TW201319260A - Method for predicting channeling phenomenon of blast furnace - Google Patents

Method for predicting channeling phenomenon of blast furnace Download PDF

Info

Publication number
TW201319260A
TW201319260A TW100141067A TW100141067A TW201319260A TW 201319260 A TW201319260 A TW 201319260A TW 100141067 A TW100141067 A TW 100141067A TW 100141067 A TW100141067 A TW 100141067A TW 201319260 A TW201319260 A TW 201319260A
Authority
TW
Taiwan
Prior art keywords
blast furnace
historical
layer
pipeline flow
pressure
Prior art date
Application number
TW100141067A
Other languages
Chinese (zh)
Other versions
TWI435936B (en
Inventor
Jia-Shyan Shiau
Chih-Chung Wang
Chung-Ken Ho
Che-Hsiung Tung
Original Assignee
China Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Steel Corp filed Critical China Steel Corp
Priority to TW100141067A priority Critical patent/TWI435936B/en
Publication of TW201319260A publication Critical patent/TW201319260A/en
Application granted granted Critical
Publication of TWI435936B publication Critical patent/TWI435936B/en

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

A method for predicting a channeling phenomenon of a blast furnace is disclosed. The method for predicting a channeling phenomenon of the blast furnace includes a data analysis phase and a predicting phase. In the pre-analyzing phase, at first, a plurality of historical gate-position data of an entirely opened dust-cleaning device disposed in the top of the blast furnace is provided. Thereafter, a plurality of historical pressure data of the blast furnace is provided. The historical pressure data correspond to the historical gate-position data in a one to one manner and each of the historical pressure data includes a plurality of historical pressure values of a plurality of layers of the blast furnace. Then, indicators for the channeling phenomenon are calculated in accordance with the historical pressure values and an indicator equation. Thereafter, a warning layer of the blast furnace is determined in accordance with the historical pressure values and the indicators for the channeling phenomenon. In the predicting phase, the channeling phenomenon is predicted in accordance with the pressure variation value of the warning layer of the blast furnace and the indicator corresponding to the waning layer.

Description

高爐管道流現象之預測方法Prediction method of blast furnace pipeline flow phenomenon

本揭露是有關於一種高爐管道流現象之預測方法。The present disclosure relates to a method for predicting a blast furnace flow phenomenon.

在一般的高爐煉鐵作業中,鐵礦石、焦炭或石灰等原料會被成層堆積在高爐內,以使其透過氧化還原反應來生成鐵水。為了使風口部的熱風安定地流入爐內中心部,高爐中心部的原料比中心部周圍少,而使爐內原料才能朝向爐中心部而以某個角度傾斜。In a general blast furnace ironmaking operation, raw materials such as iron ore, coke or lime are deposited in layers in a blast furnace to cause it to pass through a redox reaction to form molten iron. In order to allow the hot air of the tuyere portion to stably flow into the center portion of the furnace, the material in the center portion of the blast furnace is smaller than the periphery of the center portion, and the raw material in the furnace can be inclined at a certain angle toward the center portion of the furnace.

原料的堆積形狀、分佈以及粒度等狀況都會對於爐內的氣體流動產生影響,進而影響高爐的爐況以及鐵水的產出。然而,當高爐以高溫來進行氧化還原反應時,其內部原料的排列常常無法如預期一般使得爐內氣體均勻流動,甚至可能還會產生管道流現象(Channeling Phenomenon)。管道流的產生會使得高爐內的反應不均勻並傷害高爐爐壁,如此將使得鐵水的產出下降以及高爐壽命減少。The shape, distribution and particle size of the raw materials will affect the gas flow in the furnace, which will affect the furnace condition of the blast furnace and the production of molten iron. However, when the blast furnace is subjected to a redox reaction at a high temperature, the arrangement of the internal raw materials is often unable to uniformly flow the gas in the furnace as expected, and may even cause a channeling phenomenon (Channeling Phenomenon). The generation of the pipe flow will cause the reaction in the blast furnace to be uneven and damage the blast furnace wall, which will result in a decrease in the output of the molten iron and a decrease in the life of the blast furnace.

為了避免管道流所帶來的負面影響,高爐業者研發了各種技術來預測管道流的發生,以提前進行一些預防措施,例如減少風口的鼓風量等。然而,目前的管道流預測技術仍無法在線上進行即時的預測,而且準確率也只有40~60%,因此,需要一種新的高爐管道流現象之預測方法。In order to avoid the negative impact of pipeline flow, blast furnace operators have developed various techniques to predict the occurrence of pipeline flow, in order to carry out some preventive measures in advance, such as reducing the amount of air blasting. However, current pipeline flow prediction technology is still unable to make immediate predictions on-line, and the accuracy rate is only 40-60%. Therefore, a new prediction method for blast furnace pipeline flow phenomenon is needed.

本發明之一方面是在提供於一種高爐管道流現象之預測方法,以供高爐操作人員預知管道流的發生,並提早採取適當的措施來避免管道流造成損害。One aspect of the present invention is a method of predicting the flow of a blast furnace pipeline for the blast furnace operator to predict the occurrence of pipeline flow and to take appropriate measures to avoid damage to the pipeline flow.

根據本發明之一實施例,此高爐包含複數個壓力偵測器,這些壓力偵測器係位於高度不同之複數個高爐層中。此高爐管道流現象之預測方法包含資料分析階段和管道流預測階段。According to an embodiment of the invention, the blast furnace comprises a plurality of pressure detectors, the pressure detectors being located in a plurality of blast furnace layers having different heights. The prediction method of the blast furnace pipeline flow phenomenon includes a data analysis phase and a pipeline flow prediction phase.

在資料分析階段中,首先提供爐頂洗塵器之複數筆歷史閥門全開時間點資料,其中這些歷史閥門全開時間點資料係對應至複數個歷史閥門全開時間點,而高爐係於這些歷史閥門全開時間點發生管道流現象。接著,提供複數筆歷史高爐壓力資料,其中這些歷史高爐壓力資料係一對一對應至歷史閥門全開時間點資料,且每一歷史高爐壓力資料包含高爐層之複數個歷史高爐壓力值。然後,根據每一歷史高爐壓力資料之歷史高爐壓力值以及管道流指標方程式來計算每一歷史閥門全開時間點所對應之複數個管道流指標(RMSD),其中這些管道流指標係一對一對應至高爐層,而管道流指標方程式如下:In the data analysis stage, firstly, the full history time of the historical valve of the top of the stove is provided, wherein the historical time of the full opening of the valve corresponds to the full opening time of the plurality of historical valves, and the blast furnace is at the full opening time of the historical valves. Pipe flow phenomenon occurs at the point. Next, a plurality of historical blast furnace pressure data are provided, wherein the historical blast furnace pressure data is one-to-one corresponding to the historical valve full-open time point data, and each historical blast furnace pressure data includes a plurality of historical blast furnace pressure values of the blast furnace layer. Then, according to the historical blast furnace pressure value of each historical blast furnace pressure data and the pipeline flow index equation, a plurality of pipeline flow indexes (RMSD) corresponding to each historical valve full opening time point are calculated, wherein the pipeline flow indexes are one-to-one correspondence To the blast furnace floor, and the pipe flow index equation is as follows:

其中,xi為第i個歷史高爐壓力值,xi+1為第i+1個歷史高爐壓力值,而此至少一高壓力變化層之壓力變化值係大於壓力變化閥值。接著,根據每一歷史高爐壓力資料之歷史高爐壓力值與管道流指標來決定出至少一高爐警戒層。Where x i is the i-th historical blast furnace pressure value, x i +1 is the i+1th historical blast furnace pressure value, and the pressure change value of the at least one high pressure change layer is greater than the pressure change threshold. Then, according to the historical blast furnace pressure value and the pipeline flow index of each historical blast furnace pressure data, at least one blast furnace warning layer is determined.

然後,進行管道流預測階段。在管道流預測階段中,首先提供目前高爐壓力資料,其中此目前高爐壓力資料包含高爐警戒層之壓力變化值。接著,根據高爐警戒層之壓力變化值以及相應之管道流指標來預測管道流現象是否發生。當判斷管道流現象即將發生時,發出警告訊息來警告高爐之操作者管道流可能發生。Then, the pipeline flow prediction phase is performed. In the pipeline flow prediction stage, the current blast furnace pressure data is first provided, wherein the current blast furnace pressure data includes the pressure change value of the blast furnace warning layer. Then, according to the pressure change value of the blast furnace warning layer and the corresponding pipeline flow index, it is predicted whether the pipeline flow phenomenon occurs. When it is judged that the pipe flow phenomenon is about to occur, a warning message is issued to warn the blast furnace operator that the pipe flow may occur.

由上述說明可知,本發明實施例之高爐管道流現象之預測方法先利用管道流指標和高爐的歷史壓力資料來找出高爐的警戒層,而在後續的預測階段中,利用此警戒層的壓力變化值和管道流指標來預測管道流是否發生。經實驗證明,本發明實施例之高爐管道流現象的預測方法比習知技術具有更準確的預測率,且可提早3至5分鐘預知管道流的產生。It can be seen from the above description that the method for predicting the flow phenomenon of the blast furnace pipeline in the embodiment of the present invention first uses the pipeline flow index and the historical pressure data of the blast furnace to find the warning layer of the blast furnace, and in the subsequent prediction stage, the pressure of the warning layer is utilized. Change values and pipe flow indicators to predict whether a pipe flow has occurred. It has been experimentally proved that the prediction method of the blast furnace pipeline flow phenomenon in the embodiment of the present invention has a more accurate prediction rate than the prior art, and the generation of the pipeline flow can be predicted 3 to 5 minutes earlier.

請參照第1圖,其係繪示根據本發明實施例之高爐冶煉系統100的結構示意圖。高爐冶煉系統100包含高爐爐體110、壓力偵測裝置120以及洗塵器130。高爐爐體110具有多個待監測的高爐層112,而壓力偵測裝置120則一對一地設置於高爐層112中,如此每個高爐層112中皆會有一個壓力偵測裝置120來偵測高爐層112的壓力。在本實施例中,每個高爐層112只會有一個壓力偵測裝置120來偵測高爐層112的壓力,而且這些壓力裝置120被設置在同一個方位上,例如高爐爐體110的北側。然而,在本發明其他實施例中,每個高爐層112可以設置有多個壓力偵測裝置120,例如在每個高爐層112的爐體北側、南側、東側和西側皆設置一個壓力偵測裝置120,如此每個高爐層112便會有四個壓力偵測裝置120來提供完整的壓力偵測機制。Please refer to FIG. 1 , which is a schematic structural view of a blast furnace smelting system 100 according to an embodiment of the present invention. The blast furnace smelting system 100 includes a blast furnace body 110, a pressure detecting device 120, and a dust washer 130. The blast furnace body 110 has a plurality of blast furnace layers 112 to be monitored, and the pressure detecting devices 120 are disposed one-to-one in the blast furnace layer 112, such that each blast furnace layer 112 has a pressure detecting device 120 to detect The pressure of the blast furnace layer 112 is measured. In the present embodiment, each blast furnace layer 112 has only one pressure detecting device 120 for detecting the pressure of the blast furnace layer 112, and these pressure devices 120 are disposed in the same orientation, such as the north side of the blast furnace body 110. However, in other embodiments of the present invention, each blast furnace layer 112 may be provided with a plurality of pressure detecting devices 120, for example, a pressure detecting device is disposed on the north, south, east, and west sides of the furnace body of each blast furnace layer 112. 120, so each blast furnace layer 112 will have four pressure detecting devices 120 to provide a complete pressure sensing mechanism.

洗塵器130係連接至高爐爐體110的爐頂,以接收高爐爐體110冶煉時所排出的廢氣,並淨化廢氣。洗塵器130具有控制閥門132,其係用以調節廢氣進入洗塵器130的流量。此控制閥門132亦可稱為環形隙縫元件(Annular Gap Element;AGE)。一般而言,控制閥門132的開啟程度(以下簡稱為開度)係自動地根據高爐廢氣的量來調整。例如,當高爐排出的廢氣量增加時,這些廢氣會衝擊控制閥門132,以增加控制閥門132的開度。又例如,當高爐排出的廢氣量減少時,控制閥門132會自動地減少開度,以配合目前的高爐排氣量。The dust washer 130 is connected to the top of the blast furnace body 110 to receive the exhaust gas discharged during the smelting of the blast furnace body 110 and to purify the exhaust gas. The dust washer 130 has a control valve 132 for regulating the flow of exhaust gas into the dust washer 130. This control valve 132 may also be referred to as an annular slot element (Annular Gap Element; AGE). In general, the degree of opening of the control valve 132 (hereinafter simply referred to as the opening degree) is automatically adjusted according to the amount of blast furnace exhaust gas. For example, when the amount of exhaust gas discharged from the blast furnace increases, these exhaust gases may impact the control valve 132 to increase the opening of the control valve 132. For another example, when the amount of exhaust gas discharged from the blast furnace is reduced, the control valve 132 automatically reduces the opening to match the current blast furnace displacement.

請參照第2圖,其係繪示根據本發明實施例之高爐管道流現象之預測方法200的流程示意圖。本發明實施例之高爐管道流現象之預測方法200可應用於電腦系統中,以利用電腦系統來自動監控高爐的狀況,並於管道流發生之前發出警告訊號通知高爐之操作者,使高爐操作者提早採取適當的動作。Please refer to FIG. 2, which is a flow chart showing a method 200 for predicting a blast furnace pipeline flow phenomenon according to an embodiment of the present invention. The method for predicting the phenomenon of blast furnace pipeline flow in the embodiment of the present invention can be applied to a computer system to automatically monitor the condition of the blast furnace by using a computer system, and issue a warning signal to notify the operator of the blast furnace before the pipeline flow occurs, so that the blast furnace operator Take appropriate action early.

本發明實施例之預測方法200包含分析階段210和預測階段220。分析階段210係用以分析多筆高爐歷史資料,以從高爐層210中找出管道流的警戒層,而預測階段220則利用此警戒層與本發明實施例所提供之管道流指標來預測管道流是否即將發生。The prediction method 200 of an embodiment of the present invention includes an analysis phase 210 and a prediction phase 220. The analysis stage 210 is for analyzing a plurality of blast furnace historical data to find a warning layer of the pipeline flow from the blast furnace layer 210, and the prediction stage 220 uses the warning layer and the pipeline flow index provided by the embodiment of the present invention to predict the pipeline. Whether the flow is about to happen.

在分析階段210中,首先進行閥門資料提供步驟212,以提供洗塵器130之複數筆歷史閥門全開時間點資料。如上所述,洗塵器130之控制閥門132會根據高爐排出的廢氣量來調整開度。因此,當管道流現象發生時,控制閥門132之開度應為100%,而歷史閥門全開時間點資料係即對應至管道流現象發生的情況。In the analysis phase 210, a valve data providing step 212 is first performed to provide a full history time point data for the plurality of historical valves of the dust cleaner 130. As described above, the control valve 132 of the dust washer 130 adjusts the opening according to the amount of exhaust gas discharged from the blast furnace. Therefore, when the pipe flow phenomenon occurs, the opening degree of the control valve 132 should be 100%, and the historical valve full opening time point data corresponds to the occurrence of the pipe flow phenomenon.

接著,進行歷史高爐壓力資料提供步驟214,以提供複數筆歷史高爐壓力資料。這些歷史高爐壓力資料係一對一對應至歷史閥門全開時間點資料,意即每筆高爐壓力資料都代表高爐管道流發生時的高爐壓力狀態。每筆歷史高爐壓力資料都包含複數個高爐壓力值和複數個歷史高爐壓力變化值。Next, a historical blast furnace pressure data providing step 214 is performed to provide a plurality of historical blast furnace pressure data. These historical blast furnace pressure data are one-to-one correspondence to the historical valve full-open time point data, which means that each blast furnace pressure data represents the blast furnace pressure state when the blast furnace pipeline flow occurs. Each historical blast furnace pressure data contains a plurality of blast furnace pressure values and a plurality of historical blast furnace pressure changes.

歷史高爐壓力值代表各高爐層112在高爐管道流發生時的壓力值,而歷史高爐壓力變化值代表各高爐層112在高爐管道流發生時的壓力變化值。例如,本實施例的高爐爐體110包含8個高爐層112,而每一個高爐層112皆具有一個壓力偵測裝置120,因此在本實施例中,每筆高爐壓力資料皆包含8個高爐壓力值和8個壓力變化值。然而,在本發明之其他實施例中,若高爐層112的數量維持8個但每層具有4個壓力偵測裝置120,則每筆高爐壓力資料皆包含8x4個高爐壓力值和8x4個壓力變化值。The historical blast furnace pressure value represents the pressure value of each blast furnace layer 112 when the blast furnace piping flow occurs, and the historical blast furnace pressure change value represents the pressure change value of each blast furnace layer 112 when the blast furnace piping flow occurs. For example, the blast furnace body 110 of the present embodiment includes eight blast furnace layers 112, and each blast furnace layer 112 has a pressure detecting device 120. Therefore, in the present embodiment, each blast furnace pressure data includes eight blast furnace pressures. Value and 8 pressure change values. However, in other embodiments of the present invention, if the number of blast furnace layers 112 is maintained at 8 but each layer has 4 pressure detecting devices 120, each blast furnace pressure data contains 8 x 4 blast furnace pressure values and 8 x 4 pressure changes. value.

然後,進行管道流指標(RMSD)計算步驟216,以根據每一歷史高爐壓力資料之歷史高爐壓力值以及管道流指標方程來計算出每個歷史閥門全開時間點資料所對應的管道流指標。管道流指標方程係表示如下:Then, a pipeline flow index (RMSD) calculation step 216 is performed to calculate a pipeline flow index corresponding to each historical valve full-open time point data according to the historical blast furnace pressure value of each historical blast furnace pressure data and the pipeline flow index equation. The pipe flow index equations are expressed as follows:

其中xi為第i個歷史高爐壓力值,xi+1為第i+1個歷史高爐壓力值,而此處所指之高度壓力變化係指壓力變化值係大於預設之壓力變化閥值。在本實施例中,壓力變化閥值為0.15公斤/平方公分,但本發明之實施例並不受限於此。Where x i is the i-th historical blast furnace pressure value, x i +1 is the i+1th historical blast furnace pressure value, and the height pressure change referred to herein means that the pressure change value is greater than the preset pressure change threshold. In the present embodiment, the pressure change threshold value is 0.15 kg/cm 2 , but the embodiment of the present invention is not limited thereto.

本實施例之管道流指標(RMSD)計算步驟216係提供一種爐身壓力變化之異常臨界值。由於本實施例之高爐爐體110被分為8個高爐層112,且每層僅有一個方向設置有壓力偵測裝置120,因此本實施例之管道流指標(RMSD)計算步驟216對於每個高爐層112僅提供一個管道流指標,而每個歷史閥門全開時間點資料所對應的管道流指標則為8個。然而,在本發明之其他實施例中,若高爐層112的數量維持8個但每層具有4個壓力偵測裝置120,則管道流指標(RMSD)計算步驟216對於每個高爐層112會提供4個管道流指標,而每個歷史閥門全開時間點資料所對應的管道流指標則為32個。The Pipeline Flow Index (RMSD) calculation step 216 of the present embodiment provides an abnormal threshold value for the change in the pressure of the furnace body. Since the blast furnace body 110 of the present embodiment is divided into eight blast furnace layers 112, and the pressure detecting device 120 is disposed in only one direction in each layer, the pipe flow index (RMSD) calculating step 216 of the present embodiment is The blast furnace layer 112 provides only one pipeline flow index, and the pipeline flow index corresponding to each historical valve full opening time point data is eight. However, in other embodiments of the invention, if the number of blast furnace layers 112 is maintained at eight but each layer has four pressure detecting devices 120, a pipe flow index (RMSD) calculation step 216 is provided for each blast furnace layer 112. There are 4 pipeline flow indicators, and the pipeline flow index corresponding to each historical valve full-open time point data is 32.

接著,進行高爐警戒層決定步驟218,以根據歷史高爐壓力資料與其對應之管道流指標來決定出高爐警戒層。請參照第3圖,其係繪示根據本發明實施例之高爐警戒層決定步驟218的流程示意圖。在本實施例中,每一個歷史閥門全開時間點資料係對應至8個管道流指標,這8個管道流指標分別代表高爐110之8個高爐層112的壓力變化異常臨界值。因此,在高爐警戒層決定步驟218中,首先進行異常高爐層決定步驟218a,以針對每個歷史閥門全開時間點,判斷每個高爐層112之高爐壓力變化值是否大於相應之管道流指標,並從這些高爐層中選出至少一個異常高爐層,其中異常高爐層為壓力變化值大於相應管道流指標之高爐層。接著,進行候選高爐層決定步驟218b,以根據異常高爐層之位置來從異常高爐層中選出候選警戒層。此候選警戒層為異常高爐層中位置最高的高爐層。然後,進行高爐警戒層挑選步驟218c,以從所有歷史閥門全開時間點所對應的多個候選警戒層中選出高爐警戒層,以供後續預測階段220使用。Next, a blast furnace alert layer decision step 218 is performed to determine the blast furnace alert layer based on historical blast furnace pressure data and its corresponding pipe flow index. Please refer to FIG. 3, which is a flow chart showing a blast furnace alert layer determining step 218 according to an embodiment of the present invention. In this embodiment, each historical valve full-open time point data corresponds to eight pipe flow indicators, and the eight pipe flow indexes respectively represent the critical pressure abnormality threshold values of the eight blast furnace layers 112 of the blast furnace 110. Therefore, in the blast furnace warning layer determining step 218, the abnormal blast furnace layer determining step 218a is first performed to determine whether the blast furnace pressure change value of each blast furnace layer 112 is greater than the corresponding pipeline flow index for each historical valve full opening time point, and At least one abnormal blast furnace layer is selected from the blast furnace layers, wherein the abnormal blast furnace layer is a blast furnace layer having a pressure change value greater than a corresponding pipeline flow index. Next, a candidate blast furnace layer determining step 218b is performed to select a candidate alert layer from the abnormal blast furnace layer based on the position of the abnormal blast furnace layer. This candidate warning layer is the highest blast furnace layer in the abnormal blast furnace layer. Then, a blast furnace alert layer selection step 218c is performed to select a blast furnace alert layer from a plurality of candidate alert layers corresponding to all historical valve full open time points for use in the subsequent prediction phase 220.

在本實施例中,高爐警戒層的選擇可根據高爐層在候選警戒層中所佔的比例來決定。例如,在候選警戒層中,第7層高爐層之出現的次數最多,其所佔的比例為60%,因此可挑選第7層高爐層來做為高爐警戒層。在本發明之其他實施例中,亦可利用歷史閥門未全開的時間點資料來進行交叉比對,以從候選警戒層中挑選出與歷史閥門未全開時間點相關性較低的高爐層來作為高爐警戒層。In this embodiment, the selection of the blast furnace alert layer can be determined based on the proportion of the blast furnace layer in the candidate alert layer. For example, in the candidate alert layer, the 7th blast furnace layer appears the most frequently, and its proportion is 60%, so the 7th blast furnace layer can be selected as the blast furnace warning layer. In other embodiments of the present invention, the time point data of the history valve may not be fully opened for cross-comparison, so as to select a blast furnace layer having a low correlation with the historical valve not fully open time point from the candidate warning layer. Blasting alert layer.

請回到第2圖。當高爐警戒層決定之後,接著進行預測階段220,以利用高爐警戒層來預測目前高爐是否會發生管道流現象。在預測階段220中,首先進行目前壓力資料提供步驟222,以提供目前高爐的壓力資料,例如目前各高爐層112的壓力值和壓力變化值。接著,進行預測步驟224,以根據高爐警戒層之壓力變化值以及相應之管道流指標來預測管道流現象是否發生。Please return to Figure 2. After the blast furnace alert layer is determined, a prediction phase 220 is then performed to utilize the blast furnace alert layer to predict whether the current blast furnace will experience pipe flow. In the prediction phase 220, a current pressure data providing step 222 is first performed to provide pressure data for the current blast furnace, such as current pressure values and pressure changes for each blast furnace layer 112. Next, a prediction step 224 is performed to predict whether a pipe flow phenomenon has occurred based on the pressure change value of the blast furnace alert layer and the corresponding pipe flow index.

請參照第4圖,其係繪示根據本發明實施例之預測步驟224的流程示意圖。在本實施例之預測步驟224中,首先進行管道流指標計算步驟224a,以根據步驟222所提供的壓力資料來計算高爐警戒層所對應之管道流指標。然後,進行判斷步驟224b,以判斷高爐警戒層之壓力變化值是否大於相應之管道流指標。當高爐警戒層之壓力變化值大於相應之管道流指標時,即判斷管道流現象即將發生。Please refer to FIG. 4, which is a flow chart showing a prediction step 224 according to an embodiment of the present invention. In the prediction step 224 of the present embodiment, the pipe flow index calculation step 224a is first performed to calculate the pipe flow index corresponding to the blast furnace warning layer according to the pressure data provided in step 222. Then, a determining step 224b is performed to determine whether the pressure change value of the blast furnace alert layer is greater than the corresponding pipe flow index. When the pressure change value of the blast furnace warning layer is greater than the corresponding pipeline flow index, it is judged that the pipeline flow phenomenon is about to occur.

在本發明之其他實施例中,預測步驟224可更包含AGE開度比較步驟,以利用洗塵器130之控制閥門的開度來作為預測管道流現象的輔助因子。例如,預測步驟224可將目前高爐控制閥門的開度與預設之閥門開啟程度作比較。當目前高爐控制閥門的開度大於預設之閥門開度(在此實施例中為60%),且高爐警戒層之壓力變化值大於相應之管道流指標,才判斷管道流現象即將發生。In other embodiments of the invention, the predicting step 224 may further include an AGE opening comparison step to utilize the opening of the control valve of the scrubber 130 as a cofactor for predicting the flow of the conduit. For example, the predicting step 224 can compare the current opening of the blast furnace control valve to a predetermined degree of valve opening. When the opening degree of the blast furnace control valve is greater than the preset valve opening degree (60% in this embodiment), and the pressure change value of the blast furnace warning layer is greater than the corresponding pipe flow index, it is judged that the pipe flow phenomenon is about to occur.

請回到第2圖,當預測到管道流現象即將發生時,本實施例之預測方法200會進行警告步驟226,以透過電腦系統(例如高爐之程控電腦)來發出警告訊息來警告高爐之使用者管道流現象即將發生。在本實施例中,警告訊息可為文字訊息、燈光訊息或聲音訊息,但本發明之實施例並不受限於此。Referring back to FIG. 2, when it is predicted that the pipeline flow phenomenon is about to occur, the prediction method 200 of this embodiment performs a warning step 226 to issue a warning message through a computer system (for example, a blast furnace program computer) to warn the use of the blast furnace. Pipeline flow is about to happen. In this embodiment, the warning message may be a text message, a light message or a voice message, but embodiments of the invention are not limited thereto.

另外,在本發明之實施例中,可利用類神經網路模組來對各高爐層112的壓力值進行內插演算法,以得到高爐爐壁上各點的壓力值(包含未設置有壓力偵測裝置120的點),如此即便高爐層112不是根據壓力偵測裝置120來分層,也可根據內插法得到的壓力值和壓力變化值來進行本發明實施例之高爐管道流現象之預測方法200。In addition, in the embodiment of the present invention, the neural network module can be used to interpolate the pressure values of the blast furnace layers 112 to obtain the pressure values at various points on the blast furnace wall (including no pressure is set). Detecting the point of the device 120, so that even if the blast furnace layer 112 is not layered according to the pressure detecting device 120, the blast furnace pipe flow phenomenon of the embodiment of the present invention can be performed according to the pressure value and the pressure change value obtained by the interpolation method. Prediction method 200.

雖然本發明已以數個實施例揭露如上,然其並非用以限定本發明,在本發明所屬技術領域中任何具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the invention has been described above in terms of several embodiments, it is not intended to limit the scope of the invention, and the invention may be practiced in various embodiments without departing from the spirit and scope of the invention. The scope of protection of the present invention is defined by the scope of the appended claims.

100...高爐冶煉系統100. . . Blast furnace smelting system

110...高爐爐體110. . . Blast furnace body

112...高爐層112. . . Blast floor

120...壓力偵測裝置120. . . Pressure detecting device

130...洗塵器130. . . Dust washer

132...控制閥門132. . . Control valve

200...管道流現象預測方法200. . . Pipeline flow phenomenon prediction method

210...分析階段210. . . Analysis phase

212...閥門資料提供步驟212. . . Valve data supply steps

214...歷史壓力資料提供步驟214. . . Historical pressure data providing steps

216...管道流指標計算步驟216. . . Pipe flow indicator calculation steps

218...高爐警戒層決定步驟218. . . Blast furnace alert layer decision step

218a...異常高爐層決定步驟218a. . . Abnormal blast furnace layer decision step

218b...候選高爐層決定步驟218b. . . Candidate blast furnace layer decision step

218c...高爐警戒層挑選步驟218c. . . Blast furnace warning layer selection step

220...預測階段220. . . Prediction stage

222...目前壓力資料提供步驟222. . . Current pressure data supply steps

224...預測步驟224. . . Prediction step

224a...管道流指標計算步驟224a. . . Pipe flow indicator calculation steps

224b...判斷步驟224b. . . Judgment step

226...警告步驟226. . . Warning step

為讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,上文特舉數個較佳實施例,並配合所附圖式,作詳細說明如下:The above and other objects, features, and advantages of the present invention will become more apparent and understood.

第1圖係繪示根據本發明實施例之高爐冶煉系統的結構示意圖。1 is a schematic view showing the structure of a blast furnace smelting system according to an embodiment of the present invention.

第2圖係繪示根據本發明實施例之高爐管道流現象之預測方法的流程示意圖。2 is a flow chart showing a method for predicting a phenomenon of a blast furnace pipe flow according to an embodiment of the present invention.

第3圖係繪示根據本發明實施例之高爐警戒層決定步驟的流程示意圖。Figure 3 is a flow chart showing the steps of determining the blast furnace alert layer according to an embodiment of the present invention.

第4圖係繪示根據本發明實施例之預測步驟的流程示意圖。Figure 4 is a flow chart showing the prediction steps according to an embodiment of the present invention.

200...管道流現象預測方法200. . . Pipeline flow phenomenon prediction method

210...分析階段210. . . Analysis phase

212...閥門資料提供步驟212. . . Valve data supply steps

214...歷史壓力資料提供步驟214. . . Historical pressure data providing steps

216...管道流指標計算步驟216. . . Pipe flow indicator calculation steps

218...高爐警戒層決定步驟218. . . Blast furnace alert layer decision step

220...預測階段220. . . Prediction stage

222...目前壓力資料提供步驟222. . . Current pressure data supply steps

224...預測步驟224. . . Prediction step

226...警告步驟226. . . Warning step

Claims (10)

一種高爐管道流現象之預測方法,其中該高爐包含複數個壓力偵測器,該些壓力偵測器係位於高度不同之複數個高爐層中,該高爐管道流現象之預測方法包含:進行一資料分析階段,包含:提供一爐頂洗塵器之複數筆歷史閥門全開時間點資料,其中該些歷史閥門全開時間點資料係對應至複數個歷史閥門全開時間點,而該高爐係於該些歷史閥門全開時間點發生管道流現象;提供複數筆歷史高爐壓力資料,其中該些歷史高爐壓力資料係一對一對應至該些歷史閥門全開時間點資料,每一該些歷史高爐壓力資料包含該些高爐層之複數個歷史高爐壓力值和複數個歷史高爐壓力變化值;根據每一該些歷史高爐壓力資料之該些歷史高爐壓力值以及一管道流指標方程式來計算每一該些歷史閥門全開時間點所對應之複數個管道流指標(RMSD),其中該些管道流指標係一對一對應至該些高爐層,而該管道流指標方程式係表示如下: 其中xi為第i個歷史高爐壓力值,xi+1為第i+1個歷史高爐壓力值,N為該些高爐層中之至少一高壓力變化層之數量,該至少一高壓力變化層之壓力變化值係大於一壓力變化閥值;根據每一該些歷史高爐壓力資料之該些歷史高爐壓力值與該些管道流指標來決定一高爐警戒層;以及進行一管道流預測階段,包含:提供一目前高爐壓力資料,其中該目前高爐壓力資料包含該高爐警戒層之一目前壓力值和一目前壓力變化值;進行一預測步驟,以根據該高爐警戒層之該壓力變化值以及相應之該管道流指標來預測管道流現象是否發生;以及當該預測步驟判斷管道流現象即將發生時,發出一警告訊息來警告高爐之操作者管道流可能發生。A method for predicting a blast furnace pipeline flow phenomenon, wherein the blast furnace comprises a plurality of pressure detectors, wherein the pressure detectors are located in a plurality of blast furnace layers having different heights, and the method for predicting the blast furnace pipeline flow phenomenon comprises: performing a data The analysis stage comprises: providing a plurality of history valve full-opening time points of a top-top dust washer, wherein the historical valve full-opening time point data corresponds to a plurality of historical valve full-opening time points, and the blast furnace is attached to the historical valves A pipeline flow phenomenon occurs at a full opening time; a plurality of historical blast furnace pressure data are provided, wherein the historical blast furnace pressure data are one-to-one corresponding to the historical valve full opening time points data, and each of the historical blast furnace pressure data includes the blast furnaces a plurality of historical blast furnace pressure values and a plurality of historical blast furnace pressure change values; calculating each of the historical valve full opening time points according to the historical blast furnace pressure values of each of the historical blast furnace pressure data and a pipeline flow index equation Corresponding multiple pipe flow indicators (RMSD), wherein the pipe flow indicators are a pair Layer corresponds to the plurality of the blast furnace, and the pipeline flow equation based index is expressed as follows: Where x i is the i-th historical blast furnace pressure value, x i +1 is the i+1th historical blast furnace pressure value, and N is the number of at least one high pressure change layer in the blast furnace layers, the at least one high pressure change The pressure change value of the layer is greater than a pressure change threshold; determining the blast furnace warning layer according to the historical blast furnace pressure values of each of the historical blast furnace pressure data and the pipeline flow indicators; and performing a pipeline flow prediction stage, Included: providing a current blast furnace pressure data, wherein the current blast furnace pressure data includes a current pressure value of the blast furnace warning layer and a current pressure change value; performing a predicting step to determine the pressure change value according to the blast furnace warning layer and corresponding The pipeline flow indicator predicts whether the pipeline flow phenomenon occurs; and when the prediction step determines that the pipeline flow phenomenon is about to occur, a warning message is issued to warn the blast furnace operator that the pipeline flow may occur. 如申請專利範圍第1項所述之高爐管道流現象之預測方法,其中該壓力變化閥值為0.15公斤/平方公分。The method for predicting the phenomenon of blast furnace pipeline flow as described in claim 1 wherein the pressure change threshold is 0.15 kg/cm 2 . 如申請專利範圍第1項所述之高爐管道流現象之預測方法,其中該警告訊息為文字訊息、燈光訊息或聲音訊息。The method for predicting the phenomenon of blast furnace pipeline flow as described in claim 1 wherein the warning message is a text message, a light message or a voice message. 如申請專利範圍第1項所述之高爐管道流現象之預測方法,其中該預測步驟包含:根據該高爐警戒層之該目前壓力值和該目前壓力變化值來計算該高爐警戒層所對應之該管道流指標;判斷該高爐警戒層之該壓力變化值是否大於相應之該管道流指標:以及當該高爐警戒層之該壓力變化值大於相應之該管道流指標時,判斷管道流現象即將發生。The method for predicting a blast furnace pipeline flow phenomenon as described in claim 1, wherein the predicting step comprises: calculating the blast furnace warning layer corresponding to the current pressure value of the blast furnace warning layer and the current pressure change value The pipeline flow indicator determines whether the pressure change value of the blast furnace warning layer is greater than the corresponding pipeline flow index: and when the pressure change value of the blast furnace warning layer is greater than the corresponding pipeline flow index, determining that the pipeline flow phenomenon is about to occur. 如申請專利範圍第1項所述之高爐管道流現象之預測方法,其中該預測步驟包含:根據該高爐警戒層之該目前壓力值和該目前壓力變化值來計算該高爐警戒層所對應之該管道流指標;判斷該高爐警戒層之該壓力變化值是否大於相應之該管道流指標,並提供一第一判斷結果:判斷該爐頂洗塵器之一目前閥門開啟程度是否大於一預設開度閥值,並提供一第二判斷結果:以及當該第一判斷結果和該第二判斷結果皆為是時,判斷管道流現象即將發生。The method for predicting a blast furnace pipeline flow phenomenon as described in claim 1, wherein the predicting step comprises: calculating the blast furnace warning layer corresponding to the current pressure value of the blast furnace warning layer and the current pressure change value a pipeline flow indicator; determining whether the pressure change value of the blast furnace warning layer is greater than the corresponding pipeline flow index, and providing a first judgment result: determining whether the current valve opening degree of the top of the top dust washer is greater than a predetermined opening degree The threshold value is provided, and a second judgment result is provided: and when both the first judgment result and the second judgment result are yes, it is judged that the pipeline flow phenomenon is about to occur. 如申請專利範圍第5項所述之高爐管道流現象之預測方法,其中該預設開度閥值為60%。The method for predicting a blast furnace pipeline flow phenomenon as described in claim 5, wherein the preset opening degree threshold is 60%. 如申請專利範圍第1項所述之高爐管道流現象之預測方法,其中該些高爐層之壓力變化值係利用類神經網路模組來進行內插法而得。The method for predicting the phenomenon of blast furnace pipeline flow according to claim 1, wherein the pressure change values of the blast furnace layers are obtained by interpolation using a neural network module. 如申請專利範圍第1項所述之高爐管道流現象之預測方法,其中決定該高爐警戒層之步驟包含:對每一該些歷史閥門全開時間點資料所對應之該些高爐壓力變化值進行一異常分析步驟,以獲得該些歷史閥門全開時間點資料所對應之複數個候選警戒層,其中該異常分析步驟包含:判斷每一該些高爐層之該高爐壓力變化值是否大於相應之該管道流指標,以從該些高爐層中選出至少一異常高爐層,其中該至少一異常高爐層之該至少一高爐壓力變化值係大於相應之該至少一管道流指標;以及根據該至少一異常高爐層的位置來從該至少一異常高爐層中決定出該些候選警戒層,其中該候選警戒層為該至少一異常高爐層中位置最高之一者;以及進行一高爐警戒層挑選步驟,以從該些歷史閥門全開時間點資料所對應之該些候選警戒層中選出該高爐警戒層。For example, in the method for predicting the blast furnace pipeline flow phenomenon described in claim 1, wherein the step of determining the blast furnace warning layer comprises: performing a blast furnace pressure change value corresponding to each of the historical valve full opening time points data. An abnormality analysis step of obtaining a plurality of candidate warning layers corresponding to the historical time points of the full valve, wherein the abnormality analysis step comprises: determining whether the blast furnace pressure change value of each of the blast furnace layers is greater than the corresponding pipeline flow And an indicator for selecting at least one abnormal blast furnace layer from the blast furnace layers, wherein the at least one blast furnace pressure change value of the at least one abnormal blast furnace layer is greater than the corresponding at least one pipeline flow index; and according to the at least one abnormal blast furnace layer Positioning to determine the candidate alert layers from the at least one abnormal blast furnace layer, wherein the candidate alert layer is one of the highest positions in the at least one abnormal blast furnace layer; and performing a blast furnace alert layer selection step to The blast furnace warning layer is selected among the candidate warning layers corresponding to the historical valve full-open time point data. 如申請專利範圍第8項所述之高爐管道流現象之預測方法,其中該高爐警戒層挑選步驟包含:統計每一該些候選警戒層所對應之一出現次數;以及根據計每一該些候選警戒層之該出現次數之多寡來選出該高爐警戒層,其中該高爐警戒層之該出現次數係大於其他每一該些候選警戒層之該出現次數。The method for predicting a blast furnace pipeline flow phenomenon as described in claim 8 wherein the blast furnace alert layer selection step comprises: counting the number of occurrences of each of the candidate alert layers; and calculating each of the candidates The number of occurrences of the alert layer is selected to select the blast furnace alert layer, wherein the number of occurrences of the blast furnace alert layer is greater than the number of occurrences of each of the other candidate alert layers. 如申請專利範圍第8項所述之高爐管道流現象之預測方法,其中該高爐警戒層挑選步驟包含:提供複數筆歷史閥門未全開時間點資料;根據該些歷史閥門未全開時間點資料來從該些候選警戒層中選出該高爐警戒層,其中該高爐警戒層與該些歷史閥門未全開時間點資料之相關性係小於其他該些候選警戒層與該些歷史閥門未全開時間點資料之相關性。The method for predicting a blast furnace pipeline flow phenomenon as described in claim 8 wherein the blast furnace warning layer selection step comprises: providing a plurality of historical time points of the historical valve not fully open; and according to the historical valve not fully open time point data The blast furnace warning layer is selected from the candidate warning layers, wherein the correlation between the blast furnace warning layer and the historical valve not fully open time points is less than the other candidate warning layers and the historical valve not fully open time points. Sex.
TW100141067A 2011-11-10 2011-11-10 Method for predicting channeling phenomenon of blast furnace TWI435936B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100141067A TWI435936B (en) 2011-11-10 2011-11-10 Method for predicting channeling phenomenon of blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100141067A TWI435936B (en) 2011-11-10 2011-11-10 Method for predicting channeling phenomenon of blast furnace

Publications (2)

Publication Number Publication Date
TW201319260A true TW201319260A (en) 2013-05-16
TWI435936B TWI435936B (en) 2014-05-01

Family

ID=48872366

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100141067A TWI435936B (en) 2011-11-10 2011-11-10 Method for predicting channeling phenomenon of blast furnace

Country Status (1)

Country Link
TW (1) TWI435936B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI708851B (en) * 2020-02-06 2020-11-01 中國鋼鐵股份有限公司 Method for predicting channeling phenomenon of blast furnace
TWI741548B (en) * 2019-04-02 2021-10-01 日商杰富意鋼鐵股份有限公司 Particle size distribution monitoring device, particle size distribution monitoring method, computer program, furnace, blast furnace, furnace controlling method, and blast furnace operation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI741548B (en) * 2019-04-02 2021-10-01 日商杰富意鋼鐵股份有限公司 Particle size distribution monitoring device, particle size distribution monitoring method, computer program, furnace, blast furnace, furnace controlling method, and blast furnace operation method
TWI708851B (en) * 2020-02-06 2020-11-01 中國鋼鐵股份有限公司 Method for predicting channeling phenomenon of blast furnace

Also Published As

Publication number Publication date
TWI435936B (en) 2014-05-01

Similar Documents

Publication Publication Date Title
Zhou et al. Process monitoring of iron-making process in a blast furnace with PCA-based methods
CN103439999B (en) Method for controlling abnormal furnace temperature of blast furnace according to temperature changes of cooling wall
CN104630410A (en) Real-time dynamic converter steelmaking quality prediction method based on data analysis
CN102758032B (en) Method for real-time predication of blast furnace pipeline fault probability
JP2022014169A (en) Operation guidance method, blast furnace operation method, production method of hot metal, and operation guidance device
TWI435936B (en) Method for predicting channeling phenomenon of blast furnace
JP7012159B2 (en) Blast furnace blast control device and its method
CN114134275A (en) Blast furnace hearth air gap judgment method
Kamo et al. Method for predicting gas channeling in blast furnace
Agrawal et al. Advances in thermal level measurement techniques using mathematical models, statistical models and decision support systems in blast furnace
JP5277636B2 (en) How to operate a vertical furnace
JP7307341B2 (en) Furnace gas pressure fluctuation detection method
CN110453023B (en) Blast furnace hearth elephant foot erosion prevention and analysis method
JP7485918B2 (en) Reactor state evaluation device, reactor state evaluation method, reactor state evaluation program, and trained model generation method
TWI708851B (en) Method for predicting channeling phenomenon of blast furnace
Fan et al. Expert system for sintering process control
TWI468521B (en) Method for determinig state of a blast furnace bed
TWI450969B (en) Method for estimating termperature of iron water of a blast furnace
JP6617619B2 (en) Blast furnace operation method
CN117806169B (en) Furnace temperature early warning optimization method, system, terminal and medium based on neural network
US20240318269A1 (en) Hot metal temperature prediction method, operation guidance method, method of manufacturing hot metal, hot metal temperature prediction apparatus, operation guidance apparatus, blast furnace operation guidance system, blast furnace operation guidance server, and terminal apparatus
EP4343006A1 (en) Molten iron temperature prediction method, operation guidance method, molten iron production method, molten iron temperature prediction device, operation guidance device, blast furnace operation guidance system, blast furnace operation guidance server, and terminal device
CN217418738U (en) Blast furnace hearth and bottom erosion distinguishing system based on combination of new installation and old thermocouple
CN114941044B (en) 2000-level high furnace pipeline prediction and treatment method
JP2013112714A (en) Method for predicting coke extrusion load and method for determining operation schedule