TW201321300A - Metal nanostructure and preparation thereof - Google Patents

Metal nanostructure and preparation thereof Download PDF

Info

Publication number
TW201321300A
TW201321300A TW100142089A TW100142089A TW201321300A TW 201321300 A TW201321300 A TW 201321300A TW 100142089 A TW100142089 A TW 100142089A TW 100142089 A TW100142089 A TW 100142089A TW 201321300 A TW201321300 A TW 201321300A
Authority
TW
Taiwan
Prior art keywords
metal
nanostructure
template
nanoporous
palladium
Prior art date
Application number
TW100142089A
Other languages
Chinese (zh)
Inventor
Rong-Ming Ho
Han-Yu Hsueh
Original Assignee
Nat Univ Tsing Hua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Tsing Hua filed Critical Nat Univ Tsing Hua
Priority to TW100142089A priority Critical patent/TW201321300A/en
Priority to US13/472,711 priority patent/US20120231290A1/en
Publication of TW201321300A publication Critical patent/TW201321300A/en

Links

Abstract

Nanoporous polystyrene matrix can be fabricated from the self-assembly of degradable block copolymer, polystyrene-b-poly(L-lactide) (PS-PLLA), followed by the hydrolysis of PLLA blocks. Metal is deposited in nanopores of the PS matrix using the nanoporous PS as a template via electroless plating. After subsequent UV degradation of the PS matrix, metal in the nanopores remains, yielding a metal nanostructure. The metal nanostructure may be a gyroid nanostructure, helical nanostructure or columnar nanostructure.

Description

金屬奈米結構及其製備方法Metal nano structure and preparation method thereof

本發明關於一種金屬奈米結構,包括不需要依靠支撐物,且自身可站立(self-standing)的金屬奈米結構塊材,及形成於一基材上的大面積,例如0.5 cm x 0.5 cm以上的金屬奈米結構薄膜。該金屬可以為鎳、金、銀、銅或其他金屬。該金屬奈米結構可應用於超級電容器、高能密度電池組,儲氫容器、電磁複合物、表面增強拉曼光學儀(surface-enhanced Raman spectroscopy)、抗微生物支架、過濾及去鹽化、輕量結構、吸熱器(heat sink)、超高場電磁鐵(ultrahigh electromagnets)及磁性媒介(magnetic media)。The present invention relates to a metal nanostructure comprising a metal nanostructure block which does not depend on a support and which itself can be self-standing, and a large area formed on a substrate, for example 0.5 cm x 0.5 cm The above metal nanostructure film. The metal can be nickel, gold, silver, copper or other metals. The metal nanostructure can be applied to supercapacitors, high energy density battery packs, hydrogen storage containers, electromagnetic composites, surface-enhanced Raman spectroscopy, antimicrobial scaffolding, filtration and desalting, and lightweight Structures, heat sinks, ultrahigh electromagnets, and magnetic media.

美國專利案第7,135,523 B2號揭示用於製造一系列奈米級微結構的方法,該奈米級微結構包括螺旋形微結構及圓柱形微結構。本方法包括下列步驟:(1)形成含有眾多掌性第一聚合物鏈段及第二聚合物鏈段的掌性嵌段共聚物,其中該等掌性第一聚合物鏈段具有介於20至49%的體積分率;(2)造成該掌性嵌段共聚物的相分離。在較佳具體實施例中,該掌性嵌段共聚物為聚(苯乙烯)-聚(L-乳酸)(PS-PLLA)掌性嵌段共聚物,而且該共聚合方法為活性共聚合方法,其包括下列步驟:(a)使苯乙烯與BPO及4-OH-TEMPO混合以形成以4-羥基-TEMPO-為末端的聚苯乙烯;及(2)使該4-羥基-TEMPO-為末端的聚苯乙烯與[(η3-EDBP)Li2]2[(η3-"Bu)Li(0.5Et2O)]2及L-乳酸在有機溶劑中,較佳為CH2Cl2,混合以形成該聚(苯乙烯)-聚(L-乳酸)掌性嵌段共聚物。穿透式電子顯微鏡(TEM)及小角度散射X光(SAXS)研究顯示當該聚(L-乳酸)的體積分率為約35至37%時,觀察到具有43.8奈米的間距及34.4奈米直徑的奈米級螺旋微結構。U.S. Patent No. 7,135,523 B2 discloses a method for making a series of nanoscale microstructures comprising a helical microstructure and a cylindrical microstructure. The method comprises the steps of: (1) forming a palm-shaped block copolymer comprising a plurality of palmar first polymer segments and a second polymer segment, wherein the palmar first polymer segments have a To a volume fraction of 49%; (2) causing phase separation of the palm block copolymer. In a preferred embodiment, the palm block copolymer is a poly(styrene)-poly(L-lactic acid) (PS-PLLA) palm block copolymer, and the copolymerization method is a living copolymerization method. And comprising the steps of: (a) mixing styrene with BPO and 4-OH-TEMPO to form a polystyrene terminated with 4-hydroxy-TEMPO-; and (2) making the 4-hydroxy-TEMPO- The terminal polystyrene and [(η 3 -EDBP)Li 2 ] 2 [(η 3 -"Bu)Li(0.5Et 2 O)] 2 and L-lactic acid are in an organic solvent, preferably CH 2 Cl 2 , mixed to form the poly(styrene)-poly(L-lactic acid) palm block copolymer. Transmission electron microscopy (TEM) and small angle scattering X-ray (SAXS) studies show that when the poly(L-lactic acid When the volume fraction is about 35 to 37%, a nano-scale helical microstructure having a pitch of 43.8 nm and a diameter of 34.4 nm is observed.

美國專利申請案第2004/0265548 A號揭示製造奈米級結構時使用的奈米圖案模板。該奈米圖案模板含有具有週期性排列,且具多孔型態之奈米薄膜結構,該奈米多孔性薄膜係由包含下列步驟的方法製成:(a)利用嵌段共聚合法製備包含第一及第二聚合物鏈段的嵌段共聚物,該第一及第二聚合物鏈段彼此互不相容;(b)在使該第一聚合物鏈段能形成週期性排列型態的條件之下形成薄膜;及(c)將該第一聚合物鏈段選擇性地被降解以使得該薄膜形成具有週期規則排列之奈米多孔材料。在較佳具體實施例中,該嵌段共聚物為聚(苯乙烯)-b-聚(L-乳酸)(PS-PLLA)掌性嵌段共聚物,該第一聚合物為聚(L-乳酸),而且該第二聚合物為聚苯乙烯。實驗結果顯示該等第一聚合物鏈段可以其垂直於該薄膜表面之方向形成六方最密堆積的圓柱狀型態。利用水解使該等第一聚合物鏈段選擇性被降解之後,獲得具奈米級六方最密堆積之奈米級圓柱狀孔道之薄膜,藉由調控其第一聚合物之分子量與體積分率可控制孔徑之大小與間距。U.S. Patent Application No. 2004/0265548 A discloses a nanopattern template used in the manufacture of a nanoscale structure. The nano pattern template comprises a nano film structure having a periodic arrangement and a porous form, the nanoporous film being made by a method comprising the steps of: (a) preparing by a block copolymerization method comprising the first And a block copolymer of the second polymer segment, the first and second polymer segments being mutually incompatible; (b) a condition for enabling the first polymer segment to form a periodic alignment pattern Forming a film underneath; and (c) selectively degrading the first polymer segment such that the film forms a nanoporous material having a periodic arrangement. In a preferred embodiment, the block copolymer is a poly(styrene) -b -poly(L-lactic acid) (PS-PLLA) palm block copolymer, the first polymer being poly(L- Lactic acid), and the second polymer is polystyrene. The experimental results show that the first polymer segments can form a hexagonal closest packed cylindrical shape perpendicular to the direction of the film surface. After the first polymer segment is selectively degraded by hydrolysis, a film having a nanometer-sized hexagonal closest packed nano-scale cylindrical channel is obtained by controlling the molecular weight and volume fraction of the first polymer. The size and spacing of the apertures can be controlled.

美國專利申請案第2006/0124467 A號揭示金屬奈米點陣列及其製造方法。將嵌段共聚物之薄膜脫附於導電基材上。該嵌段共聚物包含第一聚合物及第二聚合物鏈段,其中該等第一聚合物鏈段具有週期性規則排列型態。將該等第一聚合物鏈段選擇性降解以形成包含週期性排列的奈米通道之奈米圖案模板。藉由電鍍,將金屬沉積於暴露出該導電基材的奈米通道中,由此形成金屬奈米點陣列。U.S. Patent Application No. 2006/0124467 A discloses a metal nanodot array and a method of manufacturing the same. The film of the block copolymer is desorbed onto a conductive substrate. The block copolymer comprises a first polymer and a second polymer segment, wherein the first polymer segments have a periodic regular arrangement. The first polymer segments are selectively degraded to form a nanopattern template comprising periodically aligned nanochannels. Metal is deposited by plating in a nanochannel that exposes the conductive substrate, thereby forming an array of metal nanodots.

Rong-Ming Ho等人在標題為"Helical Nanocomposites from Chiral Block Copolymer Templates",J. AM. CHEM. SOC. 2009,131,1356-1357,的文章中揭示以結合可分解性之嵌段共聚物的自組裝及溶液-凝膠化學所製備的三維排列之螺旋形奈米複合材料。先由該PS-PLLA掌性嵌段共聚物進行自組裝行為,經由水解降解PLLA鏈段形成具有奈米孔道之PS多孔塊材。以此塊材作為模板,藉由奈米反應器的概念,於該模板中進行溶液-凝膠反應以製造具螺旋結構之奈米複合材料。在UV曝曬下將PS模板降解之後獲得SiO2奈米螺旋體。Rong-Ming Ho et al., in the article entitled "Helical Nanocomposites from Chiral Block Copolymer Templates", J. AM. CHEM. SOC. 2009, 131, 1356-1357, discloses a block copolymer that combines decomposability. Three-dimensional array of spiral nanocomposites prepared by self-assembly and solution-gel chemistry. The self-assembly behavior of the PS-PLLA palm block copolymer is first performed to form a PS porous block having a nanopore via hydrolysis degradation of the PLLA segment. Using this block as a template, a solution-gel reaction was carried out in the template by the concept of a nanoreactor to produce a nanostructured composite having a helical structure. The SiO 2 nanohelix was obtained after the PS template was degraded under UV exposure.

美國專利申請案第2011/0003069 A1號揭示了一種利用嵌段共聚物模板製造奈米材料之方法。其係利用由可分解性及不可分解性之複數個單體聚合而得之嵌段共聚物製備嵌段共聚物塊材,經除去其可分解之部分後,得到具複數個孔洞之嵌段共聚物模板,這些孔洞係具週期性排列之奈米結構。再結合奈米反應器的概念,利用如溶液-凝膠法或是電化學合成方式填入各種填充材料,如陶瓷、金屬與高分子等,可製得包含奈米結構的複合材料。經除去高分子之嵌段共聚物模板後,即可得到具有奈米結構的反相性奈米材料。此專利申請案沒有揭示金屬奈米結構的具體製備方法,也沒有任何實施例。A method of making a nanomaterial using a block copolymer template is disclosed in U.S. Patent Application Serial No. 2011/0003,069. The block copolymer block is prepared by using a block copolymer obtained by polymerizing a plurality of monomers which are decomposable and non-decomposable, and after removing the decomposable portion, a block copolymer having a plurality of pores is obtained. Templates, these holes are arranged in a periodically arranged nanostructure. Combined with the concept of a nanoreactor, a composite material containing a nanostructure can be obtained by filling various filler materials such as ceramics, metals and polymers by means of a solution-gel method or electrochemical synthesis. After removing the polymer block copolymer template, a reversed-phase nanomaterial having a nanostructure can be obtained. This patent application does not disclose a specific preparation method for the metal nanostructure, nor does it have any examples.

本案申請人於2011年1月13日申請的美國專利申請案13/005,637中揭示了具有極低折射率,例如等效折射率可低至1.1的SiO2螺旋二十四面體,亦可稱為五角三八面體之抗反射結構,該抗反射結構係先利用旋塗及溶劑退火形成PS-PLLA掌性嵌段共聚物之薄層,緊接著進行上述的水解、溶液-凝膠程序及PS模板之降解製備而成。The SiO 2 spiral quaternary tetrahedron having an extremely low refractive index, for example, an equivalent refractive index as low as 1.1, is also disclosed in U.S. Patent Application Serial No. 13/005,637, filed on Jan. 13, 2011. The anti-reflective structure of the pentagonal trioctahedron is formed by spin coating and solvent annealing to form a thin layer of the PS-PLLA palm block copolymer, followed by the above hydrolysis, solution-gel procedure and Prepared by degradation of PS template.

在此以引用的方式將前述美國專利案及專利公告中揭示內容細節併入本文。The details of the disclosures in the aforementioned U.S. Patent and Patent Publications are incorporated herein by reference.

本發明提供一種金屬奈米結構,該金屬可以為鎳、金、銀、銅或其他金屬。較佳的,該金屬為鎳。The present invention provides a metal nanostructure which may be nickel, gold, silver, copper or other metal. Preferably, the metal is nickel.

本發明提供一種自身可站立的金屬奈米結構。此自身可站立的金屬奈米結構為螺旋二十四面體奈米結構(gyroid nanostruture),或互相連結的螺旋形奈米結構。於本發明的一實施例中製備了自身可站立的螺旋二十四面體奈米結構。The present invention provides a metal nanostructure that is self standing. The self-standing metal nanostructure is a spiral gyro nanostructure, or a spiral nanostructure connected to each other. In one embodiment of the invention, a self-standing spiral twenty-tetrahedral nanostructure is prepared.

本發明提供一種位於一基材上的大面積,例如0.5 cm x 0.5 cm,以上的金屬奈米結構。該大面積的金屬奈米結構可為螺旋二十四面體奈米結構(gyroid nanostruture),螺旋形奈米結構(helical nanostructure),或圓柱形奈米結構。較佳的,該大面積的金屬奈米結構為螺旋二十四面體奈米結構。該基材與金屬奈米結構接觸的表面可以為非導電表面,也可以為一導電層。較佳的,該大面積的金屬奈米結構具有約100 nm至約200 nm的厚度。The present invention provides a metal nanostructure on a large area, such as 0.5 cm x 0.5 cm or more, on a substrate. The large-area metal nanostructure may be a gyroid nanostruture, a helical nanostructure, or a cylindrical nanostructure. Preferably, the large-area metal nanostructure is a helical twenty-tetrahedral nanostructure. The surface of the substrate in contact with the metal nanostructure may be a non-conductive surface or a conductive layer. Preferably, the large area metal nanostructure has a thickness of from about 100 nm to about 200 nm.

本發明亦提供一種金屬奈米結構的製備方法,其中包括一種改良式無電電鍍方法。The invention also provides a method for preparing a metal nanostructure, which comprises an improved electroless plating method.

本發明也提供一種具有本發明金屬奈米結構的裝置,該裝置係選自超級電容器、高能密度電池組,儲氫容器、電磁複合物、表面增強拉曼光學儀(surface-enhanced Raman spectroscopy)、抗微生物支架、過濾器、去鹽化裝置、吸熱器(heat sink)、超高場電磁鐵(ultrahigh field electromagnets)及磁性媒介(magnetic media)。The invention also provides a device having the metal nanostructure of the invention, which is selected from the group consisting of a supercapacitor, a high energy density battery, a hydrogen storage container, an electromagnetic composite, a surface-enhanced Raman spectroscopy, Antimicrobial stents, filters, desalination devices, heat sinks, ultrahigh field electromagnets, and magnetic media.

適用於本發明的基材為石英、玻璃、聚合物或半導體,它們的表面不需要塗佈一導電層即可經由本發明的改良式無電電鍍方法在該表面上形成本發明的金屬奈米結構。較佳的,該半導體基材為矽晶圓或氧化矽基材。選擇性的,該玻璃基材亦可以為氧化銦錫(ITO)玻璃基材或經過碳塗佈的玻璃基材。The substrate suitable for use in the present invention is quartz, glass, polymer or semiconductor, and the surface thereof does not need to be coated with a conductive layer to form the metal nanostructure of the present invention on the surface via the improved electroless plating method of the present invention. . Preferably, the semiconductor substrate is a germanium wafer or a hafnium oxide substrate. Optionally, the glass substrate may also be an indium tin oxide (ITO) glass substrate or a carbon coated glass substrate.

一種適用於製備本發明的金屬奈米結構之方法包含下列步驟:A method suitable for preparing the metal nanostructure of the present invention comprises the following steps:

a) 提供一奈米多孔模板;a) providing a nanometer porous template;

b) 將該奈米多孔模板浸於一含有鈀離子的溶液;b) immersing the nanoporous template in a solution containing palladium ions;

c) 從該溶液中取出該奈米多孔模板,隨後,以一清洗液清洗該奈米多孔模板;c) removing the nanoporous template from the solution, and subsequently washing the nanoporous template with a cleaning solution;

d) 將清洗過的奈米多孔模板浸入於一無電電鍍液中,使得該奈米多孔模板的奈米孔內的鈀離子率先還原成鈀原子,於是該無電電鍍液中金屬離子為該鈀原子所催化而還原成元素態金屬,並填充該奈米多孔模板的奈米孔道之中,其中該金屬為鎳、金、銀或銅。d) immersing the washed nanoporous template in an electroless plating solution, so that the palladium ion in the nanopore of the nanoporous template is first reduced to palladium atoms, and thus the metal ion in the electroless plating solution is the palladium atom It is catalyzed and reduced to an elemental metal and filled into a nanopore of the nanoporous template, wherein the metal is nickel, gold, silver or copper.

較佳的,本發明方法進一步包含步驟:e)藉由使用紫外線曝曬、煅燒、有機溶劑、超臨界流體或其組合移除步驟d)該被填充元素態金屬的奈米多孔模板,留下該奈米孔內的金屬,於是產生了一金屬奈米結構。Preferably, the method of the present invention further comprises the steps of: e) removing the nanoporous template of the elemental metal filled in step d) by using ultraviolet exposure, calcination, organic solvent, supercritical fluid or a combination thereof, leaving the The metal in the nanopore thus produces a metallic nanostructure.

前述步驟a)的奈米多孔模板若是自身可站立(self-standing)的奈米多孔模板,則本發明方法的步驟e)將製備出自身可站立的金屬奈米結構,亦即塊狀金屬奈米結構。前述步驟a)的奈米多孔模板若為形成於一基材表面上的薄膜,則本發明方法的步驟e)將製備出一附著於該基材表面上的大面積金屬奈米結構層。同理,本發明方法的步驟d)將可製備出含有金屬奈米結構且自身可站立的複合材料,或者含有金屬奈米結構且附著於一基材表面上的大面積複合材料層。If the nanoporous template of the aforementioned step a) is a self-standing nanoporous template, the step e) of the method of the invention will prepare a metal nanostructure which can stand on its own, that is, a massive metal na[iota] Rice structure. If the nanoporous template of the foregoing step a) is a film formed on the surface of a substrate, step e) of the method of the present invention will produce a large-area metal nanostructure layer attached to the surface of the substrate. By the same token, step d) of the method of the invention will produce a composite material comprising a metallic nanostructure and standing on its own, or a large-area composite layer comprising a metallic nanostructure and attached to the surface of a substrate.

本發明的金屬奈米結構的製備過程很容易因為該奈米多孔模板的奈米孔洞之阻塞而失敗。例如,傳統無電電鍍製程的敏化步驟(sensitizing)所使用的氯化亞錫會形成膠狀物阻塞奈米孔洞;以及附著於孔洞內的鈀原子的分佈若太密,也會造成一開始被還原的元素態金屬太密集而阻塞孔洞,造成無電電鍍反應物不易出入而影響到後續的無電電鍍製程。The preparation of the metal nanostructure of the present invention is susceptible to failure due to blockage of the nanopores of the nanoporous template. For example, the stannous chloride used in the sensitizing process of the conventional electroless plating process forms a gel to block the nanopores; and if the distribution of palladium atoms attached to the pores is too dense, it will also be initially The reduced elemental metal is too dense to block the pores, causing the electroless plating reaction to be difficult to enter and affect the subsequent electroless plating process.

本發明的另一特點是傳統無電電鍍配方所得到的金屬為非晶態(amorphous),需透過高溫煆燒才能得到具有較佳機械強度的結晶態金屬;但本發明方法的無電電鍍利用“金屬成核成長”的概念,使無電電鍍液中的金屬離子在鈀原子的催化下還原成元素態,此元素態金屬成為核心,藉由自我催化的過程(self-catalyzing process)-即新生的元素態金屬本身即是催化點,來促使後來的金屬離子還原堆疊其上,而得到結晶態金屬。Another feature of the present invention is that the metal obtained by the conventional electroless plating formulation is amorphous, and it is required to pass through high temperature calcination to obtain a crystalline metal having better mechanical strength; however, the electroless plating of the method of the present invention utilizes "metal. The concept of nucleation growth causes the metal ions in the electroless plating solution to be reduced to the elemental state under the catalysis of palladium atoms. This elemental metal becomes the core, through the self-catalyzing process - the nascent element The metal itself is the catalytic point to cause subsequent metal ions to be reduced and stacked thereon to obtain a crystalline metal.

較佳的,本發明方法步驟b)中的含有鈀離子的溶液具有0.06-6.0 mg/ml的鈀離子濃度。於本發明的一實施例中使用含有0.6 mg/ml鈀離子的溶液。較佳的,該含有鈀離子的溶液進一步含有增進模板潤濕的表面張力調節劑,例如C1-C4醇。較佳的,該含有鈀離子的溶液進一步含有增進鈀鹽溶解於其中的溶解促進劑,例如酸。於本發明的一實施例中使用45 ml乙醇及5 ml的1 N鹽酸水溶液的混合液來溶解0.05 g的PdCl2Preferably, the palladium ion-containing solution in step b) of the process of the invention has a palladium ion concentration of from 0.06 to 6.0 mg/ml. A solution containing 0.6 mg/ml palladium ions is used in an embodiment of the invention. Preferably, the palladium ion-containing solution further contains a surface tension modifier which promotes wetting of the template, such as a C1-C4 alcohol. Preferably, the palladium ion-containing solution further contains a dissolution promoter such as an acid which enhances dissolution of the palladium salt therein. In one embodiment of the invention, a mixture of 45 ml of ethanol and 5 ml of 1 N aqueous hydrochloric acid solution was used to dissolve 0.05 g of PdCl 2 .

較佳的,本發明方法步驟c)中的清洗液為可移除該奈米多孔模板外表面的鈀離子的任何溶液,例如去離子水、醇、醚、酯或它們的混合。於本發明的一實施例中使用乙醇與水的混合液。Preferably, the cleaning solution in step c) of the process of the invention is any solution which removes palladium ions from the outer surface of the nanoporous template, such as deionized water, alcohols, ethers, esters or mixtures thereof. A mixture of ethanol and water is used in an embodiment of the invention.

較佳的,本發明方法步驟d)中的無電電鍍液含有一還原劑,其用於將該鈀離子還原成鈀原子。合適的還原劑包括(但不限於)肼,肼氫氧化物,甲醛,硼氫化鈉,二甲基甲醯胺,β-D-葡萄糖,乙二醇,檸檬酸鈉,抗壞血酸,二甲基亞碸,酒石酸氫鉀,甲醇,乙醇,1-丙醇,2-丙醇,吡啶,聚(乙二醇),及参(三甲基矽氧基)矽烷或氫氣。Preferably, the electroless plating solution in step d) of the process of the invention contains a reducing agent for reducing the palladium ions to palladium atoms. Suitable reducing agents include, but are not limited to, hydrazine, hydrazine hydroxide, formaldehyde, sodium borohydride, dimethylformamide, beta-D-glucose, ethylene glycol, sodium citrate, ascorbic acid, dimethyl碸, potassium hydrogen tartrate, methanol, ethanol, 1-propanol, 2-propanol, pyridine, poly(ethylene glycol), and ginseng (trimethyldecyloxy) decane or hydrogen.

較佳的,本發明方法步驟a)中的奈米多孔模板為多孔陶瓷、多孔金屬或多孔高分子。更佳的,該奈米多孔模板為選自由聚(苯乙烯)、聚(乙烯基吡啶)及聚(丙烯腈)所組成的群組的多孔高分子,以聚(苯乙烯)為最佳。Preferably, the nanoporous template in step a) of the method of the invention is a porous ceramic, a porous metal or a porous polymer. More preferably, the nanoporous template is a porous polymer selected from the group consisting of poly(styrene), poly(vinylpyridine) and poly(acrylonitrile), and poly(styrene) is preferred.

一適合用於製備自身可站立(self-standing)的高分子奈米多孔模板的方法包含提供具有第一聚合物鏈段及第二聚合物鏈段的掌性嵌段共聚物,其中該第一聚合物係選自由聚(L-乳酸)、聚(D-乳酸)所組成的群組,而且該第二聚合物係選自由聚(苯乙烯)、聚(乙烯基吡啶)及聚(丙烯腈)所組成的群組,其中藉由調整該第一聚合物鏈段於該掌性嵌段共聚物的體積分率,該第一聚合物鏈段可於其中形成一系列重複奈米級六角-圓柱形、螺旋形或螺旋二十四面體結構;及選擇性降解該掌性嵌段共聚物的第一聚合物鏈段以形成對應的多孔奈米通道,於是獲得具有一系列具重複規則排列的奈米級六方最密堆積圓柱體、螺旋形或螺旋二十四面體通道的第二聚合物鏈段。此外,該第一聚合物可選自非掌性但亦可降解的聚合物,例如該第一聚合可選自由聚(乳酸)、聚(己內酯)所組成的群組,而且該第二聚合物係選自由聚(苯乙烯)、聚(乙烯基吡啶)及聚(丙烯腈)所組成的群組,其中藉由調整該第一聚合物鏈段於該非掌性嵌段共聚物的體積分率,該第一聚合物鏈段可於其中形成一系列重複奈米級六角-圓柱形或螺旋二十四面體結構;及選擇性降解該非掌性嵌段共聚物的第一聚合物鏈段以形成對應的多孔奈米通道,於是獲得具有一系列具重複規則排列的奈米級六方最密堆積圓柱體或螺旋二十四面體通道的第二聚合物鏈段。A method suitable for preparing a self-standing polymer nanoporous template comprising providing a palm block copolymer having a first polymer segment and a second polymer segment, wherein the first The polymer is selected from the group consisting of poly(L-lactic acid) and poly(D-lactic acid), and the second polymer is selected from the group consisting of poly(styrene), poly(vinylpyridine) and poly(acrylonitrile). a group formed by adjusting a volume fraction of the first polymer segment to the palm block copolymer, the first polymer segment forming a series of repeating nano-hexagons therein - a cylindrical, spiral or helical tetrahedral structure; and selectively degrading the first polymer segment of the palm block copolymer to form a corresponding porous nanochannel, thus obtaining a series of repeating regular arrangements The second polymer segment of the nano-scale hexagonal closest packed cylindrical, spiral or helical tetrahedral channel. In addition, the first polymer may be selected from a non-pallicate but also degradable polymer, such as a group consisting of the first polymerizable free poly(lactic acid), poly(caprolactone), and the second The polymer is selected from the group consisting of poly(styrene), poly(vinylpyridine), and poly(acrylonitrile), wherein the volume of the first polymer segment to the non-palm block copolymer is adjusted Fraction, the first polymer segment may form a series of repeating nano-scale hexagonal-cylindrical or helical tetrahedral structures therein; and selectively degrade the first polymer chain of the non-palm block copolymer The segments are formed to form corresponding porous nanochannels, thus obtaining a second polymer segment having a series of nanoscale hexagonal closest packed cylinders or helical tetrahedral channels having a repetitively regular arrangement.

一適合用於製備位於一基材表面上的高分子奈米多孔模板的方法包含:在以有機材料改質的基材上塗佈具有第一聚合物鏈段及第二聚合物鏈段的掌性嵌段共聚物之有機溶劑溶液層;將該塗佈的基材放在含有非選擇性溶劑的蒸氣之環境中以使所得到的塗層進行溶劑退火,以便形成具有作為主體的第二聚合物鏈段,及在該主體中之具有一系列重複奈米結構排列的第一聚合物鏈段之嵌段共聚物膜層;選擇性降解該第一聚合物鏈段以形成在該膜的主體中之對應的奈米通道。較佳地,該塗佈為旋塗。較佳的,該有機溶劑溶液具有介於1.5至10重量%的該嵌段共聚物濃度,更佳的,約3重量%。該有機溶劑為二氯苯、氯苯、二氯甲烷、甲苯或四氫呋喃等等,較佳地,該有機溶劑為二氯苯。較佳的,該非優先性溶劑為二氯甲烷或氯仿。較佳的,該塗層具有約100 nm至約200 nm的厚度。較佳的該奈米通道為螺旋二十四面體奈米通道。A method suitable for preparing a polymeric nanoporous template on a surface of a substrate comprises: coating a palm having a first polymer segment and a second polymer segment on a substrate modified with an organic material a layer of an organic solvent solution of the block copolymer; placing the coated substrate in an environment containing a vapor of a non-selective solvent to subject the resulting coating to solvent annealing to form a second polymerization having a bulk as a host a segment of the block, and a block copolymer film layer of the first polymer segment having a series of repeating nanostructures in the body; selectively degrading the first polymer segment to form a body of the film The corresponding nanochannel in the middle. Preferably, the coating is spin coating. Preferably, the organic solvent solution has a concentration of the block copolymer of from 1.5 to 10% by weight, more preferably about 3% by weight. The organic solvent is dichlorobenzene, chlorobenzene, dichloromethane, toluene or tetrahydrofuran, etc. Preferably, the organic solvent is dichlorobenzene. Preferably, the non-priority solvent is dichloromethane or chloroform. Preferably, the coating has a thickness of from about 100 nm to about 200 nm. Preferably, the nanochannel is a helical twenty-tetrahedral nanochannel.

較佳的,該用以使該基材表面改質的有機材料為以羥基為末端的聚苯乙烯、以羥基為末端的聚(乙烯基吡啶)或以羥基為末端的聚(丙烯腈),及更佳地,為以羥基為末端的聚苯乙烯。較佳的,該以羥基為末端的聚苯乙烯具有5000 至10000的分子量。Preferably, the organic material for modifying the surface of the substrate is a hydroxyl-terminated polystyrene, a hydroxyl-terminated poly(vinylpyridine) or a hydroxyl-terminated poly(acrylonitrile). And more preferably, it is a hydroxyl terminated polystyrene. Preferably, the hydroxyl terminated polystyrene has a molecular weight of from 5,000 to 10,000.

較佳的,該嵌段共聚物為聚(苯乙烯)-聚(L-乳酸)掌性嵌段共聚物,該第一聚合物鏈段為聚(L-乳酸),而且該第二聚合物鏈段為聚苯乙烯。較佳的,在該嵌段共聚物中的第一聚合物鏈段的體積分率介於36%至50%,更佳地為約40%。Preferably, the block copolymer is a poly(styrene)-poly(L-lactic acid) palm block copolymer, the first polymer segment is poly(L-lactic acid), and the second polymer The segment is polystyrene. Preferably, the first polymer segment in the block copolymer has a volume fraction of from 36% to 50%, more preferably about 40%.

較佳的,該第一聚合物鏈段係藉由水解予以選擇性降解。Preferably, the first polymer segment is selectively degraded by hydrolysis.

較佳的,在步驟e)中該第二聚合物鏈段主體係藉由使用有機溶劑予以移除,例如四氫呋喃(THF)或甲苯。Preferably, in step e) the second polymer segment main system is removed by using an organic solvent such as tetrahydrofuran (THF) or toluene.

較佳的,在步驟e)中該奈米多孔模板係藉由使用紫外線曝曬予以移除,例如254 nm的波長及3 mW/cm2的強度。Preferably, in step e) the nanoporous template is removed by exposure to ultraviolet light, such as a wavelength of 254 nm and an intensity of 3 mW/cm 2 .

美國專利案第7,135,523 B2號已經揭示該聚(苯乙烯)-聚(L-乳酸)(PS-PLLA)掌性嵌段共聚物及其製備方法,其形成奈米級微結構,該奈米級微結構依據PLLA的體積分率包括螺旋形微結構及圓柱形微結構。美國專利申請案第2004/0265548 A號揭示製造奈米級物體時使用的奈米圖案模板,其中對在基材上之經旋塗的PS-PLLA層施以水解以致於PLLA被移除而形成週期排列的奈米多孔性型態。Rong-Ming Ho等人在標題為"Helical Nanocomposites from Chiral Block Copolymer Templates",J. AM. CHEM. SOC. 2009,131,1356-1357,的文章中另外使用美國專利案第7,135,523 B2號所揭示的PS-PLLA的奈米級微結構以藉著該溶液-凝膠化學的併入製備三維排列的螺旋形奈米複合材料,以便製造SiO2奈米螺旋結構。本案申請人於2011年1月13日申請的美國專利申請案13/005,637中揭示了具有極低折射率,例如等效折射率可低至1.1的SiO2螺旋二十四面體之抗反射結構。該抗反射結構係先利用旋塗及溶劑退火形成PS-PLLA掌性嵌段共聚物層,接著上述的水解形成螺旋二十四面體通道、溶液-凝膠程序及PS模板的降解製備而成。The poly(styrene)-poly(L-lactic acid) (PS-PLLA) palm block copolymer and a process for the preparation thereof are disclosed in U.S. Patent No. 7,135,523 B2, which form a nano-scale microstructure, which is of the nano-scale The microstructure includes a spiral microstructure and a cylindrical microstructure according to the volume fraction of PLLA. U.S. Patent Application No. 2004/0265548 A discloses a nanopattern template for use in the manufacture of nanoscale objects in which a spin-coated PS-PLLA layer on a substrate is hydrolyzed such that PLLA is removed. Periodically arranged nanoporous patterns. Rong-Ming Ho et al., in the article entitled "Helical Nanocomposites from Chiral Block Copolymer Templates", J. AM. CHEM. SOC. 2009, 131, 1356-1357, additionally discloses the disclosure of U.S. Patent No. 7,135,523 B2. The nano-scale microstructure of PS-PLLA was prepared by the solution-gel chemistry to prepare a three-dimensional array of helical nanocomposites to produce a SiO 2 nanohelix structure. An anti-reflective structure of a SiO 2 spiral icosahedron having an extremely low refractive index, such as an equivalent refractive index as low as 1.1, is disclosed in U.S. Patent Application Serial No. 13/005,637, filed on Jan. 13, 2011. . The anti-reflective structure is formed by spin coating and solvent annealing to form a PS-PLLA palm-shaped block copolymer layer, followed by hydrolysis to form a spiral tetrahedral channel, a solution-gel procedure and a degradation of a PS template. .

在本發明中基於上述先前技藝利用掌性嵌段共聚物(chiral block copolymer)形成具有不同形態之奈米通道作為奈米反應器,同時開發出經過一新穎改良式無電電鍍方法成功地在該奈米反應器的奈米通道中形成金屬奈米結構。本發明的改良式無電電鍍方法省去傳統無電電鍍需要敏化的步驟(浸入氯化亞錫水溶液),將活化(鈀原子-催化點的產生)與無電電鍍(金屬離子的還原)兩步驟合併於同一溶液中完成。先行於孔洞中還原的鈀(Pd)金屬成為活性點,緊接著,溶液中的金屬離子於活性點上進行還原反應而形成金屬核種,溶液中的金屬離子將源源不絕地於該金屬核種上被還原成元素態金屬,此過程為一種自催化反應(self-catalyzing process)。成功製備高分子/金屬奈米混成材料(polymer/metal nanohybrids)。於本發明的一實施例中由穿透式電子顯微鏡的三維立體顯像技術(3D tomography),可直接觀察模化(templated)之鎳金屬螺旋二十四面體奈米結構(gyroid nanostructure)於高分子母材的實體影像。隨後,選擇適當溶劑即可除去高分子模板,完整保留鎳金屬螺旋二十四面體奈米結構,形成具高孔隙度(可達62%)之三維網狀金屬物,不同於其他奈米多孔金屬材料,此三維網狀金屬材料具有規則排列之奈米結構。經由這樣一個簡單容易被工業化的無電電鍍模化製程(templated electroless plating),本案發明人可以輕易地製備不同組成且結構完整的高分子/金屬奈米混成材料,如金、銀、銅等,於超穎材料(metamaterials)、綠色能源與化學催化等方面將有極大的應用潛力。In the present invention, based on the above prior art, a chiral block copolymer is used to form a nanochannel having a different morphology as a nanoreactor, and at the same time, a novel modified electroless plating method has been developed successfully in the nai. A metal nanostructure is formed in the nanochannel of the rice reactor. The improved electroless plating method of the present invention eliminates the need for sensitization of conventional electroless plating (immersion in aqueous solution of stannous chloride), and combines activation (palladium atom-catalytic point generation) with electroless plating (reduction of metal ions). Completed in the same solution. The palladium (Pd) metal reduced in the pore first becomes the active point, and then the metal ion in the solution undergoes a reduction reaction at the active site to form a metal nucleus, and the metal ion in the solution is continuously sourced on the metal nucleus. Reduction to elemental metal, the process is a self-catalyzing process. Successful preparation of polymer/metal nanohybrids. In one embodiment of the present invention, a three-dimensional tomography technique of a transmission electron microscope can directly observe a templated nickel metal spiral quaternary nanostructure. A physical image of a polymer matrix. Subsequently, the polymer template can be removed by selecting an appropriate solvent, and the nickel metal spiral icosahedral nanostructure is completely retained to form a three-dimensional network metal having a high porosity (up to 62%), which is different from other nanoporous materials. A metallic material having a regularly arranged nanostructure. Through such a simple and easily industrialized electroless plating process, the inventors of the present invention can easily prepare polymer/metal nano-mixed materials of different compositions and structures, such as gold, silver, copper, etc. Metamaterials, green energy and chemical catalysis will have great potential for application.

下列經由實驗程序提供的實施例為例示性並且試圖示範本發明的具體實施例,然而,其應不得將本發明的具體實施例視為限於指定的具體實施例,而是僅為了說明及理解的目的,因為熟悉此技藝者將顯而易見眾多的修飾改良及變化。The following examples are provided by way of example and are intended to be illustrative of the specific embodiments of the present invention. Purpose, as many modifications and variations will be apparent to those skilled in the art.

實施例Example 縮寫:abbreviation:

L-LA:L-乳酸L-LA: L-lactic acid

PS:聚苯乙烯PS: Polystyrene

PLLA:聚(L-乳酸)PLLA: Poly (L-lactic acid)

PS-PLLA BCP:聚(苯乙烯)-聚(L-乳酸)掌性嵌段共聚物PS-PLLA BCP: poly(styrene)-poly(L-lactic acid) palm block copolymer

PDI:分子量分佈指數PDI: molecular weight distribution index

BCP:嵌段共聚物BCP: block copolymer

PS-PLLA BCP的合成Synthesis of PS-PLLA BCP

該PS-PLLA BCP係藉由雙向聚合順序製備。我們在之前已經描述過該PS-PLLA樣品的合成[Ho,R. M.;Chen,C. K.;Chiang,Y. W.;Ko,B. T.;Lin,C. C. Adv. Mater. 2006,18,2355-2358]。該PS的平均分子量及分子量分佈(聚分散度)係藉由GPC來測定。該PS-PLLA的聚分散度係藉由GPC來測定,並且該L-LA重複單元的數目係為苯乙烯重複單元的數目之函數,並藉由1H NMR分析測定。該PS及PLLA的平均分子量及該PS-PLLA的PDI分別為34000 g mol-1、27000 g mol-1及1.26。假設PS及PLLA的密度分別為1.02及1.248 g cm-3,由此算出PLLA的體積分率為f PLLA v=0.39。The PS-PLLA BCP is prepared by a two-way polymerization sequence. We have previously described the synthesis of this PS-PLLA sample [Ho, RM; Chen, CK; Chiang, YW; Ko, BT; Lin, CC Adv. Mater. 2006, 18, 2355-2358]. The average molecular weight and molecular weight distribution (polydispersity) of the PS were measured by GPC. The polydispersity of the PS-PLLA was determined by GPC, and the number of L-LA repeating units was a function of the number of styrene repeating units and was determined by 1 H NMR analysis. The average molecular weight of the PS and PLLA and the PDI of the PS-PLLA were 34000 g mol -1 , 27,000 g mol -1 and 1.26, respectively. Assuming that the densities of PS and PLLA are 1.02 and 1.248 g cm -3 , respectively, the volume fraction of PLLA is calculated to be f PLLA v =0.39.

樣品之製備Sample preparation

PS-PLLA BCP的塊狀樣品係將前述PS-PLLA BCP的10 wt%二氯甲烷溶液於室溫下靜置揮發以利於共聚物自組裝行為之進行,於室溫下擺放2星期後再於65℃的真空烘箱中乾燥3天。乾燥後的樣品首先被加熱至最高的退火溫度175℃並停留3分鐘以除去在製備過程中形成的PLLA結晶殘留。最後再驟冷至室溫。從在175℃的微相分離的有序的熔融狀態驟冷後,使用超切片機(ultra-microtome)對該熱處理過的嵌段共聚物進行切片以作為後續TEM的觀察。結果被示於圖1a。The block sample of PS-PLLA BCP was prepared by allowing the 10 wt% dichloromethane solution of the aforementioned PS-PLLA BCP to be volatilized at room temperature to facilitate the self-assembly behavior of the copolymer, and placed at room temperature for 2 weeks before Dry in a vacuum oven at 65 ° C for 3 days. The dried sample was first heated to a maximum annealing temperature of 175 ° C and left for 3 minutes to remove the PLLA crystal residue formed during the preparation. Finally, quench to room temperature. After quenching from the ordered molten state of microphase separation at 175 ° C, the heat treated block copolymer was sliced using an ultra-microtome as a follow-up TEM observation. The results are shown in Figure 1a.

PLLA的水解Hydrolysis of PLLA

藉由水解作用移除該PS-PLLA共聚物的PLLA鏈段,該水解作用是使用0.5 M鹼溶液進行PLLA鏈段水解,其配方如下:將2 g的氫氧化鈉溶於40/60(以體積計)的甲醇/水的混合溶液。水解3天後,使用去離子水及甲醇的混合液沖洗該經水解的樣品,緊接著,作為模版以進行後續的無電電鍍鎳製程。The PLLA segment of the PS-PLLA copolymer was removed by hydrolysis by hydrolysis of the PLLA segment using a 0.5 M base solution as follows: 2 g of sodium hydroxide was dissolved in 40/60 (to A volumetric mixture of methanol/water. After 3 days of hydrolysis, the hydrolyzed sample was rinsed with a mixture of deionized water and methanol, followed by a stencil for subsequent electroless nickel plating.

改良式無電電鍍方法Improved electroless plating method

具有互相連通彎曲空氣孔道的奈米多孔PS模板被浸入於一活化溶液中,於室溫下持續攪拌3-4小時,該活化溶液為乙醇(45ml),HCl(1N,5ml)及PdCl2(0.05g)的混合液。在以乙醇/水溶液溫和的洗去覆蓋在該含浸過的樣品表面多餘的Pd2+後,隨即將該孔洞內被充填Pd2+的樣品浸入於一剛準備好的Ni鍍浴,於室溫下進行反應。於此Ni鍍浴中,0.2 g氯化鎳(NiCl2‧6H2O)被溶解於由蒸餾水(20 ml),乙醇(5 ml),肼氫氧化物(hydrazinium hydroxide)(85%,2ml)及氨水(2 ml)所組成的溶液中。Pd2+離子被肼氫氧化物所還原而形成Pd簇(cluster),Pd簇的成核(nucleation)因而被啟始。值得注意的是,此實施例所製備的活化溶液的濃度相當的低,而且覆蓋在樣品表面上多餘Pd2+離子也被洗去的情形下,僅有少量的Pd簇能在PS模板內被產生。接著,Ni2+於Pd簇的位置上受到催化而開始被還原成Ni。因為Ni的無電電鍍為一自動、連續的製程,Ni將在PS模板內部持續地產生直到該等奈米通道為Ni所完全填滿。因此,具奈米尺度,且具有良好次序(well-ordered)分散於PS模板內的Ni金屬網絡(network)可被製得。A nanoporous PS template having interconnected curved air channels is immersed in an activation solution and stirred at room temperature for 3-4 hours. The activation solution is ethanol (45 ml), HCl (1 N, 5 ml) and PdCl 2 ( 0.05 g) of the mixture. After the excess Pd 2+ covering the surface of the impregnated sample is gently washed with an ethanol/water solution, the sample filled with Pd 2+ in the hole is immersed in a newly prepared Ni plating bath at room temperature. The reaction is carried out. In this Ni plating bath, 0.2 g of nickel chloride (NiCl 2 ‧6H 2 O) was dissolved in distilled water (20 ml), ethanol (5 ml), hydrazinium hydroxide (85%, 2 ml) And a solution of ammonia (2 ml). The Pd 2+ ions are reduced by the hydrazine hydroxide to form a Pd cluster, and the nucleation of the Pd cluster is thus initiated. It is worth noting that the concentration of the activation solution prepared in this example is relatively low, and in the case where excess Pd 2+ ions are also washed away on the surface of the sample, only a small amount of Pd clusters can be produce. Next, Ni 2+ is catalyzed at the position of the Pd cluster and begins to be reduced to Ni. Since the electroless plating of Ni is an automatic, continuous process, Ni will continue to be generated inside the PS template until the nanochannels are completely filled with Ni. Therefore, a Ni metal network having a nanometer scale and having a well-ordered dispersion in the PS template can be produced.

PS模板的移除PS template removal

為了製造該螺旋二十四面體的Ni奈米結構,藉由四氫呋喃(THF)的清洗來移除該PS/Ni螺旋二十四面體奈米混成體的PS主體,此程序的進行係於室溫及大氣環境下攪拌24小時。於是,輕易獲得具有良好次序奈米結構的奈米多孔螺旋二十四面體Ni。In order to manufacture the helical tetrahedral Ni nanostructure, the PS main body of the PS/Ni spiral icosahedral nanomixer is removed by washing with tetrahydrofuran (THF), and the procedure is carried out. Stir at room temperature and atmospheric conditions for 24 hours. Thus, a nanoporous helix tetrahedral Ni having a good order nanostructure is easily obtained.

結果result

圖1a顯示了本實施例所製備的熱處理過的嵌段共聚物PS-PLLA的穿透式電子顯微鏡(TEM)照片,圖中深色的部份為以RuO4染色的PS主體,淡色的部份為PLLA微區域(microdomains)。此PS-PLLA的[100]投射影像確定了螺旋二十四面體(gyroid)相的形成。另外,以1D小角度散射X光(1D SAXS)觀察時(未示於圖中)也確認此螺旋二十四面體相的形成,其中由主反射所測定的(211)gyroid面之跨區域間隔(interdomain spacing)約為40.9 nm。PLLA水解後的PS模板的1D SAXS曲線(未示於圖中)顯示PS模板具有與PS-PLLA相同的曲線形狀,而由主反射所測定的PS模板的(211)gyroid的跨區域間隔為39.8 nm,約縮小了2.6%。此奈米多孔PS模板的孔隙度及比表面積由氮氣吸附實驗及Brunauer-Emmett-Teller分析器(BET)分別分析得到為約37%及97 m2g-1Fig. 1a shows a transmission electron microscope (TEM) photograph of the heat-treated block copolymer PS-PLLA prepared in this example, in which the dark portion is a PS main body dyed with RuO 4 and a light colored portion. The copies are PLLA microdomains. The [100] projection image of this PS-PLLA determines the formation of a helical gyroid phase. In addition, the formation of the helical tetrahedral phase was also observed when the X-ray (1D SAXS) was observed at a small angle of 1D (not shown in the figure), wherein the cross-region of the (211) gyroid surface measured by the main reflection was also observed. The interdomain spacing is approximately 40.9 nm. The 1D SAXS curve of the PS template after PLLA hydrolysis (not shown) shows that the PS template has the same curved shape as PS-PLLA, and the cross-region spacing of the (211) gyroid of the PS template determined by the main reflection is 39.8. Nm, which is about 2.6% smaller. The porosity and specific surface area of this nanoporous PS template were analyzed by a nitrogen adsorption experiment and a Brunauer-Emmett-Teller analyzer (BET) to obtain about 37% and 97 m 2 g -1 , respectively .

圖1b為一TEM的照片顯示了本實施例所製備的PS/Ni螺旋二十四面體奈米混成材料未被染色的[111]投射影像,圖1b的投射影像與圖1a者類似但其對比是相反的,黑色區域的部分為Ni,而白色區域的部分則是PS模板,其意味著PLLA在水解過程後被完全移除了,而且Ni在奈米多孔PS模板內經由改良式無電電鍍方法被成功的合成。Fig. 1b is a TEM photograph showing the [111] projection image of the PS/Ni spiral icosahedral nanomixer prepared in this example, which is not dyed. The projection image of Fig. 1b is similar to that of Fig. 1a but The contrast is reversed, the portion of the black region is Ni, and the portion of the white region is the PS template, which means that PLLA is completely removed after the hydrolysis process, and Ni is modified by electroless plating in the nanoporous PS template. The method was successfully synthesized.

圖2a顯示了本實施例所製備的PS/Ni螺旋二十四面體奈米混成材料內的Ni奈米結構所重建的3D影像,其係從一套經由不同傾斜角度投射2D影像重建得到。圖2a顯示出在PS主體內的具有雙連續網絡的螺旋二十四面體Ni。另外,此混成材料的1D SAXS曲線(未示於圖中)其跨區域間隔(39.8 nm(d(211)G))與多孔PS模板相同,顯示該多孔PS模板在無電電鍍製程中仍然維持其螺旋二十四面體型態(morphology)。圖2b顯示了本實施例所製備的Ni奈米結構的場發射掃描電子顯微(field emission SEM,FESEM)影像,其中PS已經從PS/Ni奈米混成材料所移除。圖3顯示了此多孔螺旋二十四面體Ni的低倍率FESEM影像,從其中可以看出本實施例可以製備出大面積、具連續相之多孔材料,且其微孔具有可精準控制的幾何形狀。圖3右下角的小圖為此多孔螺旋二十四面體Ni塊的照片,從其中可以看出本實施例可以製備出具公分級尺度、無裂縫且自身可站立之塊材樣品。另外透過Fourier紅外線(FT-IR)光譜(未示於圖中)也進一步確認了PS從該PS/Ni奈米混成材料中完全地移除。Fig. 2a shows a 3D image reconstructed from the Ni nanostructure in the PS/Ni spiral icosahedral nanocomposite prepared in this example, which is reconstructed from a set of 2D image projections through different tilt angles. Figure 2a shows a spiral twenty-tetrahedral Ni with a double continuous network within the PS body. In addition, the 1D SAXS curve of this hybrid material (not shown) has a cross-region spacing (39.8 nm (d (211) G )) identical to that of the porous PS template, indicating that the porous PS template still maintains its electroless plating process. Spiral tetrahedral morphology. Figure 2b shows a field emission SEM (FESEM) image of the Ni nanostructure prepared in this example, in which PS has been removed from the PS/Ni nanomix material. Fig. 3 shows a low-magnification FESEM image of the porous spiral tetrahedral Ni, from which it can be seen that a porous material having a large area and a continuous phase can be prepared, and the micropores have precisely controllable geometry. shape. The small image in the lower right corner of Fig. 3 is a photograph of this porous spiral hexahedral Ni block, from which it can be seen that this embodiment can prepare a bulk sample having a public grading scale, no crack and standing on its own. Further, it was further confirmed by Fourier infrared (FT-IR) spectroscopy (not shown) that PS was completely removed from the PS/Ni nanomixed material.

本實施例所製備的多孔螺旋二十四面體Ni的孔隙度由氮氣吸附實驗測量得到的結果約為62%,而其每克比表面積為1467 m2mol-1(25 m2g-1)。經由此相同之改良式無電電鍍得到的無孔隙的純Ni,其本質上的密度約為8.0 gcm-3,因此該多孔螺旋二十四面體Ni的密度為約3.05 gcm-3(38%相對密度)。The porosity of the porous spiral tetrahedral Ni prepared in this example is about 62% as measured by nitrogen adsorption experiments, and its specific surface area per gram is 1467 m 2 mol -1 (25 m 2 g -1 ). ). The void-free pure Ni obtained by the same modified electroless plating has an intrinsic density of about 8.0 gcm -3 , so the density of the porous spiral tetrahedral Ni is about 3.05 gcm -3 (38% relative) density).

為了檢驗該多孔螺旋二十四面體Ni的結晶特性,我們進行了電子選區繞射(SAED)及廣角度X光繞射(XRD)實驗,圖4顯示了其SAED圖型及圖2c顯示了其XRD曲線。圖4中的繞射環可以被辨識出此為具有面心立方(fcc) Ni多晶,同時也辨識出微量的NiO結晶。我們推測此NiO應該是Ni暴露於空氣及濕氣時所產生。圖2c的XRD曲線顯示的結果與圖4的SAED結果一致。圖2c中的所有繞射峰皆證實此材料為fcc Ni,其具有晶格常數:a=3.540,JCPDS卡號4-856,分別為(111),(200),(220),(311)及(222)。無其他不純物,例如NiO及Ni(OH)2的特性峰被偵測到。由以上SAED及XRD的實驗結果顯示出具有良好次序結晶型態特徵的Ni相可以在大氣環境下被製備得到。In order to examine the crystallization characteristics of the porous helix tetrahedron Ni, we performed electronic selective diffraction (SAED) and wide-angle X-ray diffraction (XRD) experiments. Figure 4 shows the SAED pattern and Figure 2c shows Its XRD curve. The diffraction ring in Figure 4 can be identified as having a face centered cubic (fcc) Ni polycrystal while also identifying trace amounts of NiO crystals. We speculate that this NiO should be produced when Ni is exposed to air and moisture. The XRD curve of Figure 2c shows the results consistent with the SAED results of Figure 4. All of the diffraction peaks in Figure 2c confirm that the material is fcc Ni, which has a lattice constant: a = 3.540 , JCPDS card number 4-856, respectively (111), (200), (220), (311) and (222). No other impurities, such as the characteristic peaks of NiO and Ni(OH) 2 , were detected. From the above experimental results of SAED and XRD, it is shown that the Ni phase having a good order of crystalline form characteristics can be prepared in an atmospheric environment.

就本案發明人所知此處的多孔螺旋二十四面體Ni,且自身可站立之塊材結構為第一次被製備出。很顯然的,當本發明的奈米多孔PS模板係被形成於一基材表面上時,本發明的改良式無電電鍍方法將可以製備出位在該基材表面上的一層大面積PS/Ni螺旋二十四面體奈米混成材料,接著再移除其中的PS主體即可製得位在該基材表面上,具有大面積批覆的螺旋二十四面體Ni。因為本發明的改良式無電電鍍方法不需要像一般電化學沉積需要提供一外加電流,本發明方法不需要先在該基材表面沉積一層導電層即可在其上形成一層PS/Ni螺旋二十四面體奈米混成材料或者螺旋二十四面體Ni。再者,本發明的改良式無電電鍍方法可以利用已知的各種無電電鍍配方來製備出不同金屬的奈米結構。The porous helical tetrahedral Ni, which is known to the inventors of the present invention, and its own standing block structure are prepared for the first time. It will be apparent that when the nanoporous PS template of the present invention is formed on the surface of a substrate, the improved electroless plating method of the present invention can prepare a large area of PS/Ni on the surface of the substrate. A spiral quaternary tetrahedral nano-mixed material, followed by removal of the PS main body, can be used to obtain a helical tetrahedral Ni having a large area of coverage on the surface of the substrate. Because the improved electroless plating method of the present invention does not need to provide an applied current as in general electrochemical deposition, the method of the present invention does not require first depositing a conductive layer on the surface of the substrate to form a layer of PS/Ni spiral thereon. A tetrahedral nano-mixed material or a spiral tetrahedral Ni. Furthermore, the improved electroless plating method of the present invention can utilize various known electroless plating formulations to prepare nanostructures of different metals.

圖1a顯示了本發明的實施例所製備的熱處理過的嵌段共聚物PS-PLLA的穿透式電子顯微鏡(TEM)照片。Figure 1a shows a transmission electron microscope (TEM) photograph of a heat treated block copolymer PS-PLLA prepared in accordance with an embodiment of the present invention.

圖1b為一TEM的照片其顯示了本發明實施例所製備的PS/Ni螺旋二十四面體奈米混成材料,未被染色的[111]投射影像。Figure 1b is a TEM photograph showing a non-stained [111] projection image of a PS/Ni spiral icosahedral nanomixture prepared in accordance with an embodiment of the present invention.

圖2a顯示了本發明實施例所製備的PS/Ni螺旋二十四面體奈米混成材料內的Ni奈米結構所重建而得的3D影像,其係從一系列不同傾斜角度投射2D影像重建得到。2a shows a 3D image reconstructed from a Ni nanostructure in a PS/Ni spiral icosahedral nanocomposite prepared in an embodiment of the present invention, which is projected from a series of different tilt angles to project 2D image reconstruction. get.

圖2b顯示了本發明實施例所製備的Ni奈米結構的場發射掃描電子顯微(field emission SEM,FESEM)影像。Figure 2b shows a field emission scanning electron microscopy (FESEM) image of a Ni nanostructure prepared in accordance with an embodiment of the present invention.

圖2c顯示了本發明實施例所製備的多孔螺旋二十四面體Ni的廣角X光繞射(XRD)曲線。Figure 2c shows a wide-angle X-ray diffraction (XRD) curve of a porous helical tetrahedral Ni prepared in accordance with an embodiment of the present invention.

圖3顯示了本發明實施例所製備的Ni奈米結構之低倍率FESEM影像,其右下角的小圖為此多孔螺旋二十四面體Ni塊材的照片,。3 shows a low-magnification FESEM image of a Ni nanostructure prepared in an embodiment of the present invention, and a small image in the lower right corner is a photograph of the porous spiral twenty-tetrahedral Ni block.

圖4顯示了本發明實施例所製備的多孔螺旋二十四面體Ni之選區電子繞射(SAED)圖形。Figure 4 shows a selected area electronic diffraction (SAED) pattern of a porous spiral twenty tetrahedron Ni prepared in accordance with an embodiment of the present invention.

Claims (27)

一種公分級以上且自身可站立的金屬奈米結構,其中該金屬為鎳、金、銀或銅,及此自身可站立的金屬奈米結構為螺旋二十四面體奈米結構(gyroid nanostruture),或互相連結的螺旋形奈米結構。The utility model relates to a metal nanostructure which is above the public grade and can stand on its own, wherein the metal is nickel, gold, silver or copper, and the metal nanostructure which can stand on itself is a spiral quaternary nanostruture. , or a spiral nanostructure that is connected to each other. 如申請專利範圍第1項之金屬奈米結構,其中該金屬為鎳。The metal nanostructure of claim 1, wherein the metal is nickel. 如申請專利範圍第1或2項之金屬奈米結構,其中該奈米結構為多孔螺旋二十四面體奈米結構。The metal nanostructure of claim 1 or 2, wherein the nanostructure is a porous helical tetrahedral nanostructure. 如申請專利範圍第1或2項之金屬奈米結構,其中該金屬為結晶態。A metal nanostructure as claimed in claim 1 or 2 wherein the metal is crystalline. 一種位於一基材的表面且其批覆面積可達0.25 cm2以上的金屬奈米結構層,其中該金屬為鎳、金、銀或銅。A metal nanostructure layer on a surface of a substrate having a coated area of up to 0.25 cm 2 or more, wherein the metal is nickel, gold, silver or copper. 如申請專利範圍第5項之金屬奈米結構層,其中該金屬為鎳。The metal nanostructure layer of claim 5, wherein the metal is nickel. 如申請專利範圍第5或6項之金屬奈米結構層,其中該奈米結構為多孔螺旋二十四面體奈米結構。The metal nanostructure layer of claim 5 or 6, wherein the nanostructure is a porous spiral tetrahedral nanostructure. 如申請專利範圍第5或6項之金屬奈米結構層,其中該金屬為結晶態。A metal nanostructure layer as claimed in claim 5 or 6, wherein the metal is in a crystalline state. 如申請專利範圍第5或6項之金屬奈米結構層,其中該奈米結構為一系列具週期性排列的螺旋形奈米結構。The metal nanostructure layer of claim 5 or 6, wherein the nanostructure is a series of helical nanostructures having a periodic arrangement. 如申請專利範圍第5或6項之金屬奈米結構層,其中該奈米結構為一系列具週期性排列的奈米級六方最密堆積圓柱形奈米結構。The metal nanostructure layer of claim 5 or 6, wherein the nanostructure is a series of nanometer hexagonal closest packed cylindrical nanostructures with periodic arrangement. 如申請專利範圍第5項之金屬奈米結構層,其中該金屬奈米結構層具有約100 nm至約200 nm的厚度。The metal nanostructure layer of claim 5, wherein the metal nanostructure layer has a thickness of from about 100 nm to about 200 nm. 如申請專利範圍第5項之金屬奈米結構層,其中該基材為石英、玻璃、聚合物或半導體。The metal nanostructure layer of claim 5, wherein the substrate is quartz, glass, polymer or semiconductor. 如申請專利範圍第5項之金屬奈米結構層,其中該表面為非導電性。The metal nanostructure layer of claim 5, wherein the surface is non-conductive. 一種具有金屬奈米結構的裝置,其中該裝置係選自超級電容器、高能密度電池組,儲氫容器、電磁複合物、表面增強拉曼光學儀(surface-enhanced Raman spectroscopy)、抗微生物支架、過濾器、去鹽化裝置、吸熱器(heat sink)、超高場電磁鐵(ultrahigh field electromagnets)及磁性媒介(magnetic media);該金屬為鎳、金、銀或銅;該金屬奈米結構為A)自身可站立公分級以上的螺旋二十四面體奈米結構,或互相連結的螺旋形奈米結構,或B)一層位於一基材的表面上的面積0.25 cm2以上的多孔螺旋二十四面體奈米結構、一系列週期性排列之螺旋形奈米結構,或一系列週期性排列的六方最密堆積之圓柱形奈米結構。A device having a metal nanostructure, wherein the device is selected from the group consisting of a supercapacitor, a high energy density battery, a hydrogen storage container, an electromagnetic composite, a surface-enhanced Raman spectroscopy, an antimicrobial scaffold, and a filter , desalting device, heat sink, ultrahigh field electromagnets, and magnetic media; the metal is nickel, gold, silver or copper; the metal nanostructure is A a spiral hemitetrahedral nanostructure that can stand above the male grade, or a spiral nanostructure that is connected to each other, or B) a porous helix of 0.25 cm 2 or more on the surface of a substrate A tetrahedral nanostructure, a series of periodically arranged helical nanostructures, or a series of periodically arranged hexagonal closest packed cylindrical nanostructures. 一種金屬奈米結構之製備方法,包含下列步驟:a) 提供一奈米多孔模板;b) 將該奈米多孔模板含浸於一含有鈀離子的溶液;c) 從該溶液中取出該奈米多孔模板,及以一清洗液清洗該奈米多孔模板;d) 將清洗過的奈米多孔模板浸入於一無電電鍍液中,使得該奈米多孔模板的奈米孔內的鈀離子率先被還原成鈀原子,於是該無電電鍍液中金屬離子為該鈀原子所催化而還原成元素態金屬,並填充該奈米多孔模板的奈米孔,其中該金屬為鎳、金、銀或銅。A method for preparing a metal nanostructure, comprising the steps of: a) providing a nanoporous template; b) impregnating the nanoporous template with a solution containing palladium ions; c) removing the nanoporous from the solution a template, and washing the nanoporous template with a cleaning solution; d) immersing the washed nanoporous template in an electroless plating solution, so that the palladium ion in the nanopore of the nanoporous template is first reduced to a palladium atom, wherein the metal ion in the electroless plating solution is catalyzed by the palladium atom to be reduced to an elemental metal, and the nanopores of the nanoporous template are filled, wherein the metal is nickel, gold, silver or copper. 如申請專利範圍第15項之方法,其進一步包含步驟:e) 藉由使用紫外線曝光、煆燒、有機溶劑、超臨界流體或其組合移除步驟d)該被填充元素態金屬的奈米多孔模板,留下該奈米孔內的金屬,於是產生了一金屬奈米結構。The method of claim 15 further comprising the step of: e) removing the stepped d) nanoporous material of the filled elemental metal by using ultraviolet exposure, calcination, organic solvent, supercritical fluid or a combination thereof. The template leaves the metal in the nanopore and thus creates a metallic nanostructure. 如申請專利範圍第15項之方法,其中步驟a)的奈米多孔模板為自身可站立的奈米多孔模板,且具有多孔螺旋二十四面體奈米通道或一系列週期性排列的螺旋形奈米通道。The method of claim 15, wherein the nanoporous template of step a) is a nanoporous template which is self-standing and has a porous helix tetrahedral nanochannel or a series of periodically arranged spirals. Nano channel. 如申請專利範圍第15項之方法,其中步驟a)的奈米多孔模板為形成於一基材的表面上的膜層,且具有多孔螺旋二十四面體奈米通道、一系列具週期性排列的螺旋形奈米通道,或一系列週期性排列的六方最密堆積的圓柱形奈米通道。The method of claim 15, wherein the nanoporous template of step a) is a membrane layer formed on a surface of a substrate, and has a porous helix tetrahedral nanochannel, a series of periodic Arranged spiral nanochannels, or a series of periodically arranged hexagonal closest packed cylindrical nanochannels. 如申請專利範圍第17項之方法,其中步驟a)的奈米多孔模板具有多孔螺旋二十四面體奈米通道。The method of claim 17, wherein the nanoporous template of step a) has a porous helical tetrahedral nanochannel. 如申請專利範圍第18項之方法,其中步驟a)的奈米多孔模板具有多孔螺旋二十四面體奈米通道。The method of claim 18, wherein the nanoporous template of step a) has a porous helical tetrahedral nanochannel. 如申請專利範圍第15項之方法,其中步驟b)中的含有鈀離子的溶液具有0.06-6.0 mg/ml的鈀離子濃度。The method of claim 15, wherein the palladium ion-containing solution in step b) has a palladium ion concentration of from 0.06 to 6.0 mg/ml. 如申請專利範圍第15項之方法,其中步驟b)中的含有鈀離子的溶液進一步含有增進沾濕的表面張力調節劑。The method of claim 15, wherein the palladium ion-containing solution in step b) further comprises a surface tension modifier for enhancing wetting. 如申請專利範圍第22項之方法,其中該表面張力調節劑為C1-C4醇。The method of claim 22, wherein the surface tension modifier is a C1-C4 alcohol. 如申請專利範圍第22項之方法,其中步驟b)的含有鈀離子的溶液進一步含有增進鈀鹽溶解於其中的溶解促進劑。The method of claim 22, wherein the palladium ion-containing solution of step b) further comprises a dissolution promoter which enhances dissolution of the palladium salt therein. 如申請專利範圍第24項之方法,其中該溶解促進劑為酸。The method of claim 24, wherein the dissolution promoter is an acid. 如申請專利範圍第14項之方法,其中步驟d)中的無電電鍍液含有一還原劑,其用於將該鈀離子還原成鈀原子。The method of claim 14, wherein the electroless plating solution in step d) contains a reducing agent for reducing the palladium ions to palladium atoms. 如申請專利範圍第26項之方法,其中該還原劑為肼,肼氫氧化物,甲醛,硼氫化鈉,二甲基甲醯胺,β-D-葡萄糖,乙二醇,檸檬酸鈉,抗壞血酸,二甲基亞碸,酒石酸氫鉀,甲醇,乙醇,1-丙醇,2-丙醇,吡啶,聚(乙二醇),参(三甲基矽氧基)矽烷或氫氣。The method of claim 26, wherein the reducing agent is hydrazine, hydrazine hydroxide, formaldehyde, sodium borohydride, dimethylformamide, β-D-glucose, ethylene glycol, sodium citrate, ascorbic acid , dimethyl hydrazine, potassium hydrogen tartrate, methanol, ethanol, 1-propanol, 2-propanol, pyridine, poly(ethylene glycol), ginseng (trimethyldecyloxy) decane or hydrogen.
TW100142089A 2009-07-03 2011-11-17 Metal nanostructure and preparation thereof TW201321300A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW100142089A TW201321300A (en) 2011-11-17 2011-11-17 Metal nanostructure and preparation thereof
US13/472,711 US20120231290A1 (en) 2009-07-03 2012-05-16 Metal nanostructure and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100142089A TW201321300A (en) 2011-11-17 2011-11-17 Metal nanostructure and preparation thereof

Publications (1)

Publication Number Publication Date
TW201321300A true TW201321300A (en) 2013-06-01

Family

ID=49032177

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100142089A TW201321300A (en) 2009-07-03 2011-11-17 Metal nanostructure and preparation thereof

Country Status (1)

Country Link
TW (1) TW201321300A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115523055A (en) * 2022-11-28 2022-12-27 中国科学院力学研究所 Solid-liquid engine explosive column and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115523055A (en) * 2022-11-28 2022-12-27 中国科学院力学研究所 Solid-liquid engine explosive column and preparation method thereof
CN115523055B (en) * 2022-11-28 2023-03-14 中国科学院力学研究所 Solid-liquid engine explosive column and preparation method thereof

Similar Documents

Publication Publication Date Title
Hsueh et al. Well-ordered nanohybrids and nanoporous materials from gyroid block copolymer templates
Yan et al. Influence of processing conditions on structures of 3D ordered macroporous metals prepared by colloidal crystal templating
TWI404753B (en) Fabrication method of nanomaterials using block copolymer templates
US20120231290A1 (en) Metal nanostructure and preparation thereof
JP5939724B2 (en) Method for forming metal nanowire or metal nanomesh
KR101360403B1 (en) Metal oxide nanofiber with nanopore, fabrication method for preparing the same and apparatus comprising the same
Rebbecchi et al. Template-based fabrication of nanoporous metals
CN108699684B (en) Chemical vapor deposition process for building three-dimensional foam-like structures
JP2023123465A (en) Nanoporous structures and assemblies incorporating the same
KR101199782B1 (en) Carbon nanostructures loaded with metal nanoparticles, fabrication method thereof and application for electrode materials in fuel cells
Gu et al. Graded porous inorganic materials derived from self-assembled block copolymer templates
Baumann et al. Atomic layer deposition of uniform metal coatings on highly porous aerogel substrates
KR101478200B1 (en) Silicon-coated three-dimensional porous metal structure and its preparation method
KR101249958B1 (en) Hybrid carbonaceous nanotube, and preparing method of the same
JP2005272970A (en) Alloy particle and production method therefor
TW201321300A (en) Metal nanostructure and preparation thereof
KR101442061B1 (en) Superhydrophobic nano-graphene and method for preparing same
Xu et al. Controllable synthesis of highly ordered Ag nanorod arrays by chemical deposition method
KR101628362B1 (en) Porous metal/cnt composite and method for manufacturing the same
JP2009280892A (en) Method of manufacturing large pore diameter mesoporous metal having uniform pore diameter
JP5026751B2 (en) Metal pattern array using honeycomb porous film as mold
JP4461670B2 (en) A method for producing a metal particle inclusion thin film.
Zhu et al. Fabrication of conductive metallized nanostructures from self-assembled amphiphilic triblock copolymer templates: nanospheres, nanowires, nanorings
CN111313038B (en) Macroscopic large-area two-dimensional hollow continuous self-supporting corrugated metal platinum nano array film with excellent electrocatalytic activity
Pan et al. Nanolithography through mixture of block copolymer micelles