TW201248138A - Wafer inspection device and wafer inspection method using the same - Google Patents

Wafer inspection device and wafer inspection method using the same Download PDF

Info

Publication number
TW201248138A
TW201248138A TW100117423A TW100117423A TW201248138A TW 201248138 A TW201248138 A TW 201248138A TW 100117423 A TW100117423 A TW 100117423A TW 100117423 A TW100117423 A TW 100117423A TW 201248138 A TW201248138 A TW 201248138A
Authority
TW
Taiwan
Prior art keywords
wafer
laser light
emitting device
light emitting
laser
Prior art date
Application number
TW100117423A
Other languages
Chinese (zh)
Inventor
Po-Sheng Huang
Original Assignee
Topcell Solar Internat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcell Solar Internat Co Ltd filed Critical Topcell Solar Internat Co Ltd
Priority to TW100117423A priority Critical patent/TW201248138A/en
Publication of TW201248138A publication Critical patent/TW201248138A/en

Links

Abstract

A wafer inspection device and method using the same are provided. The device includes a platen, a laser emitting device, a sensor unit and a control system. A wafer is disposed on the stage. The laser emitting device is operated by the control system, thereby the laser emitting device emits lasers of at least two different ranges of wave lengths to the wafer. After the light signal from the wafer is received by the sensor unit, an electric signal is output by the sensor unit. The electric signal is transmitted to the control system and is analyzed by the control system, thereby the quality of the wafer is inspected.

Description

201248138 六、發明說明: 【發明所屬之技術領域】 本發明關於一種晶圓檢測裝置及方法,且特別是有關 於一種用於檢測太陽能電池用晶圓的晶圓檢測裝置及方 法。 【先前技術】 隨著對於能源的需求增加,與太陽能電池相關的產業 與技術亦蓬勃發展。其中,在製造出太陽能電池用的晶圓 之後,此些晶圓必須先經過檢測的過程以確保其品質,避 免具有破損或表面不均勻等瑕疵的晶圓進入後續製程中。 光致發光成像法(photoluminescence imaging,PL imaging)為一種常見用以監測半導體材料之能階或品質的 技術。其應用在太陽能電池的製造時,主要為用來檢測太 陽能電池的轉換效率(conversi〇n efficiency;)。藉著搭配 電荷耦合元件(charge coupled device,CCD)陣列,可用 影像來檢測整片太陽能電池的品質。此方法亦可用以檢測 太陽能電池用晶圓之品質(即,太陽能電池之半成品)。 然而,習知方法僅限於量測太陽能電池用晶圓之整體 品質,而難以在單次量測中分別檢測出晶圓中不同區域(或 深度)如正面射極或背面電場等處的品質,故不易分辨實 際上晶圓的缺陷是來自於晶圓中哪一個區域,造成製程中 晶圓品質控管的困難。此外,目前量測晶圓内部品質與其 外觀為使用不同機台,使得檢測晶圓需要耗費一段時 201248138 ;進:於=古有必要發展可更精確並快速地對晶圓各部 以知料置,哺讀料鮮之需求, 【發明内容】 άΓ/ - /Γ」b本發明提供—種晶圓檢測裝置及方法,其 分別監測晶圓中不同區域的品質,提升製 月,出π種晶圓檢測裝置’包括承載台、雷射光 0 1測單元及控制系統。配置承載台用以置放晶 圓。雷射光發射裝置發出至少兩種不同波長範圍的雷射光 至此晶圓。感測單^接收來自此晶圓的光訊魅輸出電訊 號丄而控_統為用以操作雷射光發射裝置並分析來自感 測單元的電訊號,以對晶圓品質進行檢測。 +在本發明之一實施例中,上述之雷射光發射裝置可發 出第一雷射光及第二雷射光,且第一雷射光的波長在500 nm〜1500 nm的範圍内,而第二雷射光的波長在15〇 nm〜800 nm的範圍内。 在本發明之一實施例中,上述之雷射光發射裝置包括 一雷射元件。 在本發明之另一實施例中,上述之雷射光發射裝置包 括多個雷射元件。 在本發明之一實施例中’上述之晶圓為太陽能電池用 晶圓。 201248138 在本發明之一實施例中,上述之晶圓品質包括晶圓表 面、晶圓内部及晶圓背面的狀態。 本發明另挺出一種晶圓檢測方法,此方法包括下列步 驟。利用控制系統操作雷射光發射裝置使其發出至少兩種 不同波長範圍的雷射光至此晶圓;由感測單元接收來自此 晶圓的光訊號,並輪出電訊號;將此電訊號傳輸至控制系 統進行分析,以檢測此晶圓之品質。 在本發明之一實施例中,上述之雷射光發射裝置可發 出第一雷射光及第二雷射光,且第一雷射光的波長在5〇〇 nm〜1500 nm的範圍内,而第二雷射光的波長在15〇 nm〜800 nm的範圍内。 在本發明之一實施例中,上述之雷射光發射裝置包括 一雷射元件。 在本發明之一實施例中,上述之雷射光發射裝置包括 多個雷射元件。 在本發明之一實施例中,上述之晶圓為太陽能電池用 晶圓。 在本發明之一實施例中,上述之晶圓品質包括晶圓表 面、晶圓内部及晶圓背面的狀態。 本發明又it出一種晶圓檢測方法,此方法包括下列步 驟。利用控制系統操作雷射光發射裝置,使雷射光發射裝 置發出雷射光至晶圓;由感測單元接收來自晶圓的光訊 號’並輸出電訊號;將此電訊號傳輸至控制系統進行分析, 以檢測晶圓表面狀態。其中,接收來自晶圓的光訊號包括 201248138 接收由雷射光所激發的光及雷射光的反射光。 在本發明之一實施例中,上述之雷射光發射裝置包括 一雷射元件。 在本發明之一實施例中,上述之雷射光發射裝置包括 多個雷射元件。 在本發明之一實施例中,上述之晶圓為太陽能電池用 晶圓。 在本發明之一實施例中,上述之晶圓表面狀態包括表 面物理特性。 基於上述,本發明之晶圓檢測裝置及方法可應用於檢 測太陽能電池用晶圓,藉著在同一裝置中使用在不同波長 範圍内的多束雷射光,可在單次量測中監測到晶圓中不同 區域的品質,而提升製程中的監控效率。 為讓本發明之上述特徵和優點能更明顯易懂,下文特 舉實施例’並配合所附圖式作詳細說明如下。 【實施方式】 以下將參照所附圖式,對本發明的實施方式進行更詳 細的說明。 圖1是依照本發明一實施例所緣示的—種晶圓檢測裝 置的示意圖。圖2是依照本發明另一實施例所繪示的一種 晶圓檢測裝置的示意圖。 請參照圖1及圖2,本實施例的晶圓檢測裝置包括承 載台100、雷射光發射裝置120、感測單元14〇及控制系統 201248138 150。 承載台100,其用以承載待測晶圓110。晶圓11〇例 如是太陽能電池用晶圓、矽基板或太陽能電池晶片。 雷射光發射裝置120與感測單元140兩者均電性連接 至控制系統150。感測單元140例如是大面積的影像摘取 電荷耦合元件(CCD),其可接收來自該晶圓的光訊號, 將其轉換為電訊號並將此電訊號輸出至控制系統15〇中, 以進行後續分析。其中,感測單元設置的角度例如是如圖 1所示,直接位在承載台1〇〇垂直方向的上方;或者,减 測單元設置的角度也可與承載台100的垂直方向保持角^ Θ ’以便於接收晶圓所反射的反射光。角度0可配合入射 的雷射光角度作調整,其大小並無特別限定。 控制系統150例如是包括控制單元以及影像分析單元 的電腦主機系統。控制系統15〇可藉由控制單元操作雷射 光發射裝置120,例如是透過給予啟動或停止的訊號使雷 射光發射裝置120發出或是中斷到達承載台1〇〇上的"待測 晶,110的雷射光束,但不限於此。另外,控制系統 的衫像分析單元可接收來自感測單元14〇的電訊號進行 進一步的影像分析及比對,以確認待測晶圓11〇之品質。丁 ^此外,雷射光發射裝置120可發出至少兩種不同波 範圍的雷射紅晶圓UG。#射紐縣置m例如 圖2中的雷射光發射裝置12〇 ’僅具有—雷射元件,但: 發射,少兩種以上波長翻的雷射光的發練置。% 或者如圖1所示,雷射光發射裝置12〇例如是具有 201248138 兩個以上雷料—# 射光的發射^ ‘而能發射至少兩種以上波長範圍的雷 括基座112、第二圖1中的雷射光發繼120 ’其包 112闲弟一雷射元件114及第二雷射元件116。基座 帝射元# 射元件114及第二雷射元件116。第一 n 及第二雷射元件116分別可發出具有不同波 第一雷射光122與第二雷射光124。此外,雖然 =未特別繪示,但是第一雷射光I22與第二雷射光m 可各別獨立於不同之基座上。 其中,第一雷射光122與第二雷射光124的波長可分 別為在500 nm〜15〇〇 nm及15〇 nm〜8⑽nm的範圍内。在 此較長波#又的雷射光(nm〜i 5〇〇 nm )可用以量測晶 圓的整體品質影像’而較短波段的雷射光(15〇 nm〜8〇〇 nm)則用以量測靠近晶圓表面處之晶圓影像。故藉由整合 並分析待測晶圓在照射不同波段的雷射光後所得的影像, 可得到在晶圓中不同區域例如晶圓整體、表面、中心及背 面等處的影像’而藉此得知晶圓中不同位置(或深度)的 品質表現。 圖3是本發明之晶圓檢測方法的概略流程圖。以下將 分別參照圖1及圖2的晶圓檢測裝置,搭配圖3詳細說明 本發明之晶圓檢測方法。 請先參照圖1與圖3。圖1之晶圓檢測裝置可用以檢 測待測晶圓中不同位置(深度)的品質。 首先’可先提供承载台100,將待測晶圓110置放至 承載台100上。然後,進行步驟S1,由控制系統150發出201248138 SUMMARY OF THE INVENTION [Technical Field] The present invention relates to a wafer inspection apparatus and method, and more particularly to a wafer inspection apparatus and method for detecting a wafer for a solar cell. [Prior Art] As the demand for energy increases, so does the industry and technology related to solar cells. Among them, after the wafers for solar cells are manufactured, the wafers must first undergo a process of inspection to ensure their quality, and avoid wafers having defects such as breakage or surface unevenness from entering the subsequent process. Photoluminescence imaging (PL imaging) is a technique commonly used to monitor the energy level or quality of semiconductor materials. Its application in the manufacture of solar cells is mainly used to detect the conversion efficiency of solar cells (conversi〇n efficiency;). By matching a charge coupled device (CCD) array, images can be used to detect the quality of the entire solar cell. This method can also be used to detect the quality of wafers for solar cells (ie, semi-finished products of solar cells). However, the conventional method is limited to measuring the overall quality of the wafer for solar cells, and it is difficult to separately detect the quality of different regions (or depths) in the wafer such as the front emitter or the back surface in a single measurement. Therefore, it is difficult to distinguish which defect in the wafer is actually from the wafer, which causes difficulty in wafer quality control in the process. In addition, the current measurement of the internal quality of the wafer and its appearance is the use of different machines, so that it takes a long time to test the wafer 201248138; In: = the ancient development is necessary to more accurately and quickly understand the wafer parts, The present invention provides a wafer inspection apparatus and method for separately monitoring the quality of different regions in a wafer, improving the moon, and extracting π wafers. The detecting device 'includes a carrying platform, a laser light measuring unit and a control system. The carrier is configured to place the crystal. The laser light emitting device emits at least two different wavelength ranges of laser light to the wafer. The sensing unit receives the optical output signal from the wafer and controls the optical signal from the sensing unit to detect the quality of the wafer. In an embodiment of the invention, the laser light emitting device can emit the first laser light and the second laser light, and the first laser light has a wavelength in the range of 500 nm to 1500 nm, and the second laser light The wavelength is in the range of 15 〇 nm to 800 nm. In one embodiment of the invention, the laser light emitting device described above includes a laser element. In another embodiment of the invention, the laser light emitting device described above includes a plurality of laser elements. In an embodiment of the invention, the wafer described above is a wafer for solar cells. 201248138 In one embodiment of the invention, the wafer quality described above includes the state of the wafer surface, the interior of the wafer, and the back side of the wafer. The present invention further provides a wafer inspection method which comprises the following steps. Using a control system to operate the laser light emitting device to emit laser light of at least two different wavelength ranges to the wafer; receiving, by the sensing unit, the optical signal from the wafer and rotating the electrical signal; transmitting the electrical signal to the control The system performs an analysis to detect the quality of this wafer. In an embodiment of the present invention, the laser light emitting device may emit the first laser light and the second laser light, and the wavelength of the first laser light is in the range of 5 〇〇 nm to 1500 nm, and the second ray The wavelength of the emitted light is in the range of 15 〇 nm to 800 nm. In one embodiment of the invention, the laser light emitting device described above includes a laser element. In one embodiment of the invention, the laser light emitting device described above includes a plurality of laser elements. In an embodiment of the invention, the wafer is a wafer for a solar cell. In one embodiment of the invention, the wafer quality described above includes the state of the wafer surface, the interior of the wafer, and the back side of the wafer. The present invention further provides a wafer inspection method which comprises the following steps. Operating the laser light emitting device with the control system, causing the laser light emitting device to emit laser light to the wafer; receiving the optical signal from the wafer by the sensing unit and outputting the electrical signal; transmitting the electrical signal to the control system for analysis, Detect the surface state of the wafer. Wherein, receiving the optical signal from the wafer includes 201248138 receiving the light excited by the laser light and the reflected light of the laser light. In one embodiment of the invention, the laser light emitting device described above includes a laser element. In one embodiment of the invention, the laser light emitting device described above includes a plurality of laser elements. In an embodiment of the invention, the wafer is a wafer for a solar cell. In one embodiment of the invention, the wafer surface state described above includes surface physical characteristics. Based on the above, the wafer detecting apparatus and method of the present invention can be applied to a wafer for detecting a solar cell, and the crystal can be detected in a single measurement by using a plurality of laser beams in different wavelength ranges in the same device. Improve the quality of the process in different areas of the circle and improve the monitoring efficiency in the process. The above described features and advantages of the present invention will become more apparent from the description of the appended claims. [Embodiment] Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic illustration of a wafer inspection apparatus in accordance with an embodiment of the present invention. 2 is a schematic diagram of a wafer inspection apparatus according to another embodiment of the invention. Referring to FIGS. 1 and 2, the wafer inspection apparatus of the present embodiment includes a carrier 100, a laser light emitting device 120, a sensing unit 14A, and a control system 201248138150. The loading platform 100 is configured to carry the wafer 110 to be tested. The wafer 11 is, for example, a wafer for a solar cell, a germanium substrate or a solar cell wafer. Both the laser light emitting device 120 and the sensing unit 140 are electrically coupled to the control system 150. The sensing unit 140 is, for example, a large-area image pickup charge coupled device (CCD) that can receive an optical signal from the wafer, convert it into an electrical signal, and output the electrical signal to the control system 15A to Perform subsequent analysis. The angle set by the sensing unit is, for example, as shown in FIG. 1 , and is directly above the vertical direction of the carrying platform 1 ; or the angle set by the reducing unit can also be maintained at an angle with the vertical direction of the carrying platform 100 . 'In order to receive the reflected light reflected by the wafer. The angle 0 can be adjusted in accordance with the angle of the incident laser light, and the size thereof is not particularly limited. Control system 150 is, for example, a computer host system including a control unit and an image analysis unit. The control system 15 can operate the laser light emitting device 120 by the control unit, for example, by giving the start or stop signal to cause the laser light emitting device 120 to emit or interrupt the "to be tested" on the carrying platform 1 Laser beam, but not limited to this. In addition, the shirt image analysis unit of the control system can receive the electrical signals from the sensing unit 14 for further image analysis and comparison to confirm the quality of the wafer to be tested. In addition, the laser light emitting device 120 can emit laser red wafers UG of at least two different wave ranges. #射纽县置m For example, the laser light emitting device 12〇' in Fig. 2 has only a laser element, but: emits, and the laser light of two or more wavelengths is turned on. % or as shown in FIG. 1 , the laser light emitting device 12 〇 is, for example, a radar radiant pedestal 112 having at least two or more wavelength ranges of 201248138, which can emit at least two wavelength ranges, and FIG. 1 The laser light in the relay is followed by a 120' package 112 and a laser element 114 and a second laser element 116. The pedestal element 110 and the second laser element 116. The first n and second laser elements 116 can respectively emit a first laser light 122 and a second laser light 124 having different waves. Further, although = is not specifically shown, the first laser light I22 and the second laser light m may be separately independent of different pedestals. The wavelengths of the first laser light 122 and the second laser light 124 may be in the range of 500 nm to 15 〇〇 nm and 15 〇 nm to 8 (10) nm, respectively. In this longer wave, the laser light (nm~i 5〇〇nm) can be used to measure the overall quality image of the wafer' while the short-range laser light (15〇nm~8〇〇nm) is used. Measure the image of the wafer near the surface of the wafer. Therefore, by integrating and analyzing the image of the wafer to be tested after irradiating the laser light of different wavelength bands, images of different regions in the wafer such as the whole, the surface, the center, the back surface, and the like of the wafer can be obtained. Quality performance at different locations (or depths) in the wafer. 3 is a schematic flow chart of a wafer detecting method of the present invention. Hereinafter, the wafer detecting method of the present invention will be described in detail with reference to the wafer detecting apparatus of Figs. 1 and 2, respectively. Please refer to Figure 1 and Figure 3 first. The wafer inspection apparatus of Figure 1 can be used to detect the quality of different locations (depths) in the wafer to be tested. First, the carrier 100 can be provided first, and the wafer 110 to be tested is placed on the carrier 100. Then, proceeding to step S1, issued by the control system 150

SS

I 201248138 訊號至雷射光發射裝置12〇以啟動第一雷射元件114及第 二雷射元件116,使其分別發出具有不同波長範圍的第一 雷射光122及第二雷射光124至晶圓110。 在此,第一雷射光122及第二雷射光124中具有較長 波段者(500 nm〜1500 nm)為用以獲取晶圓11〇的整體品 貝衫像’而具有較短波段者(nm〜800 nm)則用以獲 取靠近晶圓110表面處之晶圓影像。 接下來,在以雷射光照射待測晶圓11〇後,雷射光之 能量會激發晶圓110中的電子電洞對進行重組,而使晶圓 110發光。此時,進行步驟S2,以感測單元14〇接收自待 測晶圓110所發出的光訊號。 最後,進行步驟S3 對接收的光訊號進行分析,以碎 認待測晶圓品質。感測單元⑽可將光訊號轉換為電訊韻 ^輸出至控制系統15〇。控制系統15〇中的影像分析單天 “接收來自感測單元14G的電訊號,進行進—步的影像分 析及比對,以確認待測晶圓110之品質。 由於當晶圓品質不㈣,受到雷射光照射 曰 圓中的電子電洞對重組率較高,此現象 4曰曰e 圓所發出的光訊號等進行分析來確認,以檢; 於此,雜晶圓品質之項目例如是晶圓表面1二及 晶圓背面的狀態。 ^曰曰固内部及 ^此’本晶圓檢财法可魏在單次 的多束雷射光做為檢 固中不R區域例如晶圓整體、表面、中心及背 201248138 面等處的光訊號,此些光訊號經後續分析處理,利用所得 不同之影像對照,即可分析出在晶圓中不同位置(或深度) 的品質表現。 請參照圖2與圖3。圖2之晶圓檢測裝置可用以檢測 待測晶圓表面狀態。 如上所述’可將待測晶圓110置放至承載台1 〇〇上, 再進行步驟S1 ’由控制系統150發出訊號至雷射光發射裝 置120,使其發出雷射光121。在此時實施例中,雷射光 121的波長範圍只要適於檢測晶圓表面狀態即可,並無特 別限定。 在以雷射光121照射待測晶圓11〇後,如同上述實施 例’晶圓110中的電子電洞對因雷射激發而重組並發出 光。然而,除了由雷射光所激發的光130外,實際上雷射 光在照射晶圓表面後,還會產生反射光123。 在本實施例中,感測單元140與承載台100的垂直方 向保持角度Θ,以接收晶圓11〇所反射的反射光123。因 此’在接下來的步驟S2 ’以感測單元140接收自待測晶圓 110所發出的光訊號會包括雷射光所激發的光130的訊 號’以及晶圓所反射的反射光123的訊號。 最後’進行步驟S3 ’對接收的光訊號進行分析,以確 認待測晶圓品質。如前述,感測單元140可將光訊號轉換 為電訊號而輸出至控制系統15〇,而控制系統150再對來 自感測單元140的電訊號進行分析,以確認待測晶圓ι10 之品質。 201248138 由於當晶圓表面某部分有不平整的狀況時,在該處的 反射光訊旒就會相當微弱。因此,對反射光123的訊號與 雷射光所激發的光130的訊號進行分析,可用以檢測晶圓 表面平整度。故於此’確認品質之項目包括晶圓表面 的物理特性。 綜上騎’本發明的晶圓檢峨置及使用其之晶圓檢 測方法’在同-檢難置巾進行部及外觀等部份的 品質檢測,達到晶圓檢測所需之機台最小化,節省在晶圓 製程控官所需之成本。而且,在單—量測中即可獲得待測 晶圓中不同位置(或深度)的品f表現,而更有效率地進 行晶圓製程中的品質控管。 雖然本發明已以實施例揭露如上,然其並非用以限定 本發明’任何所屬技術領域中具有通常知識者,在不脫離 本發明之精神和範圍内,當可作些許之更動與潤飾,故本 發明之保護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 晶圓檢測裝 種日日圓檢測 圖1是依照本發明一實施例所繪示的一種 置的示意圖。 圖2是依照本發明另一實施例所繪示的一 裝置的示意圖。 圖3是本發明之晶圓檢測方法的概略流程圖。 【主要元件符號說明】 11 201248138 100 : 110 : 112 : 114 : 116 : 120 : 121 122 123 124 130 140 150 220 SI、 承載台 晶圓 基座 第一雷射元件 第二雷射元件 發射裝置 :雷射光 第一雷射光 反射光 第二雷射光 光 感測單元 控制系統 •基座 S2、S3、S4 :步驟 12I 201248138 signals to the laser light emitting device 12 to activate the first laser element 114 and the second laser element 116 to respectively emit the first laser light 122 and the second laser light 124 having different wavelength ranges to the wafer 110 . Here, the one of the first laser light 122 and the second laser light 124 having a longer wavelength band (500 nm to 1500 nm) is used to acquire the overall product of the wafer 11 ' and has a shorter wavelength band (nm ~800 nm) is used to obtain a wafer image near the surface of the wafer 110. Next, after irradiating the wafer under test 11 with laser light, the energy of the laser light excites the pair of electron holes in the wafer 110 to recombine, thereby causing the wafer 110 to emit light. At this time, step S2 is performed to receive the optical signal emitted from the wafer 110 to be tested by the sensing unit 14A. Finally, step S3 is performed to analyze the received optical signal to identify the quality of the wafer to be tested. The sensing unit (10) can convert the optical signal into a telecomity output to the control system 15A. The image analysis in the control system 15" "receives the electrical signal from the sensing unit 14G, performs the image analysis and comparison of the incoming step to confirm the quality of the wafer 110 to be tested. Since the quality of the wafer is not (four), The electron hole in the circle illuminated by the laser light has a high recombination rate, and the optical signal emitted by the 4曰曰e circle is analyzed and confirmed for inspection. Here, the quality of the wafer is, for example, crystal. The surface of the round surface 1 and the state of the back of the wafer. ^The interior of the wafer and the 'this wafer inspection method can be used in a single multi-beam laser light for inspection. No R area such as wafer whole, surface , the center and the back of the 201248138 surface of the optical signal, these optical signals through subsequent analysis and processing, using the different image comparisons, you can analyze the quality performance at different positions (or depth) in the wafer. Please refer to Figure 2 And the wafer detecting device of FIG. 2 can be used to detect the surface state of the wafer to be tested. As described above, the wafer 110 to be tested can be placed on the carrying platform 1 and then step S1 is performed by the control system. 150 sends a signal to the laser light emitting device 1 20, the laser light 121 is emitted. In this embodiment, the wavelength range of the laser light 121 is not particularly limited as long as it is suitable for detecting the surface state of the wafer. The laser light to be tested is irradiated with the laser light 121. Thereafter, as in the above embodiment, the electron hole pair in the wafer 110 is recombined and emits light due to laser excitation. However, in addition to the light 130 excited by the laser light, the laser light actually illuminates the surface of the wafer. The reflected light 123 is generated. In the present embodiment, the sensing unit 140 maintains an angle Θ with the vertical direction of the stage 100 to receive the reflected light 123 reflected by the wafer 11〇. Therefore, 'in the next step S2' The signal received by the sensing unit 140 from the wafer under test 110 includes the signal of the light 130 excited by the laser light and the reflected light 123 reflected by the wafer. Finally, the step S3 is performed on the received light. The signal is analyzed to confirm the quality of the wafer to be tested. As described above, the sensing unit 140 can convert the optical signal into an electrical signal and output it to the control system 15A, and the control system 150 performs the electrical signal from the sensing unit 140. Analysis to confirm the quality of the wafer to be tested ι10. 201248138 Because when there is an uneven condition on a part of the surface of the wafer, the reflected light signal there will be rather weak. Therefore, the signal and thunder of the reflected light 123 The signal of the light 130 excited by the light is analyzed to detect the flatness of the wafer surface. Therefore, the item confirming the quality includes the physical characteristics of the wafer surface. In summary, the wafer inspection apparatus and use of the present invention The wafer inspection method's quality inspection in the same part and appearance of the same-inspection, the minimum number of machines required for wafer inspection is minimized, and the cost required for the wafer process controller is saved. In the single-measurement, the product f performance at different positions (or depths) in the wafer to be tested can be obtained, and the quality control in the wafer process can be performed more efficiently. The present invention has been disclosed in the above embodiments, and it is not intended to limit the invention to those skilled in the art, and it is possible to make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Wafer Detection Loading Japanese Day Detection FIG. 1 is a schematic view showing a configuration according to an embodiment of the present invention. 2 is a schematic diagram of an apparatus in accordance with another embodiment of the present invention. 3 is a schematic flow chart of a wafer detecting method of the present invention. [Description of main component symbols] 11 201248138 100 : 110 : 112 : 114 : 116 : 120 : 121 122 123 124 130 140 150 220 SI, carrier wafer base, first laser element, second laser element, launcher: Ray Light-emitting first laser light-reflecting light Second laser light-sensing unit control system • Base S2, S3, S4: Step 12

Claims (1)

201248138 七、申請專利範圍·· 1. 一種晶圓檢測裝置,包括: 一承載台’配置用以置放一晶圓; -雷射光發射裝置,發出至少兩種不同波長範圍的雷 射光至該晶圓; 一感測單元’接收來自該晶圓的光訊號,並輸出一電 訊號;以及 二一控制系統’用以操作該雷射光發射裝置及分析來自 §亥感測單元的該電訊號,以檢測該晶圓品質。 ^ 2.如申請專利範圍第1項所述之晶圓檢測裝置,其中 5亥雷射光發射裝置發出一第一雷射光以及一第二雷射光, ^6亥第一雷射光的波長在5〇〇 nm〜15〇〇 的範圍内而 歧第—雷射光的波長在15〇 nm〜8〇〇 的範圍内。 3.如申請專利範圍第2項所述之晶圓檢測裝置,其中 該雷射光發射裝置包括一雷射元件。 《如申請專利範圍帛2項所述之晶圓檢測裝置,其中 5亥雷射光發射裝置包括多個雷射元件。 4曰^如申清專利1巳圍帛1項所述之晶圓檢測裝置,其中 邊曰日圓為太陽能電池用晶圓。 今曰專利範圍第1項所述之晶·測裝置,』 δ亥曰曰^質包括晶圓表面、晶圓内部及晶圓背面的狀! 7. 一種晶圓檢測方法,其步驟包括. 利用-控制系統操作—雷射光發 各射裝置發出至少兩種不同波: /田 J及長乾圍的雷射光至一晶β 13 201248138 由一感測單元接收來自該晶圓的光訊號,並輸出一電 訊號;以及 將該電訊號傳輸至該控制系統進行分析,以檢測該晶 圓品質。 8. 如申請專利範圍第7項所述之晶圓檢測方法,其中 該雷射光發射裝置發出一第一雷射光以及一第二雷射光, 且該第一雷射光的波長在500 nm〜1500 nm的範圍内,而 該第二雷射光的波長在150 nm〜800 nm的範圍内。 9. 如申請專利範圍第8項所述之晶圓檢測方法,其中 該雷射光發射裝置包括一雷射元件。 10. 如申請專利範圍第8項所述之晶圓檢測方法,其 中該雷射光發射裝置包括多個雷射元件。 11. 如申請專利範圍第7項所述之晶圓檢測方法,其 中該晶圓為太陽能電池用晶圓。 12. 如申請專利範圍第7項所述之晶圓檢測方法,其 中該晶圓品質包括晶圓表面、晶圓内部及晶圓背面的狀態。 13. —種晶圓檢測方法,用以量測晶圓表面狀態,其 步驟包括: 利用一控制系統操作一雷射光發射裝置,使該雷射光 發射裝置發出一雷射光至一晶圓; 由一感測單元接收來自該晶圓的光訊號,並輸出一電 訊號;以及 將該電訊號傳輸至該控制系統進行分析,以檢測該晶 圓表面狀態; 201248138 其中,接收來自該晶圓的光包括接收由該雷射光所激 發的光及该雷射光的反射光。 14·如t請專利範圍第13項所述之晶圓檢測方法,其 中該雷射光發射裝置包括一雷射元件。 15·如申請專利範圍第13項所述之晶圓檢測方法,其 中該雷射光發射裝置包括多個雷射元件。 16. 如申請專利範圍第13項所述之晶圓檢測方法,其 中該晶圓為太陽能電池用晶圓。 17. 如申請專利範圍第13項所述之晶圓檢測方法,其 中§玄晶圓表面狀悲包括表面物理特性。 15201248138 VII. Patent Application Range·· 1. A wafer inspection device comprising: a carrier platform configured to place a wafer; a laser light emitting device emitting at least two different wavelength ranges of laser light to the crystal a sensing unit 'receiving an optical signal from the wafer and outputting a signal; and a control system for operating the laser light emitting device and analyzing the electrical signal from the sensing unit to Detect the quality of the wafer. 2. The wafer inspection apparatus according to claim 1, wherein the 5 Hz light emitting device emits a first laser light and a second laser light, and the first laser light has a wavelength of 5 亥. The range of 〇nm~15〇〇 and the wavelength of the laser light are in the range of 15〇nm~8〇〇. 3. The wafer inspection apparatus of claim 2, wherein the laser light emitting device comprises a laser element. The wafer inspection apparatus of claim 2, wherein the 5 Hz light emitting device comprises a plurality of laser elements. 4曰^, for example, the wafer inspection apparatus described in the patent 1巳巳1帛, wherein the edge of the yen is a wafer for solar cells. The crystal/measuring device described in the first paragraph of the patent scope of the present invention includes the surface of the wafer, the inside of the wafer, and the back of the wafer! 7. A wafer inspection method, the steps comprising: utilizing - control system operation - laser light emitting means to emit at least two different waves: / field J and long dry circumference of the laser light to a crystal β 13 201248138 by a sense The measuring unit receives the optical signal from the wafer and outputs a electrical signal; and transmits the electrical signal to the control system for analysis to detect the quality of the wafer. 8. The wafer inspection method according to claim 7, wherein the laser light emitting device emits a first laser light and a second laser light, and the first laser light has a wavelength of 500 nm to 1500 nm. The range of the second laser light is in the range of 150 nm to 800 nm. 9. The wafer inspection method of claim 8, wherein the laser light emitting device comprises a laser element. 10. The wafer inspection method of claim 8, wherein the laser light emitting device comprises a plurality of laser elements. 11. The wafer inspection method according to claim 7, wherein the wafer is a wafer for solar cells. 12. The wafer inspection method of claim 7, wherein the wafer quality comprises a state of a wafer surface, a wafer interior, and a wafer back surface. 13. A wafer inspection method for measuring a surface state of a wafer, the method comprising: operating a laser light emitting device with a control system to cause the laser light emitting device to emit a laser light to a wafer; The sensing unit receives the optical signal from the wafer and outputs a signal; and transmits the electrical signal to the control system for analysis to detect the surface state of the wafer; 201248138 wherein receiving light from the wafer includes Receiving light excited by the laser light and reflected light of the laser light. The wafer inspection method of claim 13, wherein the laser light emitting device comprises a laser element. The wafer inspection method of claim 13, wherein the laser light emitting device comprises a plurality of laser elements. 16. The wafer inspection method according to claim 13, wherein the wafer is a wafer for solar cells. 17. The wafer inspection method according to claim 13, wherein the surface roughness of the surface of the wafer includes surface physical properties. 15
TW100117423A 2011-05-18 2011-05-18 Wafer inspection device and wafer inspection method using the same TW201248138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100117423A TW201248138A (en) 2011-05-18 2011-05-18 Wafer inspection device and wafer inspection method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100117423A TW201248138A (en) 2011-05-18 2011-05-18 Wafer inspection device and wafer inspection method using the same

Publications (1)

Publication Number Publication Date
TW201248138A true TW201248138A (en) 2012-12-01

Family

ID=48138650

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100117423A TW201248138A (en) 2011-05-18 2011-05-18 Wafer inspection device and wafer inspection method using the same

Country Status (1)

Country Link
TW (1) TW201248138A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104916563A (en) * 2014-03-12 2015-09-16 辛耘企业股份有限公司 Wafer detection system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104916563A (en) * 2014-03-12 2015-09-16 辛耘企业股份有限公司 Wafer detection system
CN104916563B (en) * 2014-03-12 2017-08-25 辛耘企业股份有限公司 Wafer detection system

Similar Documents

Publication Publication Date Title
US8902428B2 (en) Process and apparatus for measuring the crystal fraction of crystalline silicon casted mono wafers
US8604447B2 (en) Solar metrology methods and apparatus
US7446321B2 (en) Differential wavelength photoluminescence for non-contact measuring of contaminants and defects located below the surface of a wafer or other workpiece
US8203705B2 (en) Inspection apparatus and inspection method
JP2016188874A (en) System for analysis of device under test, and method for testing device under test
US20090297017A1 (en) High resolution multimodal imaging for non-destructive evaluation of polysilicon solar cells
US8952338B2 (en) Crystalline quality evaluation apparatus for thin-film semiconductors, using μ-PCD technique
WO2012027094A2 (en) Defect inspection and photoluminescence measurement system
CN109564884A (en) Surface defect with bulky grain monitoring and laser power control is examined
JP2009525602A5 (en)
US10890539B1 (en) Semiconductor defect inspection apparatus
EP1982202A1 (en) Electrically-modulatable extended light source and a measurement device for characterising a semiconductor including one such source
US20200258794A1 (en) Semiconductor production method and wafer inspection method
CN106409716B (en) Detection system and detection method of electronic element
JP2008298696A (en) Inspection method and inspection device of foreign matter on wafer circumferential edge
JP5831425B2 (en) Solar cell inspection equipment
CN103048297A (en) Silicon wafer and silicon solar battery piece defect detecting method
CN209911269U (en) Transmission light spot infrared thermal imaging detection device
JP2012002648A (en) Wafer detect inspection device
WO2010058680A1 (en) Silicon wafer defect inspection device
CN102788769A (en) Wafer detection device and wafer detection method therefor
TW201248138A (en) Wafer inspection device and wafer inspection method using the same
KR20150004147A (en) Detecting apparatus using terahertz
JP2009099820A (en) Inspection device, inspection method, and manufacturing method of semiconductor device
US20190162527A1 (en) Device for automatically and quickly detecting two-dimensional morphology of wafer substrate in real time