JP3974842B2 - X-ray bone density measuring device - Google Patents

X-ray bone density measuring device Download PDF

Info

Publication number
JP3974842B2
JP3974842B2 JP2002316490A JP2002316490A JP3974842B2 JP 3974842 B2 JP3974842 B2 JP 3974842B2 JP 2002316490 A JP2002316490 A JP 2002316490A JP 2002316490 A JP2002316490 A JP 2002316490A JP 3974842 B2 JP3974842 B2 JP 3974842B2
Authority
JP
Japan
Prior art keywords
bone density
body fat
fat percentage
distribution
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002316490A
Other languages
Japanese (ja)
Other versions
JP2004147863A (en
Inventor
弘之 東方
一昌 伊勢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Aloka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aloka Co Ltd filed Critical Aloka Co Ltd
Priority to JP2002316490A priority Critical patent/JP3974842B2/en
Publication of JP2004147863A publication Critical patent/JP2004147863A/en
Application granted granted Critical
Publication of JP3974842B2 publication Critical patent/JP3974842B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、X線を用いて被検体の骨密度分布を測定する装置に関する。
【0002】
【従来の技術】
X線を被検体に透過させて骨密度を演算するX線骨密度測定装置は、従来より骨の疾病診断やその予防のために多くの医療機関で利用されている。周知のように骨はX線を減弱するカルシウムなどのミネラル(骨塩)で構成されており、X線透過の際の減衰量(減弱率)を求めることによって、単位面積当たりの骨密度が演算される。骨は筋肉や脂肪などの軟部組織に覆われており、その部分でもX線の減弱が生じる。そのような軟部組織による影響を排除するために、従来の骨密度測定装置では、2種類のエネルギーのX線が利用されている。これは各エネルギーで演算された減衰量に基づき連立方程式を解くことによって骨部分及び軟部組織分それぞれの減衰量を特定するものである。この手法は二重X線吸収測定法(DXA法)と呼ばれる。このDXA法による骨密度計算の原理を図5を用いて説明する。図5には、(b)に示すように骨部12の周囲を軟部組織14が覆っている被検体10に対し、高低2種類のエネルギーのX線を透過させた時の減衰量の分布を(a)に示す。図から分かるように、骨部も軟部組織も低エネルギーX線の方が高エネルギーX線よりも減衰量が高いが、両エネルギー間での減衰量の比は骨部と軟部組織とで明らかに異なる。そこで、DXA法では、軟部組織についての高エネルギーX線の減衰量に対する低エネルギーX線の減衰量の比αを求め、低エネルギーX線の減衰量から、高エネルギーX線の減衰量にαを掛けたものを減算することで、骨部のみの減衰量を求め、これを骨密度(この場合は単位面積当たりの骨塩量)に換算している。特許文献1及び2には、このような手法を用いた骨密度測定装置の一例が示されている。
【0003】
この方式の骨密度測定装置では、例えばベッドに寝た被検体の上方から下方へとX線を照射して検出することで、被検体を2次元投影した場合の各点の骨密度を求めることができ、この2次元分布を表示することができる。
【0004】
また、従来のDXA法の骨密度測定装置には、被検体の外形形状等を把握しやすくするなどの目的で、骨部だけでなく軟部組織を表示できるものもある。すなわち、一般的な骨密度算出では、上述のごとく軟部組織の値が0になるような比αを用いているが、このαの値をそれより小さい値とすれば、軟部組織も正の値となるので、このような小さいαを用いて表示画像を形成すれば、軟部組織をも表した表示が得られる。
【0005】
【特許文献1】
特許第2735507号明細書
【特許文献2】
特許第3256667号明細書
【0006】
【発明が解決しようとする課題】
近年、ラットやマウス等の動物を用いた投薬効果確認等のために、X線骨密度測定装置を用いることも行われている。例えば、やせ薬による筋肉や脂肪の量の変化が骨に与える影響を調べるために、X線骨密度測定装置により骨密度分布を測定する例が知られている。この用途では、体脂肪率の分布と骨密度分布との関係が分かると非常に便利である。しかしながら、従来の骨密度測定装置にはそのような両分布を関連づけて表示する機能を持つものは存在しない。
【0007】
ここで、上記従来技術に示した軟部組織表示は、骨密度分布だけでなく、骨部の周囲の軟部組織もある程度表示できるが、この表示に示される軟部組織の値は、軟部組織によるX線減衰量を骨密度のスケールに換算したものであって、体脂肪率を表してはいない。例えば、体脂肪率は一般に体側部(脇腹など)の方が高い傾向があるが、体側部は体の厚みが小さいためX線の減弱が小さくなるので、上記の軟部組織表示では体側部の値が被検体外部と同等の小さい値となり、体脂肪率の状況を表さない。
【0008】
本発明はこのような問題に鑑みなされたものであり、骨密度と体脂肪率との関係を分かりやすく示すことができるX線骨密度測定装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本発明に係る装置は、被検体を透過したX線を検出し、この検出結果に基づきX線の減衰量の2次元分布を求める測定手段と、前記2次元分布から被検体の骨部と軟部組織とを弁別する弁別手段と、前記2次元分布から前記骨部の骨密度分布を求める骨密度算出手段と、前記2次元分布から前記軟部組織の体脂肪率分布を求める体脂肪率算出手段と、前記骨部の骨密度分布と前記軟部組織の体脂肪率分布とを一画像に合成して出力する合成手段とを含む。
【0010】
この構成では、減衰量の2次元分布から、骨部については骨密度分布を、軟部組織については体脂肪率分布をそれぞれ求め、両者を合成して1枚の画像を生成する。したがって、ユーザはその画像により骨密度分布と体脂肪率分布を一覧することができるので、骨密度と体脂肪率の関係の分析が容易になる。
【0011】
好適な態様では、前記測定手段は、異なる2つのエネルギーのX線についてそれぞれ前記減衰量の2次元分布を求め、前記骨密度算出手段は、前記各エネルギーのX線についての前記2次元分布から二重X線吸収測定法に従って骨密度分布を求め、前記体脂肪率分布算出手段は、各エネルギーのX線の減衰量同士の比と体脂肪率との対応関係の情報を有し、前記2次元分布から各点での各エネルギーのX線の減衰量同士の比を求め、その比に対応する体脂肪率を前記対応関係の情報から求めることで前記体脂肪率分布を求める。
【0012】
また別の好適な態様では、前記合成手段は、前記骨密度分布と前記体脂肪率分布とに、互いに異なる表示形態範囲を割り当て、骨密度と体脂肪率とをそれぞれ対応する表示形態範囲内の表示形態で表現する。この態様によれば、骨密度と体脂肪率とが互いに区別しやすい画像を生成できる。
【0013】
更に別の好適な態様では、前記体脂肪率分布算出手段は、前記2次元分布から各点での各エネルギーのX線の減衰量同士の比を求めるに当たり、前記異なる2つのエネルギーのX線のうち、エネルギーが低い方のX線に対する前記2次元分布の減衰量の値を補正する。この態様によれば、軟部組織の特性にあった適切な減衰量補正を施すことができる。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態(以下実施形態という)について、図面に基づいて説明する。
【0015】
本実施形態のX線骨密度測定装置は、被検体の骨密度分布と体脂肪率分布を求め、これらを1枚の画像に合成して表示する機能を備える。この装置は、ハードウエア構成としては従来のDXA法による骨密度測定装置とほぼ同等の構成でよく、体脂肪率分布の計算や合成画像の生成は典型的にはソフトウエア的に実現される(もちろんこれら計算や画像生成の処理の一部又は全部をハードウエア回路化することも不可能ではない)。
【0016】
そこでまず、本発明に係る骨密度・体脂肪率の同時表示方式が適用されるX線骨密度測定装置のハードウエア構成について、図1を参照して説明する。
【0017】
この骨密度測定装置は、例えばラット等の被検体10の胴体の骨密度分布を測定する測定装置であり、固定配置されるベッド16上には被検体10が載置される。実際には、小動物をベッド16に固定するための機構が存在するが、図では繁雑さを避けるため図示を省略している。被検体10は生体であり、骨12は、筋肉や脂肪などからなる軟部組織14によって覆われている。本実施形態において、ベッド16の下側にはX線発生装置18が設けられ、ベッド16の上方にはX線検出装置22が配置されている。X線発生装置18は必要に応じて高エネルギーX線又は低エネルギーX線を発生する装置であり、X線検出装置は被検体10を透過したX線100を検出する装置である。これらのX線発生装置18及びX線検出装置22は走査装置24によって両者一体的に水平方向に駆動される。例えば、ジグザグ走査により被検体の胴体全域を走査し、透過X線を検出する。
【0018】
制御部26は、本装置の動作制御を行うものであり、また後述する各種演算を実行する。骨密度や体脂肪率の計算、合成表示画像の生成などの処理も、この制御部26の演算処理によって実現される。記憶部30には、制御部26の制御・演算処理のための各種のプログラムやデータが保存される。記憶部30は例えばEEPROMなどで構成される。表示器32には制御部26における演算結果などが表示される。
【0019】
図1に示したように、被検体10を測定する場合、まず、被検体10がベッド16上に載置され、その後、走査装置24によってX線発生装置18及びX線検出装置22を水平方向にスキャンさせながら、例えば数ミリ秒程度の所定周期で交互に高エネルギーX線及び低エネルギーX線の照射を行う。これをX線検出装置22で検出することにより、水平面内での各点ごとに、被検体10を透過した高エネルギーX線の計数率(Ih)と低エネルギーX線の計数率(Il)が各々求められる。各点での減衰量は、実測した計数率Ih,Ilで、それぞれ基準計数率Ioh,Iolを除したものの自然対数で表される。すなわち、高エネルギーX線の減衰量Rhはln(Ioh/Ih),低エネルギーX線の減衰量Rlはln(Iol/Il)で求められる。なお、基準計数率Ioh,Iolは、ベッド16上の被検体がない位置に、被検体実測時と同じ条件でX線発生装置18から高エネルギーX線及び低エネルギーX線をそれぞれ照射した時に、X線検出装置22の検出結果から得られる計数率を用いることができる。このようにして求めた高エネルギーX線及び低エネルギーX線の各々の減衰量が、この装置による測定の生データとなる。以下、この生データをもとに、各点の骨密度や体脂肪率の計算を行う。
【0020】
ここで、骨密度の計算は周知のDXA法のアルリゴズムに従って行えばよいので説明を省略し、図2を参照して体脂肪率の計算方式を説明する。
【0021】
体脂肪率の計算のためには、X線透過に関して軟部組織を模擬するファントムを用いてキャリブレーションを行い、減衰量比と体脂肪率との関係を示す減衰量比−体脂肪率関数を求める。このキャリブレーションには、2種類の異なる体脂肪率に対応するファントムを用いる。例えば、体脂肪率0%(すなわち筋肉100%)に対応するファントム(ファントムFat0と呼ぶ)と、体脂肪率100%(筋肉0%)に対応するファントム(ファントムFat100と呼ぶ)の2種類を用いる。そして、体脂肪率0%のファントムFat0をベッド16に載置して高エネルギーX線及び低エネルギーX線を照射し、それぞれの減衰量Rh,Rlを計算し、両者の比Rl/Rhを計算する。この比を減衰量比と呼ぶ。ファントムFat0について求めた減衰量比は、図2ではRR0と示している。図2は、縦軸に体脂肪率、横軸に減衰量比をとってそれら両者の関係を示したものであり、体脂肪率0%に対応する点はAで示されている。同様に、ファントムFat100を測定し、体脂肪率100%に対応する減衰量比RR100を求める。これに対応する点は、図2には点Bとして示している。そして、体脂肪率0%と100%の2点を除く範囲については、これら2点をパラメータとする関数により近似する。この関数のことを換算関数fと呼ぶ。図2の例は、それら2点の間を直線の換算関数fで近似した場合の例である。もちろん、実験等によりより適切な換算関数を見出して利用してもよい。いずれにしてもキャリブレーション処理は、利用する換算関数を特定するのに必要な数の、体脂肪率の異なるファントムを用いて行えばよい。
【0022】
このようにして求められた換算関数fは記憶部30に記憶され、利用される。体脂肪率の算出では、被検体100を実測して減衰量比RRxを求め、換算関数fにこのRRxを代入し、体脂肪率の値Fを求めればよい。なお、換算関数は、上述のように関数形を規定するパラメータの組として記憶してもよいが、各減衰量比に対応する体脂肪率の値を登録したテーブルなどの形で実装してももちろんよい。
【0023】
次に、図3を参照して、本発明に係る装置で行われる処理の手順を説明する。
【0024】
まず、上述のようにX線発生装置18及びX線検出装置22を走査して、被検体100の各点の高エネルギーX線及び低エネルギーX線の減衰量Rh,Rlを求め(S10)、この測定結果に基づきRh,Rlの2次元分布を表すマップをそれぞれ作成する(S12)。このマップは、画像の各画素ごとに減衰量(Rh又はRl)の値を持っている。これらマップの組が測定結果の生データとなる。以降は、これらマップの組をもとに、骨密度測定の処理と体脂肪率測定の処理を実行する。
【0025】
骨密度測定でも体脂肪率測定でも、減衰量の生データから、各画素ごとに減衰量比RR=Rl/Rhを計算する(S14及びS20)。ただし、減衰量比の計算は、単に生データにおける高低各エネルギーの減衰量同士の比をとるのではなく、骨密度測定の場合(S14)と体脂肪率測定(S20)の場合とで、それぞれ適切な補正演算を加える。この補正演算は、一つには体厚の違いによる測定結果(骨密度又は体脂肪率)のずれを補正する(体厚補正とも呼ばれる)ためのものである。ここで、体厚とはX線が被検体を透過する長さのことであり、理想的には体厚が異なっても、同じ骨密度(又は体脂肪率)のものを測定した場合は、同じ減衰量比RRが求められるべき(すなわち両者の関係は直線比例関係)であるが、現実にはそうはならず、両者の関係は非直線的になる。そこで、できるだけ理想に近くなるようにRh,Rlの生データに対して補正を加えた上で、両者の比をとるようにしている。ただし、DXA法の骨密度測定装置の場合、装置構成上被検体各部の体厚を測定することはできない(体厚測定のために専用の測定機構を設けることも考えられるが、コスト的に見合わない)ので、単純に生データの減衰量を、体厚補正された減衰量に換算する構成を採っている。すなわち、減衰量Rh及びRlは、体厚に関して比例関係ではないものの単調に変化することから、生の減衰量の値自身が体厚とほぼ1対1の対応関係にあるとの仮定できるために、このような換算方式が可能である。この換算のためには、同じ材質で厚みの異なるファントムを複数用意し、それらを高低各エネルギーのX線で測定し、その時の減衰量比Rl/Rhが体厚によらずできるだけ均一となるように、Rh又はRlの補正値を求める。
【0026】
この体厚補正は、従来のDXA法の骨密度測定装置でも行われているが、従来装置では、高エネルギーX線についての減衰量Rhに対して補正を加えることで、良好な体厚補正が実現されている。ただし、これは、骨密度測定に対して良好な体厚補正であり、本発明者の実験によれば、同じ補正を体脂肪率測定に適用しても良好な結果は得られなかった。そこで、実験により体脂肪率に適した体厚補正法を調べたところ、低エネルギーX線についての減衰量Rlに対して補正を加えるとが好適であることが分かった。この点については、厳密な理論的解明はまだであるが、大まかなメカニズムは次のようなものと考えられる。すなわち、骨によるX線の減衰は軟部組織による減衰よりもはるかに大きいため、骨の部分(すなわちX線の透過経路に骨が含まれる部分)では高エネルギーのX線でも十分に減衰するため、骨密度には高エネルギーX線の減衰量が支配的となる。このため、高エネルギーX線の減衰量を補正することで良好な体厚補正が可能となるものと考えられる。これに対し、軟部組織はX線の減衰が小さいので、軟部組織の部分(すなわちX線の透過経路に骨が含まれない部分)では体厚の違いによる減衰量の差は小さいものとなるが、そのなかでも高エネルギーX線の方が透過性が高いため、低エネルギーX線よりも体厚の違いによる差が現れにくい。また、軟部組織の脂肪と筋肉ではX線の減衰量の差が小さく、特に透過力の大きい高エネルギーのX線では体脂肪率が変わっても減衰量の変化は極めて小さい。これに対し、透過力がそれより小さい低エネルギーX線の減衰量は、脂肪と筋肉の減衰の差を高エネルギーX線よりも大きく反映する。したがって、軟部組織の部分を対象とする体脂肪率計算では、脂肪と筋肉の比率により敏感な低エネルギーX線の減衰量を補正することで、好適な体厚補正が可能になるものと考えられる。
【0027】
なお、体厚補正のための具体的な換算関数(あるいは換算テーブル)を求めるためには、まず骨密度用と体脂肪率用にそれぞれ上述のごとく厚みの異なる複数のファントムを用意し、それぞれ高低各エネルギーのX線で測定して、各体厚に対応する減衰量Rl,Rhを求める。そして、その測定結果において、減衰量比Rl/Rhがファントムの厚みによらずできるだけ均一となるよう、骨密度測定については高エネルギーX線の各厚みに対応する減衰量Rhの補正値Rh'を、体脂肪率測定については低エネルギーX線の各厚みに対応する減衰量Rlの補正値Rl'を、それぞれ求める。そして、骨密度測定については、各厚みに対するRhとRh'の対応関係を近似する関数を換算関数として決定し、体脂肪率測定については、各厚みに対するRlとRl'の対応関係を近似する関数を換算関数として決定する。このように決定した体厚補正用の換算関数は、記憶部30に予め記憶されている。
【0028】
したがってS14では、生データの各画素のRhに対して骨密度用の換算関数により体厚補正を施し、S22では生データの各画素のRlに対して体脂肪率用の換算関数により体厚補正を施した上で、それぞれ各画素ごとにその補正結果を用いて減衰量比Rl/Rhを計算する。
【0029】
S14で骨部用の補正を施した減衰量比のマップができあがると、次にこのマップの各画素を、当該画素の減衰量比の値に従って、骨部(X線透過経路に骨を含む部分)、軟部組織(X線透過経路に骨を含まないが軟部組織は含む部分)、及び空気層(X線透過経路が空気層のみの部分)の3種類のいずれかに分類する。骨部と軟部組織と空気層では、減衰量比Rl/Rhが大きく異なるので、しきい値弁別によりそれら3種類を弁別できる。この時の弁別しきい値としては、骨部と軟部組織とを分ける減衰量比と、軟部組織と空気層とを分ける減衰量比の値を予め実験等で求めておけばよい。この弁別によれば、各画素は、骨部、軟部組織、空気層のいずれか1つに必ず分類される。
【0030】
このS16により、S12で求めた減衰量のマップとS14及びS22で求めた減衰量比のマップにおいて、どの画素が骨部に該当し、どの画素が軟部組織に該当するかを示す分類マップが得られる。
【0031】
S18では、この分類マップを参照して骨部の画素のみを抽出し、それら骨部の各画素ごとに、S14で求めた減衰量比マップの中の当該画素の値を取り出し、この値に基づき周知のDXA法の手法に従って当該画素の骨密度を計算する。
【0032】
このようにして、骨部の各画素の骨密度が求められると、次に各画素ごとに、その画素の骨密度を所定の第1の色の階調値に変換することで、骨密度分布の画像を形成する(S20)。骨密度と階調値との関係を示す変換関数(又はテーブル)は、予め記憶部30に登録されている。
【0033】
以上で、骨密度分布の画像ができあがる。一方、体脂肪率測定の処理では、S22の処理の後、S16で求めた分類マップを参照して軟部組織の各画素を抽出し、それら軟部組織の各画素ごとに、S22で求めた減衰量比マップの中の当該画素の値を取り出し、この値に基づき、上述の体脂肪率計算方法に従って当該画素の体脂肪率を計算する(S24)。
【0034】
このようにして、軟部組織の各画素の体脂肪率が求められると、次に各画素ごとに、その画素の体脂肪率を、骨密度表示に割り当てた第1の色とは異なる所定の第2の色の階調値に変換することで、体脂肪率分布の画像を形成する(S26)。ここで、体脂肪率と階調値との関係を示す変換関数(又はテーブル)は、予め記憶部30に登録されている。
【0035】
そして、S28では、S20で生成した骨密度分布の画像と、S26で生成した体脂肪率分布の画像とを合成し、1枚の出力画像を生成する。この合成では、S16で作成した分類テーブルを参照し、骨部に該当する画素には骨密度分布における対応画素の値を採用し、軟部組織に該当する画素には体脂肪率分布における対応画素の値を採用する。
【0036】
なお、骨密度に割り当てる第1の色と、体脂肪率に割り当てる第2の色は、例えばそれぞれ表示出力機構の原色から選択すればよい。例えば、RGB表示のディスプレイ装置の場合、第1の色にG(緑)、第2の色にR(赤)を選択するなどである。また、骨密度は、骨との対応が直感的に分かりやすい白黒のグレースケールで表現し、体脂肪率は有彩色(例えば赤など)の階調で表現する等の方式も考えられる。もちろんこれらは一例であり、第1の色と第2の色には、階調を変えても両者の違いが区別できるような色の組合せであれば、どのようなものであっても用いることができる。
【0037】
そして、このようにして生成された合成画像を、例えば表示器32に表示出力したり、プリンタ(図示省略)から印刷出力したりする(S30)。
【0038】
図4は、本実施形態の装置から出力される、骨密度分布及び体脂肪率分布の合成画像の一例を模式的に示している。図では色が表現できないため、第1の色は斜線ハッチングで、第2の色はクロスハッチングでそれぞれ示し、骨密度や体脂肪率の大小はハッチングの密度で表現している。この図に示すように、骨密度分布と体脂肪率分布の合成画像200の近傍には、各色の階調と、骨密度又は体脂肪率の値(又は大小)との対応関係を表すスケール210a、210bが示される。なお、この図では、繁雑さを避けるため階調数を少なくしているが、実際の出力画像では階調を更に細かくすることができる。
【0039】
このように、本実施形態の装置によれば、被検体の骨部に該当する部分には骨密度を、軟部組織に該当する部分には体脂肪率を、それぞれ示した合成画像200を作成し、出力することができる。ユーザは、この合成画像200により骨密度の分布と体脂肪率の分布とを一覧することができるので、体脂肪率と骨密度との関係の把握が容易になる。また、本実施形態では、体脂肪率に適した演算方式及び体厚補正方式を用いているので、従来技術で説明した軟部組織表示とは異なり、信頼性の高い体脂肪率の情報を提供することができる。
【0040】
また、本実施形態では、骨密度と体脂肪率を、互いに異なる第1の色と第2の色の階調でそれぞれ表現したので、合成画像200上で、各画素が骨密度(骨部)を表しているか、体脂肪率(軟部組織)を表しているかが区別しやすい。
【0041】
なお、骨密度と体脂肪率を、互いに異なる第1の色と第2の色の階調で表現するという画像表現方式はあくまで一例である。原理的には、骨密度と体脂肪率とには、互いに重ならない表示形態範囲を割り当てればよい。この表示形態範囲には、上述した例のような1つの色の階調範囲も含まれる。この場合、例えば「第1の色」が1つの表示形態範囲であり、その第1の色の範囲内でのある階調の色が、その表示形態範囲内の1つの表示形態となる。また、寒色や暖色といった色相環上での範囲も表示形態範囲の一種である。すなわち、例えば骨密度には寒色範囲の色相のグラデーションを割り当て、体脂肪率には暖色範囲の色相のグラデーションを割り当てるなどの方式が可能である。また、図4に示したハッチングの区別なども表示形態範囲の一種であり、この場合1つ1つのハッチングの種類(左下がり斜線ハッチングや、クロスハッチング)が1つの表示形態範囲に該当し、あるハッチング種類におけるある密度のハッチングが、その表示形態範囲内の1つの表示形態に該当する。いずれの場合も、骨密度と体脂肪率にそれぞれ割り当てる表示形態範囲は、それら骨密度や体脂肪率が上限から下限までどのような値をとっても、合成画像200上で両者が区別しやすいものであることが望ましい。
【0042】
図1に示す実施形態ではX線発生装置18及びX線検出装置22が水平方向に駆動されているが、上述の説明から明らかなように、本実施形態における骨密度分布と体脂肪率分布の同時表示は、このような検出系の構成によらないものである。例えば、X線発生装置18及びX線検出装置22を固定配置し、ベッド16を水平方向に駆動してもよい。この場合、走査装置24によってベッド16が駆動され、これによって被検体10自体がスキャンされることになる。また、検出系としては、X線発生装置18から1点にフォーカスするペンシルビームを出力し、これを1個の検出器からなるX線検出装置22で検出してもよいし、X線発生装置18から扇型に広がるファンビームを出力し、これを複数の検出器が一列に並んだアレイを有するX線検出装置22で検出してもよい。また、X線発生装置18から円錐状に広がるコーンビームを用いる構成でもよい。また、上述の例では、高エネルギーのX線と低エネルギーのX線とを短い間隔で交互に照射したが、この代わりに広帯域のX線を照射し、X線検出装置22で検出信号の波高弁別を行って、高エネルギーX線に対応する検出信号と低エネルギーX線に対応する検出信号とを弁別して個別計数する構成でもよい。
【0043】
【発明の効果】
以上説明したように、本発明によれば、被検体骨部の骨密度分布と、被検体軟部組織の体脂肪率分布とを、1枚の画像に合成して表示することができるので、ユーザによる体脂肪率と骨密度との関係の把握が容易になる。
【図面の簡単な説明】
【図1】 実施形態のX線骨密度測定装置の概略構成を示すブロック図である。
【図2】 実施形態の体脂肪率測定の原理を説明するための図である。
【図3】 実施形態の装置の処理の流れを説明するための図である。
【図4】 実施形態の装置の出力画像の一例を模式的に示す図である。
【図5】 DXA法による骨密度測定の原理を説明するための図である。
【符号の説明】
10 被検体、12 骨部、14 軟部組織、16 ベッド、18 X線発生装置、22 X線検出装置、24 走査装置、26 制御部、30 記憶部、32 表示器。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for measuring a bone density distribution of a subject using X-rays.
[0002]
[Prior art]
An X-ray bone density measuring device that calculates bone density by transmitting X-rays through a subject has been conventionally used in many medical institutions for bone disease diagnosis and prevention. As is well known, bones are composed of minerals such as calcium (bone mineral) that attenuate X-rays, and the bone density per unit area is calculated by calculating the amount of attenuation (attenuation rate) during X-ray transmission. Is done. Bone is covered with soft tissues such as muscles and fats, and X-ray attenuation also occurs in those parts. In order to eliminate the influence of such soft tissue, two types of energy X-rays are used in the conventional bone density measuring apparatus. In this method, the attenuation of each bone part and soft tissue is specified by solving simultaneous equations based on the attenuation calculated for each energy. This method is called a double X-ray absorption measurement method (DXA method). The principle of bone density calculation by the DXA method will be described with reference to FIG. FIG. 5 shows the distribution of attenuation when X-rays of two types of high and low energy are transmitted through the subject 10 whose soft tissue 14 covers the periphery of the bone part 12 as shown in FIG. Shown in (a). As can be seen from the figure, the attenuation of bone and soft tissue is higher in low energy X-rays than in high energy X-rays, but the ratio of attenuation between the two energies is clear between bone and soft tissues. Different. Therefore, in the DXA method, the ratio α of the attenuation amount of the low energy X-ray to the attenuation amount of the high energy X-ray with respect to the soft tissue is obtained, and α is added to the attenuation amount of the high energy X-ray from the attenuation amount of the low energy X-ray. By subtracting the multiplied value, the attenuation amount of only the bone portion is obtained and converted into the bone density (in this case, the amount of bone mineral per unit area). Patent Documents 1 and 2 show an example of a bone density measuring apparatus using such a technique.
[0003]
In this type of bone density measuring device, for example, the bone density at each point when the subject is two-dimensionally projected is obtained by detecting by irradiating X-rays from above to below the subject lying on the bed. This two-dimensional distribution can be displayed.
[0004]
In addition, some conventional DXA bone density measuring apparatuses can display not only bone parts but also soft tissues for the purpose of easily grasping the outer shape and the like of a subject. That is, in the general bone density calculation, the ratio α is used so that the value of the soft tissue becomes 0 as described above. However, if the value of α is a smaller value, the soft tissue also has a positive value. Therefore, if a display image is formed using such a small α, a display that also represents a soft tissue can be obtained.
[0005]
[Patent Document 1]
Japanese Patent No. 2735507
[Patent Document 2]
Japanese Patent No. 3256667
[0006]
[Problems to be solved by the invention]
In recent years, an X-ray bone density measuring device has also been used for confirmation of drug effects using animals such as rats and mice. For example, an example of measuring a bone density distribution using an X-ray bone density measuring device is known in order to examine the influence of changes in the amount of muscle and fat caused by a thinning drug on bones. In this application, it is very convenient to know the relationship between the distribution of body fat percentage and the bone density distribution. However, there is no conventional bone density measuring device having a function of displaying both such distributions in association with each other.
[0007]
Here, the soft tissue display shown in the above prior art can display not only the bone density distribution but also the soft tissue around the bone part to some extent. The value of the soft tissue shown in this display is an X-ray by the soft tissue. The amount of attenuation is converted to a bone density scale and does not represent body fat percentage. For example, the body fat percentage generally tends to be higher in the body side part (flank, etc.), but since the body side part has a small body thickness, the attenuation of X-rays becomes small. Becomes a small value equivalent to that of the outside of the subject and does not represent the state of body fat percentage.
[0008]
This invention is made | formed in view of such a problem, and it aims at providing the X-ray bone density measuring apparatus which can show the relationship between a bone density and a body fat percentage in an easy-to-understand manner.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, an apparatus according to the present invention detects X-rays transmitted through a subject and obtains a two-dimensional distribution of X-ray attenuation based on the detection results, A discriminating means for discriminating between a bone part and a soft tissue of a subject; a bone density calculating means for obtaining a bone density distribution of the bone part from the two-dimensional distribution; and a body fat percentage distribution of the soft tissue from the two-dimensional distribution. Body fat percentage calculation means to be obtained; and synthesis means for synthesizing and outputting the bone density distribution of the bone part and the body fat percentage distribution of the soft tissue into one image.
[0010]
In this configuration, a bone density distribution is obtained for the bone part and a body fat percentage distribution is obtained for the soft tissue from the two-dimensional distribution of attenuation, and both are combined to generate one image. Therefore, since the user can list the bone density distribution and the body fat percentage distribution by the image, it becomes easy to analyze the relationship between the bone density and the body fat percentage.
[0011]
In a preferred aspect, the measurement means obtains a two-dimensional distribution of the attenuation amount for each of two different energy X-rays, and the bone density calculation means calculates the two-dimensional distribution from the two-dimensional distribution for the X-rays of each energy. A bone density distribution is obtained according to a heavy X-ray absorption measurement method, and the body fat percentage distribution calculating means has information on the correspondence between the ratio of X-ray attenuation of each energy and the body fat percentage, and the two-dimensional The body fat percentage distribution is obtained by obtaining a ratio between X-ray attenuation amounts of each energy at each point from the distribution and obtaining a body fat percentage corresponding to the ratio from the information of the correspondence relationship.
[0012]
In another preferred aspect, the synthesizing unit assigns different display form ranges to the bone density distribution and the body fat percentage distribution, and sets the bone density and the body fat percentage within the corresponding display form ranges. Expressed in display form. According to this aspect, it is possible to generate an image in which the bone density and the body fat percentage can be easily distinguished from each other.
[0013]
In still another preferred aspect, the body fat percentage distribution calculating means calculates the ratio of the X-ray attenuation of each energy at each point from the two-dimensional distribution. Among these, the attenuation value of the two-dimensional distribution for the X-ray having the lower energy is corrected. According to this aspect, it is possible to perform appropriate attenuation correction that matches the characteristics of the soft tissue.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings.
[0015]
The X-ray bone density measuring apparatus of the present embodiment has a function of obtaining a bone density distribution and a body fat percentage distribution of a subject, and combining and displaying them on a single image. This device may have almost the same hardware configuration as the conventional DXA method bone density measuring device, and the calculation of the body fat percentage distribution and the generation of the composite image are typically realized by software ( Of course, it is not impossible to make a part or all of the calculation and image generation processing into a hardware circuit).
[0016]
First, the hardware configuration of the X-ray bone density measuring apparatus to which the simultaneous display system of bone density and body fat percentage according to the present invention is applied will be described with reference to FIG.
[0017]
This bone density measuring device is a measuring device that measures the bone density distribution of the trunk of a subject 10 such as a rat, and the subject 10 is placed on a bed 16 that is fixedly arranged. Actually, there is a mechanism for fixing the small animal to the bed 16, but the illustration is omitted in the figure to avoid complication. The subject 10 is a living body, and the bone 12 is covered with a soft tissue 14 made of muscle or fat. In the present embodiment, an X-ray generator 18 is provided below the bed 16, and an X-ray detector 22 is disposed above the bed 16. The X-ray generation device 18 is a device that generates high energy X-rays or low energy X-rays as required, and the X-ray detection device is a device that detects the X-rays 100 that have passed through the subject 10. The X-ray generator 18 and the X-ray detector 22 are driven in the horizontal direction integrally by the scanning device 24. For example, the entire body of the subject is scanned by zigzag scanning to detect transmitted X-rays.
[0018]
The control unit 26 controls the operation of the apparatus, and executes various calculations described later. Processing such as calculation of bone density and body fat percentage, generation of a composite display image, and the like are also realized by arithmetic processing of the control unit 26. The storage unit 30 stores various programs and data for control / arithmetic processing of the control unit 26. The storage unit 30 is composed of, for example, an EEPROM. The display 32 displays the calculation result in the control unit 26 and the like.
[0019]
As shown in FIG. 1, when measuring the subject 10, the subject 10 is first placed on the bed 16, and then the X-ray generator 18 and the X-ray detector 22 are moved in the horizontal direction by the scanning device 24. For example, high-energy X-rays and low-energy X-rays are irradiated alternately at a predetermined cycle of, for example, several milliseconds. By detecting this with the X-ray detection device 22, the count rate (Ih) of the high energy X-ray transmitted through the subject 10 and the count rate (Il) of the low energy X-ray transmitted through the subject 10 for each point in the horizontal plane. Each is required. The amount of attenuation at each point is represented by the natural logarithm of the measured count rates Ih and Il divided by the reference count rates Ioh and Iol, respectively. That is, the attenuation amount Rh of the high energy X-ray is obtained by ln (Ioh / Ih), and the attenuation amount R1 of the low energy X-ray is obtained by ln (Iol / Il). The reference count rates Ioh and Iol are obtained when high energy X-rays and low energy X-rays are irradiated from the X-ray generator 18 to the position where there is no subject on the bed 16 under the same conditions as when the subject is actually measured. The count rate obtained from the detection result of the X-ray detector 22 can be used. The attenuation amounts of the high energy X-rays and the low energy X-rays thus obtained become raw data of measurement by this apparatus. Hereinafter, the bone density and body fat percentage of each point are calculated based on this raw data.
[0020]
Here, the calculation of the bone density may be performed in accordance with the well-known DXA method algorithm, so the description thereof will be omitted, and the calculation method of the body fat percentage will be described with reference to FIG.
[0021]
For the calculation of body fat percentage, calibration is performed using a phantom that simulates soft tissue with respect to X-ray transmission, and an attenuation ratio-body fat percentage function indicating the relationship between the attenuation ratio and the body fat percentage is obtained. . For this calibration, phantoms corresponding to two different body fat percentages are used. For example, two types of phantoms (referred to as phantom Fat0) corresponding to a body fat percentage of 0% (that is, muscle 100%) and phantoms (referred to as phantom Fat100) corresponding to a body fat percentage of 100% (muscle 0%) are used. . Then, a phantom Fat0 with a body fat percentage of 0% is placed on the bed 16 and irradiated with high energy X-rays and low energy X-rays, the respective attenuation amounts Rh and Rl are calculated, and the ratio Rl / Rh between them is calculated. To do. This ratio is called an attenuation ratio. The attenuation ratio obtained for the phantom Fat0 is shown as RR0 in FIG. FIG. 2 shows the relationship between the body fat percentage on the vertical axis and the attenuation ratio on the horizontal axis, and the point corresponding to the body fat percentage of 0% is indicated by A. Similarly, the phantom Fat100 is measured to determine the attenuation ratio RR100 corresponding to the body fat percentage of 100%. The point corresponding to this is shown as point B in FIG. The range excluding two points of body fat percentage 0% and 100% is approximated by a function using these two points as parameters. This function is called a conversion function f. The example of FIG. 2 is an example in the case of approximating between these two points with a linear conversion function f. Of course, a more appropriate conversion function may be found and used by experiments or the like. In any case, the calibration process may be performed using the number of phantoms having different body fat percentages necessary for specifying the conversion function to be used.
[0022]
The conversion function f obtained in this way is stored in the storage unit 30 and used. In calculating the body fat percentage, the subject 100 is actually measured to obtain the attenuation ratio RRx, and this RRx is substituted into the conversion function f to obtain the body fat percentage value F. The conversion function may be stored as a set of parameters that define the function form as described above, but may be implemented in the form of a table or the like in which values of body fat percentage corresponding to each attenuation ratio are registered. Of course.
[0023]
Next, with reference to FIG. 3, a procedure of processing performed by the apparatus according to the present invention will be described.
[0024]
First, the X-ray generation device 18 and the X-ray detection device 22 are scanned as described above to obtain attenuation amounts Rh and Rl of high energy X-rays and low energy X-rays at each point of the subject 100 (S10). Based on the measurement results, maps representing the two-dimensional distributions of Rh and Rl are created (S12). This map has a value of attenuation (Rh or Rl) for each pixel of the image. A set of these maps becomes the raw data of the measurement results. Thereafter, the bone density measurement process and the body fat percentage measurement process are executed based on the set of maps.
[0025]
In both the bone density measurement and the body fat percentage measurement, the attenuation ratio RR = Rl / Rh is calculated for each pixel from the raw attenuation data (S14 and S20). However, the calculation of the attenuation amount ratio does not simply take the ratio between the attenuation amounts of the high and low energy in the raw data, but in the case of bone density measurement (S14) and body fat percentage measurement (S20), respectively. Appropriate correction calculation is added. This correction calculation is for correcting a shift in measurement results (bone density or body fat percentage) due to a difference in body thickness (also called body thickness correction). Here, the body thickness is the length that the X-rays pass through the subject. Ideally, even if the body thickness is different, when the same bone density (or body fat percentage) is measured, The same attenuation ratio RR should be obtained (that is, the relationship between the two is a linear proportional relationship), but in reality this is not the case and the relationship between the two becomes non-linear. Therefore, the Rh and Rl raw data are corrected so as to be as close to ideal as possible, and the ratio between the two is taken. However, in the case of the bone density measuring apparatus of the DXA method, the body thickness of each part of the subject cannot be measured due to the structure of the apparatus (a dedicated measuring mechanism may be provided for measuring the body thickness, but in terms of cost. Therefore, a configuration is adopted in which the attenuation amount of the raw data is simply converted into the attenuation amount corrected for the body thickness. That is, the attenuations Rh and Rl change monotonously although they are not proportionally related to the body thickness, so that it can be assumed that the raw attenuation value itself has a one-to-one correspondence with the body thickness. Such a conversion method is possible. For this conversion, prepare multiple phantoms of the same material and different thicknesses, measure them with high and low energy X-rays, and make the attenuation ratio Rl / Rh as uniform as possible regardless of the body thickness. Then, a correction value of Rh or Rl is obtained.
[0026]
This body thickness correction is also performed in the conventional DXA method bone density measuring device. However, in the conventional device, a good body thickness correction can be performed by correcting the attenuation amount Rh for high energy X-rays. It has been realized. However, this is a good body thickness correction for the bone density measurement, and according to the experiment of the present inventor, a good result was not obtained even when the same correction was applied to the body fat percentage measurement. Therefore, when a body thickness correction method suitable for the body fat percentage was examined by experiment, it was found that it was preferable to correct the attenuation amount Rl for low energy X-rays. Although the exact theoretical clarification has not yet been made on this point, the rough mechanism is considered as follows. That is, since the attenuation of X-rays by bone is much larger than that by soft tissue, high-energy X-rays are sufficiently attenuated in the bone part (that is, the part where bone is included in the X-ray transmission path). The amount of attenuation of high energy X-rays is dominant in bone density. For this reason, it is thought that favorable body thickness correction | amendment is attained by correct | amending the attenuation amount of a high energy X-ray. On the other hand, since soft tissue has a small attenuation of X-rays, a difference in attenuation due to a difference in body thickness is small in a soft tissue portion (that is, a portion where bone is not included in an X-ray transmission path). Of these, high energy X-rays are more permeable, so differences due to differences in body thickness are less likely to appear than low energy X-rays. In addition, the difference in attenuation amount of X-rays is small between fat and muscle of soft tissue, and the change in attenuation amount is extremely small even when the body fat percentage is changed in high energy X-rays having a large transmission power. On the other hand, the amount of attenuation of low energy X-rays having a smaller transmission power reflects the difference in attenuation between fat and muscle more than that of high energy X-rays. Therefore, in body fat percentage calculation for soft tissue parts, it is considered that a suitable body thickness correction can be achieved by correcting the attenuation amount of low-energy X-rays that is more sensitive to the ratio of fat to muscle. .
[0027]
In order to obtain a specific conversion function (or conversion table) for correcting body thickness, first, a plurality of phantoms having different thicknesses are prepared for bone density and body fat percentage, as described above. Measurement is performed with X-rays of each energy, and attenuation amounts Rl and Rh corresponding to each body thickness are obtained. In the measurement result, the correction value Rh ′ of the attenuation Rh corresponding to each thickness of the high-energy X-ray is used for the bone density measurement so that the attenuation ratio Rl / Rh is as uniform as possible regardless of the thickness of the phantom. For the measurement of body fat percentage, correction values R1 ′ of attenuation R1 corresponding to the thicknesses of the low energy X-rays are obtained. For bone density measurement, a function that approximates the correspondence between Rh and Rh 'for each thickness is determined as a conversion function. For body fat percentage measurement, a function that approximates the correspondence between Rl and Rl' for each thickness. Is determined as a conversion function. The body thickness correction conversion function determined in this way is stored in advance in the storage unit 30.
[0028]
Accordingly, in S14, body thickness correction is performed on the Rh of each pixel of the raw data by a conversion function for bone density, and in S22, body thickness correction is performed on the Rl of each pixel of the raw data by a conversion function for body fat percentage. After that, the attenuation ratio Rl / Rh is calculated for each pixel using the correction result.
[0029]
After the attenuation ratio map having been corrected for the bone portion is created in S14, each pixel of this map is then converted into the bone portion (the portion including the bone in the X-ray transmission path) according to the attenuation ratio value of the pixel. ), Soft tissue (portion not including bone in the X-ray transmission path but including soft tissue), and air layer (portion where the X-ray transmission path is only the air layer). Since the attenuation ratio Rl / Rh differs greatly between the bone part, the soft tissue, and the air layer, these three types can be distinguished by threshold discrimination. As the discrimination threshold at this time, the values of the attenuation ratio that separates the bone portion and the soft tissue and the attenuation ratio that separates the soft tissue and the air layer may be obtained in advance by experiments or the like. According to this discrimination, each pixel is necessarily classified into one of bone, soft tissue, and air layer.
[0030]
By this S16, a classification map indicating which pixel corresponds to the bone part and which pixel corresponds to the soft tissue in the attenuation map obtained in S12 and the attenuation ratio map obtained in S14 and S22 is obtained. It is done.
[0031]
In S18, only the pixels of the bone part are extracted with reference to the classification map, and the value of the pixel in the attenuation ratio map obtained in S14 is extracted for each pixel of the bone part, and based on this value. The bone density of the pixel is calculated according to a well-known DXA method.
[0032]
In this way, when the bone density of each pixel of the bone portion is obtained, the bone density distribution is obtained by converting the bone density of each pixel into a gradation value of a predetermined first color for each pixel. The image is formed (S20). A conversion function (or table) indicating the relationship between the bone density and the gradation value is registered in the storage unit 30 in advance.
[0033]
Thus, an image of the bone density distribution is completed. On the other hand, in the body fat percentage measurement process, after the process of S22, each pixel of the soft tissue is extracted with reference to the classification map determined in S16, and the attenuation amount determined in S22 for each pixel of the soft tissue. The value of the pixel in the ratio map is taken out, and based on this value, the body fat percentage of the pixel is calculated according to the above-described body fat percentage calculation method (S24).
[0034]
When the body fat percentage of each pixel of the soft tissue is obtained in this way, the body fat percentage of that pixel is then determined for each pixel by a predetermined first color different from the first color assigned to the bone density display. An image of the body fat percentage distribution is formed by converting the tone value of the color 2 (S26). Here, a conversion function (or table) indicating the relationship between the body fat percentage and the gradation value is registered in the storage unit 30 in advance.
[0035]
In S28, the bone density distribution image generated in S20 and the body fat percentage distribution image generated in S26 are combined to generate one output image. In this synthesis, the classification table created in S16 is referred to, the value of the corresponding pixel in the bone density distribution is adopted for the pixel corresponding to the bone part, and the corresponding pixel in the body fat percentage distribution is adopted for the pixel corresponding to the soft tissue. Adopt value.
[0036]
The first color assigned to the bone density and the second color assigned to the body fat percentage may be selected from primary colors of the display output mechanism, for example. For example, in the case of an RGB display device, G (green) is selected as the first color, and R (red) is selected as the second color. In addition, a method is also conceivable in which the bone density is expressed by a black and white gray scale whose correspondence with the bone is intuitively easy to understand, and the body fat percentage is expressed by a gradation of a chromatic color (for example, red). Of course, these are examples, and any combination of colors can be used for the first color and the second color as long as the difference between the two can be distinguished even if the gradation is changed. Can do.
[0037]
Then, the composite image generated in this way is displayed and output on, for example, the display 32 or printed out from a printer (not shown) (S30).
[0038]
FIG. 4 schematically shows an example of a composite image of the bone density distribution and the body fat percentage distribution output from the apparatus of the present embodiment. Since the color cannot be expressed in the figure, the first color is indicated by hatching, the second color is indicated by cross hatching, and the bone density and the body fat percentage are expressed by hatching density. As shown in this figure, in the vicinity of the composite image 200 of the bone density distribution and the body fat percentage distribution, a scale 210a representing the correspondence between the gradation of each color and the value (or magnitude) of the bone density or body fat percentage. , 210b. In this figure, the number of gradations is reduced in order to avoid complexity, but the gradation can be further reduced in an actual output image.
[0039]
As described above, according to the apparatus of the present embodiment, the composite image 200 showing the bone density in the portion corresponding to the bone portion of the subject and the body fat percentage in the portion corresponding to the soft tissue is created. Can be output. Since the user can list the distribution of the bone density and the distribution of the body fat percentage by using the synthesized image 200, it becomes easy to grasp the relationship between the body fat percentage and the bone density. Further, in the present embodiment, since the calculation method and the body thickness correction method suitable for the body fat percentage are used, unlike the soft tissue display described in the prior art, highly reliable body fat percentage information is provided. be able to.
[0040]
In the present embodiment, since the bone density and the body fat percentage are expressed by gradations of the first color and the second color different from each other, each pixel on the composite image 200 has a bone density (bone part). Or body fat percentage (soft tissue).
[0041]
Note that the image expression method in which the bone density and the body fat percentage are expressed by gradations of the first color and the second color different from each other is merely an example. In principle, a display form range that does not overlap each other may be assigned to the bone density and the body fat percentage. The display form range includes a gradation range of one color as in the above-described example. In this case, for example, the “first color” is one display form range, and a color having a certain gradation within the first color range is one display form within the display form range. A range on a hue circle such as a cold color or a warm color is also a kind of display form range. That is, for example, a hue gradation in the cold color range is assigned to the bone density, and a hue gradation in the warm color range is assigned to the body fat percentage. 4 is also a kind of display form range, and in this case, each type of hatching (downward slanted hatching or cross hatching) corresponds to one display form range. A hatching of a certain density in the hatching type corresponds to one display form within the display form range. In any case, the display form ranges respectively assigned to the bone density and the body fat percentage are easily distinguished from each other on the composite image 200 regardless of the values of the bone density and the body fat percentage from the upper limit to the lower limit. It is desirable to be.
[0042]
In the embodiment shown in FIG. 1, the X-ray generation device 18 and the X-ray detection device 22 are driven in the horizontal direction. As is apparent from the above description, the bone density distribution and the body fat percentage distribution in the present embodiment. The simultaneous display does not depend on the configuration of such a detection system. For example, the X-ray generator 18 and the X-ray detector 22 may be fixedly arranged and the bed 16 may be driven in the horizontal direction. In this case, the bed 16 is driven by the scanning device 24, whereby the subject 10 itself is scanned. As a detection system, a pencil beam focused on one point may be output from the X-ray generator 18 and detected by the X-ray detector 22 comprising one detector. A fan beam extending in a fan shape from 18 may be output, and this may be detected by the X-ray detection device 22 having an array in which a plurality of detectors are arranged in a line. Moreover, the structure using the cone beam which spreads conically from X-ray generator 18 may be sufficient. In the above example, high-energy X-rays and low-energy X-rays are alternately irradiated at short intervals. Instead, broadband X-rays are irradiated, and the X-ray detection device 22 detects the wave height of the detection signal. A configuration may be used in which discrimination is performed and the detection signal corresponding to the high energy X-ray and the detection signal corresponding to the low energy X-ray are discriminated and individually counted.
[0043]
【The invention's effect】
As described above, according to the present invention, the bone density distribution of the subject bone part and the body fat percentage distribution of the subject soft tissue can be combined and displayed in one image, so that the user This makes it easier to understand the relationship between body fat percentage and bone density.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a schematic configuration of an X-ray bone density measuring apparatus according to an embodiment.
FIG. 2 is a diagram for explaining the principle of measuring body fat percentage according to the embodiment.
FIG. 3 is a diagram for explaining a processing flow of the apparatus according to the embodiment;
FIG. 4 is a diagram schematically illustrating an example of an output image of the apparatus according to the embodiment.
FIG. 5 is a diagram for explaining the principle of bone density measurement by the DXA method.
[Explanation of symbols]
10 subjects, 12 bones, 14 soft tissues, 16 beds, 18 X-ray generators, 22 X-ray detectors, 24 scanning devices, 26 control units, 30 storage units, 32 displays.

Claims (4)

被検体を透過したX線を検出し、この検出結果に基づきX線の減衰量の2次元分布を求める測定手段と、
前記2次元分布から被検体の骨部と軟部組織とを弁別する弁別手段と、
前記2次元分布から前記骨部の骨密度分布を求める骨密度算出手段と、
前記2次元分布から前記軟部組織の体脂肪率分布を求める体脂肪率算出手段と、
前記骨部の骨密度分布と前記軟部組織の体脂肪率分布とを一画像に合成して出力する合成手段と、
を含むX線骨密度測定装置。
Measuring means for detecting X-rays transmitted through the subject and obtaining a two-dimensional distribution of X-ray attenuation based on the detection results;
Discriminating means for discriminating the bone and soft tissue of the subject from the two-dimensional distribution;
Bone density calculating means for obtaining a bone density distribution of the bone part from the two-dimensional distribution;
A body fat percentage calculating means for obtaining a body fat percentage distribution of the soft tissue from the two-dimensional distribution;
Synthesis means for synthesizing and outputting the bone density distribution of the bone part and the body fat percentage distribution of the soft tissue in one image;
An X-ray bone density measuring apparatus including:
前記測定手段は、異なる2つのエネルギーのX線についてそれぞれ前記減衰量の2次元分布を求め、
前記骨密度算出手段は、前記各エネルギーのX線についての前記2次元分布から二重X線吸収測定法に従って骨密度分布を求め、
前記体脂肪率分布算出手段は、各エネルギーのX線の減衰量同士の比と体脂肪率との対応関係の情報を有し、前記2次元分布から各点での各エネルギーのX線の減衰量同士の比を求め、その比に対応する体脂肪率を前記対応関係の情報から求めることで前記体脂肪率分布を求める、
ことを特徴とする請求項1記載のX線骨密度測定装置。
The measurement means obtains a two-dimensional distribution of the attenuation for each of two different energy X-rays,
The bone density calculating means obtains a bone density distribution according to a double X-ray absorption measurement method from the two-dimensional distribution of the X-rays of each energy,
The body fat percentage distribution calculating means has information on the correspondence between the ratio of the attenuation amount of X-rays of each energy and the body fat percentage, and the attenuation of the X-rays of each energy at each point from the two-dimensional distribution. Obtain the body fat percentage distribution by obtaining the ratio between the amounts, and obtaining the body fat percentage corresponding to the ratio from the information of the correspondence relationship,
The X-ray bone density measuring apparatus according to claim 1.
前記合成手段は、前記骨密度分布と前記体脂肪率分布とに、互いに異なる表示形態範囲を割り当て、骨密度と体脂肪率とをそれぞれ対応する表示形態範囲内の表示形態で表現することを特徴とする請求項1又は2記載のX線骨密度測定装置。The synthesizing unit assigns different display form ranges to the bone density distribution and the body fat percentage distribution, and expresses the bone density and the body fat percentage in display forms within the corresponding display form ranges, respectively. The X-ray bone density measuring apparatus according to claim 1 or 2. 前記体脂肪率分布算出手段は、前記2次元分布から各点での各エネルギーのX線の減衰量同士の比を求めるに当たり、前記異なる2つのエネルギーのX線のうち、エネルギーが低い方のX線に対する前記2次元分布の減衰量の値を補正することを特徴とする請求項1〜3までのいずれか1項に記載のX線骨密度測定装置。The body fat percentage distribution calculating means determines the ratio of the X-ray attenuation of each energy at each point from the two-dimensional distribution. The X-ray bone density measuring apparatus according to any one of claims 1 to 3, wherein a value of an attenuation amount of the two-dimensional distribution with respect to a line is corrected.
JP2002316490A 2002-10-30 2002-10-30 X-ray bone density measuring device Expired - Fee Related JP3974842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002316490A JP3974842B2 (en) 2002-10-30 2002-10-30 X-ray bone density measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002316490A JP3974842B2 (en) 2002-10-30 2002-10-30 X-ray bone density measuring device

Publications (2)

Publication Number Publication Date
JP2004147863A JP2004147863A (en) 2004-05-27
JP3974842B2 true JP3974842B2 (en) 2007-09-12

Family

ID=32460184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002316490A Expired - Fee Related JP3974842B2 (en) 2002-10-30 2002-10-30 X-ray bone density measuring device

Country Status (1)

Country Link
JP (1) JP3974842B2 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5010167B2 (en) * 2005-04-07 2012-08-29 株式会社東芝 X-ray CT system
JP2007236766A (en) * 2006-03-10 2007-09-20 Shimadzu Corp X-ray photographing apparatus
JP4656008B2 (en) * 2006-06-13 2011-03-23 株式会社島津製作所 Nuclear medicine diagnostic equipment
JP5117706B2 (en) * 2006-11-15 2013-01-16 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー X-ray tomography equipment
JP5105589B2 (en) * 2007-07-11 2012-12-26 株式会社日立メディコ X-ray CT system
JP5680718B2 (en) * 2007-08-15 2015-03-04 富士フイルム株式会社 Image component separation apparatus, method, and program
JP2009178493A (en) * 2008-02-01 2009-08-13 Ge Medical Systems Global Technology Co Llc X-ray ct apparatus
JP5060993B2 (en) * 2008-03-07 2012-10-31 日立アロカメディカル株式会社 X-ray CT apparatus and program
KR101271255B1 (en) * 2009-06-12 2013-06-10 주식회사 엔씨테크론 Jaw Orthopedic Bone Mineral Density Measurement Device
JP5666117B2 (en) * 2009-10-06 2015-02-12 日立アロカメディカル株式会社 X-ray imaging device
JP5543876B2 (en) * 2010-08-19 2014-07-09 日立アロカメディカル株式会社 X-ray CT system
JP5528956B2 (en) * 2010-09-08 2014-06-25 日立アロカメディカル株式会社 Bone mineral content measuring device
JP5108965B2 (en) * 2011-03-18 2012-12-26 日立アロカメディカル株式会社 Bone density measuring device
JP5102888B2 (en) * 2011-03-23 2012-12-19 日立アロカメディカル株式会社 Bone diagnostic image display device
JP5894374B2 (en) * 2011-03-24 2016-03-30 日立アロカメディカル株式会社 Bone mineral content measuring device
KR101249862B1 (en) 2011-05-13 2013-04-03 주식회사 비엠텍월드와이드 Bone density measuring apparatus with function of determining measuring position and function of analysing body composition using infrared camera
KR101337339B1 (en) * 2011-10-21 2013-12-06 삼성전자주식회사 X-ray imaging apparatus and control method for the same
JP5897307B2 (en) * 2011-11-17 2016-03-30 株式会社東芝 Medical diagnostic imaging equipment
JP6129006B2 (en) * 2013-07-18 2017-05-17 株式会社日立製作所 X-ray measuring device
JP5974059B2 (en) * 2014-09-25 2016-08-23 株式会社日立製作所 Medical X-ray measurement apparatus and method
JP6118368B2 (en) * 2015-05-28 2017-04-19 株式会社日立製作所 Medical X-ray measurement system
JP6630552B2 (en) * 2015-11-26 2020-01-15 株式会社日立製作所 X-ray measurement system and X-ray detection data processing method
JP6667462B2 (en) * 2017-02-21 2020-03-18 富士フイルム株式会社 Energy subtraction processing apparatus, method and program
US11234641B2 (en) 2017-03-16 2022-02-01 Fujifilm Corporation Body fat percentage measurement device, method and program
JP6704374B2 (en) * 2017-03-16 2020-06-03 富士フイルム株式会社 Body fat percentage measuring device, method and program
JP6745755B2 (en) * 2017-05-18 2020-08-26 富士フイルム株式会社 Radiation image capturing system, radiation image capturing method, radiation image capturing program, and body thickness estimation device
JP6745756B2 (en) * 2017-05-18 2020-08-26 富士フイルム株式会社 Radiation image capturing system, radiation image capturing method, radiation image capturing program, and derivation device
JP7306528B2 (en) * 2018-04-12 2023-07-11 コニカミノルタ株式会社 Control device, display method and inspection method
JP7067221B2 (en) * 2018-04-12 2022-05-16 コニカミノルタ株式会社 X-ray system
JP7016293B2 (en) * 2018-06-08 2022-02-04 富士フイルム株式会社 Bone salt information acquisition device, method and program
JP7016294B2 (en) 2018-06-08 2022-02-04 富士フイルム株式会社 Bone salt information acquisition device, method and program
WO2020158659A1 (en) * 2019-02-01 2020-08-06 富士フイルム株式会社 Photographic subject information acquisition device, operating method therefor, and photographic subject information acquisition program
KR102167859B1 (en) * 2019-02-20 2020-10-21 하이윈 테크놀로지스 코포레이션 Method for converting scan information of computed tomography scanner into bone parameters

Also Published As

Publication number Publication date
JP2004147863A (en) 2004-05-27

Similar Documents

Publication Publication Date Title
JP3974842B2 (en) X-ray bone density measuring device
JP4545291B2 (en) Method and apparatus for controlling the dynamic range of digital diagnostic images
US11331068B2 (en) X-ray device, x-ray inspection method, and data processing apparatus
CN107753048B (en) X-ray imaging apparatus
US7342999B2 (en) Method and apparatus for generation of a digital x-ray image of an examination subject
EP2548510B1 (en) Dual-energy X-ray imaging system and control method for the same
KR101429067B1 (en) X-ray image apparatus and x-ray image system
US6829323B2 (en) Method and system for low dose image simulation for imaging systems
JP4817736B2 (en) X-ray computed tomography system and data correction method for x-ray computed tomography system
CN104103055B (en) Automatically optimal output data is obtained
WO2006051831A1 (en) Image creating method and device
KR20080069591A (en) Scatter correction
JP2009285356A (en) Image capturing system for medical use, image processing apparatus, image processing method, and program
EP0244111B1 (en) Imaging systems
EP3721442B1 (en) Oscillatory dark-field imaging
Kim et al. Comparison between different cone-beam computed tomography devices in the detection of mechanically simulated peri-implant bone defects
KR20140017468A (en) Dual-energy x-ray imaging apparatus and control method for the same
US5809104A (en) Method and device for measuring the content of bone mineral in the skeleton
Söderberg Automatic exposure control in CT an investigation between different manufacturers considering radiation dose and image quality
RU2718481C1 (en) Method for contrasting x-ray patterns with color
JP4518632B2 (en) Method and apparatus for determining the dynamic range of medical digital images
Schaefer-Prokop et al. Computed radiography/digital radiography: radiologist perspective on controlling dose and study quality
Ween et al. Pediatric digital chest radiography, comparison of grid versus non-grid techniques
Barros-Costa et al. Potential impact of metal crowns at varying distances from a carious lesion on its detection on cone-beam computed tomography scans with several protocols
KR101870856B1 (en) X-ray image apparatus and x-ray image system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees