TW201313944A - Deposition systems including a precursor gas furnace within a reaction chamber, and related methods - Google Patents

Deposition systems including a precursor gas furnace within a reaction chamber, and related methods Download PDF

Info

Publication number
TW201313944A
TW201313944A TW101129399A TW101129399A TW201313944A TW 201313944 A TW201313944 A TW 201313944A TW 101129399 A TW101129399 A TW 101129399A TW 101129399 A TW101129399 A TW 101129399A TW 201313944 A TW201313944 A TW 201313944A
Authority
TW
Taiwan
Prior art keywords
precursor gas
group iii
reaction chamber
gas
iii element
Prior art date
Application number
TW101129399A
Other languages
Chinese (zh)
Other versions
TWI494461B (en
Inventor
Ron Bertram
Michael Landis
Original Assignee
Soitec Silicon On Insulator
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR1157956A external-priority patent/FR2979637B1/en
Application filed by Soitec Silicon On Insulator filed Critical Soitec Silicon On Insulator
Publication of TW201313944A publication Critical patent/TW201313944A/en
Application granted granted Critical
Publication of TWI494461B publication Critical patent/TWI494461B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45517Confinement of gases to vicinity of substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/4557Heated nozzles
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Abstract

Deposition systems include a reaction chamber, a substrate support structure disposed within the chamber for supporting a substrate within the reaction chamber, and a gas input system for injecting one or more precursor gases into the reaction chamber. The gas input system includes at least one precursor gas furnace disposed at least partially within the reaction chamber. Methods of depositing materials include separately flowing a first precursor gas and a second precursor gas into a reaction chamber, flowing the first precursor gas through at least one precursor gas flow path extending through at least one precursor gas furnace disposed within the reaction chamber, and, after heating the first precursor gas within the at least one precursor gas furnace, mixing the first and second precursor gases within the reaction chamber over a substrate.

Description

包括在反應室內之前驅氣體爐的沉積系統及相關方法 Deposition system including a gas flooding furnace in a reaction chamber and related methods

本發明之實施例概言之係關於用於在基板上沉積材料之系統及製造及使用該等系統之方法。更特定而言,本發明之實施例係關於用於在基板上沉積III-V半導體材料之氫化物氣相磊晶(HVPE)方法及製造及使用該等系統之方法。 SUMMARY OF THE INVENTION Embodiments of the invention generally relate to systems for depositing materials on substrates and methods of making and using such systems. More particularly, embodiments of the invention relate to hydride vapor phase epitaxy (HVPE) methods for depositing III-V semiconductor materials on substrates and methods of making and using such systems.

化學氣相沉積(CVD)係用於在基板上沉積固體材料之化學製程,且常用於製造半導體裝置。在化學氣相沉積製程中,將基板暴露於一或多種試劑氣體,該等試劑氣體發生反應、分解或發生反應並分解從而將固體材料沉積於基板表面上。 Chemical vapor deposition (CVD) is a chemical process for depositing solid materials on a substrate and is commonly used in the fabrication of semiconductor devices. In a chemical vapor deposition process, the substrate is exposed to one or more reagent gases that react, decompose, or react and decompose to deposit a solid material onto the surface of the substrate.

一種特定類型之CVD製程在業內稱為氣相磊晶(VPE)。在VPE製程中,在反應室中將基板暴露於一或多種試劑蒸氣,該等試劑蒸氣發生反應、分解或發生反應並分解從而將固體材料磊晶沉積於基板表面上。VPE製程通常用於沉積III-V半導體材料。在VPE製程中之一種試劑蒸氣包含氫化物(或鹵化物)蒸氣時,該製程可稱為氫化物氣相磊晶(HVPE)製程。 One particular type of CVD process is known in the industry as vapor phase epitaxy (VPE). In a VPE process, a substrate is exposed to one or more reagent vapors in a reaction chamber that reacts, decomposes, or reacts and decomposes to deposit a solid material onto the surface of the substrate. VPE processes are commonly used to deposit III-V semiconductor materials. When a reagent vapor in a VPE process contains hydride (or halide) vapor, the process can be referred to as a hydride vapor phase epitaxy (HVPE) process.

使用HVPE製程來形成III-V半導體材料,例如氮化鎵(GaN)。在該等製程中,基板上之GaN磊晶生長係由氯化鎵(GaCl)與氨(NH3)之間之氣相反應引起,該氣相反應係在介於約500℃與約1,100℃之間之升高溫度下於反應室內實施。可自NH3氣體之標準源供應NH3A HVPE process is used to form a III-V semiconductor material, such as gallium nitride (GaN). In such processes, the GaN epitaxial growth on the substrate is caused by a gas phase reaction between gallium chloride (GaCl) and ammonia (NH 3 ), which is between about 500 ° C and about 1,100 ° C. The reaction is carried out in a reaction chamber at an elevated temperature. Available from standard NH 3 NH 3 gas supply source.

在一些方法中,藉由在經加熱液體鎵(Ga)上方通過氯化氫(HCl)氣體(其可自HCl氣體之標準源供應)以在反應室內原位形成GaCl來提供GaCl蒸氣。可將液體鎵加熱至介於約750℃與約850℃之間之溫度。可將GaCl及NH3引導至(例如,上方)經加熱基板(例如半導體材料之晶圓)之表面。2001年1月30日頒予Solomon等人之美國專利第6,179,913號揭示用於該等系統及方法中之氣體注入系統。 In some methods, GaCl vapor is provided by in situ formation of GaCl in the reaction chamber by a hydrogen chloride (HCl) gas (which may be supplied from a standard source of HCl gas) over heated liquid gallium (Ga). The liquid gallium can be heated to a temperature between about 750 ° C and about 850 ° C. GaCl and NH 3 can be directed to (eg, above) the surface of a heated substrate (eg, a wafer of semiconductor material). A gas injection system for use in such systems and methods is disclosed in U.S. Patent No. 6,179,913 issued toSolomon et al.

在該等系統中,可能需要向大氣打開反應室補充液體鎵之來源。另外,不可能在該等系統中原位清洗反應室。 In such systems, it may be necessary to open the reaction chamber to the atmosphere to supplement the source of liquid gallium. In addition, it is not possible to clean the reaction chamber in situ in such systems.

為解決該等問題,已研發利用GaCl3前驅物之外部源(直接注入反應室中)之方法及系統。該等方法及系統之實例揭示於(例如)2009年9月10日以Arena等人之名義公開之美國專利申請公開案第US 2009/0223442 A1號中。 To solve these problems, methods and systems have been developed that utilize external sources of GaCl 3 precursors (directly injected into the reaction chamber). Examples of such methods and systems are disclosed in, for example, U.S. Patent Application Publication No. US 2009/0223442 A1, the disclosure of which is incorporated herein by reference.

提供此概述以引入對於簡化形式之概念之選擇,在下文本發明一些實例性實施例之詳細說明中進一步闡述該等概念。此概述並不意欲鑑別所申請標的物之關鍵特徵或重要特徵,亦並不意欲用於限制所申請標的物之範圍。 This Summary is provided to introduce a selection of concepts in a simplified form, which are further described in the detailed description of some example embodiments. The summary is not intended to identify key features or important features of the subject matter claimed, and is not intended to limit the scope of the claimed subject matter.

在一些實施例中,本發明包括沉積系統,其包含至少實質上封閉之反應室、至少部分地佈置於反應室內且經組態以支撐反應室內之基板之基座及用於將一或多種前驅氣體注入反應室中之氣體輸入系統。反應室可由頂部壁、底部壁及至少一個側壁界定。氣體輸入系統包括至少一個佈置於反應室內之前驅氣體爐。至少一個前驅氣體流動路徑延 伸通過至少一個前驅氣體爐。 In some embodiments, the invention includes a deposition system comprising at least a substantially closed reaction chamber, a pedestal at least partially disposed within the reaction chamber and configured to support a substrate within the reaction chamber, and for one or more precursors A gas is injected into the gas input system in the reaction chamber. The reaction chamber may be defined by a top wall, a bottom wall, and at least one side wall. The gas input system includes at least one pre-discharge gas furnace disposed within the reaction chamber. At least one precursor gas flow path extension Extend through at least one precursor gas furnace.

在其他實施例中,本發明包括沉積半導體材料之方法。該等方法可使用如本文所闡述之沉積系統之實施例來實施。舉例而言,揭示內容之實施例一些方法可包括:使第III族元素前驅氣體及第V族元素前驅氣體單獨流入反應室中,使第III族元素前驅氣體流經至少一個延伸通過至少一個佈置於反應室內之前驅氣體爐之前驅氣體流動路徑以加熱第III族元素前驅氣體,及在反應室內之至少一個前驅氣體爐內加熱第III族元素前驅氣體之後在基板上方於反應室內混合第V族元素前驅氣體及第III族元素前驅氣體。可將基板表面暴露於第V族元素前驅氣體及第III族元素前驅氣體之混合物以在基板表面上形成III-V半導體材料。 In other embodiments, the invention includes a method of depositing a semiconductor material. These methods can be implemented using embodiments of deposition systems as set forth herein. For example, embodiments of the disclosure may include: flowing a Group III element precursor gas and a Group V element precursor gas separately into the reaction chamber, and flowing the Group III element precursor gas through at least one extension through at least one arrangement Driving the gas flow path before the gas furnace in the reaction chamber to heat the Group III element precursor gas, and heating the Group III element precursor gas in at least one precursor gas furnace in the reaction chamber, and then mixing the Group V in the reaction chamber above the substrate Element precursor gas and Group III element precursor gas. The substrate surface may be exposed to a mixture of a Group V element precursor gas and a Group III element precursor gas to form a III-V semiconductor material on the surface of the substrate.

可藉由參照實例性實施例之下列詳細說明來更全面地理解本揭示內容,在附圖中圖解說明該等實例性實施例。 The disclosure may be more completely understood by reference to the following detailed description of exemplary embodiments, which are illustrated in the accompanying drawings.

本文中所呈現之圖解說明並非意欲作為任一特定系統、組件或裝置之實際視圖,而僅僅係用於闡述本發明實施例之理想化表示。 The illustrations presented herein are not intended to be an actual view of any particular system, component or device, but merely to illustrate an idealized representation of an embodiment of the invention.

如本文中所使用,術語「III-V半導體材料」意指且包括至少主要由來自週期表之第IIIA族中一或一種元素(B、Al、Ga、In及Ti)及來自週期表之第VA族中一或一種元素(N、P、As、Sb及Bi)構成之任一半導體材料。舉例而言,III-V半導體材料包括但不限於GaN、GaP、GaAs、InN、InP、InAs、AlN、AlP、AlAs、InGaN、InGaP、InGaNP 等。 As used herein, the term "III-V semiconductor material" means and includes at least one or one element (B, Al, Ga, In, and Ti) from Group IIIA of the periodic table and from the periodic table. Any semiconductor material composed of one or one element (N, P, As, Sb, and Bi) of the VA group. For example, III-V semiconductor materials include, but are not limited to, GaN, GaP, GaAs, InN, InP, InAs, AlN, AlP, AlAs, InGaN, InGaP, InGaNP Wait.

最近已研發用於利用注入反應室中GaCl3前驅物之外部源之方法及系統中的改良之氣體注入器,例如彼等揭示於上述美國專利申請公開案第US 2009/0223442 A1號中者。該等氣體注入器之實例揭示於(例如)2009年3月3日以Arena等人之名義提出申請之美國專利申請案第61/157,112號中。如本文中所使用,術語「氣體」包括氣體(並不具有獨立形狀或體積之流體)及蒸氣(包括懸浮於其中之擴散液體或固體物質之氣體),且術語「氣體」及「蒸氣」在本文中可同義使用。 A modified gas injector for use in a method and system for injecting an external source of a GaCl 3 precursor in a reaction chamber has been recently developed, for example, as disclosed in the aforementioned U.S. Patent Application Publication No. US 2009/0223442 A1. Examples of such gas injectors are disclosed in, for example, U.S. Patent Application Serial No. 61/157,112, filed on Mar. As used herein, the term "gas" includes a gas (a fluid that does not have a separate shape or volume) and a vapor (including a gas that diffuses a liquid or solid matter suspended therein), and the terms "gas" and "vapor" are used. This article can be used synonymously.

本發明之實施例包括且利用包括一或多個位於反應室內之前驅氣體爐之沉積系統。圖1圖解說明沉積系統100,其包括至少實質上封閉之反應室102。在一些實施例中,沉積系統100可包含CVD系統,且可包含VPE沉積系統(例如,HVPE沉積系統)。 Embodiments of the invention include and utilize a deposition system that includes one or more prior gas flooding furnaces located within the reaction chamber. FIG. 1 illustrates a deposition system 100 that includes a reaction chamber 102 that is at least substantially closed. In some embodiments, deposition system 100 can include a CVD system and can include a VPE deposition system (eg, an HVPE deposition system).

反應室102可由頂部壁104、底部壁106及一或多個側壁界定。側壁可由沉積系統之子總成之一或多個組件界定。舉例而言,第一側壁108A可包含用於將一或多種氣體注入反應室102中之注入子總成110之組件,且第二側壁108B可包含用於自反應室102排放氣體且用於將基板裝載至反應室102中並自反應室102卸載基板之排放及裝載子總成112之組件。 Reaction chamber 102 may be defined by a top wall 104, a bottom wall 106, and one or more side walls. The sidewalls may be defined by one or more components of the subassembly of the deposition system. For example, the first sidewall 108A can include an assembly of injection injector assembly 110 for injecting one or more gases into the reaction chamber 102, and the second sidewall 108B can include for exhausting gas from the reaction chamber 102 and for The substrate is loaded into the reaction chamber 102 and the discharge of the substrate and the assembly of the carrier assembly 112 are unloaded from the reaction chamber 102.

沉積系統100包括經組態以支撐一或多個工件基板116之基板支撐結構114(例如,基座),期望在該基板支撐結構 上沉積或以其他方式提供沉積系統100內之材料。舉例而言,工件基板116可包含晶粒或晶圓。沉積系統100進一步包括加熱元件118(圖1),可使用該等加熱元件選擇性加熱沉積系統100,從而可在沉積製程期間將反應室102內之平均溫度控制於期望之升高溫度內。加熱元件118可包含(例如)電阻加熱元件或輻射加熱元件(例如,加熱燈)。 The deposition system 100 includes a substrate support structure 114 (eg, a pedestal) configured to support one or more workpiece substrates 116 at which the substrate support structure is desired The material within the deposition system 100 is deposited or otherwise provided. For example, the workpiece substrate 116 can include dies or wafers. The deposition system 100 further includes a heating element 118 (Fig. 1) that can be used to selectively heat the deposition system 100 such that the average temperature within the reaction chamber 102 can be controlled to a desired elevated temperature during the deposition process. Heating element 118 can include, for example, a resistive heating element or a radiant heating element (eg, a heat lamp).

如圖1中所展示,基板支撐結構114可安裝於轉軸119上,該轉軸可耦合(例如,直接結構耦合、磁性耦合等)至經組態以驅動轉軸119及由此反應室102內之基板支撐結構114之旋轉之驅動裝置(未展示,例如電動馬達)。 As shown in FIG. 1, the substrate support structure 114 can be mounted on a rotating shaft 119 that can be coupled (eg, direct structural coupling, magnetic coupling, etc.) to a substrate configured to drive the rotating shaft 119 and thereby the reaction chamber 102. A drive for rotating the support structure 114 (not shown, such as an electric motor).

在一些實施例中,頂部壁104、底部壁106、基板支撐結構114、轉軸119及反應室102內之任一其他組件中之一或多者可至少實質上由耐火陶瓷材料構成,該耐火陶瓷材料係(例如)陶瓷氧化物(例如,二氧化矽(石英)、氧化鋁、氧化鋯等)、碳化物(例如,碳化矽、碳化硼等)或氮化物(例如,氮化矽、氮化硼等)。根據一非限制性實例,頂部壁104、底部壁106、基板支撐結構114及轉軸119可包含透明石英以使得由加熱元件118輻射之熱能通過該等區域並加熱反應室102內之氣體。 In some embodiments, one or more of the top wall 104, the bottom wall 106, the substrate support structure 114, the rotating shaft 119, and any other component within the reaction chamber 102 can be at least substantially constructed of a refractory ceramic material. Materials such as ceramic oxides (eg, ceria (quartz), alumina, zirconia, etc.), carbides (eg, tantalum carbide, boron carbide, etc.) or nitrides (eg, tantalum nitride, nitride) Boron, etc.). According to one non-limiting example, the top wall 104, the bottom wall 106, the substrate support structure 114, and the rotating shaft 119 can comprise transparent quartz such that thermal energy radiated by the heating element 118 passes through the regions and heats the gas within the reaction chamber 102.

沉積系統100進一步包括用於將一或多種氣體注入反應室102中並將來自反應室102之氣體排出之氣流系統。繼續參照圖1,沉積系統100可包括5個氣體流入導管120A-120E,該等氣體流入導管攜載來自各別氣體源122A-122E並進入注入子總成110中之氣體。視情況,可使用氣流控 制裝置(例如閥門及/或質量流量控制器(未展示))來選擇性控制分別通過氣體流入導管120A-120E之氣流。 The deposition system 100 further includes an airflow system for injecting one or more gases into the reaction chamber 102 and expelling gases from the reaction chamber 102. With continued reference to FIG. 1, deposition system 100 can include five gas inflow conduits 120A-120E that carry gases from respective gas sources 122A-122E and into injector subassembly 110. Air flow control can be used as appropriate Means (e.g., valves and/or mass flow controllers (not shown)) are used to selectively control the flow of gas through the gas inflow conduits 120A-120E, respectively.

在一些實施例中,氣體源122A-122F中之至少一者可包含GaCl3、InCl3或AlCl3中之至少一者之外部源,如美國專利申請公開案第US 2009/0223442 A1號中所闡述。GaCl3、InCl3及AlCl3可分別以二聚體(例如,Ga2Cl6、In2Cl6及Al2Cl6之形式存在)。因此,氣體源122A-122F中之至少一者可包含諸如Ga2Cl6、In2Cl6或Al2Cl6等二聚體。 In some embodiments, at least one of the gas sources 122A-122F can comprise an external source of at least one of GaCl 3 , InCl 3 , or AlCl 3 , as described in US Patent Application Publication No. US 2009/0223442 A1. set forth. GaCl 3 , InCl 3 and AlCl 3 may each be in the form of a dimer (for example, Ga 2 Cl 6 , In 2 Cl 6 and Al 2 Cl 6 ). Thus, at least one of the gas sources 122A-122F can comprise a dimer such as Ga 2 Cl 6 , In 2 Cl 6 or Al 2 Cl 6 .

在氣體源122A-122E中之一或多者係或包括GaCl3源之實施例中,GaCl3源包括維持於至少78℃(例如,大約130℃)之溫度下之液體GaCl3之儲存器,且可包括用於增強液體GaCl3之蒸發速率之物理構件。該物理構件可包括(例如)經組態以攪動液體GaCl3之裝置、經組態以噴霧液體GaCl3之裝置、經組態以使載氣快速流經液體GaCl3上方之裝置、經組態以使載氣鼓泡通過液體GaCl3之裝置、經組態以超音波方式分散液體GaCl3及諸如此類之裝置(例如壓電裝置)。根據一非限制性實例,可使載氣(例如He、N2、H2或Ar)鼓泡通過液體GaCl3,同時將液體GaCl3維持於至少78℃之溫度下,從而源氣體可包括一或多種載氣。 In embodiments in which one or more of gas sources 122A-122E are or include a source of GaCl 3 , the source of GaCl 3 includes a reservoir of liquid GaCl 3 maintained at a temperature of at least 78 ° C (eg, about 130 ° C), And may include physical components for enhancing the evaporation rate of the liquid GaCl 3 . The physical component can include, for example, a device configured to agitate liquid GaCl 3 , a device configured to spray liquid GaCl 3 , a device configured to rapidly flow a carrier gas over the liquid GaCl 3 , configured The apparatus for bubbling the carrier gas through the liquid GaCl 3 is configured to ultrasonically disperse the liquid GaCl 3 and the like (for example, a piezoelectric device). According to one non-limiting example, a carrier gas (eg, He, N 2 , H 2 , or Ar) can be bubbled through the liquid GaCl 3 while maintaining the liquid GaCl 3 at a temperature of at least 78 ° C, such that the source gas can include Or a variety of carrier gases.

在本發明之一些實施例中,可控制通過氣體流入導管120A-120E中之一或多者之GaCl3蒸氣之通量。舉例而言,在使載氣鼓泡通過液體GaCl3之實施例中,來自氣體源122A-122E之GaCl3通量取決於一或多個因素,包括(例如)GaCl3之溫度、GaCl3上方之壓力及鼓泡通過GaCl3之載 氣之流量。儘管原則上可藉由該等參數中之任一者來控制GaCl3之質量通量,但在一些實施例中,可藉由使用質量流量控制器改變載氣之流量來控制GaCl3之質量通量。 In some embodiments of the invention, the flux of GaCl 3 vapor through one or more of the gas inflow conduits 120A-120E may be controlled. For example, when the carrier gas was bubbled through the liquid in the Example 3, GaCl, 122A-122E of GaCl 3 from a gas source or a flux depends on a number of factors, including the top (e.g.) the temperature for 3 GaCl, GaCl 3 The pressure and the flow rate of the carrier gas passing through the GaCl 3 . Although in principle the mass flux of GaCl 3 can be controlled by any of these parameters, in some embodiments, the mass flow of GaCl 3 can be controlled by varying the flow of the carrier gas using a mass flow controller. the amount.

在一些實施例中,氣體源122A-122E中之一或多者可能夠容納約25 kg或更多GaCl3、約35 kg或更多GaCl3或甚至約50 kg或更多GaCl3。舉例而言,GaCl3源可能夠容納介於約50 kg與100 kg之間之GaCl3(例如,介於約60 kg與70 kg之間)。另外,可使用歧管將多個GaCl3源連接至一起以形成氣體源122A-122E中之單一源以允許自一個氣體源切換至另一氣體源而不會中斷沉積系統100之操作及/或使用。可去除空氣體源並替換為新的全滿源,同時沉積系統100保持操作狀態。 In some embodiments, one or more of the gas sources 122A-122E can be capable of holding about 25 kg or more of GaCl 3 , about 35 kg or more of GaCl 3 , or even about 50 kg or more of GaCl 3 . For example, a GaCl 3 source can be capable of containing between about 50 kg and 100 kg of GaCl 3 (eg, between about 60 kg and 70 kg). Additionally, a plurality of GaCl 3 sources can be connected together using a manifold to form a single source of gas sources 122A-122E to allow switching from one gas source to another without disrupting the operation of deposition system 100 and/or use. The air source can be removed and replaced with a new full source while the deposition system 100 remains operational.

在一些實施例中,可將氣體流入導管120A-120E之溫度控制於氣體源122A-122E與反應室102之間。氣體流入導管120A-120E及相關質量流量感測器、控制器及諸如此類之溫度可自各別氣體源122A-122E之排出口處之第一溫度(例如,約78℃或更高)逐漸增加至反應室102進入點處的第二溫度(例如,約150℃或更小),從而防止氣體(例如,GaCl3蒸氣)在氣體流入導管120A-120E中凝結。視情況,各別氣體源122A-122E與反應室102間之氣體流入導管120A-120E之長度可為約18英尺或更小、約12英尺或更小或甚至約6英尺或更小。可使用一或多個壓力控制系統來控制源氣體之壓力。 In some embodiments, the temperature of the gas inflow conduits 120A-120E can be controlled between the gas sources 122A-122E and the reaction chamber 102. The temperature of the gas inflow conduits 120A-120E and associated mass flow sensors, controllers, and the like may be gradually increased from the first temperature (e.g., about 78 ° C or higher) at the discharge ports of the respective gas sources 122A-122E to the reaction. The chamber 102 enters a second temperature at the point (e.g., about 150 ° C or less) to prevent gas (e.g., GaCl 3 vapor) from condensing in the gas inflow conduits 120A-120E. Optionally, the gas inflow conduits 120A-120E between the respective gas sources 122A-122E and the reaction chamber 102 can be about 18 feet or less, about 12 feet or less, or even about 6 feet or less in length. One or more pressure control systems can be used to control the pressure of the source gas.

在其他實施例中,沉積系統100可包括小於5(例如,1- 4)個氣體流入導管及各別氣體源,或沉積系統100可包括大於5(例如,6、7等)個氣體流入導管及各別氣體源。 In other embodiments, deposition system 100 can include less than 5 (eg, 1- 4) a gas inflow conduit and a respective gas source, or deposition system 100 may include greater than 5 (eg, 6, 7, etc.) gas inflow conduits and respective gas sources.

氣體流入導管120A-120E中之一或多者經由注入子總成110延伸至反應室102中。注入子總成110可包含一或多個氣體流入導管120A-120E延伸通過之材料段。一或多個流體導管111可延伸通過材料段。可驅使熱交換流體流經一或多個流體導管111以在沉積系統100之操作期間將藉助氣體流入導管120A-120E流經注入子總成110之一或多種氣體維持於期望溫度範圍內。舉例而言,可能期望在沉積系統之操作期間將藉助氣體流入導管120A-120E流經注入子總成110之一或多種氣體維持於小於約200℃(150℃)之溫度下。 One or more of the gas inflow conduits 120A-120E extend into the reaction chamber 102 via the injector assembly 110. The injector subassembly 110 can include one or more gas inflow conduits 120A-120E through which the material segments extend. One or more fluid conduits 111 can extend through the length of material. The heat exchange fluid can be driven through one or more fluid conduits 111 to maintain one or more gases flowing through the injection subassembly 110 via the gas inflow conduits 120A-120E during the operation of the deposition system 100 within a desired temperature range. For example, it may be desirable to maintain one or more gases flowing through the injection sub-assembly 110 via gas inflow conduits 120A-120E at a temperature of less than about 200 ° C (150 ° C) during operation of the deposition system.

氣體流入導管120A-120E中之一或多者延伸至佈置於反應室102內之前驅氣體爐130中。在一些實施例中,前驅氣體爐130可至少實質上完全佈置於反應室102內。 One or more of the gas inflow conduits 120A-120E extend into the pre-discharge gas furnace 130 disposed within the reaction chamber 102. In some embodiments, the precursor gas furnace 130 can be disposed at least substantially completely within the reaction chamber 102.

圖2係圖1之前驅氣體爐130之剖面側視圖。圖1及2之實施例之爐130包含五(5)個大致為板型之結構132A-132E,該等大致為板型之結構附接至一起且經定尺寸及經組態以在通常為板型之結構132A-132E之間界定之室中界定一或多個延伸通過爐130的前驅氣體流動路徑。大致為板型之結構132A-132E可包含(例如)透明石英以使得由加熱元件118輻射之熱能通過結構132A-132E並加熱爐130中之一或多種前驅氣體。 2 is a cross-sectional side view of the gas flooding furnace 130 of FIG. The furnace 130 of the embodiment of Figures 1 and 2 comprises five (5) generally plate-like structures 132A-132E that are attached together and sized and configured to be One or more precursor gas flow paths extending through the furnace 130 are defined in the chamber defined between the plate-like structures 132A-132E. The generally plate-like structure 132A-132E can comprise, for example, transparent quartz such that thermal energy radiated by the heating element 118 passes through the structures 132A-132E and heats one or more precursor gases in the furnace 130.

如圖2中所展示,第一板型結構132A及第二板型結構 132B可耦合至一起以界定其間之室134。第一板型結構132A上之複數個整體隆脊型突出136可將室134再分成一或多個自室134之入口138延伸至室134之出口140的流動路徑。 As shown in FIG. 2, the first plate structure 132A and the second plate structure 132B can be coupled together to define a chamber 134 therebetween. The plurality of integral ridge-type projections 136 on the first plate structure 132A can subdivide the chamber 134 into one or more flow paths extending from the inlet 138 of the chamber 134 to the outlet 140 of the chamber 134.

圖3係第一板型結構132之俯視平面視圖且圖解說明上面之隆脊型突出136及由此在室134中所界定之流動路徑。如圖3中所展示,突出136界定延伸通過爐130(圖2)之具有蛇形組態之流動路徑區段。突出136可包含在突出136之橫向末端處及突出136之中心處具有開孔138之交替壁,如圖3中所展示。因此,在此組態中,如圖3中所展示,氣體可在鄰近室134之中心區域處進入室134中,橫向向外朝向爐130之橫向側流動,通過突出136中之一者之橫向末端處之開孔138,朝向室134之中心區域返回,並通過另一突出136之中心處之另一開孔138。重複此流動模式直至氣體自入口138在以蛇形方式來回流經室134之後到達板132A之相對側為止。 3 is a top plan view of the first plate structure 132 and illustrates the upper ridge-shaped projection 136 and thus the flow path defined in the chamber 134. As shown in FIG. 3, the protrusion 136 defines a flow path section having a serpentine configuration that extends through the furnace 130 (FIG. 2). The projections 136 can include alternating walls having openings 138 at the lateral ends of the projections 136 and at the center of the projections 136, as shown in FIG. Thus, in this configuration, as shown in FIG. 3, gas may enter chamber 134 at a central region adjacent chamber 134, laterally outward toward the lateral side of furnace 130, through the lateral direction of one of projections 136. The opening 138 at the end returns toward the central region of the chamber 134 and passes through another opening 138 at the center of the other projection 136. This flow pattern is repeated until gas exits the chamber 134 in a serpentine manner from the inlet 138 to the opposite side of the plate 132A.

藉由使一或多種前驅氣體流經延伸通過爐130之此流動路徑區段,可選擇性增加爐130內一或多種前驅氣體之滯留時間。 The residence time of one or more precursor gases in furnace 130 can be selectively increased by flowing one or more precursor gases through the flow path section extending through furnace 130.

再次參照圖2,引導至室134之入口138可由(例如)管狀部件142界定。氣體流入導管120A-120E中之一者(例如氣體流入導管120B)可延伸至管狀部件142並與其耦合,如圖1中所展示。可使用密封部件144(例如聚合O形環)氣體流入導管1201B與管狀部件142之間形成氣密密封。管狀部件 142可包含(例如)不透明石英材料以防止自加熱元件118發射之熱能將密封部件144加熱至導緻密封部件144降格之升高溫度。另外,使用通過流體導管111之冷卻流體流冷卻注入子總成110可防止密封部件144之過度加熱及最終降格。藉由將密封部件144之溫度維持於約200℃以下,在氣體流入導管120A-120E包含金屬或金屬合金(例如,鋼)且管狀部件142包含耐火材料(例如石英)時,可使用密封部件144在氣體流入導管120A-120E中之一者與管狀部件142之間維持適當密封。管狀部件142及第一板型結構132A可結合至一起以形成單一整體石英體。 Referring again to FIG. 2, the inlet 138 leading to the chamber 134 can be defined by, for example, a tubular member 142. One of the gas inflow conduits 120A-120E (e.g., gas inflow conduit 120B) can extend to and couple with the tubular member 142, as shown in FIG. A hermetic seal can be formed between the gas inflow conduit 1201B and the tubular member 142 using a sealing member 144 (eg, a polymeric O-ring). Tubular component 142 may include, for example, an opaque quartz material to prevent thermal energy emitted from the heating element 118 from heating the sealing member 144 to an elevated temperature that causes the sealing member 144 to degrade. Additionally, cooling the injection subassembly 110 using the flow of cooling fluid through the fluid conduit 111 prevents excessive heating and eventual degradation of the sealing member 144. By maintaining the temperature of the sealing member 144 below about 200 ° C, the sealing member 144 can be used when the gas inflow conduits 120A-120E comprise a metal or metal alloy (eg, steel) and the tubular member 142 comprises a refractory material (eg, quartz). A proper seal is maintained between one of the gas inflow conduits 120A-120E and the tubular member 142. The tubular member 142 and the first plate structure 132A can be joined together to form a single unitary quartz body.

如圖2及3中所展示,板型結構132A、132B可包括互補密封特徵147A、147B(例如,隆脊及相應凹陷),該等互補密封特徵在板型結構132A、132B之周邊附近延伸並至少實質上氣密密封板型結構132A、132B之間之室134。因此,防止室134內之氣體自室134橫向流出,且迫使該等氣體自室134流經出口140(圖2)。 As shown in Figures 2 and 3, the plate-like structures 132A, 132B can include complementary sealing features 147A, 147B (e.g., ridges and corresponding depressions) that extend adjacent the perimeter of the plate-like structures 132A, 132B and The chamber 134 between the plate-like structures 132A, 132B is at least substantially hermetically sealed. Thus, gas within chamber 134 is prevented from flowing laterally from chamber 134 and the gases are forced from chamber 134 through outlet 140 (Fig. 2).

視情況,突出136可經組態以使其高度略小於第一板型結構132A之表面152(突出136自其延伸)與第二板型結構132B之相對表面154之間隔距離。因此,可在突出136與第二板型結構132B之表面154之間提供小間隙。儘管極少量氣體可經由該等間隙洩漏,但此少量洩漏不會不利地影響前驅氣體分子在室134內之平均滯留時間。藉由以此方式組態突出136,可解釋由用於形成板型結構132A、132B之製造製程中之公差引起之突出136的高度變化,從而無意 製造而具有過量高度之突出136並不防止藉由互補密封特徵147A、147B在板型結構132A、132B之間形成適當密封。 Optionally, the protrusion 136 can be configured such that its height is slightly less than the distance separating the surface 152 of the first plate structure 132A from which the protrusion 136 extends and the opposing surface 154 of the second plate structure 132B. Thus, a small gap can be provided between the protrusion 136 and the surface 154 of the second plate structure 132B. Although a very small amount of gas can leak through the gaps, this small amount of leakage does not adversely affect the average residence time of the precursor gas molecules within chamber 134. By configuring the protrusions 136 in this manner, the height variation of the protrusions 136 caused by the tolerances in the manufacturing process for forming the plate-type structures 132A, 132B can be explained, thereby unintentionally The protrusions 136 that are manufactured with an excess height do not prevent proper sealing between the plate structures 132A, 132B by the complementary sealing features 147A, 147B.

如圖2中所展示,板型結構132A、132B間之室134之出口140引向第三板型結構132C與第四板型結構132D間之室150的入口148。室150可經組態從而其中之一或多種氣體在室150中以大致線性方式自入口148朝向出口156流動。舉例而言,室150在入口148與出口156之間可具有大致為矩形且大小均勻之剖面形狀。因此,室150可經組態以使一或多種氣體以更具層性而非紊流之形式流動。 As shown in FIG. 2, the outlet 140 of the chamber 134 between the plate structures 132A, 132B leads to the inlet 148 of the chamber 150 between the third plate structure 132C and the fourth plate structure 132D. The chamber 150 can be configured such that one or more of the gases flow in the chamber 150 from the inlet 148 toward the outlet 156 in a substantially linear manner. For example, chamber 150 may have a generally rectangular and uniform cross-sectional shape between inlet 148 and outlet 156. Thus, chamber 150 can be configured to flow one or more gases in a more layered rather than turbulent manner.

板型結構132C、132D可包括互補密封特徵158A、158B(例如,隆脊及相應凹陷),該等互補密封特徵在板型結構132C、132D之周邊附近延伸並至少實質上氣密密封板型結構132C、132D之間之室150。因此,防止室150內之氣體自室150橫向流出,且迫使該等氣體自室150流經出口156。 The plate structures 132C, 132D can include complementary sealing features 158A, 158B (eg, ridges and corresponding depressions) that extend adjacent the perimeter of the plate structures 132C, 132D and at least substantially hermetically seal the plate structure Room 150 between 132C and 132D. Thus, gas within chamber 150 is prevented from flowing laterally from chamber 150 and forces the gases from chamber 150 through outlet 156.

出口156可包含(例如)細長開孔(例如,狹縫),該細長開孔延伸通過板型結構132D且鄰近板型結構中與鄰近入口148之末端相對之末端。 The outlet 156 can include, for example, an elongated opening (eg, a slit) that extends through the plate-like structure 132D and adjacent an end of the plate-shaped structure opposite the end adjacent the inlet 148.

繼續參照圖2,板型結構132C、132D間之室150之出口156引向第四板型結構132D與第五板型結構132E間之室162之入口160。室162可經組態從而其中之一或多種氣體在室162中以大致線性方式自入口160朝向出口164流動。舉例而言,室162在入口160與出口164之間可具有大致為 矩形且大小均勻之剖面形狀。因此,室162可經組態以使一或多種氣體以更具層性而非紊流之形式流動,此方式類似於先前參照室150所闡述。 With continued reference to FIG. 2, the outlet 156 of the chamber 150 between the plate structures 132C, 132D leads to the inlet 160 of the chamber 162 between the fourth plate structure 132D and the fifth plate structure 132E. Chamber 162 can be configured such that one or more of the gases flow in chamber 162 from inlet 160 toward outlet 164 in a generally linear manner. For example, chamber 162 may have a substantially between inlet 160 and outlet 164 A rectangular shape with a uniform size. Thus, chamber 162 can be configured to flow one or more gases in a more layered, rather than turbulent, manner similar to that previously described with reference to chamber 150.

板型結構132D、132E可幾乎在板型結構132D、132E之一側上包括互補密封特徵(例如,隆脊及相應凹陷),該等互補密封特徵在板型結構132D、132E之周邊之一部分附近延伸並密封板型結構132D、132E之間的室162。在相對於入口160之一側於板型結構132D、132E之間提供間隙,該間隙界定室162之出口164。因此,氣體經由入口160進入室162,朝向出口164流經室162(而藉由互補密封特徵166A、166B防止自室162橫向流出),並經由出口164自室162流出。爐130內藉由室150及室162界定之一或多個氣體流動路徑之區段經組態以賦予被驅使流經爐130內之一或多個流動路徑的一或多種前驅氣體層流,並減小其中之任何紊流。 The plate-like structures 132D, 132E can include complementary sealing features (e.g., ridges and corresponding depressions) on one side of the plate-like structures 132D, 132E that are adjacent one of the perimeters of the plate-like structures 132D, 132E. The chamber 162 between the plate structures 132D, 132E is extended and sealed. A gap is provided between the plate-like structures 132D, 132E with respect to one of the inlets 160, the gap defining an outlet 164 of the chamber 162. Thus, gas enters chamber 162 via inlet 160, flows through chamber 162 toward outlet 164 (and prevents lateral flow out of chamber 162 by complementary sealing features 166A, 166B), and exits chamber 162 via outlet 164. A section of one or more gas flow paths defined by chamber 150 and chamber 162 within furnace 130 is configured to impart a laminar flow of one or more precursor gases that are driven through one or more flow paths within furnace 130, And reduce any turbulence in it.

出口164經組態以將一或多種前驅氣體自爐130輸出至反應室102內之內部區域中。圖4係爐130之透視圖,且圖解說明出口164。如圖4中所展示,出口164可具有矩形剖面形狀,此可有助於保持自爐130注出並進入反應室102內之內部區域中之一或多種前驅氣體之層流。出口164可經定尺寸及經組態以在基板支撐結構114之上表面168上方於橫向方向中輸出流動前驅氣體之片層。如圖4中所展示,第四大致為板型之結構132D之末端表面180及第五大致為板型之結構132E之末端表面182(其間之間隙界定室162之出 口164,如先前論述)之形狀可大致匹配工件基板116的形狀,該工件基板支撐於基板支撐結構114上且擬使用自爐130流出之一或多種前驅氣體在上面沉積材料。舉例而言,在工件基板116包含具有大致圓形周邊之晶粒或晶圓之實施例中,表面180、182可具有通常匹配擬處理工件基板116之外周邊特徵之弓形形狀。在此一組態中,出口164及工件基板116之外邊緣之間之距離可跨越出口164大致恆定。在此組態中,防止自出口164流出之一或多種前驅氣體與反應室102內之其他前驅氣體混合直至其位於工件基板116之表面(擬藉由前驅氣體在上面沉積材料)附近為止,並避免材料在沉積系統100之組件上之不期望沉積。 The outlet 164 is configured to output one or more precursor gases from the furnace 130 to an interior region within the reaction chamber 102. FIG. 4 is a perspective view of furnace 130 and illustrates outlet 164. As shown in FIG. 4, the outlet 164 can have a rectangular cross-sectional shape that can help maintain a laminar flow of one or more precursor gases from the furnace 130 and into the interior region within the reaction chamber 102. The outlet 164 can be sized and configured to output a sheet of flowing precursor gas in a lateral direction above the upper surface 168 of the substrate support structure 114. As shown in FIG. 4, the fourth substantially end surface 180 of the plate-like structure 132D and the end surface 182 of the fifth substantially plate-like structure 132E (the gap therebetween defines the exit of the chamber 162) The shape of the port 164, as previously discussed, can generally match the shape of the workpiece substrate 116 that is supported on the substrate support structure 114 and is intended to deposit material thereon by flowing one or more precursor gases from the furnace 130. For example, in embodiments where the workpiece substrate 116 includes a die or wafer having a generally circular perimeter, the surfaces 180, 182 can have an arcuate shape that generally matches the peripheral features of the workpiece substrate 116 to be processed. In this configuration, the distance between the outlet 164 and the outer edge of the workpiece substrate 116 can be substantially constant across the outlet 164. In this configuration, one or more precursor gases flowing from the outlet 164 are prevented from mixing with other precursor gases in the reaction chamber 102 until they are located near the surface of the workpiece substrate 116 (to be deposited by the precursor gas). Undesired deposition of material on components of deposition system 100 is avoided.

再次參照圖1,如經由室134、室150及室162所界定通過爐130之前驅氣體流動路徑之最小流動路徑距離可為至少約十二(12)英吋。在圖1-3之實例性實施例中,對於八(8)個蛇形分支區段中之每一者而言,流動路徑距離為約十二(12)英吋。 Referring again to FIG. 1, the minimum flow path distance through the pre-discharge gas flow path defined by chamber 134, chamber 150, and chamber 162 may be at least about twelve (12) miles. In the exemplary embodiment of FIGS. 1-3, for each of the eight (8) serpentine branch segments, the flow path distance is about twelve (12) miles.

另外,沉積系統100可經組態從而一或多種被驅使流經一或多個通過爐130之流動路徑之前驅氣體在爐內之滯留時間為至少約0.2秒(例如,約0.48秒)或甚至數秒或更多。 Additionally, deposition system 100 can be configured such that one or more of the precursor gases that are driven through one or more of the flow paths through furnace 130 have a residence time of at least about 0.2 seconds (eg, about 0.48 seconds) or even A few seconds or more.

再次參照圖1,加熱元件118可包含加熱元件118之第一群170及加熱元件118之第二群172。加熱元件118之第一群170可經定位及組態以賦予爐130熱能並加熱其中之前驅氣體。舉例而言,加熱元件118之第一群170可位於爐130下之反應室102下方,如圖1中所展示。在其他實施例中,加 熱元件118之第一群170可位於爐130上之反應室102上方,或可包括位於爐130下之反應室102下方之加熱元件118及位於爐130上之反應室102上方之加熱元件二者。加熱元件118之第二群172可經定位及組態以賦予基板支撐結構114及上面支撐之任一工件基板熱能。舉例而言,加熱元件118之第二群172可位於基板支撐結構114下之反應室102下方,如圖1中所展示。在其他實施例中,加熱元件118之第二群172可位於基板支撐結構114上之反應室102上方,或可包括位於基板支撐結構114下之反應室102下方之加熱元件118及位於基板支撐結構114上之反應室102上方之加熱元件二者。 Referring again to FIG. 1, heating element 118 can include a first group 170 of heating elements 118 and a second group 172 of heating elements 118. The first group 170 of heating elements 118 can be positioned and configured to impart heat to the furnace 130 and heat the gas therein. For example, the first group 170 of heating elements 118 can be located below the reaction chamber 102 below the furnace 130, as shown in FIG. In other embodiments, plus The first group 170 of thermal elements 118 can be located above the reaction chamber 102 on the furnace 130, or can include both a heating element 118 located below the reaction chamber 102 below the furnace 130 and a heating element located above the reaction chamber 102 on the furnace 130. . The second group 172 of heating elements 118 can be positioned and configured to impart thermal energy to the substrate support structure 114 and any of the workpiece substrates supported thereon. For example, the second group 172 of heating elements 118 can be located below the reaction chamber 102 below the substrate support structure 114, as shown in FIG. In other embodiments, the second group 172 of heating elements 118 can be located above the reaction chamber 102 on the substrate support structure 114, or can include a heating element 118 under the reaction chamber 102 below the substrate support structure 114 and a substrate support structure. Both the heating elements above the reaction chamber 102 on 114.

加熱元件118之第一群170可藉由熱反射或熱絕緣障壁174與加熱元件118之第二群172分離。舉例而言且並不加以限制,此一障壁174可包含位於加熱元件118之第一群170與加熱元件118之第二群172之間的鍍金金屬板。該金屬板可經定向以容許獨立地控制爐130之加熱(藉由加熱元件118之第一群170)及基板支撐結構114之加熱(藉由加熱元件118之第二群172)。換言之,障壁174可經定位及定向以減小或防止藉由加熱元件118之第一群170來加熱基板支撐結構114,並減小或防止藉由加熱元件118之第二群172來加熱爐130。 The first group 170 of heating elements 118 can be separated from the second group 172 of heating elements 118 by a heat reflective or thermally insulating barrier 174. By way of example and not limitation, the barrier 174 can include a gold-plated metal plate between the first group 170 of heating elements 118 and the second group 172 of heating elements 118. The metal sheets can be oriented to permit independent control of heating of the furnace 130 (by the first group 170 of heating elements 118) and heating of the substrate support structure 114 (by the second group 172 of heating elements 118). In other words, the barrier 174 can be positioned and oriented to reduce or prevent heating of the substrate support structure 114 by the first group 170 of heating elements 118 and to reduce or prevent heating of the furnace 130 by the second group 172 of heating elements 118. .

加熱元件118之第一群170可包含複數列可彼此獨立地控制之加熱元件118。換言之,可獨立地控制由每一列加熱元件118所發射之熱能。該等列可橫向於通過反應室102之 氣體淨流方向(其係在圖1之透視圖中自左向右延伸之方向)進行定向。因此,若期望,則可使用加熱元件118之獨立控制列來提供爐130中之選擇之梯度。類似地,加熱元件118之第二群172亦可包含複數列可彼此獨立地控制之加熱元件118。因此,若期望,則亦可在基板支撐結構114中提供選擇之熱梯度。 The first group 170 of heating elements 118 can include a plurality of heating elements 118 that can be controlled independently of one another. In other words, the thermal energy emitted by each column of heating elements 118 can be independently controlled. The columns may be transverse to the passage through the reaction chamber 102 The net flow direction of the gas, which is in the direction extending from left to right in the perspective view of Fig. 1, is oriented. Thus, if desired, an independent control train of heating elements 118 can be used to provide a selected gradient in furnace 130. Similarly, the second group 172 of heating elements 118 can also include a plurality of heating elements 118 that can be controlled independently of one another. Thus, a selected thermal gradient can also be provided in the substrate support structure 114 if desired.

視情況,被動式熱轉移結構(例如,包含具有類似於黑體之行為之材料之結構)可毗鄰或鄰近反應室102內前驅氣體爐130之至少一部分進行定位以改良至爐130內前驅氣體之熱轉移。 Optionally, a passive heat transfer structure (e.g., a structure comprising a material having a behavior similar to blackbody) can be positioned adjacent or adjacent to at least a portion of the precursor gas furnace 130 within the reaction chamber 102 to improve heat transfer to the precursor gas within the furnace 130. .

被動式熱轉移結構(例如,包含具有類似於黑體之行為之材料之結構)可提供於反應室102內,如(例如)在2009年8月27日以Arena等人之名義公開之美國專利申請公開案第US 2009/0214785 A1號中所揭示。舉例而言且並不加以限制,前驅氣體爐130可包括被動式熱轉移板178,其可位於第二板型結構132B與第三板型結構132C之間,如圖2中所展示。此一被動式熱轉移板178可改良由加熱元件118所提供之熱至爐130內之前驅氣體之轉移,且可改良爐130內之溫度之均勻性及一致性。被動式熱轉移板178可包含高發射率值(接近於一)之材料(黑體材料),其亦能夠承受可在反應室102內遇到之高溫腐蝕性環境。該等材料可包括(例如)發射率值分別為0.98、0.92及0.92之氮化鋁(AlN)、碳化矽(SiC)及碳化硼(B4C)。因此,被動式熱轉移板178可吸收由加熱元件118所發射之熱能,且將熱能再發射至爐130及 其中之一或多種前驅氣體中。 A passive heat transfer structure (e.g., a structure comprising a material having a behavior similar to a black body) can be provided in the reaction chamber 102, as disclosed, for example, in U.S. Patent Application Publication No. A. The invention is disclosed in US 2009/0214785 A1. By way of example and not limitation, the precursor gas furnace 130 can include a passive heat transfer plate 178 that can be positioned between the second plate structure 132B and the third plate structure 132C, as shown in FIG. The passive heat transfer plate 178 can improve the transfer of heat provided by the heating element 118 to the precursor gas within the furnace 130 and can improve the uniformity and uniformity of temperature within the furnace 130. The passive heat transfer plate 178 can comprise a material having a high emissivity value (close to one) (black body material) that is also capable of withstanding the high temperature corrosive environment that can be encountered within the reaction chamber 102. Such materials may include, for example, aluminum nitride (AlN), tantalum carbide (SiC), and boron carbide (B 4 C) having emissivity values of 0.98, 0.92, and 0.92, respectively. Thus, the passive heat transfer plate 178 can absorb the thermal energy emitted by the heating element 118 and re-emit the thermal energy into the furnace 130 and one or more of the precursor gases therein.

繼續參照圖1,排放及裝載子總成112可包含真空室184,流經反應室102之氣體在該真空室中由真空汲取並自反應室102排放。如圖1中所展示,真空室184可位於反應室102下方。 With continued reference to FIG. 1, the discharge and loading subassembly 112 can include a vacuum chamber 184 in which gas flowing through the reaction chamber 102 is drawn by vacuum and discharged from the reaction chamber 102. As shown in FIG. 1, vacuum chamber 184 can be located below reaction chamber 102.

排放及裝載子總成112可進一步包含吹掃氣體幕裝置186,其組態及定向以提供自吹掃氣體幕裝置186流出並流入真空室184中之流動吹掃氣體之大致平面幕。排放及裝載子總成112亦可包括閘188,其可選擇性打開以用於自基板支撐結構114裝載及/或卸載工件基板116,且選擇性閉合以使用沉積系統100處理工件基板116。由吹掃氣體幕裝置186所發射之吹掃氣體幕可減小或防止在沉積製程期間材料在閘188上發生寄生沉積。 The discharge and load subassembly 112 can further include a purge gas curtain device 186 configured and oriented to provide a substantially planar screen of the flow purge gas flowing from the purge gas curtain device 186 and into the vacuum chamber 184. The vent and load subassembly 112 can also include a gate 188 that can be selectively opened for loading and/or unloading the workpiece substrate 116 from the substrate support structure 114 and selectively closed to process the workpiece substrate 116 using the deposition system 100. The purge gas curtain emitted by the purge gas curtain device 186 can reduce or prevent parasitic deposition of material on the gate 188 during the deposition process.

氣態副產物、載氣及任一過量前驅氣體可經由排放及裝載子總成112自反應室102排出。 Gaseous byproducts, carrier gas, and any excess precursor gases may be withdrawn from reaction chamber 102 via discharge and carrier assembly 112.

圖5係圖解說明沉積系統200之另一實施例之平面視圖之示意圖,該沉積系統類似於圖1之沉積系統100,但包括三個位於反應室102之內部區域內之前驅氣體爐130A、130B、130C。因此,前驅氣體爐130A、130B、130C中之每一者皆可用於向反應室102中注入相同或不同前驅氣體。舉例而言且並不加以限制,前驅氣體爐130B可用於將GaCl3注入反應室102中,前驅氣體爐130A亦可用於將GaCl3注入反應室102中,且前驅氣體爐130C亦可用於將GaCl3注入反應室102中。根據另一實例,可使用前驅氣體 爐130B將GaCl3注入反應室102中,可使用前驅氣體爐130A將InCl3注入反應室102中,且可使用前驅氣體爐130C將AlCl3注入反應室102中。視情況,可使用前驅氣體爐130B將第III族元素前驅氣體注入反應室102中以用於沉積III-V半導體材料,且可使用前驅氣體爐130A、130C注入一或多種用於將一或多種摻雜劑元素沉積至III-V半導體材料中之前驅氣體。 5 is a schematic diagram showing a plan view of another embodiment of a deposition system 200 similar to the deposition system 100 of FIG. 1, but including three precursor gas furnaces 130A, 130B located within the interior region of the reaction chamber 102. , 130C. Thus, each of the precursor gas furnaces 130A, 130B, 130C can be used to inject the same or different precursor gases into the reaction chamber 102. By way of example and not limitation, the precursor gas furnace 130B can be used to inject GaCl 3 into the reaction chamber 102, the precursor gas furnace 130A can also be used to inject GaCl 3 into the reaction chamber 102, and the precursor gas furnace 130C can also be used to convert GaCl. 3 is injected into the reaction chamber 102. According to another example, using the precursor gas furnace 130B GaCl 3 injected into the reaction chamber 102, may use the precursor gas furnace 130A InCl 3 injected into the reaction chamber 102, and may use the precursor gas furnace 130C AlCl 3 injected into the reaction chamber 102 . Optionally, a Group III element precursor gas may be injected into the reaction chamber 102 using a precursor gas furnace 130B for deposition of the III-V semiconductor material, and one or more may be injected using the precursor gas furnaces 130A, 130C for one or more A dopant element is deposited into the precursor gas in the III-V semiconductor material.

如本文所闡述之沉積系統(例如圖1之沉積系統100及圖5之沉積系統200)之實施例可使得能夠將相對較大量高溫前驅氣體引入反應室102中,同時維持前驅氣體在空間上彼此分離直至氣體位於緊鄰在上面沉積材料之工件基板116處為止,此可改良前驅氣體之利用效率。 Embodiments of deposition systems (e.g., deposition system 100 of FIG. 1 and deposition system 200 of FIG. 5) as described herein may enable a relatively large amount of high temperature precursor gas to be introduced into reaction chamber 102 while maintaining precursor gases spatially with each other The separation is continued until the gas is located immediately adjacent to the workpiece substrate 116 on which the material is deposited, which improves the utilization efficiency of the precursor gas.

根據本揭示內容之其他實施例,可使用如本文所闡述之沉積系統(例如圖1之沉積系統100及圖5之沉積系統200)之實施例在工件基板116上沉積半導體材料。 In accordance with other embodiments of the present disclosure, semiconductor materials can be deposited on the workpiece substrate 116 using embodiments of deposition systems (e.g., deposition system 100 of FIG. 1 and deposition system 200 of FIG. 5) as set forth herein.

參照圖1,可驅使第III族元素前驅氣體及第V族元素前驅氣體單獨經由氣體流入導管120A-120E中之不同導管流入反應室102中。可驅使第III族元素前驅氣體流經至少一個延伸通過佈置於反應室102內之前驅氣體爐130之前驅氣體流動路徑以加熱第III族元素前驅氣體。 Referring to Figure 1, the Group III element precursor gas and the Group V element precursor gas can be driven into the reaction chamber 102 via separate conduits in the gas inflow conduits 120A-120E. The Group III element precursor gas may be driven to flow through at least one of the gas flow paths prior to the gas flooding furnace 130 disposed in the reaction chamber 102 to heat the Group III element precursor gas.

在爐130內加熱第III族元素前驅氣體之後,可在工件基板116上方於反應室102內將第V族元素前驅氣體及第III族元素前驅氣體混合至一起。可將工件基板116之表面暴露於第V族元素前驅氣體及第III族元素前驅氣體之混合物以 在工件基板116之表面上形成III-V半導體材料。 After heating the Group III element precursor gas in the furnace 130, the Group V element precursor gas and the Group III element precursor gas may be mixed together in the reaction chamber 102 over the workpiece substrate 116. The surface of the workpiece substrate 116 may be exposed to a mixture of a Group V element precursor gas and a Group III element precursor gas. A III-V semiconductor material is formed on the surface of the workpiece substrate 116.

如先前所提及,第III族元素前驅氣體被驅使流經之流動路徑可包括至少一個蛇形組態(例如,室134內之流動路徑之組態)及至少一個經組態以提供第III族元素前驅氣體之層流之區段(例如,室150及室162內之流動路徑之組態)。可驅使第III族元素前驅氣體自至少一個經組態以提供層流之區段流出並流入爐130外側反應室102內之內部區域中。第III族元素前驅氣體可自爐130以在工件基板116上之上表面上方於橫向方向中之第III族元素前驅氣體之片層形式流出,如本文先前所述。 As mentioned previously, the flow path through which the Group III element precursor gas is driven may include at least one serpentine configuration (eg, configuration of flow paths within chamber 134) and at least one configured to provide III A section of the laminar flow of the group element precursor gas (e.g., configuration of the flow path within chamber 150 and chamber 162). The Group III element precursor gas can be driven out of at least one section configured to provide laminar flow and into the interior region within the reaction chamber 102 outside of the furnace 130. The Group III element precursor gas may exit from the furnace 130 in the form of a sheet of Group III element precursor gas in the lateral direction above the upper surface of the workpiece substrate 116, as previously described herein.

第III族元素前驅氣體可包含中GaCl3、InCl3及AlCl3之一或多者。在該等實施例中,加熱第III族元素前驅氣體可分解GaCl3、InCl3及AlCl3中之至少一者以形成GaCl、InCl、AlCl中之至少一者及氯化物質(例如,HCl)。 The Group III element precursor gas may comprise one or more of GaCl 3 , InCl 3 and AlCl 3 . In such embodiments, heating the Group III element precursor gas may decompose at least one of GaCl 3 , InCl 3 , and AlCl 3 to form at least one of GaCl, InCl, AlCl, and a chlorinated species (eg, HCl). .

本發明之其他非限制性實例性實施例闡述於下文中。 Other non-limiting, exemplary embodiments of the invention are set forth below.

實施例1:一種沉積系統,其包含:至少實質上封閉之反應室,其由頂部壁、底部壁及至少一個側壁界定;基座,其至少部分地佈置於反應室內且經組態以支撐反應室內之基板;及氣體輸入系統,其係用於將一或多種前驅氣體注入反應室中,該氣體輸入系統包含至少一個佈置於反應室內之前驅氣體爐、至少一個延伸通過至少一個前驅氣體爐之前驅氣體流動路徑。 Embodiment 1: A deposition system comprising: an at least substantially closed reaction chamber defined by a top wall, a bottom wall, and at least one sidewall; a susceptor disposed at least partially within the reaction chamber and configured to support a reaction a substrate for the interior; and a gas input system for injecting one or more precursor gases into the reaction chamber, the gas input system comprising at least one pre-discharge gas furnace disposed in the reaction chamber, at least one extending through the at least one precursor gas furnace Drive the gas flow path.

實施例2:如實施例1之沉積系統,其中至少一個延伸通過至少一個前驅氣體爐之前驅氣體流動路徑包括至少一個 具有蛇形組態之區段。 Embodiment 2: The deposition system of Embodiment 1, wherein at least one of the precursor gas flow paths extending through the at least one precursor gas furnace comprises at least one A section with a serpentine configuration.

實施例3:如實施例1或實施例2之沉積系統,其中至少一個前驅氣體流動路徑具有至少一個經組態以提供一或多種被驅使流經至少一個流動路徑之前驅氣體之層流之區段。 Embodiment 3: The deposition system of Embodiment 1 or Embodiment 2, wherein the at least one precursor gas flow path has at least one zone configured to provide one or more laminar flows that are driven to flow through the at least one flow path segment.

實施例4:如實施例3之沉積系統,其中至少一個經組態以提供層流之區段包括經組態以將一或多種前驅氣體輸出至反應室內之內部區域中之出口。 Embodiment 4: The deposition system of Embodiment 3, wherein the at least one section configured to provide laminar flow comprises an outlet configured to output one or more precursor gases into an interior region of the reaction chamber.

實施例5:如實施例4之沉積系統,其中出口具有矩形剖面形狀。 Embodiment 5: The deposition system of Embodiment 4, wherein the outlet has a rectangular cross-sectional shape.

實施例6:如實施例4之沉積系統,其中出口經定尺寸及經組態以在基座之上表面上方於橫向方向中輸出流動前驅氣體之片層。 Embodiment 6: The deposition system of Embodiment 4, wherein the outlet is sized and configured to output a sheet of flowing precursor gas in a lateral direction above the upper surface of the susceptor.

實施例7:如實施例1至6中任一項之沉積系統,其中至少一個前驅氣體流動路徑之最小流動路徑距離為至少約十二英吋。 The deposition system of any of embodiments 1 to 6, wherein the minimum flow path distance of the at least one precursor gas flow path is at least about twelve inches.

實施例8:如實施例1至7中任一項之沉積系統,其中沉積系統經組態從而一或多種被驅使流經至少一個前驅氣體流動路徑之前驅氣體在至少一個前驅氣體爐內之滯留時間為至少約0.2秒。 Embodiment 8: The deposition system of any of embodiments 1 to 7, wherein the deposition system is configured such that one or more of the precursor gases are driven to flow through the at least one precursor gas flow path before the gas is retained in the at least one precursor gas furnace The time is at least about 0.2 seconds.

實施例9:如實施例1至8中任一項之沉積系統,其進一步包含至少一個經組態以賦予至少一個前驅氣體爐熱能之加熱元件。 Embodiment 9: The deposition system of any of embodiments 1 to 8, further comprising at least one heating element configured to impart thermal energy to at least one precursor gas furnace.

實施例10:如實施例1至9中任一項之沉積系統,其中至 少一個前驅氣體爐包含至少兩個附接至一起且經組態以界定其間至少一個前驅氣體流動路徑之至少一部分之大致平面板。 Embodiment 10: The deposition system of any of embodiments 1 to 9, wherein The lesser one precursor gas furnace includes at least two substantially planar plates attached together and configured to define at least a portion of at least one precursor gas flow path therebetween.

實施例11:如實施例1至10中任一項之沉積系統,其中至少一個前驅氣體爐包含兩個或更多個前驅氣體爐。 Embodiment 11: The deposition system of any of embodiments 1 to 10, wherein the at least one precursor gas furnace comprises two or more precursor gas furnaces.

實施例12:如實施例1至11中任一項之沉積系統,其進一步包含:至少一個前驅氣體源;及至少一個經組態以將前驅氣體自前驅氣體源攜載至反應室內之至少一個前驅氣體爐中之導管。 The deposition system of any of embodiments 1-11, further comprising: at least one precursor gas source; and at least one configured to carry the precursor gas from the precursor gas source to at least one of the reaction chambers A conduit in a precursor gas furnace.

實施例13:如實施例12之沉積系統,其中至少一個前驅氣體源包含GaCl3、InCl3及AlCl3中之至少一者之源。 Embodiment 13: The deposition system of Embodiment 12, wherein the at least one precursor gas source comprises a source of at least one of GaCl 3 , InCl 3 , and AlCl 3 .

實施例14:一種沉積半導體材料之方法,其包含:使第III族元素前驅氣體及第V族元素前驅氣體單獨流入反應室中,使第III族元素前驅氣體流經至少一個延伸通過至少一個佈置於反應室內之前驅氣體爐之前驅氣體流動路徑以加熱第III族元素前驅氣體,在反應室內之至少一個前驅氣體爐內加熱第III族元素前驅氣體之後在基板上方於反應室內混合第V族元素前驅氣體及第III族元素前驅氣體;及將基板表面暴露於第V族元素前驅氣體及第III族元素前驅氣體之混合物以在基板表面上形成III-V半導體材料。 Embodiment 14: A method of depositing a semiconductor material, comprising: flowing a Group III element precursor gas and a Group V element precursor gas separately into a reaction chamber, and flowing a Group III element precursor gas through at least one extension through at least one arrangement Driving a gas flow path before the gas furnace in the reaction chamber to heat the Group III element precursor gas, and heating the Group III element precursor gas in at least one precursor gas furnace in the reaction chamber, and then mixing the Group V element in the reaction chamber above the substrate a precursor gas and a Group III element precursor gas; and exposing the surface of the substrate to a mixture of a Group V element precursor gas and a Group III element precursor gas to form a III-V semiconductor material on the surface of the substrate.

實施例15:如實施例14之方法,其中加熱第III族元素前驅氣體包含分解GaCl3、InCl3及AlCl3中之至少一者以形成GaCl、InCl及AlCl中之至少一者及氯化物質。 Embodiment 15: The method of Embodiment 14, wherein heating the Group III element precursor gas comprises decomposing at least one of GaCl 3 , InCl 3 , and AlCl 3 to form at least one of GaCl, InCl, and AlCl, and a chlorinated species .

實施例16:如實施例15之方法,其中分解GaCl3、InCl3 及AlCl3中之至少一者以形成GaCl、InCl及AlCl中之至少一者及氯化物質包含分解GaCl3以形成GaCl及氯化物質。 Embodiment 16: The method of Embodiment 15, wherein at least one of GaCl 3 , InCl 3 and AlCl 3 is decomposed to form at least one of GaCl, InCl and AlCl and the chlorinating substance comprises decomposing GaCl 3 to form GaCl and Chlorinated material.

實施例17:如實施例14至16中任一項之方法,其中至少一個前驅氣體流動路徑包括至少一個具有蛇形組態之區段,且其中使第III族元素前驅氣體流經至少一個前驅氣體流動路徑包含使第III族元素前驅氣體流經至少一個具有蛇形組態之至少一個前驅氣體流動路徑之區段。 The method of any one of embodiments 14 to 16, wherein the at least one precursor gas flow path comprises at least one section having a serpentine configuration, and wherein the Group III element precursor gas is passed through at least one precursor The gas flow path includes a section that causes the Group III element precursor gas to flow through at least one of the precursor gas flow paths having a serpentine configuration.

實施例18:如實施例14至17中任一項之方法,其中至少一個前驅氣體流動路徑具有至少一個經組態以提供第III族元素前驅氣體之層流之區段,且其中使第III族元素前驅氣體流經至少一個前驅氣體流動路徑包含使第III族元素前驅氣體流經至少一個經組態以提供第III族元素前驅氣體之層流之區段。 The method of any one of embodiments 14 to 17, wherein the at least one precursor gas flow path has at least one section configured to provide a laminar flow of a Group III element precursor gas, and wherein the third stage is The flow of the group element precursor gas through the at least one precursor gas flow path comprises flowing a Group III element precursor gas through at least one section of the laminar flow configured to provide a Group III element precursor gas.

實施例19:如實施例18之方法,其進一步包含使第III族元素前驅氣體自至少一個經組態以提供第III族元素前驅氣體之層流之區段流出並流入反應室內之內部區域中。 Embodiment 19: The method of Embodiment 18, further comprising flowing a Group III element precursor gas from at least one section of the laminar flow configured to provide a Group III element precursor gas and flowing into an interior region of the reaction chamber .

實施例20:如實施例19之方法,其中使第III族元素前驅氣體自至少一個經組態以提供第III族元素前驅氣體之層流之區段流出進一步包含在基板上表面上方形成通常於橫向方向中流動之第III族元素前驅氣體的片層。 Embodiment 20: The method of Embodiment 19, wherein the cascading of the Group III element precursor gas from at least one of the laminar flows configured to provide a Group III element precursor gas is further included above the upper surface of the substrate to form a A layer of a Group III element precursor gas flowing in a lateral direction.

實施例21:如實施例14至20中任一項之方法,其中使第III族元素前驅氣體流經至少一個延伸通過至少一個前驅氣體爐之前驅氣體流動路徑包含使第III族元素前驅氣體在至少一個前驅氣體爐內流經至少約十二英吋之最小距離。 The method of any one of embodiments 14 to 20, wherein flowing the Group III element precursor gas through at least one of the precursor gas flow paths extending through the at least one precursor gas furnace comprises causing the Group III element precursor gas to At least one of the precursor gas furnaces flows through a minimum distance of at least about twelve inches.

實施例22:如實施例14至21中任一項之方法,其中使第III族元素前驅氣體流經至少一個延伸通過至少一個前驅氣體爐之前驅氣體流動路徑包含使第III族元素前驅氣體在至少一個前驅氣體爐內滯留至少約0.2秒。 The method of any one of embodiments 14 to 21, wherein flowing the Group III element precursor gas through at least one of the precursor gas flow paths extending through the at least one precursor gas furnace comprises causing the Group III element precursor gas to At least one precursor gas furnace is retained for at least about 0.2 seconds.

實施例23:如實施例14至22中任一項之方法,其進一步包含使用至少一個加熱元件賦予至少一個前驅氣體爐熱能。 The method of any one of embodiments 14 to 22, further comprising imparting at least one precursor gas heat energy using the at least one heating element.

上述本發明實施例並不限制本發明範圍,此乃因該等實施例僅係本發明實施例之實例,本發明係由由隨附申請專利範圍之範圍及其合法等效物界定。任何等效實施例皆意欲屬於本發明範圍內。實際上,除彼等展示及闡述於本文中者外,彼等熟習此項技術者自本說明將明瞭本發明之各種修改(例如所闡述要素之替代有用組合)。該等修改亦意欲屬於隨附申請專利範圍之範圍內。 The above-described embodiments of the present invention are not intended to limit the scope of the present invention, and the present invention is intended to be limited only by the scope of the accompanying claims. Any equivalent embodiments are intended to be within the scope of the invention. In fact, the various modifications of the invention (such as alternative and useful combinations of the elements recited) are apparent from the description of those skilled in the art. Such modifications are also intended to fall within the scope of the appended claims.

100‧‧‧沉積系統 100‧‧‧Deposition system

102‧‧‧反應室 102‧‧‧Reaction room

104‧‧‧頂部壁 104‧‧‧ top wall

106‧‧‧底部壁 106‧‧‧Bottom wall

108A‧‧‧第一側壁 108A‧‧‧First side wall

108B‧‧‧第二側壁 108B‧‧‧second side wall

110‧‧‧注入子總成 110‧‧‧Injection subassembly

111‧‧‧流體導管 111‧‧‧Fluid conduit

112‧‧‧排放及裝載子總成 112‧‧‧Draining and loading sub-assembly

114‧‧‧基板支撐結構 114‧‧‧Substrate support structure

116‧‧‧工件基板 116‧‧‧Working substrate

118‧‧‧加熱元件 118‧‧‧ heating element

119‧‧‧轉軸 119‧‧‧ shaft

120A‧‧‧氣體流入導管 120A‧‧‧ gas inflow conduit

120B‧‧‧氣體流入導管 120B‧‧‧ gas inflow conduit

120C‧‧‧氣體流入導管 120C‧‧‧ gas inflow conduit

120D‧‧‧氣體流入導管 120D‧‧‧ gas inflow conduit

120E‧‧‧氣體流入導管 120E‧‧‧ gas inflow conduit

122A‧‧‧氣體源 122A‧‧‧ gas source

122B‧‧‧氣體源 122B‧‧‧ gas source

122C‧‧‧氣體源 122C‧‧‧ gas source

122D‧‧‧氣體源 122D‧‧‧ gas source

122E‧‧‧氣體源 122E‧‧‧ gas source

130‧‧‧前驅氣體爐 130‧‧‧Precursor gas furnace

130A‧‧‧前驅氣體爐 130A‧‧‧Precursor gas furnace

130B‧‧‧前驅氣體爐 130B‧‧‧Precursor gas furnace

130C‧‧‧前驅氣體爐 130C‧‧‧Precursor gas furnace

132A‧‧‧第一板型結構 132A‧‧‧First plate structure

132B‧‧‧第二板型結構 132B‧‧‧Second plate structure

132C‧‧‧第三板型結構 132C‧‧‧Three-plate structure

132D‧‧‧第四板型結構 132D‧‧‧fourth plate structure

132E‧‧‧第五板型結構 132E‧‧‧ Fifth plate structure

134‧‧‧室 Room 134‧‧

136‧‧‧整體隆脊型突出 136‧‧‧ overall ridge-shaped protrusion

138‧‧‧入口 138‧‧‧ entrance

140‧‧‧出口 140‧‧‧Export

142‧‧‧管狀部件 142‧‧‧Tubular parts

144‧‧‧密封部件 144‧‧‧ Sealing parts

147A‧‧‧密封特徵 147A‧‧‧ Sealing features

147B‧‧‧密封特徵 147B‧‧‧ Sealing features

148‧‧‧入口 148‧‧‧ entrance

150‧‧‧室 Room 150‧‧

156‧‧‧出口 156‧‧‧Export

160‧‧‧入口 160‧‧‧ entrance

162‧‧‧室 Room 162‧‧

164‧‧‧出口 164‧‧‧Export

168‧‧‧上表面 168‧‧‧ upper surface

170‧‧‧第一群 170‧‧‧First group

172‧‧‧第二群 172‧‧‧ second group

174‧‧‧熱反射或熱絕緣障壁 174‧‧‧Hot reflective or thermal insulation barrier

178‧‧‧被動式熱轉移板 178‧‧‧ Passive heat transfer board

180‧‧‧末端表面 180‧‧‧End surface

182‧‧‧末端表面 182‧‧‧End surface

184‧‧‧真空室 184‧‧‧vacuum room

186‧‧‧吹掃氣體幕裝置 186‧‧‧Sweeping gas curtain device

188‧‧‧閘 188‧‧‧ brake

200‧‧‧沉積系統 200‧‧‧Deposition system

圖1係示意性圖解說明本發明沉積系統之一實例性實施例之剖視透視圖,該沉積系統包括位於反應室之內部區域內之前驅氣體爐;圖2係圖解說明圖1之前驅氣體爐之剖面側視圖,該前驅氣體爐包括複數個結合至一起之大致為板型之結構;圖3係圖1及2之前驅氣體爐之一個大致為板型之結構之俯視平面視圖;圖4係圖1及2之前驅氣體爐之透視圖;且圖5係圖解說明沉積系統之另一實施例之平面視圖之示 意圖,該沉積系統類似於圖1但包括三個位於反應室之內部區域內之前驅氣體爐。 1 is a cross-sectional perspective view schematically illustrating an exemplary embodiment of a deposition system of the present invention including a precursor gas furnace located in an interior region of the reaction chamber; and FIG. 2 is a diagram illustrating the gas flooding furnace of FIG. In a cross-sectional side view, the precursor gas furnace includes a plurality of substantially plate-like structures joined together; and FIG. 3 is a top plan view of a substantially plate-shaped structure of the gas-fired furnace of FIGS. 1 and 2; 1 and 2 are perspective views of a gas flooding furnace; and FIG. 5 is a plan view showing another embodiment of the deposition system. It is intended that the deposition system be similar to that of Figure 1 but includes three gas-fired furnaces located within the interior region of the reaction chamber.

100‧‧‧沉積系統 100‧‧‧Deposition system

102‧‧‧反應室 102‧‧‧Reaction room

104‧‧‧頂部壁 104‧‧‧ top wall

106‧‧‧底部壁 106‧‧‧Bottom wall

108A‧‧‧第一側壁 108A‧‧‧First side wall

108B‧‧‧第二側壁 108B‧‧‧second side wall

110‧‧‧注入子總成 110‧‧‧Injection subassembly

111‧‧‧流體導管 111‧‧‧Fluid conduit

112‧‧‧排放及裝載子總成 112‧‧‧Draining and loading sub-assembly

114‧‧‧基板支撐結構 114‧‧‧Substrate support structure

116‧‧‧工件基板 116‧‧‧Working substrate

118‧‧‧加熱元件 118‧‧‧ heating element

119‧‧‧轉軸 119‧‧‧ shaft

120A‧‧‧氣體流入導管 120A‧‧‧ gas inflow conduit

120B‧‧‧氣體流入導管 120B‧‧‧ gas inflow conduit

120C‧‧‧氣體流入導管 120C‧‧‧ gas inflow conduit

120D‧‧‧氣體流入導管 120D‧‧‧ gas inflow conduit

120E‧‧‧氣體流入導管 120E‧‧‧ gas inflow conduit

122A‧‧‧氣體源 122A‧‧‧ gas source

122B‧‧‧氣體源 122B‧‧‧ gas source

122C‧‧‧氣體源 122C‧‧‧ gas source

122D‧‧‧氣體源 122D‧‧‧ gas source

122E‧‧‧氣體源 122E‧‧‧ gas source

130‧‧‧前驅氣體爐 130‧‧‧Precursor gas furnace

168‧‧‧上表面 168‧‧‧ upper surface

170‧‧‧第一群 170‧‧‧First group

172‧‧‧第二群 172‧‧‧ second group

174‧‧‧熱反射或熱絕緣障壁 174‧‧‧Hot reflective or thermal insulation barrier

184‧‧‧真空室 184‧‧‧vacuum room

186‧‧‧吹掃氣體幕裝置 186‧‧‧Sweeping gas curtain device

188‧‧‧閘 188‧‧‧ brake

Claims (15)

一種沉積系統,其包含:至少實質上封閉之反應室,其由頂部壁、底部壁及至少一個側壁界定;基座,其至少部分地佈置於該反應室內且經組態以支撐該反應室內之基板;及氣體輸入系統,其用於將一或多種前驅氣體注入該反應室中,該氣體輸入系統包含至少一個佈置於該反應室內之前驅氣體爐、至少一個延伸通過該至少一個前驅氣體爐之前驅氣體流動路徑,其中該至少一個延伸通過該至少一個前驅氣體爐之前驅氣體流動路徑包括至少一個具有蛇形組態之區段,且其中該至少一個前驅氣體流動路徑具有至少一個經組態以提供一或多種被驅使流經該至少一個流動路徑之前驅氣體之層流之區段。 A deposition system comprising: an at least substantially closed reaction chamber defined by a top wall, a bottom wall, and at least one sidewall; a susceptor at least partially disposed within the reaction chamber and configured to support the reaction chamber a substrate; and a gas input system for injecting one or more precursor gases into the reaction chamber, the gas input system comprising at least one pre-discharge gas furnace disposed in the reaction chamber, at least one extending through the at least one precursor gas furnace a gas flow path, wherein the at least one precursor gas flow path extending through the at least one precursor gas furnace comprises at least one section having a serpentine configuration, and wherein the at least one precursor gas flow path has at least one configured One or more sections are provided that drive a laminar flow of the precursor gas through the at least one flow path. 如請求項1之沉積系統,其中該至少一個經組態以提供層流之區段包括經組態以將一或多種前驅氣體輸出至該反應室內之內部區域中之出口。 The deposition system of claim 1, wherein the at least one section configured to provide laminar flow comprises an outlet configured to output one or more precursor gases to an interior region of the reaction chamber. 如請求項2之沉積系統,其中該出口具有矩形剖面形狀。 The deposition system of claim 2, wherein the outlet has a rectangular cross-sectional shape. 如請求項2之沉積系統,其中該出口經定尺寸及經組態以在該基座之上表面上方於橫向方向中輸出流動前驅氣體之片層。 The deposition system of claim 2, wherein the outlet is sized and configured to output a sheet of flowing precursor gas in a lateral direction above the upper surface of the susceptor. 如請求項1之沉積系統,其中該至少一個前驅氣體流動路徑之最小流動路徑距離為至少約十二英吋。 The deposition system of claim 1, wherein the minimum flow path distance of the at least one precursor gas flow path is at least about twelve inches. 如請求項1之沉積系統,其進一步包含至少一個經組態以賦予該至少一個前驅氣體爐熱能之加熱元件。 The deposition system of claim 1, further comprising at least one heating element configured to impart thermal energy to the at least one precursor gas furnace. 如請求項1之沉積系統,其中該至少一個前驅氣體爐包含至少兩個大致為平面之板,該等板附接至一起且經組態以界定其間之該至少一個前驅氣體流動路徑之至少一部分。 The deposition system of claim 1, wherein the at least one precursor gas furnace comprises at least two substantially planar plates attached together and configured to define at least a portion of the at least one precursor gas flow path therebetween . 一種沉積半導體材料之方法,其包含:使第III族元素前驅氣體及第V族元素前驅氣體單獨流入反應室中;使該第III族元素前驅氣體流經至少一個延伸通過至少一個佈置於該反應室內之前驅氣體爐之前驅氣體流動路徑以加熱該第III族元素前驅氣體;其中該至少一個前驅氣體流動路徑包括至少一個具有蛇形組態之區段,且其中使該第III族元素前驅氣體流經至少一個前驅氣體流動路徑包含使該第III族元素前驅氣體流經該至少一個前驅氣體流動路徑中之該至少一個具有該蛇形組態之區段,且其中該至少一個前驅氣體流動路徑具有至少一個經組態以提供該第III族元素前驅氣體之層流之區段,且其中使該第III族元素前驅氣體流經該至少一個前驅氣體流動路徑包含使該第III族元素前驅氣體流經該至少一個經組態以提供該第III族元素前驅氣體之層流之區段;在該反應室內之該至少一個前驅氣體爐內加熱該第III族元素前驅氣體之後,在基板上方於該反應室內混合該第V族元素前驅氣體及該第III族元素前驅氣體;及 將該基板之表面暴露於該第V族元素前驅氣體及該第III族元素前驅氣體之混合物以在該基板之該表面上形成III-V半導體材料。 A method of depositing a semiconductor material, comprising: flowing a Group III element precursor gas and a Group V element precursor gas into a reaction chamber separately; flowing the Group III element precursor gas through at least one extension through at least one of the reactions The indoor precursor gas furnace drives a gas flow path to heat the Group III element precursor gas; wherein the at least one precursor gas flow path includes at least one segment having a serpentine configuration, and wherein the Group III element precursor gas is provided Flowing through the at least one precursor gas flow path includes flowing the Group III element precursor gas through the at least one of the at least one precursor gas flow path having the serpentine configuration, and wherein the at least one precursor gas flow path Means having at least one laminar flow configured to provide a precursor gas of the Group III element, and wherein flowing the Group III element precursor gas through the at least one precursor gas flow path comprises causing the Group III element precursor gas Flowing through the at least one section configured to provide a laminar flow of the Group III element precursor gas; After heating the Group III element precursor gas in the at least one precursor gas furnace in the chamber, mixing the Group V element precursor gas and the Group III element precursor gas in the reaction chamber above the substrate; The surface of the substrate is exposed to a mixture of the Group V element precursor gas and the Group III element precursor gas to form a III-V semiconductor material on the surface of the substrate. 如請求項8之方法,其中加熱該第III族元素前驅氣體包含分解GaCl3、InCl3及AlCl3中之至少一者以形成GaCl、InCl及AlCl中之至少一者及氯化物質。 The method of claim 8, wherein heating the Group III element precursor gas comprises decomposing at least one of GaCl 3 , InCl 3 , and AlCl 3 to form at least one of GaCl, InCl, and AlCl, and a chlorinated species. 如請求項9之方法,其中分解GaCl3、InCl3及AlCl3中之至少一者以形成GaCl、InCl及AlCl中之至少一者及氯化物質包含分解GaCl3以形成GaCl及氯化物質。 The method of claim 9, wherein at least one of GaCl 3 , InCl 3 , and AlCl 3 is decomposed to form at least one of GaCl, InCl, and AlCl, and the chlorinated species comprises decomposing GaCl 3 to form GaCl and a chlorinated species. 如請求項8之方法,其進一步包含使該第III族元素前驅氣體自至少一個經組態以提供該第III族元素前驅氣體之層流之區段流出並流入該反應室內之內部區域中。 The method of claim 8, further comprising flowing the Group III element precursor gas from at least one section configured to provide a laminar flow of the Group III element precursor gas and flowing into an interior region of the reaction chamber. 如請求項11之方法,其中使該第III族元素前驅氣體自該至少一個經組態以提供該第III族元素前驅氣體之層流之區段流出進一步包含在該基板上表面上方形成通常於橫向方向中流動之該第III族元素前驅氣體的片層。 The method of claim 11, wherein the cascading of the Group III element precursor gas from the at least one laminar flow configured to provide the Group III element precursor gas is further included above the upper surface of the substrate to form a A sheet of the Group III element precursor gas flowing in the transverse direction. 如請求項8之方法,其中使該第III族元素前驅氣體流經該至少一個延伸通過至少一個前驅氣體爐之前驅氣體流動路徑包含使該第III族元素前驅氣體在該至少一個前驅氣體爐內流經至少約十二英吋之最小距離。 The method of claim 8, wherein flowing the Group III element precursor gas through the at least one precursor gas flow path through the at least one precursor gas furnace comprises causing the Group III element precursor gas to be in the at least one precursor gas furnace Flow through a minimum distance of at least about 12 inches. 如請求項8之方法,其中使該第III族元素前驅氣體流經該至少一個延伸通過至少一個前驅氣體爐之前驅氣體流動路徑包含使該第III族元素前驅氣體在該至少一個前驅氣體爐內滯留至少約0.2秒。 The method of claim 8, wherein flowing the Group III element precursor gas through the at least one precursor gas flow path through the at least one precursor gas furnace comprises causing the Group III element precursor gas to be in the at least one precursor gas furnace Retention is at least about 0.2 seconds. 如請求項8之方法,其進一步包含使用至少一個加熱元件賦予該至少一個前驅氣體爐熱能。 The method of claim 8, further comprising imparting thermal energy to the at least one precursor gas furnace using at least one heating element.
TW101129399A 2011-08-22 2012-08-14 Deposition systems including a precursor gas furnace within a reaction chamber, and related methods TWI494461B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161526143P 2011-08-22 2011-08-22
FR1157956A FR2979637B1 (en) 2011-09-07 2011-09-07 DEPOSITION SYSTEMS COMPRISING A PRECURSOR GAS OVEN WITHIN A REACTION CHAMBER AND METHODS RELATING THERETO

Publications (2)

Publication Number Publication Date
TW201313944A true TW201313944A (en) 2013-04-01
TWI494461B TWI494461B (en) 2015-08-01

Family

ID=46754727

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101129399A TWI494461B (en) 2011-08-22 2012-08-14 Deposition systems including a precursor gas furnace within a reaction chamber, and related methods

Country Status (4)

Country Link
CN (1) CN103732791B (en)
DE (1) DE112012003485T5 (en)
TW (1) TWI494461B (en)
WO (1) WO2013027098A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018133362A1 (en) * 2018-12-21 2020-06-25 Eisenmann Se Injection device for dispensing a gas, process gas system for supplying a process gas, and device and method for the thermal or thermo-chemical treatment of material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3131005B2 (en) * 1992-03-06 2001-01-31 パイオニア株式会社 Compound semiconductor vapor deposition equipment
US6179913B1 (en) 1999-04-16 2001-01-30 Cbl Technologies, Inc. Compound gas injection system and methods
WO2010101715A1 (en) * 2009-03-03 2010-09-10 S.O.I.Tec Silicon On Insulator Technologies Gas injectors for cvd systems with the same
EP2066496B1 (en) * 2006-11-22 2013-04-10 Soitec Equipment for high volume manufacture of group iii-v semiconductor materials
US8382898B2 (en) 2006-11-22 2013-02-26 Soitec Methods for high volume manufacture of group III-V semiconductor materials
KR101579217B1 (en) * 2007-12-20 2015-12-21 소이텍 Apparatus for delivering precursor gases to an epitaxial growth substrate
EP2247768A2 (en) 2008-02-27 2010-11-10 S.O.I.Tec Silicon on Insulator Technologies Thermalization of gaseous precursors in cvd reactors

Also Published As

Publication number Publication date
CN103732791B (en) 2016-04-27
DE112012003485T5 (en) 2014-05-22
WO2013027098A1 (en) 2013-02-28
TWI494461B (en) 2015-08-01
CN103732791A (en) 2014-04-16

Similar Documents

Publication Publication Date Title
US20150292088A1 (en) Deposition systems having interchangeable gas injectors and related methods
US20130047918A1 (en) Deposition systems including a precursor gas furnace within a reaction chamber, and related methods
EP2084304B1 (en) Method and apparatus for the epitaxial deposition of monocrystalline group iii-v semiconductor material using gallium trichloride
US7020981B2 (en) Reaction system for growing a thin film
US8465587B2 (en) Modern hydride vapor-phase epitaxy system and methods
US20100263588A1 (en) Methods and apparatus for epitaxial growth of semiconductor materials
KR101479480B1 (en) An apparatus for thin-film deposition
EP0637058A1 (en) Gas inlets for wafer processing chamber
WO2005119749A1 (en) Gas treating device and film forming device
US20160145767A1 (en) Deposition systems having access gates at desirable locations, and related methods
WO2006130298B1 (en) Deposition methods, and deposition apparatuses
TWI575100B (en) Substrate processing apparatus
US20080276860A1 (en) Cross flow apparatus and method for hydride vapor phase deposition
US20130052333A1 (en) Deposition systems having reaction chambers configured for in-situ metrology and related methods
JP5015085B2 (en) Vapor growth equipment
TWI494461B (en) Deposition systems including a precursor gas furnace within a reaction chamber, and related methods
TWM597506U (en) Chemical vapor deposition apparatus with multi-zone injector block
CN110998793A (en) Implant assembly for epitaxial deposition process
TWI470672B (en) Direct liquid injection for halide vapor phase epitaxy systems and methods
TWI586830B (en) Deposition systems having access gates at desirable locations, and related methods
TWI612176B (en) Gas distribution apparatus for deposition system
CN113906157A (en) Porous inlet
US9644285B2 (en) Direct liquid injection for halide vapor phase epitaxy systems and methods
KR100782740B1 (en) Chemical vapor deposition apparatus
FR2979637A1 (en) Deposition system for semiconductor material on substrate in semiconductor device manufacture, has precursor gas flow path with section having serpentine configuration that provides laminar flow of precursor gases

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees