TW201244133A - Thin film solar cell and fabricating method thereof - Google Patents
Thin film solar cell and fabricating method thereof Download PDFInfo
- Publication number
- TW201244133A TW201244133A TW100115258A TW100115258A TW201244133A TW 201244133 A TW201244133 A TW 201244133A TW 100115258 A TW100115258 A TW 100115258A TW 100115258 A TW100115258 A TW 100115258A TW 201244133 A TW201244133 A TW 201244133A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- solar cell
- photoelectric conversion
- thin film
- type semiconductor
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
201244133 六、發明說明: 【發明所屬之技術領域】 本發明係有關於一種薄膜太陽能電池及其製造方法’尤其是 一種具有氧化層配置於電極層與光電轉換層之間的薄膜太陽能電 池及其製造方法。 【先前技術】 由於工業的快速發展,石化燃料逐漸耗竭與溫室效應氣體排 放的問題曰益受到全球關切,能源的穩定供應儼然成為全球性的 重大課題。相較於傳統燃煤、燃氣式或核能發電,太陽能電池(solar cell)係利用光電或熱電轉換效應,直接將太陽能轉換為電能,因 而不會伴隨產生二氧化碳、氮氧化物以及硫氧化物等溫室效應氣 體及污染性氣體,並可用以降低對石化燃料的依賴,而提供安全 自主的電力來源。 現今已知有許多太陽能電池的技術,係_太陽輻射光透過 太陽能電池材料的轉換後, ==,:種=能電池’其主要是將高純度的半導 .石夕)加人掺雜物(dopants)而呈現不同的性質,201244133 6. Technical Field of the Invention The present invention relates to a thin film solar cell and a method of fabricating the same, in particular, a thin film solar cell having an oxide layer disposed between an electrode layer and a photoelectric conversion layer and manufacturing thereof method. [Prior Art] Due to the rapid development of industry, the problem of depletion of fossil fuels and greenhouse gas emissions has been a global concern, and the stable supply of energy has become a major global issue. Compared with traditional coal-fired, gas-fired or nuclear power generation, solar cells use photoelectric or thermoelectric conversion effects to directly convert solar energy into electrical energy, so that carbon dioxide, nitrogen oxides, sulfur oxides, etc. are not accompanied. Greenhouse gases and polluting gases can be used to reduce dependence on fossil fuels while providing a safe and autonomous source of electricity. There are many solar cell technologies known today, after the conversion of solar radiation through the solar cell material, ==,: type = energy battery, which is mainly used to add high-purity semi-conducting materials. (dopants) and present different qualities,
成為可利用之電力來源。矽基太陽能 型半導體,並將P-N *型半_相接合, 或摻雜五族元素以形成N ,如此即可形成一 P_N接Become a source of available electricity. a samar-based solar-type semiconductor, and bonding a P-N* type half-phase, or doping a five-element element to form N, thus forming a P_N junction
(electron)電洞(h〇le)對。 、照射到具有Ρ·Ν接面的半導體時, a中的電子激發出來,而產生電子 電子與電、;_受勒建電位的影響, 201244133 ’若以導線將此太陽能電池與負 電流迴路,藉此,太陽能電池即 而各自往電場的兩相對方向移動 載(load)連接起來’則會形成一 可用以發電並供給負载電力來源。 t知具有堆疊式(tandem)的太陽能電池,在光線的受光面 上’主要會依序包括有基板、電極與光電轉換層等結構。並中 當太陽光由基板外側照射至太陽能電池時,由於電極層材料為 型半導體,當光電轉換層中的p型半導體層與_轉體 相接時’會在此Ρ·Ν接面形成與光電轉換層具有相反電場方向的 空乏區,減弱電子電洞的流動而增加載子再結合率 (—ination) ’純騎社陽能電池的㈣纽上升 題’更進-步地影響到太陽能電池之光電轉換效率。 ° 【發明内容】 馨於以上,本發明在於提供—種_太陽能電池及轉造方 法’藉以有效減少太陽能電財P_N接_生成,並且解決習知 技術存在的問題。 σ 本發明係有關於一種薄膜太陽能電池,包括:—基板、一 -電極H電轉換層、—第二電極層與—氧化層=其中3 -電極層配置於基板上;光電轉換層配置於第—電極層上;第_ 電極層配找職層上;氧化層喊於與光鱗 換層之間,氧化層制以降低第-電極層與光電轉換層之 子結合率。 戰 根據本發明之-實施例’其中氧化層可以為厚度介於^奈米 201244133 至10奈米之間的二氧化矽(Si02)。 根據本發明之—實施例,其中光電轉換層包括:—第一型半 導體層 第一型半導體層以及一本質層。其中,第一型半導體 層係鄰近於第二電極層;第二型半導體層鑛近於氧化層;本質 層係配置於第-料導體層與第二型半賴層之間。第—電極層 與第一型半導體層係㈣型半導體層,第二型半導體層係為p型 半導體層。 根據本發明之一實施例,其中光電轉換層係選自非晶矽 (Amorphous Silicon)與微晶石夕(Microcrystalline Silicon)組成的 群組中的至少一個? 本發明另有關於一種薄膜太陽能電池的製造方法,包括以下 步驟·在一基板上形成一第一電極層;在第一電極層上形成一氧 化層,在氧化層上形成一光電轉換層;以及在光電轉換層上形成 -第二電極層。氧化層翻以降低第—電極層與光電轉換層之間 的載子結合率。 根據本發明之一實施例,其中形成氧化層的步驟包括:透過 二氧化碳進行電漿輔助化學氣相沉積法(Plasma Enhance Chemical(electron) hole (h〇le) pair. When irradiating a semiconductor having a Ρ·Ν junction, the electrons in a are excited to generate electrons and electricity, and _ are affected by the built-in potential, 201244133 'If the solar cell and the negative current loop are made by wires, Thereby, the solar cells are respectively connected to the two opposite directions of the electric field (loading), which forms a source for generating electricity and supplying the load power. It is known that a solar cell having a tandem type includes a structure such as a substrate, an electrode, and a photoelectric conversion layer in the light-receiving surface of the light. When the sunlight is irradiated from the outside of the substrate to the solar cell, since the electrode layer material is a type semiconductor, when the p-type semiconductor layer in the photoelectric conversion layer is connected to the _transfer body, 'the Ρ·Ν junction surface is formed and The photoelectric conversion layer has a depletion region in the opposite electric field direction, which weakens the flow of the electron hole and increases the recombination rate of the carrier (-ination). The (four) New rise problem of the pure riding solar cell has further affected the solar cell. Photoelectric conversion efficiency. [SUMMARY OF THE INVENTION] In the above, the present invention provides a solar cell and a conversion method to effectively reduce solar energy P_N connection generation and solve the problems of the prior art. σ The present invention relates to a thin film solar cell comprising: a substrate, an -electrode H electrical conversion layer, a second electrode layer and an oxide layer = wherein the 3-electrode layer is disposed on the substrate; and the photoelectric conversion layer is disposed on the first - on the electrode layer; the _ electrode layer is assigned to the job layer; the oxide layer is called between the layer and the light scale layer, and the oxide layer is formed to reduce the sub-electrode bond ratio of the first electrode layer and the photoelectric conversion layer. According to the invention of the present invention, the oxide layer may be cerium oxide (SiO 2 ) having a thickness of from about 0.0044 133 to 10 nm. According to an embodiment of the present invention, wherein the photoelectric conversion layer comprises: a first type semiconductor layer, a first type semiconductor layer, and an intrinsic layer. Wherein, the first type semiconductor layer is adjacent to the second electrode layer; the second type semiconductor layer is adjacent to the oxide layer; and the essential layer is disposed between the first material conductor layer and the second type semiconductor layer. The first electrode layer and the first type semiconductor layer (four) type semiconductor layer, and the second type semiconductor layer is a p type semiconductor layer. According to an embodiment of the invention, wherein the photoelectric conversion layer is selected from at least one of the group consisting of amorphous silicon and microcrystalline silicon? The invention further relates to a method for manufacturing a thin film solar cell, comprising the steps of: forming a first electrode layer on a substrate; forming an oxide layer on the first electrode layer; forming a photoelectric conversion layer on the oxide layer; A second electrode layer is formed on the photoelectric conversion layer. The oxide layer is turned over to lower the carrier binding ratio between the first electrode layer and the photoelectric conversion layer. According to an embodiment of the present invention, the step of forming an oxide layer comprises: plasma-assisted chemical vapor deposition through a carbon dioxide (Plasma Enhance Chemical)
Vapor Deposition,PEC VD)。 基於上述,本發明提出之薄膜太陽能電池及其製造方法,藉 由配置於第一電極層與光電轉換層之間的氧化層,降低二者介面 上P-N接面的生成,進而有效降低接面上的載子結合率。此外, 本發明之薄膜太陽能電池及其製造方法能夠與現有的太陽能電池Vapor Deposition, PEC VD). Based on the above, the thin film solar cell and the method for fabricating the same according to the present invention reduce the formation of the PN junction on the interface between the first electrode layer and the photoelectric conversion layer, thereby effectively reducing the junction surface. Carrier binding rate. In addition, the thin film solar cell of the present invention and the method of manufacturing the same can be used with existing solar cells
S 6 201244133 製程相整合,有助於簡化製程並降低成本。 〃以上有關於本發明的内容說明,與以下的實施方式係用以示 I樓解釋本發_精神與原理,並且提供本發_專辦請範圍 更進一步的解釋。有關本發明的特徵、實作與功效,兹配合圖式 作較佳實施例詳細說明如下。 【實施方式】 以下在實施方式中詳細敘述本發明之詳吨徵以及優點,其 内容足以使任何熟習侧技藝者了解本發明之技納容並據以實 施,且根據本說明書所揭露之内容、巾請專利範圍及圖式,任何 熟習相關技藝者可輕易地理解本發明相關之目的及優點。 「第1圖」係為根據本發明實補之細太陽能電池的製造 方法之步黯糊,此鋪造方法雜降低太陽能電池巾⑼接 面生成的機率’並可維持太陽能電池—定的光電轉換效率。本實 施例提出之_太陽能電池的製造方法,主要包括以下步驟: 步驟S102:在-基板上形成一第一電極層; 步驟S104:在第一電極層上形成一氧化層; 步驟S1〇6 :在氧化層上形成一光電轉換層;以及 步驟S108 :在光電轉換層上形成一第二電極層。 本發明提出之_太陽能電池的製造方法,係藉由在第一電 極層與光電轉換層之間形絲化層,崎低二者接觸介面上的载 子結合率(Rec〇mbinationRate)。有關此一製造方法之技術特徵, 請配合參閱後續,茲詳細說明如下。 201244133 請參考「第2圖」所示,係為根據本發明實施例之薄臈太陽 能電池之剖面結構圖。從「第2圖」可以看出,薄膜太陽能電池 100包括一基板102以及配置於基板102上之第一電極層1〇4、氧 化層1〇6、光電轉換層1〇8以及第二電極層110。其中,第一電極 層104係配置於基板1〇2上,光電轉換層係配置於第一電極 層104上’第二電極層110係配置於光電轉換層ι〇8上,氧化層 106係夾置於第一電極層1〇4與光電轉換層1〇8之間。 一般而言,太陽能電池可依光射入方向的不同,將其結構分 為覆板(superstrate)結構以及基板(substrate)結構兩種,本實 %例之薄膜太陽能電池100例如是一種覆板(SUperstrate )結構之 太陽光電元件。如「第2圖」所示,由於覆板結構是指光線由基 板端射入,所以光線L會從基板1〇2側(意即圖示中的下方)往 薄膜太陽能電池100的内部射入。 在一實施例中,基板102可以是透明基板,其材質可以是但 不限定為玻璃或透明樹脂。以此實施例為例,基於光電轉換層1〇8 之光電轉換用途,基板102所稱之透明係指可供光電轉換層1〇8 轉換之光線通過,而非僅供可見光通過方屬透明。同時,此處之 透明並非100%供該光線穿透,而是能使大部分之光線穿透,即應 屬本發明之範圍。 接著,於基板102上形成第一電極層1〇4,以作為薄膜太陽能 電池100之前電極(Front Contact)。此第一電極層1〇4的材料可 以選自透明導電氧化物(Transparent Conductive Oxide,TCO )或 201244133 金屬所組成的群組中。例如是氧化鋅(Zn0)、氧化銦(In2〇3)、 氧化鋁辞(A1 doped ZnO,AZO )、銦鋅氧化物(indium zinc㈣如, IZO)或是其他具有摻雜五族元素以形成N型半導體之透明導電 材質。 乳化層106係形成於第一電極層之上,並且配置在第一 電極層104與光電轉換層108之間。光電轉換層1〇8可以透過射 頻電漿輔助化學氣相沉積法(Radio Frequency Plasma Enhanced Chemical Vapor Deposition,RFPECVD)、超高頻電漿輔助化學氣 相沉積法(Very High Frequency Plasma Enhanced Chemical VaporS 6 201244133 Process integration helps simplify process and reduce costs. The above description of the contents of the present invention, and the following embodiments are used to explain the present invention, the spirit and the principle, and provide a further explanation of the scope of the present invention. The features, implementations, and utilities of the present invention are described in detail with reference to the preferred embodiments. [Embodiment] Hereinafter, the details of the present invention and the advantages thereof will be described in detail in the embodiments, which are sufficient for any skilled person to understand the technology of the present invention and to implement it according to the contents disclosed in the present specification. The related objects and advantages of the present invention will be readily understood by those skilled in the art. "Fig. 1" is a step of a method for manufacturing a thin solar cell according to the present invention, which reduces the probability of formation of the junction of the solar cell towel (9) and maintains the photoelectric conversion of the solar cell. effectiveness. The method for manufacturing a solar cell according to the embodiment includes the following steps: Step S102: forming a first electrode layer on the substrate; Step S104: forming an oxide layer on the first electrode layer; Step S1〇6: Forming a photoelectric conversion layer on the oxide layer; and step S108: forming a second electrode layer on the photoelectric conversion layer. The method for manufacturing a solar cell according to the present invention is to form a silk-bonding layer between the first electrode layer and the photoelectric conversion layer, thereby lowering the carrier bonding ratio (Rec〇mbinationRate) on the contact interface between the two electrodes. For the technical characteristics of this manufacturing method, please refer to the following, and the details are as follows. 201244133 Please refer to FIG. 2, which is a cross-sectional structural view of a thin tan solar cell according to an embodiment of the present invention. As can be seen from FIG. 2, the thin film solar cell 100 includes a substrate 102, a first electrode layer 1〇4 disposed on the substrate 102, an oxide layer 1〇6, a photoelectric conversion layer 1〇8, and a second electrode layer. 110. The first electrode layer 104 is disposed on the substrate 1〇2, and the photoelectric conversion layer is disposed on the first electrode layer 104. The second electrode layer 110 is disposed on the photoelectric conversion layer ι8, and the oxide layer 106 is clamped. It is placed between the first electrode layer 1〇4 and the photoelectric conversion layer 1〇8. In general, a solar cell can be divided into a superstrate structure and a substrate structure depending on the direction of light incident. The thin film solar cell 100 of the present embodiment is, for example, a superstrate ( SUperstrate) Solar photovoltaic components of the structure. As shown in the "Fig. 2", since the cover plate structure means that light is incident from the substrate end, the light L is incident from the substrate 1〇2 side (that is, the lower side in the drawing) to the inside of the thin film solar cell 100. . In an embodiment, the substrate 102 may be a transparent substrate, and the material thereof may be, but not limited to, glass or a transparent resin. Taking this embodiment as an example, based on the photoelectric conversion use of the photoelectric conversion layer 1 〇 8 , the transparentness referred to as the substrate 102 means that the light that can be converted by the photoelectric conversion layer 1 〇 8 passes, and is not transparent only to visible light. At the same time, the transparency here is not 100% for the light to pass through, but rather allows most of the light to penetrate, which is within the scope of the invention. Next, a first electrode layer 1?4 is formed on the substrate 102 to serve as a front electrode of the thin film solar cell 100. The material of the first electrode layer 1〇4 may be selected from the group consisting of Transparent Conductive Oxide (TCO) or 201244133 metal. For example, zinc oxide (Zn0), indium oxide (In2〇3), alumina (A1 doped ZnO, AZO), indium zinc oxide (indium zinc (IV), such as IZO) or other doped five elements to form N Transparent conductive material for semiconductors. The emulsified layer 106 is formed over the first electrode layer and disposed between the first electrode layer 104 and the photoelectric conversion layer 108. The photoelectric conversion layer 1〇8 can be subjected to Radio Frequency Plasma Enhanced Chemical Vapor Deposition (RFPECVD) or Ultra High Frequency Plasma Enhanced Chemical Vapor (Very High Frequency Plasma Enhanced Chemical Vapor).
Deposition,VHF PECVD)或者是微波電漿輔助化學氣相沉積法 (Microwave Plasma Enhanced Chemical Vapor Deposition > MW PECVD)所實現,並且可以是具有單層或堆疊層(tandem)結構 的主動層(ActiveLayer)。在一實施例中,光電轉換層1〇8的材料 例如是單層的非晶矽(Amorphus Silicon,a-Si )、微晶石夕 (Microcrystalline Silicon ’ m-Si)、多晶矽(p〇iy silicon)、硫化鎘 (CdS)、銅錮鎵二砸(CuInGaSe2)、銅銦二砸(〇iInSe2)、碲化 録(CdTe)、有機材料、或者是包括上述材料中至少一個的堆疊結 構。 在一實施例中,如「第3圖」所示,光電轉換層丨⑽可以是 具有P型半導體層1081、N型半導體層1083及本質層1〇82的PIN 半導體堆疊結構。在其他的實施例中,光電轉換層1〇8亦可以是 不具有本質層1082的PN半導體堆疊結構。本發明並不限制光電 201244133 轉換層108中所使用的光電轉換材料層之數目或結構,本領域具 通常知識者當可視需要自行設計之。 由於P型半導體層1081係鄰近於具有N型半導體的第一電極 層104,因此,為了防止二者之間形成的Ρ·Ν接面,本發明主要 是在光電轉換層108與第一電極層1〇4之間製作一氧化層1〇6,以 阻絕光電轉換層108與第一電極層1〇4介面上電子電洞對的結 合。根據本發明之一實施例,本發明主要是在形成光電轉換層1〇8 之刖’先於第一電極層104上形成一奈米級的氧化層1〇6。此一形 成氧化層106的方法可包括:透過二氧化碳(c〇2)進行電漿輔助 化學氣相沉積法(Plasma Enhance Chemical Vapor Deposition, PECVD),以在第一電極層104上沉積一薄膜氧化物。一般而言, 此一薄膜氧化物的材質可以是但不限於二氧化矽(Si〇2),並且厚 度大約在0.1奈米(nanometer,nm)至1〇奈米(nm)之間。藉 此,氧化層106可用以有效防止第一電極層1〇4與光電轉換層ι〇8 之間的載子再結合現象(或稱載子結合率),並且由於其厚度相當 薄’光線L仍可穿透氧化層1〇6,而到達光電轉換層1〇8進行光 電轉換之用。 之後’於光電轉換層1〇8上形成第二電極層11〇,以作為薄膜 太陽能電池1〇〇之背 (Back c〇ntact),而完成薄膜太陽能電 池100的製作。此第二電極層11〇的材料可以選自透明導電氧化 物(Transparent—tive Oxide ’ τα))或金屬所組成的群組中。 在-實施例中,金屬例如是紹(ΑΙ)、銀(Ag )、翻(Μ〇 )、銅(& )、 201244133 其他同時具有導電性與高反射性的金屬、或是上述金屬之合金; 而透明導電氧化物則可為氧化鋅(Zn0)、氧化鋼(ln2〇3):二氧 .化錫(Sn〇2)、銦錫氧化物(indiumtin〇xide,IT〇)、銦辞氧化物 (indium zinc oxide,ΙΖΟ )、氧化鋁鋅(A1 d〇ped Ζη〇,αζ⑴等。 ' 形成第二電極層110的方法例如是採用化學氣相沉積法(CVD)、 物理氣相_法(PVD)、噴塗法或其他合適的方法來製備。Deposition, VHF PECVD) or Microwave Plasma Enhanced Chemical Vapor Deposition (MW PECVD), and may be an active layer with a single layer or a tandem structure (ActiveLayer) . In one embodiment, the material of the photoelectric conversion layer 1〇8 is, for example, a single layer of amorphous germanium (Amorphus Silicon, a-Si), a microcrystalline silicon 'm-Si, and a polycrystalline germanium (p〇iy silicon). CdS, CdS, CuInGaSe2, bis iInSe2, CdTe, organic materials, or a stacked structure including at least one of the above materials. In one embodiment, as shown in Fig. 3, the photoelectric conversion layer 10 (10) may be a PIN semiconductor stacked structure having a P-type semiconductor layer 1081, an N-type semiconductor layer 1083, and an intrinsic layer 1 〇 82. In other embodiments, the photoelectric conversion layer 1〇8 may also be a PN semiconductor stacked structure having no intrinsic layer 1082. The present invention does not limit the number or structure of the layers of photoelectric conversion material used in the photovoltaic layer 201244133 conversion layer 108, and those skilled in the art will be able to design them themselves as needed. Since the P-type semiconductor layer 1081 is adjacent to the first electrode layer 104 having an N-type semiconductor, the present invention is mainly applied to the photoelectric conversion layer 108 and the first electrode layer in order to prevent the formation of the Ρ·Ν junction between the two. An oxide layer 1〇6 is formed between 1〇4 to block the bonding of the photoelectric conversion layer 108 and the pair of electron holes on the interface of the first electrode layer 1〇4. According to an embodiment of the present invention, the present invention mainly forms a nano-scale oxide layer 1〇6 on the first electrode layer 104 before the formation of the photoelectric conversion layer 1〇8. The method of forming the oxide layer 106 may include: performing Plasma Enhanced Chemical Vapor Deposition (PECVD) through carbon dioxide (c〇2) to deposit a thin film oxide on the first electrode layer 104. . In general, the material of the thin film oxide may be, but not limited to, cerium oxide (Si 〇 2) and a thickness of between about 0.1 nanometer (nm) and 1 nanometer (nm). Thereby, the oxide layer 106 can be used to effectively prevent the recombination phenomenon (or carrier binding ratio) between the first electrode layer 1〇4 and the photoelectric conversion layer ι8, and since the thickness thereof is relatively thin, the light ray L It is still possible to penetrate the oxide layer 1〇6 and reach the photoelectric conversion layer 1〇8 for photoelectric conversion. Thereafter, the second electrode layer 11 is formed on the photoelectric conversion layer 1 to form a back surface of the thin film solar cell, and the fabrication of the thin film solar cell 100 is completed. The material of the second electrode layer 11A may be selected from the group consisting of transparent conductive oxide (Transparent- tive Oxide' τα) or metal. In the embodiment, the metal is, for example, stellite, silver, Ag, copper, and other metals having electrical conductivity and high reflectivity, or an alloy of the above metals. The transparent conductive oxide can be zinc oxide (Zn0), oxidized steel (ln2〇3): dioxin, tin (Sn〇2), indium tin oxide (IT), indium oxidization Indium zinc oxide (ΙΖΟ), aluminum oxide zinc (A1 d〇ped Ζη〇, αζ(1), etc. ' The method of forming the second electrode layer 110 is, for example, chemical vapor deposition (CVD), physical vapor phase method ( Prepared by PVD), spray coating or other suitable method.
因此,綜上所述’本發明提出之薄膜太陽能電池不僅可藉由 在電極層與光電轉換層之間形成氧化層,來阻絕二者介面上L 接面的生成,更可藉此進-步地避免電池串聯電阻值的上升,維 持薄臈太陽能電池之光電轉換效率。 其次’本發明提出之細太陽能電池的製造方法可以直接在 沉積P型石夕基層時進行氧化處理,以形成電極層上的薄膜氧化物, 因此具有製程鮮且成本錢之優點。而且,本發明之薄膜太陽 能電池的製造方法能夠與現有的太陽能電池製程相整合,製程簡 單並可有效提升太陽能電池的元件效能。 —雖然本發明以前述的較佳實施例揭露如上,然其並非用以限 疋本發明,任何熟習相像技藝者,在不脫離本發明之精神與範圍 ,内田可作些許更動與潤飾,因此本發明之專利保護範圍須視本 說明書所附之申請專利範圍所界定者為準。 【圖式簡單說明】 第1圖係為根據本發明實施例之薄膜太陽能電池的製造方法 之步驟流程圖。 201244133 第2圖係為根據本發明實施例之薄膜太陽能電池之剖面結構 圖。 第3圖係為根據本發明又一實施例之薄膜太陽能電池之剖面 結構圖。 【主要元件符號說明】 100 薄膜太陽能電池 102 基板 104 第一電極層 106 氧化層 108 .光電轉換層 110 第二電極層 1081 P型半導體層 1082 本質層 1083 N型半導體層Therefore, in summary, the thin film solar cell proposed by the present invention can prevent the formation of the L junction on both interfaces by forming an oxide layer between the electrode layer and the photoelectric conversion layer, and further can be further advanced. The increase in the series resistance of the battery is avoided, and the photoelectric conversion efficiency of the thin solar cell is maintained. Secondly, the manufacturing method of the thin solar cell proposed by the present invention can be directly oxidized at the time of depositing the P-type base layer to form a thin film oxide on the electrode layer, thereby having the advantages of a fresh process and a cost. Moreover, the method for fabricating the thin film solar cell of the present invention can be integrated with the existing solar cell process, and the process is simple and can effectively improve the component performance of the solar cell. The present invention has been described above with reference to the preferred embodiments thereof, and is not intended to limit the scope of the present invention, and those skilled in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The patent protection scope of the invention is subject to the definition of the scope of the patent application attached to the specification. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a flow chart showing the steps of a method of manufacturing a thin film solar cell according to an embodiment of the present invention. 201244133 Fig. 2 is a cross-sectional structural view of a thin film solar cell according to an embodiment of the present invention. Figure 3 is a cross-sectional structural view of a thin film solar cell according to still another embodiment of the present invention. [Major component symbol description] 100 Thin film solar cell 102 Substrate 104 First electrode layer 106 Oxide layer 108. Photoelectric conversion layer 110 Second electrode layer 1081 P type semiconductor layer 1082 Intrinsic layer 1083 N type semiconductor layer
S 12S 12
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100115258A TW201244133A (en) | 2011-04-29 | 2011-04-29 | Thin film solar cell and fabricating method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100115258A TW201244133A (en) | 2011-04-29 | 2011-04-29 | Thin film solar cell and fabricating method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201244133A true TW201244133A (en) | 2012-11-01 |
Family
ID=48093990
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100115258A TW201244133A (en) | 2011-04-29 | 2011-04-29 | Thin film solar cell and fabricating method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW201244133A (en) |
-
2011
- 2011-04-29 TW TW100115258A patent/TW201244133A/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10535791B2 (en) | 2-terminal metal halide semiconductor/C-silicon multijunction solar cell with tunnel junction | |
JP6788144B1 (en) | Solar cell module, solar cell and its manufacturing method | |
TWI355752B (en) | Solar cell | |
US10084107B2 (en) | Transparent conducting oxide for photovoltaic devices | |
PT2208238E (en) | Low-cost solar cells and methods for their production | |
TWI685117B (en) | Passivation of light-receiving surfaces of solar cells with crystalline silicon and a method of facricating the solar cells | |
US20110203650A1 (en) | Optical converter device and electronic equipment including the optical converter device | |
KR101886818B1 (en) | Method for manufacturing of heterojunction silicon solar cell | |
TW201316538A (en) | A method for fabricating a solar cell | |
WO2012177384A1 (en) | Ohmic contact between thin film solar cell and carbon-based transparent electrode | |
TW201208095A (en) | Photovoltaic device and method of making same | |
CN103681903A (en) | Solar cell | |
CN117059691A (en) | Heterojunction solar cell | |
CN103563091A (en) | Tandem solar cell with improved tunnel junction | |
TW200952051A (en) | Backside electrode layer and fabricating method thereof | |
JP2012064990A (en) | Photoelectric conversion device using semiconductor nano materials and manufacturing method thereof | |
US20140048130A1 (en) | Crystalline silicon solar cell water, and solar cell employing the same | |
Srivastava et al. | Nanostructured black silicon for efficient thin silicon solar cells: potential and challenges | |
JP4864077B2 (en) | Photoelectric conversion device and manufacturing method thereof | |
KR20200061479A (en) | Silicon solar cell including a carrier seletive thin layer and method of manufacturing the same | |
TW201222639A (en) | Method for producing a semiconductor device and a semiconductor device | |
KR20120020294A (en) | Heterojunction solar cell and method for manufacturing the same | |
TWI483405B (en) | Photovoltaic cell and method of manufacturing a photovoltaic cell | |
TW201244133A (en) | Thin film solar cell and fabricating method thereof | |
JP4441298B2 (en) | Photoelectric conversion device and manufacturing method thereof |