TW201314784A - Semiconductor process - Google Patents

Semiconductor process Download PDF

Info

Publication number
TW201314784A
TW201314784A TW100134413A TW100134413A TW201314784A TW 201314784 A TW201314784 A TW 201314784A TW 100134413 A TW100134413 A TW 100134413A TW 100134413 A TW100134413 A TW 100134413A TW 201314784 A TW201314784 A TW 201314784A
Authority
TW
Taiwan
Prior art keywords
fin structure
layer
substrate
heat treatment
oxide layer
Prior art date
Application number
TW100134413A
Other languages
Chinese (zh)
Other versions
TWI512838B (en
Inventor
Chien-Liang Lin
Shih-Hung Tsai
Chun-Hsien Lin
Te-Lin Sun
shao-wei Wang
Ying-Wei Yen
Yu-Ren Wang
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW100134413A priority Critical patent/TWI512838B/en
Publication of TW201314784A publication Critical patent/TW201314784A/en
Application granted granted Critical
Publication of TWI512838B publication Critical patent/TWI512838B/en

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Abstract

A semiconductor process includes the following steps. A substrate is provided. At least a fin-shaped structure is formed on the substrate and an oxide layer is formed on the substrate without the fin-shaped structure forming thereon. A thermal treatment process is performed to form a melting layer on at least a part of the sidewall of the fin-shaped structure.

Description

半導體製程Semiconductor process

本發明係關於一種半導體製程,特別係關於一種採用熱處理製程,以使鰭狀結構的側壁更平整的半導體製程。This invention relates to a semiconductor process, and more particularly to a semiconductor process that employs a heat treatment process to make the sidewalls of the fin structure flatter.

隨著半導體元件尺寸的縮小,維持小尺寸半導體元件的效能是目前業界的主要目標。為了提高半導體元件的效能,目前已逐漸發展出各種鰭狀場效電晶體元件(Fin-shaped field effect transistor,FinFET)。鰭狀場效電晶體元件包含以下幾項優點。首先,鰭狀場效電晶體元件的製程能與傳統的邏輯元件製程整合,因此具有相當的製程相容性;其次,由於鰭狀結構之立體形狀增加了閘極與單晶矽的接觸面積,因此可增加閘極對於通道區域電荷的控制,從而降低小尺寸元件帶來的汲極引發的能帶降低(Drain Induced Barrier Lowering,DIBL)效應以及短通道效應(short channel effect);此外,由於同樣長度的閘極具有更大的通道寬度,因此亦可增加源極與汲極間之電流量。As the size of semiconductor components shrinks, maintaining the performance of small-sized semiconductor components is currently the main goal of the industry. In order to improve the performance of semiconductor components, various Fin-shaped field effect transistors (FinFETs) have been developed. The fin field effect transistor component has several advantages. First, the process of the fin field effect transistor component can be integrated with the conventional logic component process, so that it has considerable process compatibility. Secondly, since the three-dimensional shape of the fin structure increases the contact area between the gate and the single crystal germanium, Therefore, the gate can control the charge of the channel region, thereby reducing the Drain Induced Barrier Lowering (DIBL) effect and the short channel effect caused by the small-sized component; The length of the gate has a larger channel width, which also increases the amount of current between the source and the drain.

詳細而言,鰭狀場效電晶體元件中之鰭狀結構的形成方法:一般係以進行一蝕刻微影製程,圖案化於基底上之遮罩層。再將圖案化之遮罩層作為硬遮罩以將圖案轉移至基底,而於基底上形成至少一鰭狀結構。然而,以蝕刻微影製程所形成之鰭狀結構的側壁,其表面不平整並具有許多蝕刻所造成的缺陷,而導致品質不佳的通道區域且後續欲形成於其上之介層無法緊密覆蓋,因而降低形成於其上之半導體結構的電性品質。In detail, a method of forming a fin structure in a fin field effect transistor device is generally performed by performing an etch lithography process to pattern a mask layer on a substrate. The patterned mask layer is then used as a hard mask to transfer the pattern to the substrate to form at least one fin structure on the substrate. However, the sidewall of the fin structure formed by the lithography process is uneven and has many defects caused by etching, resulting in a poor quality channel region and the subsequent formation of the via layer to be closely covered. Thereby reducing the electrical quality of the semiconductor structure formed thereon.

本發明提出一種半導體製程,其進行一熱處理製程(尤其是一大於1200℃的熱處理製程),以於鰭狀結構的側壁形成一熔融層,俾使鰭狀結構的側壁更平整。The present invention provides a semiconductor process that performs a heat treatment process (especially a heat treatment process greater than 1200 ° C) to form a molten layer on the sidewalls of the fin structure to smooth the sidewalls of the fin structure.

本發明提供一種半導體製程,包含有下述步驟。首先,提供一基底。接著,形成至少一鰭狀結構於基底上及一氧化層於鰭狀結構以外之基底上。而後,進行一熱處理製程,以使至少部分鰭狀結構的側壁形成一熔融層。The present invention provides a semiconductor process comprising the steps described below. First, a substrate is provided. Next, at least one fin structure is formed on the substrate and an oxide layer is formed on the substrate other than the fin structure. Thereafter, a heat treatment process is performed to form a molten layer on the sidewalls of at least a portion of the fin structure.

本發明提供一種半導體製程,包含下述步驟。首先,提供一塊狀基底。接著,形成一遮罩層於塊狀基底上。接續,圖案化遮罩層並以遮罩層為一硬遮罩,形成至少一鰭狀結構。續之,形成一氧化層於鰭狀結構以外之塊狀基底上。其後,進行一大於1200℃的熱處理製程,以使至少部分鰭狀結構的側壁形成一熔融層。The present invention provides a semiconductor process comprising the following steps. First, a piece of substrate is provided. Next, a mask layer is formed on the bulk substrate. Subsequently, the mask layer is patterned and the mask layer is a hard mask to form at least one fin structure. Further, an oxide layer is formed on the bulk substrate other than the fin structure. Thereafter, a heat treatment process of greater than 1200 ° C is performed to form a molten layer on the sidewalls of at least a portion of the fin structure.

本發明提供一種半導體製程,包含下述步驟。首先,提供一矽覆絕緣基底,包含一矽基底、一底氧化層位於矽基底上以及一矽層位於底氧化層上。接續,形成一遮罩層於矽層上。續之,進行一蝕刻微影製程,以圖案化遮罩層並以遮罩層為一硬遮罩,以使矽層形成至少一鰭狀結構,同時暴露出部分底氧化層,於鰭狀結構以外之矽覆絕緣基底上。之後,進行一大於1200℃的熱處理製程,以使至少部分鰭狀結構的側壁形成一熔融層。The present invention provides a semiconductor process comprising the following steps. First, an insulating substrate is provided, comprising a germanium substrate, a bottom oxide layer on the germanium substrate and a germanium layer on the bottom oxide layer. Successively, a mask layer is formed on the enamel layer. Continuing, an etch lithography process is performed to pattern the mask layer and the mask layer as a hard mask to form at least one fin structure of the germanium layer while exposing a portion of the bottom oxide layer to the fin structure. It is covered on the insulating substrate. Thereafter, a heat treatment process of greater than 1200 ° C is performed to form a molten layer on at least a portion of the sidewalls of the fin structure.

基於上述,本發明提供一種半導體製程,其可藉由進行一熱處理製程(特別是大於1200℃的熱處理製程),以使鰭狀結構的側壁形成一熔融層。如此,本發明可修復鰭狀結構側壁表面的缺陷並使其再結晶,以解決圖案化鰭狀結構時,鰭狀結構的側壁表面產生不平整的問題。Based on the above, the present invention provides a semiconductor process by which a heat treatment process (particularly a heat treatment process of greater than 1200 ° C) is performed to form a molten layer on the sidewalls of the fin structure. As such, the present invention can repair defects of the sidewall surface of the fin structure and recrystallize it to solve the problem of unevenness of the sidewall surface of the fin structure when the fin structure is patterned.

第1-10圖繪示本發明一實施例之半導體製程之剖面示意圖。如第1圖所示,提供一基底110,本實施例中基底110為一塊狀基底。當然,基底110可包含一矽基底、一含矽基底、一三五族覆矽基底(例如GaN-on-silicon)、一石墨烯覆矽基底(graphene-on-silicon)或一矽覆絕緣基底等半導體基底。接著,形成一遮罩層20於基底110上,其中遮罩層20可包含一墊氧化層22及一氮化層24,位於墊氧化層22上。而後,再進行蝕刻暨微影製程,圖案化遮罩層20,並暴露出部分的基底110。1 to 10 are schematic cross-sectional views showing a semiconductor process according to an embodiment of the present invention. As shown in Fig. 1, a substrate 110 is provided. In this embodiment, the substrate 110 is a piece-shaped substrate. Of course, the substrate 110 may comprise a germanium substrate, a germanium-containing substrate, a tri-five-layered germanium substrate (eg, GaN-on-silicon), a graphene-on-silicon substrate, or a germanium-covered insulating substrate. A semiconductor substrate. Next, a mask layer 20 is formed on the substrate 110. The mask layer 20 may include a pad oxide layer 22 and a nitride layer 24 on the pad oxide layer 22. Then, an etching and lithography process is performed to pattern the mask layer 20 and expose a portion of the substrate 110.

如第2圖所示,以遮罩層20為一硬遮罩,蝕刻基底110,以形成一鰭狀結構120。在另一實施例中,亦可圖案化遮罩層20以暴露出須形成鰭狀結構之基底110區域。然後,進行一磊晶製程以由此基底110區域中成長出一突出於遮罩層20的鰭狀結構(未繪示)。此外,本發明僅繪示一鰭狀結構120於基底110上,但在實際應用上,鰭狀結構120的個數亦可為複數個。As shown in FIG. 2, the mask layer 20 is a hard mask, and the substrate 110 is etched to form a fin structure 120. In another embodiment, the mask layer 20 can also be patterned to expose regions of the substrate 110 that must form a fin structure. Then, an epitaxial process is performed to thereby grow a fin structure (not shown) protruding from the mask layer 20 in the region of the substrate 110. In addition, the present invention only shows a fin structure 120 on the substrate 110, but in practical applications, the number of the fin structures 120 may also be plural.

如第3圖所示,例如進行一淺溝隔離技術,以形成一氧化層130於鰭狀結構120以外之基底110上,但本發明不以此為限。淺溝隔離技術可包含:先選擇性地填充一襯墊層(未繪示),其中襯墊層可例如為一氧化層形成於鰭狀結構120的側壁,以作為一緩衝層。而後,填充淺溝絕緣材質於鰭狀結構120以外之基底110上,其填入的材質可包含一氧化物,以於鰭狀結構120以外之基底110上形成氧化層(未繪示)。接著,進行一退火製程P1,以緻密化氧化層(未繪示),其中熱退火製程P1的製程可包含通入氮氣且其製程溫度約1050℃。然後,例如進行一回蝕刻製程或一化學機械研磨製程(未繪示),移除部份之氧化層(未繪示)而形成氧化層130。As shown in FIG. 3, for example, a shallow trench isolation technique is performed to form an oxide layer 130 on the substrate 110 other than the fin structure 120, but the invention is not limited thereto. The shallow trench isolation technique may include first selectively filling a liner layer (not shown), wherein the liner layer may be formed, for example, as an oxide layer on the sidewall of the fin structure 120 to serve as a buffer layer. Then, the shallow trench insulating material is filled on the substrate 110 other than the fin structure 120, and the filled material may include an oxide to form an oxide layer (not shown) on the substrate 110 other than the fin structure 120. Next, an annealing process P1 is performed to densify the oxide layer (not shown), wherein the process of the thermal annealing process P1 may include introducing nitrogen gas and having a process temperature of about 1050 ° C. Then, for example, an etching process or a chemical mechanical polishing process (not shown) is performed to remove a portion of the oxide layer (not shown) to form the oxide layer 130.

如第4圖所示,進行一熱處理製程P2,以於鰭狀結構120的側壁表面S1形成一熔融層122。如此一來,形成此熔融層122,可修復鰭狀結構120的側壁表面S1因蝕刻所造成的各式缺陷並使其再結晶,以解決圖案化鰭狀結構120時,鰭狀結構120的側壁表面S1因蝕刻等製程而產生不平整的問題。換言之,本發明之採用熱處理製程P2,可使鰭狀結構120的側壁表面S1更為平整。因此,於後續製程中所形成於其上之半導體結構(例如一般會先覆蓋一層介電層於鰭狀結構120上),則可均勻地形成於鰭狀結構120上,進而改善所形成之半導體結構的電性品質。在一實施例中,熱處理製程P2包含一雷射熱處理製程,但本發明不以此為限,凡可使鰭狀結構120的側壁表面S1形成一熔融層122之熱處理製程P2,皆可應用於本發明。在一較佳的實施態樣中,熱處理製程P2的製程溫度大於1200℃。又一更佳的實施例,當基底110為一矽基底,熱處理製程P2的製程溫度大於1300℃,俾使鰭狀結構120的側壁表面S1完全轉換為熔融態,以形成熔融層122。As shown in FIG. 4, a heat treatment process P2 is performed to form a molten layer 122 on the side wall surface S1 of the fin structure 120. As a result, the molten layer 122 is formed to repair various defects of the sidewall surface S1 of the fin structure 120 due to etching and recrystallize it to solve the sidewall of the fin structure 120 when the fin structure 120 is patterned. The surface S1 has a problem of unevenness due to a process such as etching. In other words, the heat treatment process P2 of the present invention can make the sidewall surface S1 of the fin structure 120 more flat. Therefore, the semiconductor structure formed on the subsequent process (for example, a dielectric layer is generally covered on the fin structure 120) can be uniformly formed on the fin structure 120, thereby improving the formed semiconductor. The electrical quality of the structure. In an embodiment, the heat treatment process P2 includes a laser heat treatment process, but the invention is not limited thereto, and the heat treatment process P2 for forming the sidewall surface S1 of the fin structure 120 into a molten layer 122 can be applied. this invention. In a preferred embodiment, the process temperature of the heat treatment process P2 is greater than 1200 °C. In still another preferred embodiment, when the substrate 110 is a germanium substrate, the process temperature of the heat treatment process P2 is greater than 1300 ° C, and the sidewall surface S1 of the fin structure 120 is completely converted into a molten state to form the molten layer 122.

如第5圖所示,在進行熱處理製程P2之後,再次移除部分氧化層130,以於鰭狀結構120的周圍形成所需的絕緣結構,例如淺溝隔離(STI),並暴露出部分鰭狀結構120的側壁,其中氧化層130之移除方法,可包含進行一回蝕刻製程等,但本發明不以此為限。As shown in FIG. 5, after the heat treatment process P2 is performed, the partial oxide layer 130 is removed again to form a desired insulating structure around the fin structure 120, such as shallow trench isolation (STI), and expose some of the fins. The sidewall of the structure 120, wherein the method of removing the oxide layer 130, may include performing an etching process, etc., but the invention is not limited thereto.

另外,在另一實施例中,可如第6圖所示,在進行第3圖之步驟(形成氧化層130於鰭狀結構120以外之基底110上)後,可先例如以回蝕刻製程等方法移除部分氧化層130,以於鰭狀結構120的周圍形成所需的絕緣結構,例如淺溝隔離(STI),並暴露出部分鰭狀結構120的側壁。接著,如第7圖所示,進行熱處理製程P2,以使鰭狀結構120的側壁表面S1形成熔融層122。如此一來,亦可達到上述之解決鰭狀結構120的側壁表面S1因蝕刻等製程而產生不平整的問題。然而,前者(如第4圖所示)進行熱處理製程P2之時間點優於後者(如第7圖所示)進行熱處理製程P2之時間點,因為前者係在未暴露出鰭狀結構120的側壁(特別係未暴露於大氣中)即進行熱處理製程P2以形成熔融層122,因此鰭狀結構120的側壁不會被製程環境或者大氣中的氧氣等成分反應,其造成鰭狀結構120側壁的污染。當然,後者之實施例亦可配合製程需要而搭配進行。In addition, in another embodiment, as shown in FIG. 6, after performing the step of FIG. 3 (forming the oxide layer 130 on the substrate 110 other than the fin structure 120), for example, an etchback process may be performed. The partial oxide layer 130 is removed to form a desired insulating structure around the fin structure 120, such as shallow trench isolation (STI), and expose sidewalls of the portion of the fin structure 120. Next, as shown in FIG. 7, the heat treatment process P2 is performed so that the side wall surface S1 of the fin structure 120 forms the molten layer 122. In this way, the above-mentioned problem of solving the unevenness of the sidewall surface S1 of the fin structure 120 due to etching or the like can be achieved. However, the former (as shown in FIG. 4) performs the heat treatment process P2 at a point in time better than the latter (as shown in FIG. 7) at the time point of the heat treatment process P2 because the former is not exposed to the sidewall of the fin structure 120. (Specially not exposed to the atmosphere), the heat treatment process P2 is performed to form the molten layer 122, so that the sidewall of the fin structure 120 is not reacted by components such as oxygen in the process environment or the atmosphere, which causes contamination of the sidewall of the fin structure 120. . Of course, the latter embodiment can also be matched with the needs of the process.

接著,在進行第5圖或第7圖之步驟後(進行熱處理製程P2以形成熔融層122及回蝕刻氧化層130之後),可如第8圖所示,選擇性進行一離子佈植製程,例如防止貫穿(anti-punch through)離子佈植製程,於鰭狀結構120及基底110之間。而後,依序移除氮化層24及墊氧化層22。接續,可再選擇性地進行一含氫的退火製程,俾進一步使鰭狀結構120的頂部圓角R化。Then, after performing the steps of FIG. 5 or FIG. 7 (after performing the heat treatment process P2 to form the molten layer 122 and the etch back oxide layer 130), an ion implantation process may be selectively performed as shown in FIG. For example, an anti-punch through ion implantation process is prevented between the fin structure 120 and the substrate 110. Then, the nitride layer 24 and the pad oxide layer 22 are sequentially removed. Continuing, a hydrogen-containing annealing process can be selectively performed to further round the top of the fin structure 120.

在此強調,本實施例係依序移除氮化層24及墊氧化層22,因而可於後續製程中形成三閘極場效電晶體(tri-gate MOSFET)。詳細而言,由於鰭狀結構120與後續形成之介電層之間具有三直接接觸面(包含二接觸側面及一接觸頂面),因此被稱作三閘極場效電晶體(tri-gate MOSFET)。相較於平面場效電晶體,三閘極場效電晶體可藉由將上述三直接接觸面作為載子流通之通道,而在同樣的閘極長度下具有較寬的載子通道寬度,俾使在相同之驅動電壓下可獲得加倍的汲極驅動電流。It is emphasized herein that the nitride layer 24 and the pad oxide layer 22 are sequentially removed in this embodiment, so that a three-gate tri-gate MOSFET can be formed in a subsequent process. In detail, since the fin structure 120 has three direct contact faces (including two contact sides and a contact top surface) between the subsequently formed dielectric layers, it is called a tri-gate field effect transistor (tri-gate). MOSFET). Compared with the planar field effect transistor, the three-gate field effect transistor can have a wider carrier channel width under the same gate length by using the above three direct contact surfaces as a channel through which the carrier flows. Double the drain drive current at the same drive voltage.

然而,在另一實施例中,亦可保留氮化層24及墊氧化層22,而於於後續製程中形成另一具有鰭狀結構之多閘極場效電晶體(multi-gate MOSFET)-鰭式場效電晶體(fin field effect transistor,Fin FET)。鰭式場效電晶體中,由於保留了氮化層24及墊氧化層22,鰭狀結構120與後續將形成之介電層之間僅有兩接觸側面。However, in another embodiment, the nitride layer 24 and the pad oxide layer 22 may be retained, and another multi-gate MOSFET having a fin structure may be formed in a subsequent process. Fin field effect transistor (Fin FET). In the fin field effect transistor, since the nitride layer 24 and the pad oxide layer 22 are retained, there are only two contact sides between the fin structure 120 and the subsequently formed dielectric layer.

如第9圖所示,依序形成一介電層(未繪示)及一電極層(未繪示)於基底110上。接著,再圖案化電極層(未繪示)及介電層(未繪示),以形成一閘極結構140,其中閘極結構140包含一介電層142及一電極層144,位於介電層140上。介電層140可例如為一氧化層或一高介電常數介電層。如為高介電常數介電層則可再包含形成一緩衝層於鰭狀結構120及高介電常數介電層之間,且高介電常數介電層可包含選自氧化鉿(hafnium oxide,HfO2)、矽酸鉿氧化合物(hafnium silicon oxide,HfSiO4)、矽酸鉿氮氧化合物(hafnium silicon oxynitride,HfSiON)、氧化鋁(aluminum oxide,Al2O3)、氧化鑭(lanthanum oxide,La2O3)、氧化鉭(tantalum oxide,Ta2O5)、氧化釔(yttrium oxide,Y2O3)、氧化鋯(zirconium oxide,ZrO2)、鈦酸鍶(strontium titanate oxide,SrTiO3)、矽酸鋯氧化合物(zirconium silicon oxide,ZrSiO4)、鋯酸鉿(hafnium zirconium oxide,HfZrO4)、鍶鉍鉭氧化物(strontium bismuth tantalate,SrBi2Ta2O9,SBT)、鋯鈦酸鉛(lead zirconate titanate,PbZrxTi1-xO3,PZT)與鈦酸鋇鍶(barium strontium titanate,BaxSr1-xTiO3,BST)所組成之群組。電極層144則可為一多晶矽電極層。當然,可再進行後續之其他半導體製程。例如,選擇性地形成一輕摻雜源/汲極區(未繪示)於閘極結構140相對兩側邊的鰭狀結構120中;形成一側壁子(未繪示)於閘極結構140的側壁上;形成一重摻雜源/汲極區(未繪示)於閘極結構140相對兩側邊的鰭狀結構120中等。此外,本發明可應用於一般多晶矽閘極製程、前閘極(Gate-First)製程或後閘極(Gate-Last)製程等。如為後閘極(Gate-Last)製程,多晶矽電極層則會以金屬電極層取代。詳細之製程步驟為本領域所熟知,故不再贅述。As shown in FIG. 9, a dielectric layer (not shown) and an electrode layer (not shown) are sequentially formed on the substrate 110. Then, an electrode layer (not shown) and a dielectric layer (not shown) are patterned to form a gate structure 140. The gate structure 140 includes a dielectric layer 142 and an electrode layer 144. On layer 140. The dielectric layer 140 can be, for example, an oxide layer or a high-k dielectric layer. The high-k dielectric layer may further comprise a buffer layer between the fin structure 120 and the high-k dielectric layer, and the high-k dielectric layer may comprise a hafnium oxide. , HfO 2 ), hafnium silicon oxide (HfSiO 4 ), hafnium silicon oxynitride (HfSiON), aluminum oxide (Al 2 O 3 ), lanthanum oxide , La 2 O 3 ), tantalum oxide (Ta 2 O 5 ), yttrium oxide (Y 2 O 3 ), zirconium oxide (ZrO 2 ), strontium titanate oxide (SrTiO) 3 ), zirconium silicon oxide (ZrSiO 4 ), hafnium zirconium oxide (HfZrO 4 ), strontium bismuth tantalate (SrBi 2 Ta 2 O 9 , SBT), zirconium A group consisting of lead zirconate titanate (PbZr x Ti 1-x O 3 , PZT) and barium strontium titanate (Ba x Sr 1-x TiO 3 , BST). The electrode layer 144 can be a polysilicon electrode layer. Of course, other semiconductor processes that follow can be performed. For example, a lightly doped source/drain region (not shown) is selectively formed in the fin structure 120 on opposite sides of the gate structure 140; a sidewall (not shown) is formed on the gate structure 140. On the sidewalls, a heavily doped source/drain region (not shown) is formed in the fin structure 120 on opposite sides of the gate structure 140. In addition, the present invention can be applied to a general polysilicon gate process, a gate-first process, or a gate-Last process. In the case of the Gate-Last process, the polysilicon electrode layer is replaced by a metal electrode layer. Detailed process steps are well known in the art and will not be described again.

此外,前述之實施例係以基底110為塊狀基底為例。但本發明亦可應用於矽覆絕緣基底。如第10-11圖所示,首先提供一矽覆絕緣基底210,其包含一矽基底212、一底氧化層214位於矽基底212上以及一矽層216位於底氧化層214上。接著,如第11圖所示,圖案化矽層216以形成鰭狀結構220,並暴露出部分底氧化層214,於鰭狀結構220以外之矽基底212上。如此一來,可形成鰭狀結構220於矽基底212上以及形成一氧化層(如底氧化層214)於鰭狀結構220以外之矽基底212上。帷,如第3圖所示,以矽基底110所形成之氧化層130僅位於鰭狀結構120以外之基底110上,而如第11圖所示,在矽覆絕緣基底210中,鰭狀結構220則會位於底氧化層214之上。再者,由於底氧化層214在形成鰭狀結構120時也已一併形成於基底110上,是以本發明之熱處理製程P2,則再形成底氧化層214後才進行,以在鰭狀結構220的側壁形成一熔融層222。如此一來,本發明可修復鰭狀結構220的側壁表面S2的缺陷並使側壁表面S2再結晶,以解決圖案化鰭狀結構220時,鰭狀結構220的側壁表面S2因蝕刻而產生不平整的問題。換言之,本發明之採用熱處理製程P2,可使鰭狀結構220的側壁表面S2更為平整。因此,於後續製程中所形成於其上之半導體結構(例如一般會先覆蓋一層介電層於鰭狀結構220上),則可均勻地形成於鰭狀結構220上,進而改善所形成之半導體結構的電性品質。在一實施例中,熱處理製程P2包含一雷射熱處理製程,但本發明不以此為限。在一較佳的實施態樣中,熱處理製程P2的製程溫度大於1200℃。又一更佳的實施例中,熱處理製程P2的製程溫度大於1300℃,俾使鰭狀結構220的側壁表面S2完全轉換為熔融態,以形成熔融層222。Further, the foregoing embodiments take the case where the substrate 110 is a block substrate. However, the invention can also be applied to a covered insulating substrate. As shown in FIGS. 10-11, an insulating substrate 210 is first provided, which includes a germanium substrate 212, a bottom oxide layer 214 on the germanium substrate 212, and a germanium layer 216 on the bottom oxide layer 214. Next, as shown in FIG. 11, the germanium layer 216 is patterned to form the fin structure 220, and a portion of the bottom oxide layer 214 is exposed on the germanium substrate 212 outside the fin structure 220. As such, the fin structure 220 can be formed on the germanium substrate 212 and an oxide layer (eg, the bottom oxide layer 214) can be formed on the germanium substrate 212 outside of the fin structure 220. As shown in FIG. 3, the oxide layer 130 formed by the germanium substrate 110 is only located on the substrate 110 other than the fin structure 120, and as shown in FIG. 11, in the blanket insulating substrate 210, the fin structure 220 will then be located above the bottom oxide layer 214. Furthermore, since the bottom oxide layer 214 is also formed on the substrate 110 when the fin structure 120 is formed, the heat treatment process P2 of the present invention is performed after the bottom oxide layer 214 is formed again to be in the fin structure. The sidewall of 220 forms a molten layer 222. In this way, the present invention can repair the defect of the sidewall surface S2 of the fin structure 220 and recrystallize the sidewall surface S2 to solve the patterning of the fin structure 220. The sidewall surface S2 of the fin structure 220 is uneven due to etching. The problem. In other words, the heat treatment process P2 of the present invention can make the sidewall surface S2 of the fin structure 220 more flat. Therefore, the semiconductor structure formed on the subsequent process (for example, a dielectric layer is generally covered on the fin structure 220) can be uniformly formed on the fin structure 220, thereby improving the formed semiconductor. The electrical quality of the structure. In an embodiment, the heat treatment process P2 includes a laser heat treatment process, but the invention is not limited thereto. In a preferred embodiment, the process temperature of the heat treatment process P2 is greater than 1200 °C. In still another preferred embodiment, the process temperature of the heat treatment process P2 is greater than 1300 ° C, and the sidewall surface S2 of the fin structure 220 is completely converted into a molten state to form the molten layer 222.

綜上所述,本發明提供一種半導體製程,其可藉由進行一熱處理製程,以於鰭狀結構的側壁形成一熔融層。如此,本發明可修復鰭狀結構側壁表面的缺陷並使側壁表面再結晶,以解決圖案化鰭狀結構時,鰭狀結構的側壁表面因蝕刻等製程而產生不平整的問題。具體而言,熱處理製程可為一雷射熱處理製程。在一較佳的實施態樣中,熱處理製程之製程溫度大於1200℃,特別係大於1300℃,以完整地熔融鰭狀結構的側壁表面。In summary, the present invention provides a semiconductor process by which a heat treatment process is performed to form a molten layer on the sidewalls of the fin structure. As such, the present invention can repair the defects of the sidewall surface of the fin structure and recrystallize the sidewall surface to solve the problem that the sidewall surface of the fin structure is uneven due to etching or the like when the fin structure is patterned. Specifically, the heat treatment process can be a laser heat treatment process. In a preferred embodiment, the heat treatment process has a process temperature greater than 1200 ° C, particularly greater than 1300 ° C, to completely melt the sidewall surfaces of the fin structure.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

20...遮罩層20. . . Mask layer

22...墊氧化層twenty two. . . Pad oxide

24...氮化層twenty four. . . Nitride layer

110、210...基底110, 210. . . Base

120、220...鰭狀結構120, 220. . . Fin structure

122、222...熔融層122, 222. . . Melt layer

130...氧化層130. . . Oxide layer

140...閘極結構140. . . Gate structure

142...介電層142. . . Dielectric layer

144...電極層144. . . Electrode layer

212...矽基底212. . .矽 base

214...底氧化層214. . . Bottom oxide layer

216...矽層216. . . Layer

P1...退火製程P1. . . Annealing process

P2...熱處理製程P2. . . Heat treatment process

R...圓角R. . . Fillet

S1、S2...側壁表面S1, S2. . . Side wall surface

第1-5、8-9圖繪示本發明一實施例之半導體製程之剖面示意圖。1-5 and 8-9 are schematic cross-sectional views showing a semiconductor process according to an embodiment of the present invention.

第6-7圖繪示本發明一實施例之半導體製程之剖面示意圖。6-7 are schematic cross-sectional views showing a semiconductor process according to an embodiment of the present invention.

第10-11圖繪示本發明一實施例之半導體製程之剖面示意圖。10-11 are schematic cross-sectional views showing a semiconductor process according to an embodiment of the present invention.

20...遮罩層20. . . Mask layer

22...墊氧化層twenty two. . . Pad oxide

24...氮化層twenty four. . . Nitride layer

110...基底110. . . Base

120、220...鰭狀結構120, 220. . . Fin structure

122...熔融層122. . . Melt layer

130...氧化層130. . . Oxide layer

P2...熱處理製程P2. . . Heat treatment process

S1...側壁表面S1. . . Side wall surface

Claims (22)

一種半導體製程,包含有:提供一基底;形成至少一鰭狀結構於該基底上及一氧化層於該鰭狀結構以外之該基底上;以及進行一熱處理製程,以於至少部分該鰭狀結構的側壁形成一熔融層。A semiconductor process comprising: providing a substrate; forming at least one fin structure on the substrate and an oxide layer on the substrate other than the fin structure; and performing a heat treatment process to at least partially the fin structure The sidewalls form a molten layer. 如申請專利範圍第1項所述之半導體製程,其中該基底包含一塊狀基底或一矽覆絕緣基底。The semiconductor process of claim 1, wherein the substrate comprises a piece of substrate or a covered insulating substrate. 如申請專利範圍第2項所述之半導體製程,其中形成該鰭狀結構於該塊狀基底的步驟,包含:形成一遮罩層於該塊狀基底上;以及進行一蝕刻微影製程,以圖案化該遮罩層並以該遮罩層為一硬遮罩,形成至少一鰭狀結構。The semiconductor process of claim 2, wherein the step of forming the fin structure on the bulk substrate comprises: forming a mask layer on the bulk substrate; and performing an etch lithography process to The mask layer is patterned and the mask layer is a hard mask to form at least one fin structure. 如申請專利範圍第2項所述之半導體製程,其中該矽覆絕緣基底,包含:一矽基底;一底氧化層位於該矽基底上;以及一矽層位於該底氧化層上。The semiconductor process of claim 2, wherein the insulating insulating substrate comprises: a germanium substrate; a bottom oxide layer on the germanium substrate; and a germanium layer on the bottom oxide layer. 如申請專利範圍第4項所述之半導體製程,其中形成該鰭狀結構的步驟,包含:圖案化該矽層以形成該鰭狀結構,並暴露出部分該底氧化層,於該鰭狀結構以外之該基底上。The semiconductor process of claim 4, wherein the step of forming the fin structure comprises: patterning the germanium layer to form the fin structure, and exposing a portion of the bottom oxide layer, the fin structure Outside the substrate. 如申請專利範圍第1項所述之半導體製程,其中該熱處理製程的製程溫度大於1200℃。The semiconductor process of claim 1, wherein the heat treatment process has a process temperature greater than 1200 °C. 如申請專利範圍第6項所述之半導體製程,其中該熱處理製程的製程溫度大於1300℃。The semiconductor process of claim 6, wherein the heat treatment process has a process temperature greater than 1300 °C. 如申請專利範圍第1項所述之半導體製程,其中該熱處理製程包含一雷射熱處理製程。The semiconductor process of claim 1, wherein the heat treatment process comprises a laser heat treatment process. 如申請專利範圍第1項所述之半導體製程,其中在進行該熱處理製程之後,更包含移除部分該氧化層。The semiconductor process of claim 1, wherein after the heat treatment process, a portion of the oxide layer is removed. 如申請專利範圍第1項所述之半導體製程,其中在進行該熱處理製程之前,更包含移除部分該氧化層,並暴露出部分該鰭狀結構的側壁。The semiconductor process of claim 1, wherein prior to performing the heat treatment process, removing a portion of the oxide layer and exposing a portion of the sidewall of the fin structure. 如申請專利範圍第1項所述之半導體製程,其中在形成該氧化層之後,更包含:進行一熱退火製程,以緻密化該氧化層。The semiconductor process of claim 1, wherein after forming the oxide layer, further comprising: performing a thermal annealing process to densify the oxide layer. 如申請專利範圍第11項所述之半導體製程,其中該熱退火製程的製程溫度約1050℃。The semiconductor process of claim 11, wherein the thermal annealing process has a process temperature of about 1050 °C. 一種半導體製程,包含有:提供一塊狀基底;形成一遮罩層於該塊狀基底上;圖案化該遮罩層並以該遮罩層為一硬遮罩,形成至少一鰭狀結構;形成一氧化層於該鰭狀結構以外之該塊狀基底上;以及進行一大於1200℃的熱處理製程,以於至少部分該鰭狀結構的側壁形成一熔融層。A semiconductor process comprising: providing a piece of a substrate; forming a mask layer on the block substrate; patterning the mask layer and forming the mask layer as a hard mask to form at least one fin structure; Forming an oxide layer on the bulk substrate outside the fin structure; and performing a heat treatment process greater than 1200 ° C to form a molten layer on at least a portion of the sidewall of the fin structure. 如申請專利範圍第13項所述之半導體製程,其中該塊狀基底包含一塊狀矽基底或一塊狀含矽基底。The semiconductor process of claim 13, wherein the block substrate comprises a one-piece base or a one-piece base. 如申請專利範圍第13項所述之半導體製程,其中該熱處理製程的製程溫度大於1300℃。The semiconductor process of claim 13, wherein the process temperature of the heat treatment process is greater than 1300 °C. 如申請專利範圍第13項所述之半導體製程,其中該熱處理製程包含一雷射熱處理製程。The semiconductor process of claim 13, wherein the heat treatment process comprises a laser heat treatment process. 如申請專利範圍第13項所述之半導體製程,其中在進行該熱處理製程之後,更包含移除部分該氧化層,並暴露出部分該鰭狀結構的側壁。The semiconductor process of claim 13, wherein after performing the heat treatment process, further comprising removing a portion of the oxide layer and exposing a portion of the sidewall of the fin structure. 如申請專利範圍第13項所述之半導體製程,其中在進行該熱處理製程之前,更包含移除部分該氧化層,並暴露出部分該鰭狀結構的側壁。The semiconductor process of claim 13, wherein prior to performing the heat treatment process, removing a portion of the oxide layer and exposing a portion of the sidewall of the fin structure. 如申請專利範圍第13項所述之半導體製程,其中在形成該氧化層之後,更包含:進行一熱退火製程,以緻密化該氧化層。The semiconductor process of claim 13, wherein after forming the oxide layer, further comprising: performing a thermal annealing process to densify the oxide layer. 一種半導體製程,包含有:提供一矽覆絕緣基底,包含一矽基底、一底氧化層位於該矽基底上以及一矽層位於該底氧化層上;形成一遮罩層於該矽層上;進行一蝕刻微影製程,以圖案化該遮罩層並以該遮罩層為一硬遮罩,以使該矽層形成至少一鰭狀結構,同時暴露出部分該底氧化層,於該鰭狀結構以外之該矽覆絕緣基底上;以及進行一大於1200℃的熱處理製程,以於至少部分該鰭狀結構的側壁形成一熔融層。A semiconductor process comprising: providing a germanium-insulating substrate comprising a germanium substrate, a bottom oxide layer on the germanium substrate, and a germanium layer on the bottom oxide layer; forming a mask layer on the germanium layer; Performing an etch lithography process to pattern the mask layer and use the mask layer as a hard mask to form the germanium layer to form at least one fin structure while exposing a portion of the bottom oxide layer on the fin And overlying the insulating substrate; and performing a heat treatment process greater than 1200 ° C to form a molten layer on at least a portion of the sidewalls of the fin structure. 如申請專利範圍第20項所述之半導體製程,其中該熱處理製程的製程溫度大於1300℃。The semiconductor process of claim 20, wherein the process temperature of the heat treatment process is greater than 1300 °C. 如申請專利範圍第20項所述之半導體製程,其中該熱處理製程包含一雷射熱處理製程。The semiconductor process of claim 20, wherein the heat treatment process comprises a laser heat treatment process.
TW100134413A 2011-09-23 2011-09-23 Semiconductor process TWI512838B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100134413A TWI512838B (en) 2011-09-23 2011-09-23 Semiconductor process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100134413A TWI512838B (en) 2011-09-23 2011-09-23 Semiconductor process

Publications (2)

Publication Number Publication Date
TW201314784A true TW201314784A (en) 2013-04-01
TWI512838B TWI512838B (en) 2015-12-11

Family

ID=48802610

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100134413A TWI512838B (en) 2011-09-23 2011-09-23 Semiconductor process

Country Status (1)

Country Link
TW (1) TWI512838B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7547637B2 (en) * 2005-06-21 2009-06-16 Intel Corporation Methods for patterning a semiconductor film
US8883597B2 (en) * 2007-07-31 2014-11-11 Taiwan Semiconductor Manufacturing Company, Ltd. Method of fabrication of a FinFET element
US20090085169A1 (en) * 2007-09-28 2009-04-02 Willy Rachmady Method of achieving atomically smooth sidewalls in deep trenches, and high aspect ratio silicon structure containing atomically smooth sidewalls

Also Published As

Publication number Publication date
TWI512838B (en) 2015-12-11

Similar Documents

Publication Publication Date Title
US8426277B2 (en) Semiconductor process
US9406805B2 (en) Fin-FET
US9318609B2 (en) Semiconductor device with epitaxial structure
US8999793B2 (en) Multi-gate field-effect transistor process
US8278184B1 (en) Fabrication method of a non-planar transistor
US8853013B2 (en) Method for fabricating field effect transistor with fin structure
TWI595664B (en) Semiconductor device and method of forming the same
TWI556438B (en) Multi-gate field-effect transistor and process thereof
US10153210B1 (en) Semiconductor device and method for fabricating the same
TWI521574B (en) Semiconductor process
TW201624712A (en) Epitaxial structure and process thereof for forming fin-shaped field effect transistor
CN103035517B (en) Semiconductor fabrication process
US20150064905A1 (en) Semiconductor process
TWI512838B (en) Semiconductor process
TWI570783B (en) Semiconductor process
TW201448120A (en) Semiconductor device and fabrication method thereof
TWI543370B (en) Mos transistor process
TWI584482B (en) Complementary metal oxide semiconductor field effect transistor, metal oxide semiconductor field effect transistor and manufacturing method thereof
TWI505376B (en) Method of forming a non-planar transistor
TW201330264A (en) FinFET structure and method for making the same
TWI528460B (en) Method for fabricating field effect transistor with fin structure
TWI515798B (en) Method of forming non-planar fet
US9455321B1 (en) Method for fabricating semiconductor device
TWI523081B (en) Semiconductor process
TWI574308B (en) Semiconductor structure and process thereof