TW201247225A - Drug carrier with thermal sensitivity, manufacturing method thereof, and use of the same as NMR contrast agent - Google Patents

Drug carrier with thermal sensitivity, manufacturing method thereof, and use of the same as NMR contrast agent Download PDF

Info

Publication number
TW201247225A
TW201247225A TW100117136A TW100117136A TW201247225A TW 201247225 A TW201247225 A TW 201247225A TW 100117136 A TW100117136 A TW 100117136A TW 100117136 A TW100117136 A TW 100117136A TW 201247225 A TW201247225 A TW 201247225A
Authority
TW
Taiwan
Prior art keywords
drug
drug carrier
pharmaceutical carrier
polymer
temperature
Prior art date
Application number
TW100117136A
Other languages
English (en)
Inventor
San-Yuan Chen
Shang-Hsiu Hu
Hsin-Yang Huang
Original Assignee
Univ Nat Chiao Tung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chiao Tung filed Critical Univ Nat Chiao Tung
Priority to TW100117136A priority Critical patent/TW201247225A/zh
Priority to US13/281,104 priority patent/US20120294806A1/en
Publication of TW201247225A publication Critical patent/TW201247225A/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5115Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0028Disruption, e.g. by heat or ultrasounds, sonophysical or sonochemical activation, e.g. thermosensitive or heat-sensitive liposomes, disruption of calculi with a medicinal preparation and ultrasounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1887Agglomerates, clusters, i.e. more than one (super)(para)magnetic microparticle or nanoparticle are aggregated or entrapped in the same maxtrix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/2027Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/2031Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyethylene oxide, poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2072Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
    • A61K9/2077Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/28Dragees; Coated pills or tablets, e.g. with film or compression coating
    • A61K9/2806Coating materials
    • A61K9/2813Inorganic compounds

Description

201247225 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明是有關於—種藥物載體 '其製造方法及其用、六 特別是有關於-種可磁控且具溫度敏感性之藥物載:、 其製造方法及其作為核磁共振顯影劑之用途。 【先前技術】 [0002] 近年來,由於我國國民罹患癌症的比率逐年增加,因此 如何設計藥物釋放系統,以操控藥物釋放系統來進行標 把治療以治療癌症,就顯得相當的重要。然而,目前^ 於藥物釋放控⑽、統,Μ树驗及魏紐材料所構 成,酸鹼及熱敏感性材料只能在人身體的某些特定部位 達到功效,而無法廣泛地滿足大多數需要控制藥物釋放 的情況。 [0003]由於磁場屬於超距力,因此若能藉由外部施加磁場來控 制藥物釋放系統進行釋放藥物,則可以有效的地在身體 的任何一個部位進行局部治療。此外,由於磁控藥物釋 放系統需包含磁性粒子,因此更可藉由核磁共振(MRI)來 進行追蹤或定位,進而使藥物釋放於特定位置,來大幅 度地提升局部治療的功效。 [0004]然而,多數的藥物釋放系統或藥物載體,其結構鬆散不 穩定’因此當使用目前習知的技術如仰2〇1〇134〇87、 US20090324494 ' US20050130167 ' CN200310122436 等所發展的藥物載體,於人身體中輸送時,其結構非常 容易遭受破壞,且在輸送過程中容易漏藥,進而無法在 特定的位置釋放特定的藥物,尤其是熱敏感性的高分子 100117136 表單編號A0101 第4頁/共34頁 201247225 [0005] Ο [0006]
[0007] ,由於其具有溫度敏感性(lower critical solution temperature,LCST)等特質,其所合成的奈米藥物載 體,若沒有利用化學交聯劑,則使熱敏感奈米藥物載體 的結構不穩定且不易製備,但化學交聯劑的使用又常常 對於動物體的生物相容性較差。 因此,如何能夠有效地且不使用化學交聯劑,能夠製備 出穩定的熱敏感奈米藥物載體,進而於藥物釋放系統或 藥物載體在到達標的位置前,能達到降低自然漏藥的特 性,且到達標的位置後,能夠以外加磁場的方式來控制 藥物釋放之技術手段,係為在本領域中的首要課題。 【發明内容】 有鑑於上述習知技藝之問題,本發明之目的就是在提供 一種具高生物相容性及長時間體内循環之溫度敏感性之 藥物載體,且又具有高敏感性核磁共振顯影劑之功效, 同時其製造方法並不需藉由化學交聯劑,而且可以簡易 的製程來製備穩定且又可降低在輸送藥物時產生自然漏 藥或甚至幾乎可達到零釋放之載體。藉此,解決習知的 藥物釋放系統所無法達到並同時藉由外界來控制局部性 地釋放藥物的問題。 根據本發明之目的,提出一種藥物載體,其包含磁性奈 米粒子、藥物及複合高分子。磁性奈米粒子及藥物分散 於複合高分子内。複合高分子是由水溶性高分子(例如聚 乙烯醇)及溫度敏感型高分子(例如聚氧乙烯-聚氧丙烯-聚氧乙烯三嵌段共聚物,其可為普郎尼克F68或普郎尼克 F127)經由自組裝及氫鍵而成。其中,藉由施加一外部磁 100117136 表單編號A0101 第5頁/共34頁 1002028812-0 201247225 場,使得磁性奈米粒子升溫度至一預定溫度範圍(約攝氏 37~50度),而導致藥物載體之體積產生改變,造成藥物 載體之結構改變或瓦解,進而持續性緩慢或快速地釋放 分散於複合高分子中的藥物。 [0008] 其中,為達到幾乎零釋放漏藥及改變藥物釋放模式,本 發明之藥物載體更可包含一殼體,其係包覆該複合高分 子之表面,其殼體之材料可包含二氧化矽、二氧化鈦或 氫氧基磷灰石之無機材料。 [0009] 根據本發明之目的,再提出一種使用如上述之具溫度敏 感性之藥物載體作為核磁共振顯影劑之用途。 [0010] 根據本發明之目的,又提出一種具溫度敏感性之藥物載 體的製造方法,包含下列步驟。於一有機溶劑中,均勻 混合磁性奈米粒子與藥物。將水溶性高分子及溫度敏感 型高分子溶解於一水溶液中,使其自組裝形成一複合高 分子。接著,將含有複合高分子的水溶液以及含有磁性 奈米粒子與藥物之有機溶劑混合在一起,並震盪以形成 一乳化液。透過自組裝及氫鍵,並使有機溶劑揮發,則 可使磁性奈米粒子與藥物分散於複合高分子中,進而形 成一具有高分子外層的穩定藥物載體。 [0011] 其中,本發明之藥物載體的製造方法更可包含下列步驟 。將上述步驟製得之藥物載體加入含有酒精及另一水溶 液之一混合液中,再加入一含石夕先驅物(例如石夕酸四乙醋 ,TEOS)於混合溶液中。藉由其含矽先驅物之水解與縮合 ,使藥物載體之表面覆蓋一含矽無機殼體(即為上述之殼 100117136 表單編號A0101 第6頁/共34頁 1002028812-0 201247225 [0012] [0013] [0014] Ο [0015] [0016]
[0017] [0018] 100117136 體)。 承上所述,依本發明之具溫度敏感性之藥物載體、其製 造方法及其作為核磁共振顯影劑之用途,其可具有一或 多個下述優點: (1) 本發明之藥物載體的表面可具有由無機材料所構成 之殼體,使得包覆於本發明藥物載體中的藥物能夠在到 達標的位置之前,達到降低漏藥率之特性。 (2) 本發明所述之複合高分子主要由水溶性高分子(如聚 乙烯醇)及溫度敏感型高分子(如普朗尼克F68或F127)以 一定比例自組裝而成,並未使用任何的化學交聯劑,故 本發明之藥物載體具有低毒性之特性。 (3) 因本發明所述之複合高分子係由水溶性高分子及溫 度敏感型高分子以一定比例摻混搭配,故其體積收縮/膨 脹比可超過800倍。 (4) 當利用外部磁場誘導本發明之藥物載體之溫度上升 至40〜47°C時,本發明之藥物載體會迅速地收縮,其尺寸 大小收縮幅度約原來的10倍,體積變化近千倍。 (5) 藉由本發明之藥物載體内的磁性奈米粒子(例如氧化 鐵),並配合外部磁場,可將本發明之藥物載體作為生物 體内的核磁共振顯影劑之用途。 【實施方式】 請參閱第1圖,其係為本發明之藥物載體結構之一實施例 示意圖。第1圖之第(a)圖中,本發明之藥物載體1包含磁 性奈米粒子11、藥物12及複合高分子13。其中,磁性奈 表單編號A0101 第7頁/共34頁 1002028812-0 201247225 米粒子11與藥物12係分散於複合高分子13中,而複合高 分子13是由兩種高分子以一定比例自組裝而成,分別為 水溶性高分子及溫度敏感型高分子,進而形成一複合高 分子。較佳地,水溶性高分子及溫度敏感型高分子之重 量比可為1:10 ~ 10:1。 [0019] 在一較佳實施例中,本發明之藥物載體1更可包括一由無 機材料(例如二氧化矽、二氧化鈦或氫氧基磷灰石等的無 機材料)所製得之殼體14,其殼體14是包覆複合高分子13 之表面,如第1圖之第(b)圖,使本發明之藥物載體1可達 到緩慢釋放藥物之功效。 [0020] 其中,藥物載體1之形狀較佳為球形,亦可為其它不同形 狀的形貌。而無殼體之藥物載體之直徑可由10 nm至500 nm,磁性奈米粒子之直徑則可由3 nm至30 nm,殼體之 厚度可由1 nm至50 run。 [0021] 當施加一外部磁場於一標的位置時,因本發明之藥物載 體1包含有磁性奈米粒子11,故可引導藥物載體1移動至 該標的位置,並因磁性奈米粒子11受到外部磁場之刺激 ,使得磁性奈米粒子11產熱,而使磁性奈米粒子11之溫 度升高至一預定溫度範圍(約37〜50°C)後,導致藥物載體 1之體積產生顯著地改變,造成藥物載體1之結構改變或 瓦解,進而使複合高分子13中的藥物12快速地釋放至標 的位置。 [0022] 上述磁性奈米粒子11可為氧化亞鐵(Fe2〇4)、氧化鐵 (Fe3〇4)、氧化鐵钻(CoFe2〇4)、氧化鐵锰(MnFe2〇4)或 100117136 表單編號A0101 第8頁/共34頁 1002028812-0 201247225 氧化錳等之奈米粒子。另一方面,可藉由氣化亞鐵 (FeCl2)、氯化鐵(FeCl )、氯化鈷(c〇Cl )、硝酸鐵 ίΛ (Fe(N〇3)2)、醋酸鐵(Fe(CH c〇〇))、醋酸始 0 ο (c〇(ch3coo)2)、醋酸猛(Mn(CH3COO)2)等的前驅物製 作成磁性奈米粒子11。水溶性高分子可包含聚乙烯醇 (poly vinyl alcohol,PVA),而溫度敏感型高分子則 可包含聚氧乙烯-聚氧丙烯-聚氧乙烯三嵌段共聚物 (ΡΕ0-ΡΡ0-ΡΕ0 p〇iymer)、聚異丙基丙烯醯胺 (P0ly(N-iS0pr0pyl acrylamide))、明膠或甲殻素。 其中’聚氧乙稀-聚氧丙埽-聚氧乙烤三嵌段共聚物如下 列結構式所示。 [0023]
Q [晒]其中,當x = 76、y=29 [0025] 100117136 .時,聚氧乙烯-聚氧丙烯-聚 乳乙埽二嵌段共聚物則為普郎尼克F68 (Pluronic”00、y = 64'z = 1。。時,聚氧乙㈣氧丙 烯聚乳乙稀三嵌段共聚物則為普郎尼克Fm(Pluronic F127)。 "月參閱第2圖,其係為本發明 的製造方… 發月之具-度敏感性之藥物載體 有W 例流程圖。圖中,步驟如,於- 冷,均勻混合磁性奈米粒子與藥物。:二高分子及溫度敏感型高分子溶解於水溶’ 第9頁/共34頁
表單編號A010I 液中 1002028812-0 201247225 使其自組裝形成一複合高分子。步驟S23,混合含有複合 高分子的水溶液及含有磁性奈米粒子與藥物之有機溶劑 ,並震盪以形成一乳化液。步驟S24,揮發有機溶劑,使 磁性奈米粒子與藥物包覆於複合高分子中,進而形成一 藥物載體。 [0026] 另外,當藥物載體之表面欲覆蓋有一殼體時,於步驟S24 後更可包含下列步驟:先將該藥物載體加入含有酒精及 另一水溶液之一混合液中,再加入一含梦先藤物(例如石夕 酸四乙酯)於上述混合溶液中,並藉由含矽先驅物之水解 與縮合,使藥物載體之表面覆蓋一含矽無機殼體(即為第 1圖所示之殼體)。 [0027] 為了能使本領域具有通常知識者能夠明瞭本發明之具溫 度敏感性之藥物載體的結構與其所具有之功效,故以下 將詳述本發明之藥物載體之製程步驟及功效試驗。但須 注意的是,以下所述之所有所使用的材料及參數,包含 濃度、含量、反應時間等,皆不應以此作為限制,其相 似或對等之範疇皆須包含於其中。 [0028] 於本發明之具溫度敏感性之藥物載體之第二實施例製造 方法中,磁性奈米粒子係使用氧化鐵(Fe3〇4)奈米粒子( 不以此為限)來達成。首先,將氧化鐵奈米粒子(0. 5 wt%)與藥物分子(0. 1%)溶解於約2 mL氣仿中。將普郎尼 克F68 (溫度敏感型高分子)與聚乙烯醇(水溶性高分子) 於去離子水中加熱(約70度)溶解約1小時,直至去離子水 呈現澄清的狀態。此後,將去離子水降溫至室溫。再者 ,將去離子水與含有氧化鐵奈米粒子與藥物之氣仿混和 100117136 表單編號A0101 第10頁/共34頁 1002028812-0 201247225 ,去離子水與氯仿之體積比約為5 : 2。混合後,利用強 超音波震盪約3分鐘,產生均一乳化相溶液。爾後,該乳 化相溶液放至室溫下攪拌約24小時,將有機溶劑完全揮 發。並且,利用離心方式,將未分散於複合高分子之氧 化鐵奈米粒子及藥物與剩餘之高分子除去,再利用清水 清洗約三次,即可得到本發明之藥物載體。 [0029] 再者,在殼體製備部分,將處理完畢的藥物載體加入酒 精與水混合溶液中。此後,再加入1 %的石夕酸四乙酉旨 (Tetraethoxysilane,TEOS)於混合溶液中,以進行水 解縮合。經約30分鐘後,加入氨水加速反應。反應一天 後,即可收集具有二氧化矽殼體之藥物載體。其後,可 用清水清洗所收集之藥物載體數次,以將未反應的物質 除去。 [0030] 本發明在製備具有高度溫度感性之藥物載體,係藉由兩 種高分子的比例混摻搭配,進而建構高穩定度與超溫度 敏感型之創新型高分子,達到可利用磁場快速驅動藥物 》 釋放,並藉由奈米材料的製程技術,來控制藥物載體結 構使其呈現具有最佳特性的程度。 [0031] 普朗尼克F68具有溫度敏感的特性,不過由於其結構鬆散 不穩定,故於作為奈米藥物載體於體内輸送時,其結構 容易遭受破壞,造成藥物自然釋放現象。此情況對於需 要進入人體的藥物傳輸系統較不理想,因此,利用混摻 型高分子的作用,加入第二種水溶性高分子「聚乙烯醇 」以強化奈米載體内部鍵結,進而形成高穩定度奈米藥 物載體。此外,並在藥物載體表面包覆一層由無機材料 100117136 表單編號 A0101 第 11 頁/共 34 頁 1002028812-0 201247225 構成的殼體,在未知外部磁場刺激的狀態下,可以大大 地降低藥物自然釋故之功效。 味芩閲弟3A至3C圖,其分別係為藉由本發明之上述第二 實施例所製得之藥物載體的穿透式電子顯微鏡影像圖、 掃晦式電子顯微鏡影像圖'以及高解析度穿透式電子顯 微鏡(HR-TEM)影像圖。於第3A圖中,可以看出二氧化石夕 殼體31之厚度’並均勻的包覆著複合高分扣。利用二 氧化夕緻密的結構,藥物可以輕易的被包覆於複合高分
子13内。此外’本實施例所述之製程在f溫下即可進行 藥物載體之合成,並不會造成 第3B圖Φ -η 樂物活性的破壞。在 第圖中,可看到本發明之鏟 ,^鐘1之表面結構並&任 何的裂縫,且殼體14與複合$ 叼分子13呈現連續的結椹, 其之間亦無任何縫隙,且其平 岣直徑約為76 nm,而二氧 化矽鈸體31之厚度約為7 nm。 [0033] 楚地看出氧化鐵奈米粒子1U<晶體結構圖f則可散清 藉由上述第二實施例所述之製 峻方法,進一步調整水溶 性而分子及溫度敏感型高分子#
^ 里量比、以及氧化鐵奈米 粒子之含1,進而檢測其收_、藥物釋放率等,而本 發明之不同藥物載體之水溶性裒 L 叼刀子及溫度敏感型高分 子重量比、以及氧化鐵奈米粒子 _ 篁如下表1所示。 [0034]表 1 [0035] 本發明 重量比 有機/ 跑和磁 --------- Fe3〇4 包覆率 之藥物 無機 化•強度 (%) (%) 載體 (TGA (emu/ -—_ 100117136 表單編號A0101 第12頁/共34貢 1002028812-0 201247225 ) g) Fe3〇4 PVA/ F68 TEOS 1 1 5/1 2.5 66/34 7. 9 12 2 1 5/2. 5 2.5 72/28 6. 7 10 3 1 5/5 2.5 79/21 4. 9 8 4 1 5/10 2. 5 85/15 3.1 5 [0036]其中,包覆率(encapsulation efficiency)之計算係 為(總IBU含量一藥物載體中剩餘之IBU含量)/總IBU含 量xlOO。本發明之藥物載體所包覆之藥物較佳可為疏水 性藥物(hydrophobic drug),而此實施例中,本發明 之藥物載體係利用異丁苯丙酸(ibuprofen,IBU)鎮痛消 炎藥物作為模擬藥物分子。 [0037] 請一併參閱第4及5圖,其係分別為本發明之不含二氧化 矽殼體之藥物載體-a〜藥物載體-d與含二氧化矽殼體之藥 1 物載體-1〜藥物載體-4,在室溫的情況下之藥物釋放行為 曲線圖。在第4及5圖中,構成這些載體的複合高分子是 由聚乙烯醇(PVA)與普朗尼克F68聚合成,且其比例分別 為以5/1、5/2.5、5/5以及5/10的比例混合(如表1)。 [0038] 如第4圖所示,本發明之藥物載體-a〜本發明之藥物載體-d係為表1中未利用TE0S形成殼體之藥物載體-1〜藥物載 體-4。當本發明之藥物載體尚未包覆殼體時,藥物釋放 速度相當快速,在約45分鐘時,藥物釋放的量皆達到60% 以上。 100117136 表單編號 A0101 第 13 頁/共 34 頁 1002028812-0 201247225 [0039] 然而,第5圖中,藥物載體-3~藥物載體-d在二氧化矽殼 體包覆後(即為表1之藥物載體-1〜藥物載體-4),並在45 分鐘後都穩定的保持僅僅只有不到5%的藥物自然釋放率 。其係因藥物載體中加入了聚乙烯醇,故大幅度地提升 原先僅以普朗尼克F68作為藥物載體時的不穩定性,而矽 殼體的包覆,可更明顯看出以本發明之藥物載體-1~藥物 載體-4在輸送藥物時,大部分的藥物皆保持於複合高分 子中,其不到標的組織是不會自複合高分子中被釋放出 來。由本圖亦可發現,雖然聚乙烯醇不具有溫度敏感性 ,不過聚乙烯醇可提供大量穩定結構的氫鍵。若聚乙烯 醇的量過低時,藥物載體之内部作用力即不夠強,進而 不易形成穩定的奈米球結構。而當提高聚乙烯醇的比例 時,大量的氫鍵則可穩定藥物載體的奈米結構,且更可 有助於二氧化矽殼體的形成,來降低漏藥,也因此藥物 載體-1的自然釋放率為最低(即為藥物包覆率最高)。請 一併參閱第6圖,其係本發明之藥物載體-1~藥物載體-4 在溫度40°C與47°C下,其粒徑變化之柱狀圖。如圖所示 ,在聚乙烯醇與普朗尼克F68的互相作用之下,藥物載體 的溫度敏感特性變的非常明顯,其於特定溫度(本實施例 中為攝氏47度)下的體積變化甚至可以達到超過800倍。 再者,藥物載體在不同溫度下的粒徑變化,可以發現在 轉移溫度47t,藥物載體的粒徑會瞬間縮小。而若適當 調控普朗尼克F68與聚乙烯醇之比例後,藥物載體之粒徑 的變化甚至可以到達10倍,體積變化接近千倍,該強烈 的粒徑變化,可以造成二氧化矽奈米殼體的崩解與破裂 ,達到藥物釋放的效果。 100117136 表單編號A0101 第14頁/共34頁 1002028812-0 201247225 [0040] 請再一併參閱第7及第8圖,其係為本發明之藥物載體-卜 藥物載體-4於外部磁場刺激後之藥物釋放行為之曲線圖 '以及藥物載體-1於外部磁場刺激後之穿透式電子顯微 鏡影像圖。在本實施例中,在未施加外部磁場前之狀態 ,僅有極小量的釋放,表示藥物可以儲藏於複合高分子 内。而在外加磁場作用(約在4. 5分鐘時,圖中表示為“ 〇n”)之後(約在施加30秒後關閉外部磁場,圖中表示為 ‘off”)’其異丁笨丙酸藥物迅速地自複合高分子中釋 放至外部,結果如第7圖所示,此證明本發明之溫度敏感 藥物載體具有良好的磁場敏感特性。而在經過磁場刺激 後’二氧化石夕殼體的確有明顯地破裂,如第8圖所示。以 上試驗佐證本發明之溫度敏感性之藥物載體,可藉由外 部磁場而使藥物釋放之作用。 [0041] ❹ 為了顯示本發明之藥物載體對於細胞之生物相容性測試 ,於此實施例中,本發明之藥物載體標記有綠色螢光 (FITC) ’並將其共同培養於視網膜色素上皮細胞 (ARPE-19),進一步利用共焦顯微鏡作觀察。結果如第9 圖之第(a)圖所示,本發明之藥物載體與細胞共同培養4 小時後,本發明之藥物載體並無明顯地被細胞攝入(即呈 現少數綠點)。然而,當培養時間提高至24小時如第9 圖之第(b)及(c)圖所示,可看到大量綠點呈現在細胞中 ,表示細胞已涉入本發明之藥物載體,並且進入細胞質 中,而細胞仍保持完好的細胞型態。以上數據皆證明本 發明之藥物載體具良好的細胞相容性。此外,在細胞毒 性存活試驗中,在施加磁場與長時間培養之條件下細 100117136 表單編號Α0ΗΗ 第15頁/共34頁 1002028812-0 201247225 胞存活率都在90%以上,如第ι〇圖所示。 [0042] 此外,在另一較佳實施範例中,以溫度敏感型高分子普 朗尼克F127來取代上述實施例之普朗尼克F68,而氧化鐵 奈米粒子與聚乙烯醇/普朗尼克^ 27之重量比與臨界相轉 移溫度如下表2所示。 [0043] 表 2 本發明之藥物 重量比 —------------- 臨界相轉移溫 載體 度(°c) Fe3〇4 PVA/F127 —--1 5 1 1/4 32. 7 6 1 2/3 38. 0 7 1 3/2 42. 6 8 1 4/1 45. 4 [0045] 由上表可知’本實施例中,係以PVA/F127為1/4、2/3、 3/2及4/1的比例建構成本發明所述之複合高分子。 [0046] 請參閱第11A圖,其係為本發明之藥物載體_5〜藥物載體_ 8隨溫度變化之粒徑曲線圖。如圖所示,本實施例的藥物 載體-5〜藥物在體-8中擁有在攝氏37〜5〇度之間最大的 體積變化率,且隨溫度變化,本發明之藥物載體也會快 速的縮小。由於人體的體溫大約是攝氏37〜39度之間, 因此以本實施例作為樂物載體,並在施加磁力下於人體 中輸送藥物至特定位置,本發明之藥物載體係可維持穩 定的結構而不會產生過多藥物自然釋放的現象。然而, 100117136 表單編號A0101 第16頁/共34頁 1002028812-0 201247225 右僅以普朗尼克F127製作為本發明之藥物载體,其臨界 相轉移溫度較低(約25. 8。(:,表中未列出)。僅以聚乙稀 醇作為本發明之載體時,其並無臨界相轉移溫度,因此 都不適合於單獨應用於製作成熱敏感藥物載體。 [0047] Ο 清〜併參閱第ΠΒ圖,其係為本發明之藥物載體_6於磁場 刺數〇、15及30秒後’其藥物釋放行為曲線圖。如圖所示 在第5分鐘時即給予本實施例之藥物載體-5 —外部磁場 後,可以發現不論是給予其15秒或3〇秒的磁場皆可有大 量的藥物被釋放出來’且其釋放量更與給予磁場的時間 長也相關,亦即給予磁場的時間越久,藥物的釋放量就 越大右改以藥物載體-7,即聚乙烯醇含量較高,其聚 乙烯醇(PVA)/普朗尼克(F127) = 3/2,來進行類似的藥 物釋放試驗’從第11C圖,可發現其藥物的釋放量較低且 後續也呈現緩慢的釋放’這說明本發明之載體的藥物釋 放是可透過組成改變來調控其釋放行為。 [0048] Ο 另外,本發明之藥物載體更可用作為核磁共振顯影劑, 故進行以下動物試驗。核磁共振造影技術的應用在近代 醫學上的進步與發展,現在已經成為在對於檢測腦部、 脊椎、肌肉與骨骼等部位最具代表性的影像處理方式。 核磁共振造影主要是基於各組織中所含有的水中的氫原 子在核磁共振中所測量的訊號,而這樣的訊號可以根據 座標軸而分解成兩個不同方向的分量,分別為自旋_晶格 弛豫(longitudinal relaxation,T1)與自旋-自旋弛 豫(transverse relaxation,T2),這兩個訊號的機 制不同且不會互相影響。 100117136 表單編號A0101 第17頁/共34頁 1002028812-0 201247225 [0049] [0050] [0051] 一般使用T1機制為主的核磁共振造影顯影劑,係以具高 順磁性質的離子為主’最普遍的是以小分子的有機螯合 劑與釓離子反應而能穩定存在的有機金屬錯合物。而粒 徑在3到10奈米左右的磁性奈米粒子也可以將其發展應用 在核磁共振造影顯影劑上,在大部分的情形中,這些磁 性粒子是以Τ2的機制為主,來影響影像的結果。請參閱 第11圖,其係為本發明之藥物載體在不同鐵離子濃度下 對Τ1加權(1116丨81^6(1)與12加權(了216丨21^6(1)之測 量值曲線圖。如圖所示,本發明之藥物載體係的確具有 Τ2顯影劑的特性。此外,本發明之藥物栽體之自旋-自旋 f) 遲緩速率(r2)範圍係為 l〇s~lM-i<r <500s-iM-l。 L· 再者,本發明之藥物載體注射於大鼠後,可發現大鼠腦 部血管對比度大幅的提升,如第13圖所示。其中第第13 圖之第(a)圖為未注射本發明之藥物載體,而第13圖之第 (b)圖之係為已注射本發明之藥物載體。再者,請一併參 閱第14圖,其係為注射本發明之藥物載體於大鼠體内, 其肝臟及腎臟核磁共振影像圖。其中,第14圖之第(&)圖 為尚未注射本發明之藥物載體之大鼠的肝臟、腎臟的核 〇 磁共振影像,而第14圖之第(b)圖則揭示了將本發明之藥 物載體/主射後,大鼠的肝臟、腎臟之核磁共振影像,其〃 對比度則大幅度地提升。 综合第12至14圖之結果,丰發明之藥物載體更可藉由核 磁共振影像的相關技術,來有效追蹤及監測藥物載體及 病態組織位置。而當本發明之藥物載體進入人體或動物 體内時,由於磁力是一種超距力,則可以前述的方式施 100117136 表單編號A0101 第18頁/共34頁 1002028812-0 201247225 加一外在磁場於一標的位置(如肝臟、腎臟、大腦或脾臟 等)上。即可誘發本發明之藥物載體於該標的位置,釋放 包復於複合高分子中之藥物,來達到有效的治療。以上 數據皆證實本發明之藥物載體可有效地針對特定目標進 行藥物釋放。 [0052] Ο [0053] Ο [0054] 此外,殼體之表面更可架接至少一生物分子,些生物分 子係包含核糖核酸(RNA)、去氧核糖核酸(dna)、蛋白質 、半抗原(hapten)、卵白素(avidin)、鏈黴親和素 (streptavidin)、指出中性鏈親和素(neutravidin) 、凝集素(lectin)或選擇素(seiectin)等。本發明之 藥物載體架接生物分子後,即可作為標靶腫瘤之功能。 综上所述,由水溶性高分子(如聚乙烯醇)及溫度敏感型 高分子(如普朗尼克F68或F127)以一定比例自組裝而成 的複合高分子,由於使用簡易的製程且並未使用任何的 化學交聯劑,因此在具備高穩定度、高溫度敏感以及高 體積變化率的同時,仍可以具有高生物相容性以及低毒 1±。此外,本發明之藥物載體可以提高包覆藥物的效率 以及具有高操控性及快速釋放等特性,更甚者其可作為 核磁共振的顯影劑,達到有效追蹤及定位藥物載體在人 體或動物體内的位置,並能針對特定目標進行藥物釋放 ’實為一劃時代之發明。 以上所述僅為舉例性,而非為限制性者。任何未脫離本 發明之精神與_,而對其進行之等效修改或變更,均 應包含於後附之申請專利範圍中。 100117136 【圖式簡單說明】 表單編號A0101 第19頁/共34頁 1002028812-0 201247225 [0055] 100117136 第1圖係為土 I發明之具溫度敏感性之藥物载體結構之一實 施例示意圖。 第2圖係為太叙 、 *明之具溫度敏感性之藥物載體的製造方法 之第-實施例流程圖。 第3A〜3C圖佐八 物載體的穿^別為藉由本發明之第二實施例所製得之藥 影像圖及-式電子顯微鏡影像圖、掃猫式電子顯微鏡 第二解 物載體-d,^ 切殼體之藥物載體t藥 第5圖俜h室溫的情況下之藥物釋放行為曲線圖。 第5圖係為本發明之含二氧
載體_4,在宕阳认泣、 ⑥體之樂物載體-卜樂物 第6圖係,皿)况下之藥物釋放行為曲線圖。 第圖係為本發明之藥物
^47〇Γ_ 執镀1〜藥物載體-4在溫度40°C 與7(:下,其粒徑變化之板狀圖。 第7圖係為本發明之藥物栽體小 刺激後之藥物釋放行為之曲線圖。載艘"磁琢 ί8圖料本㈣之㈣於外部磁場肺後之穿透 式電子顯微鏡影像圖。
第9圖係為本發明之藥物載體與視_色素上皮細胞共同 培養後之共焦顯微鏡影像圖。 第10圖係表示本發明之藥物栽體在無外加磁場與導入一 分鐘的磁場之細胞毒性柱狀圖。 第11Α圖係為本㈣之藥物㈣〜藥物載體_8隨溫度變 化之粒徑曲線圖。 第11Β圖係為本發明之藥物如_6於磁場刺則、丨认刊 秒後,其藥物釋放行為曲線圖。 第11C圖係為本發明之藥物栽體_7於磁場刺激30及9〇秒 表單編號Αοιοι 第20頁/共34頁 ⑽ 201247225 後,其藥物釋放行為曲線圖。 第12圖係為本發明之藥物載體在不同鐵離子濃度下對Τ1 加權與Τ2加權之測量值曲線圖。 第13圖係為注射本發明之藥物載體於大鼠前及注射後之 腦部核磁共振影像圖。 第14圖係為注射本發明之藥物載體於大鼠前及注射後之 肝臟及腎臟核磁共振影像圖。 【主要元件符號說明】 [0056] Ο I :藥物載體 II :磁性奈米粒子 III :氧化鐵奈米k子 12 :藥物 13 :複合高分子 14 :殼體^ 31 :二氧化矽殼體 S21~S24 :步驟 ο 100117136 表單編號A0101 第21頁/共34頁 1002028812-0

Claims (1)

  1. 201247225 七、申請專利範圍: 1 . 一種具溫度敏感性之藥物載體,其包含: 一磁性奈米粒子; 一藥物;以及 一複合高分子,該磁性奈米粒子及該藥物係分散於該複合 高分子内,該複合高分子係由一水溶性高分子及一溫度敏 感型高分子自組裝而成; 其中,藉由施加一外部磁場,使得該磁性奈米粒子升溫至 一預定溫度範圍,而導致該藥物載體之體積產生改變,造 成該藥物載體之結構改變或瓦解,進而快速地釋放分散於 複合高分子中的該藥物。 2. 如申請專利範圍第1項所述之藥物載體,其更包含一殼體 ,其係包覆該複合高分子之表面。 3. 如申請專利範圍第2項所述之藥物載體,其中該殼體之材 料包含二氧化矽、二氧化鈦或氫氧基磷灰石之無機材料。 4 .如申請專利範圍第1項所述之藥物載體,其中該水溶性高 分子及該溫度敏感型高分子之重量比係為1 : 10〜10 : 1 〇 5 .如申請專利範圍第1項所述之藥物載體,其中該水溶性高 分子包含聚乙稀醇(poly vinyl alcohol,PVA)。 6 .如申請專利範圍第5項所述之藥物載體,其中該溫度敏感 型高分子包含聚氧乙烯-聚氧丙烯-聚氧乙烯三嵌段共聚物 、聚異丙基丙烯醯胺(poly(N-isopropyl acrylamide))、明膠或甲殼素。 7 .如申請專利範圍第6項所述之藥物載體,其中所施加之該 100117136 表單編號A0101 第22頁/共34頁 1002028812-0 201247225 外部磁場係造成該藥物載體之體積收縮,進而導致藥物載 體之結構瓦解。 8 .如申請專利範圍第1項所述之藥物載體,其中該磁性奈米 粒子包含氧化亞鐵、氧化鐵、氧化鐵鈷、氧化鐵錳或氧化 猛之奈米粒子。 9.如申請專利範圍第1項所述之藥物載體,其中該預定溫度 範圍係為攝氏37〜55度。 10 . —種使用如申請專利範圍第1至9項中之任一項所述之具溫 度敏感性之藥物載體作為核磁共振顯影劑之用途。 11 . 一種具溫度敏感性之藥物載體的製造方法,包含下列步驟 於一有機溶劑中,均勻混合一磁性奈米粒子與一藥物; 將一水溶性高分子及一溫度敏感型高分子溶解於一水溶液 中,使其自組裝形成一複合高分子; 混合含有該複合高分子的該水溶液以及含有該磁性奈米粒 子與該藥物之該有機溶劑,並震盪以形成一乳化液;以及 揮發該有機溶劑,使該磁性奈米粒子與該藥物分散於該複 合高分子中,進而形成一藥物載體。 12 .如申請專利範圍第11項所述之藥物載體的製造方法,其更 包含下列步驟: 將該藥物載體加入含有酒精及另一水溶液之一混合溶液中 加入一含矽先驅物於該混合溶液中;以及 藉由該含矽先驅物之水解與縮合,使該藥物載體之表面覆 蓋一含矽無機殼體。 13 .如申請專利範圍第12項所述之藥物載體的製造方法,其中 100117136 表單編號 A0101 第 23 頁/共 34 頁 1002028812-0 201247225 該含矽先驅物包括矽酸四乙酯 (tetraethylorthosilicate , TE0S)。 14 . 15 . 16 . 17 · 如申請專利範圍第11項所述之藥物載體的製造方法,其該 水溶性高分子及該溫度敏感型高分子之重量比係為1 : 10 〜10 : 1 ° 如申請專利範圍第11項所述之藥物載體的製造方法,其中 該水溶性高分子包含聚乙稀醇(poly vinyl alcohol, PVA)。 如申請專利範圍第15項所述之藥物載體的製造方法,其中 該溫度敏感型高分子包含聚氧乙烯_聚氧丙烯-聚氧乙烯三 散段共聚物、聚異丙基丙缔醯胺(P〇ly(N_iS〇pr〇pyl acrylamide))、明膠或甲殼素。 如申請專利範圍第11項所述之藥物載體的製造方法,其中 該磁性奈米粒子包含氧化亞鐵、氧化鐵、氧化鐵鈷、氧化 鐵猛或氧化猛之奈米粒子。 100117136 表單編號A0101 第24頁/共34頁 1002028812-0
TW100117136A 2011-05-17 2011-05-17 Drug carrier with thermal sensitivity, manufacturing method thereof, and use of the same as NMR contrast agent TW201247225A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW100117136A TW201247225A (en) 2011-05-17 2011-05-17 Drug carrier with thermal sensitivity, manufacturing method thereof, and use of the same as NMR contrast agent
US13/281,104 US20120294806A1 (en) 2011-05-17 2011-10-25 Drug carrier with thermal sensitivity, manufacturing method thereof, and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100117136A TW201247225A (en) 2011-05-17 2011-05-17 Drug carrier with thermal sensitivity, manufacturing method thereof, and use of the same as NMR contrast agent

Publications (1)

Publication Number Publication Date
TW201247225A true TW201247225A (en) 2012-12-01

Family

ID=47175060

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100117136A TW201247225A (en) 2011-05-17 2011-05-17 Drug carrier with thermal sensitivity, manufacturing method thereof, and use of the same as NMR contrast agent

Country Status (2)

Country Link
US (1) US20120294806A1 (zh)
TW (1) TW201247225A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI504413B (zh) * 2013-07-24 2015-10-21 Univ Nat Chiao Tung 奈米級複合高分子顯影劑及藥物載體
CN111945415A (zh) * 2020-07-10 2020-11-17 东华大学 一种载药的热致变色水凝胶功能化织物及其制备和应用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101513841B1 (ko) 2011-08-10 2015-04-24 매그포스 아게 응집성의 자성 알콕시실란-코팅된 나노입자
TWI462753B (zh) * 2011-11-29 2014-12-01 Univ Nat Chiao Tung 雙乳化核殼奈米結構及其製備方法
KR101784296B1 (ko) * 2016-03-22 2017-10-13 고려대학교 세종산학협력단 온도감응형 복합체 및 이의 제조방법
GB2543604A (en) 2016-07-20 2017-04-26 Ubicoat Ltd Production of nanoscale powders of embedded nanoparticles
EP3381479A1 (de) * 2017-03-29 2018-10-03 ARTOSS GmbH Trägerzusammensetzung für knochenersatzmaterialien

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5702717A (en) * 1995-10-25 1997-12-30 Macromed, Inc. Thermosensitive biodegradable polymers based on poly(ether-ester)block copolymers
US7560160B2 (en) * 2002-11-25 2009-07-14 Materials Modification, Inc. Multifunctional particulate material, fluid, and composition
WO2006057374A1 (ja) * 2004-11-29 2006-06-01 Japan Science And Technology Agency 複合微粒子の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI504413B (zh) * 2013-07-24 2015-10-21 Univ Nat Chiao Tung 奈米級複合高分子顯影劑及藥物載體
CN111945415A (zh) * 2020-07-10 2020-11-17 东华大学 一种载药的热致变色水凝胶功能化织物及其制备和应用
CN111945415B (zh) * 2020-07-10 2021-10-26 东华大学 一种载药的热致变色水凝胶功能化织物及其制备和应用

Also Published As

Publication number Publication date
US20120294806A1 (en) 2012-11-22

Similar Documents

Publication Publication Date Title
Chen et al. Iron-loaded magnetic nanocapsules for pH-triggered drug release and MRI imaging
Jeon et al. Iron oxide nanoparticles as T1 contrast agents for magnetic resonance imaging: fundamentals, challenges, applications, and prospectives
Shabestari Khiabani et al. Magnetic nanoparticles: preparation methods, applications in cancer diagnosis and cancer therapy
Sánchez-Moreno et al. Thermo-sensitive nanomaterials: recent advance in synthesis and biomedical applications
Cai et al. Metal–organic framework‐based nanomedicine platforms for drug delivery and molecular imaging
Yang et al. Multifunctional and stimuli‐responsive magnetic nanoparticle‐based delivery systems for biomedical applications
Khizar et al. Magnetic nanoparticles: from synthesis to theranostic applications
Patra et al. Dual-responsive polymer coated superparamagnetic nanoparticle for targeted drug delivery and hyperthermia treatment
Ling et al. Chemical design of biocompatible iron oxide nanoparticles for medical applications
Tong et al. Coating optimization of superparamagnetic iron oxide nanoparticles for high T2 relaxivity
Andreu et al. Nano-objects for addressing the control of nanoparticle arrangement and performance in magnetic hyperthermia
Chomoucka et al. Magnetic nanoparticles and targeted drug delivering
Piñeiro et al. Iron oxide based nanoparticles for magnetic hyperthermia strategies in biological applications
Akbarzadeh et al. Synthesis, characterization, and in vitro evaluation of novel polymer-coated magnetic nanoparticles for controlled delivery of doxorubicin
TW201247225A (en) Drug carrier with thermal sensitivity, manufacturing method thereof, and use of the same as NMR contrast agent
Yang et al. Graphene oxide/manganese ferrite nanohybrids for magnetic resonance imaging, photothermal therapy and drug delivery
Javed et al. MRI based on iron oxide nanoparticles contrast agents: effect of oxidation state and architecture
Xu et al. Uniform PEGylated PLGA microcapsules with embedded Fe3O4 nanoparticles for US/MR dual-modality imaging
Meledandri et al. Hierarchical gold-decorated magnetic nanoparticle clusters with controlled size
Wang et al. Synthesis of water-dispersible Gd2O3/GO nanocomposites with enhanced MRI T 1 relaxivity
Ma et al. Template-free synthesis of hollow/porous organosilica–Fe3O4 hybrid nanocapsules toward magnetic resonance imaging-guided high-intensity focused ultrasound therapy
Xing et al. The strong MRI relaxivity of paramagnetic nanoparticles
Kim et al. Magnetic nanocomplexes and the physiological challenges associated with their use for cancer imaging and therapy
Phan et al. A highly crystalline manganese‐doped iron oxide nanocontainer with predesigned void volume and shape for theranostic applications
Yuan et al. Intraperitoneal administration of biointerface‐camouflaged upconversion nanoparticles for contrast enhanced imaging of pancreatic cancer