以及第4圖顯示比較例1之未改質活性碳與實施例1-3之改質活性碳的X光繞射儀(XRD)分析圖譜。Fig. 1 is a view showing an X-ray diffraction pattern (XRD) of the comparison of the effect of the addition ratio of the different inclusive mixture (DES) of the preparation example 1 on the synthesis of anatase-TiO 2 powder. Fig. 2 is a view showing an X-ray diffraction pattern (XRD) of Comparative Example 2 using a different microwave heating time for synthesizing anatase-TiO 2 powder; FIG. 3 is a view X-ray diffractometer (XRD) analysis pattern of the effect of adding and adding a co-melt mixture of Preparation Example 3 on the synthesis of anatase-TiO 2 powder; and Figure 4 showing a comparative example An X-ray diffractometer (XRD) analysis pattern of the unmodified activated carbon of 1 and the modified activated carbon of Examples 1-3.

Claims (10)

一種電極用碳材的改質方法,包括:將碳材與二氧化鈦前驅物、共融混合液、水和醇類溶劑混合,進行一第一階段的微波加熱,產生一第一階段產物,其中該共融混合液由四級胺鹽鹵化物與氫鍵提供者組成,在該第一階段中,該碳材與該醇類溶劑的重量比為1:80,該碳材與該二氧化鈦前驅物的重量比為4:1至2:1,該二氧化鈦前驅物與該共融混合液的添加量之莫耳比為1:0.25~1:1.5,且該二氧化鈦前驅物與水的莫耳比為1:5至1:30;以及在該第一階段產物中再加入該共融混合液、水和該醇類溶劑,進行一第二階段的微波加熱,合成出含有氫氧化鈦及銳鈦礦晶相二氧化鈦固定於該碳材上的一複合碳材,在該第二階段中,該第一階段產物與該醇類溶劑之重量比為1:30,該共融混合液與水的添加量之莫耳比為1:18,且該第一階段產物與該共融混合液的重量比為1:3.6,且其中該第二階段的加熱時間比該第一階段的加熱時間長。 A method for modifying a carbon material for an electrode comprises: mixing a carbon material with a titanium dioxide precursor, a eutectic mixture, water and an alcohol solvent, and performing a first stage of microwave heating to produce a first stage product, wherein the The eutectic mixture is composed of a quaternary amine salt halide and a hydrogen bond provider. In the first stage, the weight ratio of the carbon material to the alcohol solvent is 1:80, and the weight of the carbon material and the titanium dioxide precursor The molar ratio of the titanium dioxide precursor to the eutectic mixture is 1:0.25 to 1:1.5, and the molar ratio of the titanium dioxide precursor to water is 1:4 to 2:1. 5 to 1:30; and further adding the eutectic mixture, water and the alcohol solvent to the first stage product, performing a second stage of microwave heating to synthesize titanium hydroxide and anatase crystal phase a composite carbon material in which titanium dioxide is fixed on the carbon material. In the second stage, the weight ratio of the first stage product to the alcohol solvent is 1:30, and the amount of the eutectic mixture and the water added is not The ear ratio is 1:18, and the weight ratio of the first stage product to the eutectic mixture It is 1:3.6, and wherein the heating time of the second stage is longer than the heating time of the first stage. 如申請專利範圍第1項所述之電極用碳材的改質方法,其中該共融混合液的該四級胺鹽鹵化物與該氫鍵提供者混合的莫耳比為1:1~1:8。 The method for modifying a carbon material for an electrode according to claim 1, wherein a molar ratio of the quaternary amine salt halide of the eutectic mixture to the hydrogen bond provider is 1:1 to 1: 8. 如申請專利範圍第2項所述之電極用碳材的改質方法,其中該四級胺鹽鹵化物包括氯化膽鹼,且該氫鍵提供者包括多元醇、羧酸、胺或醯胺。 The method for modifying a carbon material for an electrode according to claim 2, wherein the quaternary amine salt halide comprises choline chloride, and the hydrogen bond provider comprises a polyol, a carboxylic acid, an amine or a decylamine. 如申請專利範圍第1項所述之電極用碳材的改質方 法,其中該第一階段和該第二階段的微波加熱在溫度介於80-100℃及1大氣壓的常壓下進行,微波功率為800W,微波頻率為2.45GHz,且微波加熱時間總和為30至120分鐘。 The modification of the carbon material for electrodes as described in claim 1 of the patent application scope The method, wherein the microwave heating in the first stage and the second stage is performed at a normal temperature of 80-100 ° C and 1 atm, the microwave power is 800 W, the microwave frequency is 2.45 GHz, and the total microwave heating time is 30. Up to 120 minutes. 如申請專利範圍第1項所述之電極用碳材的改質方法,其中該碳材包括活性碳、竹碳、奈米碳管或石墨烯,且該碳材的比表面積大於300m2 /g,該碳材的孔洞平均直徑介於1nm-1000nm之間。The method for modifying a carbon material for an electrode according to claim 1, wherein the carbon material comprises activated carbon, bamboo carbon, carbon nanotubes or graphene, and the specific surface area of the carbon material is greater than 300 m 2 /g. The carbon material has an average pore diameter of between 1 nm and 1000 nm. 如申請專利範圍第1項所述之電極用碳材的改質方法,其中該醇類溶劑包括乙醇(ethanol)、異丙醇(isopropanol)或丁醇(n-butanol)。 The method for modifying a carbon material for an electrode according to claim 1, wherein the alcohol solvent comprises ethanol, isopropanol or n-butanol. 如申請專利範圍第1項所述之電極用碳材的改質方法,其中該二氧化鈦前驅物包括四異丙醇鈦(titanium tetraisopropoxide)或四正丁醇鈦(titanium butoxide)。 The method for modifying a carbon material for an electrode according to claim 1, wherein the titanium dioxide precursor comprises titanium tetraisopropoxide or titanium butoxide. 一種電極用碳材,由申請專利範圍第1項所述之電極用碳材的改質方法製成,含有氫氧化鈦及銳鈦礦晶相二氧化鈦固定於一碳材上,其含有的該銳鈦礦晶相二氧化鈦的重量比為4-10%,且含有的該氫氧化鈦的成份比為15-50%。 The carbon material for an electrode is prepared by the method for modifying the carbon material for an electrode according to the first aspect of the patent application, and comprises titanium hydroxide and anatase crystal phase titanium dioxide fixed on a carbon material, which contains the sharp The weight ratio of the titanium ore phase titanium dioxide is 4-10%, and the composition ratio of the titanium hydroxide is 15-50%. 如申請專利範圍第8項所述之電極用碳材,其中該碳材包括活性碳、竹碳、奈米碳管或石墨烯,且該碳材的比表面積大於300m2 /g,該碳材的孔洞平均直徑介於1nm-1000nm之間。The carbon material for an electrode according to claim 8, wherein the carbon material comprises activated carbon, bamboo carbon, carbon nanotubes or graphene, and the carbon material has a specific surface area of more than 300 m 2 /g, the carbon material The pores have an average diameter between 1 nm and 1000 nm. 如申請專利範圍第8項所述之電極用碳材,其係用於超級電容、電容脫鹽或儲能裝置的電極材料。The electrode carbon material according to claim 8 is used for an electrode material of a supercapacitor, a capacitor desalination or an energy storage device.
TW101149247A 2012-12-22 2012-12-22 Method of modifying carbon-based electrode material and carbon-based electrode material formed thereby TWI487661B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW101149247A TWI487661B (en) 2012-12-22 2012-12-22 Method of modifying carbon-based electrode material and carbon-based electrode material formed thereby
CN201210585459.3A CN103879983B (en) 2012-12-22 2012-12-28 Method for modifying carbon material for electrode and carbon material for electrode produced by same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101149247A TWI487661B (en) 2012-12-22 2012-12-22 Method of modifying carbon-based electrode material and carbon-based electrode material formed thereby

Publications (2)

Publication Number Publication Date
TW201425215A TW201425215A (en) 2014-07-01
TWI487661B true TWI487661B (en) 2015-06-11

Family

ID=50949161

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101149247A TWI487661B (en) 2012-12-22 2012-12-22 Method of modifying carbon-based electrode material and carbon-based electrode material formed thereby

Country Status (2)

Country Link
CN (1) CN103879983B (en)
TW (1) TWI487661B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9957171B2 (en) 2013-12-19 2018-05-01 Industrial Technology Research Institute Composite and electrode for electrochemical removal of phosphorus, and apparatus and method using the electrode
US10301199B2 (en) 2013-12-19 2019-05-28 Industrial Technology Research Institute Method for selective electrochemical removal of ions in water/wastewater

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104062337B (en) * 2014-06-17 2016-10-05 广州科城环保科技有限公司 A kind of graphite electrode and the method measuring chloride ion content in copper sulphate thereof
CN109103029B (en) * 2018-08-27 2020-12-11 四川理工学院 Spiral nano carbon fiber/TiO2Composite material and use thereof
CN109768218A (en) * 2019-03-04 2019-05-17 浙江众泰汽车制造有限公司 A kind of hard carbon lithium ion battery negative material of N doping and preparation method thereof and anode plate for lithium ionic cell and lithium ion battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201039482A (en) * 2009-04-27 2010-11-01 Nat Univ Tsing Hua Preparation of a nanocomposite photoanode for dye-sensitized solar cells
CN102222573A (en) * 2011-03-25 2011-10-19 华中科技大学 Method for preparing titanium dioxide nanocrystalline electrode
CN102509621A (en) * 2011-10-27 2012-06-20 中国矿业大学 Method for preparing flexible-substrate solar cell photoelectrode at low temperature

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006092952A (en) * 2004-09-24 2006-04-06 Hiroshima Univ Membrane/electrode assembly, its manufacturing method, and fuel cell using it
CN101187646B (en) * 2007-11-23 2011-12-14 东华大学 Granule electrode possessing photoelectric catalytic function and its uses
US8968931B2 (en) * 2009-11-05 2015-03-03 National University Of Singapore Crystalline mesoporous titanium dioxide and the use thereof in electrochemical devices
CN102324505B (en) * 2011-07-27 2014-01-22 天津大学 Preparation method of graphene loaded with anatase type nano titanium dioxide and application thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201039482A (en) * 2009-04-27 2010-11-01 Nat Univ Tsing Hua Preparation of a nanocomposite photoanode for dye-sensitized solar cells
CN102222573A (en) * 2011-03-25 2011-10-19 华中科技大学 Method for preparing titanium dioxide nanocrystalline electrode
CN102509621A (en) * 2011-10-27 2012-06-20 中国矿业大学 Method for preparing flexible-substrate solar cell photoelectrode at low temperature

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9957171B2 (en) 2013-12-19 2018-05-01 Industrial Technology Research Institute Composite and electrode for electrochemical removal of phosphorus, and apparatus and method using the electrode
US10301199B2 (en) 2013-12-19 2019-05-28 Industrial Technology Research Institute Method for selective electrochemical removal of ions in water/wastewater

Also Published As

Publication number Publication date
CN103879983B (en) 2016-01-06
CN103879983A (en) 2014-06-25
TW201425215A (en) 2014-07-01

Similar Documents

Publication Publication Date Title
Qiu et al. Resilient mesoporous TiO2/graphene nanocomposite for high rate performance lithium-ion batteries
Wei et al. Manganese oxide-based materials as electrochemical supercapacitor electrodes
Chen et al. SnO2‐based nanomaterials: synthesis and application in lithium‐ion batteries
Hong et al. Hierarchical SnO2 nanoclusters wrapped functionalized carbonized cotton cloth for symmetrical supercapacitor
Lee et al. Cobalt-based compounds and composites as electrode materials for high-performance electrochemical capacitors
Nithya et al. Effect of pH on the sonochemical synthesis of BiPO4 nanostructures and its electrochemical properties for pseudocapacitors
Nugroho et al. A facile supercritical alcohol route for synthesizing carbon coated hierarchically mesoporous Li4Ti5O12 microspheres
TWI608866B (en) Electrode material manufacturing method
JP5928445B2 (en) Cathode active material for lithium ion secondary battery and method for producing the same
TWI487661B (en) Method of modifying carbon-based electrode material and carbon-based electrode material formed thereby
Yus et al. Electrophoretic deposition of RGO-NiO core-shell nanostructures driven by heterocoagulation method with high electrochemical performance
Kim et al. Synthesis of hollow TiO 2@ N-doped carbon with enhanced electrochemical capacitance by an in situ hydrothermal process using hexamethylenetetramine
Wang et al. Hierarchical mesoporous rutile TiO2/C composite nanospheres as lithium-ion battery anode materials
Hsieh et al. Microwave synthesis of titania-coated carbon nanotube composites for electrochemical capacitors
Bai et al. One-step fabricating nitrogen-doped TiO2 nanoparticles coated with carbon to achieve excellent high-rate lithium storage performance
Song et al. Superior sodium storage of carbon-coated NaV6O15 nanotube cathode: pseudocapacitance versus intercalation
Yoon et al. One-pot route for uniform anchoring of TiO2 nanoparticles on reduced graphene oxides and their anode performance for lithium-ion batteries
Umek et al. The influence of the reaction temperature on the morphology of sodium titanate 1D nanostructures and their thermal stability
Iuchi et al. Synthesis and electrochemical performance of a nanocrystalline Li4Ti5O12/C composite for lithium-ion batteries prepared using resorcinol–formaldehyde resins
Ghiyasiyan-Arani et al. Synergic and coupling effect between SnO 2 nanoparticles and hierarchical AlV 3 O 9 microspheres toward emerging electrode materials for lithium-ion battery devices
Mehraeen et al. Homogeneous growth of TiO2-based nanotubes on nitrogen-doped reduced graphene oxide and its enhanced performance as a Li-ion battery anode
Yue et al. Oxygen vacancies modulation in graphene/MnOx composite for high performance supercapacitors
WO2016157551A1 (en) Titanium oxide particles, titanium oxide particle production method, power storage device electrode including titanium oxide particles, and power storage device provided with electrode including titanium oxide particles
Seok et al. Piezoelectric composite of BaTiO3-coated SnO2 microsphere: Li-ion battery anode with enhanced electrochemical performance based on accelerated Li+ mobility
Guan et al. RGO/KMn8O16 composite as supercapacitor electrode with high specific capacitance