TW201250710A - Conductive composition for making current collecting electrode for solar cell and solar cell - Google Patents

Conductive composition for making current collecting electrode for solar cell and solar cell Download PDF

Info

Publication number
TW201250710A
TW201250710A TW101108121A TW101108121A TW201250710A TW 201250710 A TW201250710 A TW 201250710A TW 101108121 A TW101108121 A TW 101108121A TW 101108121 A TW101108121 A TW 101108121A TW 201250710 A TW201250710 A TW 201250710A
Authority
TW
Taiwan
Prior art keywords
solar cell
fatty acid
metal
silver salt
conductive composition
Prior art date
Application number
TW101108121A
Other languages
Chinese (zh)
Inventor
Nao Sato
Kazunori Ishikawa
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011107292A external-priority patent/JP2012238754A/en
Priority claimed from JP2011110646A external-priority patent/JP2012243865A/en
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Publication of TW201250710A publication Critical patent/TW201250710A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

The purpose of the present invention is to provide an electroconductive composition for forming a solar cell collector electrode whereby a solar cell can be obtained that exhibits a high fill factor over a wide firing temperature range (700 to 800 DEG C), and to provide a solar cell that uses this composition. This electroconductive composition for forming a solar cell collector electrode contains electroconductive particles (A), a fatty acid silver salt (B), a glass frit (C), a solvent (D), and a metal compound (E) composed of ionic bonds and/or coordinate bonds between a metal other than silver and an organic compound other than the fatty acid of the fatty acid silver salt (B), wherein the mass ratio (B/E) of the fatty acid silver salt (B) content to the metal compound (E) content is 1 or greater.

Description

201250710 六、發明說明: 【發明所屬之技術領域】 本發明關於一種太陽能電池集電電極形成用導電性組 成物及太陽能電池元件。 【先前技術】 隨著對地球環境問題之關心日益高漲,已積極開發具 有各種構造與構成之可將太陽光等光能轉換爲電能的太陽 能電池。其中使用矽等半導體基板之太陽能電池由於其轉 換效率、製造成本等優勢,而最被普遍使用。 作爲形成此種太陽能電池之電極之材料,例如專利文 獻1中記載有「一種太陽能電池電極用導電性糊膏,其含 有有機黏合劑、溶劑、導電性粒子、玻璃熔料'金屬氧化 物、以及於150〜8 00 °C溫度範圍內變化爲氣體之物質」([ 請求項1])’作爲變化爲上述氣體之物質,記載有有機金 屬化合物([請求項3]、[請求項4]),作爲有機金屬化合物 之具體例,記載有Al、Ga、In等金屬之二酮基錯合物及 羧酸鹽([003 9])。 此外’專利文獻2中’記載有「一種太陽能電池電極 用導電性糊膏’其特徵在於含有有機黏合劑、溶劑、導電 性粒子、玻璃熔料、以及含有Al、Ga、In或者T1之化合 物」([請求項1 ])’作爲上述化合物,記載有有機金屬化 合物等([請求項3]) ’作爲上述有機金屬化合物,記載有 乙醯丙酮基錯合物等([請求項4])。 201250710 另一方面,專利文獻3中,由本申請人提出「一種導 電性組成物,其含有銀粉(A)、氧化銀(B)、以及有機溶劑 (D),該銀粉(A)爲組成物中含有之銀單體及銀化合物中之 50質量%以上」([請求項1]),並記載有含有羧酸銀鹽作爲 任意成分之態樣、以及含有玻璃熔料等其他添加劑之態樣 ([請求項 2][003 0][003 1 ][0032]等)。 [先前技術文獻] [專利文獻] [專利文獻1]日本專利特開2007-294677號公報 [專利文獻2]日本專利特開2007-294678號公報 [專利文獻3]日本專利特開20 1 1 -35062號公報 【發明內容】 [發明所欲解決之課題] 然而,本發明人對專利文獻1〜3中記載之導電性糊 膏及導電性組成物加以硏究後了解,所得之太陽能電池元 件之曲線因子(FF)有隨著形成電極之燒成溫度而降低之情 況。 若如此特性隨燒成溫度發生變化,則根據其程度,會 產生製造太陽能電池元件時良率降低,或者爲提高良率而 必須高精度控制燒成溫度等之問題。 因此,本發明之課題係提供一種能夠於較廣燒成溫度 範圍(700〜8 00 °C )內獲得顯示高曲線因子之太陽能電池元 件的太陽能電池集電電極形成用導電性組成物及使用其之 -6- 201250710 太陽能電池元件。 [用以解決課題之方法] 本發明人爲解決上述課題而進行深入硏究之結果,發 現藉由使用電池元件以特定質量比含有脂肪酸銀鹽、以及 由銀以外之金屬與上述脂肪酸銀鹽之脂肪酸以外有機化合 物的離子鍵及/或配位鍵構成之金屬化合物之導電性組成 物形成電極,可於較廣燒成溫度範圍(700〜80(TC)內獲得 顯示高曲線因子之太陽能電池元件,因而完成本發明。即 ,本發明提供下述(1)〜(12)。 (1) 一種太陽能電池集電電極形成用導電性組成物,其 含有導電性粒子(A)、脂肪酸銀鹽(B)、玻璃熔料(C)、溶劑 (D)、以及由銀以外之金屬與上述脂肪酸銀鹽(B)之脂肪酸 以外之有機化合物的離子鍵及/或配位鍵構成之金屬化合 物(E),並且, 上述脂肪酸銀鹽(B)之含量與上述金屬化合物(E)之含 量的質量比(B/E)爲1以上。 (2) 如上述(1)之太陽能電池集電電極形成用導電性組 成物,其中上述金屬化合物(E)係由與上述脂肪酸銀鹽(B) 之脂肪酸不同之脂肪酸與銀以外之金屬的離子鍵構成之脂 肪酸金屬鹽(E1)。 (3) 如上述(2)之太陽能電池集電電極形成用導電性組 成物,其中上述脂肪酸銀鹽(B)爲羧酸銀鹽,上述脂肪酸 金屬鹽(E1)係由鎂 '鎳、銅、鋅、釔、锆、錫以及鉛所組 201250710 成之群中選擇的至少1種以上金屬之羧酸金屬鹽。 (4) 如上述(3)之太陽能電池集電電極形成用導電性組 成物,其中上述羧酸金屬鹽係由2-乙基己酸、辛酸、環烷 酸、硬脂酸以及月桂酸所組成之群中選擇的脂肪酸之金屬 鹽。 (5) 如上述(1)之太陽能電池集電電極形成用導電性組 成物,其中上述金屬化合物(E)係由乙醯丙酮與銀以外之 金屬之配位鍵構成之乙醯丙酮基金屬錯合物(E2)。 (6) 如上述(5)之太陽能電池集電電極形成用導電性組 成物,其中上述乙醯丙酮基金屬錯合物(E2)係由銦、鎳、 銅、鈦、鋅以及錫所組成之群中選擇的金屬類之錯合物。 (7) 如上述(1)至(6)中任一項之太陽能電池集電電極形 成用導電性組成物,其中上述質量比(B/E)爲2以上。 (8) 如上述(1)至(7)中任一項之太陽能電池集電電極 形成用導電性組成物,其中上述脂肪酸銀鹽(B)係由碳數 1 8以下之脂肪酸銀鹽(B 1 )、分別具有1個以上羧基銀鹽 基(-COOAg)與羥基(-OH)之脂肪酸銀鹽(B2)、以及不具有 羥基(-OH)但具有2個以上羧基銀鹽基(_c〇OAg)之聚羧酸 銀鹽(B3)所組成之群中選擇的脂肪酸銀鹽。 (9) 如上述(1)至(8)中任一項之太陽能電池集電電極形 成用導電性組成物,其中相對於上述導電性粒子(A)丨00質 量份’上述脂肪酸銀鹽(B)之含量爲】〜30質量份。 (10) 如上述(1)至(9)中任一項之太陽能電池集電電極 形成用導電性組成物’其中相對於上述導電性粒子(A)丨00 201250710 質量份,上述金屬化合物(E)之含量爲0.1〜10質量份。 (1 1) 一種太陽能電池元件,其具備受光面側之表面電 極、抗反射膜、半導體基板、以及背面電極,並且至少上 述表面電極係使用上述(1)至(10)中任一項之太陽能電池集 電電極形成用導電性組成物形成。 (1 2) —種太陽能電池模組,其使用互連器將上述(1 1) 之太陽能電池元件進行串聯配線者。 [發明效果] 如下所示,根據本發明,可提供一種可於較廣燒成溫 度範圍(700〜800 °C )內獲得顯示高曲線因子之太陽能電池 元件的太陽能電池集電電極形成用導電性組成物以及使用 其之太陽能電池元件。 【實施方式】 [太陽能電池集電電極形成用導電性組成物] 本發明之太陽能電池集電電極形成用導電性組成物( 以下亦稱爲「本發明之導電性組成物」)含有導電性粒子 (A)、脂肪酸銀鹽(B)、玻璃熔料(C)、溶劑(D)、以及由銀 以外之金屬與上述脂肪酸銀鹽(B)之脂肪酸以外之有機化 合物的離子鍵及/或配位鍵構成之金屬化合物(E),並且上 述脂肪酸銀鹽(B)之含量與上述金屬化合物(E)之含量的質 量比(B/E)爲1以上。 以下將詳細說明導電性粒子(A)、脂肪酸銀鹽(B)、玻 -9 - 201250710 璃熔料(c)、溶劑(D)、金屬化合物(E)、以及可根據需要含 有之其他成分等。 〈導電性粒子(A)&gt; 本發明之導電性組成物中使用之導電性粒子(A)並無 特別限定,例如可使用電阻率爲2 0 X 1 0 ·6 Ω · c m以下之金 屬材料。 作爲上述金屬材料,具體而言,例如可列舉金(Au)、 銀(Ag)、銅(Cu)、鋁(A1)、鎂(Mg)以及鎳(Ni)等,該等可 單獨使用一種,亦可倂用兩種以上》 基於可形成體積電阻率小之電極,且可製作光電轉換 效率高之太陽能電池元件之理由,該等中較好爲金、銀、 銅,更好爲銀。 基於印刷性良好之理由,本發明中,上述導電性粒子 (A)較好使用平均粒徑0.5〜10 μπι之金屬粉末。 基於可形成體積電阻率小之電極,且可製作光電轉換 效率高之太陽能電池元件之理由,上述金屬粉末中更好使 用球狀銀粉末。 此處,平均粒徑係指金屬粉末粒徑之平均値,係使用 雷射繞射式粒度分布測定裝置測定之50%體積累積直徑 (D 50)。另外,關於計算平均値之基礎之粒徑,當金屬粉 末剖面爲橢圓形時,係指將其長徑與短徑之合計値除以2 之平均値,爲正圓形時,係指其直徑。 此外,球狀係指長徑/短徑之比率爲2以下之粒子形 -10- 201250710 狀。 此外,基於印刷性更好之理由,本發明中,上述導電 性粒子(A)之平均粒徑較好爲〇.7〜5 μηι,基於燒結速度適 當且作業性優異之理由,更好爲1〜3 μιη。 進而,本發明中,作爲上述導電性粒子(Α),可使用 市售商品,作爲其具體例,可列舉AgC-102(形狀:球狀 、平均粒徑:1.5 μηι、福田金屬箔粉工業公司製)、AgC-1〇3(形狀:球狀、平均粒徑:1.5 μηι、福田金屬箔粉工業公 司製)、AG4-8F(形狀:球狀、平均粒徑:2.2 μιη、DOWA Electronics公司製)、AG2-1C(形狀:球狀、平均粒徑:1.0 μηι ' DOWA Electronics 公司製)、AG3-11F(形狀:球狀、 平均粒徑:1.4 μηι、DOWA Electronics 公司製)、SPN5J( 形狀:球狀、平均粒徑:1 .2 μιη、三井金屬公司製)、 EHD(形狀:球狀、平均粒徑:0.5 μηι、三井金屬公司製) 、AgC-201 1(形狀:片狀、平均粒徑:2〜10 μιη、福田金 屬箔粉工業公司製)、以及 AgC-301K(形狀:片狀、平均 粒徑:3〜10 μιη、福田金屬箔粉工業公司製)等。 〈脂肪酸銀鹽(Β)&gt; 本發明之導電性組成物中使用之脂肪酸銀鹽(Β)只要 係有機羧酸(脂肪酸)之銀鹽即可,並無特別限定,例如可 使用日本專利特開2008- 1 98595號公報[0063]〜[0068]段 落中記載之脂肪酸金屬鹽(尤其3級脂肪酸銀鹽)、日本專 利特許第44 82 93 0號公報[003 0]段落中記載之脂肪酸銀鹽 -11 - 201250710 、日本專利特開2010-92684號公報[0029]〜[0045]段落中 記載之具有1個以上羥基之脂肪酸銀鹽、該公報[0046]〜 [0056]段落中記載之2級脂肪酸銀鹽、以及日本專利特開 2011-35062號公報[〇〇22]〜[0〇26]段落中記載之羧酸銀等 〇 基於印刷性良好,且可更降低曲線因子之溫度依存性 之理由,該等中較好使用由碳數18以下之脂肪酸銀鹽(B1) 、分別具有1個以上羧基銀鹽基(-COOAg)與羥基(-OH)之 脂肪酸銀鹽(B 2)、以及不具有羥基(_OH)但具有2個以上 羧基銀鹽基(-COOAg)之聚羧酸銀鹽(B 3)所組成之群中選擇 的至少1種脂肪酸銀鹽。 其中基於可更降低曲線因子之溫度依存性之理由, 尤其較好使用不具有羥基(-OH)但具有3個以上羧基銀鹽 基(-COOAg)之聚羧酸銀鹽(B3)。 此處,作爲上述脂肪酸銀鹽(B2),例如可列舉下述式 (I)〜(III)中任一者表示之化合物。 -12- 201250710 【化1】 COOAg (RlVc-fR2-〇H)3.n ⑴ COOAg R1——C——OH (II)[Technical Field] The present invention relates to a conductive composition for forming a solar cell collecting electrode and a solar cell element. [Prior Art] With the increasing concern for global environmental problems, solar cells with various structures and compositions that convert solar energy such as sunlight into electrical energy have been actively developed. Among them, solar cells using semiconductor substrates such as germanium are most commonly used because of their advantages such as conversion efficiency and manufacturing cost. As a material for forming an electrode of such a solar cell, for example, Patent Document 1 discloses "a conductive paste for a solar cell electrode, which contains an organic binder, a solvent, conductive particles, a glass frit" metal oxide, and "A substance that changes to a gas in the temperature range of 150 to 00 °C" ([Request 1])" as a substance that changes to the above gas, and an organometallic compound ([Request Item 3], [Request Item 4]) is described. Specific examples of the organometallic compound include a diketone-based complex of a metal such as Al, Ga, or In, and a carboxylate ([003 9]). Further, 'Patent Document 2' describes "a conductive paste for solar cell electrodes" which is characterized by containing an organic binder, a solvent, conductive particles, a glass frit, and a compound containing Al, Ga, In or T1. ([Request Item 1]) As the above-mentioned compound, an organometallic compound or the like ([Requirement 3]) is described as the above-mentioned organometallic compound, and an acetoacetone-based complex or the like is described ([Request Item 4]). 201250710 On the other hand, in Patent Document 3, the applicant proposes "a conductive composition containing silver powder (A), silver oxide (B), and an organic solvent (D), which is a composition. 50% by mass or more of the silver monomer and the silver compound ("Request 1"), and the aspect in which the silver carboxylate salt is contained as an arbitrary component, and the other additive containing glass frit is contained ( [Request 2] [003 0] [003 1] [0032], etc.). [PRIOR ART DOCUMENT] [Patent Document 1] Japanese Patent Laid-Open No. 2007-294677 (Patent Document 2) Japanese Patent Laid-Open No. Hei. No. 2007-294678 (Patent Document 3) Japanese Patent Laid-Open No. 20 1 1 - [Invention of the Invention] The inventors of the present invention have studied the conductive paste and the conductive composition described in Patent Documents 1 to 3, and have obtained the solar cell element obtained. The curve factor (FF) has a tendency to decrease as the firing temperature of the electrode is formed. When such a characteristic changes with the firing temperature, depending on the degree, the yield is lowered when the solar cell element is manufactured, or the baking temperature is required to be controlled with high precision in order to improve the yield. Therefore, an object of the present invention is to provide a conductive composition for forming a solar cell collecting electrode capable of obtaining a solar cell element exhibiting a high curve factor in a wide firing temperature range (700 to 800 ° C) and using the same. -6- 201250710 Solar cell components. [Means for Solving the Problems] As a result of intensive research to solve the above problems, the present inventors have found that a battery element contains a fatty acid silver salt at a specific mass ratio, and a metal other than silver and the above-mentioned fatty acid silver salt. A conductive composition forming a metal compound composed of an ionic bond and/or a coordinate bond of an organic compound other than a fatty acid, and a solar cell element exhibiting a high curve factor can be obtained in a wide firing temperature range (700 to 80 (TC)). Thus, the present invention provides the following (1) to (12). (1) A conductive composition for forming a collector electrode for a solar cell, comprising conductive particles (A) and a fatty acid silver salt ( B), a glass frit (C), a solvent (D), and a metal compound (E) composed of an ionic bond and/or a coordinate bond of an organic compound other than the metal other than silver and the fatty acid silver salt (B) And the mass ratio (B/E) of the content of the above-mentioned fatty acid silver salt (B) to the content of the metal compound (E) is 1 or more. (2) The solar cell collector electrode is formed as described in (1) above. The conductive composition, wherein the metal compound (E) is a fatty acid metal salt (E1) composed of an ionic bond of a fatty acid different from the fatty acid of the fatty acid silver salt (B) and a metal other than silver. (3) as described above ( 2) The conductive composition for forming a solar cell collector electrode, wherein the fatty acid silver salt (B) is a silver carboxylate salt, and the fatty acid metal salt (E1) is made of magnesium 'nickel, copper, zinc, lanthanum, zirconium, A carboxylic acid metal salt of at least one metal selected from the group consisting of the group of the group of the group of the group of the group of the group of the group of And a metal salt of a fatty acid selected from the group consisting of 2-ethylhexanoic acid, octanoic acid, naphthenic acid, stearic acid, and lauric acid. (5) Conductive electrode for forming a solar cell of the above (1) The above-mentioned metal compound (E) is an acetoacetone-based metal complex (E2) composed of a coordination bond of a metal other than acetonitrile and a metal other than silver. (6) A solar cell as described in the above (5) Conductive electrode forming conductive composition And the above-mentioned ethyl acetonide-based metal complex (E2) is a complex of a metal selected from the group consisting of indium, nickel, copper, titanium, zinc and tin. (7) as described above (1) The conductive composition for forming a collector electrode for a solar cell according to any one of the above aspects, wherein the mass ratio (B/E) is 2 or more. (8) Any one of the above (1) to (7) The conductive composition for forming a solar cell current collector electrode, wherein the fatty acid silver salt (B) is a fatty acid silver salt (B 1 ) having a carbon number of 18 or less, and each has one or more carboxyl silver salt groups (-COOAg). a group consisting of a fatty acid silver salt (B2) having a hydroxyl group (-OH) and a polycarboxylic acid silver salt (B3) having no hydroxyl group (-OH) but having two or more carboxyl silver salt groups (_c〇OAg) Selected fatty acid silver salt. (9) The conductive composition for forming a current collector of a solar cell according to any one of the above-mentioned (1) to (8), wherein the above-mentioned conductive particles (A) are 00 parts by mass of the above-mentioned fatty acid silver salt (B) The content is 〜30 parts by mass. (10) The conductive composition for forming a current collector for a solar cell of any one of the above (1) to (9), wherein the metal compound (E) is the mass of the conductive particles (A) 2012 2012 20121010 parts by mass The content is 0.1 to 10 parts by mass. (1) A solar cell element comprising a surface electrode on a light-receiving surface side, an anti-reflection film, a semiconductor substrate, and a back surface electrode, and at least the surface electrode is the solar energy according to any one of the above (1) to (10) The battery current collecting electrode is formed of a conductive composition. (1 2) A solar cell module in which the solar cell element of the above (1 1) is connected in series using an interconnector. [Effect of the Invention] As described below, according to the present invention, it is possible to provide a solar cell collector electrode forming conductivity capable of obtaining a solar cell element exhibiting a high curve factor in a wide firing temperature range (700 to 800 ° C). A composition and a solar cell element using the same. [Embodiment] [Conductive composition for forming a solar cell collecting electrode] The conductive composition for forming a solar cell collecting electrode of the present invention (hereinafter also referred to as "the conductive composition of the present invention") contains conductive particles. (A), a fatty acid silver salt (B), a glass frit (C), a solvent (D), and an ionic bond and/or a compound of an organic compound other than a metal other than silver and a fatty acid of the above-mentioned fatty acid silver salt (B) The metal compound (E) composed of a bond, and the mass ratio (B/E) of the content of the above-mentioned fatty acid silver salt (B) to the content of the above metal compound (E) is 1 or more. Hereinafter, the conductive particles (A), the fatty acid silver salt (B), the glass frit-9 - 201250710 frit (c), the solvent (D), the metal compound (E), and other components which may be contained as needed will be described in detail. . <Electrically conductive particles (A)> The conductive particles (A) used in the conductive composition of the present invention are not particularly limited, and for example, a metal material having a specific resistance of 2 0 X 1 0 · 6 Ω · cm or less can be used. . Specific examples of the metal material include gold (Au), silver (Ag), copper (Cu), aluminum (A1), magnesium (Mg), and nickel (Ni). These may be used alone. Two or more types can be used. The reason is that an electrode having a small volume resistivity can be formed, and a solar cell element having high photoelectric conversion efficiency can be produced. Among them, gold, silver, copper, and more preferably silver. In the present invention, the conductive particles (A) are preferably used as a metal powder having an average particle diameter of 0.5 to 10 μm. The spherical silver powder is more preferably used among the above metal powders based on the fact that an electrode having a small volume resistivity can be formed and a solar cell element having high photoelectric conversion efficiency can be produced. Here, the average particle diameter means the average enthalpy of the particle diameter of the metal powder, which is a 50% volume cumulative diameter (D 50) measured by a laser diffraction type particle size distribution analyzer. In addition, regarding the calculation of the particle diameter of the basis of the average enthalpy, when the metal powder has an elliptical cross section, it means that the total length of the long diameter and the short diameter is divided by the average enthalpy of 2, and when it is a perfect circle, it means the diameter. . Further, the spherical shape refers to a particle shape of the long diameter/short diameter ratio of 2 or less - -10-201250710. In addition, in the present invention, the average particle diameter of the conductive particles (A) is preferably 〇.7 to 5 μηι, and is preferably 1 based on the reason that the sintering speed is appropriate and the workability is excellent. ~3 μιη. Furthermore, in the present invention, commercially available products can be used as the conductive particles. Specific examples thereof include AgC-102 (shape: spherical shape, average particle diameter: 1.5 μηι, Fukuda Metal Foil Powder Industrial Co., Ltd.) ), AgC-1〇3 (shape: spherical, average particle size: 1.5 μηι, manufactured by Fukuda Metal Foil Co., Ltd.), AG4-8F (shape: spherical, average particle size: 2.2 μιη, manufactured by DOWA Electronics Co., Ltd.) ), AG2-1C (shape: spherical, average particle size: 1.0 μηι 'manufactured by DOWA Electronics Co., Ltd.), AG3-11F (shape: spherical, average particle diameter: 1.4 μηι, manufactured by DOWA Electronics Co., Ltd.), SPN5J (shape: Spherical, average particle size: 1.2 μm, manufactured by Mitsui Metals Co., Ltd., EHD (shape: spherical, average particle size: 0.5 μηι, manufactured by Mitsui Metals Co., Ltd.), AgC-201 1 (shape: sheet, average grain) The diameter is 2 to 10 μm, manufactured by Fukuda Metal Foil Co., Ltd., and AgC-301K (shape: sheet shape, average particle diameter: 3 to 10 μmη, manufactured by Fukuda Metal Foil Powder Co., Ltd.). <Fatty Acid Silver Salt (Β)&gt; The silver salt of a fatty acid used in the conductive composition of the present invention is not particularly limited as long as it is a silver salt of an organic carboxylic acid (fatty acid), and for example, a Japanese patent can be used. The fatty acid metal salt (in particular, the tertiary fatty acid silver salt) described in the paragraphs of [0068] to [0068], and the silver fatty acid described in the paragraph of the Japanese Patent No. 44 82 93 0 [0030] The silver salt of a fatty acid having one or more hydroxyl groups described in the paragraph [0029] to [0045], and the 2 described in the paragraph [0046] to [0056] The silver carboxylic acid or the like described in the paragraphs of JP-A-2011-35062 [〇〇22]~[0〇26] is excellent in printability and can further reduce the temperature dependence of the curve factor. For this reason, it is preferred to use a fatty acid silver salt (B1) having a carbon number of 18 or less, a fatty acid silver salt (B 2) having one or more carboxy silver salt groups (-COOAg) and a hydroxyl group (-OH), And having no hydroxyl group (_OH) but having 2 or more carboxyl silver bases (-COO) At least one fatty acid silver salt selected from the group consisting of silver polycarboxylates (B 3 ) of Ag). Among them, a polycarboxylic acid silver salt (B3) having no hydroxyl group (-OH) but having three or more carboxyl silver salt groups (-COOAg) is particularly preferably used for the reason that the temperature dependency of the curve factor can be further lowered. Here, examples of the fatty acid silver salt (B2) include compounds represented by any one of the following formulas (I) to (III). -12- 201250710 【化1】 COOAg (RlVc-fR2-〇H)3.n (1) COOAg R1——C——OH (II)

(式(I)中,n表示〇〜2之整數,Ri表示氫原子或碳數 1〜10之烷基,R2表示碳數1〜6之伸烷基。n爲〇或1時 ’複數個R2可各自相同亦可不同。η爲2時,複數個R1 可各自相同亦可不同》 式(Π)中’ R1表示氫原子或碳數1〜1〇之烷基,複數 個R1可各自相同亦可不同。 式(III)中’ R1表示氫原子或碳數1〜1〇之烷基,R3 表示碳數1〜6之伸烷基。複述個Ri可各自相同亦可不同 )° 此外,作爲上述聚羧酸銀鹽(B 3 ),例如可列舉下述式 (IV)表示之化合物。 【化2】(In the formula (I), n represents an integer of 〇~2, Ri represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R2 represents an alkylene group having 1 to 6 carbon atoms. When n is 〇 or 1 'multiple R2 may be the same or different. When η is 2, a plurality of R1 may be the same or different. In the formula (Π), R1 represents a hydrogen atom or an alkyl group having a carbon number of 1 to 1 ,, and a plurality of R1 may be the same. In the formula (III), 'R1 represents a hydrogen atom or an alkyl group having 1 to 1 carbon atom, and R3 represents an alkylene group having 1 to 6 carbon atoms. The reciprocating Ri may be the same or different) ° Further, The polycarboxylic acid silver salt (B 3 ) may, for example, be a compound represented by the following formula (IV). [Chemical 2]

(IV) -13- 201250710 (式(IV)中,m表示2〜6之整數,R4表示碳數1〜24 之m價飽和脂肪族烴基、碳數2〜12之m價不飽和脂肪 族烴基、碳數3〜12之m價脂環式烴基、或碳數6〜12之 m價芳香族烴基。若R4之碳原子數設爲p,則mS2p + 2)。 作爲上述脂肪酸銀鹽(B1),具體而言,可適當列舉2- 甲基丙酸銀鹽(別名:異丁酸銀鹽)、2 -甲基丁酸銀鹽等。 此外,作爲上述脂肪酸銀鹽(B2),具體而言,可適當 列舉2-羥基異丁酸銀鹽、2,2-雙(羥基甲基)·正丁酸銀鹽等 〇 此外,作爲上述聚羧酸銀鹽(B3),具體而言,可適當 列舉1,3,5-戊烷三羧酸銀鹽、1,2,3,4-丁烷四羧酸銀鹽等。 基於印刷性更好之理由,本發明中,相對於上述導電 性粒子(A)100質量份,上述脂肪酸銀鹽(B)之含量較好爲 1〜30質量份,更好爲5〜25質量份。 〈玻璃熔料(C)&gt; 本發明之導電性組成物中使用之玻璃熔料(C)並無特 別限定,較好使用軟化溫度爲300°C以上且低於燒成溫度( 熱處理溫度)者。 作爲上述玻璃熔料(C),具體而言,例如可列舉軟化 溫度3 00〜800 °c之硼矽酸玻璃熔料等。 上述玻璃熔料(C)之形狀並無特別限定,可爲球狀亦 可爲破碎粉狀。球狀玻璃熔料之平均粒徑(D50)較好爲0.1 -14- 201250710 〜20μιη,更好爲1〜ΙΟμηα。進而,較好使用已去除l5 μτη以上粒子且具有陡峭粒度分布之玻璃熔料。 此處,平均粒徑係指粒徑之平均値,係使用雷射繞射 式粒度分布測定裝置測定之50%體積累積直徑(D50)。 相對於上述導電性粒子(Α) 100質量份,上述玻璃熔料 (C)之含量較好爲0.5〜10質量份,更好爲1〜5質量份。 〈溶劑(D)&gt; 本發明之導電性組成物中使用之溶劑(D)只要能將本 發明之導電性組成物塗佈到基材上即可,並無特別限定。 作爲上述溶劑(D),具體而言,例如可列舉丁基卡必 醇、丁基卡必醇乙酸酯、2,2,4-三甲基-1,3-戊二醇二異丁 酸酯、二乙二醇二丁醚、甲基乙基酮、異佛爾酮、以及α-松油醇等,該等可單獨使用一種,亦可併用兩種以上。 此外,相對於上述導電性粒子(Α) 100質量份,上述溶 劑(D)之含量較好爲.2〜20質量份,更好爲5〜15質量份 〈金屬化合物(Ε) &gt; 本發明之導電性組成物中使用之金屬化合物(Ε),係 由銀以外之金屬與上述脂肪酸銀鹽(Β)之脂肪酸以外之有 機化合物的離子鍵及/或配位鍵構成之金屬化合物。 藉由使用含有上述金屬化合物(Ε)之本發明之導電性 組成物形成太陽能電池元件之電極,可於較廣燒成溫度範 -15- 201250710 圍(700〜8 00 °C )內獲得顯示高曲線因子之太陽能電池元件 〇 此點其細節雖未明確,但可認爲原因在於,藉由調配 上述金屬化合物(E),可改善上述脂肪酸銀鹽(B)與上述溶 劑(D)之分散性,此外,使上述玻璃熔料(C)軟化(分解)之 溫度區域擴大,可於較廣燒成溫度範圍(700〜80(TC)內適 度進行燒成貫通,而對矽基板形成良好接觸。 作爲上述金屬化合物(E)之第1較佳實施樣態,可列 舉由與上述脂肪酸銀鹽(B)之脂肪酸不同之脂肪酸(以下亦 稱爲「特定脂肪酸」)與銀以外之金屬的離子鍵構成之脂 肪酸金屬鹽(E1)。其中基於可更降低曲線因子之溫度依存 性之理由,較好爲由鎂、鎳、銅、鋅、釔、銷、錫、以及 鉛所組成之群中選擇的至少1種以上金屬之羧酸金屬鹽。 基於對上述溶劑(D)之溶解性良好,且所得本發明之 導電性組成物之貯藏穩定性亦良好之理由,生成上述脂肪 酸金屬鹽(E1)之上述特定脂肪酸較好爲碳數5〜20之具有 脂環式及/或鏈狀飽和烴基之脂肪酸。 作爲上述特定脂肪酸,具體而言,例如可列舉2-乙基 己酸、辛酸、環烷酸、硬脂酸、月桂酸等,該等可單獨使 用一種,亦可倂用兩種以上。 作爲此種脂肪酸金屬鹽(E 1 ),具體而言,例如可列舉 辛酸鎂、辛酸鎳、辛酸銅、辛酸鋅、辛酸釔、辛酸銷、辛 酸錫、辛酸鉛;環烷酸鎂、環烷酸鎳、環烷酸銅、環烷酸 鋅、環烷酸釔、環烷酸錐、環烷酸錫、環烷酸鉛;硬脂酸 -16- i 201250710 鎂、硬脂酸鎳、硬脂酸銅、硬脂酸鋅、硬脂酸釔、硬脂酸 锆、硬脂酸錫、硬脂酸鉛;月桂酸鎂、月桂酸鎳、月桂酸 銅、月桂酸鋅、月桂酸釔、月桂酸锆、月桂酸錫、月桂酸 給等’該等可單獨使用一種,亦可倂用兩種以上。 作爲上述金屬化合物(E)之第2較佳實施樣態,可列 舉由乙醯丙酮與銀以外之金屬之配位鍵構成之乙醯丙酮基 金屬錯合物(E2)。其中基於可更降低曲線因子之溫度依存 性之理由,較好爲由銦、鎳、銅、鈦、鋅及錫所組成之群 中選擇的金屬類之錯合物,更佳爲銦之錯合物。 此外,本發明中,上述乙醯丙酮基金屬錯合物(E2)可 單獨使用1種乙醯丙酮基金屬錯合物,亦可倂用2種以上 乙醯丙酮基金屬錯合物。 基於可更降低曲線因子之溫度依存性之理由,本發明 中,相對於上述導電性粒子(A) 100質量份,上述金屬化合 物(E)之含量較好爲0.1〜10質量份,更好爲1〜5質量份 〇 此外,本發明中,上述脂肪酸銀鹽(B)之含量與上述 金屬化合物(E)之含量的質量比(B/E)爲1以上,基於可更 降低曲線因子之溫度依存性之理由,較好爲2以上。 此外,考量到調配該等成分形成之糊膏具有適當黏度 且可加工成容易印刷之黏度之理由,上述質量比較好爲30 以下,更好爲2 5以下’尤其較好爲19以下。 〈樹脂黏合劑(F)&gt; -17- 201250710 基於印刷性之觀點,本發明之導電性組成物亦可根據 需要含有樹脂黏合劑(F)。 上述樹脂黏合劑(F)係將具有黏合劑功能之樹脂溶解 於溶劑中者。 作爲上述樹脂,具體而言,例如可列舉乙基纖維素樹 脂、硝基纖維素樹脂、醇酸樹脂、丙烯酸樹脂、苯乙烯樹 脂、以及酚樹脂等’該等可單獨使用一種,亦可倂用兩種 以上。基於熱分解性之觀點,該等中較好使用乙基纖維素 樹脂。 此外,作爲上述溶劑,具體而言,例如可列舉α-松油 醇、丁基卡必醇、丁基卡必醇乙酸酯、雙丙酮醇、以及甲 基異丁基酮等,該等可單獨使用一種,亦可倂用兩種以上 。且,本發明中’上述溶劑亦可爲上述溶劑(D)之一部分 &lt;金屬氧化物〉 爲改善光電轉換效率,本發明之導電性組成物亦可含 有金屬氧化物。 作爲上述金屬氧化物,具體而言,例如可列舉氧化鋅 、氧化矽、氧化铈、氧化鉍、氧化錫、以及由αβο3(式中 ,Α表示由Ba、Ca、以及Sr所組成之群中選擇的至少1 種元素,B表示由Ti、Zr、以及Hf所組成之群中選擇的 至少1種元素且含有Ti)表示之鈣鈦礦等,該等可單獨使 用一種,亦可倂用兩種以上》 -18- 201250710 另外,基於本發明之導電性組成物之觸變性良好,且 可提高縱橫比之理由,本發明中,相對於上述溶劑(D) 100 質量份,可相當於上述金屬氧化物之氧化銀之含量較好爲 5質量份以下,更好爲1質量份以下,最好爲實質上未含 有氧化銀之樣態。 本發明之導電性組成物之製造方法並無特別限定,可 列舉以下方法:利用滾筒、混煉機、擠出機、萬能攪拌機 等混合上述導電性粒子(A)、上述脂肪酸銀鹽(B)、上述玻 璃熔料(C)、上述溶劑(D)及上述金屬化合物(E)、以及可根 據需要含有之樹脂黏合劑(F)及金屬氧化物。 [太陽能電池元件] 本發明之太陽能電池元件具備受光面側之表面電極、 抗反射膜、半導體基板、以及背面電極,至少上述表面電 極係用上述本發明之導電性組成物形成。 另外,上述本發明之導電性組成物同樣可用於形成全 背面電極型(即背接觸型)太陽能電池元件之背面電極,因 此亦可用於全背面電極型太陽能電池。 以下將利用圖1說明本發明之太陽能電池元件之構成。 另外,雖然圖1中列舉結晶系矽太陽能電池爲例,說明本發 明之太陽能電池元件,但本發明並未限定於此,例如亦可爲 薄膜系非晶質砂太陽能電池、以及混合型(Heterojunction with Intrinsic Thinlayer,HIT)太陽能電池等。 如圖1所示,本發明之太.陽能電池元件1 0具備受光 -19- 201250710 面側之表面電極(指叉爾極)1、抗反射膜2、使η層3及p 層5接合之pn接合砂基板4(以下該等亦統稱爲「結晶系 矽基板7」)、以及背面電極(全面電極)6。 此外,如圖1所示,爲降低反射率,本發明之太陽能 電池元件1 〇較好爲例如於晶圓表面實施蝕刻後,形成角 錐狀質地。 &lt;表面電極/背面電極&gt; 本發明之太陽能電池元件具備之表面電極及背面電極 中,只要至少表面電極係用本發明之導電性組成物形成即 可,電極之配置(間距)、形狀、高度、以及寬度等並無特 別限定。 此處,表面電極通常具有複數個,但本發明中,亦可 僅複數個表面電極之一部分使用本發明之導電性組成物形 成0 &lt;抗反射膜&gt; 本發明之太陽能電池元件具備之抗反射膜,係形成於 受光面之未形成表面電極部分上之膜(膜厚:0.05〜0.1 μηι 左右),例如可由矽氧化膜、矽氮化膜、氧化鈦膜、以及 該等之積層膜等構成者。 &lt;結晶系矽基板&gt; 本發明之太陽能電池元件具備之結晶系矽基板並無特 -20- 201250710 別限定,可使用用於形成太陽能電池之周知矽基板(板厚 :100〜45 0 μιη左右),此外,亦可爲單結晶或者多結晶中 之任一種砂基板。 此外,上述結晶類矽基板具有ρη接合,其係指於第1 導電型半導體基板之表面側形成第2導電型之受光面雜質 擴散區域。另外,當第1導電型爲η型時,第2導電型爲 Ρ型,當第1導電型爲Ρ型時,第2導電型爲η型。 此處,作爲形成Ρ型之雜質,可列舉硼、鋁等,作爲 形成η型之雜質,可列舉磷、砷等。 本發明之太陽能電池元件中,由於至少上述表面電極 係由本發明之導電性組成物形成,故於較廣燒成溫度範圍 (700〜8 00°C )內顯示高的曲線因子。 本發明之太陽能電池元件之製造方法並無特別限定, 可列舉具有以下步驟之方法:於結晶系矽基板上形成抗反 射膜之抗反射膜形成步驟'於抗反射膜上塗佈本發明之導 電性組成物並形成配線之配線形成步驟、以及將所得配線 進行熱處理並形成電極(表面電極及/或背面電極)之熱處理 步驟。 以下將詳細說明抗反射膜形成步驟、配線形成步驟、 以及熱處理步驟。 &lt;抗反射膜形成步驟&gt; 上述抗反射膜形成步驟係於結晶系矽基板上形成抗反 射膜之步驟。 -21 - 201250710 此處,抗反射膜之形成方法並無特別限定,可利用電 漿CVD法等周知方法形成。 &lt;配線形成步驟&gt; 上述配線形成步驟係於抗反射膜上塗佈本發明之導電 性組成物,形成配線之步驟。 此處,作爲塗佈方法,具體而言,例如可列舉噴墨、 網版印刷、凹版印刷、膠版印刷、以及凸版印刷等。 &lt;熱處理步驟&gt; 上述熱處理步驟係將上述配線形成步驟中獲得之配線 進行熱處理,獲得導電性配線(電極)之步驟》 此處,上述熱處理並無特別限定,較好爲於700〜800 °C溫度下加熱(燒成)數秒〜數十分鐘之處理。如果溫度及 時間於該範圍內,則可藉由使塗佈於抗反射膜上之配線燒 成貫通(fire through),形成與結晶系矽基板接觸之電極。 另外,上述配線形成步驟中所得配線亦可利用紫外線 或紅外線照射形成電極,因此本發明之熱處理步驟亦可使 用紫外線或紅外線照射。 [太陽能電池模組] 本發明之太陽能電池模組,係使用互連器將本發明之 太陽能電池元件予以串聯配線的太陽能電池模組。 此處,上述互連器可使用以往周知用於太陽能電池模 -22- 201250710 組之連接器,具體而言,例如可適當使用塗佈焊錫或導電 性黏接劑之銅帶等。 實施例 以下將使用實施例,詳細說明本發明之導電性組成物 。但本發明並非限定於此。 (實施例1 -1〜1 · 1 4、實施例2 -1〜2 - 8、比較例1 -1〜1 - 5、 比較例2 -1〜2 - 4) &lt;導電性組成物之調製&gt; 於球磨機中將下述第1表所示之導電性粒子等,以使 其成爲下述第1表中所示之組成比(質量比)之方式添加, 並將該等混合,由此調製成導電性組成物》 另外,比較例】.-4中使用之辛酸鎳,係由與脂肪酸銀 鹽(B)(辛酸銀鹽)之脂肪酸(辛酸)「相同」之脂肪酸與銀以 外之金屬(鎳)的離子鍵構成之脂肪酸金屬鹽》 &lt;太陽能電池元件之製作&gt; 準備已實施鹼質地處理之單結晶矽晶圓,利用網版印 刷將鋁糊膏塗佈於整個背面(與受光面相反側之面)後,於 150°C下乾燥15分鐘。 接著,利用電漿CVD法於表面(受光面)形成矽氮化膜 作爲抗反射膜後,利用網版印刷塗佈所調製之各導電性組 成物,形成配線圖案。 -23- 201250710 其後,以紅外線燒成爐,於峰値溫度720 t及78 0 °C 之2種條件下將實施例1 · 1〜1 -1 4及比較例1 -1〜1 -5燒成 3 0秒,製成形成導電性配線(電極)之太陽能電池元件樣品 e 此外,以紅外線燒成爐,於峰値溫度7 2 (TC及8 0 0 °C 之2種條件下將實施例2-1〜2-8及比較例2-1〜2-4燒成 30秒,製成形成導電性配線(電極)之太陽能電池元件樣品 &lt;曲線因子&gt; 針對所製作之各太陽能電池元件樣品,使用電池測試 器(山下電裝公司製)評價曲線因子。結果如下述第1表所 示。 -24- 201250710 ....................................................................................................................................................................- is 實施例 Ll-7 ! 100 ο ΙΩ l-Η οα LO 〇· LO d 00 〇 〇 0. 776 0. 776 to 1 fH 100 ο ι-Η ΙΩ ι—Η LD 〇' ΙΛ 〇· - CO 〇 〇 0.775 0. 777 L1 二5 1 o o Ο ΙΛ CSJ LO o uo ο C0 10.0 0. 774 0. 776 寸 1 r·^ 100 ο ι-Η LO CM rH CO ο ο 0. 773 0. 779 1 1-3 1 I loo 1 Ο ΙΟ r-H S C0 10.0 0.775 0. 778 1-2 100 LO LO »-Η CM C0 ο LO 0. 776 0. 778 t-H 1 100 ΙΟ . o r~H C0 ο 0. 775 0. 776 銀粉 異丁酸銀鹽 1,3,5-戊烷三羧酸銀鹽 玻璃熔料C1 玻璃熔料C2 a-松油醇 環烷酸鋅 環烷酸鉛 環烷酸銅 環烷酸鎂 環烷酸錫 辛酸鎳 辛酸釔 辛酸锆 硬脂酸鋅 月桂酸紀 乙基纖維素樹脂 質量比(Β/Ε1) 720°C X 30 秒鐘 780°CX30 秒鐘 導電性粒子(A) 脂肪酸銀鹽(Β) 玻璃熔料(C) 溶劑(D) 脂肪酸金屬鹽(E 1) 樹脂黏合劑(F) 曲線因子 -25- 201250710 【s】 K 實施例 1 100 ο ΙΟ r—^ CO C0 10. 0 0.775 0. 778 CO 1 o ο ΙΛ ca CO 〇 d 0. 774 0. 775 CQ 1 100 ο LO τ-Η CM C0 10. 0 0. 775 0. 775 1 100 ο LO CNJ C0 10. 0 ! 0. 773 0. 778 0 r«H 1 100 ο LO CNJ 0· 5 LO d C0 10.0 0.774 0. 777 ¢7¾ 1 r*H 100 Ο ΙΛ CM CO ο CO ο CO ο C0 0. 773 0. 778 00 1 rH 100 ο LO CSJ CO o CO o CO o C0 ι-Η 0.776 0. 775 ¥ 職 銀粉 異丁酸銀鹽 1,3,5-戊烷三羧酸銀鹽 玻璃熔料C1 玻璃溶料C2 a-松油醇 環烷酸鋅 環烷酸鉛 環烷酸銅 環烷酸鎂 環烷酸錫 辛酸鎳 辛酸釔 辛酸锆 硬脂酸鋅 月桂酸釔 乙基纖維素樹脂 質量比(B/E 1 ) 720Ϊ: X 30 秒鐘 780°C X 30 秒鐘 導電性粒子(A) 脂肪酸銀鹽(Β) 玻璃熔料(c) 溶劑(D) 脂肪酸金屬鹽(E 1 ) 樹脂黏合劑(F) 曲線因子 -26- 201250710 【εΜ 比較例 1-5 o ο I-Η LO • τΉ CO 1 0.685 0. 611 1 r-H 100 Ο LO r-H 〇 CO 〇 τ*Η 0. 647 0. 684 1-3 100 ο LO Cvj Γ0 1 0. 621 0, 607 1-2 100 ΛΛ 1-H CM C0 0.0 0. 740 0. 754 r-H 1 100 ο in 1—ί C0 1 0.751 0. 762 銀粉 異丁酸銀鹽 辛酸銀鹽 玻璃熔料Cl 玻璃熔料C2 a-松油醇 離酸辞 環烷酸鉛 環烷酸銅 環烷酸鎂 環烷酸錫 辛酸鎳 辛酸釔 辛酸鉻 硬脂酸辞 乙基纖維素樹脂 質量比(B/E 1 ) 720〇C X 30 秒鐘 780°C X 30 秒鐘 導電性粒子(A) 脂肪酸銀鹽(Β) 玻璃熔料⑹ 溶劑(D) 脂肪酸金屬鹽(E 1) 樹脂黏合劑(F) 曲線因子 -27- 201250710 i«i 【寸m】 實施例 2 — 7 100 〇 LO C^) ΙΛ LO C0 C0 0.775 0.780 1 CSJ 100 〇 tn CM rH LO 〇 CS3 0.774 0. 777 LO 1 CQ 100 〇 ΙΛ CM ,— •CO 00 CO 0.775 0.779 寸 I CM 100 ο LO CNJ 10.0 0. 773 0.779 ;2-3 100 ΙΛ CSJ LO 25.0 0.772 0. 777 1 CSJ 100 Ο LO rH 10.0 0.776 0.780 T-H 1 CO 100 m LO rH oa r&quot;H 5.0 0.775 0.778 銀粉 異丁酸銀鹽 1,3,5-戊烷三羧酸銀鹽 玻璃熔料C3 a-松油醇 In(C5H702) 3 Ni(C5H702) 2 · 2H20 Cu(C5H702)2 T i (OC4H9) 2 (C5H7O2) 2 Zn(C5H702)2 ·Η20 乙基讎素樹脂 氧化鋅 質量比(B/E2) 720°C X 30 秒鐘 800°C X 30 秒鐘 導電性粒子(A) 脂肪酸銀鹽⑻ 玻璃熔料(c) 溶劑(D) 醭^ IS |&lt;ίπ 樹脂黏合劑(F) 金屬氧化物 曲線因子 -28- 201250710 §00 【81 鎰 寸 1 CN Ο Ο 1-Η lO LO o LO 〇 CD UO 卜 o g 卜 ο CO 1 CSI Ο rH o LO cq ι-Η 1 o LO o 00 JD Ο CM 1 Ο »-Η LO »—Η CSI CO 〇 d CO o 00 ζ£) 卜 ο 1 CSJ Ο LO CS} CO 00 1 卜 o LO Ο 辑 舰 00 1 ο ι-Η LO ΙΛ Η CM r»H LO 〇 ι-Η LO 卜 o CD 卜 Ο m 賴 趣 卜 蛾 m 賴 趦 您 HI 跶 η cn τ—Η cn 兹 癍 m 氍 M « CO 3^~ C_? o csj X &lt;N CSJ 23 t&gt; rH C-J a=&quot; lO CJ 3 CNJ 卜 CVJ a: •rH 〇 X csi nT LA M sg 艇 账 ι“,1 繫 鐽 稍 K) 戡 嫲 Οί ω \ W 'W Jj JA _ » 麵 ο CO X P § 卜 麵 X Ρ 〇 00 &lt; Ν—✓ 屮 Μ iHmil ιρτ w s ΠΕί m m M .urn :CTQ /«—s ϋ i 兹 y—N Q 藏 m 國^ K聲 |&lt;|Π /—N ti m &lt;π =s ww 鋰 m 祕 鼷 m 骧 租 第1表中各成分係使用以下物質。 •銀粉:AgC-103(形狀:球狀、平均粒徑:1.5 μπι、 福田金屬箔粉工業公司製) •異丁酸銀鹽:首先將氧化銀(東洋化學工業公司製 )50 g、異丁酸(關東化學公司製)38 g、以及甲基乙基酮 (MEK)3 0 0 g投入球磨機中,於室溫攬拌24小時,使其反 應。接著,利用吸引過濾法除去MEK,將所得粉末乾燥, -29- 201250710 由此調製成白色異丁酸銀鹽。(IV) -13- 201250710 (In the formula (IV), m represents an integer of 2 to 6, and R4 represents an m-valent saturated aliphatic hydrocarbon group having 1 to 24 carbon atoms and a m-valent unsaturated aliphatic hydrocarbon group having 2 to 12 carbon atoms. And an m-valent alicyclic hydrocarbon group having 3 to 12 carbon atoms or an m-valent aromatic hydrocarbon group having 6 to 12 carbon atoms. When the number of carbon atoms of R4 is p, mS2p + 2). Specific examples of the fatty acid silver salt (B1) include a silver salt of 2-methylpropionate (alias: silver salt of isobutyrate), a silver salt of 2-methylbutyrate, and the like. In addition, as the above-mentioned fatty acid silver salt (B2), specifically, a silver salt of 2-hydroxyisobutyric acid or a silver salt of 2,2-bis(hydroxymethyl)-n-butyric acid, etc. Specific examples of the silver carboxylate salt (B3) include a silver salt of 1,3,5-pentanetricarboxylic acid, a silver salt of 1,2,3,4-butanetetracarboxylic acid, and the like. In the present invention, the content of the above-mentioned fatty acid silver salt (B) is preferably from 1 to 30 parts by mass, more preferably from 5 to 25 parts by mass based on 100 parts by mass of the above-mentioned conductive particles (A). Share. <Glass Frit (C)&gt; The glass frit (C) used in the conductive composition of the present invention is not particularly limited, and it is preferably used at a softening temperature of 300 ° C or higher and lower than the firing temperature (heat treatment temperature). By. Specific examples of the glass frit (C) include a borosilicate glass frit having a softening temperature of 300 to 800 °C. The shape of the glass frit (C) is not particularly limited, and may be a spherical shape or a broken powder. The average particle diameter (D50) of the spherical glass frit is preferably from 0.1 to 14 to 201250710 to 20 μm, more preferably from 1 to ΙΟμηα. Further, it is preferred to use a glass frit having a steep particle size distribution in which particles of 1 5 μτη or more have been removed. Here, the average particle diameter means the average enthalpy of the particle diameter, which is a 50% volume cumulative diameter (D50) measured by a laser diffraction type particle size distribution analyzer. The content of the glass frit (C) is preferably from 0.5 to 10 parts by mass, more preferably from 1 to 5 parts by mass, per 100 parts by mass of the conductive particles. <Solvent (D)> The solvent (D) to be used in the conductive composition of the present invention is not particularly limited as long as it can apply the conductive composition of the present invention to a substrate. Specific examples of the solvent (D) include butyl carbitol, butyl carbitol acetate, and 2,2,4-trimethyl-1,3-pentanediol diisobutyric acid. The ester, diethylene glycol dibutyl ether, methyl ethyl ketone, isophorone, and α-terpineol may be used alone or in combination of two or more. In addition, the content of the solvent (D) is preferably from 2 to 20 parts by mass, more preferably from 5 to 15 parts by mass, based on 100 parts by mass of the conductive particles (Α). <Metal compound (Ε) &gt; The metal compound (Ε) used in the conductive composition is a metal compound composed of an ionic bond and/or a coordinate bond of a metal other than silver and an organic compound other than the fatty acid of the fatty acid silver salt. By forming the electrode of the solar cell element using the conductive composition of the present invention containing the above metal compound (Ε), it is possible to obtain a display high in a wide firing temperature range of -15 - 201250710 (700 to 800 ° C). Although the details of the solar cell element of the curve factor are not clear, it is considered that the dispersibility of the above-mentioned fatty acid silver salt (B) and the above solvent (D) can be improved by blending the above metal compound (E). Further, the temperature region in which the glass frit (C) is softened (decomposed) is enlarged, and it can be appropriately fired and penetrated in a wide firing temperature range (700 to 80 (TC)) to form a good contact with the tantalum substrate. The first preferred embodiment of the metal compound (E) includes ionic bonds of a fatty acid different from the fatty acid of the fatty acid silver salt (B) (hereinafter also referred to as "specific fatty acid") and a metal other than silver. a fatty acid metal salt (E1), which is preferably selected from the group consisting of magnesium, nickel, copper, zinc, bismuth, pin, tin, and lead for reasons of lowering the temperature dependence of the curve factor. The carboxylic acid metal salt of at least one metal or more selected from the group consisting of the above-mentioned fatty acid metal salt (E1) is preferred because the solubility in the solvent (D) is good and the storage stability of the conductive composition of the present invention is also good. The specific fatty acid is preferably a fatty acid having an alicyclic and/or chain-like saturated hydrocarbon group of 5 to 20 carbon atoms. Specific examples of the specific fatty acid include 2-ethylhexanoic acid, octanoic acid, and a ring. An alkanoic acid, a stearic acid, a lauric acid, etc. may be used alone or in combination of two or more. Specific examples of such a fatty acid metal salt (E 1 ) include magnesium octoate and nickel octoate. Copper octoate, zinc octoate, bismuth octoate, octanoic acid, tin octoate, lead octoate; magnesium naphthenate, nickel naphthenate, copper naphthenate, zinc naphthenate, bismuth naphthenate, naphthenic acid cone, naphthenic Tin acid, lead naphthenate; stearic acid-16-i 201250710 magnesium, nickel stearate, copper stearate, zinc stearate, barium stearate, zirconium stearate, tin stearate, stearic acid Lead acid; magnesium laurate, nickel laurate, copper laurate, zinc laurate, laurel钇, zirconium laurate, tin laurate, lauric acid, etc. may be used alone or in combination of two or more. As a second preferred embodiment of the above metal compound (E), An acetoacetone-based metal complex (E2) composed of a coordination bond of a metal other than acetone and silver, preferably based on the temperature dependence of the curve factor, preferably from indium, nickel, copper, titanium Further, the complex of the metal selected from the group consisting of zinc and tin is more preferably a complex of indium. Further, in the present invention, the above-mentioned acetoacetone-based metal complex (E2) may be used alone. In the present invention, the above-mentioned conductive particles (A) may be used in combination with two or more kinds of acetoacetone-based metal complexes, which are based on the temperature dependence of the curve factor. 100 parts by mass, the content of the above metal compound (E) is preferably from 0.1 to 10 parts by mass, more preferably from 1 to 5 parts by mass. Further, in the present invention, the content of the above-mentioned fatty acid silver salt (B) and the above metal compound The mass ratio (B/E) of the content of (E) is 1 or more, The reason is preferably 2 or more based on the reason that the temperature dependency of the curve factor can be further reduced. Further, it is considered that the paste formed by blending the components has an appropriate viscosity and can be processed into a viscosity which is easy to print, and the mass is preferably 30 or less, more preferably 2 or less, and particularly preferably 19 or less. <Resin Binder (F)&gt; -17-201250710 The conductive composition of the present invention may contain a resin binder (F) as needed, from the viewpoint of printability. The above resin binder (F) is one in which a resin having a binder function is dissolved in a solvent. Specific examples of the resin include an ethyl cellulose resin, a nitrocellulose resin, an alkyd resin, an acrylic resin, a styrene resin, and a phenol resin. These may be used alone or in combination. Two or more. From the viewpoint of thermal decomposition, it is preferred to use an ethyl cellulose resin. Further, specific examples of the solvent include α-terpineol, butyl carbitol, butyl carbitol acetate, diacetone alcohol, and methyl isobutyl ketone. One type may be used alone or two or more types may be used. Further, in the present invention, the solvent may be a part of the solvent (D). &lt;Metal oxide&gt; In order to improve photoelectric conversion efficiency, the conductive composition of the present invention may contain a metal oxide. Specific examples of the metal oxide include zinc oxide, cerium oxide, cerium oxide, cerium oxide, tin oxide, and a group selected from αβο3 (wherein Α represents Ba, Ca, and Sr). At least one element, B represents at least one element selected from the group consisting of Ti, Zr, and Hf and contains perovskite or the like represented by Ti), and these may be used alone or in combination of two types. In the above, the thixotropy of the conductive composition of the present invention is good and the aspect ratio can be increased. In the present invention, the metal oxide can be equivalent to 100 parts by mass of the solvent (D). The content of the silver oxide of the substance is preferably 5 parts by mass or less, more preferably 1 part by mass or less, and most preferably substantially no silver oxide. The method for producing the conductive composition of the present invention is not particularly limited, and examples thereof include mixing the conductive particles (A) and the fatty acid silver salt (B) with a roll, a kneader, an extruder, a universal agitator, or the like. The glass frit (C), the solvent (D), the metal compound (E), and a resin binder (F) and a metal oxide which may be contained as needed. [Solar cell element] The solar cell element of the present invention comprises a surface electrode on the light-receiving surface side, an anti-reflection film, a semiconductor substrate, and a back surface electrode, and at least the surface electrode is formed of the above-described conductive composition of the present invention. Further, the above-mentioned conductive composition of the present invention can also be used for forming a back electrode of a full back electrode type (i.e., back contact type) solar cell element, and thus can also be used for a full back electrode type solar cell. The constitution of the solar cell element of the present invention will be described below using Fig. 1 . In addition, although the solar cell element of the present invention is described as an example of a crystal system solar cell in FIG. 1, the present invention is not limited thereto, and may be, for example, a film-type amorphous sand solar cell and a hybrid type (Heterojunction). With Intrinsic Thinlayer, HIT) Solar cells, etc. As shown in Fig. 1, the solar cell element 10 of the present invention has a surface electrode (finger-fork) of the light-receiving -19-201250710 side surface, an anti-reflection film 2, and an n-layer 3 and a p-layer 5 bonded. The pn bonded sand substrate 4 (hereinafter collectively referred to as "crystal system substrate 7") and the back electrode (full electrode) 6. Further, as shown in Fig. 1, in order to reduce the reflectance, the solar cell element 1 of the present invention is preferably formed into a pyramidal texture, for example, after etching on the surface of the wafer. &lt;Surface electrode/back surface electrode&gt; The surface electrode and the back surface electrode provided in the solar cell element of the present invention may be formed by using at least the surface electrode of the conductive composition of the present invention, and the arrangement (pitch) and shape of the electrode. The height, the width, and the like are not particularly limited. Here, the surface electrode usually has a plurality of, but in the present invention, only one of the plurality of surface electrodes may be used to form the 0. The antireflection film is formed using the conductive composition of the present invention. The solar cell element of the present invention has an anti-reflection film. The reflective film is formed on the surface of the light-receiving surface where the surface electrode portion is not formed (film thickness: about 0.05 to 0.1 μηι), and may be, for example, a tantalum oxide film, a tantalum nitride film, a titanium oxide film, or the like. Constitute. &lt;Crystal ruthenium substrate&gt; The crystal ruthenium substrate provided in the solar cell element of the present invention is not limited to -20-201250710, and a known ruthenium substrate for forming a solar cell can be used (plate thickness: 100 to 45 0 μm) In addition, it may be any one of a single crystal or a polycrystal. In addition, the above-mentioned crystal-based ruthenium substrate has a pn bond, which means that a second-conductivity-type light-receiving surface impurity diffusion region is formed on the surface side of the first-conductivity-type semiconductor substrate. Further, when the first conductivity type is an η type, the second conductivity type is a Ρ type, and when the first conductivity type is a Ρ type, the second conductivity type is an η type. Here, examples of the impurity forming the ruthenium type include boron and aluminum, and examples of the impurity forming the η type include phosphorus and arsenic. In the solar cell element of the present invention, since at least the surface electrode is formed of the conductive composition of the present invention, a high curve factor is exhibited in a wide firing temperature range (700 to 800 °C). The method for producing the solar cell element of the present invention is not particularly limited, and a method having the following steps: an antireflection film forming step of forming an antireflection film on a crystalline ruthenium substrate, and a step of coating the conductive film of the present invention on the antireflection film A wiring forming step of forming a wiring, and a heat treatment step of heat-treating the obtained wiring to form an electrode (surface electrode and/or back surface electrode). The antireflection film forming step, the wiring forming step, and the heat treatment step will be described in detail below. &lt;Antireflection film forming step&gt; The antireflection film forming step is a step of forming an antireflection film on a crystalline ruthenium substrate. -21 - 201250710 Here, the method of forming the antireflection film is not particularly limited, and it can be formed by a known method such as a plasma CVD method. &lt;Wiring forming step&gt; The wiring forming step is a step of applying the conductive composition of the present invention to the antireflection film to form a wiring. Here, specific examples of the coating method include inkjet, screen printing, gravure printing, offset printing, and relief printing. &lt;Heat Treatment Step&gt; The heat treatment step is a step of heat-treating the wiring obtained in the wiring forming step to obtain a conductive wiring (electrode). Here, the heat treatment is not particularly limited, but is preferably 700 to 800 °. Heating (sintering) at a temperature of C for several seconds to several tens of minutes. When the temperature and time are within this range, the electrode applied to the anti-reflection film can be fired through to form an electrode in contact with the crystal ruthenium substrate. Further, the wiring obtained in the wiring forming step described above may be formed by ultraviolet rays or infrared rays to form an electrode. Therefore, the heat treatment step of the present invention may be irradiated with ultraviolet rays or infrared rays. [Solar Cell Module] The solar cell module of the present invention is a solar cell module in which the solar cell elements of the present invention are connected in series using an interconnector. Here, as the interconnector, a connector conventionally known for the solar cell module-22-201250710 can be used. Specifically, for example, a copper tape coated with solder or a conductive adhesive can be suitably used. EXAMPLES Hereinafter, the conductive composition of the present invention will be described in detail using examples. However, the invention is not limited thereto. (Example 1 -1 to 1 · 1 4, Example 2 -1 to 2 - 8, Comparative Example 1 -1 to 1 - 5, Comparative Example 2 -1 to 2 - 4) &lt;Modulation of Conductive Composition &gt; In the ball mill, the conductive particles and the like shown in the first table below are added so as to have a composition ratio (mass ratio) shown in the first table below, and these are mixed. Preparation of a conductive composition. In addition, the nickel octoate used in the comparative example].-4 is a metal other than the fatty acid and silver which are "identical" to the fatty acid (octanoic acid) of the fatty acid silver salt (B) (silveric acid). (Preparation of a fatty acid metal salt composed of an ionic bond of (nickel)" &lt;Production of a solar cell element&gt; A single crystal germanium wafer which has been subjected to alkali treatment is prepared, and an aluminum paste is applied to the entire back surface by screen printing (and light reception) After the opposite side of the surface, it was dried at 150 ° C for 15 minutes. Next, a tantalum nitride film was formed on the surface (light-receiving surface) by an electric plasma CVD method as an anti-reflection film, and then each of the prepared conductive compositions was applied by screen printing to form a wiring pattern. -23- 201250710 Thereafter, in the infrared sintering furnace, Example 1 · 1 to 1 -1 4 and Comparative Example 1 -1 to 1 -5 were carried out under two conditions of peak temperature 720 t and 78 0 °C. After firing for 30 seconds, a solar cell element sample e for forming a conductive wiring (electrode) was prepared in an infrared sintering furnace under conditions of a peak temperature of 7 2 (TC and 80 ° C). Examples 2-1 to 2-8 and Comparative Examples 2-1 to 2-4 were fired for 30 seconds to prepare a solar cell element sample forming a conductive wiring (electrode) &lt;curve factor&gt; For the component samples, the curve factor was evaluated using a battery tester (manufactured by Yamashita Electric Co., Ltd.). The results are shown in Table 1 below. -24- 201250710 ................... .................................................. .................................................. .............................................-is Example Ll -7 ! 100 ο ΙΩ l-Η οα LO 〇· LO d 00 〇〇0. 776 0. 776 to 1 fH 100 ο ι-Η ΙΩ ι—Η LD 〇' ΙΛ 〇· - CO 〇〇0.775 0. 777 L1 2 5 1 oo Ο ΙΛ J J J J J J r r r r 0.775 0. 778 1-2 100 LO LO »-Η CM C0 ο LO 0. 776 0. 778 tH 1 100 ΙΟ . or~H C0 ο 0. 775 0. 776 Silver Isobutyrate Silver Salt 1,3,5 -Pentane tricarboxylic acid silver salt glass frit C1 glass frit C2 a-terpineol naphthenic acid zinc naphthenate lead naphthenic acid copper naphthenate magnesium naphthenic acid sodium octoate octoate octoate zirconium stearate Zinc lauric acid ethyl cellulose resin mass ratio (Β/Ε1) 720°CX 30 seconds 780°CX30 seconds conductive particles (A) fatty acid silver salt (Β) glass frit (C) solvent (D) fatty acid metal salt (E 1) Resin Adhesive (F) Curve Factor -25 - 201250710 [s] K Example 1 100 ο ΙΟ r—^ CO C0 10. 0 0.775 0. 778 CO 1 o ο ΙΛ ca CO 〇d 0. 774 0. 775 CQ 1 100 ο LO τ-Η CM C0 10. 0 0. 775 0. 775 1 100 ο LO CNJ C0 10. 0 ! 0. 773 0. 778 0 r«H 1 1 00 ο LO CNJ 0· 5 LO d C0 10.0 0.774 0. 777 ¢73⁄4 1 r*H 100 Ο CM CM CO ο CO ο CO ο C0 0. 773 0. 778 00 1 rH 100 ο LO CSJ CO o CO o CO o C0 ι-Η 0.776 0. 775 ¥ Silver powder isobutyric acid silver salt 1,3,5-pentane tricarboxylic acid silver salt glass frit C1 glass soluble material C2 a-terpineol naphthenic acid zinc naphthenic acid Lead naphthenic acid copper naphthenate magnesium naphthenic acid lithium octoate nickel octoate octoate octoate zirconium stearate lauric acid strontium ethyl cellulose resin mass ratio (B/E 1 ) 720 Ϊ: X 30 seconds 780 ° C X 30 seconds Bell Conductive Particles (A) Fatty Acid Silver Salt (Β) Glass Melt (c) Solvent (D) Fatty Acid Metal Salt (E 1 ) Resin Adhesive (F) Curve Factor -26- 201250710 [εΜ Comparative Example 1-5 o ο I-Η LO • τΉ CO 1 0.685 0. 611 1 rH 100 Ο LO rH 〇CO 〇τ*Η 0. 647 0. 684 1-3 100 ο LO Cvj Γ0 1 0. 621 0, 607 1-2 100 ΛΛ 1-H CM C0 0.0 0. 740 0. 754 rH 1 100 ο in 1— ί C0 1 0.751 0. 762 Silver powder isobutyric acid silver salt octanoate silver salt glass frit Cl glass Melt C2 a-terpineol alcohol acid naphthenic acid lead naphthenic acid copper naphthenate magnesium naphthenic acid tin octoate nickel octoate octoate chromic stearic acid ethyl cellulose resin mass ratio (B/E 1 ) 720〇CX 30 seconds 780°CX 30 seconds Conductive particles (A) Fatty acid silver salt (Β) Glass frit (6) Solvent (D) Fatty acid metal salt (E 1) Resin binder (F) Curve factor -27- 201250710 i«i [inch m] Example 2 - 7 100 〇LO C^) ΙΛ LO C0 C0 0.775 0.780 1 CSJ 100 〇tn CM rH LO 〇CS3 0.774 0. 777 LO 1 CQ 100 〇ΙΛ CM , — • CO 00 CO 0.775 0.779 inch I CM 100 ο LO CNJ 10.0 0. 773 0.779 ;2-3 100 ΙΛ CSJ LO 25.0 0.772 0. 777 1 CSJ 100 Ο LO rH 10.0 0.776 0.780 TH 1 CO 100 m LO rH oa r&quot;H 5.0 0.775 0.778 silver powder isobutyric acid silver salt 1,3,5-pentane tricarboxylic acid silver salt glass frit C3 a-terpineol In(C5H702) 3 Ni(C5H702) 2 · 2H20 Cu(C5H702)2 T i ( OC4H9) 2 (C5H7O2) 2 Zn(C5H702)2 ·Η20 Ethyl ruthenium resin zinc oxide mass ratio (B/E2) 720°CX 30 seconds 800° CX 30 second conductive particles (A) fatty acid silver salt (8) glass frit (c) solvent (D) 醭^ IS |&lt;ίπ resin binder (F) metal oxide curve factor-28- 201250710 §00 [81镒 inch 1 CN Ο Ο 1-Η lO LO o LO 〇CD UO 卜 卜 ο CO 1 CSI Ο rH o LO cq ι-Η 1 o LO o 00 JD Ο CM 1 Ο »-Η LO »—Η CSI CO 〇d CO o 00 ζ£) οο 1 CSJ Ο LO CS} CO 00 1 卜o LO Ο 舰 00 1 ο ι-Η LO ΙΛ Η CM r»H LO 〇ι-Η LO 卜 o CD Ο m赖 卜 蛾 HI HI HI « « « M « CO 3^~ C_? o csj X &lt;N CSJ 23 t&gt; rH CJ a=&quot; lO CJ 3 CNJ 卜 CVJ a: •rH 〇X csi nT LA M sg Boat account “1” 1ί ω \ W 'W Jj JA _ » Face ο CO XP § 面面 X Ρ 〇00 &lt; Ν—✓屮Μ iHmil ιρτ ws ΠΕί mm M .urn :CTQ /«—s ϋ i y—NQ 藏m country ^ K sound|&lt;|Π /—N ti m &lt;π =s ww lithium m secret m 骧The following substances are used for each component in the renting table. • Silver powder: AgC-103 (shape: spherical, average particle size: 1.5 μπι, manufactured by Fukuda Metal Foil Powder Co., Ltd.) • Silver isobutyrate: First, silver oxide (manufactured by Toyo Chemical Co., Ltd.) 50 g, Isobutyl 38 g of acid (manufactured by Kanto Chemical Co., Ltd.) and 300 g of methyl ethyl ketone (MEK) were placed in a ball mill, and stirred at room temperature for 24 hours to cause a reaction. Next, MEK was removed by suction filtration, and the obtained powder was dried, and -29-201250710 was prepared to prepare a white silver isobutyrate salt.

• 1,3,5-戊烷三羧酸銀鹽:首先,將氧化銀(東洋化學 工業公司製)50 g、1,3,5-戊烷三羧酸(東京化成公司製)30 g、以及甲基乙基酮(MEK)3 00 g投入球磨機中,於室溫搅 拌24小時,使其反應。接著,利用吸引過濾法除去MEK ,將所得粉末乾燥,由此調製成白色1,3,5-戊烷三羧酸銀 鹽。 •辛酸銀鹽:首先,將氧化銀(東洋化學工業公司製 )50 g、辛酸(協和發酵化學公司製)62.3 g、以及甲基乙基 酮(MEK) 3 00 g投入球磨機中,於室溫攪拌24小時,使其 反應。接著,利用吸引過濾法除去MEK,將所得粉末乾燥 ,由此調製成白色辛酸銀鹽。 •環烷酸鋅:Naftex鋅(日本化學產業公司製) •環烷酸鉛:Naftex鉛(日本化學產業公司製) •環烷酸銅:Naftex銅(日本化學產業公司製) •環烷酸鎂:Naftex鎂(日本化學產業公司製) •環烷酸錫:Naftex錫(日本化學產業公司製) •辛酸鎳:日化OCTIC鎳(日本化學產業公司製) •辛酸釔:辛酸釔(111)(三津和化學藥品公司製) •辛酸銷:日化OCTIC鉻(日本化學產業公司製) •硬脂酸鋅:硬脂酸鋅(和光純藥公司製) •月桂酸釔:月桂酸釔(ΠΙ)(三津和化學藥品公司製) • In(C5H702)3: NACEM銦(日本化學產業公司製) • Ni(C5H702)2 · 2H20 : NACEM鎳(曰本化學產業公司製) -30- 201250710 • Cu(e5H7〇2)2: NACEM銅(曰本化學產業公司製) • Ti(0C4H9)2(C5H702)2 : NACEM鈦(日本化學產業公司製) • Zn(C5H7〇2)2 · h20 : NACEM鋅(日本化學產業公司製) •玻璃熔料C 1 :軟化點3 9 1 t、日本電氣硝子公司製 •玻璃熔料C2 :軟化點430 〇C、日本電氣硝子公司製 •玻璃熔料C3: Pb系玻璃熔料 •溶劑:α -松油醇 •樹脂黏合劑:EC-100FTP(乙基纖維素樹脂固體成分 :9 %、曰新化成公司製) •氧化鋅:ZnO(TAYCA公司製) 由第1表所示之結果可知,至少不含有脂肪酸銀鹽 (B)及金屬化合物(E)中至少一種之比較例1-1〜1-3以及2-1〜2-3之導電性組成物,燒成爲太陽能電池元件之電極時 ’於720 °C下燒成時之太陽能電池元件之曲線因子低於在 780 °C或800 °C燒成者(比較例1-1、1-2以及2-1〜2-3), 或於720°C燒成者高於780°C燒成者(比較例1-3),溫度依 存性大。此外還可知,含有由脂肪酸銀鹽(B)以及與脂肪 酸銀鹽(B)之脂肪酸「相同」之脂肪酸構成之脂肪酸金屬 鹽之比較例1-4、以及含有由脂肪酸銀鹽(B)以及銀構成之 金屬化合物之比較例1 -5之導電性組成物,燒成爲太陽能 電池元件之電極時,與上述比較例相同,該太陽能電池元 件之曲線因子之溫度依存性大,並且曲線因子之絕對値低 。此外可知,含有脂肪酸銀鹽(B)與金屬化合物(E)兩者但 B/E未達1之比較例2-4之導電性組成物,燒成爲太陽能 201250710 電池元件之電極時,雖然該太陽能電池元件之曲線因子之 溫度依存性小,但曲線因子之絕對値低。 另一方面’可知含有脂肪酸銀鹽(B)與金屬化合物(E) 兩者且B/E爲1以上之實施例1-1〜1-14以及2-1〜2-8之 導電性組成物,燒成爲太陽能電池元件之電極時,於720 °C燒成時之太陽能電池元件之曲線因子與於780°C或800 °C燒成者比較則同樣,於較廣燒成溫度範圍(7 0 0〜8 0 0。(:) 內顯示高的曲線因子。 由實施例1-1〜1-9及1-11〜1-14與實施例1·ΐ〇之對 比可知’使用含有脂肪酸銀鹽(B)與金屬化合物(E)兩者且 B/E爲1以上之導電性組成物時,不受玻璃熔料種類影響 ’於較廣燒成溫度範圍(700〜800 °C )內顯示高的曲線因子 【圖式簡單說明】 圖1係表示太陽能電池元件之較佳實施樣態之一例的 剖面圖。 【主要元件符號說明】 1 :表面電極 2 :抗反射膜 3 : η層 4 : ρη接合矽基板 5 : Ρ層 -32- 201250710 6 :背面電極 7 :結晶系砍基板 1 〇 :太陽能電池元件 -33• Silver salt of 1,3,5-pentanetricarboxylate: First, 50 g of silver oxide (manufactured by Toyo Chemical Co., Ltd.) and 30 g of 1,3,5-pentanetricarboxylic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) And methyl ketone (MEK) 300 g was put into a ball mill, and stirred at room temperature for 24 hours to cause a reaction. Next, MEK was removed by suction filtration, and the obtained powder was dried to prepare a white 1,3,5-pentanetricarboxylic acid silver salt. • Silver octoate: First, 50 g of silver oxide (manufactured by Toyo Chemical Co., Ltd.), 62.3 g of octanoic acid (manufactured by Kyowa Fermentation Chemical Co., Ltd.), and 300 g of methyl ethyl ketone (MEK) were put into a ball mill at room temperature. Stir for 24 hours and allow to react. Next, MEK was removed by suction filtration, and the obtained powder was dried to prepare a white octanoate silver salt. • Zinc naphthenate: Naftex zinc (manufactured by Nippon Chemical Industry Co., Ltd.) • Lead naphthenate: Naftex lead (manufactured by Nippon Chemical Industry Co., Ltd.) • Copper naphthenate: Naftex copper (manufactured by Nippon Chemical Industry Co., Ltd.) • Magnesium naphthenate :Naftex magnesium (manufactured by Nippon Chemical Industry Co., Ltd.) •Sodium naphthenate: Naftex tin (manufactured by Nippon Chemical Industry Co., Ltd.) • Nickel octoate: OCTIC nickel (manufactured by Nippon Chemical Industry Co., Ltd.) • Citrate bismuth: bismuth octoate (111) Sanjin and Chemicals Co., Ltd.) • Sodium oxalate: OCTIC Chromium (made by Nippon Chemical Industry Co., Ltd.) • Zinc stearate: Zinc stearate (made by Wako Pure Chemical Industries, Ltd.) • Barium laurate: bismuth laurate (ΠΙ) (made by Mitsu and Chemicals Co., Ltd.) • In(C5H702)3: NACEM indium (manufactured by Nippon Chemical Industry Co., Ltd.) • Ni(C5H702)2 · 2H20: NACEM nickel (manufactured by Sakamoto Chemical Industry Co., Ltd.) -30- 201250710 • Cu ( e5H7〇2)2: NACEM copper (manufactured by Sakamoto Chemical Co., Ltd.) • Ti(0C4H9)2(C5H702)2 : NACEM titanium (manufactured by Nippon Chemical Industry Co., Ltd.) • Zn(C5H7〇2)2 · h20 : NACEM zinc ( Made by Nippon Chemical Industry Co., Ltd.) • Glass frit C 1 : Softening point 3 9 1 t, Nippon Electric Glass Co., Ltd. • Glass frit C2: Softening point 430 〇C, Nippon Electric Glass Co., Ltd. • Glass frit C3: Pb glass frit • Solvent: α - terpineol • Resin adhesive: EC -100FTP (solid content of ethyl cellulose resin: 9%, manufactured by Fuxin Chemical Co., Ltd.) • Zinc oxide: ZnO (manufactured by TAYCA Co., Ltd.) As shown by the results in Table 1, at least the fatty acid silver salt (B) and When the conductive composition of Comparative Examples 1-1 to 1-3 and 2-1 to 2-3 of at least one of the metal compounds (E) is fired at the electrode of the solar cell element, when it is fired at 720 ° C The solar cell element has a lower curve factor than those burned at 780 ° C or 800 ° C (Comparative Examples 1-1, 1-2, and 2-1 to 2-3), or burned at 720 ° C is higher than 780. The °C burner (Comparative Example 1-3) has a large temperature dependency. Further, it is also known that Comparative Example 1-4 containing a fatty acid metal salt composed of a fatty acid silver salt (B) and a fatty acid which is "identical" to the fatty acid silver salt (B), and a silver salt (B) and a silver salt In the conductive composition of Comparative Example 1-5, which is a metal compound, when burned into an electrode of a solar cell element, the temperature dependence of the curve factor of the solar cell element is large as in the above comparative example, and the absolute value of the curve factor is low. In addition, it is understood that the conductive composition of Comparative Example 2-4 containing both the fatty acid silver salt (B) and the metal compound (E) but having a B/E of less than 1 is burned to the electrode of the solar energy 201250710 battery element, although the solar energy The temperature dependence of the curve factor of the battery element is small, but the curve factor is absolutely low. On the other hand, it is known that the conductive composition of Examples 1-1 to 1-14 and 2-1 to 2-8 having both the fatty acid silver salt (B) and the metal compound (E) and having B/E of 1 or more When burning into an electrode of a solar cell element, the curve factor of the solar cell element when fired at 720 ° C is the same as that of the case of firing at 780 ° C or 800 ° C, and is in the wider firing temperature range (7 0 0 to 8 0 0. (:) shows a high curve factor. From the comparison of Examples 1-1 to 1-9 and 1-11 to 1-14 and Example 1·ΐ〇, it is known that 'the use of fatty acid containing silver salt (B) When both the metal compound (E) and the B/E are a conductive composition having 1 or more, it is not affected by the type of the glass frit, and the display temperature is high in the wide firing temperature range (700 to 800 ° C). Curve Factor [Simplified Schematic Description] Fig. 1 is a cross-sectional view showing an example of a preferred embodiment of a solar cell element. [Explanation of main element symbols] 1: Surface electrode 2: Anti-reflection film 3: η layer 4: ρη Bonded germanium substrate 5 : germanium layer - 32 - 201250710 6 : back electrode 7 : crystal cut substrate 1 〇 : solar cell element - 33

Claims (1)

201250710 七、申請專利範圍: 1 · 一種太陽能電池集電電極形成用導電性組成物,其 含有導電性粒子(A)、脂肪酸銀鹽(B)、玻璃熔料(C)、溶劑 (D )、以及由銀以外之金屬與前述脂肪酸銀鹽(B)之脂肪酸 以外之有機化合物的離子鍵及/或配位鍵構成之金屬化合 物(E),且 前述脂肪酸銀鹽(B)之含量與前述金屬化合物(E)之含 量的質量比(B/E)爲1以上。 2 .如請求項1之太陽能電池集電電極形成用導電性組 成物,其中前述金屬化合物(E)係由與前述脂肪酸銀鹽(B) 之脂肪酸不同之脂肪酸與銀以外之金屬的離子鍵構成之脂 肪酸金屬鹽(E1)。 3 .如請求項2之太陽能電池集電電極形成用導電性組 成物,其中前述脂肪酸銀鹽(B)爲羧酸銀鹽,前述脂肪酸 金屬鹽(E1)係由鎂、鎳、銅、鋅、釔、锆、錫以及鉛所組 成之群中選擇的至少1種以上金屬之羧酸金屬鹽。 4.如請求項3之太陽能電池集電電極形成用導電性組 成物,其中前述羧酸金屬鹽係由2-乙基己酸、辛酸、環烷 酸、硬脂酸以及月桂酸所組成之群中選擇的脂肪酸之金屬 鹽。 5 .如請求項1之太陽能電池集電電極形成用導電性組 成物,其中前述金屬化合物(E)係由乙醯丙酮與銀以外之 金屬之配位鍵構成之乙醯丙酮金屬錯合物(E2)。 6.如請求項5之太陽能電池集電電極形成用導電性組 -34- 201250710 成物,其中前述乙醯丙酮金屬錯合物(E2)係由銦、鎳、銅 、鈦、鋅以及錫所組成之群中選擇的金屬類之錯合物。 7.如請求項1至6中任一項之太陽能電池集電電極形 成用導電性組成物,其中前述質量比(B/E)爲2以上。 8 .如請求項1至6中任一項之太陽能電池集電電極形 成用導電性組成物,其中前述脂肪酸銀鹽(B)係由碳數18 以下之脂肪酸銀鹽(B 1 )、分別具有1個以上羧基銀鹽基(-COOAg)與羥基(-OH)之月旨肪酸銀鹽(B2)、以及不具有羥基 (-0H)但具有2個以上羧基銀鹽基(-COOAg)之聚羧酸銀鹽 (B 3)所組成之群中選擇的脂肪酸銀鹽。 9.如請求項1至6中任一項之太陽能電池集電電極形 成用導電性組成物,其中相對於前述導電性粒子(A)100質 量份,前述脂肪酸銀鹽(B)之含量爲1〜30質量份。 1 〇.如請求項1至6中任一項之太陽能電池集電電極 形成用導電性組成物,其中相對於前述導電性粒子(A) 1 00 質量份,前述金屬化合物(E)之含量爲0.1〜10質量份》 1 1 . 一種太陽能電池元件,其具備受光面側之表面電 極、抗反射膜、半導體基板、以及背面電極,並且至少前 述表面電極係使用如請求項1至10中任一項之太陽能電 池集電電極形成用導電性組成物所形成。 12.—種太陽能電池模組,其係使用互連器將如請求 項1 1之太陽能電池元件進行串聯配線者》 -35-201250710 VII. Patent application scope: 1 . A conductive composition for forming a solar cell collecting electrode, comprising conductive particles (A), fatty acid silver salt (B), glass frit (C), solvent (D), And a metal compound (E) composed of an ionic bond and/or a coordinate bond of a metal other than silver and an organic compound other than the fatty acid of the fatty acid silver salt (B), and the content of the aforementioned fatty acid silver salt (B) and the aforementioned metal The mass ratio (B/E) of the content of the compound (E) is 1 or more. The conductive composition for forming a solar cell collector electrode according to claim 1, wherein the metal compound (E) is composed of an ionic bond of a fatty acid different from the fatty acid of the fatty acid silver salt (B) and a metal other than silver. Fatty acid metal salt (E1). The conductive composition for forming a solar cell collector electrode according to claim 2, wherein the fatty acid silver salt (B) is a silver carboxylate salt, and the fatty acid metal salt (E1) is magnesium, nickel, copper, zinc, a carboxylic acid metal salt of at least one metal selected from the group consisting of cerium, zirconium, tin, and lead. 4. The conductive composition for forming a solar cell collector electrode according to claim 3, wherein the carboxylic acid metal salt is a group consisting of 2-ethylhexanoic acid, octanoic acid, naphthenic acid, stearic acid, and lauric acid. The metal salt of the selected fatty acid. The conductive composition for forming a solar cell collector electrode according to claim 1, wherein the metal compound (E) is an acetoacetone metal complex composed of a coordination bond of a metal other than acetonitrile and a metal other than silver ( E2). 6. The conductive group for forming a solar cell collector electrode of claim 5, wherein the acetamylacetone metal complex (E2) is made of indium, nickel, copper, titanium, zinc, and tin. A complex of metals selected from the group consisting of. The conductive composition for forming a solar cell collector electrode according to any one of claims 1 to 6, wherein the mass ratio (B/E) is 2 or more. The conductive composition for forming a solar cell collector electrode according to any one of claims 1 to 6, wherein the fatty acid silver salt (B) is composed of a fatty acid silver salt (B 1 ) having a carbon number of 18 or less, respectively. One or more carboxylated silver salt groups (-COOAg) and hydroxyl group (-OH) of the fatty acid silver salt (B2), and having no hydroxyl group (-0H) but having two or more carboxyl silver salt groups (-COOAg) A silver salt of a fatty acid selected from the group consisting of a polycarboxylate silver salt (B 3 ). The conductive composition for forming a collector electrode for a solar cell according to any one of claims 1 to 6, wherein the content of the fatty acid silver salt (B) is 1 based on 100 parts by mass of the conductive particles (A). ~30 parts by mass. The conductive composition for forming a solar cell collecting electrode according to any one of claims 1 to 6, wherein the content of the metal compound (E) is 100 parts by mass based on 100 parts by mass of the conductive particles (A). 0.1 to 10 parts by mass. 1 1 . A solar cell element comprising a surface electrode on a light-receiving surface side, an anti-reflection film, a semiconductor substrate, and a back surface electrode, and at least the surface electrode is used as claimed in any one of claims 1 to 10. The solar cell current collecting electrode is formed of a conductive composition. 12. A solar cell module that uses an interconnector to connect a solar cell component of claim 1 to a series wiring. -35-
TW101108121A 2011-05-12 2012-03-09 Conductive composition for making current collecting electrode for solar cell and solar cell TW201250710A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011107292A JP2012238754A (en) 2011-05-12 2011-05-12 Conductive composition for forming solar cell collector electrode and solar cell
JP2011110646A JP2012243865A (en) 2011-05-17 2011-05-17 Conductive composition for forming solar cell collector electrode, and solar cell

Publications (1)

Publication Number Publication Date
TW201250710A true TW201250710A (en) 2012-12-16

Family

ID=47139039

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101108121A TW201250710A (en) 2011-05-12 2012-03-09 Conductive composition for making current collecting electrode for solar cell and solar cell

Country Status (3)

Country Link
CN (1) CN103081114B (en)
TW (1) TW201250710A (en)
WO (1) WO2012153553A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103559938B (en) * 2013-09-22 2016-01-20 江苏瑞德新能源科技有限公司 A kind of doping type solar cell positive silver paste
TWI652694B (en) 2014-01-17 2019-03-01 日商納美仕有限公司 Conductive paste and method for manufacturing semiconductor device using the same
CN103972308B (en) * 2014-04-30 2016-09-14 湖南红太阳光电科技有限公司 A kind of high adhesion force industrialization crystal silicon solar energy battery aluminium paste
CN114093552A (en) * 2021-10-29 2022-02-25 江苏正能电子科技有限公司 Front silver paste for perovskite and HJT laminated solar cell and preparation method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11186572A (en) * 1997-12-22 1999-07-09 Canon Inc Photoelectromotive force element module
JP2003309352A (en) * 2002-04-16 2003-10-31 Fujikura Ltd Conductive adhesive and electronic component mounting structure using the same
KR100727434B1 (en) * 2005-03-04 2007-06-13 주식회사 잉크테크 Transparent silver inks and their methods for forming thin layers
US20090095344A1 (en) * 2006-04-25 2009-04-16 Tomohiro Machida Conductive Paste for Solar Cell Electrode
JP4714633B2 (en) * 2006-04-25 2011-06-29 シャープ株式会社 Conductive paste for solar cell electrode
JP2008198595A (en) * 2007-01-16 2008-08-28 Mitsubishi Chemicals Corp Metal particulate ink paste and organic acid treated metal particulate
US8308993B2 (en) * 2008-01-30 2012-11-13 Basf Se Conductive inks
GB2457664A (en) * 2008-02-19 2009-08-26 Science Technology Res Partner Electrolyte composition for a dye sensitized solar cell
CN101359696B (en) * 2008-05-28 2011-09-21 华东理工大学 Conductive slurry for front electrode of solar battery having great printing performance
DE102008032554A1 (en) * 2008-07-10 2010-01-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Metal-containing composition, process for the production of electrical contact structures on electronic components and electronic component
JP5320962B2 (en) * 2008-10-07 2013-10-23 横浜ゴム株式会社 Conductive composition, method for forming conductive film, and conductive film
JP2011035062A (en) * 2009-07-30 2011-02-17 Yokohama Rubber Co Ltd:The Solar cell base with conductive electrode

Also Published As

Publication number Publication date
CN103081114A (en) 2013-05-01
CN103081114B (en) 2015-12-23
WO2012153553A1 (en) 2012-11-15

Similar Documents

Publication Publication Date Title
JP5746325B2 (en) Thick film pastes containing lead-tellurium-boron-oxides and their use in the manufacture of semiconductor devices
JP3853793B2 (en) Conductive paste for solar cell, solar cell and method for producing solar cell
JP2017141156A (en) Conductive thick film paste for solar cell contact
JP5853541B2 (en) Conductive composition for forming solar battery collecting electrode and solar battery cell
JP2013074165A (en) Conductive composition for forming solar cell collector electrode, solar cell, and solar cell module
TW201105600A (en) Glass composition, electrically conductive paste composition comprising same, electrode wiring member, and electronic component
KR20150000486A (en) Methods of printing solar cell contacts
TW201250710A (en) Conductive composition for making current collecting electrode for solar cell and solar cell
TWI534869B (en) Method of making current collecting electrode for solar cell, combination of conductive compositions for making current collecting electrode for solar cell, and solar cell
KR101600874B1 (en) Silver Paste Composition and Solar Cell using the same
TW201513135A (en) Composition for solar cell electrode and electrode fabricated using the same
JP5844091B2 (en) Conductive composition, solar battery cell and solar battery module
JP5630111B2 (en) Solar cell electrode paste and solar cell
JP5327069B2 (en) Solar cell electrode paste and solar cell
JP2012023084A (en) Paste for solar battery electrode and solar battery cell
JP2014078594A (en) Paste composition and solar battery
JP2012248790A (en) Conductive composition for forming solar cell collector electrode, and solar cell
JP2013504177A (en) Conductor for photovoltaic cells
KR101179113B1 (en) Paste for solar cell electrode and solar cell
JP2012238754A (en) Conductive composition for forming solar cell collector electrode and solar cell
TWI447181B (en) Paste and solar cell for solar cell electrodes
JP2012243865A (en) Conductive composition for forming solar cell collector electrode, and solar cell
JP2013073890A (en) Conductive composition, solar cell, and solar cell module
KR102326611B1 (en) Composition for forming solar cell electrode and electrode prepared using the same
JP2013214594A (en) Conductive composition for forming solar cell collector electrode, and solar cell and solar cell module using the same