TW201240648A - Bone-density measuring device - Google Patents

Bone-density measuring device Download PDF

Info

Publication number
TW201240648A
TW201240648A TW101108445A TW101108445A TW201240648A TW 201240648 A TW201240648 A TW 201240648A TW 101108445 A TW101108445 A TW 101108445A TW 101108445 A TW101108445 A TW 101108445A TW 201240648 A TW201240648 A TW 201240648A
Authority
TW
Taiwan
Prior art keywords
average
bone
bone density
soft tissue
local
Prior art date
Application number
TW101108445A
Other languages
Chinese (zh)
Other versions
TWI507175B (en
Inventor
Takahiro Miyamoto
Original Assignee
Hitachi Aloka Medical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Aloka Medical Ltd filed Critical Hitachi Aloka Medical Ltd
Publication of TW201240648A publication Critical patent/TW201240648A/en
Application granted granted Critical
Publication of TWI507175B publication Critical patent/TWI507175B/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/46Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/46Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient
    • A61B6/467Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient characterised by special input means
    • A61B6/469Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient characterised by special input means for selecting a region of interest [ROI]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/505Clinical applications involving diagnosis of bone

Abstract

In the present invention, when a user designates specific pixels in a test subject image using a cursor, correction assistance information for the designated pixels (target pixels) is displayed. The correction assistance information includes information such as the following: information indicating automatic identification results for the target pixels; local bone density at the target pixels and average bone density for a region that includes the target pixels; local attenuation at the target pixels and average attenuation within that region at time of low-energy radiation emission; and local attenuation at the target pixels and average attenuation in that region at time of high-energy X-ray emission. In a case where soft-tissue pixels are designated, in the test subject image, a local soft-tissue evaluation value and an average soft-tissue evaluation value are displayed instead of the local bone density and the average bone density.

Description

201240648 六、發明說明: 【發明所屬之技術領域】 本發明係關於骨密度測量裝置(bone density measurement apparatus),尤其係關於藉由對受測者照射X 射線而顯示骨密度影像的骨密度測量裝置。 【先前技術】 : 骨密度測量裝置係於醫療領域令用以診斷骨質疏鬆症 r (osteoporosis)等之骨疾病的裝置。該骨密度測量裝置係基 於將X射線照射被驗者、檢測透過被驗者的X射線,並藉 由此所獲得的檢測資料,而形成受測者之骨密度影像的裝 置。具體而言,係依據DEXA(雙能量X射線吸收骨密度儀 (dual-energy x-ray absorptiometry))法’交互地照射高能量 X 射線及低能量X射線。特開2009-100943號公報(文獻1) 及特開平6-261894號公報(文獻2)已記載依據DEXA法之 -· 演算方法。測量部位為腰椎、前腕等。骨密度測量裝置亦 ; 稱為骨鹽量測量裝置(bone mineral content measurement apparatus) ° 於腰椎(lumbar spine)之骨密度測量,基於構成骨密度 影像的各晝素之晝素値(骨密度値),於各晝素自動地識別其 係骨晝素(bone pixel)(對應骨的晝素)或者是軟組織晝素 (soft tissue pixel)(僅對應軟組織的晝素)。此時,設定對於 構成腰椎的各椎骨之各別的關心區域(ROI: region of interest)。於各個關心區域内,骨晝素具有的骨密度之平均 3 201240648 値(平均骨密度)被演算。 【發明内容】 [發明所欲解決之問題] 、、餐知技術中,骨畫素與軟組織 有時未必正確。例如,嚴、之自動識別結果 密声;^ 迫骨折部位存在的情形,平均骨 骨折部位的晝素自平佳也疋將構成此壓迫 原本為骨書^有除。於低骨量的情形, 較佳地是將成為誤_象㈣,、^素。於此情形, 管或淋以士纽象的畫素的種別變更為骨畫素。血 1巴、,_化的飾,㈣料㈣ π必要將成為誤認對象的晝素之種別變更二1 素,並將此晝素自骨區域剔除 =更為軟組織晝 成長,於關心區域内,合有炎 ;Θ 、交形或骨之異常 存在的情形,有二 =其叫不必要的部分 以排除。再者H 二平均骨密度演算的對象加 平均骨密度演算的對象加以排要將金屬部分自 演算平均骨密度之前,於骨密 上:觀點’習知於 視觀:二ΓΓ方式進:晝素:::者,目 及剔除需相判行骨晝素之追加 斷上會有各種傾向。因此,支由如此作業時,判 正被冀求。 月旦素之追加及剔除作業 [用以解決問題之手段] 201240648 本發明之目的係藉由觀察顯示骨密度(骨鹽量)分佈的 影像的使用者’進奸晝素之取捨制作業的情形下來協 助其作業。更具體而言’本發明之目的係使骨晝素之取捨 選別判斷能夠迅速且確實地進行。 較佳地,骨密度測量裝置係包含下列各者:受測 =生成部’其係基於對受測者照射X射線所獲得的檢測資 而產生骨鹽之二次元分佈所反映的受測者影像心 處理部’其係對構成前述受測者影像的各晝素,基於該食 ^具有的晝素^應用辨識骨晝素及軟組織畫素的^ Γ者;二:it疋部’其係於前述受測者影像上經由使 ,者•曰疋注目晝素;修正支援部,其係於前述注 衫的情形,對前述制者提供修正纽f訊;紅實行 和其係對前述注目畫素藉由前述使用者給予修正指 處理之結果之修正;其中前述修:支 挺貝讯包含於前述注目晝素之砉 =種別資訊、依據前述識別處理之結果而於 :::的局部評價値、依據前述識別處理之結果而前述注 I素所屬區域中被演算的平均評價値。 t上述構成’於受财影像上,—旦由使用者指定 (即影像上Γ座標)時,該注目晝素之修正支援資訊 目==修正支援資訊之内容,可確實地 目晝素之修正的必要與否。例如,作為修正作举 可舉例自骨晝錢更為軟㈣畫素之種: 自权組織晝素變更為骨晝素之種別變更、自演算對象之剔 5 201240648 j於修正支板貧訊,較佳地,包含於該注目晝素之種 :=理結果。此情形,結合目視判斷結果及;動判斷 有可能的。此時,因於注目t素被演算的局部評價 二二所屬區域(例如’關'。區域内之骨區域*軟組織區域) =演:的平均評價倾合併顯示,故於注目畫素之局 ^為^?周圍.的平均的値相比是否被剔除、或是-般來 信及伞1,、’可客觀地判斷。端視情況,亦可替代局部評價 二値之併記’或與這些-起,顯示^者之差異 著大於注目晝素之局部値係與其周圍觀察而顯 差等:依攄:形’被:為是組織異常、計測誤差、演算誤 之必·'正支援資訊,基於這些之可能性,判斷修正 例如於、否成為可能。例如,於骨部之評價値為骨密度。 於兩種類値為後述的⑽。此係相當於相對 之比。評價値可柳輸減量) =π=數値。無論如何,較佳地是提供可評價 値。又,以佥+',”係(或是否有必要修正)的評價 一 ^晝素係抽象的概念,可為物理學上來看之單 权情形為物理學上來看之複數個畫素之集合。於後 Θ局部汗價値係成為局部平均値、局 亦可使!價單位及修正單位為可區二 構成。例=:::=依 將組織種”訊_。 村Μ修正支援資訊 201240648 較佳地,藉由前述識別處理而骨晝素被識別的情形, 局部骨密度被顯示作為前述局部評價値,且平均骨密度被 顯示作為前述平均評價値。例如,局部骨密度係相當於受 測者影像中的晝素値者,觀念上被認為係與區域全體之平 均骨密度之對比的要素概念。此雖非實際地表示正確的骨 密度,但對比判斷上為有用的資訊。 較佳地,藉由前述識別處理與軟組織晝素識別的情 形,顯示局部軟組織評價値作為前述局部評價値,且顯示 平均軟組織評價値作為前述平均評價値。於軟組織,並無 所謂骨密度的概念存在,故用以替代此概念,係顯示將軟 組織之性狀作為指標的評價値。構成修正支援資訊的各要 素係基本上為數値,但亦可顯示用以替代數值的圖形或與 這些數值一起有助於直覺地辨識的圖形。 較佳地,前述修正支援資訊進一步包含於前述注目晝 素被演算的低能量X射線照射時之局部衰減量及高能量X 射線照射時之局部衰減量、於前述注目晝素所屬區域中被 演算的低能量X射線照射時之平均衰減量及高能量X射線 照射時之平均衰減量。依據此構成,藉由顯示評價値之演 算過程所利用的中間數値,可綜合地判斷是否需要修正。 僅任一者之能量有不自然的値生成的情形,可瞭解於該能 量之計測等有發生問題的可能性。 較佳地,前述局部軟組織評價値係相當於低能量X射 線照射時之局部衰減量及高能量X射線照射時之局部衰減 量之比,前述平均軟組織評價値係相當於低能量X射線照 201240648 射時之平均衰減量及高能量X射線照射時 比。 卞构哀減量之 較佳地,前述修正實行部係實行由骨畫素變更為軟組 織畫素之種別變更、由軟組織晝素變更為骨畫素之種= 更、及自演算對象之剔除之至少一者。 又 較佳地,前述受測者包含複數個椎骨,對前述複數個 。骨被設定複數個關心區域,於前述各關心區域内, 區域及軟組織區域被識別。當然,上述影像處理亦可2 於腰椎以外之部位。將關心區域内分成對分的方式進 界檢測’可各別特定骨部區域及軟組織區域, 單位僅特定晝素種別。 素 較佳地,前述修正支援手段係包含基於前述 像,顯示生成每一書辛値的查夸 考〜 古国“ 旦素數的直方的直 方圖生成部、及於前述直方圖上生成顯示前述注目 畫素値的標記的標記生成部。依據此構成,考慮注^金 位於直方圖上何處時,因可判斷是否於注目書料^、 故可進行更確實的判斷。 一京要G正, 用者= 目視觀㈣單的黑白濃料彡像後,使 除等之修正。即,基於感覺的來進 机正作業’故有所謂依使用者(料 的不同的問題,或者,有所 呵。果有很大 此,依據上述構成,協助θ 負擔大的問題。相對於 其因可容易比較注目點及背 ^貝几尤 a 月尔王體的方式而貧訊被顯示, 要修正的列斷,並可大幅減輕修正負擔。 201240648 ^主目晝素的附近,又如與注目晝素之對應關係可知,修正 支&貢訊亦可以被跳出的晝面顯示。藉由指示裝置而畫素 被指定的情形’這些作為觸發物而顯示修正支援資訊的方 式’亦可轉由之後的指示内容來識別修正實行或修正發 运。晝素稜別等被修正的情形,於此時點,亦可對成為平 均骨密度灣算基礎的資料使修正内容被反映的方式,於全 : 部的修正結束的階段或使用者之明示的指示的階段,使各 . 修正之内容反應為上述之基礎資料。 依據上述構成,進行自壓迫骨折部分之骨區域的剔 除、由於低骨量而軟組織誤認的修正、由於組織鈣化之骨 區域誤認的修正、骨贅(oste〇phyte,bone spur)等之骨變形部 位之剔除、金屬部分等之異物部分之剔除、由於脊椎側彎 症(scoliosis)等關心區域内包含的不必要部位之剔除等。 【實施方式】 : [用以實施發明之最佳態樣] ·· 以下,基於圖式說明本發明之較佳實施態樣。 首先,説明骨密度測量之原理(DEXA法)。於透過人體 的兩種能量之X射線,各別的全衰減量定義如下。201240648 VI. Description of the Invention: [Technical Field] The present invention relates to a bone density measurement apparatus, and more particularly to a bone density measuring apparatus for displaying a bone density image by irradiating X-rays to a subject . [Prior Art]: The bone mineral density measuring device is a device for diagnosing bone diseases such as osteoporosis (or osteoporosis) in the medical field. The bone density measuring device is a device for forming a bone density image of a subject by irradiating the subject with X-rays, detecting X-rays transmitted through the subject, and using the detection data obtained thereby. Specifically, high-energy X-rays and low-energy X-rays are alternately irradiated according to the DEXA (dual-energy x-ray absorptiometry) method. JP-A-2009-100943 (Document 1) and JP-A-6-261894 (Document 2) have described a calculation method based on the DEXA method. The measurement site is the lumbar vertebrae, the front wrist, and the like. The bone mineral density measuring device is also called a bone mineral content measuring apparatus. The bone density measurement of the lumbar spine is based on the individual components of the bone density image (bone density 値). The bony pixel (corresponding to the bone of the bone) or the soft tissue pixel (corresponding to the soft tissue of the soft tissue) is automatically recognized by each element. At this time, a respective region of interest (ROI: region of interest) for each vertebra that constitutes the lumbar vertebrae is set. The average bone mineral density 3 201240648 値 (average bone mineral density) was calculated for each of the regions of interest. SUMMARY OF THE INVENTION [Problems to be Solved by the Invention] In the technique of the meal, bone microbes and soft tissues are sometimes not necessarily correct. For example, strict automatic identification of the results of dense sound; ^ forced fracture site exists, the average bone fracture site of the sputum self-flatness will also constitute this oppression. In the case of low bone mass, it is preferable to be a mistake (image), and a prime. In this case, the type of the element of the tube or the squid is changed to the bone element. Blood 1 bar, _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ There are inflammations; Θ, symmetry or bone abnormalities exist, there are two = it is called unnecessary parts to exclude. Furthermore, the object of the H-average bone mineral density calculation plus the average bone density calculation is arranged to calculate the average bone density of the metal part before the bone density: the viewpoint 'know to the visual: two ways: the alizarin :::, and there is a tendency to eliminate the need to judge the addition of the bones. Therefore, when doing so, the judgment is pleaded. Addition and culling operation of the sulphate [means for solving the problem] 201240648 The object of the present invention is to observe the situation of the user of the image showing the distribution of the bone density (bone salt amount) Assist in their work. More specifically, the object of the present invention is to enable the determination of the selection of osteophyll in a rapid and reliable manner. Preferably, the bone density measuring device includes the following: the measured=generating portion' is a subject image reflected by the quadratic distribution of the bone salt generated based on the detection obtained by irradiating the X-ray to the subject The heart processing unit 'is for each element that constitutes the image of the subject, and identifies the osteophytes and soft tissue pixels based on the application of the element of the food; The image of the subject is passed through, and the correction support unit provides a correction signal to the manufacturer in the case of the shirt, and the red and the system are for the aforementioned pixel. The modification of the result of the correction finger processing by the user; wherein the repair: the support is included in the above-mentioned attention 砉 = category information, according to the result of the foregoing recognition processing, the::: partial evaluation 値, According to the result of the foregoing identification processing, the average evaluation 被 calculated in the region to which the first element belongs is calculated. The above-mentioned composition 'in the image of the fortune, when specified by the user (that is, the coordinates on the image), the correctional support information of the attention element == correction of the content of the support information, which can be clearly corrected Necessary or not. For example, as an amendment, it can be exemplified by the fact that the bones are softer (four) of the pixels: the self-righteous organization of the element is changed to the species of the osteophyll, and the self-calculated object is removed. 5 201240648 j In the correction of the support plate, Preferably, it is included in the species of the target:: the result. In this case, it is possible to combine the visual judgment results with the motion judgment. At this time, due to the local evaluation of the attention of the t-study, the second-level area (for example, 'off'. The bone area in the area* soft tissue area) = the average evaluation of the performance of the display is merged and displayed, so the focus of the picture is ^ Whether or not the average 値 of the surrounding area is removed, or the letter and the umbrella 1 , ' can be objectively judged. Depending on the situation, it can also be used as a substitute for the partial evaluation of the two 并 値 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 In the case of the organization of the abnormality, the measurement error, and the calculus of the error, it is necessary to support the information. For example, the evaluation of the bone is the bone density. The two types are described later (10). This is equivalent to the relative ratio. Evaluation of the weight loss of 値 柳 )) = π = number 値. In any event, it is preferred to provide an evaluable 値. Moreover, the concept of 佥+'," (or whether it is necessary to amend) is an abstraction of the prime system, which can be a collection of multiple physics in physics. In the latter part, the local sweat price system becomes a local average, and the bureau can also make the price unit and the correction unit the composition of the second. Example =:::= According to the organization will be organized. Village Correction Support Information 201240648 Preferably, in the case where the osteopontin is recognized by the above-described recognition processing, the local bone density is displayed as the aforementioned partial evaluation 値, and the average bone density is displayed as the aforementioned average evaluation 値. For example, the local bone density is equivalent to the elemental concept in the subject's image, which is conceptually considered to be a comparison with the average bone density of the entire region. Although this does not actually represent the correct bone density, it is useful information in comparison judgment. Preferably, the local soft tissue evaluation 値 is displayed as the partial evaluation 藉 by the aforementioned recognition processing and the soft tissue morphogen recognition, and the average soft tissue evaluation 显示 is displayed as the average evaluation 値. In soft tissue, there is no concept of bone density, so instead of this concept, the evaluation of soft tissue traits as an indicator is shown. The elements constituting the correction support information are basically a number of figures, but it is also possible to display a graphic for replacing the numerical value or a graphic which together with these numerical values contributes to intuitive recognition. Preferably, the correction support information is further included in the local attenuation amount of the low-energy X-ray irradiation and the local attenuation amount in the high-energy X-ray irradiation, and is calculated in the region of the target pixel. The average attenuation during low-energy X-ray irradiation and the average attenuation during high-energy X-ray irradiation. According to this configuration, it is possible to comprehensively judge whether or not correction is necessary by displaying the intermediate number used in the calculation process of the evaluation 値. In the case where only one of the energies has an unnatural sputum generation, it is possible to know the possibility that a problem occurs in the measurement of the energy. Preferably, the partial soft tissue evaluation lanthanide corresponds to a ratio of local attenuation at low energy X-ray irradiation to local attenuation at high energy X-ray irradiation, and the average soft tissue evaluation lanthanum is equivalent to low energy X-ray illumination 201240648 The average attenuation amount at the time of shooting and the ratio of high energy X-ray irradiation. Preferably, the correction execution unit performs at least a change from a bone morpheme to a soft tissue morpheme, a change from a soft tissue morpheme to a bone morpheme = more, and at least a self-calculation object culling One. Still preferably, the subject includes a plurality of vertebrae for the plurality of the aforementioned plurality. The bone is set in a plurality of regions of interest, and the regions and soft tissue regions are identified in each of the aforementioned regions of interest. Of course, the above image processing can also be performed outside the lumbar spine. The method of dividing the region of interest into two parts is to detect the specific bone region and soft tissue region, and the unit is only specific for the species. Preferably, the correction support means includes a histogram generation unit that generates a histogram of each of the books based on the image, and generates and displays the above-mentioned attention on the histogram. According to this configuration, it is possible to determine whether or not the gold is located on the histogram, and it is possible to determine whether or not the material is in the object of the book. Therefore, it is possible to make a more accurate judgment. User = Visual inspection (4) After the black and white thick image of the single image, the correction is removed. That is, the operation based on the feeling is to enter the machine. Therefore, there are so-called users (different questions, or, According to the above configuration, the problem of large θ burden is assisted. Compared with the way in which it is easy to compare the point of interest and the way of the back of the Bayer, the poor news is displayed, and the column to be corrected is displayed. Broken, and can greatly reduce the burden of correction. 201240648 ^ In the vicinity of the main target, as well as the corresponding relationship with the attention, the correction branch & Gongxun can also be displayed by jumping out of the picture. Designated The form "The method of displaying the correction support information as a trigger" can also be used to identify the correction implementation or the correction shipment by the subsequent instruction content. The situation in which the 昼 棱 别 is corrected, at this point, can also be averaged. The data on the basis of the calculation of the BMD is used to reflect the content of the amendment. In the stage of the end of the revision of the ministry or the explicit indication of the user, the contents of each amendment are reflected in the above basic information. The removal of the bone region from the compression fracture portion, the correction of the soft tissue misidentification due to the low bone mass, the correction of the bone region due to the calcification of the tissue, the removal of the bone deformation site such as osteophytes (bone spur), The removal of the foreign matter portion of the metal portion or the like, the elimination of unnecessary portions contained in the region of interest such as scoliosis, etc. [Embodiment]: [The best aspect for carrying out the invention] ·· The preferred embodiment of the present invention will be described based on the drawings. First, the principle of bone density measurement (DEXA method) will be described. Line, each full attenuation is defined as follows.

Il = I〇l * ΕΧΡ(-μΒίΧΒ) · ΕΧΡ(-μδίΧ5) ...(1)Il = I〇l * ΕΧΡ(-μΒίΧΒ) · ΕΧΡ(-μδίΧ5) ...(1)

Ih = I〇h · ΕΧΡ(-μΒΗΧΒ) · EXP(,HXS)…(2) 其中,關於所附文字,“L”表示低能量,“η”表示高能 量’ Β表示骨,S表示軟組織。;^及Ιη任一者皆表示透過χ 射線強度(低能量X射線之透過強度、高能量X射線之透過 201240648 強度)’ 1儿及ι0Η任一者皆表示入射x射線強度(低能量χ 射線之入射強度、高能量X射線之入射強度)。如L、μ§Η、Ih = I〇h · ΕΧΡ(-μΒΗΧΒ) · EXP(, HXS) (2) where, with regard to the attached text, "L" indicates low energy, "η" indicates high energy ' Β indicates bone, and S indicates soft tissue. Any of ^^ and Ιη indicates the intensity of incident x-ray intensity (low-energy ray ray) by χ ray intensity (transmission intensity of low-energy X-rays, intensity of high-energy X-rays through 201240648) '1' and ι0Η Incident intensity, incident intensity of high energy X-rays). Such as L, μ§Η,

Mbl及μΒΗ各自表示射線吸收係數Xs各自表示 厚度(cm)。 於上述(1)式、(2)式,將兩邊作自然對數時,導出下列 兩個式。 ln(I0L/IL)= μΒίΧΒ + μ5Ι^χ$ ...(3) 1γι(Ι〇η/Ιη) —Μ·βηΧβ + M<shXs ...(4) 使用上述(2)式,若解出χΒ則獲得下式。 XB = C · (RL-a · Rh) ...(5) 其中,各係數定義如下。 RL=ln(I〇L/IL) ...(6) RH=ln(I〇H/IH) ...(7) a=lWBsH …⑻ C= 1/(μΒί·α · μΒΗ) …⑼ 於上述(5)式,僅於軟組織區域,左邊成為〇。因此導 出下式。 a = RL/RH ...(1〇) 於上述Rl/Rh中’分子RLgln(I0L/IL),其相當於低能 量X射線之衰減率(衰減量)。上述Rl/Rh中,分母Rh為 ln(I0H/IH),其相當於高能量χ射線之衰減率(衰減量)。因 此,RL/RH係與軟組織有關,相當於兩種類之能量之兩個衰 減率(衰減量)之比。其與(7)式所定義的射線吸收係數之比 (Asl^sh)不同,被求得作為實測値。其可稱為軟組織評價 201240648 値,或者,可僅僅以“R”表現。 另一方面,對於上述(5)式所定義的骨厚度χΒ乘以骨之 物理的密度ρΒ而於骨部區域内積分時,可求得如以下的骨 鹽量 BMC(bone mineral content) 〇 BMC = iipB · Xb dxdy ...(11) 再者,如以下,藉由將BMC除以骨部區域面積s,最 終地演算出骨密度(平面骨密度)BMD(b〇ne mineral density) 〇 BMD = BMC/S ...(12) 實際地,由於射束硬化現象(beam hardening phenomenon)之外的影響,為了演算正確的骨密度,對各別 的係數或最終演算結果適用補正。骨密度影像係相當表示 於由上述之XB所定的晝素値之分佈者。於骨密度影像上, 通常,於軟組織部内晝素値係成為最低値 ,但即使如此, 由上述(8)式,軟組織評價値仍可經演算獲得。於骨密度 心像上例如對複數個椎骨(塊)自動或手動地各別設定複 數個關心區域’於各關心區域内’骨部區域被自動辨識, 而骨部區域的面積被演算。而且’依據上述⑼式及⑽式, 各個椎骨之骨密度被演算。此基本上係_骨部區域全體 的“平均骨密度(=平均骨評價値)”。關於與此之對比,骨密 度办像上之骨部區域内的各畫素値可稱為“局部骨密度卜 局^剩貝値)。’准,此並非反映厚度方向構造之差異的 値,故應可理解為—基準。即使如此,與背景平均値之對 比可稱為可能的局部値。於軟組織,可定義關係區域全體 201240648 的“平均軟組織評價値”及晝素單位的“局部軟組織評價 値”。 第1圖顯示與本發明有關的骨密度測量裝置之較佳實 施態樣,第1圖係顯示其全體構成的方塊圖。第1圖所示 的骨密度測量裝置被設置於醫療機關,係對人體之骨,尤 其是腰椎進行骨密度測量的裝置。 骨密度測量裝置大致上由測量單元10及演算單元12 所構成。首先,説明測量單元10。平台14上載置為人體之 受測者16。於本實施態樣,對包含腰椎的部位進行X射線 之照射。平台14可為偷琴射線(roentgen)攝影用台 (radiographic table)等。平台14之下側設置X射線發生機 18。此X射線發生機18係交互產生低能量X射線及高能 量X射線的裝置。於這些之產生時,施予電壓切換及過濾 器切換等。 符號19表示X射線束,於本實施態樣,形成具有散布 成風扇的態樣的風扇束(fan-beam)。符號20表示X射線檢 測器,其由對應風扇束為直線狀並列的複數個X射線感應 器所構成。X射線發生機18及X射線檢測器20構成可動 體,此可動體與掃描機構22連結。藉由此掃瞄機構22,可 動體於體軸方向(背骨之伸長方向)被掃瞄。經由交互地重複 低能量X射線之照射及高能量X射線之照射,同時進行上 述之機械掃瞒^獲得取自二次元區域的檢測貢料。具體而 言,獲得對應低能量X射線的二次元檢測資料及對應高能 量X射線的二次元檢測資料。這些被輸出至資料演算部24。 12 201240648 其次,説明演算單元12。如上述之檢測資料被輸入資 料演算部24。關於此機能,使用後述的第2圖來詳細說明。 資料演算部24係依據上述計算式而演算平面骨密度(即骨 區域中的平均骨密度)的模組。於本實施態樣,於各別複數 個椎骨,骨密度(平均骨密度)被演算,除此之外亦演算各種 資訊。藉由資料演算部24,生成表現受測者中的骨鹽之二 次元分佈的受測者影像(即骨密度影像)。此影像為黑白的濃 淡影像,各晝素値表示骨密度。其中,其為了求得上述之 平均骨密度而參照的局部骨密度。於如此演算之前,資料 演算部24係如後述之説明,對各椎骨各別設定關心區域, 於各關心區域内進行骨區域及軟組織區域的識別。於本實 施態樣,基於各晝素的晝素値,其識別處理會被自動地實 行。 顯示處理部26係構成顯示部30所顯示的影像的模 組。於此表示範例使用後述之第3圖至第5圖來説明。於 顯示部30,受測者影像以黑白影像被顯示,又因應必要, 以下詳述的修正支援資訊被顯示。再者,直方圖等之資訊 亦被顯示。 控制部28係進行第1圖所示各構成的動作控制。控制 部28與輸入部32接續。使用者可利用此輸入部32而對控 制部28給予動作指令。又,利用輸入部32,於受測者影像 上指定晝素,於此給予晝素之種別變更或自演算對象的剔 除等之修正指示為可能的。自輸入部32所給予的修正指示 藉由控制部28送至資料演算部24,資料演算部24依據修 5 13 201240648 正指示於規定的時機實行晝素種別的修正等。即,例如, 謂:影:化,如此於給予平均骨密度影響的 二於金屬自成為平均骨密度演算的基礎的資料被剔 除。又,病化的軟組織被誤認為骨部 認的區域内之晝素,實行自 m集 素種別的修正。是否更為軟組織晝素之晝 迎- η 像’修正支援資訊於晝面上 被顯不’故猎由❹者之判斷成為確實且迅速。 於第2圖概念的顯示第1圖所示資料演算部24之機 ;料!=24具有以上述⑴式辆式實行的機能。 貝料决算部24之资辦氧私舰-欠,,卜 之_固方…資料演算部係如第2圖所示 之稷二,,具備關心區域設定部34、畫素種別判定部 5(>°於第2圖’各方齡示軟體之機能。關 ^:區域設定部34胁受測者影像上,實行對複數個椎骨各 =複數個關心區域的自動處理的模組。當_心區域 之认疋亦可由使用者來進行。於各關心區域内,所屬各查 素為骨晝素或為軟組織晝素係以晝素單位被自動地判斷Γ 5此程序為畫素種別判定部36。即,晝素種別判定部36 ^基於受财f彡料的各畫叙晝健,來 ,於任-種別者的判斷。當然,與畫素値-起,或 Γ此等,亦可藉由參照其他資訊來判定種別。修正部%係 依據使用者之指示,實行變更各晝素之種別的處理的模 ’、且或者’係實自演算對象剔除特定晝素的處理的模組。 於第2圖,資料演算部24之右側顯示多數個方塊。這 14 201240648 些係模式地顯不自資料演鼻部輸出的資訊。“種別資訊”38 係表示於各晝素被識別的種別的資訊。“局部骨密度”40A 係於各晝素求得的骨密度或者相當於此的値。“平均骨密 度’’40B係於骨部區域内所求得的平面骨密度(即平均骨密 度)。通常此平均骨密度被利用作為表示各椎骨之性狀的指 標。 符號42A所示的“局部R”係於軟組織所求得的晝素單 位的局部評價値(參照上述(10)式)、符號42B所示的“平均 R ”係於軟組織所求得的指定區域内之平均評價値(參照上 述(10)式)。其中,指定區域係為關心區域内的骨部區域以 外的軟組織區域。“L局部衰減率’’44A係藉由低能量X射 線之照射所獲得的晝素單位之衰減率,“L平均衰減率’’44B 係低能量X射線照射時的骨部區域内或軟組織區域内之平 均衰減率。“H局部衰減率’’46A係高能量X射線照射時的 晝素單位之衰減率,“H平均衰減率”46B係高能量X射線 照射時的前述區域内的平均衰減率。“直方圖”48係每一局 部骨密度所表示的畫素數所構成的直方圖。如後述之説 明,與受測者影像一起,如此直方圖被表示,再者於注目 晝素之骨密度(或R)之位置於直方圖上被標示。 第3圖至第5圖係呈示與本實施態樣有關之骨密度測 量裝置的表示範例。 於第3圖,顯示晝面54上顯示受測者影像56。受測者 影像56 —般而言是骨密度影像,為黑白的濃淡影像。圖示 之範例係呈現複數個椎骨。如符號58所示,對此等設定複 15 201240648 數個關心區域(次(sub)ROI)。L1-L4呈示各別的關心區域。 複數個關心區域L1-L4之設定於本實施態樣係自動地被實 行,此技術本身為已知。於各關心區域L1-L4内,藉由上 述資料演算部之作用,每一各個晝素被識別為骨晝素或軟 組織晝素,藉此實行區域晝分的畫素群分配。基於此,自 於骨晝素群所求得的局部骨密度被演算於該區域之平均骨 密度。另一方面,於軟組織區域,於每各別晝素,局部R 被演算,於此區域全體,平均R被演算。除此之外,上述 各種資訊亦被演鼻。 如第3圖所示,使用指示裝置,移動游標(cursor)60, 經由進行按鍵(click)輸入,使用者可指定特定晝素(即特定 座標)。而且,如第3圖所示,修正支援資訊62被顯示。 具體而言,修正支援資訊62被彈出顯示。此係具有對話框 的態樣。第3圖所示之範例係骨晝素被指定,顯示作為修 正支援資訊62、作為自動識別結果之骨晝素的資訊64、於 注目晝素求得的局部骨密度及包含注目晝素的骨部區域所 演算的平均骨密度66、低能量X射線照射時的注目晝素的 衰減量及包含注目晝素中的區域内的平均衰減量68、高能 量X射線照射時的注目晝素中的局部衰減量及包含注目畫 素的區域内的平均衰減量70等。 因此,於使用者,對指定的注目晝素,已經被實行的 自動識別的結果,即,可確認被判斷的晝素種別,基於此, 由局部骨密度及平均骨密度的對比,可把握注目晝素與周 圍相比是否具有突出的晝素値。再者,於如此評價時,進 16 201240648 订L局Df5衰減率及L平均衰減率之 及Η平均衰诘圭+ 及Η局4哀減率 帶一提,彈出顯^ 综合地判斷是否需要修正。附 不的修正支援資訊62係如上述具有對話框 日金去m 」曰向游60下’修正支援資訊62及注 二齡之對應關係於晝面上可直覺地辨識。例如,亦可指 疋複數個注目晝素而同時地顯示複數個修正支援資訊。 :第4圖所示之表示範例’藉由游標72而 =。。於此情形’作為修正支援資訊74,如圖爾^ 叔丁即,修正支援資訊74係具有顯示作為書素種別之 自動識別結果之齡 _ 軟、、、且相料64A、於注目t素演算的局 =注目晝素的區域所演算的平均r “A、於注目 的τ、承=的L局部衰減率及包含注目畫素的區域所演算 万勺2句衰減率68A、於注目晝素所演算的Η局部衰減率 W注目晝素的區域所演算的Η平均衰減率7〇α等。於 使用者’利用如此資訊而可綜合地判斷修正的必要與否或 方法°_此外’因可確實且迅速地進行此判斷’與習知相較 可大幅地減輕使用者的負擔。 丄圖所示之範例’如符號102所示,經使用者選 — 之關心區域’其被強調顯示。又,藉由游標100指 =特疋之;主目畫素。於鄰接受測者影像56的位置,顯示特 疋之關:區域之直方圖76。此直方圖76中的横軸為骨密度 (局部骨密度縱軸表示個數。即’構成經指定的關心區域 =的月區域的複數個骨晝素群之直方圖被顯示。藉由游標 1〇〇才曰定特定之骨晝素作為注目晝素時,直方圖76上被顯 17 201240648 示標記78,可容易地特定此骨晝素位於直方圖上位何處。 如第5圖所示的表示範例,藉由游標100指定的注目晝素 之修正支援資訊以符號104顯示於欄中。當然,如此表示 範例不過是一範例而已。 於第6圖,整理並顯示各種之修正方法。較佳地,一 邊比較局部値及平均値,一邊由使用者執行修正作業。首 先,自動識別之結果,被識別為骨畫素的情形,如(A1)所 示,局部値(即局部骨密度)相較於平均値(即平均骨密度)為 過少時(即,局部骨密度較平均骨密度係超過指定値而為小 的時),例如,軟組織之鈣化等為原因而有產生誤認為骨晝 素的可能性,故於此情形,實施將該注目晝素自演算對象 剔除的修正或者實施將該注目晝素之種別由骨晝素變更為 軟組織晝素的修正。如(A2)所示,若局部骨密度及平均骨 密度為相同(即,若兩者之差於指定値以内),則判斷不須要 特別的修正。如(A3)所示,局部骨密度相較於平均骨密度 為過大時(即,局部骨密度較平均骨密度超過指定値為大 時),例如注目晝素被推認為為金屬區域時,或為於壓迫骨 折區域時,則實行將該注目晝素自演算對象剔除的修正。 另一方面,自動識別之結果,被識別為軟組織晝素的 情形,如(B1)所示,局部R若較平均R為過少(即,局部R 較平均R係超過指定値為小時),被推認為測量誤差等,故 如有必要,則實行將該晝素自演算對象剔除的修正。如(B2) 所示,若局部R與平均R為相同(即,若兩者之差於指定値 以内),則不進行特別的修正。如(B3)所示,局部R較平均 18 201240648Mbl and μΒΗ each indicate that the ray absorption coefficient Xs each represents a thickness (cm). In the above equations (1) and (2), when the two sides are naturally logarithmic, the following two equations are derived. Ln(I0L/IL)= μΒίΧΒ + μ5Ι^χ$ ...(3) 1γι(Ι〇η/Ιη) —Μ·βηΧβ + M<shXs (4) Using the above formula (2), if After getting out, you get the following formula. XB = C · (RL-a · Rh) (5) where each coefficient is defined as follows. RL=ln(I〇L/IL) (6) RH=ln(I〇H/IH) (7) a=lWBsH (8) C= 1/(μΒί·α · μΒΗ) (9) In the above formula (5), only in the soft tissue region, the left side becomes 〇. Therefore, the following formula is derived. a = RL/RH (1〇) In the above Rl/Rh, the molecule RLgln (I0L/IL) corresponds to the attenuation rate (attenuation amount) of the low energy X-ray. In the above Rl/Rh, the denominator Rh is ln(I0H/IH), which corresponds to the attenuation rate (attenuation amount) of the high-energy x-ray. Therefore, the RL/RH system is related to soft tissue and corresponds to the ratio of the two attenuation rates (attenuation amounts) of the two types of energy. This is different from the ratio of the ray absorption coefficient (Asl^sh) defined by the formula (7), and is obtained as a measured enthalpy. It can be called soft tissue evaluation 201240648 値, or it can be expressed only as "R". On the other hand, when the bone thickness χΒ defined in the above formula (5) is multiplied by the physical density ρ 骨 of the bone and integrated in the bone region, the bone mineral content BMC (BMC) can be obtained as follows. = iipB · Xb dxdy (11) Furthermore, as follows, by dividing the BMC by the bone area s, the bone density (planar bone density) BMD (b〇ne mineral density) 〇 BMD is finally calculated. = BMC/S (12) Actually, due to influences other than the beam hardening phenomenon, in order to calculate the correct bone density, corrections are applied to the respective coefficients or final calculation results. The bone density imaging system is equivalent to the distribution of the alizarins defined by XB above. In the bone density image, generally, the sputum sputum system is the lowest 値 in the soft tissue part, but even so, the soft tissue evaluation 値 can still be obtained by the above formula (8). For the bone density, for example, a plurality of regions of interest are automatically or manually set for a plurality of vertebrae (blocks). The bone regions are automatically recognized in each region of interest, and the area of the bone region is calculated. Further, according to the above formulas (9) and (10), the bone density of each vertebra is calculated. This is basically the "average bone density (= average bone evaluation 値)" of the entire _ bone region. In contrast to this, each pixel in the bone region of the bone density image can be called "local bone density". "Quasi, this is not a reflection of the difference in thickness direction structure. Therefore, it should be understood as a benchmark. Even so, the comparison with the background average can be called a possible local flaw. In soft tissue, the “average soft tissue evaluation” of the whole relational area 201240648 and the “local soft tissue evaluation of the unit” can be defined. Fig. 1 shows a preferred embodiment of a bone density measuring device according to the present invention, and Fig. 1 is a block diagram showing the overall configuration. The bone density measuring device shown in Fig. 1 is installed in a medical institution. The device for measuring the bone density of the bone of the human body, especially the lumbar vertebrae. The bone density measuring device is roughly constituted by the measuring unit 10 and the calculating unit 12. First, the measuring unit 10 is explained. The platform 14 is placed on the body to be tested. In the present embodiment, the portion including the lumbar vertebra is irradiated with X-rays, and the platform 14 may be a roentgen radiographic table or the like. The X-ray generator 18 is disposed on the lower side. The X-ray generator 18 alternately generates low-energy X-rays and high-energy X-rays. When these are generated, voltage switching, filter switching, etc. are given. The X-ray beam, in the present embodiment, forms a fan-beam having a pattern of being dispersed into a fan. Reference numeral 20 denotes an X-ray detector which is linearly juxtaposed by a plurality of X-ray sensors corresponding to the fan beam. The X-ray generator 18 and the X-ray detector 20 constitute a movable body, and the movable body is coupled to the scanning mechanism 22. By the scanning mechanism 22, the movable body is swept in the body axis direction (the direction in which the back bone is elongated). By repeatedly repeating the irradiation of low-energy X-rays and the irradiation of high-energy X-rays, and simultaneously performing the mechanical broom described above, the detection metrics obtained from the secondary element region are obtained. Specifically, the corresponding low-energy X-rays are obtained. The secondary element detection data and the secondary element detection data corresponding to the high energy X-rays are output to the data calculation unit 24. 12 201240648 Next, the calculation unit 12 is explained. The calculation unit 24. This function is described in detail using a second diagram to be described later. The data calculation unit 24 is a module for calculating the plane bone density (that is, the average bone density in the bone region) based on the above calculation formula. In the case of a plurality of vertebrae, the bone density (average bone density) is calculated, and various information is calculated in addition to this. The data calculation unit 24 generates a distribution of the quadratic distribution of the bone salt in the subject. The image of the subject (ie, the bone density image). This image is a black and white image, and each element represents the bone density. Among them, the local bone density is referenced in order to obtain the above average bone density. Before such calculation, data The calculation unit 24 sets a region of interest for each vertebra, and recognizes the bone region and the soft tissue region in each region of interest, as will be described later. In this embodiment, the recognition process based on each element is automatically performed. The display processing unit 26 constitutes a model of the image displayed on the display unit 30. Here, the example will be described using Figs. 3 to 5 which will be described later. On the display unit 30, the subject image is displayed as a black-and-white image, and the correction support information detailed below is displayed as necessary. Furthermore, information such as histograms is also displayed. The control unit 28 performs operation control of each configuration shown in Fig. 1 . The control unit 28 is connected to the input unit 32. The user can use the input unit 32 to give an operation command to the control unit 28. Further, the input unit 32 specifies a pixel on the subject image, and it is possible to give a correction instruction such as a change in the type of the element or a rejection of the object to be calculated. The correction instruction given from the input unit 32 is sent to the data calculation unit 24 by the control unit 28, and the data calculation unit 24 performs the correction of the element type at a predetermined timing in accordance with the instruction of the repair. That is, for example, it is said that the data that is given to the average bone density is removed from the metal as the basis for the average bone density calculation. In addition, the diseased soft tissue is mistaken for the element in the region recognized by the bone, and the correction from the m-species category is implemented. Whether it is more soft tissue 昼 - ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ In the concept of Fig. 2, the information calculation unit 24 shown in Fig. 1 is displayed. The material !=24 has the function of the above-described (1) type. The billing department 24 is responsible for the oxygen private ship- owing, and the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ >° In Fig. 2, the functions of the software are shown in the respective ages. The area setting unit 34 performs a method of automatically processing a plurality of vertebrae = a plurality of regions of interest on the subject image. The recognition of the heart area can also be performed by the user. In each region of interest, each element is automatically determined by the bone element or the soft tissue element. The program is a pixel type determination unit. 36. That is, the morpheme class determination unit 36^ is determined based on each of the narrations of the financial information, and is determined by any of the types of the genre. Of course, it may be The type is determined by referring to other information. The correction unit % executes a module that changes the processing of each element according to the instruction of the user, or a module that performs processing for removing the specific element from the actual calculation target. In the second figure, the right side of the data calculation unit 24 displays a plurality of squares. These 14 201240648 some models The information displayed by the nose is not derived from the data. The “species information” 38 is the information of the species identified by each element. The “local bone density” 40A is the bone density obtained by each element or equivalent. The mean bone density '40B is the plane bone density (ie, average bone density) obtained in the bone region. Usually this average bone density is used as an indicator of the traits of each vertebra. The "local R" is a partial evaluation of the elemental unit obtained by the soft tissue (refer to the above formula (10)), and the "average R" shown by the symbol 42B is the average evaluation in the designated region obtained by the soft tissue.値 (refer to the above formula (10)), wherein the designated region is a soft tissue region other than the bone region in the region of interest. "L local attenuation rate ''44A is a halogen obtained by irradiation of low energy X-rays. The attenuation rate of the unit, "L average attenuation rate" '44B is the average attenuation rate in the bone region or in the soft tissue region during low-energy X-ray irradiation. "H local attenuation rate '46A high-energy X-ray irradiation Alizarin The attenuation rate of the bit, "H average attenuation rate" 46B is the average attenuation rate in the above region at the time of high-energy X-ray irradiation. "Histogram" 48 is a histogram composed of the number of pixels represented by each local bone density. As described later, the histogram is displayed together with the subject image, and the position of the bone density (or R) of the target pixel is indicated on the histogram. Figures 3 to 5 are presented. A representative example of the bone density measuring device according to the present embodiment. In Fig. 3, the subject image 56 is displayed on the pupil plane 54. The subject image 56 is generally a bone density image, which is a black and white shade. Image. The illustrated example shows a plurality of vertebrae. As indicated by symbol 58, these settings are set to 15 201240648 several regions of interest (sub) ROI. L1-L4 present individual areas of interest. The setting of the plurality of regions of interest L1-L4 is automatically performed in the present embodiment, and the technique itself is known. In each of the regions of interest L1-L4, each of the elements is identified as an osteopontin or a soft tissue element by the action of the above-described data calculation unit, thereby performing pixel group assignment of the region. Based on this, the local bone density obtained from the osteophyte group is calculated as the average bone density in the region. On the other hand, in the soft tissue region, the local R is calculated for each individual element, and the average R is calculated for the entire region. In addition, the above information has also been played. As shown in Fig. 3, the cursor 60 is moved using a pointing device, and the user can specify a specific element (i.e., a specific coordinate) by performing a click input. Further, as shown in FIG. 3, the correction support information 62 is displayed. Specifically, the correction support information 62 is popped up. This has the appearance of a dialog box. In the example shown in Fig. 3, osteoporin is designated, and the information as the correction support information 62, the osteophyll as the result of the automatic recognition 64, the local bone density obtained from the attention of the eye, and the bone containing the target element are displayed. The average bone mineral density 66 calculated in the region, the attenuation amount of the target halogen in the low-energy X-ray irradiation, and the average attenuation amount 68 in the region including the target halogen, and the pixel in the high-energy X-ray irradiation The amount of local attenuation and the average attenuation amount 70 in the region including the pixel of interest. Therefore, as a result of the automatic recognition that the user has performed the specified attention factor, that is, the determined elemental species can be confirmed, based on this, the comparison between the local bone density and the average bone density can be grasped. Whether the vegetarian has a prominent bismuth compared with the surrounding. In addition, in this evaluation, enter 16 201240648 to determine the Df5 attenuation rate and L average attenuation rate of the L Bureau, the average attenuation rate + and the 哀 哀 哀 带 带 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , . The attached correction support information 62 is as described above. The above-mentioned dialog box has a dialog box. The change of the support information 62 and the second-age relationship are intuitively recognized on the face. For example, it is also possible to display a plurality of correction support information simultaneously with a plurality of attention factors. : The representation example shown in Fig. 4 is by cursor 72. . In this case, as the correction support information 74, the correction support information 74 has the age of displaying the automatic recognition result as the genre of the genre _ soft, and the material 64A is calculated. The average r of the area calculated by the area of the target area is "A, the local decay rate of the target τ, the L, and the area containing the pixel of interest. The two tables of decay rate 68A, at the point of view The local decay rate of the 演 W 注 注 的 区域 演 演 演 演 演 演 演 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 And this judgment is made promptly, and the burden on the user can be greatly reduced as compared with the conventional one. The example shown in the figure 'as shown by the symbol 102, the user-selected area of interest' is highlighted. By the cursor 100 finger = characteristic; the main eye pixel. In the position of the neighboring subject image 56, the characteristic is displayed: the histogram 76 of the region. The horizontal axis in the histogram 76 is the bone density (partial The vertical axis of bone density indicates the number. The histogram of the multiple osteophytes in the monthly region of the heart region = is displayed. When the cursor is used to determine the specific osteopontin as the target pixel, the histogram 76 is displayed on the map 76 201240648 It is easy to specify where the osteopontin is located on the histogram. As shown in the example of Fig. 5, the correction support information specified by the cursor 100 is displayed in the column by the symbol 104. Of course, The example of presentation is just an example. In Figure 6, various correction methods are arranged and displayed. Preferably, the correction operation is performed by the user while comparing the partial 値 and the average 。. First, the result of the automatic recognition is recognized. In the case of bone micronutrients, as shown in (A1), when local sputum (ie, local bone density) is too small compared to the average 値 (ie, average bone density) (ie, local bone density is greater than the average bone density system). However, when it is small, for example, calcification of soft tissue or the like may cause misunderstanding of osteoporin, and in this case, correction or implementation of removing the target calculus from the calculation target will be performed. The species of the target morpheme is changed from osteophyll to soft tissue morphogen. As shown in (A2), if the local bone density and the average bone density are the same (ie, if the difference between the two is within the specified 値), then the judgment is made. No special correction is required. As shown in (A3), when the local bone density is too large compared to the average bone density (that is, when the local bone density is larger than the average bone density exceeds the specified 値), for example, 注素 is considered to be considered In the case of a metal area, or in the case of compressing a fracture area, the correction of the object of the calculus is performed. On the other hand, the result of the automatic recognition is recognized as a soft tissue element, as in (B1) It is shown that if the local R is too small for the average R (that is, the local R is smaller than the average R system by more than the specified 値), it is considered as a measurement error, etc., and if necessary, the correction of the calculus self-calculating object is performed. . As shown in (B2), if the local R and the average R are the same (that is, if the difference between the two is within the specified 値), no special correction is made. As shown in (B3), the local R is more average 18 201240648

R為過大時(即,局部R 例如由於低骨密度或成長里常等而2指定値而為大時), 認的可能性,故實行將注目查杳生為軟部組織之誤 將注目書f之種別: “演謂象剔除的修正或 ^素二種別由軟組織晝素變更為骨晝素的修正。 田然,弟6圖所示之修正方 使用者來判斷為宜。於太勹粑例因應狀況由 被顯干€樣,如上述修正支援資訊 :確;且=像上直覺的判斷的情形相比,獲得所謂 了確貫且迅逮地判斷是否需要修正的優點。附帶一提,於 =心區域内,若骨晝素群及軟組織晝素群之各別個數過 大或過少’為了可推測某些異常’尤其由於有關心區域之 差的可能性,故於此情形,再演算或關心區域之再 5又疋專之操作會自動地被實行。 【圖式簡單說明】 第1圖係顯示與本發明有關的骨密度測量裝置之全體構成 的方塊圖。 第2圖係用以説明第i圖所示資料演算部之機能的圖。 第3圖係顯示第一表示範例的圖。 第4圖係顯示第二表示範例的圖。 第5圖係顯示第三表示範例的圖。 第6圖係用以說明因應狀況的晝素修正方法的圖。 【元件符號説明】 10 測量單元 19 演算單元 平台 受測者 X射線發生機 X射線束 X射線檢測器 掃描機構 資料演算部 顯示處理部 控制部 顯示部 輸入部When R is too large (that is, when the local R is large due to low bone density or growth, etc.), it is possible to recognize the possibility, so it is necessary to pay attention to the soft tissue organization. The type: "The correction of the actor-like culling or the correction of the two types of soft tissue from the soft tissue element to the osteophyte. Tian Ran, the correct user of the figure shown in Figure 6 is judged to be appropriate. In response to the situation, it is shown that the information is corrected, such as the above-mentioned correction support information: yes; and = compared with the situation of the intuitive judgment, the advantage of the so-called accurate and quick judgment is needed to determine whether it is necessary to correct. = In the heart region, if the number of each of the osteophyte group and the soft tissue group is too large or too small, in order to be able to speculate on certain abnormalities, especially due to the possibility of a difference in the heart region, in this case, recalculation or care The operation of the region is automatically carried out. The first diagram is a block diagram showing the overall configuration of the bone density measuring device according to the present invention. The function of the data calculation department shown in Figure i Fig. 3 is a diagram showing a first representation example, Fig. 4 is a diagram showing a second representation example, Fig. 5 is a diagram showing a third representation example, and Fig. 6 is a diagram explaining the morphological correction of the condition Fig. [Description of component symbols] 10 Measurement unit 19 Calculation unit platform Subject X-ray generator X-ray beam X-ray detector Scanning mechanism data calculation unit Display processing unit Control unit Display unit input unit

關心區域設定部 晝素種別判定部 種別資訊 局部骨密度 平均骨密度 局部R 平均R L局部衰減率 L平均衰減率 Η局部衰減率 Η平均衰減率 直方圖 20 201240648 50 54 修正部 顯示晝面 56 受測者影像 58 關心區域 60 游標 62 修正支援資訊 64 骨晝素的資訊 64A 軟組織的資訊 66 於注目晝素求得的局部骨密度及包含注目晝素的 骨部區域所演算的平均骨密度 66A 於注=畫素演算的局部尺及包含注目晝素的區域 所演算的平均R 68 低能量X射線照射時的注目晝素的衰減量及包含 注目畫素中的區域内的平均衰減量 68A 於注目晝素所演算的L局部衰減率及包含注目書 素的區域所演算的L·平均衰減率 旦 70 高能量X射線照射時的注目晝素中的局部衰 及包S注目晝素的區域内的平均衰減量 70A 於注目畫素所演算的Η局部衰減率及里包含注目金 素的區域所演算的Η平均衰減率 4旦 72 游標 74 修正支援資訊 76 直方圖 78 標記 21 201240648 100 游標 102 經使用者選擇特定之關心區域 104 修正支援資訊 L1 〜L4 關心區域 22Area of interest setting unit Variety determination unit Type information Local bone density Average bone density Local R Average RL Local attenuation rate L Average attenuation rate Η Local attenuation rate Η Average attenuation rate Histogram 20 201240648 50 54 Correction display face 56 Tested Image 58 Area of interest 60 Cursor 62 Correction support information 64 Osteoporin information 64A Soft tissue information 66 The local bone density obtained from the attention of the eye and the average bone density calculated by the bone region containing the target element are 66A = The local scale of the pixel calculation and the average R 68 calculated by the region containing the pixel of interest. The attenuation of the target pixel in the low-energy X-ray irradiation and the average attenuation amount 68A in the region including the pixel of interest are at the attention 昼The L local decay rate calculated by the prime and the L·average decay rate calculated by the region containing the notation book. 70 The local fading in the high-energy X-ray irradiation and the average in the region of the target S. The attenuation amount is 70A. The local attenuation rate calculated by the pixel of interest and the average attenuation rate calculated by the region containing the gold element are 4 to 72. 74 support information 76 corrected standard histogram cursor 78 marks 21201240648100 102 by a user to select a specific region of interest of the region of interest 104 L1 ~L4 correction support information 22

Claims (1)

201240648 七、申請專利範圍: 1. 一種骨密度測量裝置,其特徵為包含: 受測者影像生成部,其係基於藉由對受測者照射X射 線所獲得的檢測資料,生成骨鹽之二次元分佈所反映的受 測者影像; 識別處理部,其係對構成前述受測者影像的各畫素, 基於該晝素所具有的晝素値,而施予識別骨晝素及軟組織 晝素的識別處理; 注目晝素指定部,其係於前述受測者影像上用以由使 用者指定注目晝素; 修正支援部,其係於前述注目晝素被指定的情形,對 前述使用者提供修正支援資訊; 修正實行部,其係對前述注目畫素藉由前述使用者給 予修正指示的情形,來實行前述識別處理之結果之修正; 其中前述修正支援資訊包含: 於前述注目晝素顯示前述識別處理的結果的組 織種別貢訊, 依據前述識別處理之結果,於前述注目晝素被演 算的局部評價値;及 依據前述識別處理之結果,於前述注目晝素所屬 的區域被演算的平均評價値。 2_如申請專利範圍第1項所述之骨密度測量裝置,其中於藉 由前述識別處理被識別為骨晝素的情形,作為前述局部評 價値,局部骨密度被顯示,且作為前述平均評價値,平均 23 201240648 骨密度被顯示。 3.如:請專利範圍第2項所述之骨密度測量裝置,其 由則述識別處理被識別為軟組織晝素的情形,作為前述^ =評價値,局部軟組織評價値被顯示,且作為前述平均ς fe値,平均軟組織評價値被顯示。 _n =申請專利範圍第i項所述之骨密度測量裝置,其中 修正支援資訊進一步包含: 述 卜於前述注目晝素被演算的低能量X射線照射時之局 邛农減量及高能量X射線照射時之局部衰減量, 於刖述/主目畫素所屬區域被演算的低能量X射線照 平均賴量及高能量x射線騎時之平均衰減量。 …申請專利範圍第3項所述之骨密度測量裝置,其中前述 局人組織評價値係表示低能量χ射線照射時之局部衰 減!及南能量X射線照射時之局部衰減量之比的値, 、,月j这平均软組織評價値係表示低能量X射線照射時 之平均衰減量及高能量X射線照射時之平均衰減量之比 的値。 灰申明專利範圍第丨項所述之骨密度測量裝置,其中前述 U正實行部係實行由骨畫素變更為軟組織晝素之種別變 更、由軟組織晝素變更為骨畫素之種別變更及自演算對象 之剔除之至少一者。 • ^申請專利範圍第2項所述之骨密度測量t置,其中前述 & '貝】者含有複數個椎骨,對前述複數個椎骨設定複數個關 心區域, 24 201240648 前述各關心區域内被識別為骨部區域及軟組織區域。 8. 如申請專利範圍第1項所述之骨密度測量裝置,其中前述 修正支援部包含: 基於前述受測者影像而生成顯示每一晝素値之晝素 數的直方圖的直方圖生成部, 於前述直方圖上生成顯示前述注目晝素之晝素値的 標記的標記生成部。 9. -種實行骨密度測量裝置的方法,其係基於對受測者照射 X射線所獲得的檢測資料,喊理受測者影像的方法中, 對構成前述受測者影像的各晝素施予基於該晝素具 有的晝素値而識财畫素及軟組織畫素的朗處理的步 認識於前述受測者影像上藉由使用者指定的注目晝 素之座標的步驟, 一 對使用者提供關於前述注目晝素之修正支援資訊的 步驟, 义刖、r >正支援資訊包含依據前述識別處理之結果,^ 於如述注目晝素被演算的 ^ 、 井幻局#砰饧値、及依據前述識別石 、,岐前魅目晝素所>1的區域被演算的平均評 1貝値。 1 10.如申請專利範圍第 H 園弟9項所速之方法,其中前述修正支援: 況進一步包含於顯示 織種別資訊。 目旦素之刖述識別處理結果的組 25201240648 VII. Patent application scope: 1. A bone density measuring device, comprising: a subject image generating unit, which generates a bone salt based on detection data obtained by irradiating X-rays to a subject The image of the subject reflected by the dimensional distribution; the recognition processing unit is configured to recognize each of the pixels of the image of the subject, and to recognize the osteopontin and the soft tissue element based on the element of the element Recognition processing; the attention element specifying unit is configured to specify a pixel of interest by the user on the image of the subject; and the correction support unit provides the user with the specified condition Correcting the support information; the correction execution unit performs the correction of the result of the recognition process by the user giving the correction instruction to the above-mentioned attention pixel; wherein the correction support information includes: displaying the foregoing in the above-mentioned attention pixel The organization type of the identification processing result, according to the result of the foregoing identification processing, the local evaluation of the above-mentioned attention pixel is calculated; Based on the results of the identification process, in the evaluation of the average pixel region belongs is notable day calculus Zhi. The bone density measuring apparatus according to the first aspect of the invention, wherein the local bone density is displayed as the partial evaluation, and the average evaluation is performed as the above-mentioned partial evaluation.値, average 23 201240648 Bone mineral density is shown. 3. The bone density measuring device according to the second aspect of the patent, wherein the identification process is recognized as a soft tissue element, and the local soft tissue evaluation is displayed as the above-mentioned ^=evaluation, and as the foregoing The average ς fe値, average soft tissue evaluation 値 is shown. _n = Bone mineral density measuring device according to item i of the patent application scope, wherein the correction support information further comprises: ???said the reduction of the sputum and the high energy X-ray irradiation when the low-energy X-ray irradiation is calculated The local attenuation of the time, the average energy of the low-energy X-rays and the average attenuation of the high-energy x-ray rides are calculated in the region to which the reference/main eye is located. ...the bone density measuring device according to item 3 of the patent application, wherein the aforementioned evaluation of the tissue indicates that the local attenuation is caused by low-energy x-ray irradiation! The average soft tissue evaluation of the ratio of the local attenuation at the time of X-ray irradiation in the south, and the mean soft tissue evaluation in the month of low energy X-ray irradiation and the average attenuation amount at the time of high-energy X-ray irradiation. More than awkward. The bone density measuring device according to the above aspect of the invention, wherein the U-implemented part performs a type change from a bone morpheme to a soft tissue sputum, a change from a soft tissue sputum to a bone morpheme, and At least one of the culling objects. • ^ The bone density measurement t is set according to item 2 of the patent application scope, wherein the above & 'Bei' contains a plurality of vertebrae, and a plurality of regions of interest are set for the plurality of vertebrae, 24 201240648 identified in each of the aforementioned regions of interest It is a bone area and a soft tissue area. 8. The bone density measuring apparatus according to claim 1, wherein the correction support unit includes: a histogram generating unit that generates a histogram for displaying the prime number of each element based on the subject image. A marker generating unit that displays a mark of the above-described pixel of the pixel of interest is generated on the histogram. 9. A method for carrying out a bone density measuring device, which is based on a test data obtained by irradiating an X-ray to a subject, and a method of omitting a subject image, and a method for constituting the image of the subject The step of recognizing the financial element and the soft tissue pixel based on the element of the element, and the step of recognizing the coordinates of the target pixel specified by the user on the image of the subject, a pair of users Providing the steps for the correction support information of the above-mentioned attention, 刖, r > The support information includes the result of the above-mentioned recognition processing, ^ ^ 井 局 被 、 、 、 、 、 And based on the above-mentioned identification stone, the area of the former fascinating genus >1 is calculated as an average rating of 1 値. 1 10. For the method of applying for the speed of 9 items in the scope of the patent field, the above-mentioned amendment support: The situation is further included in the display of the seed type information. The group that identifies the processing results of the target
TW101108445A 2011-03-18 2012-03-13 Bone-density measuring device TWI507175B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011060130A JP5108965B2 (en) 2011-03-18 2011-03-18 Bone density measuring device

Publications (2)

Publication Number Publication Date
TW201240648A true TW201240648A (en) 2012-10-16
TWI507175B TWI507175B (en) 2015-11-11

Family

ID=46879191

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101108445A TWI507175B (en) 2011-03-18 2012-03-13 Bone-density measuring device

Country Status (4)

Country Link
JP (1) JP5108965B2 (en)
CN (1) CN103442638B (en)
TW (1) TWI507175B (en)
WO (1) WO2012128036A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6267938B2 (en) * 2013-11-11 2018-01-24 株式会社日立製作所 Medical X-ray measurement apparatus and boundary determination method
JP6204155B2 (en) * 2013-11-11 2017-09-27 株式会社日立製作所 Medical X-ray measurement apparatus and detection value sequence processing method
JP2015159945A (en) 2014-02-27 2015-09-07 富士フイルム株式会社 Image display apparatus, method, and program
JP6197963B2 (en) * 2014-10-29 2017-09-20 株式会社島津製作所 Image processing device
JP6118368B2 (en) * 2015-05-28 2017-04-19 株式会社日立製作所 Medical X-ray measurement system
JP2017131427A (en) * 2016-01-28 2017-08-03 株式会社日立製作所 X-ray image diagnostic apparatus and bone density measurement method
CN107485405B (en) * 2017-08-18 2021-02-19 浙江康源医疗器械有限公司 Device for measuring bone mineral density by using reference module
JP6906479B2 (en) * 2018-05-25 2021-07-21 富士フイルム株式会社 Bone mineral information acquisition device, method and program
JP7112343B2 (en) * 2019-01-28 2022-08-03 富士フイルムヘルスケア株式会社 Medical X-ray measuring device and program
EP3932315A4 (en) 2019-02-28 2022-04-06 FUJIFILM Corporation Radiation image processing device and program
CN110840473B (en) * 2019-11-22 2023-05-26 江研伟 Bone mineral density measuring system based on CT thin-layer scanning Hu value
WO2021153592A1 (en) * 2020-01-29 2021-08-05 キヤノン株式会社 Image processing device, radiography device, image processing method, and program
CN113491526B (en) * 2020-04-07 2023-12-05 辽宁开普医疗系统有限公司 Bone density correction and measurement method based on DR system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6474678A (en) * 1987-09-17 1989-03-20 Toshiba Corp Picture display device
US5533084A (en) * 1991-02-13 1996-07-02 Lunar Corporation Bone densitometer with improved vertebral characterization
JPH06261894A (en) * 1993-01-18 1994-09-20 Hitachi Ltd Bone salt quantitative determination method
JP3824749B2 (en) * 1996-09-25 2006-09-20 富士写真フイルム株式会社 Bone image processing method and apparatus
FR2801776B1 (en) * 1999-12-03 2002-04-26 Commissariat Energie Atomique METHOD OF USING AN OSTEODENSITOMETRY SYSTEM, BY BI-ENERGY X-RADIATION, WITH A CONICAL BEAM
JP4333079B2 (en) * 2002-04-30 2009-09-16 ブラザー工業株式会社 Color extraction device
JP3974842B2 (en) * 2002-10-30 2007-09-12 アロカ株式会社 X-ray bone density measuring device
JP2005034539A (en) * 2003-07-18 2005-02-10 Ibaraki Prefecture X-ray diagnostic imaging apparatus with measuring function for bone density distribution
JP4622700B2 (en) * 2005-06-22 2011-02-02 株式会社島津製作所 Light or radiation image display device
CN101238986B (en) * 2008-01-16 2011-10-19 天津开发区圣鸿医疗器械有限公司 Random calibration device for digital type bone density bone age measuring instrument

Also Published As

Publication number Publication date
CN103442638A (en) 2013-12-11
TWI507175B (en) 2015-11-11
JP5108965B2 (en) 2012-12-26
CN103442638B (en) 2015-11-25
JP2012192118A (en) 2012-10-11
WO2012128036A1 (en) 2012-09-27

Similar Documents

Publication Publication Date Title
TW201240648A (en) Bone-density measuring device
JP5156835B2 (en) Slit collimator scattering correction
Thevissen et al. Human age estimation combining third molar and skeletal development
JP5105589B2 (en) X-ray CT system
US7724875B2 (en) Image guided acquisition of quantitative dual energy data
JP6071145B2 (en) Radiation image analysis apparatus and method, and program
US10548539B2 (en) X-ray CT apparatus and scanning method
JPH10509075A (en) Bone densitometer with improved indicating characteristics
Haghanifar et al. Assessment of midpalatal suture ossification using cone-beam computed tomography
Martini et al. Optimization of acquisition parameters for reduced-dose thoracic CT: A phantom study
US7387439B2 (en) X-ray beam calibration for bone mineral density assessment using mammography system
JP6373952B2 (en) Radiation image analysis apparatus and method, and program
Steffensen et al. Optimisation of radiographic acquisition parameters for direct digital radiography: a systematic review
US11350897B2 (en) Apparatus for presentation of dark field X-ray image information
Echevarría-Sánchez et al. Reliability of cephalograms derived of cone beam computed tomography versus lateral cephalograms to estimate cervical vertebrae maturity in a Peruvian population: A retrospective study
JP6145874B2 (en) Radiation image processing apparatus and method
JP2009090022A (en) Medical image diagnostic apparatus, medical image diagnostic program, and x-ray imaging apparatus
Darcy et al. Decision making and variation in radiation exposure factor selection by radiologic technologists
CA3114262A1 (en) Device and method for editing a panoramic radiography image
Podgorsak et al. Use of material decomposition in the context of neurovascular intervention using standard flat panel and a high-resolution CMOS detector
El-beblawy et al. Accuracy of two software using semi-automated segmentation of simulated bone defects
Reddy et al. Grand Challenge for Evaluation and Comparison of Anatomical Landmark Detection Methods for Cephalometric X-Ray Images
Lee et al. Deep Learning-based Automatic Measures of Spinal Curvature in Idiopathic Scoliosis.
JP2023501802A (en) Apparatus and method for providing extended two-dimensional image data
Ali et al. Interobserver Reliability of Cervical Vertebral Maturation Staging

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees