201250120 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種發電裝置,特別是指一種溫差發 電裝置。 【先前技術】 煉鋼屬於高熱製程,製程中會衍生出需多的廢熱,為 了能充利用能源以降低生產成本,許多煉鋼設備當會加裝 如:復熱器或汽電共生設備…等高效能的回收設備,回收製 程中所產生之廢熱。 但是,現有回收設備體積龐大、結構複雜,且往往需 要較高溫度之廢熱才能產生作用,因此,現有的回收設備 不但價格昂貴,且在應用上也較為受限。 - 近年來,隨著半導體技術的日漸成熟,相關業者研發 出如圖1所示,用以回收廢熱的溫差發電裝置1,該溫差發 電裝置1包含一設置在一流通有廢熱源100之管壁1〇1外 周面上的致冷晶片11,及一設置於該致冷晶片11上的散熱 轉片12。 該致冷晶片11具有一與該管壁101相接觸的熱端面 111 ’及一相反於該熱端面111且與該散熱鰭片12相接觸的 冷端面112。由於致冷晶片11體積小、構造簡單,而且只 要熱端面111與冷端面112有10°C的溫差即可產生電力, 因此’幾乎可以應用在所有煉鋼製程之設備的廢熱回收上 但是,由於該致冷晶片11是利用熱端面111與冷端面 201250120 112的溫差產生電力,因此,如何增加熱端面lu與冷端面 112間的溫差,即成了提升現有溫差發電裝置丨之熱電轉換 效率的主要課題。 【發明内容】 因此,本發明之目的,即在提供一種具有高熱電轉換 效率的溫差發電裝置。 於是,本發明溫差發電裝置,是利用接觸一流體熱源 以產生電力’該溫差發電裝置包含一吸熱單元,及至少一 設置於該吸熱單元上的發電單元。 s玄吸熱單元包括一本體,及一連設於該本體上的集熱 鰭片,其中,該本體具有一與該流體熱源相接觸的吸熱部 ,及一不與該流體熱源相接觸的傳熱部,而該集熱鰭片是 設置於該吸熱部上。該發電單元包括一設置於該本體之傳 熱部上的致冷晶片,及一設置於該致冷晶片上的散熱鰭片 〇 本發明的有益效果在於利用設置於該吸熱部上而能與 流體熱源直接接觸的集熱鰭片充分收集流體熱源的熱能, 再經由該傳熱部將熱能集中傳遞至該發電單元的致冷晶片 上,以增加該致冷晶片之冷、熱端間的溫度差,提升該致 冷晶片的熱電轉換效率。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之二個較佳實施例的詳細說明中,將可 清楚的呈現。 4 201250120 在本發明被詳細描述之前’要注意的是,在以下的說 明内容中,類似的元件是以相同的編號來表示。 參閱圖2、3,本發明的溫差發電裝置2包含一吸熱單 元3,及兩個設置於該吸熱單元3上的發電單元4»該吸熱 單元3包括一本體31 ’及一連設於該本體31上的集熱縛片 32。該本體31具有一供該集熱鰭片32設置的吸熱部311, 及一由該吸熱部311朝相反於該集熱鰭片32方向延伸的傳 熱部312。 該集熱鰭片32具有多數相互間隔一體連設於該本體3 i 之吸熱部311上的集熱片體321,及多數介於每兩相間隔之 集熱片體321間的流道322。 於本較佳實施例中,該吸熱單元3的本體31與集熱轉 片32是以銅金屬一體成型,且該吸熱單元3的本體31是 呈長板狀,而所述集熱鰭片32是一體連設於該本體31之 吸熱部311的相反兩側面上。 每一發電單元4皆包括一設置於該本體31之傳熱部 312上的致冷晶片41、一設置於該致冷晶片41上的散熱鰭 片42、一位於該致冷晶片41與該本體31之傳熱部312之 間的第-傳熱件43 ’及-位於該致冷晶片41與該散熱韓片 42之間的第二傳熱件44。 於本較佳實施例中,每—發電單元4的散熱鳍片42是 以鋁金屬所製成’而該第一、二傳熱件43、44是散熱膏。 參閱圖3、4,在實際應用時,該吸熱單元3之本體31 的吸熱4 311疋穿置於_流通有流體熱源的管道斯中 201250120 並與該流體熱源200.相接觸,而該傳熱部312則是由該吸 熱部311向外延伸並穿出該管道2〇1而不與該流體熱源200 相接觸。 於本較佳實施例中的管道201與流體熱源200,分別是 煉鋼製程中的煙道與煉鋼製程中的高溫廢氣,而且所述流 道322是與該流體熱源200的流動方向相互平行,當然, 在實際應用上,所述流道322也可是如圖5所示,是與該 流體熱源200流動方向相互垂直。 該溫差發電裝置2是利用設置於該吸熱部311上而能與 流體熱源200直接接觸的集熱鰭片32充分收集流體熱源 2〇〇的熱能’再經由該傳熱部312將熱能集中傳遞至該發電 單元4的致冷晶片41上,配合設置於該致冷晶片41上的 散熱韓片42 ’而於s玄致冷晶片41的相反兩側形成熱端與冷 端’由於該集熱鰭片32是直接與流體熱源2〇〇相接觸,再 利用該傳熱部312匯集熱能,再加上該第一、二傳熱件43 、44則提升熱能傳遞的速度’因此,可以增加該致冷晶片 41熱端與冷端的溫度差’提升該致冷晶片41的熱電轉換效 率〇 參閱圖6、並回顧圖4、5,在所述發電單元4是採自 然冷卻且廢氣流量在1400m3/hr的情形時,所述流道322與 該流體熱源200的流動方向相互平行之致冷晶片41兩端的 溫差值約48.2°C ’而所述流道322與該流體熱源2〇〇的流 動方向相互垂直之致冷晶片41兩端的溫差值約45.6°C,因 此,當所述流道322與該流體熱源2〇〇流動方向相互平行 6 201250120 - 時’較所述流道322與該流體熱源200流動方向相互垂直 時,更能提高所述致冷晶片41兩端的溫度差而獲得更好的 熱電轉換效率。 且發明人實驗後發現,當所述流道322與該流體熱源 200流動方向相互平行,還能減少管道201内壓降約1〇% ’以減少抽風機的負擔避免電費的增加。 在此要特別說明的是,為方便說明,本較佳實施例僅 以一安裝於管道201上的溫差發電裝置2進行說明,在實 際應用上,可以視需求與管道201大小,增加安裝於管道 201上之溫差發電裝置2的數量以提高發電量。 參閱圖7,本發明溫差發電裝置2的第二較佳實施例, 大致是與該第一較佳實施例相同,不相同的地方在於··該 差發電裝置2僅包含一發電單元4,藉此,提供另一種實 施的態樣供使用者選擇。 综上所述,本發明的溫差發電裝置2利用設置於該吸 熱部311上而能與流體熱源2〇〇直接接觸的集熱鰭片充 分收集流體熱源200的熱能,再經由該傳熱部312將熱能 集中傳遞至該發電單元4的致冷晶片41上,配合設置於該 致冷晶# 41上的散熱縛# 42,以增加該致冷晶# 41之冷 、熱端間的溫度差’提升該致冷晶片41的熱電轉換效率, 故確實能達成本發明之目的。 惟以上所述者,僅為本發明之較佳實施例而已,當不 月t*以此限疋本發明實施之範圍,即大凡依本發明申請專利 圍及發明說明内容所作之簡單的等效變化與修飾皆仍 201250120 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是一示意圖,說明一現有的溫差發電裝置; 圆2是一立體圖,說明本發明溫差發電裝置的第一較 佳實施例; 圖3是一前視圖’輔助說明圖2; 圖4是一俯視圖,說明該第一較佳實施例的所述流道 與該流體熱源的流動方向相互平行的實施態樣; 圖5是一俯視圖’說明該第一較佳實施例的所述流道 與該流體熱源的流動方向相互垂直的實施態樣; 圖6是一比較圖’說明所述流道與該流體熱源的流動 方向對溫差的影響;及 圖7是一前視圖,說明本發明溫差發電裝置的第二較 佳實施例。 201250120 【主要元件符號說明】 2 ....... •…溫差發電裝置 321… •…集熱片體 200… •…流體熱源 322… …·流道 201… •…管道 4…… •…發電單元 3 ....... •…吸熱單元 41 ···.. ----致冷日日片 31…… …·本體 42••… •…散熱鰭片 311 ··· •…吸熱部 43··.·· …·第一傳熱件 312 ... •…傳熱部 44·.··· …·第二傳熱件 32…·· •…集熱鰭片 9201250120 VI. Description of the Invention: [Technical Field] The present invention relates to a power generating device, and more particularly to a temperature difference power generating device. [Prior Art] Steelmaking is a high-heat process, and waste heat is required in the process. In order to recharge energy to reduce production costs, many steelmaking equipments will be equipped with reheaters or cogeneration equipment... High-efficiency recycling equipment that recycles waste heat from the process. However, the existing recycling equipment is bulky, complicated in structure, and often requires a higher temperature waste heat to function. Therefore, the existing recycling equipment is not only expensive but also limited in application. - In recent years, with the gradual maturity of semiconductor technology, the related art has developed a thermoelectric power generation device 1 for recovering waste heat as shown in FIG. 1. The thermoelectric power generation device 1 includes a wall disposed in a flow of waste heat source 100. A finned wafer 11 on the outer peripheral surface of the crucible, and a heat dissipating fin 12 disposed on the finned wafer 11. The refrigerant chip 11 has a thermal end surface 111' which is in contact with the tube wall 101, and a cold end surface 112 which is opposite to the thermal end surface 111 and which is in contact with the heat dissipation fin 12. Since the refrigerant chip 11 is small in size, simple in structure, and can generate electric power as long as the temperature difference between the hot end surface 111 and the cold end surface 112 is 10 ° C, it can be applied to waste heat recovery of equipment in all steel making processes, but due to The refrigerating wafer 11 generates electric power by using the temperature difference between the hot end surface 111 and the cold end surface 201250120 112. Therefore, how to increase the temperature difference between the hot end surface lu and the cold end surface 112 becomes the main factor for improving the thermoelectric conversion efficiency of the existing thermoelectric power generation device. Question. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a thermoelectric power generation apparatus having high thermoelectric conversion efficiency. Accordingly, the thermoelectric power generation device of the present invention utilizes a fluid heat source to generate electric power. The thermoelectric power generation device includes a heat absorbing unit and at least one power generating unit disposed on the heat absorbing unit. The sth heat absorbing unit comprises a body, and a heat collecting fin connected to the body, wherein the body has a heat absorbing portion in contact with the fluid heat source, and a heat transfer portion not in contact with the fluid heat source And the heat collecting fin is disposed on the heat absorbing portion. The power generating unit includes a cooling chip disposed on the heat transfer portion of the body, and a heat dissipating fin disposed on the cooling chip. The invention has the beneficial effects of being able to interact with the fluid by being disposed on the heat absorbing portion. The heat collecting fins directly contacted by the heat source sufficiently collect the heat energy of the fluid heat source, and then transfer the heat energy to the cooling wafer of the power generating unit through the heat transfer portion to increase the temperature difference between the cold and hot ends of the cooling chip. , improving the thermoelectric conversion efficiency of the cooled wafer. The above and other technical contents, features and effects of the present invention will be apparent from the following detailed description of the preferred embodiments of the invention. 4 201250120 Before the present invention is described in detail, it is to be noted that in the following description, similar elements are denoted by the same reference numerals. Referring to Figures 2 and 3, the thermoelectric power generation device 2 of the present invention comprises a heat absorbing unit 3, and two power generating units 4 disposed on the heat absorbing unit 3. The heat absorbing unit 3 includes a body 31' and a body 31 connected thereto. The heat collecting tab 32 on the upper. The body 31 has a heat absorbing portion 311 provided for the heat collecting fins 32, and a heat transmitting portion 312 extending from the heat absorbing portion 311 in a direction opposite to the heat collecting fins 32. The heat collecting fins 32 have a plurality of heat collecting sheets 321 integrally connected to the heat absorbing portion 311 of the main body 3 i, and a plurality of flow paths 322 interposed between the two heat collecting sheets 321 spaced apart from each other. In the preferred embodiment, the body 31 of the heat absorbing unit 3 and the heat collecting fins 32 are integrally formed of copper metal, and the body 31 of the heat absorbing unit 3 has a long plate shape, and the heat collecting fins 32 are provided. It is integrally connected to opposite sides of the heat absorbing portion 311 of the body 31. Each of the power generating units 4 includes a cooling fin 41 disposed on the heat transfer portion 312 of the body 31, a heat dissipating fin 42 disposed on the refrigerating wafer 41, and a cooling fin 41 and the body. The first heat transfer member 43' between the heat transfer portions 312 of 31 and the second heat transfer member 44 between the refrigerant wafer 41 and the heat dissipation sheet 42. In the preferred embodiment, the heat dissipating fins 42 of each of the power generating units 4 are made of aluminum metal and the first and second heat transfer members 43, 44 are heat dissipating pastes. Referring to FIG. 3 and FIG. 4, in actual application, the heat absorption 4 311 of the body 31 of the heat absorbing unit 3 is placed in the pipeline 50 circulated with the fluid heat source and is in contact with the fluid heat source 200. The portion 312 extends outward from the heat absorbing portion 311 and passes through the duct 2〇1 without coming into contact with the fluid heat source 200. The pipe 201 and the fluid heat source 200 in the preferred embodiment are respectively high temperature exhaust gases in the flue and steel making processes in the steel making process, and the flow paths 322 are parallel to the flow direction of the fluid heat source 200. Of course, in practical applications, the flow path 322 may also be perpendicular to the flow direction of the fluid heat source 200 as shown in FIG. The thermoelectric power generation device 2 is configured to collect the thermal energy of the fluid heat source 2 by the heat collecting fins 32 that are directly in contact with the fluid heat source 200 provided on the heat absorbing portion 311, and then transfer the heat energy to the heat transfer portion 312 through the heat transfer portion 312. The cooling fins 41 of the power generating unit 4 are combined with the heat dissipating fins 42' disposed on the refrigerating wafer 41, and the hot and cold ends are formed on opposite sides of the quasi-cooling wafer 41. The sheet 32 is directly in contact with the fluid heat source 2, and the heat transfer portion 312 is used to collect the heat energy, and the first and second heat transfer members 43 and 44 increase the speed of heat energy transfer. The temperature difference between the hot end and the cold end of the cold wafer 41 increases the thermoelectric conversion efficiency of the refrigerated wafer 41. Referring to Fig. 6, and referring back to Figs. 4 and 5, the power generating unit 4 is naturally cooled and the exhaust gas flow rate is 1400 m3/hr. In the case where the flow path 322 and the flow direction of the fluid heat source 200 are parallel to each other, the temperature difference between the ends of the refrigerant wafer 41 is about 48.2 ° C. and the flow direction of the flow path 322 and the fluid heat source 2 相互 are mutually The temperature difference between the two ends of the vertical cold wafer 41 45.6 ° C, therefore, when the flow path 322 and the fluid heat source 2 〇〇 flow direction parallel to each other 6 201250120 - when the flow direction 322 and the fluid heat source 200 flow direction are perpendicular to each other, the The temperature difference across the wafer 41 is cooled to obtain better thermoelectric conversion efficiency. Further, the inventors found that when the flow path 322 and the flow direction of the fluid heat source 200 are parallel to each other, the pressure drop in the pipe 201 can be reduced by about 1%% to reduce the burden of the exhaust fan and avoid an increase in the electricity cost. It should be particularly noted that, for convenience of description, the preferred embodiment is described by only the thermoelectric power generation device 2 mounted on the pipeline 201. In practical applications, the size of the pipeline 201 can be increased according to requirements and installed in the pipeline. The number of thermoelectric power generation devices 2 on 201 increases the amount of power generation. Referring to FIG. 7, a second preferred embodiment of the thermoelectric power generation device 2 of the present invention is substantially the same as the first preferred embodiment. The difference is that the differential power generation device 2 includes only one power generation unit 4, Thus, another aspect of the implementation is provided for the user to select. As described above, the thermoelectric power generation device 2 of the present invention sufficiently collects the heat energy of the fluid heat source 200 by the heat collecting fins provided in the heat absorbing portion 311 and in direct contact with the fluid heat source 2, and passes through the heat transfer portion 312. The heat energy is concentratedly transferred to the cooling wafer 41 of the power generating unit 4, and the heat dissipation binding 42 provided on the cooling crystal #41 is added to increase the temperature difference between the cold and hot ends of the cooling crystal #41. The thermoelectric conversion efficiency of the refrigerant chip 41 is improved, and the object of the present invention can be achieved. However, the above is only a preferred embodiment of the present invention, and is not limited to the scope of the present invention, that is, the simple equivalent of the patent application and the description of the invention according to the present invention. Changes and modifications are still within the scope of the invention patent 201250120. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing a conventional thermoelectric power generation device; a circle 2 is a perspective view illustrating a first preferred embodiment of the thermoelectric power generation device of the present invention; and FIG. 3 is a front view 'auxiliary explanatory diagram 2 is a top view showing an embodiment in which the flow path of the first preferred embodiment is parallel to the flow direction of the fluid heat source; FIG. 5 is a plan view illustrating the first preferred embodiment. FIG. 6 is a comparative diagram illustrating the effect of the flow direction of the flow channel and the fluid heat source on the temperature difference; and FIG. 7 is a front view. A second preferred embodiment of the thermoelectric power generation device of the present invention will be described. 201250120 [Description of main component symbols] 2 ....... • Thermoelectric power generation unit 321... • Collector sheet 200... • Fluid heat source 322... Flow path 201... • Pipe 4... •... Power generation unit 3 ....... •... Heat absorption unit 41 ···.. ---- Cooling day film 31... ...· Body 42••... •... Heat sink fin 311 ··· •... Heat absorbing portion 43·······The first heat transfer member 312 ... • the heat transfer portion 44······the second heat transfer member 32...···...the heat collecting fin 9