TW201248765A - Method for placing a semiconductor wafer on a susceptor with a predetermined angular orientation - Google Patents

Method for placing a semiconductor wafer on a susceptor with a predetermined angular orientation Download PDF

Info

Publication number
TW201248765A
TW201248765A TW101117326A TW101117326A TW201248765A TW 201248765 A TW201248765 A TW 201248765A TW 101117326 A TW101117326 A TW 101117326A TW 101117326 A TW101117326 A TW 101117326A TW 201248765 A TW201248765 A TW 201248765A
Authority
TW
Taiwan
Prior art keywords
semiconductor wafer
susceptor
semiconductor
orientation
angular orientation
Prior art date
Application number
TW101117326A
Other languages
Chinese (zh)
Inventor
Hannes Hecht
Alois Aigner
Original Assignee
Siltronic Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siltronic Ag filed Critical Siltronic Ag
Publication of TW201248765A publication Critical patent/TW201248765A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/681Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

The invention relates to a method for placing a semiconductor wafer on a susceptor with a predetermined angular orientation, comprising the following steps: (a) removing the semiconductor wafer by means of a robot arm from a first station, (b) determining the current angular orientation of the semiconductor wafer by detecting the position of a marking on the semiconductor wafer by means of an optical sensor, (c) defining the angular orientation with which the semiconductor wafer is to be placed on a susceptor situated in a process chamber, said susceptor being mounted in a manner rotatable about its central axis, (d) transferring the semiconductor wafer by means of the robot arm to the process chamber, (e) rotating the susceptor about its central axis into a position which subsequently leads in step (f) to the semiconductor wafer being placed with the predetermined angular orientation, and (f)placing the semiconductor wafer on the susceptor.

Description

201248765 六、發明說明: 【發明所屬之技術領域】 本發明涉及一種用於以預定的角度取向在基座上放置半導體晶 圓的方法。 【先前技術】 在半導體晶圓前側上氣相彡儿積蠢晶層期間’半導體晶圓通常置 於支撐物上,該支撐物被稱為基座。 需要產生具有均勻層厚度的層’並且確保層的可利用的區域盡 可能地延伸到半導體晶圓的邊緣°當嘗試實現該慣例時’會面對 如下問題:根據單晶半導體晶圓的晶格取向’在半導體晶圓的邊 緣的特定區域生長速率增大’這會導致所述區域中的層厚度局部 增大。舉例來說,在〇°、90° ' 180°以及270°的角度位置處具 有晶格取向(100)的矽晶圓的情況下,會在邊緣區域中出現局部 增大的層厚度。US2009/0031954A1中描述了該問題。 所引用的文獻提出了利用在基座直接接合半導體晶圓的區域中 的結構性措施來補償邊緣區域中的局部不同的生長速率,由此獲 得改善的層厚度均勻性。根據US2009/0031954A卜半導體晶圓的 邊緣區域中的磊晶層的生長速率會受基座在直接接合半導體晶圓 的區域中的表面處的材料的影響。因此,舉例來說,在生長速率 特別高的位置,係將會降低半導體晶圓的接合區域的生長速率的 材料用於基座的表面》也提出了用於影響局部生長速率的基座的 局部幾何修改(局部提升)。 然而,為了能夠證實它們期望的效果,這些措施預先假定半導 體晶圓在磊晶層的沉積期間,在相應地配備的基座上係位於正確201248765 VI. Description of the Invention: [Technical Field] The present invention relates to a method for placing a semiconductor crystal on a susceptor at a predetermined angular orientation. [Prior Art] During the gas phase deposition on the front side of the semiconductor wafer, the semiconductor wafer is usually placed on a support, which is referred to as a susceptor. It is desirable to create a layer with a uniform layer thickness and to ensure that the available regions of the layer extend as far as possible to the edge of the semiconductor wafer. When attempting to implement this convention, the following problems will be faced: according to the crystal lattice of the single crystal semiconductor wafer The orientation 'increased growth rate at a particular region of the edge of the semiconductor wafer' results in a local increase in layer thickness in the region. For example, in the case of a germanium wafer having a lattice orientation (100) at angular positions of 〇°, 90° '180°, and 270°, a locally increased layer thickness occurs in the edge region. This problem is described in US 2009/0031954 A1. The cited literature proposes to compensate for locally different growth rates in the edge regions by utilizing structural measures in the region where the susceptor directly bonds the semiconductor wafer, thereby achieving improved layer thickness uniformity. According to US 2009/0031954 A, the growth rate of the epitaxial layer in the edge region of the semiconductor wafer is affected by the material of the susceptor at the surface in the region directly bonding the semiconductor wafer. Thus, for example, at a particularly high growth rate, a material that will reduce the growth rate of the junction region of the semiconductor wafer is used for the surface of the pedestal. Also, a portion of the susceptor for influencing the local growth rate is proposed. Geometric modification (local elevation). However, in order to be able to verify their desired effect, these measures presuppose that the semiconductor wafer is properly positioned on the correspondingly equipped pedestal during deposition of the epitaxial layer.

4 S 201248765 的角度取向。US2009/0031954A1沒有具體說明如何確保這一點。 US5102280公開了 一種用於在限定的取向上將半導體晶圓輸送 至處理站的方法和裝置。為此,首先利用機械臂將半導體晶圓引 入單獨的取向站内,在取向站中確定半導體晶圓的取向。如果在 該情況下確認取向不正確,則在第一情況下半導體晶圓被機械臂 拾取,調整至正確的取向並且被再次引入取向站内。重複該過程 直至半導體晶圓位於取向站中所期望的取向上。之後,半導體晶 圓再次被機械臂拾取,在預定路徑上輸送到處理站,並且被引入 處理站内。在第二種情況下,在將半導體晶圓輸送至處理站期間, 關於不正確取向的資訊被直制於校正機械臂的移動從而使半 導體晶圓能夠以位置上正確的方式引人處理站内。在該情況下, 無需在取向財進行取^在輸送至處理_間,對取向進行校 正0 在第-種情況下’用於進行位置校正的方法佔用相對長的時 間,這使得第二種情況出於經濟可行性的原因將是較佳的。 然而’在第二種情況下,存在如下問題:機械臂將半導體晶圓 插入處理站内(例如’插人蟲晶反應器中)所通過的開口並不比 半導體晶圓的直徑寬报多。機械臂具有多個關節。如果最前面的 關節被設置成如此接近用於半導體晶圓的夾具,使得在半導體晶 圓的放置期間其本身進人處理站内,則可能在放置之前在相對大 的角度範圍中校正半導體晶圓的取向。然而,另—方面,不希望 可移動部件穿人例如蟲晶反應器的處理室中,其中所述處理室被 預熱至攝氏數百度’技因為可移動部件可能產生顆粒且該顆粒 可能被引入處理室内。 201248765 如果機械臂最前面的關節沒有進人i晶反應器的處 理至中則此夠故正半導體晶圓的取向的角度範圍受到很大限制。 【發明内容】 =此本u的目的在於提供—種可能性即能夠在向遙晶反 應益的基座上放置半導體晶κ_、在大的角度範_校正半導 體晶圓的取向,而機械臂的可移動部件無需穿人處理室,並且無 需將半導體晶圓向處理室的輸送延遲相當大的程度。此外,意在 利用裝置方面可能的最小費用來實現這一點。 上述目的係利用用於以預定的角度取向在基座上放置半導體晶 圓的方法來實現,該方法包括下列步驟: a) 利用機械臂從第一站移動半導體晶圓, b) 通過利用光學感測器檢測半導體晶圓上的標記的位置,來確 定半導體晶圓的當前角度取向。 c) 限定半導體晶圓將要被放置在位於處理室中的基座上的角度 取向,该基座是以可繞著它的中心軸旋轉的方式來安裝, d) 利用機械臂將半導體晶圓傳送至處理室, e) 繞著基座的中心轴將基座旋轉至隨後在步驟f)中導致半導 體晶圓以預定的角度取向被放置的位置,以及 f) 將半導體晶圓放置在基座上。 與現有技術相反,在根據本發明的方法中,對基座進行取向, 而不對半導體晶圓進行取向。所以,根據本發明的方法不需要用 於對半導體晶圓進行取向的附加模組(取向站)。替代地,在步驟 f中將半導體晶圓放置在基座上之前,在任意點確定半導體晶圓 的角度取向。然後,根據該資訊產生用於控制基座旋轉的信號,4 S 201248765 angle orientation. US 2009/0031954 A1 does not specify how to ensure this. No. 5,102,280 discloses a method and apparatus for transporting a semiconductor wafer to a processing station in a defined orientation. To this end, the semiconductor wafer is first introduced into a separate orientation station using a robotic arm to determine the orientation of the semiconductor wafer in the orientation station. If the orientation is confirmed to be incorrect in this case, the semiconductor wafer is picked up by the robot arm in the first case, adjusted to the correct orientation and reintroduced into the orientation station. This process is repeated until the semiconductor wafer is in the desired orientation in the orientation station. Thereafter, the semiconductor wafer is again picked up by the robotic arm, transported to the processing station on a predetermined path, and introduced into the processing station. In the second case, during the transport of the semiconductor wafer to the processing station, information about the incorrect orientation is directed to correcting the movement of the robotic arm to enable the semiconductor wafer to be introduced into the station in a positionally correct manner. In this case, it is not necessary to perform the correction in the orientation between the processing and the processing. In the first case, the method for performing the position correction takes a relatively long time, which makes the second case. It would be better for reasons of economic viability. However, in the second case, there is a problem that the opening through which the robot arm inserts the semiconductor wafer into the processing station (e.g., inserted into the insect crystal reactor) is not much wider than the diameter of the semiconductor wafer. The robot arm has multiple joints. If the foremost joint is placed so close to the fixture for the semiconductor wafer that it enters the processing station itself during placement of the semiconductor wafer, it is possible to correct the semiconductor wafer in a relatively large angular range prior to placement. orientation. On the other hand, however, it is undesirable for the movable member to be worn in a processing chamber such as a crystal cell reactor, wherein the processing chamber is preheated to hundreds of degrees Celsius' because the movable member may generate particles and the particles may be introduced Processing indoors. 201248765 If the front joint of the arm is not processed into the i-crystal reactor, the angular extent of the orientation of the semiconductor wafer is greatly limited. SUMMARY OF THE INVENTION The purpose of this is to provide a possibility to place a semiconductor crystal κ_ on a susceptor that is beneficial to the reaction of the remote crystal, and to correct the orientation of the semiconductor wafer at a large angle, while the arm of the robot The movable part does not need to be worn by the processing chamber, and there is no need to delay the delivery of the semiconductor wafer to the processing chamber to a considerable extent. In addition, it is intended to achieve this with the lowest possible cost of the device. The above objects are achieved by a method for placing a semiconductor wafer on a susceptor at a predetermined angular orientation, the method comprising the steps of: a) moving the semiconductor wafer from the first station using a robotic arm, b) utilizing optical sensation The detector detects the position of the mark on the semiconductor wafer to determine the current angular orientation of the semiconductor wafer. c) defining an angular orientation of the semiconductor wafer to be placed on a susceptor located in the processing chamber, the susceptor being mounted for rotation about its central axis, d) transferring the semiconductor wafer using the robotic arm To the processing chamber, e) rotating the susceptor about the central axis of the susceptor to a position that subsequently causes the semiconductor wafer to be placed at a predetermined angular orientation in step f), and f) placing the semiconductor wafer on the pedestal . In contrast to the prior art, in the method according to the invention, the susceptor is oriented without orientation of the semiconductor wafer. Therefore, the method according to the present invention does not require an additional module (orientation station) for orienting the semiconductor wafer. Alternatively, the angular orientation of the semiconductor wafer is determined at any point prior to placing the semiconductor wafer on the pedestal in step f. Then, based on the information, a signal for controlling the rotation of the pedestal is generated,

S 6 201248765 能夠在步驟f)中通過機械臂在期望或需要的 ㈣上料導體晶圓放置在正確取向的基座上。由於除了卜如 :==Γ諸如機械臂和具有基座的處理室以外,根二 …要用於確定半導體晶圓的角度取向的裝置,所以用 於貫現該方法的技術費用低。 m需要機械臂能夠繞著半導體晶片的中心軸以較大的角 =轉半導體33圓。因此’機械臂沒有必要在攜帶半導體晶圓且 咖處理室_域中具有任何可移動的部件。因此,根據本 y㈣方法也適合於將半導體晶圓傳送至具有幾百攝氏溫度的熱 …至内從而適合於對蟲晶反應11或用於其它高溫處理的反應 益進行裝載(charge )。 【實施方式】 首先,參考圖1中所示出的基本示意圖,將描述根據現有技術 的例如用於半導體晶圓的蟲晶塗覆的典型裝置。該裝置包括一個 或多個用於在每個外殼中容納具有半導體晶圓的^的站。圖中 示出了兩個盒卜一個或多個機械臂(未示出)位於第一傳送室2 中’該-個或多個機械臂從盒!個別地移動半導體晶圓,如果適 當則將半導體晶圓傳送至多個閘室(⑽eham㈣4 (圖中示出 了兩個)中的-個中,並且將半導體晶圓放置在那裡。 〜如果需要確保半導體晶圓以限定的取向放置在分別存在於處理 室6中的基座上,則根據現有技術附加的取向站3是必備的。在 該情況下’第-傳送室2中的機械臂不能直接將半導體晶圓從盒 1傳送至閘室4中,而是先將半導體晶圓從盒i傳送至取向站3 中’其中半導體晶圓被調整至所需要的取向。然後,通過位於第 7 201248765 一傳送室2中的機械臂, 以位置上正確的方式將半導體晶圓放置 到閘至4中的個中(根據本發明的方法不需要取向站3)。 另外的機械纽於第二傳送室5中該另外的機械臂從間室4 中的-個移動半導體晶圓’如果適當則將半導體晶圓傳送至多個 處理室6 (圖中同#示出了兩個)中的—個中,並且將半導體晶 圓放置在基座上,該基座以可繞著它的中心轴旋轉的方式安裝。 舉例來說在處理室中,半導體晶圓的至少一側隨後係經蟲晶 塗覆。 在處理室的處理之後,在與剛剛描述的方向相反的方向上,將 經處理的半導體晶圓傳回至盒丨中的一個。 以下’將根據較佳的實施例詳細描述根據本發明的方法。 步驟a)至〇的順序不必對應於上述順序。僅步驟“、^^和 f)必須以該順序來執行。 在步驟a)中,利用機械臂從第一站移動半導體晶圓。例如, 第一站可以是用於容納多個半導體晶圓的盒i,或者閘室 在步驟b)中,確定半導體晶圓的當前角度取向。 在該描述中,“角度取向”被理解為表示繞著半導體晶圓的中 心軸旋轉的角度,該角度通過半導體晶圓相對於限定的標準方向 的區別方向(在單晶半導體晶圓的情況下,該區別方向通常是通 過晶格的取向來預先確定且通過標記而使其可見的)形成。 通過利用光學感測器檢測半導體晶圓上的標記的位置來確定角 度取向。標記通常是原本是圓形的半導體晶圓的圓周上的槽口 (notch )或平邊(flat)。半導體晶圓區域上的鐳射標記也能夠作 為晶格取向的標記。 201248765 與標記的類型無關,記錄半導體晶圓的圖像的照相機能夠用作 光學感測器,其中照相機光學系統的觀察方向較佳取向為垂直於 半導體晶圓的平面區域(area)<>由於在該情況下的圖像能夠進一 步經電子處理而無需進-步的中間步驟,所以較佳使用數位照相 機。較佳地,利用圖像識別程式自動確認標記的位置。 如果標記是原本圓形的半導體晶圓的圓周上的槽口或平邊則 光阻障物(light barrier)也能夠用於確定角度取向。例如在該 情況下,由雷射器產生的光束在半導體晶圓的圓周内直接沿著圓 形線行進H除了在槽口或平邊的區域中之外,光束恒定地 投射在半導體晶圓的表面上。⑽種方式㈣毫無疑義地確認標 s己的位置。通過在固定光源的情況下使半導體晶圓繞著它的中心 軸旋轉’或者通過使光源繞著固定半導體晶圓的中心軸圓形移 動,或者利用可移動㈣學系統,能夠獲得光束和半導體晶圓之 間的相對移動。 一只要確保在步驟e)之前確定角度取向,用於破定角度取向的 光學感測器就能夠適用於裝置的任意期望的位置。另—方面在 從確定角度取㈣放置在基座上的整個路徑上, 产 向,或者以毫無疑義且已知的方式來改變角度取向^ ^的傳送步驟的過程中,半導體晶圓㈣可以繞著它的中心轴= 要該晴况可重複地發生而沒有明顯的自由運轉(pi# )且 旋轉的方向和幅度是精確地已知的,從而可以在步驟b)中確定 =取:和在步驟f)中將半導體晶圓放置在基座上期間的角 度取向之間建立相關性。 在步驟a)之前能夠在第一站(例如’閘室4)中執行步驟㈨, 201248765 或者在從第-站移去的情況下的步驟〇期間執行步驟,或者 在將半導體晶圓傳送至處理室6内(例如在傳送室5中)的步驟 〇期間執行步驟仏步驟b)能夠在半導體晶圓置於固定的基座 時(例如在帛站中)或在利用機械臂中的一個來保持半導體 晶圓時(例如,在傳送室2或4中的—個中,或者在向處理室㈣ 傳送期間)實施。 進-步的步驟〇涉及限定角度取向,半導體晶圓精後將要在 步驟f)中被以該角度取向放置在位於處理室6中的基座上,該 基座以可繞著它的中心軸旋轉的方式來安裝。該期望的角度取向 涉及基座的特定的區別方向,換句話說,涉及相對於基座的角度 取向。 基座上的所述期望的取向例如是由下述事實產生的:基座具有 特定的適應於半導體的晶格取向的方向相_徵,用於蟲晶 層的生長速率的局部校正,例如US2_/〇〇31954ai中描述的那 樣。在該情況下’半導體晶圓必須以其晶格取向對應於基座上的 校正特徵的位置的方式放置在基座上,從而後者能夠以最佳方式 表現它們在磊晶層的局部生長速率方面的校正效果。 較佳地,例如,對於每種類型的半導體晶圓,限定一次所需要 的角度取向並將其存儲在資料庫中,所需要㈣度取向例如根據 以上提出的考慮產生。按順序’在步驟e)中,為了確認半導體 晶圓關於基座的所需要的角度取向,從資料庫檢索相對應的資料。 能夠在步驟e)之前的序列中的任意期望的點實施步驟c),即, 在步驟a)之前已實施,與步驟a)、b) < d)同時地實施,或者 在上述#驟中的兩個步驟之間實施。 201248765 在步驟Ο中,利用機械臂(例如,安裝在傳送室5中 導體晶圓傳送至處理室6。該機械臂可以是與步驟 相同的機械臂。然而,也可以㈣ 械臂 路徑上實施半導體《至處理室6的粒^ Μ在預定的 心也就是說機械臂的移 =預先限定的以適應於在步驟b)中確定的何體晶圓的角 度取向,以便校正所述角度取向。 ,步驟d中’根據在步驟b)中確定的半導體晶圓的角度取向 和在步驟e)中實施的對角度取㈣限定,位於處理室6中的基 座繞著它的中心轴旋轉至隨後在步驟f)中使半導體晶圓以所; ㈣角度取向而被放置的位置’其中’半導體晶圓必須以所述限 疋放置在基座上。較佳使用也使基座在隨後的處理(例如,蟲晶 塗覆)期間旋轉的相同的裝置來驅動基座的旋轉。然而,為了: 夠將基座旋轉至所期望的位置,基座的當前位置必須—直是已: 的。相對應的驅動裝置是财技術的部件^通常涉及步進式馬S 6 201248765 can be placed on the correctly oriented pedestal by the robotic arm in step f) on the desired or required (iv) feed conductor wafer. Since the device is used to determine the angular orientation of the semiconductor wafer in addition to the processing chamber such as the robot arm and the susceptor, the technical cost for implementing the method is low. m requires the robot arm to be able to rotate around the central axis of the semiconductor wafer at a large angle = turn semiconductor 33 circle. Therefore, it is not necessary for the robotic arm to have any movable components in the field of carrying the semiconductor wafer and the coffee processing chamber. Therefore, the method according to the present invention is also suitable for transferring a semiconductor wafer to a heat having a temperature of several hundred degrees Celsius to be suitable for charging the reaction of the insect crystal reaction 11 or for other high temperature treatment. [Embodiment] First, with reference to the basic schematic diagram shown in Fig. 1, a typical apparatus such as a wafer coating for a semiconductor wafer according to the prior art will be described. The apparatus includes one or more stations for accommodating a semiconductor wafer in each of the housings. The figure shows two boxes of one or more robotic arms (not shown) located in the first transfer chamber 2 'the one or more robotic arms from the box! The semiconductor wafer is individually moved, and if necessary, the semiconductor wafer is transferred to one of a plurality of gate chambers ((10) eham (four) 4 (two shown), and the semiconductor wafer is placed there. The wafers are placed in a defined orientation on the pedestals respectively present in the processing chamber 6, and an additional orientation station 3 according to the prior art is necessary. In this case, the mechanical arms in the 'first transfer chamber 2 cannot be directly The semiconductor wafer is transferred from the cartridge 1 to the lock chamber 4, but the semiconductor wafer is first transferred from the cartridge i to the orientation station 3 where the semiconductor wafer is adjusted to the desired orientation. Then, by the seventh 201248765 The robotic arm in the transfer chamber 2 places the semiconductor wafer into the gates 4 in a positionally correct manner (the method according to the invention does not require the orientation station 3). The additional machinery is in the second transfer chamber 5 The additional robot arm moves the semiconductor wafer from one of the compartments 4, if appropriate, to the plurality of processing chambers 6 (two are shown in Fig. #), and Semiconductor crystal The circle is placed on a susceptor that is mounted for rotation about its central axis. For example, in the processing chamber, at least one side of the semiconductor wafer is subsequently coated with insect crystals. After processing, the processed semiconductor wafer is transferred back to one of the cassettes in a direction opposite to the direction just described. The following will describe the method in accordance with the present invention in detail in accordance with a preferred embodiment. The order of 〇 does not necessarily correspond to the above order. Only the steps ", ^^ and f) must be performed in this order. In step a), the semiconductor wafer is moved from the first station by means of a robotic arm. For example, the first station may be for accommodating a plurality of semiconductor wafers. Box i, or the lock chamber, determines the current angular orientation of the semiconductor wafer in step b). In this description, "angular orientation" is understood to mean the angle of rotation about the central axis of the semiconductor wafer, the angle being through the semiconductor The direction in which the wafer is distinguished from the defined standard direction (in the case of a single crystal semiconductor wafer, the direction of the difference is usually predetermined by the orientation of the crystal lattice and made visible by the mark). The detector detects the position of the mark on the semiconductor wafer to determine the angular orientation. The mark is typically a notch or flat on the circumference of the originally circular semiconductor wafer. Laser on the semiconductor wafer area The mark can also be used as a mark for lattice orientation. 201248765 Regardless of the type of mark, a camera that records an image of a semiconductor wafer can be used as an optical sensor, where the camera light The viewing direction of the system is preferably oriented perpendicular to the planar area of the semiconductor wafer <>> since the image in this case can be further electronically processed without the intermediate step of further steps, it is preferred to use Digital camera. Preferably, the position of the mark is automatically confirmed by an image recognition program. If the mark is a notch or a flat edge on the circumference of the originally circular semiconductor wafer, a light barrier can also be used. Determining the angular orientation. For example, in this case, the beam produced by the laser travels directly along the circular line within the circumference of the semiconductor wafer. H. In addition to being in the region of the notch or the flat side, the beam is constantly projected at On the surface of a semiconductor wafer. (10) Ways (4) Undoubtedly confirm the position of the target. By rotating the semiconductor wafer around its central axis with a fixed light source' or by rotating the light source around the fixed semiconductor crystal The central axis of the circle moves in a circular shape, or the relative movement between the beam and the semiconductor wafer can be obtained by using a movable (four) system. As long as it is ensured before step e) Degree orientation, the optical sensor for breaking the angular orientation can be applied to any desired position of the device. The other aspect is taken from the determined angle (4) on the entire path placed on the pedestal, the direction of production, or Undoubtedly, in a known and known way to change the angular orientation ^ ^ in the transfer step, the semiconductor wafer (4) can be around its central axis = the clear condition can occur repeatedly without significant free running (pi#) And the direction and magnitude of the rotation are precisely known so that a correlation can be determined in step b) = taking and establishing an angular orientation during placement of the semiconductor wafer on the pedestal in step f). Step a) can be performed before the step (9) in the first station (eg 'lock chamber 4), 201248765 or during the step 情况 in the case of removal from the first station, or transfer the semiconductor wafer to the processing chamber Steps b) during step 〇 (eg, in transfer chamber 5) b step b) can hold the semiconductor when the semiconductor wafer is placed on a fixed pedestal (eg, in a station) or with one of the robot arms Wafer (E.g., in the transfer chamber 2 or 4 - one, or in the processing chamber during transfer iv) embodiment. The step of step-by-step involves defining an angular orientation at which the semiconductor wafer will be placed in step f) at a pedestal located in the processing chamber 6, the susceptor being centered about it. Rotate the way to install. The desired angular orientation involves a particular distinguishing direction of the pedestal, in other words, an angular orientation relative to the pedestal. The desired orientation on the pedestal is for example produced by the fact that the susceptor has a specific directional phase adaptation to the lattice orientation of the semiconductor, a local correction for the growth rate of the worm layer, for example US2_ /〇〇31954ai as described in the description. In this case, the semiconductor wafer must be placed on the susceptor in such a manner that its lattice orientation corresponds to the position of the correction features on the susceptor so that the latter can best represent their local growth rate in the epitaxial layer. Correction effect. Preferably, for example, for each type of semiconductor wafer, the required angular orientation is defined once and stored in a database, the desired (four) degree orientation being generated, for example, in accordance with the considerations set forth above. In order 'in step e), in order to confirm the desired angular orientation of the semiconductor wafer with respect to the susceptor, the corresponding data is retrieved from the database. Step c) can be carried out at any desired point in the sequence preceding step e), ie before step a), simultaneously with steps a), b) < d), or in the above-mentioned # Implemented between the two steps. 201248765 In step ,, a robotic arm is used (for example, a conductor wafer mounted in the transfer chamber 5 is transferred to the processing chamber 6. The robot arm may be the same mechanical arm as the step. However, the semiconductor may also be implemented on the arm path. The granules to the processing chamber 6 are pre-defined in the predetermined heart, that is to say the movement of the robot arm, to accommodate the angular orientation of the wafers determined in step b) in order to correct the angular orientation. In step d, 'according to the angular orientation of the semiconductor wafer determined in step b) and the angle (4) defined in step e), the susceptor located in the processing chamber 6 is rotated about its central axis to In the step f), the semiconductor wafer is placed in the (four) angular orientation, where the semiconductor wafer must be placed on the susceptor with the limit. It is preferred to use the same device that also rotates the susceptor during subsequent processing (e.g., insect coating) to drive rotation of the susceptor. However, in order to: rotate the pedestal to the desired position, the current position of the pedestal must be straightforward. Corresponding drive devices are components of the financial technology ^ usually involve stepping horses

達’該步進式馬達附加地g£備有詩精確地確定當前的旋轉角度 的角度感測器。 X -旦已經執行了步驟b)和小就可以實施步驟小較佳在步 驟d)中將半導體晶圓傳送至處理室6的同時實施。 在步驟f)巾,通過機械臂將半導體晶圓放置在處理室6中的 基座上,其中較佳不實施進一步的位置校正。 本發明能夠應用在涉及將半導體晶圓以預定的角度取向放置在 支樓物(基座)上的所有方法的情況下。這對於在蠢晶反應器中 從氣相將蠢晶層沉積在單晶半導體晶圓(例如,⑦晶圓)上而言 尤其重要。 ° 11 201248765 【圖式簡單說明】 圖1以舉例的方式示出裝置的基本示意圖,該裝置包括根據現 有技術的、諸如通常用於半導體晶圓的蠢晶塗覆的·一個處理室。 【主要元件符號說明】 1具有半導體晶圓的盒 2第一傳送室 3取向站 4閘室 5第二傳送室 6處理室The stepper motor is additionally provided with an angle sensor that accurately determines the current angle of rotation. The step S) and the small step can be performed to perform the step small. Preferably, the semiconductor wafer is transferred to the processing chamber 6 while being carried out in step d). In step f), the semiconductor wafer is placed on the susceptor in the processing chamber 6 by a robotic arm, wherein further positional correction is preferably not performed. The present invention can be applied to all methods involving placing a semiconductor wafer at a predetermined angular orientation on a support (base). This is especially important for depositing a stray layer from a gas phase on a single crystal semiconductor wafer (e.g., 7 wafers) in a stupid crystal reactor. ° 11 201248765 [Simultaneous Description of the Drawings] Figure 1 shows, by way of example, a basic schematic of a device comprising a processing chamber according to the prior art, such as the usual application for doping of semiconductor wafers. [Main component symbol description] 1 cartridge with semiconductor wafer 2 first transfer chamber 3 orientation station 4 lock chamber 5 second transfer chamber 6 processing chamber

Claims (1)

201248765 七、申清專利乾圍: 1.:種以預定的角度取向將半導體晶圓放置在基座上的方 法’包括下列步驟: a)利用機械臂從一第一站移動該半導體晶圓, )通過利用-光學感測器檢測該半導體晶圓上的標記 的位置’確定該半導體晶圓現在的角度取向, )限疋該半導體晶圓將要放置在一位於一處理室中的基 的角度取向’ 5彡基座是以可繞著該基座的巾U軸旋轉的 方式來安裝, d) 利用該機械臂將該半導體晶圓傳送至該處理室, e) 繞著該基座的中心軸旋轉該基座至一位置,該位置隨 後在v驟f)中使該半導體晶圓以該預定的角度取向而被放 置,以及 f) 將該半導體晶圓放置在該基座上。 2. 根據請求項】所述的方法,其中該第—站是—用於容納多個 半導體晶圓的匡或一閉室。 3. 根據請求項1所述的方法,其中該標記是一實質上圓形的半 導體晶圓的圓周上的槽口(notch)或平邊(flat),或者是一 S亥半導體晶圓的區域(area )上的鐳射標記。 4. 根據凊求項2所述的方法,其中該標記是一實質上圓形的半 導體晶圓的圓周上的槽口(notch)或平邊(flat),或者是一 該半導體晶圓的區域(area )上的錯射標記。 5'根據請求項1至4中任一項所述的方法,其中該光學感測器 是一記錄該半導體晶圓的圖像的照相機,並且其中通過圖像 13 201248765 識別來自動檢測該標記的位置。 6. 根據。月求項3或4所述的方法,其中該光學感測器是一光阻 P早物’该光阻障物的光束相對於該半導體晶圓在沿著該半導 體b曰圓的g周的®祕上移動,使得該光束沿著除了該槽口 或該平邊之外的整個圓周投射在該半導體晶圓的區域上,從 而能夠確定該槽口的位置或該平邊的位置。 7. 根據請求項!至4中任—項所述的方法,其十該處理室用於 從氣相將一遙晶層沉積在該半導體晶圓的表面上,且其中該 基座具有-或多個適應於半導體晶圓的晶格取向的方向相 關特徵,用於該磊晶層的生長速率的局部校正。 8_根據請求項5所述的方法,其中該處理室用於從氣相將一蟲 晶層沉積在該半導體晶圓的表面上,且其中該基座具有一或 多個適應於半導體㈣的晶格取㈣方向㈣賴,用於該 磊晶層的生長速率的局部校正。 9.根據請求項6所述的方法,其中該處理㈣於從氣相將一蟲 晶層沉積在該半導體晶圓的表面上,且其中該基座具有一或 多個適應於半導體㈣的晶格取向的方向相關徵,用於該 產晶層的生長速率的局部校正。 S 14201248765 VII. Shenqing Patent Circumference: 1. The method of placing a semiconductor wafer on a susceptor at a predetermined angular orientation 'includes the following steps: a) moving the semiconductor wafer from a first station using a robotic arm, Detecting the position of the mark on the semiconductor wafer by using an optical sensor to determine the current angular orientation of the semiconductor wafer, limiting the angular orientation of the semiconductor wafer to be placed in a process chamber The '5" pedestal is mounted in a manner that is rotatable about the U-axis of the pedestal, d) the semiconductor wafer is transferred to the processing chamber by the robotic arm, e) around the central axis of the pedestal The susceptor is rotated to a position which is then placed in the v-f) to position the semiconductor wafer at the predetermined angle, and f) the semiconductor wafer is placed on the susceptor. 2. The method of claim 1, wherein the first station is a chamber or a closed chamber for accommodating a plurality of semiconductor wafers. 3. The method of claim 1, wherein the mark is a notch or a flat on a circumference of a substantially circular semiconductor wafer, or an area of a semiconductor wafer Laser mark on (area). 4. The method of claim 2, wherein the mark is a notch or a flat on a circumference of a substantially circular semiconductor wafer, or an area of the semiconductor wafer Misdirected mark on (area). The method of any one of claims 1 to 4, wherein the optical sensor is a camera that records an image of the semiconductor wafer, and wherein the mark is automatically detected by image 13 201248765 identification position. 6. According to. The method of claim 3 or 4, wherein the optical sensor is a photoresist P precursor, the light beam of the photoresist is opposite to the semiconductor wafer at a g circumference along the semiconductor b The oscillating movement causes the beam to be projected over the area of the semiconductor wafer along the entire circumference except the notch or the flat side, so that the position of the notch or the position of the flat side can be determined. 7. According to the request item! The method of claim 4, wherein the processing chamber is configured to deposit a crystal layer from the gas phase on the surface of the semiconductor wafer, and wherein the susceptor has - or a plurality of semiconductor crystals A directional correlation feature of the circular lattice orientation for local correction of the growth rate of the epitaxial layer. The method of claim 5, wherein the processing chamber is for depositing a worm layer from a gas phase on a surface of the semiconductor wafer, and wherein the susceptor has one or more semiconductor (s) The lattice takes the (four) direction (four), which is used for local correction of the growth rate of the epitaxial layer. 9. The method of claim 6, wherein the processing (4) deposits a worm layer on the surface of the semiconductor wafer from the gas phase, and wherein the susceptor has one or more crystals adapted to the semiconductor (4) The direction-dependent sign of the lattice orientation is used for local correction of the growth rate of the crystal layer. S 14
TW101117326A 2011-05-30 2012-05-16 Method for placing a semiconductor wafer on a susceptor with a predetermined angular orientation TW201248765A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011076742.8A DE102011076742B4 (en) 2011-05-30 2011-05-30 A method for depositing a semiconductor wafer on a susceptor with a predetermined angular orientation

Publications (1)

Publication Number Publication Date
TW201248765A true TW201248765A (en) 2012-12-01

Family

ID=46085970

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101117326A TW201248765A (en) 2011-05-30 2012-05-16 Method for placing a semiconductor wafer on a susceptor with a predetermined angular orientation

Country Status (3)

Country Link
DE (1) DE102011076742B4 (en)
TW (1) TW201248765A (en)
WO (1) WO2012163676A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102280A (en) 1989-03-07 1992-04-07 Ade Corporation Robot prealigner
US5513948A (en) * 1991-05-17 1996-05-07 Kensington Laboratories, Inc. Universal specimen prealigner
JP2997360B2 (en) * 1992-01-29 2000-01-11 東京エレクトロン株式会社 Positioning device
US5905850A (en) * 1996-06-28 1999-05-18 Lam Research Corporation Method and apparatus for positioning substrates
JP3890026B2 (en) * 2003-03-10 2007-03-07 東京エレクトロン株式会社 Liquid processing apparatus and liquid processing method
WO2007091638A1 (en) 2006-02-09 2007-08-16 Sumco Techxiv Corporation Susceptor and apparatus for manufacturing epitaxial wafer
US7976263B2 (en) * 2007-09-22 2011-07-12 David Barker Integrated wafer transfer mechanism
DE102008002794A1 (en) * 2008-03-06 2009-09-10 Vistec Semiconductor Systems Gmbh Method for determining parameter by application of wafers, involves removing wafers from reservoir with arm of robot, and wafer is positioned at part in image field of camera and lies on arm of robot
JP5303254B2 (en) * 2008-12-15 2013-10-02 東京エレクトロン株式会社 Foreign matter removal method and storage medium

Also Published As

Publication number Publication date
WO2012163676A1 (en) 2012-12-06
DE102011076742B4 (en) 2017-02-09
DE102011076742A1 (en) 2012-12-06

Similar Documents

Publication Publication Date Title
US20220230857A1 (en) Substrate processing apparatus
US9993840B2 (en) Substrate processing apparatus and substrate processing method
US10056278B2 (en) Apparatus and method for transferring electronic devices
TWI514503B (en) Systems and methods for calibrating end effector alignment in a plasma processing system
TW201714145A (en) Vision-based wafer notch position measurement
US11276595B2 (en) Substrate transporter and substrate transport method
KR20150125593A (en) Substrate processing apparatus and substrate processing method
US20150336275A1 (en) Presence sensing and position correction for wafer on a carrier ring
KR20070080125A (en) Robot for transferring wafer and semiconductor manufacturing equipment used the same
JP2013168579A (en) Conveyance system
JP6634275B2 (en) Deposition system
JP6533835B2 (en) Method of processing a substrate and substrate carrier for holding a substrate
US9640417B2 (en) Cassette transfer apparatus and cassette transferring method using the same
JP4109733B2 (en) Substrate transfer system and semiconductor manufacturing apparatus
TW201248765A (en) Method for placing a semiconductor wafer on a susceptor with a predetermined angular orientation
KR101555623B1 (en) Substrate transfer system and substrate transfer method
JP2003243479A (en) Halt position adjusting mechanism of conveying means
JPH05198514A (en) Single wafer epitaxial growth device
TWI681065B (en) Thin film forming apparatus
US10395962B2 (en) Substrate arrangement apparatus and substrate arrangement method
JPH0414237A (en) Semiconductor manufacturing equipment
JPH03101247A (en) Resist processor
US20210028039A1 (en) Carrier foup and a method of placing a carrier
WO2019070031A1 (en) Sputtering device
US8987683B2 (en) Charged particle beam drawing apparatus and charged particle beam drawing method