TW201251269A - Charging system with adaptive power management - Google Patents

Charging system with adaptive power management Download PDF

Info

Publication number
TW201251269A
TW201251269A TW101114662A TW101114662A TW201251269A TW 201251269 A TW201251269 A TW 201251269A TW 101114662 A TW101114662 A TW 101114662A TW 101114662 A TW101114662 A TW 101114662A TW 201251269 A TW201251269 A TW 201251269A
Authority
TW
Taiwan
Prior art keywords
current
voltage
value
input
power
Prior art date
Application number
TW101114662A
Other languages
Chinese (zh)
Inventor
wei-hong Qiu
xiao-zhou Zhou
Jun Liu
Bertram J Rodgers Iii
Original Assignee
Intersil Americas LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/421,836 external-priority patent/US20120235630A1/en
Application filed by Intersil Americas LLC filed Critical Intersil Americas LLC
Publication of TW201251269A publication Critical patent/TW201251269A/en

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

An embodiment of a charger may include an input, at least one switch having a first node coupled to a reference voltage, a current sensor coupled between the input and a second node of the at least one switch, an output coupled to a third node of the at least one switch, and a charge controller coupled to the input to determine an input voltage, to the current sensor to determine an input current and to control inputs of the at least one switch. The at least one switch may be responsive to control signals supplied by the charge controller to the control inputs thereof to control voltage and current at the output of the charger. The charge controller may be responsive to the input voltage and the input current to produce the control signals in a manner that maximizes electrical power drawn at the input.

Description

201251269 六、發明說明: 【發明所屬之技術領域】 本發明係關於充電系統,且特別係關於具有適應性電 源管理的充電系統。 優先權主張 本中請f為2〇12年3月15日提中的美國非臨時專利 申請案序號第13/421,836號的部分接續案並且主張下面專 利申請案的權利與優先權:2011年4月25日提申的美國臨 時專利申請案序號第61/478,575號、2〇12年2月Μ日提申 的美國臨時專利申請案序號第61/6〇4,226號、2〇12年3月 29曰提申的美國臨時專利申請案序號第61/617,6〇9號。本 文以引用的方式將前述每一專利申請案的揭示内容完整併 入0 【先前技術】 可攜式電子裝置(例如,智慧型電話、平板電腦、以及 膝上型電腦)都有用以供電給該裝置裡面的電子電路系統的 電池。此外,此等裝置亦可藉由使用所謂的AC轉接器而由 家用的交流(AC)電源來供電,該AC轉接器會插入牆壁中並 且將AC電源訊號轉換成直流(DC)訊號,用以供應所需要的 電力給該裝置。由該AC轉接器所提供的電流會被用來充電 "亥電子裝置的電池以及用以供電給該裝置的電子電路系 統。 ’、 一般來說’每一個電子裝置都會使用特別針對該裝置 4 201251269 所設計的專屬AC轉接器。舉例來說,電子裝置可能需要用 到5瓦(W)的功率’俾使得一第一 AC轉接器會在5伏特處 (V)提供1安培(A)的電流,用以在一規定的時間數額裡面來 充電該電子裝置的電池。倘若此電子裝置運用一額定功率 僅有2.5瓦而且僅能夠在5V處提供〇.5A之最大電流的第二 AC轉接器的話,那麼,這便可能會導致超載(〇verl〇ad)的情 形並且隨即造成s玄第二AC轉接器的停機(shutd〇wn)。因 此,每一個電子裝置都需要儘針對該裝置所設計之自己專 屬的AC轉接器。 在操作中,該AC轉接器所輸出之電流的絕大多數係在 該電子裝置中的電池正在被充電時來提供。舉例來說,倘 若該AC轉接器所輸出的電流為1A的話,那麼,其可能會 需要〇·〇5至0.1A來供電給該電子裝置中的電子電路系統, 而剩餘的0,9至〇.95Α則會被用來充電該電池。此情況僅存 在於該電池的電量非常低的時候;當該電池已經完全充電 或是接近完全充電時,從該AC轉接器處所獲取的實際電流 大小通常會是該電子中的t子電㈣統戶斤需要的功 率,換言之,在本範例中為〇.〇5至〇 1A。 ▲理想上,- AC轉接器或是其它輸入電源(例如,太陽 能板陣列)的操作會使得即使由該電子裝置放置在該轉接器 上的負載會產生變化’其仍可從該轉接器處取得最大數額 的能量。藉由最大化該AC轉接器所提供的功率的數額,該 電子裝置中的電池的充電時間便會極小化。因為操作該Μ 轉接器用以提供最大功率會確保可利用最大數額的電流來 201251269 充電該電池,所以 前述條件會成立。 【發明内容】 本發明的特色之—在 „ . 竹&之係一種充電器,其包括:_輸入; 至少一切換器,其具有— 破稱合至一參考電壓的第一節 點;一電流感測器,其會# 丹|破耦合在該輸入與該至少— 器的一第二節點之間;— 刀換 箱1出,其會被耦合至該至少一 換器的一第三節點;以月 ._ ^ 以及一充電控制器,其會被耦合至該 輸入並且會被配置成用以法 ^ , ^ r- 决疋一輸入電壓,被耦合至該電 流感測器並且會被配置成用 1取用以决疋一輸入電流,以及被耦 口至該至少-切換器的多個控制輸人,該至少—切換器會 響應於由該充電控制器所供應的多個控制訊號來控制其該 等控制輸人,以控制該充電器之輸出處的電壓與電流, 該充電控制器會被配置成以約略最大化在該輸入處所獲取 之電功率的方式響應於該輸入電壓與該輸入電流來產生該 等控制訊號。 本發明的另一特色係一種充電系統,其包括:一轉接 器’用以將AC電功率轉換成DC電功率,其中當由該轉接 器所產生的DC電流提高至一額定電流值以上時,由該轉接 器所產生的DC電壓會快速下降;一具有一功率輪入的電子 裝置,忒功率輸入會被耦合至至少一可充電電源並且被耦 合至至少一用以定義一系統負載的電路;以及一充電控制 單元,其具有:一輸入,其會被耦合至該轉接器;一輸出, 其會被耦合至該電子裝置的該功率輸入;一感測器,用以 201251269 感測由該轉接器所產生的DC電流並且產生一電流感測訊 號’以及切換電路系統,其會被耦合在該充電控制單元輸 入與輸出之間並且響應於由該充電控制單元所產生的多個 控制訊號’以便以可控制的方式從該轉接器處供應該DC電 壓與該DC電流給該充電控制單元,該充電控制單元會在該 電子裝置所需要的DC電流超過該額定電流時響應於由該 轉接器所產生的DC電壓並且響應於該電流訊號以約略最 大化由該轉接器所產生之DC電功率的方式來產生該等控 制訊號。 本發明的再另一種.特色係一種從一轉接器供應DC電 功率至一電子裝置的方法,該轉接器會將AC;電流與電壓轉 換成DC電流與電壓,其中當由該轉接器所產生的dc電流 提尚至一額定電流值以上時,由該轉接器所產生的DC電壓 會快速下降,該方法包括:監視由該AC轉接器所產生之 DC電壓與DC電流中的其中一者;以及倘若發生受監視的 DC電壓下降至一事先定義的電壓之下及受監視的電流 超過該額定電流中其中一者的話,以約略最大化由該轉接 器所供應之DC電功率的方式來適應性控制由該轉接器供 應至該電子裝置的DC電壓與Dc電流中至少其中一者的位 準。 【實施方式】 現在參考圖1 ’圖中所示的係根據本發明其中一實施例 之具有包含最大功率點追蹤的適應性電源管理的充電系統 201251269 1 〇的功能方塊圖。該充電系統1 〇包含一充電控制單元】2, 其會以可控制的方式供應由一外部電源所產生的DC電壓 Vout與電流Iout給一可充電電源和一電子系統或裝置中的一 或兩者。該外部電源係以習知的Ac轉接器16的形式來提 供,其會將由一 AC電源18所供應的交流(AC)電流與電壓 轉換成直流電流I0A與DC電壓vOA。該DC電壓V0A與電 流I〇A會「被輸入至」該充電控制單元12並且因而可能會 在本說明中被稱為輸入電壓與電流,而對應的功率(也就 是,P〇A=VOAxIOA)則會被稱為輸入功率。同樣地,Dc電壓 v0UT與電流ιουτ會從該充電控制單元12處被供應或是「被 輸出」,並且因而可能會在本說明中被稱為輸入電流與電 壓。該充電控制單元12的一輸入節點24會接收該dc電壓 V0A與電流I〇A’而DC電壓V〇UT與電流Ι〇υτ則會被供應在 該充電控制單元的一輸出節點26之上,如圖ι中所見。該 AC電源18彳旎係一種習知的住宅用或是商業用電氣設 施、或是一種習知的發電器、以及類似物。 …於—其中—實施例中,該充電控制單元12會被施行在(也 就是,安置在)一電子裝置u裡面;不過,於其它實施例中, 該充電控制單元12亦可能會與電子裝置14分離,也就是, 、矛該電子裝f 14分離的方式被安置及/或遠離該電子裝 置14。舉例來說’該電子裝置14係一可攜式電子裝置,例 如,膝上型或是筆記型電腦、平板電腦或是其它平板裝置、 手持式電子裝置、蜂巢式或是智慧型電話、以及類似物。 於替代的實施例中,該電子裝置14可能係非可播式電子 8 201251269 裝置。該電子装w + _ 卞褒置14包含會消耗電能的一或多個電氣電路 及/或子系統,而Β a防 且在圖1中,此等電氣電路或子系統會以 单一系統負载20 ± 來表示。因此,該系統負載20相當於電201251269 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a charging system, and more particularly to a charging system with adaptive power management. Priority Claims This is a partial continuation of US Non-Provisional Patent Application Serial No. 13/421,836, filed on March 15, 2002, and claims the rights and priority of the following patent applications: 2011 US Provisional Patent Application No. 61/478,575, dated April 25, 2015, US Provisional Patent Application No. 61/6〇4,226, 2〇12, 3 US Provisional Patent Application No. 61/617, 6〇9, which is filed on the 29th of the month. The disclosure of each of the aforementioned patent applications is hereby incorporated by reference in its entirety by reference in its entirety in the the the the the the the the the the the the the the the the the the the the the the The battery of the electronic circuit system inside the device. In addition, such devices can also be powered by a household AC (AC) power source by using a so-called AC adapter that plugs into the wall and converts the AC power signal into a direct current (DC) signal. Used to supply the required power to the device. The current supplied by the AC adapter is used to charge the battery of the electronic device and the electronic circuitry used to power the device. 'In general, every electronic device uses a dedicated AC adapter designed specifically for the device 4 201251269. For example, an electronic device may require 5 watts (W) of power '俾 such that a first AC adapter will provide 1 amp (A) of current at 5 volts (V) for a specified The amount of time is used to charge the battery of the electronic device. If the electronic device uses a second AC adapter with a rated power of only 2.5 watts and can only provide a maximum current of 〇5A at 5V, then this may result in an overload (〇verl〇ad) situation. And then caused the shutdown of the second AC adapter of s Xuan (shutd〇wn). Therefore, each electronic device requires its own dedicated AC adapter designed for the device. In operation, the majority of the current output by the AC adapter is provided while the battery in the electronic device is being charged. For example, if the current output by the AC adapter is 1A, then it may require 〇·〇5 to 0.1A to supply power to the electronic circuitry in the electronic device, while the remaining 0,9 to 〇.95Α will be used to charge the battery. This situation only exists when the battery is very low; when the battery is fully charged or nearly fully charged, the actual current drawn from the AC adapter will usually be the amount of electricity in the electron (4) The power required by the manager is, in other words, 〇.〇5 to 〇1A in this example. ▲ Ideally, the operation of an AC adapter or other input power source (eg, a solar panel array) would cause a load to change even if the electronic device is placed on the adapter. Get the maximum amount of energy at the device. By maximizing the amount of power provided by the AC adapter, the charging time of the battery in the electronic device is minimized. Since the operation of the 转接 Adapter to provide maximum power ensures that the maximum amount of current can be used to charge the battery in 201251269, the foregoing conditions will hold. SUMMARY OF THE INVENTION A feature of the present invention is: a bamboo & a charger comprising: an input; at least one switch having a first node broken into a reference voltage; a current a sensor that is coupled between the input and a second node of the at least one of the at least one of the at least one of the at least one of the at least one of the at least one of the third node; And a charge controller, which is coupled to the input and configured to be used to calculate an input voltage, coupled to the current sensor and configured to Using 1 for determining an input current, and a plurality of control inputs coupled to the at least-switch, the at least-switch is controlled in response to a plurality of control signals supplied by the charge controller The control inputs a voltage to control the voltage and current at the output of the charger, and the charge controller is configured to respond to the input voltage and the input current in a manner that approximately maximizes the electrical power acquired at the input To generate such control signals. Another feature of the present invention is a charging system comprising: an adapter for converting AC electrical power into DC electrical power, wherein when the DC current generated by the adapter is increased above a rated current value, The DC voltage generated by the adapter drops rapidly; an electronic device having a power wheel, the power input is coupled to at least one rechargeable power source and coupled to at least one circuit for defining a system load; And a charging control unit having: an input coupled to the adapter; an output coupled to the power input of the electronic device; a sensor for sensing 201251269 The DC current generated by the adapter generates a current sense signal 'and a switching circuit that is coupled between the charge control unit input and output and responsive to the plurality of control signals generated by the charge control unit 'to supply the DC voltage and the DC current from the adapter to the charging control unit in a controllable manner, the charging control unit being required by the electronic device The control signal is generated in response to the DC voltage generated by the adapter when the DC current exceeds the rated current and in response to the current signal to approximately maximize the DC electrical power generated by the adapter. Yet another feature is a method of supplying DC electrical power from an adapter to an electronic device that converts AC; current and voltage into DC current and voltage, wherein when generated by the adapter When the dc current is raised above a rated current value, the DC voltage generated by the adapter drops rapidly. The method includes: monitoring one of a DC voltage and a DC current generated by the AC adapter. And, in the event that a monitored DC voltage drops below a predefined voltage and the monitored current exceeds one of the rated currents, to approximately maximize the DC power supplied by the adapter To adaptively control the level of at least one of a DC voltage and a DC current supplied to the electronic device by the adapter. [Embodiment] Referring now to FIG. 1 ' is a functional block diagram of a charging system 201251269 1 具有 having adaptive power management including maximum power point tracking according to an embodiment of the present invention. The charging system 1 includes a charging control unit 2, which supplies a DC voltage Vout and a current Iout generated by an external power source to one or both of a rechargeable power source and an electronic system or device in a controllable manner. By. The external power source is provided in the form of a conventional Ac-adapter 16 that converts alternating current (AC) current and voltage supplied by an AC power source 18 into a direct current I0A and a DC voltage vOA. The DC voltage V0A and the current I 〇 A are "input" to the charge control unit 12 and thus may be referred to as input voltage and current in the present description, and the corresponding power (ie, P 〇 A = VOAxIOA) It will be called input power. Similarly, the Dc voltage vOUT and the current ιουτ are supplied or "output" from the charge control unit 12, and thus may be referred to as input current and voltage in this specification. An input node 24 of the charging control unit 12 receives the dc voltage V0A and the current I〇A', and the DC voltage V〇UT and current Ι〇υτ are supplied to an output node 26 of the charging control unit. As seen in Figure ι. The AC power source 18 is a conventional residential or commercial electrical installation, or a conventional power generator, and the like. In the embodiment, the charging control unit 12 is implemented (that is, placed in) an electronic device u; however, in other embodiments, the charging control unit 12 may also be associated with the electronic device. 14 is separated, that is, the spear is placed in a manner that the electronic device f 14 is separated and/or remote from the electronic device 14. For example, the electronic device 14 is a portable electronic device, such as a laptop or a notebook computer, a tablet or other tablet device, a handheld electronic device, a cellular or smart phone, and the like. Things. In an alternate embodiment, the electronic device 14 may be a non-playable electronic 8 201251269 device. The electronic device w+_device 14 includes one or more electrical circuits and/or subsystems that consume electrical energy, and in FIG. 1, such electrical circuits or subsystems are loaded with a single system 20 ± to indicate. Therefore, the system load 20 is equivalent to electricity

子電路系統,例如, «Ε 4m. -V Μ M A* A ·"、頁不盗、觸控式螢幕、無線網路(舉例 來說 ’ AV i - FI) 士 在 口 〇 ^轉接盗、…依此類推,其中含有該系統負載的 電子裝置14係-智慧型電話、平板電腦、膝上型電腦、或 是其它雷同的可攜式電子裝置。 該電子裝置14還包含—可充電電源22,其可能係或者 包含-或多個習知的可再充電電池、一或多個電容器、以 及類似物在操作中,該AC轉接器16會供應該DC電壓 v〇A與電流ι0Α給該充電控制單元12,接著,該充電控制單 το 12可刼作用以於必要時從該處產生被供應至該系統負載 2〇及被供應至該可充電電源22的DC電壓V〇A與電流I〇A。 该充電控制單元12的一輸入節點24會接收該輸入電廢I 與电训· I〇a ’它們在圖1中亦被表示成輸入電壓v丨丨n與輸入 電流IiN。當該AC轉接器16和該充電控制單元12解除耦 合時,β亥可充電電源22會透過二極體D i來供應該系統負 載20所需要的DC電壓V0lJT與DC電流Ιουτ。 «亥充電控制單元12包含一適應性充電控制器2 8以及 DC至DC轉換器29。在圖1的實施例中’該DC至DC 轉換器29係一降壓轉換器(也就是,具有降壓轉換器拓樸) 並且包含具有功率M〇s電晶體型式的切換器Si與S2、一 電感器L、以及一電容器c。該適應性充電控制器28會分 別供應互補的脈衝寬度調變控制訊號pwMi與pWMV給該 201251269 等切換器S 1肖S2。熟習本技術的人士便非常瞭解該降壓 - DC至DC轉換器29的操作,因此,為簡化起見並且避免混 清本文中所述之本發明的實施例’現在將僅扼要說明此操 作。在操作中,該適應性充電控制器28會產生該等互補的 脈衝宽度調變控制訊號PWMI與 PWMV用以交替開啟與關 閉該等切換器81與S2,以便產生所希的輸出電壓V。^。該 等控制訊號PWMI與PWMV為互補,從而以互補的方式來 操作該等切換器S1與S2e其意義為當控制訊號pwMi開啟 切換器si時,那麼,控制訊號PWMV便會關閉切換器s2; 相反地,當控制訊號PWMI關閉切換器S1時,那麼,控制 訊號PWMV便會開啟切換器S2。該等控制訊號pwMi與 PWMV為脈衝寬度調變訊號,它們會控制該轉換器29,用 以產生被施加至該系統負載20的所希輸出電壓。當該 切換器S1被開啟(turned ON)時,能量會被儲存在該電感器 L之中並且被供應至該負載20。相反地,當該切換器s 1被 關閉(turned 0FF)而切換器S2被開啟時,電感器[會經由 切換器S2被耦合跨越該負載,而被儲存在該電感器L之中 的旎量則會被傳輸至該負載20。該等PWMI訊號與pWMV 訊號會有一相關聯的週期T,而且此等訊號的責任循環D 會決定輸出電壓v0UT的數值,其中熟習本技術的人士便會 明白’責任循環(Duty cycle)的定義為切換器S1被開啟的時 間持續長度(T0N)除以週期T(D = T0N /T)。Subcircuit system, for example, «Ε 4m. -V Μ MA* A ·", page not stolen, touch screen, wireless network (for example 'AV i - FI) And so on, the electronic device 14 containing the system load is a smart phone, a tablet, a laptop, or other similar portable electronic device. The electronic device 14 further includes a rechargeable power source 22, which may or may include - or a plurality of conventional rechargeable batteries, one or more capacitors, and the like, in operation, the AC adapter 16 will provide The charge control unit 12 should be applied to the DC voltage v〇A and the current ι0, and then the charge control unit το 12 can be actuated from where it is generated to be supplied to the system load 2 and supplied to the chargeable if necessary. The DC voltage V 〇 A of the power source 22 and the current I 〇 A. An input node 24 of the charge control unit 12 receives the input electrical waste I and the electrical train I 〇 a ' which are also shown in Figure 1 as the input voltage v 丨丨 n and the input current IiN. When the AC adapter 16 and the charging control unit 12 are decoupled, the beta rechargeable power source 22 supplies the DC voltage V0lJT and DC current Ιουτ required by the system load 20 through the diode D i . The «Hai charging control unit 12 includes an adaptive charging controller 28 and a DC to DC converter 29. In the embodiment of Fig. 1, the DC to DC converter 29 is a buck converter (i.e., has a buck converter topology) and includes switches Si and S2 having a power M〇s transistor type. An inductor L and a capacitor c. The adaptive charging controller 28 supplies complementary pulse width modulation control signals pwMi and pWMV to the switch S 1 such as 201251269. The operation of the buck-DC to DC converter 29 is well known to those skilled in the art, and therefore, for the sake of brevity and avoidance of confusing the embodiments of the invention described herein, this operation will now be only briefly described. In operation, the adaptive charge controller 28 generates the complementary pulse width modulation control signals PWMI and PWMV for alternately turning the switches 81 and S2 on and off to produce a desired output voltage V. ^. The control signals PWMI and PWMV are complementary, so that the switches S1 and S2e are operated in a complementary manner. The meaning is that when the control signal pwMi turns on the switch si, then the control signal PWMV turns off the switch s2; Ground, when the control signal PWMI turns off the switch S1, then the control signal PWMV will turn on the switch S2. The control signals pwMi and PWMV are pulse width modulation signals which control the converter 29 for generating the desired output voltage applied to the system load 20. When the switch S1 is turned ON, energy is stored in the inductor L and supplied to the load 20. Conversely, when the switch s 1 is turned off (turned 0FF) and the switch S2 is turned on, the inductor [is coupled via the switch S2 across the load and is stored in the inductor L It will be transferred to the load 20. The PWMI signals and the pWMV signals have an associated period T, and the duty cycle D of these signals determines the value of the output voltage v0UT, and those skilled in the art will understand that the duty cycle is defined as The duration of the switch S1 is turned on (T0N) divided by the period T (D = T0N /T).

s亥適應性充電控制器2 8會感測數個不同的訊號並且運 用此等經感測的訊號來控制該等已產生的控制訊號pwMI 10 201251269 與PWMV的責任循環D ’以便產生所希的輸出電壓ν〇υτ與 電流Ιουτ «該充電控制單元12進一步包含一由一輸入電流 感測電阻器r1n與差動放大器3〇所構成的輸入電流感測 器’用以感測該充電控制單元12的輸入電流Iin,並且請注 意’如圖1中所見,該輸入電流IlN也是由該AC轉接器16 所提供的輸出電流I〇A。該差動放大器3〇的輸出為電壓 VlIN其具有和该輸入電流IIN成正比的數值。該充電控制 單元12還會感測輸入電壓ViN。於替代的實施例中,可能 會使用一或多個其它習知的電流及/或電壓感測器來決定該 輸入電流IIN與輸入電壓Vl>^該充電控制單元12還進一步 包含一由一電阻器尺〇1;1>與一差動放大器32所構成的輸出電 流感測器。放大器32的輸出為電壓VI0UT,其會與該充電 控制單元12所供應的輸出電流ι〇υτ成正比。於替代的實施 例中,可能會使用一或多個其它習知的電流及/或電壓感測 器來分別決定該充電控制單元12的輸出電流1〇的與電壓 ν〇υτ。於任何情況中,該充電控制單元12皆會感測輸入電 壓V丨Ν與輸入電流Im以及輸出電壓ν〇υτ與輸出電流。 在圖1的實施例中,該充電控制單元12還會控制一功 率金屬氧化物半導體(M〇s)電晶體τ,用以在該可充電電源 22接近完全放電時限制流到此電源的充電電流【a的流 動。當該可充電電源22的電壓非常低時(也就是,當該可充 電電源接近完全放電時),該充電控制單元12會在線性模式 中控制該電晶體T,俾使得其上有輸出電壓V0UT的輸出節 點所抓出的充電電流Ich不會導致此輸出電壓下降或是「驟 201251269 降」太多 旦該可充電電源22上的電壓提高至更接近該 輸出電壓^晰之數值的位準時(舉例來說,當該可充電電源 勺電壓提高至其操作數值的約75。,“夺),該充電控制單元12 便會將該電晶體T —八叫沾 70王開啟’以便允許以最大的充電電流The adaptive charging controller 28 will sense a number of different signals and use the sensed signals to control the generated control signals pwMI 10 201251269 and the duty cycle D of the PWMV to generate the desired The output voltage ν〇υτ and the current Ιουτ «The charging control unit 12 further includes an input current sensor ' configured by an input current sensing resistor r1n and a differential amplifier 3A for sensing the charging control unit 12 The input current Iin, and please note that 'as seen in Figure 1, the input current I1N is also the output current I 〇 A provided by the AC adapter 16. The output of the differential amplifier 3A is a voltage VlIN which has a value proportional to the input current IIN. The charge control unit 12 also senses the input voltage ViN. In an alternative embodiment, one or more other conventional current and/or voltage sensors may be used to determine the input current IIN and the input voltage V1. The charging control unit 12 further includes a resistor. An output current sensor composed of a differential amplifier 32 and a scale amplifier 1; The output of amplifier 32 is voltage VIOUT which is proportional to the output current ι 〇υ τ supplied by charge control unit 12. In an alternate embodiment, one or more other conventional current and/or voltage sensors may be used to determine the voltage ν 〇υ τ of the output current 1 该 of the charge control unit 12, respectively. In any case, the charge control unit 12 senses the input voltage V 丨Ν and the input current Im and the output voltage ν 〇υ τ and the output current. In the embodiment of FIG. 1, the charge control unit 12 also controls a power metal oxide semiconductor (M〇s) transistor τ for limiting the charging to the power source when the rechargeable power source 22 is nearly fully discharged. Current [a flow. When the voltage of the rechargeable power source 22 is very low (that is, when the rechargeable power source is nearly fully discharged), the charging control unit 12 controls the transistor T in a linear mode such that it has an output voltage VOUT thereon. The charging current Ich captured by the output node does not cause the output voltage to drop or "Step 201251269 drops" too much. When the voltage on the rechargeable power source 22 increases to a level closer to the value of the output voltage ( For example, when the voltage of the rechargeable power supply spoon is increased to about 75 of its operational value, the charging control unit 12 will turn on the transistor T-eight-hook 70 king to allow for maximum recharging current

Ich來充電該可充電電源22。 在圖1的實施例中,該Dc至Dc轉換器29雖然具有 降壓轉換器拓樸;不過,在其它實施例中亦可能運用其它 才樸舉例來說,在本發明的替代實施例中,該DC至 ,換器具有降壓·升壓拓樸 '升壓拓樸、或是Μ拓樸、或 疋其匕〇且的拓樸。於此等替代實施例中熟習本技術的 人士便會明白’該適應性充電控制器28會操作用以產生控 制《亥DC至DC轉換器29之操作所需要的控制訊號。Ich is used to charge the rechargeable power source 22. In the embodiment of FIG. 1, the Dc to Dc converter 29 has a buck converter topology; however, other embodiments may be utilized in other embodiments, in an alternative embodiment of the present invention, The DC to, the converter has a buck-boost topology, a boost topology, or a topology, or a topology. Those skilled in the art in this alternative embodiment will appreciate that the adaptive charge controller 28 will operate to generate the control signals needed to control the operation of the DC to DC converter 29.

【OUT 見在參考圖2 ’此圖所示的係、圖1之適應性充電控制器 28的更詳細功能方塊圖。於圖2中所示的實施例中,該適 應性充電控制器28包含-脈衝寬度調變(pWM)控制器4〇, 其會從數個模式控制模组42至5G處接收多個控制訊號並 且產生該等脈衝寬度調變控制訊號pwMI與pwMv,用以 控制由該充電控制單元12所供應之已產生的輸出電流^ 與輸出電壓v0UT。該PWM控制器4〇還會產生控制訊號 PWMC’用以控制該電晶體了的操作,從而控制輸出電流 中被提供作為流到可充電電源22的充電電流Ich的數 額或是分額’ ϋ且更明確地說,用以在該可充電電源上的 電壓接近完全放電時限制此充電電流。 在圖中所示的實施例中,該等模式控制模組42至50 12 201251269 包含:恆定電壓(CV)控制模組42、恆定電流(cc)控制模組 44、涓流充電(TRjckle_charge,TR)控制模組46、靜態功率 管理(Static-Power-Management,SPPM)控制模組 48、以及 受控的充電速率(也就是,「消流」)來充電該可充電^源 22的控制訊號PWMI、PWMV。[OUT See the diagram shown in Figure 2, a more detailed functional block diagram of the adaptive charge controller 28 of Figure 1. In the embodiment shown in FIG. 2, the adaptive charge controller 28 includes a pulse width modulation (pWM) controller 4 that receives a plurality of control signals from a plurality of mode control modules 42 to 5G. And generating the pulse width modulation control signals pwMI and pwMv for controlling the generated output current ^ and the output voltage v0UT supplied by the charging control unit 12. The PWM controller 4 also generates a control signal PWMC' for controlling the operation of the transistor, thereby controlling the amount or the amount of the output current that is supplied as the charging current Ich flowing to the rechargeable power source 22. More specifically, the charging current is limited when the voltage on the rechargeable power source approaches full discharge. In the embodiment shown in the figures, the mode control modules 42 to 50 12 201251269 include: a constant voltage (CV) control module 42, a constant current (cc) control module 44, and trickle charging (TRjckle_charge, TR) a control module 46, a Static-Power-Management (SPPM) control module 48, and a controlled charging rate (ie, "flow-out") to charge the control signal PWMI of the rechargeable source 22 , PWMV.

源的電壓大於用以正確供電給該系統負載2〇 適應性功率管理(APM)控制模組50 ^該適應性充電控制器 28會操作在複數個不同的模式中,每一種模式皆對應並且 受控於該等模式控制模組42至5〇中一不同的模式控制模 組。熟習本技術的人士便會瞭解一 DC至Dc轉換器在該等 恆定電壓cv模式、桓定電流cc模式1流TR模式、以 及靜態功率管理(SPPM)模式中每一者之中的操作,因此, 為簡化起見,本文中將不作詳細說明。簡單地說,該cv控 制模組42會控制該PWM控制器4〇的操作,俾使得該等= 制訊號PWMI、PWMV會讓該充電控制單元12在一恆定的 輸出電壓v0UT處產生該输出電流Ι〇υτ。該cc控制模組44 會控制該PWM控制器40的操作,俾使得該等控制訊號 PWMI、PWMV會讓該充電控制單& 12產生一怪定的輸出 電流W。該渴流充電TR控制模'组46會控制該控制 器40的操作,用以產生會讓該充電控制單元12以奸、 下垂」。熟習本技術的 ’只要跨越該可充電電 匕負載20所需要的最小 13 201251269 臨界值-Γ | Λ π充電電源22便會被連接至輸出節點26(圖丨)。 、 '式°亥可充電電源22會供應該輸出電流Ιουτ的一部 治並且倘右在該系統負載20中發生輸出電流Ι〇υτ的需求 增加至該AC轉接器16所能夠供應之數額以上的特定種類 暫態條件的話(也就是,大於輸人電流ΙΙΝ),那麼,該可充 電電源22與Ac轉接器〗6便會聯合操作,以便供應該必要 的輸出電流。當跨越該可充電電源22的電壓小於用以正確 供電》亥系統負載2 〇所需要的最小臨界值時該可充電電 源便會與該輸出節點26隔離(圖υ並且透過該丁尺控制模組 46在「涓流」模式之中被充電。 當輸入電壓V1N與輸入電流IlN的特定操作條件存在 時’ ΑΡΜ控制模組50便會控制該pwm控制器40,用以產 生控制訊號PWMI、PWMV。更明確地說,ΑρΜ控制模組 50會在該輸入電壓VlN下降至一電壓臨界值以下時或是在 該輸入電流I IN超過一電流臨界值時在APM模式之中控制 該PWM控制器40,下文將作更詳細的說明。舉例來說,當 該系統負載2 0與該可充電電源2 2的組合所需要的輸出電 流Ιουτ超過可從該AC轉接器16處所取得的輸入電流IlN 時(也就疋’所需要的輸入電流I1N超過能夠由該AC轉接器 16來供應的最大輸出電流I〇A),此情況便成立。熟習本技 術的人士便會明白’輸入電壓VIN中的此下降表示輸入電流 I1N已經變得很大’使得輸入電壓已經開始「崩跌」。The source voltage is greater than the correct power supply to the system load. 2 The adaptive power management (APM) control module 50. The adaptive charge controller 28 operates in a plurality of different modes, each of which corresponds to and is subject to Controlling a different mode control module of the mode control modules 42 to 5 . Those skilled in the art will appreciate the operation of a DC to Dc converter in each of the constant voltage cv mode, the set current cc mode 1 stream TR mode, and the static power management (SPPM) mode, thus For the sake of simplicity, it will not be described in detail in this article. Briefly, the cv control module 42 controls the operation of the PWM controller 4〇 such that the PWM signals PWMI, PWMV cause the charging control unit 12 to generate the output current at a constant output voltage v0UT. Ι〇υτ. The cc control module 44 controls the operation of the PWM controller 40 such that the control signals PWMI, PWMV cause the charge control unit & 12 to generate a strange output current W. The thirst charging TR control mode 'group 46 controls the operation of the controller 40 to cause the charging control unit 12 to sneak and sag." The minimum required for the technology to cross the rechargeable electrical load 20 is 13 201251269. The critical value - Γ | Λ π charging power supply 22 is connected to the output node 26 (Fig. 。). The 'type of the rechargeable power supply 22 will supply a part of the output current Ιουτ and if the right output current Ι〇υτ occurs in the system load 20 increases to the amount that the AC adapter 16 can supply The particular type of transient condition (i.e., greater than the input current ΙΙΝ), then the rechargeable power source 22 and the Ac Adapter 6 operate in conjunction to supply the necessary output current. The rechargeable power source is isolated from the output node 26 when the voltage across the rechargeable power source 22 is less than the minimum threshold required to properly power the system load 2 (Fig. 透过 and through the scale control module 46 is charged in the "turbulent" mode. When the specific operating conditions of the input voltage V1N and the input current I1N are present, the control module 50 controls the pwm controller 40 for generating the control signals PWMI, PWMV. More specifically, the ΜρΜ control module 50 controls the PWM controller 40 in the APM mode when the input voltage VlN falls below a voltage threshold or when the input current I IN exceeds a current threshold. This will be explained in more detail below. For example, when the output current Ιουτ required for the combination of the system load 20 and the rechargeable power source 2 2 exceeds the input current I1N that can be taken from the AC adapter 16 ( That is, the required input current I1N exceeds the maximum output current I 〇 A that can be supplied by the AC adapter 16. This is true. Those skilled in the art will understand the 'input voltage VIN. This drop in the middle indicates that the input current I1N has become very large' such that the input voltage has begun to "crash".

圖3所示的係圖2之APM控制模組5〇的其中一實施 例的更詳細功能方塊圖。在圖中所示的實施例中,該APM 201251269 控制模組50包含一最大功率點追蹤(mppt)模組52,其會接 收輸入電壓VlN(圖1)與輸入電流訊號VnN(圖丨)。如下文_ 的更詳細說明,該ΜΡΡΤ模組52可操作用以響應於輪入電 壓Vin與輸入電流ΙΙΝ而產生一參考控制訊號Vr。_輸入動 態功率管理(Input Dynamic Power Management,IDPM)控制 模組54可以習知的方式響應於該參考控制訊號Vr以及響 應於該輸出電流訊號VI0UT與該輸出電壓νουτ之中的一或 多者來控制該PWM控制器40(圖2),用以產生控制訊號 PWMI、PWMV、以及PWMC而使得輸出電流1〇1]7會優先送 往該系統負載20並且將剩餘的輸出電流Ι〇υτ當作充電電流 Ich來充電該可充電電源22。熟習本技術的人士便會明白, 該IDPM控制模組54還可操作用以響應於該輸入電壓v1N 下降至一臨界值VINDpM以下而降低該輸入電流Iin,從而 防止該輸入電壓更進一步地下降。 圖4所示的係圖3的MPPT模組52的其中一實施例的 方塊圖。在圖中所示的實施例中’該MPPT模組52包含一 比較器58,它的其中一個輸入會接收該輸入電壓Vin而另 一個輸入則接收一輸入臨界值VE»該輸入臨界值γΕ對應於 該AC轉接器16(圊1)的輸出電壓v0A,其在前面的討論中 為圖1的充電控制單元12的輸入電壓VlN。因此,比較器 58會判斷該輸入電壓vIN是否已經下降至該輸入臨界值VE 以下;同樣如上面的討論,當AC轉接器16的輸出電壓V〇a (也就是’輸入電壓VlN)已經下降至該輸入臨界值vE以下 時’ IDPM控制模組54(圖3)便會被啟動。 15 201251269 圖中所示的比較器58會被設計成具有特定數額的磁 滯,俾使得該比較器58會在該輸入電壓Vin(也就是,來自 AC轉接器16的輸出電壓V〇A)下降至該輸入臨界值Ve以下 時產生一有作用的致能訊號E ;相反地,當該輸入電壓V… 上升至大於該輸入臨界值vE與磁滯電壓Vh的總和時" (V1N>VE + VH)時,該比較器58便會產生一不作用的致能訊 號E。或者,該比較器58可能會被配置成用以在表示該輸 入電流1^之數值的輸入電流訊號VllN上升至該輸入臨界值 VE以上時產生一有作用的致能訊號E;並且在該輸入電流 訊號vIIN下降至小於該輸入臨界值Ve與磁滯電壓vh之差 值的電壓時將致能訊號E驅動為不作用。於此情況中,該 輸入臨界值vE與磁滞電壓Vh和來自Ac轉接器16的電流 I〇A/Iin相關的電流臨界值有關;而在前面的情況中,此兩者 皆與該AC轉接器的輸出電壓v〇A相關的電壓臨界值有關。 MPPT模組52還進-步包含—適應性增益與遽波器電 路60,其會在其中一輸入處接收該輸入電壓VH(也就是, 對應於該AC轉接器16的輸出電壓)並且產生一經調整的電 壓vA作為輸出β該經調整的電壓Va會被提供至一習知的 類比至數位轉換器(ADC)電路62的其中一個輸入。另一個 適應性增益與濾波器電路64會在其中一輸入處接收該輸入 電流訊號v11N(也就是,數值對應於該Ac轉接器16之輸出 電流I〇A的電壓訊號)並且產生一經調整的電流訊號Via作 為輸出,在圖中,其係一數值對應於經過該適應性增益與 濾波器電路64調整之AC轉接器16的輸出電流的電壓訊 16 201251269 號。該經調整的電流訊號VIA會被提供至該adc電路62的 另一輸入。該ADC電路62可以習知的方式操作用以將該 等經調整的類比訊號VA與Via轉換成對應的數位訊號Vad 與ViAD ’匕們會被知供在该ADC電路62之分離的個別輸 出上。5亥ADC電路62的yAD輸出接著會被提供至一習知 的數位乘法器電路66的其中一個輸入並且還會被提供至該 適應性增益與遽波器電路60的另一個輸入。該ADC電路 62的VIAD輸出會被提供至該數位乘法器電路66的另一個 輸入並且還會被提供至該適應性增益與濾波器電路64的另 一個輸入。於其中一解釋性的實施例中,該ADC電路62 係一 10位元類比至數位轉換器,因此,全部計數範圍為 1024(舉例來說’ 21Q);不過,該ADC電路亦可能有更多或 較少位元的解析度。 .該ADC電路62會接收由比較器5 8所產生的致能訊號 E ’所以’該ADC電路62可操作用以在該致能訊號e被啟 動時(舉例來說’當輸入電壓V1N的數值充分地小於臨界值 VE的數值時或是當輸入電流IIN的數值充分地大於臨界值 VE的數值時)將類比訊號vA、VlA轉換成數位訊號。相反地, 當該致能訊號E被取消時(舉例來說,當輸入電壓vIN的數 值充分地大於vE的數值時或是當輸入電流iin的數值充分 地小於VE的數值時),該ADC電路62便會被禁能並且因而 無法轉換該等類比訊號VA、VIA。於此等情況中,該APM 控制模組50(圖3)的輸出不會影響該適應性充電控制器 28(圖1)的操作;因為該適應性充電控制器於此情況中係操 17 201251269 作在由其它控制模組42至48(圖2)中其中一者所控制的模 式之中。該ADC電路62的輸出於此等情況下可能因而會 被设定成一内定數值,其會導致來自該Μρρτ模組52的輸 出Vr對s亥IDPJV[控制模組54的操作沒有任何的影響及/或 其會導致該IDPM控制模組54的輪出對該適應性充電控制 器2 8的操作沒有任何的影響。 圖中所示的每一個適應性增益與濾波器電路6〇、Μ的 濾波器部分係被提供用以移除可能出現在類比輸入訊號 VIN與VnN上的雜訊。就此方面來說,每—個適應性增益與 遽波器電路60、64於該ΜΡΡΤ模組52的其中一實施例中 皆係一習知的低通濾波器。於其它實施例中,該等適應性 增益與遽波器電路60、64可能係其它已知類型的訊號滤波 電路。該等經過濾波的類比訊號Vin與VnN在本文中可分 別被稱為f(vin)與f(viin) ’並且對應於該等電路6〇、64對 此等訊號套用增益之前的經過濾波的類比訊號。 圖中所示的每一個適應性增益與濾波器電路60、64的 適應性增益部分會被配置成用以對該等經濾波的類比輸入 訊號f(vin)與F(VlIN)套用(舉例來說’當作一乘法器)適應性 決定增益,俾使得每一個所生成之經調整的類比訊號與 V1A的數值會落在一由事先定義的低數值與高數值所定義 的視窗裡面。為達解釋該等適應性增益與濾波器電路60、 64之操作的目的,由適應性增益與濾波器電路6〇套用至經 濾波的類比訊號F(Vin)的增益在本文中會表示為G6〇,而由 適應性增益與渡波器電路64套用至經遽波的類比訊號 18 201251269 f(v„n)的增益在本文中則會表示為G“。因此,根據此等表 示符 ’ VA= g60* F(VIN)而 νΙΑ= G64* f(viin)。 圖中所示的每一個該等適應性增益與濾波器電路60、 64會被設計成用以比較該ADC電路62的個別輸出與該等 事先定義的低數值與高數值,並且用以在倘若該adc電路 62的個別輸出的數值大於該事先定義的高數值的話降低其 增益的數值以及用以在倘若g ADC電路62的個別輸出的 數值小於該事先定義的低數值的話提高其增益的數值。應 該瞭解的係,用於該適應性增益與錢器電路6()的該等低 數值與高數值中的-或兩者可能和用於該適應性增益與據 波器電路64的該等低數值與高數值相同或不相同,而且^ 各種.實施财,可以各料同的方絲選擇此等低數值盘 尚數值。應該進-步瞭解的係’該等電路6Q、64可能會被 配置成用以提高或降低其個別增益值相同或不相同的數 額’而且在每一個電路裡面,被提高的增益的數額可能會 與破降低的增益的數額相同或不相同。在該Μρρτ模植η 之不同實施例的應用中,該等電路6〇、64中任一者或兩者 提高及/或降低其個別增益值的數額可能並*相同/ 於該等適應性增益與濾波器電路 部分的其中—解釋性範例中,每電64的適應性增益 肝㈣軌财# —個電路60、64的事先定 義的低數值為該ADC電路62之全邻銘囹α外a 王〇P範圍(也就是,該ADC 電路02的最大計數值)的25%, . 向母—個電路60、64的事 k義的高數值為該ADC電路62之全部範圍的75%,而 ,-個增益值G6。與G64被提高或降低的數額則為目前增益 19 201251269 值的1/2。以1(M立元的ADC電路62為範例,此就電路 62的全部範圍為1〇24。所以,事先定義的低數值為 7·25*1〇24)=256 ’而事先定義的高數值為 (〇.75*1G24)=768。於適應性增益㈣、波H電路60、64的此 範例施行方式中,每—個電路6Q、64因而會藉由分別將^ 與V1A的計數值和256及768作比較而以相同的方式來操 作mA的計數值小於256的話,那麼,增益值‘便 會增倍(舉例來說,g60=2*G6。);而且倘若〜的計數值小於 256的治,那麼,增益值G“便同樣會增倍(舉例來說, G64=2*G64)。取而代之的係,倘若Va的計數值大於768的 話’那麼,增益值Gw便會減半(舉例來說,‘ =(}6〇/2);而 且倘若的計數值大於768的話,那麼,增益值&便同 樣會減半(舉例來說,g64=G64/2)。取而代之的係,倘若計數 值VA或ViA介於256與768之間的話,那麼,對應的增益 值Gw或Gw便分別不會改變。此過程會持續進行直到 與V1A兩者皆分別介於該等事先定義的低數值與高數值(舉 例來說,256與768)之間為止。應該瞭解的係,此特殊施行 方式僅係提供作為範例,而不應該被視為有限制意義。 數位乘法器電路66可操作用以相乘來自該ADC電路 62的該等數位訊號Vad與Vmd,從而用以產生一輸入功率 PIN=VAD*V1AD ’其代表被圖!的充電控制單元12所收到的 電功率(也就是,由圖1的AC轉接器16所提供的電功率 輸入功率PIN會被提供至一儲存與比較電路68,其包含一或 多個記憶體暫存器(圖4中並未顯示),在該等記憶體暫存器 20 201251269 之中儲存著4輸入功率PIN的最近數值。該儲存與比較電路 68會進一步比較該輸入功率Pin的目前數值和輸入功率pm 的先前已儲存數值。該儲存與比較電路68還會以輸入功率Figure 3 is a more detailed functional block diagram of one of the embodiments of the APM control module 5A of Figure 2. In the embodiment shown in the figures, the APM 201251269 control module 50 includes a maximum power point tracking (mppt) module 52 that receives an input voltage VlN (Fig. 1) and an input current signal VnN (Fig. 1). As described in more detail below, the ΜΡΡΤ module 52 is operable to generate a reference control signal Vr in response to the wheeling voltage Vin and the input current ΙΙΝ. The input dynamic power management (IDPM) control module 54 can respond to the reference control signal Vr and to one or more of the output current signal VIOUT and the output voltage νουτ in a conventional manner. The PWM controller 40 (FIG. 2) is controlled to generate control signals PWMI, PWMV, and PWMC such that the output current 1〇1]7 is preferentially sent to the system load 20 and the remaining output current Ι〇υτ is treated as The charging current Ich is used to charge the rechargeable power source 22. Those skilled in the art will appreciate that the IDPM control module 54 is also operative to reduce the input current Iin in response to the input voltage v1N dropping below a threshold VINDpM, thereby preventing the input voltage from dropping further. 4 is a block diagram of one embodiment of the MPPT module 52 of FIG. In the embodiment shown in the figures, the MPPT module 52 includes a comparator 58, one of which receives the input voltage Vin and the other input receives an input threshold VE»the input threshold γΕ The output voltage v0A of the AC adapter 16 (圊1), which in the foregoing discussion is the input voltage V1N of the charge control unit 12 of FIG. Therefore, the comparator 58 determines whether the input voltage vIN has fallen below the input threshold VE; as also discussed above, when the output voltage V〇a of the AC adapter 16 (ie, the 'input voltage VlN' has decreased) By the time the input threshold vE is below, the IDPM control module 54 (Fig. 3) will be activated. 15 201251269 The comparator 58 shown in the figure will be designed to have a specific amount of hysteresis such that the comparator 58 will be at the input voltage Vin (i.e., the output voltage V〇A from the AC adapter 16). When it falls below the input threshold value Ve, a functioning enable signal E is generated; conversely, when the input voltage V... rises to be greater than the sum of the input threshold value vE and the hysteresis voltage Vh"(V1N>VE When + VH), the comparator 58 generates an inactive signal E. Alternatively, the comparator 58 may be configured to generate a useful enable signal E when the input current signal V11N indicating the value of the input current 1^ rises above the input threshold VE; and at the input When the current signal vIIN drops to a voltage smaller than the difference between the input threshold value Ve and the hysteresis voltage vh, the enable signal E is driven to be inactive. In this case, the input threshold vE is related to the hysteresis voltage Vh and the current threshold associated with the current I 〇 A / Iin from the Ac Adapter 16; in the former case, both are associated with the AC The output voltage of the adapter, v〇A, is related to the voltage threshold. The MPPT module 52 further includes an adaptive gain and chopper circuit 60 that receives the input voltage VH at one of the inputs (i.e., corresponds to the output voltage of the AC adapter 16) and generates Once the adjusted voltage vA is used as the output β, the adjusted voltage Va is provided to one of the analog-to-digital converter (ADC) circuits 62. Another adaptive gain and filter circuit 64 receives the input current signal v11N at one of the inputs (i.e., the value corresponds to the voltage signal of the output current I 〇 A of the Ac Adapter 16) and produces an adjusted The current signal Via is used as an output, and in the figure, a value corresponds to the voltage signal 16 201251269 of the output current of the AC adapter 16 adjusted by the adaptive gain and filter circuit 64. The adjusted current signal VIA is provided to the other input of the adc circuit 62. The ADC circuit 62 can be operated in a conventional manner for converting the adjusted analog signals VA and Via into corresponding digital signals Vad and ViAD 'which will be known for separate outputs on the ADC circuit 62. . The yAD output of the 5H ADC circuit 62 is then provided to one of the inputs of a conventional digital multiplier circuit 66 and is also provided to the other input of the adaptive gain and chopper circuit 60. The VIAD output of the ADC circuit 62 is provided to the other input of the digital multiplier circuit 66 and is also provided to the other input of the adaptive gain and filter circuit 64. In one illustrative embodiment, the ADC circuit 62 is a 10-bit analog to digital converter, so the total count range is 1024 (for example, '21Q); however, the ADC circuit may have more Or the resolution of fewer bits. The ADC circuit 62 receives the enable signal E generated by the comparator 58. Therefore, the ADC circuit 62 is operable to operate when the enable signal e is activated (for example, 'when the input voltage V1N is used) The analog signal vA, VlA is converted into a digital signal when it is sufficiently smaller than the value of the threshold VE or when the value of the input current IIN is sufficiently larger than the value of the threshold VE. Conversely, when the enable signal E is cancelled (for example, when the value of the input voltage vIN is sufficiently larger than the value of vE or when the value of the input current iin is sufficiently smaller than the value of VE), the ADC circuit 62 will be disabled and thus cannot convert these analog signals VA, VIA. In such cases, the output of the APM control module 50 (Fig. 3) does not affect the operation of the adaptive charge controller 28 (Fig. 1); since the adaptive charge controller is operated in this case 17 201251269 It is in a mode controlled by one of the other control modules 42 to 48 (Fig. 2). The output of the ADC circuit 62 may thus be set to a predetermined value, which may cause the output Vr from the Μρρτ module 52 to have no effect on the operation of the control module 54 and/or Or it may cause the rotation of the IDPM control module 54 to have no effect on the operation of the adaptive charge controller 28. Each adaptive gain and filter portion of the filter circuit 6〇, 所示 shown in the figure is provided to remove noise that may appear on the analog input signals VIN and VnN. In this regard, each of the adaptive gain and chopper circuits 60, 64 is a conventional low pass filter in one of the embodiments of the ΜΡΡΤ module 52. In other embodiments, the adaptive gain and chopper circuits 60, 64 may be other known types of signal filtering circuits. The filtered analog signals Vin and VnN may be referred to herein as f(vin) and f(viin)', respectively, and correspond to the filtered analogy of the circuits 6〇, 64 before applying the gain to the signals. Signal. Each of the adaptive gain and adaptive gain portions of the filter circuits 60, 64 shown in the figure are configured to apply to the filtered analog input signals f(vin) and F(VlIN) (for example Saying 'as a multiplier' adaptively determines the gain so that each generated analog signal and V1A value will fall within a window defined by previously defined low and high values. For the purpose of interpreting the operation of the adaptive gain and filter circuits 60, 64, the gain applied by the adaptive gain and filter circuit 6 to the filtered analog signal F(Vin) is denoted herein as G6. 〇, and the gain of the adaptive gain and waver circuit 64 applied to the chopped analog signal 18 201251269 f(v„n) is denoted herein as G“. Therefore, according to these expressions ' VA = g60 * F (VIN) and ν ΙΑ = G64 * f (viin). Each of the adaptive gain and filter circuits 60, 64 shown in the figures is designed to compare the individual outputs of the ADC circuit 62 with the previously defined low and high values and to The value of the individual output of the adc circuit 62 is greater than the previously defined high value and the value of the gain is reduced and the value used to increase the gain if the value of the individual output of the g ADC circuit 62 is less than the previously defined low value. It should be understood that the low or high values of the adaptive gain and money circuit 6() may or may be the same for the adaptive gain and data circuit 64. The values are the same as or different from the high values, and ^ various. Implementation of the financial, you can choose the same value of the square wire to select these low value. The system that should be further understood that 'these circuits 6Q, 64 may be configured to increase or decrease the amount of their individual gain values that are the same or different' and that in each circuit, the amount of gain that is increased may be Same or not the same as the amount of the reduced gain. In the application of the different embodiments of the Μρρτ modeling η, either or both of the circuits 6〇, 64 increase and/or decrease the amount of their individual gain values and may be the same/the same adaptive gain In the interpretative example of the filter circuit portion, the previously defined low value of the adaptive gain liver (four) rail circuit 60, 64 per power 64 is the full neighbor of the ADC circuit 62. 25% of the range of the P-P (that is, the maximum count value of the ADC circuit 02), the high value of the value to the mother circuits 60, 64 is 75% of the full range of the ADC circuit 62, and , - a gain value of G6. The amount that is increased or decreased with G64 is 1/2 of the current gain of 19 201251269. Taking the ADC circuit 62 of the M-ary as an example, the entire range of the circuit 62 is 1〇24. Therefore, the previously defined low value is 7·25*1〇24)=256' and the high value defined in advance is defined. ((.75*1G24)=768. In this exemplary implementation of the adaptive gain (4), wave H circuits 60, 64, each of the circuits 6Q, 64 will thus be in the same manner by comparing the counts of ^ and V1A with 256 and 768, respectively. If the count value of the operation mA is less than 256, then the gain value ' will be doubled (for example, g60=2*G6.); and if the count value of ~ is less than 256, then the gain value G will be the same. It will be doubled (for example, G64=2*G64). Instead, if the count of Va is greater than 768, then the gain value Gw will be halved (for example, ' =(}6〇/2 And if the count value is greater than 768, then the gain value & will also be halved (for example, g64 = G64/2). Instead, if the count value VA or ViA is between 256 and 768 If so, then the corresponding gain values Gw or Gw will not change. This process will continue until V1A is between the previously defined low and high values (for example, 256 and 768). Between the two. It should be understood that this special implementation is only provided as an example, not This is considered to be limiting. The digital multiplier circuit 66 is operable to multiply the digital signals Vad and Vmd from the ADC circuit 62 to generate an input power PIN = VAD * V1AD ' The electrical power received by the charging control unit 12 (i.e., the electrical power input power PIN provided by the AC adapter 16 of FIG. 1) is provided to a storage and comparison circuit 68 that contains one or more memories. The register (not shown in Figure 4) stores the most recent value of the 4-input power PIN in the memory registers 20 201251269. The store and compare circuit 68 further compares the current value of the input power Pin. And the previously stored value of the input power pm. The storage and comparison circuit 68 also uses the input power

Pm的目前數值與已儲存數值之間的差異為基礎來決定一步 P白值(step value)並且以pIN的目前數值究竟係大於或小於 PIN的已儲存數值為基礎來決定該輸入功率的一方向值。該 步階值決定可能會被加權或者不被加權,而且可能係一簡 單的算術差異計算或者包含一或多道複雜的差異決定。該 儲存與比較電路68會運用該等步階值與方向值來產生一輸 出,其會被提供至一習知的數位至類比轉換器(DAC)電路 70其會將s亥數位輸出轉換成該參考控制訊號Vr的一電流 數值。 圖3的IDPM控制模組54可操作響應於來自該DAC電 路70的參考控制訊號VRffi以將控制訊號套用至pWM控制 器40(圖2),該PWM控制器40接著會如前面所述般地控制 該等控制訊號PWMI、PWMV的責任循環。於該系統負載 20所需要的電功率或是該系統負載20與該可充電電源22 之組合所需要的電功率大於該AC轉接器16所能夠產生之 電功率的情況下,該APM控制模組會依此方式操作來控制 輸入電壓VIN與輸入電流I1N中的其中一者或另一者,俾使 得從該AC轉接器16處被供應至該充電控制單元12的輸入 功率(圖1)會有最大值’下面將作更詳細的解釋。 於本發明的其中一實施例中,圖4的MPPT模組52之 中的儲存與比較電路68會根據一或多種習知的輸入功率最 201251269 大化演算法來決定該步階值。於其中一實施例中,該儲存 與比較電路6 8會被配置成用以利用一習知的最大功率點追 蹤(MPPT)演算法來決定該步階值,該演算法係被設計成用 以將該參考控制訊號VR調整至一會最大化由該ac轉接器 1 6所供應之輸入功率pIN的數值。舉例來說,該Μρρτ模組 52可能會施行一種具有習知的擾動與觀察法 (perturb-and-observe method)之形式的 Μρρτ 演算法。利用 此方式,該MPPT模組52會將該參考控制訊號Vr的數值 從其目前的數值處調整至一新數值,並且接著判斷此新的 參考控制訊號數值究竟係導致該輸入功率Pin增加或降 低。倘若該輸入功率PlN增加的話,那麼,該Μρρτ模組52 便會在相同的方向中再次調整該Vr訊號(舉例來說,再次將 該VR況號的數值增加該步階值卜接著,該Μρρτ模組a 會再次判_此新的參考控龍號數值究竟係導致該輸入功 率p1N增加或降低。只要該輸人功率Pin增加的話,那麼, 該MPPT模組52便會持續依此方式以遞增的方式來調整該 vR訊號。當該MPPT模組52判斷該參考控制訊號、的新 數值導致目前的輸入功率&從其先前數值處降低時,那 麼該MPPT模組52便會在相反的方向中遞增該%訊號。 舉例來說Μ右持續以步階值增加該A訊號的數值會導致 越來越问的輸入功率數值的話,那麼,該Μρρτ模組 便會依此方式持續進行,直到該輸入功率下降為止,於此 時點處,該MPPT指& & 接組會以該步階值來降低該Vr訊號。 於此時點處,各士 #、 3有忒MPPT模組52的APM模組50正 22 201251269 在控制該充電系統1 〇(圖i),因此,該充電系統正在該AC 轉接器16的最大功率處,或者更精確地說,在非常接近該 AC轉接器16的最大功率處進行操作,下面將參考圖7a與 7B作更詳細的解釋。簡要地參考圖7A與7B,在此等關係 圖令會看見,在剛才所述的APM操作模式中,輸入電壓Vin 與輸入電流Iin的數值會以對應於導致該AC轉接器丨6輸出 最大功率的VIN與IlN之真實數值的特定中間值為中心略作 改變或「顫振(dither)」。此為真實,因為如剛才所述,Μρρτ 模組52會利用步階值來調整該Vr訊號,而且此有限的步 階值會導致輸入電壓VlN與輸入電流Iin以該AC轉接器16 之真實最大功率為中心的此改變或顫振,且因而會導致該 輸入功率PIN的顫振。 δ玄MPPT模組52最終會抵達一給定步階值變化造成該 輸入功率ΡΙΝ降低的時點,並且該Μρρτ模組接著會改變加 入該步階值來調整該v R訊號的方向。舉例來說,假設持續 以該步階值遞增該Vr訊號會導致輸入功率Pin有持續提高 的數值。於特定時點處,該新的經遞增的Vr訊號將會導致 該輸入功率Pin下降。該MPPT模組52接著會改變該VR訊 號的調整方向,並且因而以該步階值來遞減該Vr訊號。這 將會導致輸入功率plN增加’俾使得該Μρρτ模組52將再 次遞減該Vr訊號。這一次,輸入功率p1N將會降低,因此, 該MPPT模組52將再次改變該Vr訊號的調整方向並且以 該步階值來遞増該Vr訊號。該Μρρτ模組52會繼續依此 方式操作來控制該充電系統1〇,俾使得由該AC轉接器16 23 201251269 所供應的輪入功率p1N會以真實最大值為中心來改變或顫 振。為縮減此顫振的數額,該MPPT模組52會在偵測到此 顫振條件時縮減該步階值的大小’並且因而控制該充電系 統10使其更接近該AC轉接器16的真實最大功率PiN。 MPPT模組52的其它實施例會運用不同的Μρρτ演算 法:例如,習知的增量電導法、恒定電壓〉、去、或是類似的 方法。又,於其它實施例中,該贿丁模組52中的儲存與 比較電路68可能會以替代方式操作,用以根據其它習知的 最大值決定技術來決定該步階值,其範例包含,但是並不 又限於.一或多種數值搜尋技術、一或多個習知的疊代技 術、或是類似的技術。 MPPT模組52還進—步包含—省電電路72,盆會接收 該參考控制電M VR並且可操作用以產生—致能訊號en, 該致能訊號ΕΝ會被施加至器件6〇ι 7〇。該訊號會將 此等器件60至7G置人低功率或是待命操作模式之中並且 因而會將該MPPT模組52置入低功率或是待命操作模式之 中’下文將作更詳細的說明。 圖5所不的係根據其中一實施例,冑4的Μ??丁模命 K的#作的時序圆。應該瞭解的係,圖5的時序圖所示纪 係由MPPT模組52所產生的參考控制訊號並且應該瞭 解的係,圖中戶斤+ μ + > '、的剩餘時序波形代表在操作期間於該 MPPT模組之中所資分从吉 貫仃的事件。圖5依此方式被安排用來顯 示相對於該參考控制 ^役制Λ唬VR之數值的最終改變而由該 MPPT模組52戶斤♦ >上吐> 仃之事件的時序,以達解釋在該適應性 24 201251269 充電控制器28之中所施行的省電特點的㈣。就此方面來 說,CLOCK時序波形86之中的低位準至高位準(或是高位 準至低位準)轉換代表由該MPPT模組52所實行的每一個完 整事件組的起點。在圖5中藉由Vr訊號98以及數個事件 波形的組合來圖解由該MPPT模組52所實行的一完整的事 件組,該等事件波形包含:MEASURE波形87、c〇mpare 波形 90、ADJUST GAIN 波形 92、Measure&st〇re 波形 94、以及ADJUST波形96,水平軸則表示時間t。 舉例來說,第一完整的事件組從時間t〇開始,於該處, CLOCK時序波形86與MEASuRE波形87兩者皆從低位準 轉換至高位準,其會發訊通知分別測量(舉例來說,由適應 性增益與濾波器電路6〇與64來進行)輸入電壓Vin與輸入 電流V丨丨N。在MEASURE波形87的時間持續長度上,vThe step value is determined based on the difference between the current value of Pm and the stored value, and the direction of the input power is determined based on whether the current value of pIN is greater than or less than the stored value of the PIN. value. The step value decision may or may not be weighted and may be a simple arithmetic difference calculation or include one or more complex difference decisions. The store and compare circuit 68 uses the step values and direction values to produce an output that is provided to a conventional digital to analog converter (DAC) circuit 70 which converts the sigma output to the Refer to a current value of the control signal Vr. The IDPM control module 54 of FIG. 3 is operable to apply a control signal to the pWM controller 40 (FIG. 2) in response to a reference control signal VRffi from the DAC circuit 70, which will then be as previously described. Control the duty cycle of these control signals PWMI, PWMV. The APM control module will depend on the electrical power required by the system load 20 or the electrical power required by the combination of the system load 20 and the rechargeable power source 22 to be greater than the electrical power that the AC adapter 16 can generate. This mode operates to control one or the other of the input voltage VIN and the input current I1N such that the input power (Fig. 1) supplied from the AC adapter 16 to the charge control unit 12 is maximized. The value 'will be explained in more detail below. In one embodiment of the present invention, the storage and comparison circuit 68 of the MPPT module 52 of FIG. 4 determines the step value according to one or more conventional input power maximum 201251269 algorithm. In one embodiment, the store and compare circuit 68 is configured to determine the step value using a conventional maximum power point tracking (MPPT) algorithm, which is designed to be used to Adjusting the reference control signal VR to a maximum maximizes the value of the input power pIN supplied by the ac adapter 16. For example, the Μρρτ module 52 may perform a Μρρτ algorithm in the form of a conventional perturb-and-observe method. In this manner, the MPPT module 52 adjusts the value of the reference control signal Vr from its current value to a new value, and then determines whether the new reference control signal value causes the input power Pin to increase or decrease. . If the input power P1N is increased, then the Μρρτ module 52 will adjust the Vr signal again in the same direction (for example, the value of the VR condition number is increased by the step value again. Next, the Μρρτ Module a will again judge _ this new reference control number value causes the input power p1N to increase or decrease. As long as the input power Pin increases, then the MPPT module 52 will continue to increase in this way. The method of adjusting the vR signal. When the MPPT module 52 determines that the new value of the reference control signal causes the current input power & lower from its previous value, then the MPPT module 52 will be in the opposite direction. Increasing the % signal in the middle. For example, if the value of the A signal is increased by the step value and the value of the A signal is increased, the Μρρτ module will continue in this way until the At the point where the input power drops, the MPPT means && the group will reduce the Vr signal by the step value. At this point, each of the #3, 3 has the APM mode of the MPPT module 52. Group 50 positive 22 201251269 In controlling the charging system 1 图 (Fig. i), therefore, the charging system is at the maximum power of the AC adapter 16, or more precisely at the maximum power of the AC adapter 16 The operation will be explained in more detail below with reference to Figures 7a and 7B. Referring briefly to Figures 7A and 7B, it will be seen in these diagrams that in the APM mode of operation just described, the input voltage Vin and the input current Iin The value will be slightly changed or "dither" with a specific intermediate value corresponding to the true value of VIN and IlN that causes the maximum output power of the AC adapter 丨6. This is true because The Μρρτ module 52 uses the step value to adjust the Vr signal, and the finite step value causes the input voltage VlN and the input current Iin to be centered on the true maximum power of the AC adapter 16 or Flutter, and thus the chattering of the input power PIN. The δ 玄 MPPT module 52 will eventually reach a point when a given step value change causes the input power ΡΙΝ to decrease, and the Μρρτ module will then change to join the step The order value is used to adjust the direction of the v R signal. For example, it is assumed that continuously increasing the Vr signal by the step value causes the input power Pin to have a continuously increasing value. At a specific time point, the new incremented Vr signal This will cause the input power Pin to drop. The MPPT module 52 will then change the direction of adjustment of the VR signal, and thus decrement the Vr signal by the step value. This will cause the input power plN to increase '俾 such that the Μρρτ The module 52 will decrement the Vr signal again. This time, the input power p1N will be lowered. Therefore, the MPPT module 52 will change the adjustment direction of the Vr signal again and pass the Vr signal by the step value. The Μρρτ module 52 will continue to operate in this manner to control the charging system 1〇 such that the wheeling power p1N supplied by the AC adapter 16 23 201251269 will change or tremble around the true maximum. To reduce the amount of this flutter, the MPPT module 52 will reduce the magnitude of the step value when detecting the dither condition and thus control the charging system 10 to be closer to the authenticity of the AC adapter 16. Maximum power PiN. Other embodiments of MPPT module 52 may employ different Μρρτ algorithms: for example, conventional incremental conductance, constant voltage, go, or the like. Moreover, in other embodiments, the storage and comparison circuit 68 in the bribe module 52 may be operated in an alternative manner to determine the step value according to other conventional maximum decision techniques. Examples include However, it is not limited to one or more numerical search techniques, one or more conventional iterative techniques, or the like. The MPPT module 52 further includes a power saving circuit 72 that receives the reference control power M VR and is operable to generate an enable signal en, which is applied to the device 6〇7 7 Hey. This signal places the devices 60 to 7G in a low power or standby mode of operation and thus places the MPPT module 52 in a low power or standby mode of operation as will be described in more detail below. What is not shown in Fig. 5 is the timing circle of the 胄4 丁 命 命 。 根据 根据 according to one of the embodiments. It should be understood that the timing diagram shown in FIG. 5 is the reference control signal generated by the MPPT module 52 and should be understood. The remaining timing waveforms of the figure + μ + > ' represent the operation period. Among the MPPT modules, the funds were collected from the events of Ji Guanying. Figure 5 is arranged in this manner to display the timing of the event of the MPPT module 52 >上吐> 相对 relative to the final change in the value of the reference control system VR Explain (4) the power saving features implemented in the adaptive 24 201251269 charge controller 28. In this regard, the low level to high level (or high level to low level) transitions in the CLOCK timing waveform 86 represent the starting point of each complete event group performed by the MPPT module 52. A complete set of events executed by the MPPT module 52 is illustrated in FIG. 5 by a combination of a Vr signal 98 and a plurality of event waveforms, including: MEASURE waveform 87, c〇mpare waveform 90, ADJUST The GAIN waveform 92, the Measure & st〇re waveform 94, and the ADJUST waveform 96, and the horizontal axis represents time t. For example, the first complete event group begins at time t〇, where both the CLOCK timing waveform 86 and the MEASuRE waveform 87 transition from a low level to a high level, which will signal a separate measurement (for example, The input voltage Vin and the input current V丨丨N are performed by the adaptive gain and filter circuits 6A and 64. In the duration of the MEASURE waveform 87, v

V IN 與VnN會被傳送通過該等適應性增益與濾波器電路6〇、 64 ’俾使得V〖N與V„N會分別被過濾並且接著乘以對應的 增益值(舉例來說,乘以Gw與Gw,在第一次通過時兩者皆 被設為1),該ADC電路62會將所產生的VA轉換成Vad並 且將Via轉換成VIAD,而數位乘法器66接著則會計算piN , 全部如上面的說明》在時間tl處,MEASURE波形87會從 高位準轉換至低位準且COMPARE波形90會從低位準轉 換至高位準,於此期間,該儲存與比較電路68會比較pw 和已儲存在該儲存與比較電路68的一或多個記憶體暫存器 之中的Pin的先前數值,用以決定步階值以及VR的改變方 向’如上面所述。在該第一事件組中,舉例來說,piN的已 25 201251269 儲存數值可能係,但是並不受限於先前已儲存的Pin數值' 内定的功率值、或是pIN的目前數值。而後,在時間處, COMPARE波形90會從高位準轉換至低位準且adjust GAIN波形92會從低位準轉換至高位準’於此期間該等 適應性增益與濾波器電路60與64會在必要時調整該(等) 增益值Gw及/或gm,如上面所述。而後,在時間t3處, ADJUST GAIN波形92會從高位準轉換至低位準且 MEASURE&STORE會從低位準轉換至高位準,於此期間, 該4適應性增益與濾波器電路60與64會分別測量輸入電 壓Vin與輸入電流V„N,與V„N會被傳送通過該等適應 性增益與濾波器電路60、64,俾使得Vin與Viin會分別被 過濾並且接著乘以對應的(並且可能已經過調整的)增益值 Gw與Gw,該ADC電路62接著會將所產生的Va轉換成 VAD並且將vIA轉換成Viad,而數位乘法器66接著則會計 算PIN ’並且該儲存與比較電路68接著會比較目前的Pm和 已儲存在該儲存與比較電路68的一或多個記憶體暫存器之 中的的先前數值,用以決定步階值以及Vr的改變方向。 而後,在時間U處,MEASURE&STORE波形94會從高位 準轉換至低位準且ADJUST波形96會從低位準轉換至高 位準’於此期間’ DAC電路70會將該步階值以及方向轉換 成一類比訊號,舉例來說,本範例中的電壓訊號,並且將 此電壓訊號加入VR的目前數值之中,接著,其會導致vR 98 的響應而改變。於圖5中所示的範例中,VR 98會在t4至t5 的時間持續長度期間產生數值增加(舉例來說,增加數額△ 26 201251269 v)的變化。在時間t5處,Vr 98已經過調整(也就是,已經 增加△ V),且因此,ADJUST波形96會高位準轉換至低位 準。如剛面所提,為縮減顏振的數額,該MPPT模組52會 在操作期間前面所討論的「步階值」對應於圖5中之△v的 特定時點處縮減該步階值的大小。 時間k會結束由該MPPT模組52所實行的該第一完整 的事件組。再次參考圖4,該Μρρτ模組52進一步包含一 省電電路72 ’在圖中,其會接收該參考控制電壓%作為輸 ^並且產生一致能訊號ENf為輸出。該致能訊號en會被 提供至該等適應性增益電路6〇、64、該adc62、該乘法器 電路66、該儲存與比較電路68、以及μ中每—者 的致能輸入處。如圖中所千,兮少+ & 去Μ… 亥,電電路72會監視該參 考控制電壓vR,並且在ti/t4期間,也就是,冑 被調整時,該致能^1號^ 來1…就N會被設為-操作致能數值,舉例 來說,邏輯兩位準或是邏輯低芈】 W的料電路6〇、62、64、66、68料^.打模組 A X, + 8、以及7〇為完全择作。 當VR在ADJUST時間週期期間(舉例 疋全知作_ 過修正之後抵達-恆定或是穩定的電壓^ 1之間)經 5令所示的時’該省電電路72便會改變::來說,圖 舉例來說’改變為邏輯低位準或是 變⑽的數值’ 設為-電路禁能數值。於圖 ^位準’用以將ΕΝ 施财,該等電路60、62·6所示的赠了模組52的實 ΕΝ的電路禁能數值而進入待命模式 、以及70會響應於 等電路60、62、64、以;《 « ^之中。如圖中所示,該 以及66的待命模式為停機模式,其中 27 201251269 此等電路60、62、64、以及66會完全關閉電力,因此,它 們並不會消耗任何電流。圖中所示的電路68以及7〇的待 命模式為睡眠模式,其中它們僅會消耗足夠的電流以保持 Q法的(也就是,已儲存和目前的)資料。因此,舉例來說, 該省電電路72會響應於^的一值定或是穩定數值,藉由 在時間區間ts至t0期間關閉或是禁能該Mpp丁模組52的某 些或是全部其餘電路的電功率而禁能該Μρρτ模組52,從 而在此時間區間期間節省電力。在一事先定義的等待時間 週期(也就是,在與te之間)之後,該省電電路72會再次 改變EN的數值,舉例來說,改變為邏輯高位準或是邏輯低 位準’用以在時間t6處將EN重置為電路致能數值。時間t6 會開始進行由該MPP丁模組52所實行的一新的完整事件 ,.且並且在時間h至t0之間所述的事件會重新開始並且在 時間u與tll之間被實行,並且只要該Μρρτ模組52被啟 動便會在後面反覆進行。當然,在某個時點處,當該參考 控制訊號vR以該步階值Δν進行給定的變化會導致輸入功 率ΡΙΝ下降時,如前面的討論,該參考控制訊號的數值將會 隨即降低該步階值△V,而非增加。 圖6所不的係由ΑΡΜ控制模組中的模組Μ與 IDPM控制模組54以及圖2的pwM控制器4〇所執行之用 以在上面所述的操作條件下最大化由ac轉接器Μ所產生 的功率的其中-種解釋性方& 1〇〇的流程圖,換言之,該 系統負載20和該可充電電源22之組合所需要的輸入電流 IIN超過該AC轉接器16所能夠提供的電流。於其中一解釋 28 201251269 性實施例中’該MPPT模組52俜以妯扣A < 1乐以純類比電路系統的形式 來施行’而且於此實施例中,圖6由 _ 间G中所不的方法100代表 的便係由此類比電路系統所執行的演算法。於可能包含_ 或多個習知處理器電路(舉例來說,—或多個微處理器、訊 號處理器、或是類似物)的實施例中,該方法ι〇〇可能至少 部分係以-或多個軟體演算法的形式來施行,其會被儲存 在-記憶體之中並且可由該處理器電路來執行,用以至少 部分實行該方法100。 為達說明之目的 本文所述的方法1〇〇係由MPPT模 組52 2的PWM控制器40來 IDPM控制模組54、以及圖 施行與執行。方法⑽從步冑1G2開始,於該步驟處,該 MPPT模組52會監視輸入電壓Vin並且透過訊號v⑽來監 視輸入電流,它們對應於由AC轉接器16所產生的輸出電 壓V〇A以及輸出電流IOA(I〇A=IlN)。而後,在步驟1〇4處, 該MPPTI组52會判斷輸入電壓ViN是否小於輸入臨界值 νΕ1,或者’於替代的實施例中,會判斷Vi丨N是否大於另一 事先定義的電壓值VE2。在本方法之說明的内文中所使用到V IN and VnN will be transmitted through the adaptive gain and filter circuits 6 〇 , 64 '俾 such that V 〖N and V „N will be filtered separately and then multiplied by the corresponding gain value (for example, multiplied by Gw and Gw, both set to 1) on the first pass, the ADC circuit 62 converts the generated VA to Vad and Via to VIAD, and the digital multiplier 66 then calculates piN. As described above, at time t1, the MEASURE waveform 87 will transition from a high level to a low level and the COMPARE waveform 90 will transition from a low level to a high level during which the store and compare circuit 68 will compare pw and The previous value of Pin stored in one or more memory registers of the store and compare circuit 68 is used to determine the step value and the direction of change of the VR as described above. In the first event group For example, piN's 25 201251269 stored value may be, but not limited to, the previously stored Pin value 'default power value, or the current value of pIN. Then, at time, COMPARE waveform 90 will Switch from high level to low level and adjust G The AIN waveform 92 will transition from a low level to a high level during which the adaptive gain and filter circuits 60 and 64 will adjust the (equal) gain values Gw and/or gm as necessary, as described above. At time t3, the ADJUST GAIN waveform 92 will transition from a high level to a low level and MEASURE & STORE will transition from a low level to a high level during which the 4 adaptive gain and filter circuits 60 and 64 will measure separately. The input voltage Vin and the input current V„N, and V„N are transmitted through the adaptive gain and filter circuits 60, 64 such that Vin and Viin are respectively filtered and then multiplied by corresponding (and possibly The adjusted gain values Gw and Gw, the ADC circuit 62 then converts the generated Va to VAD and converts the vIA to Viad, and the digital multiplier 66 then calculates the PIN' and the store and compare circuit 68 proceeds. The current Pm and previous values stored in one or more memory registers of the store and compare circuit 68 are compared to determine the step value and the direction of change of Vr. Then, at time U , MEASURE&amp The STORE waveform 94 will transition from a high level to a low level and the ADJUST waveform 96 will transition from a low level to a high level ' during this period'. The DAC circuit 70 will convert the step value and direction into an analog signal, for example, The voltage signal in the example, and this voltage signal is added to the current value of VR, which will then change the response of vR 98. In the example shown in Figure 5, VR 98 will be at time t4 to t5. A change in the value of the increase in duration (for example, the amount of increase Δ 26 201251269 v) occurs. At time t5, Vr 98 has been adjusted (i.e., ΔV has been increased), and therefore, ADJUST waveform 96 will transition to a low level at a high level. As mentioned in the face, in order to reduce the amount of the face vibration, the MPPT module 52 will reduce the size of the step value at a specific time point corresponding to Δv in FIG. 5 during the operation. . Time k will end the first complete event group executed by the MPPT module 52. Referring again to Figure 4, the Μρρτ module 52 further includes a power saving circuit 72' in the figure which receives the reference control voltage % as input and produces a uniform energy signal ENf as an output. The enable signal en is provided to the enable inputs of the adaptive gain circuits 6A, 64, the adc 62, the multiplier circuit 66, the store and compare circuit 68, and each of the μ. As shown in the figure, + less + & Μ ... Hai, the electrical circuit 72 will monitor the reference control voltage vR, and during ti / t4, that is, when 胄 is adjusted, the enable ^ 1 ^ ^ 1...Only N will be set to - operation enable value, for example, logic two or logic low] W material circuit 6 〇, 62, 64, 66, 68 material ^. Module AX, + 8, and 7〇 are completely optional. When the VR is displayed during the ADJUST time period (for example, between _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ For example, the 'change to logic low level or variable (10) value' is set to - circuit disable value. In the figure, it is used to finance the ,, the circuits 60, 62·6 are given the actual circuit disable value of the module 52 to enter the standby mode, and 70 will respond to the circuit 60. , 62, 64, to; "Z. As shown in the figure, the standby mode of 66 and 66 is the shutdown mode, where 27 201251269 these circuits 60, 62, 64, and 66 will completely turn off the power, so they do not consume any current. The standby modes of circuits 68 and 7 shown in the figure are sleep modes in which they only consume enough current to maintain the Q method (i.e., stored and current) data. Therefore, for example, the power saving circuit 72 may turn off or disable some or all of the Mpp module 52 during the time interval ts to t0 in response to a value of the value or a stable value. The electrical power of the remaining circuits disables the Μρρτ module 52, thereby conserving power during this time interval. After a predefined waiting time period (i.e., between and te), the power saving circuit 72 changes the value of EN again, for example, to a logic high level or a logic low level. At time t6, EN is reset to the circuit enable value. Time t6 will begin a new complete event performed by the MPP module 52, and the event will restart between time h and t0 and be executed between times u and tll, and As long as the Μρρτ module 52 is activated, it will be repeated later. Of course, at a certain point in time, when the reference control signal vR is given a change in the step value Δν to cause the input power to decrease, as discussed above, the value of the reference control signal will be lowered. The order value is ΔV, not increased. Figure 6 is performed by the module Μ and IDPM control module 54 in the ΑΡΜ control module and the pwM controller 4 of Figure 2 for maximizing transfer by ac under the operating conditions described above. A flowchart of one of the explanatory powers of the power generated by the device, in other words, the input current IIN required for the combination of the system load 20 and the rechargeable power source 22 exceeds the AC adapter 16 The current that can be supplied. In one of the explanations 28 201251269, in the embodiment, the MPPT module 52 is implemented in the form of a pure analog circuit system, and in this embodiment, FIG. 6 is not in the G. The method 100 represents an algorithm performed by such a specific circuit system. In embodiments that may include _ or a plurality of conventional processor circuits (for example, - or a plurality of microprocessors, signal processors, or the like), the method may be at least partially- Or in the form of a plurality of software algorithms, which are stored in-memory and executable by the processor circuit to at least partially implement the method 100. For purposes of illustration, the method 1 described herein is performed by the PWM controller 40 of the MPPT module 52 2 to the IDPM control module 54, and the map is executed and executed. The method (10) starts from step 1G2, at which the MPPT module 52 monitors the input voltage Vin and monitors the input current through the signal v(10), which corresponds to the output voltage V〇A generated by the AC adapter 16 and Output current IOA (I〇A=IlN). Then, at step 1〇4, the MPPTI group 52 determines whether the input voltage ViN is less than the input threshold νΕ1, or 'in an alternative embodiment, it is determined whether Vi丨N is greater than another predefined voltage value VE2. Used in the context of the description of the method

之上面β寸淪過的輸入臨界值Ve係輸入電壓Vin或是來自 轉接器16的電壓^的臨界值,並且於此情況中係以Vei 來表示。或者,輸入臨界值Ve係輸入電流Im或是來自ac 轉接器16的電流I〇A的臨界值,並且於此情況中係以γη 來表不。輸入臨界值νΕ1係由Ac轉接器16所產生的輸出 =壓V0A的數值或是大小,熟習本技術的人士便會明白’ 虽輸出電流小於該轉接器的額定電流時,該輸出電壓V 29 201251269 的輸出電壓V〇A的相 可充電電源22所需 會充分地在由該AC轉接器16所產生 對恆定大小之下。該系統負载20和該 要的電流I〇A(也就是,輸入電流IlN)會超過該AC轉接器16 所能夠提供的電流。於v0A的相對恆定數值為典型的5 〇伏 特的範例實施例中’舉例來說,Vei可能會被設為4 75伏 特;不過,本發明亦涵蓋VE1的其它數值。 於參考控制訊號為v1R的實施例中,圖中所示的Ve2對 應於該AC轉接H 所產生之充分在該額定電流以上的輸 出電流I0A的數值或大小,用以表示該充電控制單元12與 該系統負載20之組合所需要的輸出電流I〇A或是該充電控 制單元12、該系統負載20、以及該可充電電源22之组合 所需要的輸出電流I〇A的大小大於該AC轉接器16所能夠 產生的電流。於任一情況中,步驟1〇4的支線「否(n〇)」 皆會讓該方法返回步驟102;而步驟1〇4的支線「是(yes)」 則會前進至步驟106,於該處,Μρρτ模組52可操作以v_ 和vIN的熟知函數來計算輪入功率Pin,舉例來說, pIN-K*v"N*VlN,其中κ係_被設為用以將轉換成h 之真實數值的常數。當然,輪入功率PIN係由該AC轉接器 16所產生的輸出功率,而步驟1〇6會前往步驟i 於該 處,MPPT模組52、IDPM控制模組M、以及pWM控制器 4〇會一起操作用以適應性地修正VnN及/或Vin,用以最大 化Pin,如上面參考圆3至5的討論。而後在步驟u〇處, 該MPPT模組52可操作用以等待—段事先決定的時間週 期,並且會在此等待週期期間藉由讓該Μρρτ模組52内部 30 201251269 的所有或是大部分電路系統停機而節省被該刪>τ模組52 步驟110的等待時間週期期間,該 MPPT模組52會消耗極少電功率,甚至不消餘何電功率, Γ會在…7模組不需要操作時節省電功率。而後, 在步驟112處,該MPPT模組52可操作用以比較VIN和 ’或者’比較VII_VE2_VH2,其中VH1和VH2代 表事先定義的磁滞電壓值。因此,健VIN沒有提高VE1之 上至少VH1的話(或者,倘若VUN沒有下降VE2之下至少〜 的話),該方*⑽便會迴圈回到步驟106。否則咳方法 ,會迴圈回到步驟1G2,重新開始該方法刚。應該瞭解的 2’不論參考控制訊號究竟為^、,〜與^中的任 —者或兩者皆可被估算用以判斷該方4刚是否應該從步 驟104前進至步,驟106,也就是,啟動該Μρρτ模組52 ; 及/或用以判斷該方法100是否應該離開步驟"6與⑽, 也就是’ #消或者中斷繼續該Μρρτ模組52的操作。 於任何情況中’輸人動態功率f理(1卿)控制模組M 皆會以習知的方式響應於該參考控制訊號^而產生控制訊 破’該PWM控制器4〇會利用該等控制訊號來控制控制訊 號或是PWMV的責任循環,其方式係分別控制切換 裔以或82目以從該AC轉接$ 16處獲取對應於該ac轉 接器16能夠產生之最大可利用輸出功率的輸入電流〜(其 對應於該AC轉接器16的輸出電流w)以及輸入電壓 Vin(其對應於該AC轉接器16的輸出電壓v〇a)。依此方式 來控制該充電控制單元12的切換電路系統,該ac轉接器 31 201251269 16便能夠產生最大輪出功率並 充電電源22 ^ 且供應至該系統負 載20與可 如前面所提及,@7A與7B所示的係在圖6的APM控 :方法期間所產生的輸入電厂坚〜與輸入電流IlN的時; 。在Am操作模式中,輸入電壓%與輪入電^的數 值會以對應於導致該AC轉接器16輸出最大功率的v丨一 ^之真實數值的特定中間值為中心進行顫振。這在圖7A 右邊以及圖7B左邊的APM操作模式中便能夠看見。圖μ 與7B中還顯示出另一種操作模式,換言之,恆定電壓π 模式。如在此等圖式中所見’在cv操作模式期間,如圖2 中所看見的CV控制模組42與PWM控制器4〇會控制% 至DC轉換器29(圖υ,用以在一值定的輸出電愚v㈣處 產生一恆定的輸出電流Ι〇υτ’並且據此,輸入電壓ViN與輸 入電流IIN具有如在圖7A與7B中所看見之對應的實質上恆 定的數值m兄中,該Ac轉接器16能夠供應該充電 it 12(圖1)所需要的輸入電》Iin ’以便供應所希的 恆定輸出電流ιουτ以及恆定輸出電壓ν〇υτ。接著,在圖7A 中會於時間t〇處發生某項事件,例如,該系統負載2〇(圖 1)需要一突波電流,而且輸出電流卜旧會超過能夠由該AC 轉接器16所供應的電流。因此,輸入電壓ViN會於時間 處「崩跌」或是開始下降’從而導致該APM模組50經過 一段延遲時間稍後會在時間tl處開始操作在ΑΡΜ模式之 中。上面已經討論過,輸入電壓VlN與輸入電流ιΐΝ會在此 模式期間顫振。在後面的某個時點處,該系統負載2〇所需 32 201251269 要的突波電流會終止。這可在圖7B的 於此範例中,該充電控制單元 著。 I。因此, 揸—·夕*甘在山 接者再次開始操作在cv 核式之t,其會出現在圖7B令的時間t丨處。 圖8所示的係根據本發明其中—實施例,圖2 :充電控制器28的操作的更詳細功能電路圖 充 電控制器28會在操作期間於此等不同的操作模式之間切: =充電控制單元U的操作^圖8的範财,除了一新^ 輸入-電流-限制控制模組8〇之外,還顯示出 42、CC控制模組44、以及 技制模組 Λ次控制模組5〇。於豆 例中可能會包含更多或較少的控制模組,例如,圖、2心 8 ΓΓΓ46與SPPM控制模組48,不過,現在僅將參考圖 來对論圖8中所示的控制模組。 圖" 員示一種用以判斷哪一種操作模式優先控 電控制單元叫圖υ之操作模式的方式。如圖8中所見,每 一㈣制模組42、44、5G、以及80皆包含—對應的誤差放 大盗E/A ’其會驅動—被連接在接地與—共同輸出節點μ 之間的對應輸出電晶體τ。該輸入_電流限制控制模組⑼ f包含一切換器SW,其可操作用以響應於由圖4中的比較 2所產生的致能訊號E而選擇性地隔離該對應的輸出電 晶體T與該共同輸出節點82或是將該對應的輸出電晶體T 搞合至該共同輸出節點82,下文將作更詳細的說明。 包每一個控制模組42、44、50、以及8〇皆會接收一對應 的L界值或參考訊號以及__被監視或被感測的操作參數。 月確地說,CV控制模組42會接收一輸出參考電壓 33 201251269 V0UT-REF並且還會感測輸出電壓v〇ui_ CC控制模組44會 接收輸出參考電流I〇UT-REF並且還會感測輸出電流;[〇υτ, ΑΡΜ控制模組5〇則會感測輸入電壓並且接收一輸入參 考電壓V1N-REF。最後’該輸入-電流-限制控制模組8〇則會 感別輸入電I1N以及輸入參考電流Iin.ref。當輸入電流IlN 超過輸入參考電流IIN_REF時’誤差放大器E/A與控制模組 80便會產生一讓PWM控制器4〇(圖2)控制降壓轉換器 29(圖1)的輸出,用以限制輸入電流的數值並且因而保護該 AC轉接器16 » 如圖8中所見,該等誤差放大器E/A的輸出係以連線_ 或(wired-〇R)配置的方式被連接至輸出節點82,俾使得「最 努力(hardest)」或是以最大出力方式開啟其對應輸出電晶體 T的誤差放大器會控制該輸出節點上的電壓的位準。共同輸 出電晶體84係受控於該輸出節點82上的電壓並且會串聯 耦合一介於電壓供應器Vcc與接地之間的恆定電流源以。 該共同輸出電晶體84與怪定電流源85的相互連接會定義 -比較節點88’該節點會㈣合至—比較器91的其中一個 輸入/該比較器的另-個輪入則會接收一斜坡訊號或是鑛 齒訊號°該比較器91會響應於該斜坡訊號和比較節點88 上的電壓而產生一 PWM輸出訊號。 在刼作中’最努力開啟其對應輸出電晶體τ的誤差放 大器E/A會控制該輸出節點82上的電壓的位準,其接著會 決定該共同輸出電晶體84開啟的程度。該共同輸出電晶體 84開啟的程度會決定該比較節點88上的㈣位準。該值定 34 201251269 電流源85會以固定的速率來放電該比較節點⑼並且因而 放電該比較節點,而從該電壓供應器Vcc處流過該電曰曰體 84的電流則會充電該比較節點。該比較節點88上的電壓位 準因而係由電晶體84開啟的程度來決定並且因而係由流過 此電晶體的電流來決定,,最努力開啟其對應輸出電 晶體T的誤差放大器E/A會控制該輸出節點82上的電壓的 位準,其接著會決定該共同輸出電晶體84開啟的程度並且 因而決定該比較節點88上的電壓位準。當然,該比較節點 上的電壓位準會決定由㈣較n 91戶斤產生白勺PWM訊號的 貴任循環。 現:在將說明下面範例以便解釋控制模組42、44、5〇、 以及80為對圖1的充電系統1〇提供整體性控制所進行的 整體性聯合操作。假設該可充電電源22初始為幾乎完全放 電,其意義為該充電控制單元12正在供應非常大的輸出電 流Ιουτ,其包含用以充電該可充電電源的充電電流Ich以及 被供應至該系統負載20的負載電流iL。於此情況申,所需 要的輸出電流Ιουτ可能會大於該AC轉接器16能夠供應的 輸入電流ΙΙΝ。允許該AC轉接器16提供此高輸入電流Ιιν 會讓該AC轉接器超載,從而可能會破壞或損壞該轉接器。 於此情況中’該輸入-電流-限制控制模組8〇會感測極高的 輸入電流IIN,因此’此控制模組會決定該共同輸出節點82 上的電壓位準,並且接著會決定該比較節點8 8上的電壓位 準’從而用以控制由該比較器91所產生的PWM訊號。所 生成的PWM訊號會限制從該AC轉接器16處所獲取的輸 35 201251269 入電流w此輸人電流Iin會被用來提供所需要的負載電流 IL,。〇系、·先負載20 ’而殘餘的電流則會被當作 充電電流IcH,用以充電該可充雷雷,、择 J兄4览源22。§玄適應性充電控 制器28會在圖1中控制曰_ |q # 则1: Μ體Τ,用以將該充電電流Ich 設成一可允許值。 現在饭。又該系統負載2〇及/或該可充電電源22需要較 少的電流,其意義為輸出電流w現在比較低。進一步假 -又-亥AC轉接器1 6現在能夠供應該必要的輸出電流【ON。 於此隋况中,CC控制模組44現在可能會控制整個操作, 其意義為此控龍組會驅動該共同輸出節點88用以控制此 節點上的電壓位準’並會依此方式控制該比較節點Μ上 的電壓位準,從而控制由該比較器91所產生的pwM訊號。 依此方式1¾ CC控制模組44會讓該適應性充電控制器28 操作用以供應-恆定的輸出電流Ι〇υτ,其中一部分係用以 充電該可充電電源的充電電力Igh且_部分係用以供電給 該系統負載20的負載電流。 現在假設在一段時間之後該可充電電源2 2接近完全充 電,其意義為所需要的充電電流IcH會因而下降。因此,所 需要的輸出電流Ιουτ的會變低,並且於此時點處,cv控制 模組42會掌控從而決定該共同輸出節點82上的電壓位準 並且因而決定該比較節點8 8上的電壓位準。該cv控制模 組42會依此方式控制由該比較器9丨所產生的pwM訊號, 用以在該必要的輸出電流ιουτ處讓輸出電壓ν〇υτ保持在一 實質上恆定的數值處。 36 201251269 »亥APM模組50會以雷同的方式控制整體的操作並且 在輸入電壓乂川下降至對應的參考數值Vin ref以下且致能 訊號E有作用而閉合該切換器s w時在Μρρτ模式中控制 該系統ίο。當ΜΡΡΤ模式被啟動時,該ΑΡΜ模組5〇會如 前面所述般地操作用以調整輸入電壓Vin與輸入電流丨…, 因而從該AC轉接器16處獲取最大功率。依此方式,該可 充電電源22會有可從該AC轉接器16處取得的最大電流, 但卻不會導致該AC轉接器超載。在APM模組5〇於Μρρτ 模式中_整個操作的操#巾,倘若所生成的輸入電流h 超過輸人m龍制模組8G的輸人電流限制參考: IlN-REF的話,那麼,該輸入_電流_限制控制模組便會掌控該 充電系統H)的整個操作。因此,在ApM模組5〇於 模式甲的操作期間,該鑛模組可能會因試圖最大化從該 AC轉接器ι6處獲取的功率而調整該輸入電壓,並且因而 導致輸入電流IlN增加而抵達該輸入-電流_限制控制模组 的輸入電流限制參考值Iin.ref。當發生此情況時,該輸入_ 電流-限制控制模組80便會控制整個操作而該卿模組 則會被禁能(也就是,致能訊號E會被驅動為不作用,以 張開該切換器SW)。 圖9所示的係根據本發明其中一實施例,用以從圖工 二从轉接器16處獲取最大功率的圖2的適應性充電控制 益28在MPPT模式中的操作的輸入電流、輸入電壓、以及 輪入功率的關係圖。圖中也顯示出對應的功率 IN=vinxIin。在操作中,該鑛模組5q會控制圖丨的適應 37 201251269 性充電控制器28,俾走 7K fi 吏传忒充電系統10會操作在圖9中所 不的點處。冰 愿於此位置點,該AC轉接器】6供應的輸入電The input threshold value Ve above which is above β is the threshold value of the input voltage Vin or the voltage ^ from the adapter 16, and is represented by Vei in this case. Alternatively, the input threshold value Ve is the input current Im or the critical value of the current I 〇 A from the ac adapter 16 and is represented by γη in this case. The input threshold value νΕ1 is the value or magnitude of the output generated by the Ac adapter 16 = the pressure V0A. Those skilled in the art will understand that 'when the output current is less than the rated current of the adapter, the output voltage V The phase chargeable power source 22 of the output voltage V〇A of 201251269 is desirably sufficiently below the constant magnitude produced by the AC adapter 16. The system load 20 and the desired current I 〇 A (i.e., the input current I1N) exceed the current that the AC adapter 16 can provide. In the exemplary embodiment where the relatively constant value of v0A is typically 5 volts volts, for example, Vei may be set to 4 75 volts; however, the invention also covers other values of VE1. In the embodiment where the reference control signal is v1R, Ve2 shown in the figure corresponds to the value or magnitude of the output current I0A generated by the AC switch H sufficiently above the rated current to indicate the charging control unit 12 The output current I 〇 A required for the combination with the system load 20 or the combination of the charging control unit 12, the system load 20, and the rechargeable power source 22 requires a larger output current I 〇 A than the AC rpm. The current that the connector 16 can generate. In either case, the branch line "No (n〇)" of step 1〇4 will cause the method to return to step 102; and the branch line "yes" of step 1〇4 will proceed to step 106, where Wherein, the Μρρτ module 52 is operable to calculate the wheeling power Pin by a well-known function of v_ and vIN, for example, pIN-K*v"N*VlN, where the κ-system is set to be converted to h The constant of the true value. Of course, the wheeling power PIN is the output power generated by the AC adapter 16, and step 1〇6 will go to step i, where the MPPT module 52, the IDPM control module M, and the pWM controller 4〇 Will work together to adaptively modify VnN and/or Vin to maximize Pin, as discussed above with reference to Circles 3 through 5. Then, at step u, the MPPT module 52 is operable to wait for a predetermined period of time, and during this waiting period, by having all or most of the circuits of the internal 30ρρτ module 52 internal 30 201251269 The system stops and saves the waiting period of the step 110 of the gt; τ module 52. The MPPT module 52 consumes little electric power, and even does not eliminate any electric power, and the electric power is saved when the ... 7 module does not need to operate. . Then, at step 112, the MPPT module 52 is operable to compare VIN and 'or' to compare VII_VE2_VH2, where VH1 and VH2 represent previously defined hysteresis voltage values. Therefore, if the health VIN does not increase at least VH1 above VE1 (or, if VUN does not fall below at least VE2), the party *(10) will loop back to step 106. Otherwise cough method, will loop back to step 1G2, restart the method just. It should be understood that 2' whether the reference control signal is ^, any of the ~ and ^ or both can be estimated to determine whether the party 4 should just proceed from step 104 to step, step 106, that is The Μρρτ module 52 is activated; and/or used to determine whether the method 100 should leave steps "6 and (10), that is, '#cancel or interrupt the operation of the Μρρτ module 52. In any case, the 'input dynamic power control module M will respond to the reference control signal ^ in a conventional manner to generate a control signal. The PWM controller 4 will utilize the control. The signal is used to control the duty cycle of the control signal or the PWMV by controlling the switching source or 82 mesh to obtain the maximum available output power corresponding to the ac adapter 16 from the AC transfer $16. The input current ~ (which corresponds to the output current w of the AC adapter 16) and the input voltage Vin (which corresponds to the output voltage v 〇 a of the AC adapter 16). In this manner, the switching circuitry of the charging control unit 12 is controlled, and the ac adapter 31 201251269 16 is capable of generating a maximum wheeling power and charging the power source 22^ and supplying to the system load 20 as may be mentioned above. The @7A and 7B are shown in the APM control of Figure 6: the input power plant generated during the method and the input current I1N; In the Am mode of operation, the input voltage % and the value of the wheeled power are dithered at a particular intermediate value corresponding to the true value of v丨_^ which results in the maximum power output of the AC adapter 16. This can be seen in the APM mode of operation to the right of Figure 7A and to the left of Figure 7B. Another mode of operation is shown in Figures μ and 7B, in other words, a constant voltage π mode. As seen in these figures, during the cv mode of operation, the CV control module 42 and the PWM controller 4 as seen in Figure 2 will control the % to DC converter 29 (Fig. 在一, for a value) A constant output current Ι〇υτ' is generated at a predetermined output voltage (iv), and accordingly, the input voltage ViN and the input current IIN have a substantially constant value m brother corresponding to that seen in FIGS. 7A and 7B, The Ac Adapter 16 is capable of supplying the input power "Iin' required for the charging it 12 (Fig. 1) to supply the constant output current ιουτ and the constant output voltage ν 〇υ τ. Then, in Fig. 7A, it will be time. An event occurs at t〇. For example, the system load 2〇 (Fig. 1) requires a surge current, and the output current will exceed the current that can be supplied by the AC adapter 16. Therefore, the input voltage ViN Will "fall down" or start to fall at the time, causing the APM module 50 to start operating in the ΑΡΜ mode at time t1 after a delay time. As discussed above, the input voltage VlN and the input current ΐΝ will tremble during this mode At some later point in time, the system load 2〇 required 32 201251269 The surge current will be terminated. This can be done in this example of Figure 7B, the charge control unit. I. Therefore, 揸—· In the evening, the operator starts operating again at the cv nucleus t, which occurs at time t丨 of Figure 7B. Figure 8 is in accordance with the present invention - an embodiment, Figure 2: Charge Controller A more detailed functional diagram of the operation of 28 The charge controller 28 will switch between these different modes of operation during operation: = operation of the charge control unit U ^ Figure 8 of the formula, except for a new ^ input - current - limit control In addition to the module 8 , a CC control module 44 and a technical control module 5 are also displayed. In the case of beans, more or less control modules may be included, for example, Figure 2, heart 8 ΓΓΓ 46 and SPPM control module 48, however, the control module shown in Figure 8 will now be referred to only with reference to the figure. Figure " A member is used to determine which operating mode is preferentially controlled. The way the unit is called the operation mode of Figure 。. As seen in Figure 8, each (4) Modules 42, 44, 5G, and 80 all include a corresponding error amplification thief E/A 'which drives - a corresponding output transistor τ that is connected between ground and the common output node μ. The input _ current limit The control module (9) f includes a switch SW operative to selectively isolate the corresponding output transistor T from the common output node 82 in response to the enable signal E generated by the comparison 2 in FIG. Or the corresponding output transistor T is coupled to the common output node 82, which will be described in more detail below. Each control module 42, 44, 50, and 8〇 will receive a corresponding L boundary. Value or reference signal and __ operating parameters that are monitored or sensed. It is said that the CV control module 42 receives an output reference voltage 33 201251269 V0UT-REF and also senses the output voltage v〇ui_ CC control module 44 receives the output reference current I〇UT-REF and also senses The output current is measured; [〇υτ, ΑΡΜ control module 5〇 senses the input voltage and receives an input reference voltage V1N-REF. Finally, the input-current-limit control module 8〇 senses the input power I1N and the input reference current Iin.ref. When the input current I1N exceeds the input reference current IIN_REF, the error amplifier E/A and the control module 80 generate an output for the PWM controller 4 (FIG. 2) to control the buck converter 29 (FIG. 1) for Limiting the value of the input current and thus protecting the AC adapter 16 » As seen in Figure 8, the outputs of the error amplifiers E/A are connected to the output node in a wired-to-wire configuration 82, 俾 causes the "hardest" or the error amplifier that turns on its corresponding output transistor T in the maximum output mode to control the level of the voltage at the output node. The common output transistor 84 is controlled by the voltage at the output node 82 and is coupled in series with a constant current source between the voltage supply Vcc and ground. The interconnection of the common output transistor 84 and the strange current source 85 is defined - the comparison node 88' will be (4) coupled to - one of the inputs of the comparator 91 / the other wheel of the comparator will receive a The ramp signal or the miner signal. The comparator 91 generates a PWM output signal in response to the ramp signal and the voltage on the comparison node 88. The error amplifier E/A, which is the hardest to turn on its corresponding output transistor τ, controls the level of the voltage on the output node 82, which in turn determines the extent to which the common output transistor 84 is turned on. The extent to which the common output transistor 84 is turned on determines the (four) level on the comparison node 88. The value is 34 201251269. The current source 85 discharges the comparison node (9) at a fixed rate and thus discharges the comparison node, and the current flowing from the voltage supplier Vcc through the battery body 84 charges the comparison node. . The voltage level on the comparison node 88 is thus determined by the extent to which the transistor 84 is turned on and thus is determined by the current flowing through the transistor, and the most effort is made to turn on the error amplifier E/A of its corresponding output transistor T. The level of the voltage on the output node 82 is controlled, which in turn determines the extent to which the common output transistor 84 is turned on and thus determines the voltage level at the comparison node 88. Of course, the voltage level on the comparison node will determine the noble cycle of the PWM signal generated by (4) n 91. Now, the following examples will be explained to explain the integral joint operation of the control modules 42, 44, 5, and 80 to provide overall control of the charging system 1 of FIG. It is assumed that the rechargeable power source 22 is initially almost completely discharged, which means that the charging control unit 12 is supplying a very large output current Ιουτ, which includes a charging current Ich for charging the rechargeable power source and is supplied to the system load 20 Load current iL. In this case, the required output current Ιουτ may be greater than the input current 能够 that the AC adapter 16 can supply. Allowing the AC adapter 16 to provide this high input current Ιιν will overload the AC adapter, which may damage or damage the adapter. In this case, the input-current-limit control module 8〇 senses the extremely high input current IIN, so the control module determines the voltage level on the common output node 82, and then determines the The voltage level on node VIII is compared to control the PWM signal generated by the comparator 91. The generated PWM signal will limit the input from the AC adapter 16. 201251269 Incoming current w This input current Iin will be used to provide the required load current IL. The system is loaded with 20 ’ first and the residual current is used as the charging current IcH to charge the rechargeable mine. The sinusoidal adaptive charge controller 28 controls 曰_ |q #1: Μ Τ in Fig. 1 to set the charging current Ich to an allowable value. Now rice. Again, the system load 2 〇 and/or the rechargeable power source 22 requires less current, which means that the output current w is now relatively low. Further false - again - Hai AC adapter 16 can now supply the necessary output current [ON. In this case, the CC control module 44 may now control the entire operation, which means that the control group will drive the common output node 88 to control the voltage level on the node and control the method in this manner. The voltage level on the node 比较 is compared to control the pwM signal generated by the comparator 91. In this manner, the CC control module 44 allows the adaptive charging controller 28 to operate to supply a constant output current Ι〇υτ, a portion of which is used to charge the charging power Igh of the rechargeable power source and is used in part. The load current supplied to the system load 20 is supplied. It is now assumed that the rechargeable power source 2 2 is nearly fully charged after a period of time, which means that the required charging current IcH will thus decrease. Therefore, the required output current Ιουτ will become low, and at this point, the cv control module 42 will control to determine the voltage level on the common output node 82 and thus determine the voltage level on the comparison node 88. quasi. The cv control module 42 controls the pwM signal generated by the comparator 9 in such a manner as to maintain the output voltage ν 〇υ τ at a substantially constant value at the necessary output current ιουτ. 36 201251269 »Hai APM Module 50 will control the overall operation in the same way and in the Μρρτ mode when the input voltage drops below the corresponding reference value Vin ref and the enable signal E is active to close the switch sw Control the system ίο. When the ΜΡΡΤ mode is activated, the ΑΡΜ module 5 操作 operates as previously described to adjust the input voltage Vin and the input current 丨 ... to thereby obtain the maximum power from the AC adapter 16 . In this manner, the rechargeable power source 22 has a maximum current that can be drawn from the AC adapter 16 without causing the AC adapter to be overloaded. In the APM module 5 Μ ρρτ mode _ the entire operation of the operation, if the generated input current h exceeds the input current limit reference of the input mlong module 8G: IlN-REF, then the input The _current_limit control module will control the entire operation of the charging system H). Therefore, during the operation of the mode module A, the mine module may adjust the input voltage by attempting to maximize the power obtained from the AC adapter ι6, and thus cause the input current I1N to increase. The input current limit reference value Iin.ref of the input-current_limit control module is reached. When this occurs, the input_current-limit control module 80 controls the entire operation and the module is disabled (i.e., the enable signal E is driven to be inactive to open the Switch SW). FIG. 9 is an input current, input for operation of the adaptive charging control benefit 28 of FIG. 2 for obtaining maximum power from the adapter 16 according to one embodiment of the present invention. Diagram of voltage and wheel power. The figure also shows the corresponding power IN=vinxIin. In operation, the mine module 5q controls the adaptation of the map. 37 201251269 The charge controller 28, which bypasses the 7K fi, the charging system 10 operates at a point not shown in FIG. Ice is willing to be at this location, the AC adapter] 6 input input

M ^ Ν荨於Vapm處的1"Μ,從而導致該AC 於該點Μ處供應最大功率。為達比較的目的,圖 ! 作‘ t其它的操作點Α ^ B。’點Α對應於當充電系統 模·Γ之^入_電流,制(也就是,參見圓8的模組8〇)操作 ^令時的操作點。點Β對應於該^轉接器可配合習知 的輸入動態功率管理IDPM〇j如,#f· f+ U q AA μ on 針對圓3的控制模組54 所^者)來操作的操作點。點Μ、A、以及B 入从农D l A次β係顯不在輸 力丰Pin的關係圖上’並且從該關係圖中可看見,點μ 所產生的輸入功率Ριν大於點八或Β,而且點Μ為該Μ轉 接器16的最大功率點。圖9中的箭頭”所示的係 考輸入電墨VIN與輸入電流IlN以及圖…所討論之該適 應性充電控制器28在MPPT模式中的操作期間,輪入 V|N如何以該最大功率點M為中心產生改變與顫振。 熟習本技術的人士便會瞭解,即使在前面的說明 經提出本發明的各種實施例與優點;不過, 〜 上面的揭〒 容都僅為解釋性,並且可在細節作改變而仍落在本务’' 廣泛原理裡面。舉例來說,上面所述的畔容 明的 τ ^态件可能係 用數位或類比電路系統或是兩者的組合來施 仃,而適當的 話,還可以經由在合宜的處理電路系統上執行的軟體來 現。所以,本發明僅由隨附的申請專利範圍來限制。實 【圖式簡單說明】 38 201251269 圖1所示的係根據本發明其中一實施例之具有適應性 電源管理的充電系統的功能方塊圖。 圖2所不的係圖i之適應性充電控制器的更詳細功能 方塊圖。 圖3所不的係圖2之適應性電源管理(ApM)控制模組的 其中一實施例的更詳細功能方塊圖。 圖4所示的係根據本發明其中一實施例,圖3的最大 功率點追蹤(MPPT)模組的更詳細功能方塊圖。 圖5所示的係根據本發明其中一實施例,圖4的猜丁 模組的操作的時序圖。M ^ is at 1"Μ at Vapm, causing the AC to supply maximum power at that point. For the purpose of comparison, figure ! ‘t other operation points Α ^ B. ‘Point Α corresponds to the operating point when the charging system modulates the current, and the system (ie, see module 8 of circle 8) operates. The point Β corresponds to the operating point at which the adapter can operate in accordance with the conventional input dynamic power management IDPM, such as #f·f+ U q AA μ on for the control module 54 of the circle 3. Point Μ, A, and B enter the relationship diagram from the agricultural D l A β system is not on the force distribution Pin ' and can be seen from the relationship diagram, the input power generated by the point μ Ριν is greater than the point eight or Β, Also, the point is the maximum power point of the Μ Adapter 16. The function of the input electric ink VIN and the input current I1N shown in the arrow "in FIG. 9" and the operation of the adaptive charging controller 28 discussed in the MPPT mode during the operation of the MPPT mode, how the V|N is rotated at the maximum power Point M is the center to produce changes and flutter. Those skilled in the art will appreciate that the various embodiments and advantages of the present invention are set forth in the foregoing description; however, the above disclosure is merely illustrative and It can be changed in the details and still fall into the broad principle of the business. For example, the above-mentioned τ ^ state pieces may be implemented by digital or analog circuits or a combination of the two. And, if appropriate, may also be present via software implemented on a suitable processing circuitry. Therefore, the invention is limited only by the scope of the accompanying claims. [Complete description of the drawings] 38 201251269 A functional block diagram of a charging system with adaptive power management in accordance with one embodiment of the present invention. Figure 2 is a more detailed functional block diagram of the adaptive charging controller of Figure i. Figure 2 is a more detailed functional block diagram of one embodiment of an adaptive power management (ApM) control module of Figure 2. Figure 4 is a diagram showing the maximum power point tracking (MPPT) mode of Figure 3, in accordance with one embodiment of the present invention. A more detailed functional block diagram of the group. Figure 5 is a timing diagram of the operation of the guessing module of Figure 4, in accordance with one embodiment of the present invention.

圖6所示的係根據本發明其中一實施例,由圖3的ApM 控制模組和圖2的PWM控制器所執行之用以最大化由圖! 之AC轉接器所提供的輸出功率的控制方法流程圖。 圖7A與7B所示的係在圖6的控制方法期間所產生的 輸入電壓與輸入電流的時序圖。 圖8所示的係根據本發明盆 ^ , 片吴中一貫施例,圖2的適應 性充電控制器的操作的更詳細功能電路圖。 圖9所示的係根據本發明並 乃头〒貫施例,用以從圖1 的AC轉接器處獲取最大功率的固 力羊的圖2的適應性充電控制器在 MPPT模式中的操作的輸入 社 e , L翰入電壓、以及輪入功率 的關係圖。 【主要元件符號說明】 10 充電系統 39 201251269 12 充電控制單元 14 電子裝置 16 AC轉接器 18 AC電源 20 系統負載 22 可充電電源 24 輸入節點 26 輸出節點 28 適應性充電控制器 29 DC至DC轉換器 30 差動放大器 32 差動放大器 40 脈衝寬度調變(PWM)控制器 42 恆定電壓(CV)控制模組 44 恆定電流(CC)控制模組 46 涓流充電(TR)控制模組 48 靜態功率管理(SPPM)控制模組 50 適應性功率管理(APM)控制模組 52 最大功率點追蹤(MPPT)模組 54 輸入動態功率管理(IDPM)控制模組 58 比較器 60 適應性增益與濾波器電路 62 類比至數位轉換器(ADC)電路 64 適應性增益與濾波器電路 40 201251269 66 數位乘法器電路 68 儲存與比較電路 70 數位至類比轉換器(DAC)電路 72 省電電路 80 輸入-電流-限制控制模組 82 共同輸出節點 84 共同輸出電晶體 85 恆定電流源 86 CLOCK時序波形 87 MEASURE 波形 8 8 比較節點 90 COMPARE 波形 91 比較器 92 ADJUST GAIN 波形 93 箭頭 94 MEASURE&STORE 波形 96 ADJUST 波形 9 8 V r訊號 10 0流程圖 41FIG. 6 is an embodiment of the present invention, which is executed by the ApM control module of FIG. 3 and the PWM controller of FIG. 2 to maximize the map! A flow chart of the control method of the output power provided by the AC adapter. 7A and 7B are timing diagrams of input voltage and input current generated during the control method of Fig. 6. Figure 8 is a more detailed functional circuit diagram of the operation of the adaptive charge controller of Figure 2 in accordance with the present invention. Figure 9 is an illustration of the adaptive charge controller of Figure 2 for use in the MPPT mode for obtaining the maximum power of the solid power sheep from the AC adapter of Figure 1 in accordance with the present invention. Input system e, L John voltage, and wheel power relationship diagram. [Main component symbol description] 10 Charging system 39 201251269 12 Charging control unit 14 Electronic device 16 AC adapter 18 AC power supply 20 System load 22 Charging power supply 24 Input node 26 Output node 28 Adaptive charging controller 29 DC to DC conversion 30 differential amplifier 32 differential amplifier 40 pulse width modulation (PWM) controller 42 constant voltage (CV) control module 44 constant current (CC) control module 46 trickle charge (TR) control module 48 static power Management (SPPM) Control Module 50 Adaptive Power Management (APM) Control Module 52 Maximum Power Point Tracking (MPPT) Module 54 Input Dynamic Power Management (IDPM) Control Module 58 Comparator 60 Adaptive Gain and Filter Circuitry 62 analog to digital converter (ADC) circuit 64 Adaptive gain and filter circuit 40 201251269 66 Digital multiplier circuit 68 Store and compare circuit 70 Digital to analog converter (DAC) circuit 72 Power saving circuit 80 Input - Current - Limit Control Module 82 Common Output Node 84 Common Output Transistor 85 Constant Current Source 86 CLOCK Timing Waveform 87 MEASURE Waveform 8 8 Comparison Node 90 COMPARE Waveform 91 Comparator 92 ADJUST GAIN Waveform 93 Arrow 94 MEASURE&STORE Waveform 96 ADJUST Waveform 9 8 V r Signal 10 0 Flowchart 41

Claims (1)

201251269 七、申請專利範圍: 1·一種充電器,其包括: 一輸入; 至少一切換器,其具有被耦合至一參考電壓的一第一 節點; 一電流感測器,其會被耦合在該輸入與該至少一切換 器的一第二節點之間; 一輸出,其會被耦合至該至少一切換器的一第三節 點;以及 一充電控制器,其會被耦合至該輸入並且會被配置成 用以決定一輸入電壓,被耦合至該電流感測器並且會被配 置成用以決定一輸入電流,以及被耦合至該至少一切換器 的多個控制輸入,該至少一切換器會響應於由該充電控制 器所供應的多個控制訊號來控制其該等控制輸入,用以控 制該充電器之輸出處的電壓與電流,該充電控制器會被配 置成以約略最大化在該輸入處所獲取之電功率的方式響應 於該輸入電壓與該輸入電流來產生該等控制訊號。 2·如申請專利範圍第1項的充電器,其進一步包括一濾 波器,其會破耦合在該輸出與該至少一切換器的該第三 點之間。 3.如申請專利範圍第1項的充電器,其中該充電控制 具有複數個操作模式计 @式’其包含一動態功率管理模式,於 動態功率管理模式楹 ' 、式期間,在該輸入處所需要的電功 超過在該輸入處可取 侍的電功率,該充電控制器在該動 42 201251269 功率管理模式中會被§2ι置成用於以_參考控制訊號為基礎 來產生該等控制訊號; 且其中該充電控制器包括一適應性功率管理單元,其 T被配置成用以產生該參考控制訊號,該適應性功率管理 單元會被配置成以約略最大化在該輸入處所獲取之電功率 的方式響應於該輸人電壓與該輸人電流來改變該參考控制 訊號》 4·如申請專利範圍第3項的充電器,其中該適應性功率 管理單元包括: 一第—類比適應性增益電路,其具有一用以接收該輸 =電壓的輸入以及一用以產生一經調整電壓作為該輸入電 壓與一第一增益值的乘積之輸出; :第二類比適應性增益電路,其具有一用以接收該輸 入電"的輪入以及一用以產生一經調整電流作為該输入電 心與一第二增益值的乘積之輸出; 一第—轉換器,用以將該經調整電壓轉換成一離散電 壓值並且將該經調整電流轉換成一離散電流值; 乘法器電路,用以產生一輸入功率值作為該離散電 壓值與該離散電流值之乘積; 比較電路系統,用以產生一和該輸入功率值與一先 刚決疋之輪入功率值之間的差值成正比的步階值;以及 一第二轉換器,用以將該步階值轉換成該參考控制讯 號。 。 5.如申請專利範圍第4項的充電器,其中該第一類比適 43 201251269 應性增益雷& 1 €路會響應於該離散電壓值來調整該第一増益 值’俾使得該離散電壓值會介於事先定義的低 值之間》 '、问數 .如申請專利範圍第4項的充電器,其中极术一胡叱^ 應性增益電路會響應於該離散電流值來調整該第:& 值’俾使得該離散電流值會介於事先定義的低數值 值之間。 、巧歎 7·如申晴專利範圍第4項的充電器,其中該等第—與第 —類比適應性增益電路各自包括類比訊號濾波電路系統。 $ 8.如申請專利範圍第4項的充電器,其中該比較電路系 統包含一或多個記憶體暫存器,用以於該一或多個記憶體 暫存器中儲存該輸入功率值,以便和後面決定的輸入功率 值作比較》 士申明專利範圍第1項的充電器,其中該充電控制器 完全利用類比電路系統來製作。 10.—種充電系統,其包括: 一轉接器,用以將AC電功率轉換成DC電功率,其中 當由該轉接器所產生的DC t流提高至一額定電流值以上 時,由該轉接器所產生的DC電壓會快速下降; 一具有一功率輸入的電子裝置,該功率輸入會被耦合 至至少一可充電電源並且被耦合至至少一用以定義一系統 負載的電路;以及 充電控制單元,其具有:一輸入,其會被輕合至該 轉接器、一輸出,其會被耦合至該電子裝置的該功率輸入、 44 201251269 一感測器,用以感測由該轉接器所產生的DC電流並且產生 一電流感測訊號、以及切換電路系統,其會被耦合在該充 電控制單元輸入與輸出之間並且響應於由該充電控制單元 所產生的多個控制訊號,以便以可控制的方式從該轉接器 處供應該DC電壓與該DC電流給該充電控制單元,該充電 控制單元會在該電子裝置所需要的DC電流超過該額定電 流時響應於由該轉接器所產生的DC電壓並且響應於該電 流訊號以約略最大化由該轉接器所產生之DC電功率的方 式來產生該等控制訊號。 11.如申請專利範圍第1 〇項的充電系統,其令當在該充 電控制單7〇所需要的DC電流超過該額定電流之後由該轉 接器所產生的DC電壓下降至一事先定義的電壓值之下 時,該充電控制單元會響應於由該轉接器所產生的DC電壓 並且響應於該電流訊號以最大化由該轉接器所產生之DC 電功率的方式來產生該等控制訊號。 /2.如申請專利範圍第1〇項的充電系統,其中該充電控 制單兀包括-用以產生該等控制訊號的充電控制器,該充 電控制器具有複數個操作模式,纟包含一動態功率管理模 式於》亥動態功率管理模式期間,該充電控制單元所需要 的DC電流超過該額定電流,該充電控制器可操作在該動雄 功率管理模式中用於以-參考控制訊號為基礎來產生該i 控制訊號; 八中4充電控制器包括一適應性功率管理單元,其 會產生4 >考&制§fl號’該適應性功率管理單元會以最大 45 201251269 化由該轉接器所產生之DC電功率的方式響應於由該轉接 器所產生的DC電壓並且響應於該電流訊號來改變該參考 控制訊號。 13·如申請專利範圍第12項的充電系統,其中該適應性 功率管理單元包括: 一第一類比適應性增益電路,其具有一用以接收由該 轉接器所產生之DC電壓的輸入以及一用以產生一經調整 電壓作為由該轉接器所產生之DC電壓與一第一增益值的 乘積之輸出; 一第二類比適應性增益電路,其具有一用以接收該電 流訊號的輸入以及一用以產生一經調整電流作為該電流訊 號與一第一增益值的乘積之輸出; 一第一轉換器,用以將該經調整電壓轉換成一離散電 壓值並且將該經調整電流轉換成一離散電流值; 一乘法器電路’用以產生一輸入功率值作為該離散電 壓值與該離散電流值之乘積; 一比較電路系統,用以產生一和該輸入功率值與一先 前決定之輸入功率值之間的差值成正比的步階值;以及 一第二轉換器,用以將該步階值轉換成該參考控制訊 號。 14.如申請專利範圍第13項的充電系統,其中該第一類 比適應性增益電路會響應於該離散電壓值來調整該第一增 益值,俾使得該離散電壓值會介於事先定義的低數值與高 數值之間, 46 201251269 且其中該第二類比適應性增益電路會響應於該離散電 流值來調整該第:增益值,俾使得該離散電流值會介於事 先定義的低數值與高數值之間。 15.—種從一轉接器供應DC電功率至一電子裝置的方 法’該轉接器會將AC電流與電壓轉換成DC電流與電遂, 其中當由該轉接器所產生的Dc冑流提高至一額定電流值 以上時’由該轉接器所產生的Dc電壓會快速下降,該方法 包括: 監視由該AC轉接器所產生之Dc電壓與dc電流中之 一者;以及 倘若發生受監視的DC t壓下降至一事先定義的電壓 之下及受監視的DC電流超過該額定電流中其中—者,則以 約略最大化由該轉接器所供應之Dc t功率的方式來適應 性控制由該轉接器供應至該電子裝置的%電壓與DC電流 中至少一者的位準。 &如Μ專利範圍第15項的方法’其中適應性控制由 該轉接器供應至該電子裝置的DC電壓與DC電流中至少一 者的位準包括: 反覆地執行下面步驟: 測量由該轉接器所供應的DC電流並且產生一與 其對應的類比電流訊號; 取樣該DC電壓與該類比電流訊號; 以經取樣的DC電壓與經取樣的類比電流訊號為 函數來計算供應功率; 47 201251269 決定朝向更大供應功率的追蹤方向以及已儲存在 記憶體之中的前一個供應功率值; 以該追蹤方向為基礎來調整一參考控制訊號;以 及 以該參考控制訊號為基礎來控制由該轉接器供應 至該電子裝置的DC電壓與DC電流中至少一者的位 準。 1 7 ·如申請專利範圍第16項的方法,其進一步包括: 以一電壓增益值來放大由該轉接器所產生的DC電 壓;以及 以一電流增益值來放大該類比電流訊號; 且其中取樣該DC電壓與該類比電流訊號包括取樣經 放大的DC電壓與經放大的類比電流訊號。 1 8.如申請專利範圍第1 7項的方法,其進一步包括在調 整一參考控制訊號之前先進行下面步驟: 倘若該經取樣的DC電壓不是介於事先決定的低數值 與高數值之間,以該經取樣的DC電壓為函數反覆地修正該 電壓增益值並且取樣被經修正電壓增益值放大的DC電 壓’直到該經取樣的DC電壓介於該等事先決定的低數值與 高數值之間為止; 倘若該經取樣的類比電流訊號不是介於該等事先決定 的低數值與高數值之間,以該經取樣的類比電流訊號為函 數反復地修正該電流增益值並且取樣被經修正電流增益值 放大的類比電流訊號’直到該經取樣的類比電流訊號介於 48 201251269 該等事先決定的低數值與高數值之間為止; 以最近取樣的DC電壓和最近取樣的類比電流訊號為 函數來計算一先前供應功率值;以及 將5亥先刖供應功率值儲存在記憶體之中。 19.如申請專利範圍第17項的方法’其中該方法進一步 包括在下面組合步驟的每一次疊代執行之間延遲一段事先 定義的時間週期:測量該Dc電流、放大該dc電壓、放大 該類比電流訊號、取樣該經放大的DC電壓與該經放大的類 比電流訊號、計算該供應功率、決^該追縱方向、以及調 整該參考控制訊號。 2〇_如申請專利範圍第19項的方法,其進一步包括一適 應味功率官理電路,其包含用於執行下面步驟的電氣電路 :、先S大該DC電壓、放大該類比電流訊號、取樣該經放 :的DCt壓與該經放大的類比電流訊號、計算該供應功 率m追縱方向、以及調整該參考控制訊號; 且其中該方法進一步包括在該事先定義的時 =將。亥適應性功率管理電路停機,以便在該事先定義 曰週期期間節省被該適應性功率管理電路使用的電功率。、 圖式: (如次頁) 49201251269 VII. Patent application scope: 1. A charger comprising: an input; at least one switch having a first node coupled to a reference voltage; a current sensor coupled to the current Inputting between a second node of the at least one switch; an output coupled to a third node of the at least one switch; and a charge controller coupled to the input and Configuring to determine an input voltage coupled to the current sensor and configured to determine an input current and a plurality of control inputs coupled to the at least one switch, the at least one switch Responsive to controlling the voltage and current at the output of the charger in response to the plurality of control signals supplied by the charge controller to control the voltage and current at the output of the charger, the charge controller being configured to approximately maximize The manner in which the electrical power obtained at the input is input is responsive to the input voltage and the input current to generate the control signals. 2. The charger of claim 1, further comprising a filter coupled between the output and the third point of the at least one switch. 3. The charger of claim 1, wherein the charging control has a plurality of operating modes, @式', which includes a dynamic power management mode, which is required at the input during the dynamic power management mode 式' The electrical power exceeds the electrical power available at the input, and the charging controller is configured by the §2ι in the power management mode of the 201242269 to generate the control signals based on the _reference control signal; The charge controller includes an adaptive power management unit, the T of which is configured to generate the reference control signal, the adaptive power management unit configured to respond in a manner that approximately maximizes the electrical power acquired at the input The input voltage and the input current change the reference control signal. 4. The charger of claim 3, wherein the adaptive power management unit comprises: a first analog-like adaptive gain circuit having a An input for receiving the input voltage and a method for generating an adjusted voltage as the input voltage and a first gain The output of the product; a second analog adaptive gain circuit having a turn-in for receiving the input power and a generating an adjusted current as a product of the input core and a second gain value. An output-converter for converting the adjusted voltage into a discrete voltage value and converting the adjusted current into a discrete current value; a multiplier circuit for generating an input power value as the discrete voltage value and a product of discrete current values; a comparison circuit system for generating a step value proportional to a difference between the input power value and a first-in-coming wheel-in power value; and a second converter for Converting the step value to the reference control signal. . 5. The charger of claim 4, wherein the first type of ratio 43 201251269 should be the same as the discrete voltage value to adjust the first benefit value '俾 to make the discrete voltage The value will be between the previously defined low value ", the number of the charger. For example, the charger of the fourth application of the patent scope, wherein the extreme gain circuit will adjust the number in response to the discrete current value. The :& value '俾 causes the discrete current value to be between a previously defined low value. 7. A battery charger according to item 4 of the Shenqing patent scope, wherein the first-to-first analog gain circuits each comprise an analog signal filtering circuit system. $8. The charger of claim 4, wherein the comparison circuitry includes one or more memory registers for storing the input power value in the one or more memory registers, In order to compare with the input power value determined later, the charger of claim 1 of the patent scope, wherein the charge controller is completely fabricated using an analog circuit system. 10. A charging system, comprising: an adaptor for converting AC electric power into DC electric power, wherein when the DC t flow generated by the adapter is increased above a rated current value, The DC voltage generated by the connector drops rapidly; an electronic device having a power input coupled to at least one rechargeable power source and coupled to at least one circuit for defining a system load; and charging control a unit having an input that is lightly coupled to the adapter, an output that is coupled to the power input of the electronic device, 44 201251269 a sensor for sensing by the transfer The DC current generated by the device and generates a current sensing signal, and switching circuitry that is coupled between the input and output of the charging control unit and responsive to the plurality of control signals generated by the charging control unit so that Supplying the DC voltage and the DC current from the adapter to the charging control unit in a controllable manner, the charging control unit will exceed the DC current required by the electronic device The control signal is generated in response to the DC voltage generated by the adapter when the current is rated and in response to the current signal to approximately maximize the DC power generated by the adapter. 11. The charging system of claim 1, wherein the DC voltage generated by the adapter drops to a predefined value after the DC current required for the charging control unit 7 exceeds the rated current When the voltage value is below, the charging control unit generates the control signals in response to the DC voltage generated by the adapter and in response to the current signal to maximize the DC power generated by the adapter. . /2. The charging system of claim 1, wherein the charging control unit comprises: a charging controller for generating the control signals, the charging controller having a plurality of operating modes, wherein the dynamic power is included The management mode is that during the dynamic power management mode, the DC current required by the charging control unit exceeds the rated current, and the charging controller is operable in the dynamic power management mode for generating based on the reference control signal. The i-control signal; the eight-in-one charging controller includes an adaptive power management unit that generates 4 > test & §fl number' the adaptive power management unit will be maximized by 45 201251269 by the adapter The generated DC electrical power is responsive to the DC voltage generated by the adapter and changes the reference control signal in response to the current signal. 13. The charging system of claim 12, wherein the adaptive power management unit comprises: a first analog adaptive gain circuit having an input for receiving a DC voltage generated by the adapter and An output for generating an adjusted voltage as a product of a DC voltage generated by the adapter and a first gain value; a second analog adaptive gain circuit having an input for receiving the current signal and An output for generating an adjusted current as a product of the current signal and a first gain value; a first converter for converting the adjusted voltage into a discrete voltage value and converting the adjusted current into a discrete current a multiplier circuit 'for generating an input power value as a product of the discrete voltage value and the discrete current value; a comparison circuit system for generating a sum of the input power value and a previously determined input power value The difference between the steps is proportional to the step value; and a second converter for converting the step value into the reference control signal. 14. The charging system of claim 13, wherein the first analog adaptive gain circuit adjusts the first gain value in response to the discrete voltage value such that the discrete voltage value is between a previously defined low Between the value and the high value, 46 201251269 and wherein the second analog adaptive gain circuit adjusts the first gain value in response to the discrete current value, such that the discrete current value is between a previously defined low value and high Between values. 15. A method of supplying DC electrical power from an adapter to an electronic device 'The adapter converts AC current and voltage into DC current and power, wherein the Dc turbulence generated by the adapter When the voltage is raised above a rated current value, the voltage of the Dc generated by the adapter will drop rapidly. The method includes: monitoring one of the DC voltage and the dc current generated by the AC adapter; and if it occurs The monitored DC t voltage drops below a predefined voltage and the monitored DC current exceeds the rated current, then is adapted to approximately maximize the Dc t power supplied by the adapter. The control is supplied to the level of at least one of the % voltage and the DC current of the electronic device by the adapter. < The method of claim 15 wherein the adaptively controlling the level of at least one of the DC voltage and the DC current supplied to the electronic device by the adapter comprises: repeatedly performing the following steps: measuring by The DC current supplied by the adapter generates a corresponding analog current signal; samples the DC voltage and the analog current signal; calculates the supplied power by using the sampled DC voltage as a function of the sampled analog current signal; 47 201251269 Determining a tracking direction toward a larger supply power and a previous supply power value already stored in the memory; adjusting a reference control signal based on the tracking direction; and controlling the rotation based on the reference control signal The connector is supplied to a level of at least one of a DC voltage and a DC current of the electronic device. 1 7 - The method of claim 16, further comprising: amplifying a DC voltage generated by the adapter with a voltage gain value; and amplifying the analog current signal with a current gain value; and wherein Sampling the DC voltage and the analog current signal includes sampling the amplified DC voltage and the amplified analog current signal. 1 8. The method of claim 17, further comprising the step of: prior to adjusting a reference control signal: if the sampled DC voltage is not between a predetermined low value and a high value, The voltage gain value is inversely modified as a function of the sampled DC voltage and the DC voltage amplified by the corrected voltage gain value is sampled until the sampled DC voltage is between the predetermined low and high values. Until the sampled analog current signal is not between the predetermined low value and the high value, the current gain value is repeatedly corrected by the sampled analog current signal as a function and the sampled corrected current gain is sampled. The value-amplified analog current signal 'until the sampled analog current signal is between 48 201251269, which is between the previously determined low and high values; is calculated as a function of the most recently sampled DC voltage and the most recently sampled analog current signal a previously supplied power value; and storing the 5 刖 刖 supply power value in the memory. 19. The method of claim 17, wherein the method further comprises delaying a predetermined period of time between each iteration of the following combination of steps: measuring the DC current, amplifying the dc voltage, and amplifying the analogy The current signal, the amplified DC voltage and the amplified analog current signal, the calculated power, the tracking direction, and the adjustment of the reference control signal. 2. The method of claim 19, further comprising an adaptive power management circuit comprising an electrical circuit for performing the steps of: first S largeizing the DC voltage, amplifying the analog current signal, sampling The DCT voltage and the amplified analog current signal, calculating the supply power m tracking direction, and adjusting the reference control signal; and wherein the method is further included at the previously defined time=will. The adaptive power management circuit is shut down to save the electrical power used by the adaptive power management circuit during the pre-defined chirp period. , Schema: (such as the next page) 49
TW101114662A 2011-04-25 2012-04-25 Charging system with adaptive power management TW201251269A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201161478575P 2011-04-25 2011-04-25
US201261604226P 2012-02-28 2012-02-28
US13/421,836 US20120235630A1 (en) 2011-03-15 2012-03-15 Charging system with adaptive power management
US201261617609P 2012-03-29 2012-03-29

Publications (1)

Publication Number Publication Date
TW201251269A true TW201251269A (en) 2012-12-16

Family

ID=47929562

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101114662A TW201251269A (en) 2011-04-25 2012-04-25 Charging system with adaptive power management

Country Status (2)

Country Link
CN (1) CN103001298A (en)
TW (1) TW201251269A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104917269A (en) * 2014-03-11 2015-09-16 登腾电子股份有限公司 Intelligent power supply adapter and power supply control method thereof
TWI631790B (en) * 2015-12-03 2018-08-01 大陸商廣東歐珀移動通信有限公司 Method for adjusting charging current and mobile terminal

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103219783A (en) * 2013-04-11 2013-07-24 重庆邮电大学 Frequency converting control method appropriate for charging process of electric automobile
WO2015007236A1 (en) * 2013-07-18 2015-01-22 Mediatek Inc. Method, charger device, and adaptor capable of maximum output power point tracking
CN103647334A (en) * 2013-11-27 2014-03-19 苏州贝克微电子有限公司 Current-adjustable battery charging circuit
CN105745813A (en) * 2013-12-27 2016-07-06 英特尔公司 Charger of an electronic device
CN103855782B (en) * 2014-01-14 2017-12-08 深圳市普林泰克科技有限公司 A kind of wireless charger adaptive power output power control method
US9601938B2 (en) * 2014-05-15 2017-03-21 Intel Corporation Battery charger for different power sources
CN105305522A (en) * 2014-07-31 2016-02-03 浙江亿思达显示科技有限公司 Charging-type 3D glasses capable of performing automatic charging
US9614380B2 (en) 2014-10-10 2017-04-04 Intersil Americas LLC Hysteretic current mode buck-boost control architecture
JP6396236B2 (en) * 2015-02-24 2018-09-26 本田技研工業株式会社 PV power converter
CN106253663B (en) * 2016-09-08 2018-11-13 杰华特微电子(杭州)有限公司 The control method and control system of load current
CN111555384A (en) * 2020-04-26 2020-08-18 合肥联宝信息技术有限公司 Charging device and method with dynamic PTM (packet transfer protocol) adjusting function
CN115623466B (en) * 2022-12-19 2023-02-28 北京紫光青藤微系统有限公司 Method and device for controlling power tube, electronic equipment and storage medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104917269A (en) * 2014-03-11 2015-09-16 登腾电子股份有限公司 Intelligent power supply adapter and power supply control method thereof
US9413262B2 (en) 2014-03-11 2016-08-09 Midastek Microelectronic Inc. Smart power adaptor and method for controlling power supplay thereof
TWI631790B (en) * 2015-12-03 2018-08-01 大陸商廣東歐珀移動通信有限公司 Method for adjusting charging current and mobile terminal

Also Published As

Publication number Publication date
CN103001298A (en) 2013-03-27

Similar Documents

Publication Publication Date Title
TW201251269A (en) Charging system with adaptive power management
US9564772B2 (en) Charging system with adaptive power management
US10320290B2 (en) Voltage regulator with switching and low dropout modes
JP6623219B2 (en) System and method for improving standby efficiency of LLC converter
US20120235630A1 (en) Charging system with adaptive power management
JP5671595B2 (en) Charge control device
TWI597918B (en) Battery charge system and method capable of operating in different configurations
US9130457B2 (en) Control logic for switches coupled to an inductor
TW407229B (en) Power supply apparatus and method of controlling power supply circuit
TW201324116A (en) Control system and method for shared inductor regulator
US9806612B2 (en) Systems and methods of energy saving in a battery charging system
TW201250424A (en) Method and apparatus for low standby current switching regulator
TW201227203A (en) Method for improving voltage identification (VID) transient response and voltage regulator
TW201232991A (en) Battery charger digital control circuit and method and battery charger system
EP1938444A2 (en) Feed-forward circuit for adjustable output voltage controller circuits
TWI669886B (en) Electronic equipment, power supply and associated control method
TW201710818A (en) Current mode control regulator with load resistor emulation
TWI504101B (en) Charger external power device gain sampling
TW201539959A (en) Systems and methods for mitigation of resistor nonlinearity errors in single or multiphase switching voltage regulators employing inductor DCR current sensing
TWI741625B (en) Power conversion system for autonomous current sharing of power stages
TWI690142B (en) Dc-dc converter and method for controlling a reference voltage
US9711984B2 (en) High voltage generation method at battery system
WO2013130340A1 (en) Controlling a current drawn from an adapter by a computer system
US9559538B1 (en) Switch mode battery charger with improved battery charging time
JP2005039997A (en) Circuit for controlling electric power