TW201318197A - Method for fabricating p-type semiconductor substrate, solar cell and method for fabricating thereof - Google Patents

Method for fabricating p-type semiconductor substrate, solar cell and method for fabricating thereof Download PDF

Info

Publication number
TW201318197A
TW201318197A TW101137327A TW101137327A TW201318197A TW 201318197 A TW201318197 A TW 201318197A TW 101137327 A TW101137327 A TW 101137327A TW 101137327 A TW101137327 A TW 101137327A TW 201318197 A TW201318197 A TW 201318197A
Authority
TW
Taiwan
Prior art keywords
layer
group iii
group
carrier
iii element
Prior art date
Application number
TW101137327A
Other languages
Chinese (zh)
Inventor
Chia-Gee Wang
Original Assignee
Gamc Biotech Dev Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gamc Biotech Dev Co Ltd filed Critical Gamc Biotech Dev Co Ltd
Priority to US13/653,420 priority Critical patent/US9461194B2/en
Publication of TW201318197A publication Critical patent/TW201318197A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

A method for fabricating a p-type semiconductor substrate including follow steps is provided. A carrier is provided, and the carrier includes aIII-V compounds semiconductor layer and a III element layer disposed on the III-V compounds semiconductor layer. Si powders are disposed on the III element layer of the carrier. The carrier is heated to make the Si powders and the III element layer of the carrier form a p-type poly-Si layer. Otherwise, a solar cell and a method of fabricating thereof are also provided.

Description

P型半導體基板的製造方法、太陽能電池及其製造方 法 Method for manufacturing P-type semiconductor substrate, solar cell and manufacturer thereof law

本發明是有關於一種半導體基板的製造方法、電池及其製造方法,且特別是有關於一種P型半導體基板的製造方法、太陽能電池及其製造方法。 The present invention relates to a method of manufacturing a semiconductor substrate, a battery, and a method of manufacturing the same, and more particularly to a method of manufacturing a P-type semiconductor substrate, a solar cell, and a method of manufacturing the same.

石化燃料的能源供應日漸匱乏,且燃燒石化燃料會帶來環境及空氣污染。核能發電雖能供應高電力密度,卻有核輻射與核廢料儲存方面的安全顧慮。前述兩者都有增加社會成本的問題,因此,在開源節流和發展無污染/低污染新能源工業技術的考量與需求下,可再生能源逐漸受到重視,各國都在積極研究將可再生能源作為替代能源的可行性。 The energy supply of fossil fuels is becoming scarcer and the burning of fossil fuels will bring environmental and air pollution. Although nuclear power generation can supply high power density, it has safety concerns about nuclear radiation and nuclear waste storage. Both of them have the problem of increasing social costs. Therefore, under the consideration and demand of open source and energy saving and development of non-polluting/low-pollution new energy industrial technologies, renewable energy is gradually gaining importance. Countries are actively studying the use of renewable energy as an alternative. The feasibility of energy.

在上述可再生能源中,太陽能電池可將太陽光轉換為電力,目前太陽能已成為替代能源的主流之一。依現今太陽能電池的技術而言,大致可分為單晶矽(single crystal silicon)、多晶矽(polycrystal silicon)太陽能電池、非晶矽(amorphous silicon,a-Si)薄膜太陽能電池、III-V族太陽能電池以及有機太陽能電池。以多晶矽太陽能電池而言,其製程步驟繁瑣,包括酸鹼蝕刻、高溫爐管擴散、電漿輔助化學氣相沉積、電極網印以及燒結。上述之製程需耗費大量之器材、能源及時間成本,而使得此類型之太陽能電池的成本無法大幅降低。更詳細地說,習知多晶矽太陽能電池包括P型半導體基板。P型半導體基板上之多晶矽層的 造價佔整個多晶矽太陽能電池造價的一半以上。主因是,P型半導體基板在進行切片及研磨拋光的過程中有將近90%的多晶矽材料被浪費掉了,而使得習知多晶矽太陽能電池的成本無法大幅降低。 Among the above renewable energy sources, solar cells can convert sunlight into electricity, and solar energy has become one of the mainstream energy sources. According to the current solar cell technology, it can be roughly classified into single crystal silicon, polycrystalline silicon solar cell, amorphous silicon (a-Si) thin film solar cell, and III-V solar energy. Battery and organic solar cells. In the case of polycrystalline germanium solar cells, the process steps are cumbersome, including acid-base etching, high-temperature furnace tube diffusion, plasma-assisted chemical vapor deposition, electrode screen printing, and sintering. The above processes require a large amount of equipment, energy and time costs, and the cost of this type of solar cell cannot be greatly reduced. In more detail, conventional polycrystalline germanium solar cells include a P-type semiconductor substrate. Polycrystalline germanium layer on P-type semiconductor substrate The cost accounts for more than half of the total polycrystalline silicon solar cell cost. The main reason is that nearly 90% of the polycrystalline germanium material is wasted during the slicing and polishing process of the P-type semiconductor substrate, so that the cost of the conventional polycrystalline silicon solar cell cannot be greatly reduced.

本發明提供一種P型半導體基板的製造方法,其可降低P型半導體基板的製造成本。 The present invention provides a method of manufacturing a P-type semiconductor substrate, which can reduce the manufacturing cost of a P-type semiconductor substrate.

本發明提供一種太陽能電池的製造方法,其可降低太陽能電池的製造成本。 The present invention provides a method of manufacturing a solar cell, which can reduce the manufacturing cost of the solar cell.

本發明提供一種P型半導體基板的製造方法,其包括下列步驟。提供載體,此載體包括Ⅲ-V族化合物半導體層以及位於Ⅲ-V族化合物半導體層上之Ⅲ族元素層。將矽粉末置於載體之Ⅲ族元素層上。加熱載體,而使矽粉末與載體之Ⅲ族元素層形成P型多晶矽層。 The present invention provides a method of manufacturing a P-type semiconductor substrate, which comprises the following steps. A carrier is provided which includes a III-V compound semiconductor layer and a Group III element layer on the III-V compound semiconductor layer. The tantalum powder is placed on the layer III element layer of the carrier. The carrier is heated to form a P-type polycrystalline germanium layer with the cerium powder and the group III element layer of the carrier.

本發明提供一種太陽能電池的製造方法,其包括下列步驟。提供載體,此載體包括Ⅲ-V族化合物半導體層以及位於Ⅲ-V族化合物半導體層上之Ⅲ族元素層。將矽粉末置於載體之Ⅲ族元素層上。加熱載體,而使矽粉末與載體之Ⅲ族元素層形成P型多晶矽層。在P型多晶矽層上形成N型半導體層。 The present invention provides a method of manufacturing a solar cell comprising the following steps. A carrier is provided which includes a III-V compound semiconductor layer and a Group III element layer on the III-V compound semiconductor layer. The tantalum powder is placed on the layer III element layer of the carrier. The carrier is heated to form a P-type polycrystalline germanium layer with the cerium powder and the group III element layer of the carrier. An N-type semiconductor layer is formed on the P-type polysilicon layer.

本發明提供一種太陽能電池,其包括載體、P型多晶矽層以及N型半導體層。載體包括Ⅲ-V族化合物半導體層。P型多晶矽層位於Ⅲ-V族化合物半導體層上。P型多晶矽層位於N型半導體層與載體之間。 The present invention provides a solar cell comprising a carrier, a P-type polysilicon layer, and an N-type semiconductor layer. The carrier includes a III-V compound semiconductor layer. The p-type polysilicon layer is on the III-V compound semiconductor layer. The p-type polysilicon layer is between the N-type semiconductor layer and the carrier.

在本發明之一實施例中,上述之提供載體的方法包括下列步驟。提供Ⅲ族元素基底。將V族元素粉末置於Ⅲ族元素基底上。加熱Ⅲ族元素基底而使部份的Ⅲ族元素基底與V族元素粉末形成Ⅲ-V族化合物層,而Ⅲ-V族化合物層上殘留另一部份的Ⅲ族元素基底。加熱Ⅲ族元素基底至Ⅲ族元素的熔點,而使另一部份的Ⅲ族元素基底的其中一部份與Ⅲ-V族化合物層形成Ⅲ-V族化合物半導體層,且另一部份的Ⅲ族元素基底的另一部份即為Ⅲ族元素層。 In one embodiment of the invention, the above method of providing a carrier comprises the following steps. A group III element substrate is provided. The group V element powder is placed on the group III element substrate. The group III element substrate is heated such that a portion of the group III element substrate forms a III-V compound layer with the group V element powder, and another portion of the group III element substrate remains on the group III-V compound layer. Heating the base of the group III element to the melting point of the group III element, and forming a portion of the portion of the group III element substrate with the group III-V compound to form a group III-V compound semiconductor layer, and the other portion Another portion of the Group III element substrate is the Group III element layer.

在本發明之一實施例中,上述之將V族元素粉末置於Ⅲ族元素基底上的方法包括下列步驟。將V族元素粉末與溶劑混合成混合液。將此混合液均勻地噴灑於Ⅲ族元素基底上。 In one embodiment of the invention, the above method of placing a Group V element powder on a Group III element substrate comprises the following steps. The group V element powder is mixed with a solvent to form a mixed solution. This mixture was sprayed evenly onto the group III element substrate.

在本發明之一實施例中,上述之將矽粉末置於載體之Ⅲ族元素層上的方法包括下列步驟。將矽粉末與溶劑混合成混合液。將此混合液噴灑於載體之Ⅲ族元素層上。 In one embodiment of the invention, the above method of placing the tantalum powder on the Group III element layer of the support comprises the following steps. The cerium powder is mixed with a solvent to form a mixed solution. This mixture was sprayed onto the Group III element layer of the carrier.

在本發明之一實施例中,上述之加熱載體,而使矽粉末與載體之Ⅲ族元素層形成P型多晶矽層之步驟為:加熱載體至1400℃以上,而使矽粉末與載體之Ⅲ族元素層形成P型多晶矽層。 In one embodiment of the present invention, the step of heating the carrier to form the P-type polycrystalline germanium layer between the tantalum powder and the group III element layer of the carrier is: heating the carrier to 1400 ° C or higher, and causing the tantalum powder and the carrier group III The element layer forms a P-type polycrystalline germanium layer.

在本發明之一實施例中,上述之提供載體的的方法包括下列步驟。提供Ⅲ族元素基底。將V族元素植入Ⅲ族元素基底。活化V族元素,而使V族元素與Ⅲ族元素基底形成載體。 In one embodiment of the invention, the above method of providing a carrier comprises the following steps. A group III element substrate is provided. A group V element is implanted into the group III element substrate. The group V element is activated, and the group V element forms a carrier with the group III element substrate.

在本發明之一實施例中,上述之活化V族元素之方法 包括:利用感應加熱(induction heating)、電磁波或光學地加熱而活化V族元素。 In an embodiment of the invention, the method for activating a group V element Including: activation of group V elements by induction heating, electromagnetic waves or optical heating.

在本發明之一實施例中,在形成上述之P型多晶矽層後,可選擇性地除去Ⅲ-V族化合物半導體層。 In one embodiment of the present invention, the III-V compound semiconductor layer can be selectively removed after forming the P-type polysilicon layer described above.

在本發明之一實施例中,上述之P型半導體基板的製造方法可進一步包括:令P型多晶矽層分成多個子P型多晶矽層。 In an embodiment of the invention, the method for fabricating the P-type semiconductor substrate may further include: dividing the P-type polysilicon layer into a plurality of sub-P-type polysilicon layers.

在本發明之一實施例中,上述之P型半導體基板的製造方法可進一步包括:對子P型多晶矽層進行退火製程。 In an embodiment of the invention, the method for fabricating the P-type semiconductor substrate may further include: performing an annealing process on the sub-P-type polysilicon layer.

在本發明之一實施例中,上述之Ⅲ-V族化合物半導體層包括P型磷化鋁層、P型砷化鋁層、P型銻化鋁層或P型氮化鋁層,而Ⅲ族元素層包括鋁元素層。 In an embodiment of the invention, the III-V compound semiconductor layer comprises a P-type aluminum phosphide layer, a P-type aluminum arsenide layer, a P-type aluminum telluride layer or a P-type aluminum nitride layer, and the III group The element layer includes a layer of aluminum element.

在本發明之一實施例中,上述之N型半導體層之材質包括:N型一氧化矽(n+-Si/O)超晶(surperlattice) In an embodiment of the invention, the material of the N-type semiconductor layer comprises: N-type germanium oxide (n + -Si/O) supercrystal (surperlattice)

在本發明之一實施例中,上述之太陽能電池的製造方法可進一步包括下列步驟。在N型半導體層上形成透明導電電極,而N型半導體層位於P型多晶矽層與透明導電電極之間。 In an embodiment of the invention, the above method for manufacturing a solar cell may further include the following steps. A transparent conductive electrode is formed on the N-type semiconductor layer, and the N-type semiconductor layer is between the P-type polysilicon layer and the transparent conductive electrode.

在本發明之一實施例中,上述之太陽能電池的製造方法可進一步包括下列步驟。在P型多晶矽層上形成反射膜。P型多晶矽層位於反射膜與N型半導體層之間。 In an embodiment of the invention, the above method for manufacturing a solar cell may further include the following steps. A reflective film is formed on the P-type polysilicon layer. The P-type polysilicon layer is between the reflective film and the N-type semiconductor layer.

在本發明之一實施例中,上述之太陽能電池可進一步包括透明導電電極。N型半導體層位於P型多晶矽層與透明導電電極之間。 In an embodiment of the invention, the solar cell described above may further comprise a transparent conductive electrode. The N-type semiconductor layer is between the P-type polysilicon layer and the transparent conductive electrode.

在本發明之一實施例中,上述之太陽能電池可進一步包括反射膜。P型多晶矽層位於反射膜與N型半導體層之間。 In an embodiment of the invention, the solar cell described above may further comprise a reflective film. The P-type polysilicon layer is between the reflective film and the N-type semiconductor layer.

基於上述,在本發明一實施例之P型半導體基板及太陽能電池的製程中,將矽粉末置於Ⅲ族元素層上,並加熱載體,而使矽粉末與Ⅲ族元素層形成P型多晶矽層。因此,相較於習知技術,本發明一實施例之P型半導體基板及太陽能電池的製程不需鋸切和磨去大量的多晶矽層,而可減少大量多晶矽材料的浪費,進而大幅降低P型半導體基板及太陽能電池的製造成本。 Based on the above, in the process of the P-type semiconductor substrate and the solar cell according to an embodiment of the present invention, the tantalum powder is placed on the group III element layer, and the carrier is heated, so that the tantalum powder and the group III element layer form a P-type polycrystalline layer. . Therefore, compared with the prior art, the process of the P-type semiconductor substrate and the solar cell according to an embodiment of the present invention does not require sawing and grinding a large number of polycrystalline germanium layers, thereby reducing the waste of a large amount of polycrystalline germanium materials, thereby greatly reducing the P-type. Manufacturing costs of semiconductor substrates and solar cells.

為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the present invention will be more apparent from the following description.

圖1為本發明一實施例之P型半導體基板的製造流程圖。請參照圖1,本實施例之P型半導體基板的製造方法包括下列步驟。提供載體,此載體包括Ⅲ-V族化合物半導體層以及位於Ⅲ-V族化合物半導體層上之Ⅲ族元素層(步驟S100)。將矽粉末置於載體的Ⅲ族元素層上(步驟S200)。加熱載體,而使矽粉末與載體之Ⅲ族元素層形成P型多晶矽層(步驟300)。以下將配合圖示,詳細地說明本發明一實施例之P型半導體基板的製造過程。 1 is a flow chart showing the manufacture of a P-type semiconductor substrate according to an embodiment of the present invention. Referring to FIG. 1, a method of manufacturing a P-type semiconductor substrate of the present embodiment includes the following steps. A carrier is provided which includes a III-V compound semiconductor layer and a group III element layer on the III-V compound semiconductor layer (step S100). The tantalum powder is placed on the group III element layer of the carrier (step S200). The carrier is heated to form a P-type polysilicon layer with the cerium powder and the Group III element layer of the carrier (step 300). Hereinafter, the manufacturing process of the P-type semiconductor substrate according to an embodiment of the present invention will be described in detail with reference to the drawings.

圖2為本發明一實施例之P型半導體基板的製造流程示意圖。圖3A至圖3F為對應圖2之半導體基板的製造流 程剖面示意圖。請參照圖2,首先,提供載體110。載體110包括Ⅲ-V族化合物半導體層(圖2中未標示)以及位於Ⅲ-V族化合物半導體層上之Ⅲ族元素層(圖2中未標示)。載體110之Ⅲ-V族化合物半導體層具有良好之耐熱性,而使載體110在P型半導體基板的製程中可做為一良好的載體。 2 is a schematic view showing a manufacturing process of a P-type semiconductor substrate according to an embodiment of the present invention. 3A to 3F are manufacturing flows corresponding to the semiconductor substrate of FIG. Schematic diagram of the section. Referring to FIG. 2, first, a carrier 110 is provided. The carrier 110 includes a III-V compound semiconductor layer (not shown in FIG. 2) and a group III element layer (not shown in FIG. 2) on the III-V compound semiconductor layer. The III-V compound semiconductor layer of the carrier 110 has good heat resistance, and the carrier 110 can be used as a good carrier in the process of the P-type semiconductor substrate.

以下配合圖2以及圖3A至圖3C,詳細說明本發明一實施例之提供載體的方法。請參照圖2的步驟1及圖3A,首先,提供Ⅲ族元素基底102。接著,Ⅲ族元素基底102上形成石墨纖維傳送帶(graphite fiber belt)G。請參照圖2的步驟2及圖3B,接著,將V族元素104噴灑(implanted)Ⅲ族元素基底102。請參照圖2的步驟3及圖3C,接著,加熱活化(activate)V族元素104,而使V族元素104與Ⅲ族元素基底102形成載體110。詳言之,如圖3C所示,在V族元素104被活化後,部份的Ⅲ族元素基底102會與V族元素104形成載體110之Ⅲ-V族化合物半導體層106,而另一部份的Ⅲ族元素基底102即為位於Ⅲ-V族化合物半導體層106上之Ⅲ族元素層108。在本實施例中,Ⅲ-V族化合物半導體層106例如為P型磷化鋁層、P型砷化鋁層或P型氮化鋁層,而Ⅲ族元素層108例如為鋁元素層。但,本發明不以此為限。 Hereinafter, a method of providing a carrier according to an embodiment of the present invention will be described in detail with reference to FIG. 2 and FIG. 3A to FIG. 3C. Referring to step 1 of FIG. 2 and FIG. 3A, first, a group III element substrate 102 is provided. Next, a graphite fiber belt G is formed on the group III element substrate 102. Referring to step 2 of FIG. 2 and FIG. 3B, next, the group V element 104 is implanted with the group III element substrate 102. Referring to step 3 and FIG. 3C of FIG. 2, then, the group V element 104 is heated and activated, and the group V element 104 and the group III element substrate 102 are formed into the carrier 110. In detail, as shown in FIG. 3C, after the group V element 104 is activated, a portion of the group III element substrate 102 forms a group III-V compound semiconductor layer 106 of the carrier 110 with the group V element 104, and the other portion. The portion of the group III element substrate 102 is the group III element layer 108 on the group III-V compound semiconductor layer 106. In the present embodiment, the III-V compound semiconductor layer 106 is, for example, a P-type aluminum phosphide layer, a P-type aluminum arsenide layer or a P-type aluminum nitride layer, and the III-element layer 108 is, for example, an aluminum element layer. However, the invention is not limited thereto.

如圖2的步驟3及圖3C所示,在本實施例中,可藉由感應加熱(induction heating)而活化V族元素104。具體而言,可利用感應加熱線圈(induction heating coil)200活化V 族元素104。在本實施例中,V族元素104可在一腔體A(chamber)中被加熱至300度。然而,本發明不限於此,在其他實施例中,亦可利用電磁波或光學地加熱,而活化V族元素104。 As shown in step 3 of FIG. 2 and FIG. 3C, in the present embodiment, the group V element 104 can be activated by induction heating. Specifically, the induction heating coil 200 can be used to activate the V. Family element 104. In the present embodiment, the group V element 104 can be heated to 300 degrees in a chamber A. However, the present invention is not limited thereto, and in other embodiments, the group V element 104 may be activated by electromagnetic waves or optical heating.

需說明的是,本發明之提供N/P載體的方法並不限於上段(圖2及圖3A至圖3C)所述,在其他實施例中亦可採用其他方法提供N/載體。以下配合圖4A至圖4D,舉例說明之。 It should be noted that the method for providing an N/P carrier of the present invention is not limited to the above (Fig. 2 and Fig. 3A to Fig. 3C), and other methods may be used to provide an N/carrier in other embodiments. The following is exemplified in conjunction with FIGS. 4A to 4D.

圖4A至圖4D示出本發明另一實施例之提供載體的方法。請參照圖4A,首先,提供Ⅲ族元素基底102。請參照圖4B,接著,將V族元素粉末104置於Ⅲ族元素基底102上。詳言之,在本實施例中,V族元素粉末104置於Ⅲ族元素基底102上的方法包括下列步驟。首先,將V族元素粉末104與溶劑103混合成混合液101。接著,將混合液101均勻地噴灑於Ⅲ族元素基底102上。藉由此方法,V族元素粉末104可均勻地配置於Ⅲ族元素基底102上,且噴灑於Ⅲ族元素基底102上的溶劑103可在接下來的加熱製程中揮發。 4A through 4D illustrate a method of providing a carrier in accordance with another embodiment of the present invention. Referring to FIG. 4A, first, a group III element substrate 102 is provided. Referring to FIG. 4B, next, the group V element powder 104 is placed on the group III element substrate 102. In detail, in the present embodiment, the method of placing the group V element powder 104 on the group III element substrate 102 includes the following steps. First, the group V element powder 104 and the solvent 103 are mixed to form a mixed liquid 101. Next, the mixed liquid 101 is uniformly sprayed on the group III element substrate 102. By this method, the group V element powder 104 can be uniformly disposed on the group III element substrate 102, and the solvent 103 sprayed on the group III element substrate 102 can be volatilized in the subsequent heating process.

請參照圖4B及圖4C,接著,加熱Ⅲ族元素基底102而使部份的Ⅲ族元素基底102與V族元素粉末104形成Ⅲ-V族化合物層105,而Ⅲ-V族化合物層105上殘留另一部份的Ⅲ族元素基底102a。請參照圖4C及圖4D,然後,加熱Ⅲ族元素基底102至Ⅲ族元素的熔點,而使另一部份的Ⅲ族元素基底102a的其中一部份與Ⅲ-V族化合物層105形成Ⅲ-V族化合物半導體層106,且另一部份的Ⅲ族 元素基底102a的另一部份102b即為Ⅲ族元素層108。於此便可提供出載體110。 Referring to FIG. 4B and FIG. 4C, next, the group III element substrate 102 is heated to form a portion of the group III element substrate 102 and the group V element powder 104 to form the group III-V compound layer 105, and the group III-V compound layer 105 is formed. Another portion of the group III element substrate 102a remains. Referring to FIG. 4C and FIG. 4D, then, the melting points of the group III element to the group III element are heated, and another part of the group III element substrate 102a is formed with the group III-V compound layer 105. - group V compound semiconductor layer 106, and another portion of group III The other portion 102b of the element substrate 102a is the group III element layer 108. The carrier 110 can be provided here.

請再參照圖2的步驟4及圖3D,在提供出載體110後,接著,將矽粉末120置於載體110之Ⅲ族元素層108上。詳言之,在本實施例中,將矽粉末120置於Ⅲ族元素層108上之方法包括下列步驟。首先,將矽粉末120與溶劑122混合成混合液124。接著,將混合液124噴灑於載體110之Ⅲ族元素層108上。藉由此方法,矽粉末120可均勻地配置於Ⅲ族元素層108上,進而形成品質優良的P型半導體基板。 Referring again to step 4 of FIG. 2 and FIG. 3D, after the carrier 110 is provided, the tantalum powder 120 is then placed on the group III element layer 108 of the carrier 110. In detail, in the present embodiment, the method of placing the tantalum powder 120 on the group III element layer 108 includes the following steps. First, the tantalum powder 120 and the solvent 122 are mixed to form a mixed liquid 124. Next, the mixed solution 124 is sprayed onto the group III element layer 108 of the carrier 110. By this method, the tantalum powder 120 can be uniformly disposed on the group III element layer 108, thereby forming a P-type semiconductor substrate of excellent quality.

請再參照圖2的步驟5及圖3E,接著,加熱載體110,而使矽粉末120與Ⅲ族元素層108形成P型多晶矽層130。具體而言,在本實施例中,加熱載體110,而使矽粉末120與Ⅲ族元素層108形成P型多晶矽層130之步驟為:快速地加熱載體110至1430℃(即達到並超過矽粉末102熔點1.414℃)以上,而使矽粉末120與Ⅲ族元素層108形成P型多晶矽層130。於此便初步完成了本實施例之P型半導體基板100的製程。值得一提的是,相較於習知技術,本實施例之P型半導體基板100的製程不需磨去大量的多晶矽層,而可減少材料的浪費,進而大幅降低P型半導體基板的製造成本。 Referring to step 5 and FIG. 3E of FIG. 2 again, the carrier 110 is heated to form the P-type polysilicon layer 130 with the tantalum powder 120 and the group III element layer 108. Specifically, in the present embodiment, the step of heating the carrier 110 to form the P-type polysilicon layer 130 between the tantalum powder 120 and the group III element layer 108 is as follows: rapidly heating the carrier 110 to 1430 ° C (ie, reaching and exceeding the tantalum powder) 102 has a melting point of 1.414 ° C) or more, and the tantalum powder 120 and the group III element layer 108 form a p-type polysilicon layer 130. Thus, the process of the P-type semiconductor substrate 100 of the present embodiment is initially completed. It is worth mentioning that, compared with the prior art, the process of the P-type semiconductor substrate 100 of the present embodiment does not need to grind a large number of polysilicon layers, thereby reducing material waste, thereby greatly reducing the manufacturing cost of the P-type semiconductor substrate. .

請再參照圖2的步驟6及圖3E,多個子P型多晶矽層130a可被堆疊在充滿氫氣(H2)且具有1350度的腔體B中,以進行退火(annealing)製程。請再參照圖2的步驟7、8,接著,前述腔體中的子P型多晶矽層130a可被移至另 一腔體C中冷卻(如步驟6至步驟7),接著,子P型多晶矽層130a可依序被排出腔體(如步驟7至步驟8)。 Referring again to step 6 of FIG. 2 and FIG. 3E, a plurality of sub-P-type polysilicon layers 130a may be stacked in a cavity B filled with hydrogen (H 2 ) and having a temperature of 1350 degrees for an annealing process. Referring again to steps 7 and 8 of FIG. 2, the sub-P-type polysilicon layer 130a in the cavity may be moved to another cavity C for cooling (steps 6 to 7), and then the sub-P-type polysilicon Layer 130a can be sequentially ejected from the cavity (steps 7 through 8).

請再參照圖2的步驟9及圖3F製造者可視實際所需的太陽能電池尺寸,而將P型多晶矽層130可被分成多個子P型多晶矽層130a。在本實施例,可利用雷射(laser)將P型多晶矽層130可被分成多個子P型多晶矽層130a。子P型多晶矽層130a的尺寸例如為5公分成5公分。請再參照圖2的步驟10,被切割後的子P型多晶矽層130a被包裝後可存放在純氮氣中進行運輸。 Referring to step 9 of FIG. 2 and FIG. 3F, the manufacturer can visually determine the solar cell size required, and the P-type polysilicon layer 130 can be divided into a plurality of sub-P-type polysilicon layers 130a. In the present embodiment, the P-type polysilicon layer 130 may be divided into a plurality of sub-P-type polysilicon layers 130a using a laser. The size of the sub-P-type polysilicon layer 130a is, for example, 5 cm in 5 cm. Referring again to step 10 of FIG. 2, the cut sub-P-type polysilicon layer 130a is packaged and stored in pure nitrogen for transportation.

本實施例之P型半導體基板100可進一步地被製作為太陽能電池。詳言之,當P型多晶矽層完成後,可在P型多晶矽層上形成N型半導體層,以形成太陽能電池。 The P-type semiconductor substrate 100 of the present embodiment can be further fabricated as a solar cell. In detail, after the P-type polysilicon layer is completed, an N-type semiconductor layer can be formed on the P-type polysilicon layer to form a solar cell.

以下配合圖5A至圖5B詳細說明之。圖5A至圖5B示出本發明一實施例之P型半導體基板被製作成太陽能電池的過程。 This will be described in detail below with reference to FIGS. 5A to 5B. 5A to 5B illustrate a process in which a P-type semiconductor substrate is fabricated into a solar cell according to an embodiment of the present invention.

如圖3F所示,當P型多晶矽層130完成後,在本實施例中,製造者可視實際所需的太陽能電池尺寸,而將P型多晶矽層130可被分成多個子P型多晶矽層130a。 As shown in FIG. 3F, after the P-type polysilicon layer 130 is completed, in the present embodiment, the manufacturer can divide the P-type polysilicon layer 130 into a plurality of sub-P-type polysilicon layers 130a depending on the actual required solar cell size.

接著,如圖5A所示,可對這些子P型多晶矽層130a進行退火(annealing)製程。然後,可在這些子P型多晶矽層130a上分別形成多個N型半導體層140。N型半導體層140之材質例如為N型一氧化矽(n+-Si/O)超晶(surperlattice)或其他適當的材質。值得一提的是,在1.8電子伏特(eV)帶(band)的N型一氧化矽(n+-Si/O)或在超過2電子伏特(eV)帶的N型銻化鋁(n+-AlSb)可與在1.1電子伏特(eV)帶之子 P型多晶矽層130形成陡峭的異質介面位障(hetero-junction barrier)。此陡峭的異質介面位障可使具有此位障之太陽能電池具有降滲漏而達到增高光電轉換效率。換言之,陡峭的異質介面位障可使太陽能電池每瓦的發電成本明顯下降。 Next, as shown in FIG. 5A, these sub-P-type polysilicon layers 130a may be subjected to an annealing process. Then, a plurality of N-type semiconductor layers 140 may be formed on the sub-P-type polysilicon layers 130a, respectively. The material of the N-type semiconductor layer 140 is, for example, an N-type germanium oxide (n + -Si/O) superlattice or other suitable material. It is worth mentioning that N-type niobium oxide (n + -Si/O) in 1.8 electron volt (eV) band or N-type aluminum telluride in n 2 electron volt (eV) band (n + -AlSb) can form a steep hetero-junction barrier with the P-type polysilicon layer 130 of the 1.1 electron volt (eV) band. This steep heterogeneous interface barrier can reduce the leakage of the solar cell with this barrier to increase the photoelectric conversion efficiency. In other words, a steep heterogeneous interface barrier can significantly reduce the cost per watt of solar cells.

在本實施例中,可利用原子層沉積(Atomic Layer Deposition,ALD)儀器(instrument)對子P型多晶矽層130a進行退火製程並在這些子P型多晶矽層130a上形成N型半導體層140。利用ALD instrument可大量且快速地在子P型多晶矽層130a上形成N型半導體層140。 In the present embodiment, the sub-P-type polysilicon layer 130a may be annealed using an Atomic Layer Deposition (ALD) instrument and an N-type semiconductor layer 140 may be formed on the sub-P-type polysilicon layer 130a. The N-type semiconductor layer 140 can be formed on the sub-P-type polysilicon layer 130a in a large amount and quickly by the ALD instrument.

如圖5B所示,在子P型多晶矽層130a上形成N型半導體層140後,可選擇性地在N型半導體層140上形成透明導電電極150。N型半導體層140位於子P型多晶矽層130a與透明導電電極150之間。接著,可選擇性地在子P型多晶矽層130a上形成反射膜160。子P型多晶矽層130a位於反射膜160與N型半導體層140之間。反射膜160可增加入射光在太陽能電池100A中的傳遞路徑,進而增加太陽能電池100A的光電轉換效率。 As shown in FIG. 5B, after the N-type semiconductor layer 140 is formed on the sub-P-type polysilicon layer 130a, the transparent conductive electrode 150 can be selectively formed on the N-type semiconductor layer 140. The N-type semiconductor layer 140 is located between the sub-P-type polysilicon layer 130a and the transparent conductive electrode 150. Next, a reflective film 160 may be selectively formed on the sub-P-type polysilicon layer 130a. The sub-P-type polysilicon layer 130a is located between the reflective film 160 and the N-type semiconductor layer 140. The reflective film 160 can increase the transmission path of the incident light in the solar cell 100A, thereby increasing the photoelectric conversion efficiency of the solar cell 100A.

圖5B示出本發明一實施例之太陽能電池。本實施例之太陽能電池100A包括載體、P型多晶矽層130a以及N型半導體層140。載體110包括Ⅲ-V族化合物半導體層106。子P型多晶矽層130a位於Ⅲ-V族化合物半導體層106上。本實施例之太陽能電池100A可進一步包括透明導電電極150。N型半導體層140位於P型多晶矽層130a與 透明導電電極150之間。本實施例之太陽能電池100A更包括反射膜160。P型多晶矽層130a位於反射膜160與N型半導體層140之間。本實施例之太陽能電池100A具有低製造成本及高光電轉換效率的優點。 Fig. 5B shows a solar cell according to an embodiment of the present invention. The solar cell 100A of the present embodiment includes a carrier, a P-type polysilicon layer 130a, and an N-type semiconductor layer 140. The carrier 110 includes a III-V compound semiconductor layer 106. The sub-P-type polysilicon layer 130a is on the III-V compound semiconductor layer 106. The solar cell 100A of the present embodiment may further include a transparent conductive electrode 150. The N-type semiconductor layer 140 is located in the P-type polysilicon layer 130a and Between the transparent conductive electrodes 150. The solar cell 100A of the present embodiment further includes a reflective film 160. The P-type polysilicon layer 130a is located between the reflective film 160 and the N-type semiconductor layer 140. The solar cell 100A of the present embodiment has an advantage of low manufacturing cost and high photoelectric conversion efficiency.

綜上所述,在本發明一實施例之P型半導體基板及太陽能電池的製程中,將矽粉末置於Ⅲ族元素層上,並加熱載體,而使矽粉末與Ⅲ族元素層形成P型多晶矽層。因此,相較於習知技術,本發明一實施例之P型半導體基板及太陽能電池的製程不需鋸切而浪費大量的多晶矽層,而可減少大量多晶矽材料的浪費,進而大幅降低P型半導體基板及太陽能電池的製造成本。 In summary, in the process of the P-type semiconductor substrate and the solar cell according to an embodiment of the present invention, the tantalum powder is placed on the group III element layer, and the carrier is heated, so that the tantalum powder and the group III element layer form a P-type. Polycrystalline germanium layer. Therefore, compared with the prior art, the process of the P-type semiconductor substrate and the solar cell according to an embodiment of the present invention does not require sawing and wastes a large amount of polycrystalline germanium layer, thereby reducing the waste of a large amount of polycrystalline germanium material, thereby substantially reducing the P-type semiconductor. Manufacturing costs of substrates and solar cells.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

100‧‧‧P型半導體基板 100‧‧‧P type semiconductor substrate

100A‧‧‧太陽能電池 100A‧‧‧ solar cells

101、124‧‧‧混合液 101, 124‧‧‧ mixture

102‧‧‧Ⅲ族元素基底 102‧‧‧III elemental substrate

102a‧‧‧另一部份的Ⅲ族元素基底 102a‧‧‧Other part of the III element base

102b‧‧‧另一部份的Ⅲ族元素基底的另一部份 102b‧‧‧Another part of the other part of the group III element

103、122‧‧‧溶劑 103, 122‧‧‧ solvent

104‧‧‧V族元素(粉末) 104‧‧‧V element (powder)

105‧‧‧Ⅲ-V族化合物層 105‧‧‧III-V compound layer

106‧‧‧Ⅲ-V族化合物半導體層 106‧‧‧III-V compound semiconductor layer

108‧‧‧Ⅲ族元素層 108‧‧‧III elemental layer

110‧‧‧載體 110‧‧‧ Carrier

120‧‧‧矽粉末 120‧‧‧矽 powder

130‧‧‧P型多晶矽層 130‧‧‧P-type polycrystalline layer

130a‧‧‧子P型多晶矽層 130a‧‧‧P-type polycrystalline layer

140‧‧‧N型半導體層 140‧‧‧N type semiconductor layer

150‧‧‧透明導電電極 150‧‧‧Transparent conductive electrode

160‧‧‧反射膜 160‧‧‧Reflective film

200‧‧‧感應加熱線圈 200‧‧‧Induction heating coil

A、B、C‧‧‧腔體 A, B, C‧‧‧ cavity

G‧‧‧石墨纖維傳送帶 G‧‧‧Graphite fiber conveyor belt

S100~S300‧‧‧步驟 S100~S300‧‧‧Steps

圖1為本發明一實施例之P型半導體基板的製造流程圖。 1 is a flow chart showing the manufacture of a P-type semiconductor substrate according to an embodiment of the present invention.

圖2為本發明一實施例之P型半導體基板的製造流程示意圖。 2 is a schematic view showing a manufacturing process of a P-type semiconductor substrate according to an embodiment of the present invention.

圖3A至圖3F為對應圖2之半導體基板的製造流程剖面示意圖。 3A to 3F are schematic cross-sectional views showing a manufacturing process of the semiconductor substrate corresponding to FIG. 2.

圖4A至圖4D示出本發明另一實施例之提供載體的方法。 4A through 4D illustrate a method of providing a carrier in accordance with another embodiment of the present invention.

圖5A至圖5B示出本發明一實施例之P型半導體基板被製作成太陽能電池的過程。 5A to 5B illustrate a process in which a P-type semiconductor substrate is fabricated into a solar cell according to an embodiment of the present invention.

102‧‧‧Ⅲ族元素基底 102‧‧‧III elemental substrate

104‧‧‧V族元素(粉末) 104‧‧‧V element (powder)

120‧‧‧矽粉末 120‧‧‧矽 powder

A、B、C‧‧‧腔體 A, B, C‧‧‧ cavity

G‧‧‧石墨纖維傳送帶 G‧‧‧Graphite fiber conveyor belt

Claims (28)

一種P型半導體基板的製造方法,包括:提供一載體,該載體包括一Ⅲ-V族化合物半導體層以及位於該Ⅲ-V族化合物半導體層上之一Ⅲ族元素層;將一矽粉末置於該載體之該Ⅲ族元素層上;以及加熱該載體,而使該矽粉末與該載體之該Ⅲ族元素層形成一P型多晶矽層。 A method for fabricating a P-type semiconductor substrate, comprising: providing a carrier comprising a III-V compound semiconductor layer and a group III element layer on the III-V compound semiconductor layer; placing a tantalum powder And constituting the group III element layer of the carrier; and heating the carrier to form a p-type polysilicon layer with the group III element layer of the carrier. 如申請專利範圍第1項所述之P型半導體基板的製造方法,其中提供該載體的方法包括下列步驟:提供一Ⅲ族元素基底;將一V族元素粉末置於該Ⅲ族元素基底上;加熱該Ⅲ族元素基底而使部份的該Ⅲ族元素基底與該V族元素粉末結合成一Ⅲ-V族化合物層,而該Ⅲ-V族化合物層上殘留另一部份的該Ⅲ族元素基底;以及加熱該Ⅲ族元素基底至該Ⅲ族元素的熔點,而使該另一部份的該Ⅲ族元素基底的其中一部份與該Ⅲ-V族化合物層形成該Ⅲ-V族化合物半導體層,且該另一部份的該Ⅲ族元素基底的另一部份為該Ⅲ族元素層。 The method for producing a P-type semiconductor substrate according to claim 1, wherein the method for providing the carrier comprises the steps of: providing a group III element substrate; and placing a group V element powder on the group III element substrate; Heating the group III element substrate to combine a portion of the group III element substrate with the group V element powder to form a group III-V compound layer, and leaving another portion of the group III element on the group III-V compound layer a substrate; and heating the group III element substrate to a melting point of the group III element such that a portion of the other group of the group III element substrate forms the group III-V compound with the group III-V compound a semiconductor layer, and another portion of the other portion of the group III element substrate is the group III element layer. 如申請專利範圍第2項所述之P型半導體基板的製造方法,其中將該V族元素粉末置於該Ⅲ族元素基底上的方法包括下列步驟:將該V族元素粉末與一第一溶劑混合成一第一混合液;以及將該第一混合液均勻地噴灑於該Ⅲ族元素基底上。 The method for producing a P-type semiconductor substrate according to claim 2, wherein the method of placing the group V element powder on the group III element substrate comprises the steps of: using the group V element powder and a first solvent Mixing into a first mixed liquid; and uniformly spraying the first mixed liquid on the group III element substrate. 如申請專利範圍第1項所述之P型半導體基板的製造方法,其中將該矽粉末置於該載體之該Ⅲ族元素層上的方法包括下列步驟:將該矽粉末與一第二溶劑混合成一第二混合液;以及將該第二混合液噴灑於該載體之該Ⅲ族元素層上。 The method for producing a P-type semiconductor substrate according to claim 1, wherein the method of placing the tantalum powder on the group III element layer of the carrier comprises the steps of: mixing the tantalum powder with a second solvent Forming a second mixed liquid; and spraying the second mixed liquid onto the group III element layer of the carrier. 如申請專利範圍第1項所述之P型半導體基板的製造方法,其中加熱該載體,而使該矽粉末與該載體之該Ⅲ族元素層形成該P型多晶矽層之步驟為:加熱該載體至1400℃以上,而使該矽粉末與該載體之該Ⅲ族元素層形成該P型多晶矽層。 The method for producing a P-type semiconductor substrate according to claim 1, wherein the step of heating the carrier to form the P-type polysilicon layer with the lanthanum powder and the group III element layer of the carrier is: heating the carrier Up to 1400 ° C or higher, the bismuth powder and the group III element layer of the carrier form the P-type polysilicon layer. 如申請專利範圍第1項所述之P型半導體基板的製造方法,其中提供該載體的方法包括下列步驟:提供一Ⅲ族元素基底;將一V族元素植入該Ⅲ族元素基底;以及活化該V族元素,而使該V族元素與該Ⅲ族元素基底形成該載體。 The method for producing a P-type semiconductor substrate according to claim 1, wherein the method for providing the carrier comprises the steps of: providing a group III element substrate; implanting a group V element into the group III element substrate; and activating The group V element causes the group V element to form the carrier with the group III element substrate. 如申請專利範圍第6項所述之P型半導體基板的製造方法,其中活化該V族元素之方法包括:利用感應加熱(induction heating)、一電磁波或光學地加熱而活化該V族元素。 The method of manufacturing a P-type semiconductor substrate according to claim 6, wherein the method of activating the group V element comprises: activating the group V element by induction heating, an electromagnetic wave, or optical heating. 如申請專利範圍第7項所述之P型半導體基板的製造方法,其中在活化該V族元素時,令該V族元素以及該Ⅲ族元素基底進入一氮氣室。 The method of manufacturing a P-type semiconductor substrate according to claim 7, wherein when the group V element is activated, the group V element and the group III element substrate are allowed to enter a nitrogen chamber. 如申請專利範圍第1項所述之P型半導體基板的製 造方法,更包括:在形成該P型多晶矽層後,去除該Ⅲ-V族化合物半導體層。 The system for manufacturing a P-type semiconductor substrate as described in claim 1 The method further includes: removing the III-V compound semiconductor layer after forming the P-type polysilicon layer. 如申請專利範圍第9項所述之P型半導體基板的製造方法,其中去除該Ⅲ-V族化合物半導體層的方法包括:令該Ⅲ-V族化合物半導體層與該水反應而形成(Ⅲ)2O3以及H3(V),其中Ⅲ代表Ⅲ族元素,而V代表V族元素。 The method of manufacturing a P-type semiconductor substrate according to claim 9, wherein the method of removing the III-V compound semiconductor layer comprises: reacting the III-V compound semiconductor layer with the water to form (III) 2 O 3 and H 3 (V), wherein III represents a group III element and V represents a group V element. 如申請專利範圍第1項所述之P型半導體基板的製造方法,更包括:令該P型多晶矽層分成多個子P型多晶矽層。 The method for fabricating a P-type semiconductor substrate according to claim 1, further comprising dividing the P-type polysilicon layer into a plurality of sub-P-type polysilicon layers. 如申請專利範圍第11項所述之P型半導體基板的製造方法,更包括:對該些子P型多晶矽層進行一退火製程。 The method for fabricating a P-type semiconductor substrate according to claim 11, further comprising: performing an annealing process on the plurality of sub-P-type polysilicon layers. 如申請專利範圍第1項所述之P型半導體基板的製造方法,其中該Ⅲ-V族化合物半導體層包括一P型磷化鋁層、一P型砷化鋁層或一P型氮化鋁層,而該Ⅲ族元素層包括一鋁元素層。 The method for fabricating a P-type semiconductor substrate according to claim 1, wherein the III-V compound semiconductor layer comprises a P-type aluminum phosphide layer, a P-type aluminum arsenide layer or a P-type aluminum nitride. a layer, and the group III element layer comprises an aluminum element layer. 一種太陽能電池的製造方法,包括:提供一載體,該載體包括一Ⅲ-V族化合物半導體層以及位於該Ⅲ-V族化合物半導體層上之一Ⅲ族元素層;將一矽粉末置於該載體之該Ⅲ族元素層上;加熱該載體,而使該矽粉末與該載體之該Ⅲ族元素層形成一P型多晶矽層;以及在該P型多晶矽層上形成一N型半導體層。 A method of manufacturing a solar cell, comprising: providing a carrier comprising a III-V compound semiconductor layer and a layer III element layer on the III-V compound semiconductor layer; placing a tantalum powder on the carrier On the group III element layer; heating the carrier to form a p-type polysilicon layer with the group III element layer of the carrier; and forming an N-type semiconductor layer on the p-type polysilicon layer. 如申請專利範圍第14項所述之太陽能電池的製造方法,其中提供該載體的方法包括下列步驟:提供一Ⅲ族元素基底;將一V族元素粉末置於該Ⅲ族元素基底上;加熱該Ⅲ族元素基底而使部份的該Ⅲ族元素基底與該V族元素粉末形成一Ⅲ-V族化合物層,而該Ⅲ-V族化合物層上殘留另一部份的該Ⅲ族元素基底;以及加熱該Ⅲ族元素基底至該Ⅲ族元素的熔點,而使該另一部份的該Ⅲ族元素基底的其中一部份與該Ⅲ-V族化合物層形成該Ⅲ-V族化合物半導體層,且該另一部份的該Ⅲ族元素基底的另一部份為該Ⅲ族元素層。 The method for producing a solar cell according to claim 14, wherein the method for providing the carrier comprises the steps of: providing a group III element substrate; placing a group V element powder on the group III element substrate; heating the a group III element substrate such that a portion of the group III element substrate forms a III-V compound layer with the group V element powder, and another portion of the group III element substrate remains on the group III-V compound layer; And heating the base of the group III element to a melting point of the group III element, and forming a portion of the group III element substrate of the other portion and the group III-V compound layer to form the group III-V compound semiconductor layer And another portion of the other portion of the group III element substrate is the group III element layer. 如申請專利範圍第15項所述之太陽能電池的製造方法,其中將該V族元素粉末置於該Ⅲ族元素基底上的方法包括下列步驟:將該V族元素粉末與一第一溶劑混合成一第一混合液;以及將該第一混合液均勻地噴灑於該Ⅲ族元素基底上。 The method for producing a solar cell according to claim 15, wherein the method of placing the group V element powder on the group III element substrate comprises the steps of: mixing the group V element powder with a first solvent to form a a first mixed liquid; and uniformly spraying the first mixed liquid on the group III element substrate. 如申請專利範圍第14項所述之太陽能電池的製造方法,其中加熱該載體,而使該矽粉末與該載體之該Ⅲ族元素層形成該P型多晶矽層之步驟為:加熱該載體至1400℃以上,而使該矽粉末與該載體之該Ⅲ族元素層形成該P型多晶矽層。 The method for manufacturing a solar cell according to claim 14, wherein the step of heating the carrier to form the P-type polysilicon layer with the lanthanum powder and the group III element layer of the carrier is: heating the carrier to 1400 Above the °C, the bismuth powder and the group III element layer of the carrier form the P-type polysilicon layer. 如申請專利範圍第14項所述之太陽能電池的製造方法,其中將該矽粉末置於該載體之該Ⅲ族元素層上的方 法包括下列步驟:將該矽粉末與一第二溶劑混合成一第二混合液;以及將該第二混合液噴灑於該載體之該Ⅲ族元素層上。 The method for producing a solar cell according to claim 14, wherein the tantalum powder is placed on the group III element layer of the carrier. The method comprises the steps of: mixing the niobium powder with a second solvent to form a second mixture; and spraying the second mixture onto the group III element layer of the carrier. 如申請專利範圍第14項所述之太陽能電池的製造方法,其中提供該載體的方法包括下列步驟:提供一Ⅲ族元素基底;將一V族元素植入該Ⅲ族元素基底;以及活化該V族元素,而使該V族元素與該Ⅲ族元素基底形成該載體。 The method for producing a solar cell according to claim 14, wherein the method for providing the carrier comprises the steps of: providing a group III element substrate; implanting a group V element into the group III element substrate; and activating the V a group element such that the group V element forms a carrier with the group III element substrate. 如申請專利範圍第14項所述之太陽能電池的製造方法,其中活化該V族元素之方法包括:利用感應加熱(induction heating)、一電磁波或光學地加熱而活化該V族元素。 The method of manufacturing a solar cell according to claim 14, wherein the method of activating the group V element comprises: activating the group V element by induction heating, an electromagnetic wave or optical heating. 如申請專利範圍第14項所述之太陽能電池的製造方法,更包括:在形成該P型多晶矽層後,去除該Ⅲ-V族化合物半導體層。 The method for fabricating a solar cell according to claim 14, further comprising: removing the III-V compound semiconductor layer after forming the P-type polysilicon layer. 如申請專利範圍第14項所述之太陽能電池的製造方法,更包括:對該P型多晶矽層進行一退火製程。 The method for manufacturing a solar cell according to claim 14, further comprising: performing an annealing process on the P-type polysilicon layer. 如申請專利範圍第14項所述之太陽能電池的製造方法,其中該N型半導體層之材質包括:N型一氧化矽(n+-Si/O)超晶(surperlattice)。 The method for manufacturing a solar cell according to claim 14, wherein the material of the N-type semiconductor layer comprises: N-type cerium oxide (n + -Si/O) superlattice. 如申請專利範圍第14項所述之太陽能電池的製造方法,更包括:在該N型半導體層上形成一透明導電電極,而該N型半導體層位於該P型多晶矽層與該透明導電電極 之間。 The method for manufacturing a solar cell according to claim 14, further comprising: forming a transparent conductive electrode on the N-type semiconductor layer, wherein the N-type semiconductor layer is located on the P-type polysilicon layer and the transparent conductive electrode between. 如申請專利範圍第24項所述之太陽能電池的製造方法,更包括:在該P型多晶矽層上形成一反射膜,該P型多晶矽層位於該反射膜與該N型半導體層之間。 The method for fabricating a solar cell according to claim 24, further comprising: forming a reflective film on the P-type polysilicon layer, the P-type polysilicon layer being located between the reflective film and the N-type semiconductor layer. 一種太陽能電池,包括:一載體,包括一Ⅲ-V族化合物半導體層;一P型多晶矽層,位於該Ⅲ-V族化合物半導體層上;以及一N型半導體層,該P型多晶矽層位於該N型半導體層與該載體之間。 A solar cell comprising: a carrier comprising a III-V compound semiconductor layer; a P-type polysilicon layer on the III-V compound semiconductor layer; and an N-type semiconductor layer, the P-type polysilicon layer being located Between the N-type semiconductor layer and the carrier. 如申請專利範圍第26項所述之太陽能電池,更包括:一透明導電電極,該N型半導體層位於該P型多晶矽層與該透明導電電極之間。 The solar cell of claim 26, further comprising: a transparent conductive electrode, the N-type semiconductor layer being located between the P-type polysilicon layer and the transparent conductive electrode. 如申請專利範圍第26項所述之太陽能電池,更包括:一反射膜,該P型多晶矽層位於該反射膜與該N型半導體層之間。 The solar cell of claim 26, further comprising: a reflective film, the P-type polysilicon layer being between the reflective film and the N-type semiconductor layer.
TW101137327A 2011-10-17 2012-10-09 Method for fabricating p-type semiconductor substrate, solar cell and method for fabricating thereof TW201318197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/653,420 US9461194B2 (en) 2011-10-17 2012-10-17 Method for fabricating P-type semiconductor substrate, solar cell and method for fabricating the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161547868P 2011-10-17 2011-10-17
US201261607011P 2012-03-06 2012-03-06

Publications (1)

Publication Number Publication Date
TW201318197A true TW201318197A (en) 2013-05-01

Family

ID=48872071

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101137327A TW201318197A (en) 2011-10-17 2012-10-09 Method for fabricating p-type semiconductor substrate, solar cell and method for fabricating thereof

Country Status (1)

Country Link
TW (1) TW201318197A (en)

Similar Documents

Publication Publication Date Title
JP6746854B2 (en) Solar cell having emitter region containing wide bandgap semiconductor material
JP4244549B2 (en) Photoelectric conversion element and manufacturing method thereof
JP6302405B2 (en) Method for treating heterojunction solar cell and method for manufacturing solar cell
US20090151782A1 (en) Hetero-junction silicon solar cell and fabrication method thereof
US8921968B2 (en) Selective emitter solar cells formed by a hybrid diffusion and ion implantation process
JP2009164544A (en) Passivation layer structure of solar cell, and fabricating method thereof
JP3223102B2 (en) Solar cell and method for manufacturing the same
CN102959738A (en) Method of fabricating an emitter region of a solar cell
US20120048376A1 (en) Silicon-based photovoltaic device produced by essentially electrical means
TW201316538A (en) A method for fabricating a solar cell
JP2015233140A (en) Method for manufacturing solar battery
CN104300032A (en) Single crystal silicon solar ion implantation technology
WO2015130334A1 (en) Silicon solar cells with epitaxial emitters
WO2015130672A1 (en) Silicon solar cells with epitaxial emitters
US20140048130A1 (en) Crystalline silicon solar cell water, and solar cell employing the same
TW201318197A (en) Method for fabricating p-type semiconductor substrate, solar cell and method for fabricating thereof
US9461194B2 (en) Method for fabricating P-type semiconductor substrate, solar cell and method for fabricating the same
US20120258561A1 (en) Low-Temperature Method for Forming Amorphous Semiconductor Layers
Rao et al. A low cost kerfless thin crystalline Si solar cell technology
KR20190080569A (en) METHOD FOR MANUFACTURING CdTe THIN FILM SOLAR CELL
TWI686958B (en) Solar cell and method of fabricating the same
CN110718604A (en) Back surface field of P-type crystalline silicon solar cell and back passivation layer preparation method
KR101129422B1 (en) Fabrication method of solar cell and solar cell fabrication by the same
Gao Silicon based heterojunction solar cells and photodetectors
Herrera Sulfur Implanted GaSb for Non-Epitaxial Photovoltaic Devices