TW201243550A - Heat dissipation module of electronic device - Google Patents

Heat dissipation module of electronic device Download PDF

Info

Publication number
TW201243550A
TW201243550A TW100114478A TW100114478A TW201243550A TW 201243550 A TW201243550 A TW 201243550A TW 100114478 A TW100114478 A TW 100114478A TW 100114478 A TW100114478 A TW 100114478A TW 201243550 A TW201243550 A TW 201243550A
Authority
TW
Taiwan
Prior art keywords
heat
heat dissipation
dissipation module
base
electronic component
Prior art date
Application number
TW100114478A
Other languages
Chinese (zh)
Inventor
Chun-Min Hung
Liang-Hao Ye
Original Assignee
Liang-Hao Ye
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liang-Hao Ye filed Critical Liang-Hao Ye
Priority to TW100114478A priority Critical patent/TW201243550A/en
Publication of TW201243550A publication Critical patent/TW201243550A/en

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

A heat dissipation module of an electronic device is described. The heat dissipation module includes a heat dissipation device, a heat conduction mount and a fan device. The heat dissipation device includes a hollow pillar and a plurality of heat dissipation fins. An inner surface of the hollow pillar is set with a thread trench structure. The heat dissipation fins are disposed on an outer surface of the hollow pillar. The heat conduction mount includes a heat conduction pillar and a heat conduction pipe. One side of the outer surface of the heat conduction pillar is set with a trench structure. The heat conduction pipe spirally winds around the outer surface of the heat conduction pillar and can be embedded with the thread trench structure to fix the heat conduction pillar in the hollow pill. The fan device has a protrusion structure, wherein the protrusion structure can be embedded with the trench structure to fix the fan device on the heat conduction mount.

Description

201243550 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種散熱模組,且特別是有關於一種 電子元件之散熱模組。 【先前技術】 中央處理器(CPU)等高功率的電子元件在運轉時會釋 放出大量的熱。這些熱量若無法加以有效散除,將會導致 電子元件之溫度迅速上升,進而造成電子元件故障,甚至 毀壞。 有鑑於此,目前通常會在電子元件上安裝散熱裝置, 以幫助電子元件散熱。常見之散熱裝置大都是利用鋁擠成 型技術所製成的一體成型結構。這類的散熱裝置主要包含 導熱基座與數個散熱鰭片等二部分,其中這些散熱鰭片自 導熱基座的頂面延伸而出,且均勻地排列在導熱基座外周 緣。設置散熱裝置時,係將其導熱基座的底部與電子元件 直接接觸。因此,電子元件運轉時,導熱基座可吸收電子 元件所產生之熱量,並將所吸收之熱量傳遞給設置於其頂 面周緣之散熱鰭片,再利用具有大表面積之散熱鰭片與空 氣的接觸,藉由空氣進一步將熱傳導至電子元件之外界, 來達到散熱的效果。 然而,隨著電子技術的日新月異,電子元件的工作速 度愈來愈快,再加上電子元件的尺寸也日益縮減,使得其 内部構件的密集度大幅增加,這些因素不僅會導致電子元 件運轉時所產生之熱量大量增加,且電子元件内部所積聚 201243550 的熱量也不易散除。其次,散熱裝置之導熱基座的材料為 銘,而銘的導熱率相對較低,因此無法滿足現今高功率電 子元件的散熱需求。 再者,傳統散熱裝置大都為一體成型的結構,而且這 些散熱裝置通常係利用散熱膏來安裝於電子元件上。然 而,散熱膏具有一定的黏著力,且散熱膏會隨時間而凝固 硬化。因此,這樣的散熱裝置安裝方式不管是安裝或是拆 卸上,均相當不便利,特別是可能在拆卸時造成電子元件 的損傷。 目前另一種常見的散熱裝置安裝方式係利用螺絲等固 定元件,來將散熱裝置固定在電子元件上。然而,這樣的 安裝方式需使用螺絲起子等工具,才能安裝與拆卸散熱裝 置,因此便利性不佳,常會造成使用者的不方便。 特別是,為了提升傳統散熱裝置之散熱效能,通常在 金屬散熱構件上額外設置風扇,而此風扇一般也是利用螺 絲等鎖固元件將其固定在金屬散熱構件上。當電子元件運 轉一段時間後,灰塵的累積,會導致散熱構件與風扇的導 熱率大幅下降。因此,需常常將風扇與散熱構件拆下來, 以進行清潔處理。如此一來,使用螺絲起子等工具來安裝 與拆卸散熱構件與風扇所造成的不便利性與所耗費的時間 更為嚴重。 因此,亟需一種可輕易安裝與拆卸之電子元件的散熱 裝置,以提升使用便利性。 【發明内容】 201243550 因此,本發明之一態樣就是在提供一種電子元件之散 熱模組,其包含散熱裝置與導熱基座所組成之散熱組、以 及風扇裝置,故不僅可快速傳導熱量來減少熱量在電子元 件附近聚積,更因為風扇裝置的輔助散熱,而可大幅地提 高整體散熱效率。 本發明之另一態樣是在提供一種電子元件之散熱模 組,其導熱基座之導熱管係以螺旋方式繞設於其導熱柱之 外侧面上,而可與散熱裝置之空心柱體内側面的螺紋結構 互相卡合。因此,可輕易地結合和拆卸導熱基座與散熱裝 置。 本發明之又一態樣是在提供一種電子元件之散熱模 組,其導熱基座之導熱柱的一端外側面設有溝槽結構,而 可與風扇裝置之突出結構互相卡合。因此,可無需藉助工 具,即可輕易且快速地將風扇裝置安裝在導熱基座、或自 導熱基座上拆下。 根據本發明之上述目的,提出一種電子元件之散熱模 組,包含一散熱裝置、一導熱基座以及一風扇裝置。此散 熱裝置包含一空心柱體以及複數個散熱鰭片。此空心柱體 之内側面設有一螺紋溝槽結構。而這些散熱鰭片設於空心 柱體之外側面上。前述之導熱基座包含一導熱柱以及一導 熱管。其中,導熱柱之外侧面之一端設有一溝槽結構。此 外,導熱管螺旋繞設於導熱柱之外侧面上,且可與前述之 螺紋溝槽結構互相卡合,而使導熱柱固定在空心柱體中。 前述之風扇裝置具有一突出結構,其中此突出結構可與前 述之溝槽結構互相卡合,而使風扇裝置固定在導熱基座上。 201243550 依據本發明之一實施例,上述之散熱裝置之材料包含 銅、鋁、或上述金屬之組合。 依據本發明之另一實施例,上述之空心柱體為圓形空 心柱、矩形空心柱、橢圓形空心柱、或多邊形空心柱,且 此空心柱體之内部係一圓形通孔。 依據本發明之又一實施例,上述之散熱裝置為一體成 型結構。 依據本發明之再一實施例,上述之導熱基座更包含一 底座,且導熱柱之另一端固定在此底座上。 依據本發明之再一實施例,上述之導熱基座之材料包 含銅或其合金。 依據本發明之再一實施例,上述之導熱基座為一體成 型結構。 依據本發明之再一實施例,上述之風扇裝置包含一風 扇、與一結合件設於此風扇之下。在一例子中,結合件具 有一孔洞以容置導熱柱之一部分,且上述之突出結構係設 於結合件之孔洞之内側面。在另一例子中,前述結合件之 材料可為塑膠。 【實施方式】 請參照第1圖,其係繪示依照本發明一實施方式的一 種散熱模組的剖面圖。在本實施方式中,散熱模組100可 安裝在例如中央處理器等電子元件上。散熱模組100主要 包含導熱基座200、散熱裝置300以及風扇裝置400。 請先參照第2圖,其係繪示依照本發明一實施方式的 201243550 一種導熱基座的側視圖。導熱基座200主要包 與導熱管川。導熱柱212較佳可為圓柱;;=:、導^2 212之材料較佳可選擇高導熱率材料’例如銅或銅合金。 導熱柱212之外侧面218的一端更設有溝槽結構216,其 中此溝槽結構216可包含一或多個溝槽。導熱管214從導 熱柱212之一端朝另一端之方向以螺旋彎曲的方式,繞設 在導熱柱212之外側面218上。其中,導熱管214係設置 在導熱柱212之溝槽結構216之下方。如此一來,導熱管 214可在導熱柱212之外側面218上形成一螺紋結構。導 熱管214之材料較佳可選擇高導熱率材料,例如銅或銅合 金。 在一實施例中,導熱基座200更可根據裝置需求,而 選擇性地包含底座210。導熱柱212之一端面接合固定在 底座210上’其中底座210與溝槽結構216位於導熱柱212 之相對二端。底座210之材料較佳可選擇高導熱率材料, 例如銅或銅合金。因此,導熱基座2〇〇之材料可包含銅或 其合金。 在一實施例中,導熱基座200可為一體成型結構,亦 即底座210、導熱柱212與導熱管214之組合為一體之結 構。在另一實施例中,導熱基座200可非為一體成型之結 構,亦即底座210、導熱柱212與導熱管214為彼此獨立 之二個構件,而導熱基座200為底座210、導熱柱212與 導熱管214等三構件所拼合而成。在又一實施例中,底座 210、導熱柱212與導熱管214中之其中二者為一體之結 構,而另一者則為獨立於此二者之一體結構的構件。 201243550 請參照第3A圖與第3B圖,其係分別繪示依照本發明 一實施方式的一種散熱裝置的側視圖與上視圖。散熱裝置 300主要包含空心柱體310與數個散熱鰭片312。散熱裝置 300之材料可例如為銅、鋁或其組合,亦即空心柱體310 與散熱鰭片312之材料可例如為銅、鋁或其組合。散熱鰭 片312可均勻地接合在空心柱體310之外側面316上,且 呈放射狀,如第3B圖所示。在一實施例中,散熱裝置300 可為一體成型結構,亦即空心柱體310與散熱鰭片312之 組合為一體之結構。在另一實施例中,散熱裝置300非為 一體成型結構,亦空心柱體310與散熱鰭片312為彼此獨 立之二構件,而散熱裝置300為空心柱體310與散熱鰭片 312拼合而成。 在一實施例中,如第3B圖所示,空心柱體310為圓形 空心柱。在其他實施例中,空心柱體310可為矩形空心柱、 橢圓形空心柱、或多邊形空心柱。空心柱體310之内側面 320設有螺紋溝槽結構314,其中此螺紋溝槽結構314與導 熱管214在導熱柱212之外側面218上所形成之螺紋結構 對應。如此一來,利用旋入方式,導熱柱212之外側面218 上的導熱管可214可與空心柱體310之内側面320的螺紋 溝槽結構314互相卡合,藉此可使導熱柱212固定在空心 柱體310中。因此,在本實施方式中,空心柱體310之内 部較佳為圓形通孔318,以利導熱基座200之導熱柱212 與空心柱體310結合。 在本實施方式中,當導熱基座之導熱柱212鎖設於散 熱裝置300之空心柱體310中時,導熱柱212之溝槽結構 201243550 216突出而暴露於散熱裝置300之空心柱體310外,以利 後續導熱柱212與風扇裝置400的結合,如第1圖所示。 請參照第4圖,其係繪示依照本發明一實施方式的一 種風扇裝置的立體圖。風扇裝置400主要包含風扇410與 結合件412,其中結合件412接合於風扇410之底面下。 在一實施例中’結合件412可為風扇410之馬達底座的一 部分。結合件412具有孔洞416 ’其中孔洞416適用以容 置導熱基座200之導熱柱212的頂部。結合件412之孔洞 416的内側面418更突設有突出結構414,其中此突出結構 414與導熱柱212之溝槽結構216相互對應。如此一來, 藉由結合件412之突出結構414與導熱柱212之溝槽結構 216的互相卡合,可使整個風扇裝置4〇〇固定在導熱基座 200之導熱柱212上’如第1圖所示。在一較佳實施例中, 結合件412之材料可為塑膠’以利結合件412與導熱柱212 之結合。 請再次參照第1圖,組裝本實施方式之散熱模組1〇〇 時’可先以旋入方式,利用導熱柱212之外侧面218上的 導熱管214與空心柱體310之内侧面320上的螺紋溝槽結 構314的卡合,而將導熱基座200之導熱柱212穿設於散 熱装置300之空心柱體310的圓形通孔318中。再利用結 合件412之孔洞416之内侧面418上的突出結構414與導 熱柱212突出於散熱裝置300的溝槽結構216的相互卡 合,而將風扇裝置400裝設於導熱基座200上,即可輕易 完成本實施方式之散熱模組100的組裝。 由上述本發明之實施方式可知,本發明之一優點就是 201243550 因為本發明之散熱模組包含散熱裝置與導熱基座所組成之 散熱組、以及風扇裝置,因此不僅可快速傳導熱量來減少 熱量在電子元件附近聚積,更因為風扇裝置的輔助散熱, 而可大幅地提高整體散熱效率。 由上述本發明之實施方式可知,本發明之另一優點就 是因為本發明之散熱模組之導熱基座的導熱管係以螺旋方 式繞設於其導熱柱之外侧面上,而可與散熱裝置之空心柱 體内侧面的螺紋結構互相卡合。因此,可輕易地結合和拆 卸導熱基座與散熱裝置。 由上述本發明之實施方式可知,本發明之又一優點就 是因為本發明之散熱模組之導熱基座之導熱柱的一端外側 面設有溝槽結構,而可與風扇裝置之突出結構互相卡合。 因此,可無需藉助工具,即可輕易且快速地將風扇裝置安 裝在導熱基座、或自導熱基座上拆下 雖然本發明已以實施例揭露如上,然其並非用以限定 本發明,任何在此技術領域中具有通常知識者,在不脫離 本發明之精神和範圍内,當可作各種之更動與潤飾,因此 本發明之保護範圍當視後附之申請專利範圍所界定者為 準。 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、優點與實施例 能更明顯易懂,所附圖式之說明如下·· 第1圖係繪示依照本發明一實施方式的一種散熱模組 的剖面圖。 201243550 第2圖係繪示依照本發明一實施方式的一種導熱基座 的側視圖。 第3A圖係繪示依照本發明一實施方式的一種散熱裝 置的側視圖。 第3B圖係繪示依照本發明一實施方式的一種散熱裝 置的上視圖。 第4圖係繪示依照本發明一實施方式的一種風扇裝置 的立體圖。 【主要元件符號說明】 100 : 散熱模組 200 : 導熱基座 210 : 底座 212 : 導熱柱 214 : 導熱管 216 : 溝槽結構 218 : 外側面 300 : 散熱裝置 310 : 空心柱體 312 : 散熱鰭片 314 : 螺紋溝槽結構 316 : 外側面 318 : 圓形通孔 320 : 内側面 400 : 風扇裝置 410 : 風扇 412 : 結合件 414 : 突出結構 416 : 孔洞 418 : 内側面201243550 VI. Description of the Invention: [Technical Field] The present invention relates to a heat dissipation module, and more particularly to a heat dissipation module for an electronic component. [Prior Art] High-power electronic components such as a central processing unit (CPU) release a large amount of heat during operation. If this heat cannot be effectively dissipated, the temperature of the electronic components will rise rapidly, causing the electronic components to malfunction or even be destroyed. In view of this, heat sinks are usually installed on electronic components to help dissipate heat from electronic components. Common heat sinks are mostly one-piece structures made using aluminum extrusion technology. The heat dissipating device mainly comprises two parts, a heat conducting base and a plurality of heat dissipating fins, wherein the heat dissipating fins extend from the top surface of the heat conducting base and are evenly arranged on the outer periphery of the heat conducting base. When the heat sink is set, the bottom of its thermal base is in direct contact with the electronic components. Therefore, when the electronic component is in operation, the heat-conducting base can absorb the heat generated by the electronic component, and transfer the absorbed heat to the heat-dissipating fins disposed on the periphery of the top surface thereof, and then use the heat-dissipating fins and air having a large surface area. Contact, through the air to further conduct heat to the outer boundary of the electronic component, to achieve the effect of heat dissipation. However, with the rapid development of electronic technology, the speed of electronic components is getting faster and faster, and the size of electronic components is shrinking, which increases the density of internal components. These factors not only cause the electronic components to operate. The amount of heat generated is greatly increased, and the heat accumulated in the electronic components of 201243550 is not easily dissipated. Secondly, the material of the heat-conducting base of the heat sink is Ming, and the thermal conductivity of Ming is relatively low, so it cannot meet the heat-dissipation requirements of today's high-power electronic components. Moreover, conventional heat sinks are mostly integrally formed structures, and these heat sinks are usually mounted on electronic components using a heat sink. However, the thermal grease has a certain adhesion, and the thermal grease solidifies and hardens over time. Therefore, such a heat sink mounting method is relatively inconvenient whether it is mounted or removed, and in particular, it may cause damage to electronic components during disassembly. Another common type of heat sink installation is to use a fixing component such as a screw to fix the heat sink to the electronic component. However, such a mounting method requires a screwdriver or the like to install and disassemble the heat dissipating device, so that the convenience is not good and the user's inconvenience is often caused. In particular, in order to improve the heat dissipation performance of the conventional heat sink, an additional fan is usually provided on the metal heat dissipating member, and the fan is generally fixed to the metal heat dissipating member by a locking member such as a screw. When the electronic components are transferred for a period of time, the accumulation of dust causes the heat transfer rate of the heat dissipating members and the fan to drop drastically. Therefore, the fan and the heat dissipating member are often removed for cleaning. As a result, the inconvenience and time consuming of installing and removing the heat dissipating member and the fan using a tool such as a screwdriver are more serious. Therefore, there is a need for a heat sink that can be easily mounted and disassembled for ease of use. SUMMARY OF THE INVENTION 201243550 Therefore, an aspect of the present invention provides a heat dissipation module for an electronic component, which comprises a heat dissipation unit composed of a heat dissipation device and a heat conduction base, and a fan device, so that heat can be quickly transmitted to reduce heat. Heat accumulates near the electronic components, and because of the auxiliary heat dissipation of the fan device, the overall heat dissipation efficiency can be greatly improved. Another aspect of the present invention provides a heat dissipating module for an electronic component, wherein a heat conducting tube of the heat conducting base is spirally disposed on an outer side of the heat conducting column, and is disposed in a hollow cylinder of the heat dissipating device. The threaded structures on the sides engage each other. Therefore, the heat transfer base and the heat sink can be easily combined and disassembled. According to still another aspect of the present invention, there is provided a heat dissipating module for an electronic component, wherein a heat conducting column of the heat conducting base has a groove structure on an outer side surface thereof, and is engageable with a protruding structure of the fan device. Therefore, the fan unit can be easily and quickly mounted on the heat transfer base or removed from the heat transfer base without the aid of a tool. In accordance with the above objects of the present invention, a heat dissipation module for an electronic component is provided, comprising a heat sink, a thermally conductive base, and a fan assembly. The heat sink comprises a hollow cylinder and a plurality of heat sink fins. The inner side of the hollow cylinder is provided with a threaded groove structure. These fins are disposed on the outer side of the hollow cylinder. The heat conducting base comprises a heat conducting column and a heat conducting tube. Wherein, one end of the outer side of the heat conducting column is provided with a groove structure. In addition, the heat pipe is spirally wound on the outer side of the heat conducting column, and can be engaged with the thread groove structure described above to fix the heat conducting column in the hollow cylinder. The aforementioned fan unit has a projecting structure in which the projecting structure can be engaged with the groove structure as described above to fix the fan unit to the heat conducting base. 201243550 According to an embodiment of the invention, the material of the heat sink comprises copper, aluminum, or a combination of the above metals. According to another embodiment of the present invention, the hollow cylinder is a circular hollow column, a rectangular hollow column, an elliptical hollow column, or a polygonal hollow column, and the inside of the hollow cylinder is a circular through hole. According to still another embodiment of the present invention, the heat sink is an integral structure. In accordance with still another embodiment of the present invention, the thermally conductive base further includes a base, and the other end of the heat conducting post is secured to the base. According to still another embodiment of the present invention, the material of the thermally conductive base comprises copper or an alloy thereof. According to still another embodiment of the present invention, the thermally conductive base is of a unitary structure. According to still another embodiment of the present invention, the fan device includes a fan and a coupling member disposed under the fan. In one example, the coupling member has a hole for receiving a portion of the thermally conductive post, and the protruding structure is disposed on the inner side of the aperture of the coupling member. In another example, the material of the aforementioned bonding member may be plastic. Embodiments Please refer to FIG. 1 , which is a cross-sectional view showing a heat dissipation module according to an embodiment of the present invention. In the present embodiment, the heat dissipation module 100 can be mounted on an electronic component such as a central processing unit. The heat dissipation module 100 mainly includes a heat conduction base 200, a heat dissipation device 300, and a fan device 400. Please refer to FIG. 2, which is a side view of a thermally conductive base of 201243550 in accordance with an embodiment of the present invention. The heat transfer base 200 is mainly composed of a heat transfer tube. The thermally conductive pillars 212 are preferably cylindrical;; =:, the material of the cathode 212 is preferably selected from a high thermal conductivity material such as copper or a copper alloy. One end of the outer side 218 of the thermally conductive post 212 is further provided with a trench structure 216, wherein the trench structure 216 can include one or more trenches. The heat pipe 214 is spirally bent from one end to the other end of the heat conducting column 212 so as to be wound around the outer side surface 218 of the heat conducting column 212. The heat pipe 214 is disposed below the groove structure 216 of the heat conducting column 212. As such, the heat pipe 214 can form a threaded structure on the outer side 218 of the heat conducting post 212. The material of the heat transfer tube 214 is preferably selected from a high thermal conductivity material such as copper or copper alloy. In an embodiment, the thermally conductive base 200 can optionally include a base 210 depending on the needs of the device. One end face of the heat conducting post 212 is fixedly coupled to the base 210. The base 210 and the groove structure 216 are located at opposite ends of the heat conducting post 212. The material of the base 210 is preferably selected from a high thermal conductivity material such as copper or a copper alloy. Therefore, the material of the thermally conductive base 2 can comprise copper or an alloy thereof. In one embodiment, the thermally conductive base 200 can be an integrally formed structure, that is, a structure in which the base 210, the thermally conductive column 212, and the heat transfer tube 214 are combined. In another embodiment, the heat-conducting base 200 may not be an integrally formed structure, that is, the base 210, the heat-conducting column 212 and the heat-conducting tube 214 are two independent components, and the heat-conductive base 200 is a base 210 and a heat-conducting column. 212 is formed by combining three components such as a heat pipe 214. In still another embodiment, the base 210, the thermally conductive post 212 and the heat transfer tube 214 are integrated into one another, and the other is a member that is separate from the one of the two. 201243550 Please refer to FIGS. 3A and 3B, which are respectively a side view and a top view of a heat sink according to an embodiment of the present invention. The heat sink 300 mainly includes a hollow cylinder 310 and a plurality of heat dissipation fins 312. The material of the heat sink 300 may be, for example, copper, aluminum or a combination thereof, that is, the material of the hollow cylinder 310 and the heat dissipation fins 312 may be, for example, copper, aluminum or a combination thereof. The heat sink fins 312 are evenly bonded to the outer side 316 of the hollow cylinder 310 and are radially as shown in Fig. 3B. In one embodiment, the heat dissipating device 300 can be an integrally formed structure, that is, a combination of the hollow cylinder 310 and the heat dissipating fins 312. In another embodiment, the heat dissipating device 300 is not an integrally formed structure, and the hollow cylinder 310 and the heat dissipating fins 312 are two independent components, and the heat dissipating device 300 is formed by combining the hollow cylinder 310 and the heat dissipating fins 312. . In one embodiment, as shown in Figure 3B, the hollow cylinder 310 is a circular hollow column. In other embodiments, the hollow cylinder 310 can be a rectangular hollow column, an elliptical hollow column, or a polygonal hollow column. The inner side 320 of the hollow cylinder 310 is provided with a threaded groove structure 314, wherein the threaded groove structure 314 corresponds to a threaded structure formed by the heat transfer tube 214 on the outer side 218 of the heat transfer post 212. In this way, the heat transfer tube 214 on the outer side 218 of the heat transfer column 212 can be engaged with the thread groove structure 314 of the inner side surface 320 of the hollow cylinder 310 by screwing in, thereby fixing the heat transfer column 212. In the hollow cylinder 310. Therefore, in the present embodiment, the inner portion of the hollow cylinder 310 is preferably a circular through hole 318 for bonding the heat conducting column 212 of the heat conducting base 200 to the hollow cylinder 310. In the present embodiment, when the heat conducting column 212 of the heat conducting base is locked in the hollow cylinder 310 of the heat sink 300, the groove structure 201243550 216 of the heat conducting column 212 protrudes and is exposed to the hollow cylinder 310 of the heat sink 300. In order to facilitate the combination of the subsequent heat conducting column 212 and the fan device 400, as shown in FIG. Referring to Figure 4, there is shown a perspective view of a fan unit in accordance with an embodiment of the present invention. The fan unit 400 mainly includes a fan 410 and a coupling member 412, wherein the coupling member 412 is engaged under the bottom surface of the fan 410. In one embodiment, the bond 412 can be part of the motor base of the fan 410. The coupling member 412 has a hole 416' in which the hole 416 is adapted to receive the top of the thermally conductive post 212 of the thermally conductive base 200. The inner side surface 418 of the hole 416 of the coupling member 412 further protrudes from the protruding structure 414, wherein the protruding structure 414 and the groove structure 216 of the heat conducting column 212 correspond to each other. In this way, by engaging the protruding structure 414 of the bonding member 412 and the groove structure 216 of the heat conducting column 212, the entire fan device 4 can be fixed on the heat conducting column 212 of the heat conducting base 200. The figure shows. In a preferred embodiment, the material of the coupling member 412 can be plastic to facilitate the combination of the coupling member 412 and the thermally conductive post 212. Referring to FIG. 1 again, when assembling the heat dissipation module 1 of the present embodiment, the heat transfer tube 214 on the outer side surface 218 of the heat transfer column 212 and the inner side surface 320 of the hollow cylinder 310 may be firstly screwed in. The threaded groove structure 314 is engaged, and the heat conducting column 212 of the heat conducting base 200 is inserted into the circular through hole 318 of the hollow cylinder 310 of the heat sink 300. The protruding device 414 on the inner side surface 418 of the hole 416 of the bonding member 412 is engaged with the groove structure 216 of the heat conducting column 212 protruding from the heat dissipating device 300, and the fan device 400 is mounted on the heat conducting base 200. The assembly of the heat dissipation module 100 of the present embodiment can be easily accomplished. According to the embodiment of the present invention, one of the advantages of the present invention is 201243550. Since the heat dissipation module of the present invention comprises a heat dissipation unit composed of a heat dissipation device and a heat conduction base, and a fan device, not only can the heat be quickly transferred to reduce heat. Accumulation near the electronic components, and because of the auxiliary heat dissipation of the fan device, can greatly improve the overall heat dissipation efficiency. According to the embodiment of the present invention, another advantage of the present invention is that the heat conduction tube of the heat dissipation base of the heat dissipation module of the present invention is spirally arranged on the outer side of the heat conduction column, and can be combined with the heat dissipation device. The threaded structures on the sides of the hollow cylinders are engaged with each other. Therefore, the heat transfer base and the heat sink can be easily combined and removed. According to the embodiment of the present invention, another advantage of the present invention is that the heat transfer column of the heat-conducting base of the heat-dissipating module of the present invention has a groove structure on one end of the heat-conducting column, and can be mutually stuck with the protruding structure of the fan device. Hehe. Therefore, the fan device can be easily and quickly mounted on the thermally conductive base or removed from the thermally conductive base without the aid of a tool. Although the invention has been disclosed above by way of example, it is not intended to limit the invention, any It is to be understood that the scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; A cross-sectional view of a heat dissipation module. 201243550 Figure 2 is a side elevational view of a thermally conductive base in accordance with an embodiment of the present invention. Fig. 3A is a side view showing a heat dissipating device in accordance with an embodiment of the present invention. Figure 3B is a top plan view of a heat dissipating device in accordance with an embodiment of the present invention. Fig. 4 is a perspective view showing a fan unit according to an embodiment of the present invention. [Main component symbol description] 100 : Thermal module 200 : Thermal base 210 : Base 212 : Thermal column 214 : Heat pipe 216 : Groove structure 218 : Outer side 300 : Heat sink 310 : Hollow cylinder 312 : Heat sink fin 314 : Threaded groove structure 316 : Outer side 318 : Round through hole 320 : Inner side 400 : Fan device 410 : Fan 412 : Joint 414 : Projection structure 416 : Hole 418 : Inner side

S 12S 12

Claims (1)

201243550 七、申請專利範圍: 1. 一種電子元件之散熱模組,包含: 一散熱裝置,包含: 一空心柱體,其中該空心柱體之一内側面設有一 螺紋溝槽結構;以及 複數個散熱鰭片,設於該空心柱體之一外側面上; 一導熱基座,包含: 一導熱柱,其中該導熱柱之一外側面之一端設有 一溝槽結構;以及 一導熱管,螺旋繞設於該導熱柱之該外側面上, 且可與該螺紋溝槽結構互相卡合,而使該導熱柱固定 在該空心柱體中;以及 一風扇裝置,具有一突出結構可與該溝槽結構互相卡 合,而使該風扇裝置固定在該導熱基座上。 2. 如請求項1所述之電子元件之散熱模組,其中該散 熱裝置之材料包含銅、鋁或其組合。 3. 如請求項1所述之電子元件之散熱模組,其中該空 心柱體為一圓形空心柱、一矩形空心柱、一橢圓形空心柱、 或一多邊形空心柱,且該空心柱體之内部係一圓形通孔。 4. 如請求項1所述之電子元件之散熱模組,其中該散 熱裝置係一一體成型結構。 S 13 201243550 5.如請求項1所述之電子元件之散熱模組,其中該導 熱基座更包含一底座,且該導熱柱之另一端固定在該底座 上。 6. 如請求項1所述之電子元件之散熱模組,其中該導 熱基座之材料包含銅或其合金。 7. 如請求項1所述之電子元件之散熱模組,其中該導 熱基座係一一體成型結構。 8. 如請求項1所述之電子元件之散熱模組,其中該風 扇裝置包含一風扇、與一結合件設於該風扇之下。 9. 如請求項8所述之電子元件之散熱模組,其中該結 合件具有一孔洞以容置該導熱柱之一部分,且該突出結構 設於該結合件之該孔洞之一内側面。 10. 如請求項8所述之電子元件之散熱模組,其中該 結合件之材料為塑膠。201243550 VII. Patent application scope: 1. A heat dissipation module for an electronic component, comprising: a heat dissipation device comprising: a hollow cylinder, wherein a hollow groove body has a thread groove structure on an inner side; and a plurality of heat dissipation a fin disposed on an outer side surface of the hollow cylinder; a thermally conductive base comprising: a heat conducting column, wherein one of the outer sides of the heat conducting column is provided with a groove structure; and a heat conducting tube, spirally wound And the fan tube structure is fixed to the hollow cylinder; and a fan device has a protruding structure and the groove structure The fan devices are engaged with each other to fix the fan device to the heat conducting base. 2. The heat dissipation module of the electronic component of claim 1, wherein the material of the heat sink comprises copper, aluminum or a combination thereof. 3. The heat dissipation module of the electronic component of claim 1, wherein the hollow cylinder is a circular hollow column, a rectangular hollow column, an elliptical hollow column, or a polygonal hollow column, and the hollow cylinder The inside is a circular through hole. 4. The heat dissipation module of the electronic component of claim 1, wherein the heat dissipation device is an integrally formed structure. The heat dissipation module of the electronic component of claim 1, wherein the heat conduction base further comprises a base, and the other end of the heat conduction column is fixed on the base. 6. The heat dissipation module of the electronic component of claim 1, wherein the material of the heat conduction base comprises copper or an alloy thereof. 7. The heat dissipation module of the electronic component of claim 1, wherein the heat conduction base is an integrally formed structure. 8. The heat dissipation module of the electronic component of claim 1, wherein the fan device comprises a fan and a coupling member is disposed under the fan. 9. The heat dissipation module of the electronic component of claim 8, wherein the bonding member has a hole for receiving a portion of the heat conducting post, and the protruding structure is disposed on an inner side of the hole of the bonding member. 10. The heat dissipation module of the electronic component of claim 8, wherein the material of the bonding component is plastic.
TW100114478A 2011-04-26 2011-04-26 Heat dissipation module of electronic device TW201243550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100114478A TW201243550A (en) 2011-04-26 2011-04-26 Heat dissipation module of electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100114478A TW201243550A (en) 2011-04-26 2011-04-26 Heat dissipation module of electronic device

Publications (1)

Publication Number Publication Date
TW201243550A true TW201243550A (en) 2012-11-01

Family

ID=48093876

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100114478A TW201243550A (en) 2011-04-26 2011-04-26 Heat dissipation module of electronic device

Country Status (1)

Country Link
TW (1) TW201243550A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI557543B (en) * 2013-12-30 2016-11-11 鴻海精密工業股份有限公司 Cooling module
CN108668509A (en) * 2018-06-14 2018-10-16 浙江大学山东工业技术研究院 The cooling device of cabinet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI557543B (en) * 2013-12-30 2016-11-11 鴻海精密工業股份有限公司 Cooling module
CN108668509A (en) * 2018-06-14 2018-10-16 浙江大学山东工业技术研究院 The cooling device of cabinet
CN108668509B (en) * 2018-06-14 2024-03-26 浙江大学山东工业技术研究院 Cooling device of cabinet

Similar Documents

Publication Publication Date Title
US7363966B2 (en) Heat dissipating device
US7870889B2 (en) Heat dissipation device with a heat pipe
US7729119B2 (en) Heat dissipation device
US20120080177A1 (en) High-power finless heat dissipation module
TW200528016A (en) Integrated heat sink assembly
US20120267078A1 (en) Heat dissipation mechanism
US20040118552A1 (en) Heat-dissipating device
TW200836044A (en) Heat-dissipating module
US20060104036A1 (en) Heat dissipating device
TW201213760A (en) Heat dissipation device with multiple heat pipes
US6992890B2 (en) Heat sink
US6532141B1 (en) Heat-dissipating device for electronic component
JP2007281100A (en) Heat-sink fan unit
US20070119583A1 (en) Heat sink for distributing a thermal load
TW201243550A (en) Heat dissipation module of electronic device
US6816374B2 (en) High efficiency heat sink/air cooler system for heat-generating components
US20100008045A1 (en) Heat sink
JP2010129593A (en) Heat sink
TW201324095A (en) Heat dissipation device and interface card with the same
JP3939868B2 (en) Electronic element cooling structure
US20110000648A1 (en) Heat dissipation module
US20130168061A1 (en) Heat dissipation assembly
TWI497027B (en) Heat sink and fixing component thereof
JP3168842U (en) Heat dissipation module structure
JP2006032941A (en) Heat dissipation device