TW201239420A - Optical film and process for production thereof - Google Patents

Optical film and process for production thereof Download PDF

Info

Publication number
TW201239420A
TW201239420A TW100140339A TW100140339A TW201239420A TW 201239420 A TW201239420 A TW 201239420A TW 100140339 A TW100140339 A TW 100140339A TW 100140339 A TW100140339 A TW 100140339A TW 201239420 A TW201239420 A TW 201239420A
Authority
TW
Taiwan
Prior art keywords
film
formula
optical film
acid
resin
Prior art date
Application number
TW100140339A
Other languages
Chinese (zh)
Other versions
TWI522659B (en
Inventor
Yoshikazu Ojima
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Publication of TW201239420A publication Critical patent/TW201239420A/en
Application granted granted Critical
Publication of TWI522659B publication Critical patent/TWI522659B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Polarising Elements (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Liquid Crystal (AREA)

Abstract

Provided is an optical film which has a relatively low haze value and is prevented from the occurrence of blocking satisfactorily. The optical film is characterized in that the center line average roughness (Ra) (mm) and the concave-convex average distance (Sm) (mm) of one surface of the optical film fulfill the following formula: Ra = 3.125PSm3/(EI) [wherein P represents a load (N) which is generated by a tensile force generated during the winding of the film, is applied to a space between adjacent convex parts present on the surface of the film, and is a value expressed by the formula: P = (F/x)Sm; x represents the width (mm) of the film during the winding of the film; F represents a tensile force (N) of the film generated during the winding of the film; E represents the elastic modulus (MPa) of the film; I represents the second moment of area (mm4) of the film which is represented by formula (3) and is a value expressed by the formula: I = (Smt3)/12; and t represents the thickness (mm) of the film], and is also characterized in that the optical film contains a resin and additionally contains microparticles in an amount of 0.2 wt% or less relative to the amount of the resin component.

Description

201239420 六、發明說明: 【發明所屬之技術領域】 本發明係關於光學薄膜及其製造方法。 【先前技術】 近年來隨著顯示器的大面積化’對於大量生產之光學 薄膜,係期待可達到寬幅化及長條化。光學薄膜,係在製 造後被捲取而形成薄膜捲。由於光學薄膜的寬幅化及長條 化,在薄膜捲的保管及輸送時會產生結塊的問題》詳細而 言,會產生薄膜彼此黏住使薄膜變形之貼附故障,或是雜 質夾雜於薄膜間而成爲凸狀變形之凸狀故障。貼附故障在 寬度方向中央部較常產生,凸狀故障在寬度方向兩端部較 常產生。當產生此般結塊時,由於故障部分在使用時殘留 爲壓痕,故無法承受作爲光學薄膜之使用。尤其當達到薄 膜寬度1.3m以上的寬幅化時,會使設置在兩側之滾紋的 效果變小,尤其在中央部會顯著引起貼附故障。 捲薄膜,係藉由兩側的滾紋而在薄膜與薄膜之間形成 空氣層,以防止薄膜彼此的接觸並防止結塊。然而,於保 管及輸送時由於溫濕度的變化所產生之薄膜的膨脹或收縮 ’或是隨時間經過使空氣層變窄,而使薄膜彼此接觸。此 時當薄膜表裏面的摩擦係數大時,應力會集中於接觸部分 ’而產生貼附或凸狀故障之結塊。因此,爲了防止結塊, 必須降低薄膜表裏面的摩擦係數。 爲了降低摩擦係數,爲人所知者有含有微粒作爲粗糙 -5- 201239420 材,以在薄膜表面形成凹凸之技術(專利文獻1)。然而 ’不論是使用大粒徑者或是使用小粒徑者作爲粗糙材,均 會使光學薄膜的霧度上升,而產生損及顯示器的畫質之新 問題。 因此,係揭示有一種以表面形狀轉印輥將光學薄膜的 表面粗糙度Ra控制在既定範圍之技術(專利文獻2)。 然而,此般技術亦無法充分地防止結塊。 〔先前技術文獻〕 〔專利文獻〕 [專利文獻1]日本特開2004-42653號公報 [專利文獻2]日本特開2006-240228號公報 【發明內容】 本發明之目的在於提供一種即使具有相對較小的霧度 ,亦可充分地防止結塊之光學薄膜及其製造方法。 本發明係關於一種光學薄膜,其特徵爲:一方的面之 表面的中心線平均粗糙度Ra(mm)與凹凸平均間隔Sm(mm) 係滿足式(1),並且含有樹脂,微粒相對於樹脂成分之 含量爲0.2重量%以下;201239420 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to an optical film and a method of manufacturing the same. [Prior Art] In recent years, as the size of the display has increased, it has been expected to be wide-ranging and elongated for the mass-produced optical film. The optical film is taken up after being formed to form a film roll. Due to the widening and lengthening of the optical film, the problem of agglomeration occurs during storage and transportation of the film roll. In detail, there is a problem that the film adheres to each other to deform the film, or the impurities are mixed. A convex failure of convex deformation between the films. Attachment faults occur more frequently in the center of the width direction, and convex faults are more likely to occur at both ends in the width direction. When such agglomeration occurs, since the defective portion remains as an indentation at the time of use, it cannot be used as an optical film. In particular, when the width of the film having a width of 1.3 m or more is obtained, the effect of the embossing provided on both sides becomes small, and particularly in the center portion, the attachment failure is remarkably caused. The roll film forms an air layer between the film and the film by embossing on both sides to prevent the films from coming into contact with each other and preventing agglomeration. However, the film expands or contracts due to changes in temperature and humidity during storage and transportation, or the air layer is narrowed over time to bring the films into contact with each other. At this time, when the coefficient of friction inside the film sheet is large, stress concentrates on the contact portion ′ to cause agglomeration of the attached or convex failure. Therefore, in order to prevent agglomeration, the coefficient of friction inside the film sheet must be lowered. In order to reduce the coefficient of friction, it is known that a microparticle is contained as a material of roughness -5 - 201239420 to form irregularities on the surface of the film (Patent Document 1). However, whether a large particle size or a small particle size is used as a rough material causes an increase in the haze of the optical film, which causes a new problem of impairing the image quality of the display. Therefore, there has been disclosed a technique of controlling the surface roughness Ra of an optical film to a predetermined range by a surface shape transfer roller (Patent Document 2). However, such techniques are also insufficient to prevent agglomeration. [PRIOR ART DOCUMENT] [Patent Document 1] Japanese Laid-Open Patent Publication No. 2004-42653 [Patent Document 2] JP-A-2006-240228 SUMMARY OF THE INVENTION It is an object of the present invention to provide a relatively simple The small haze can also sufficiently prevent the agglomerated optical film and the method of manufacturing the same. The present invention relates to an optical film characterized in that the center line average roughness Ra (mm) of the surface of one surface and the average interval Sm (mm) of the unevenness satisfy the formula (1), and contain a resin, the particles relative to the resin The content of the component is 0.2% by weight or less;

Ra^3.125xPxSm3/(ExI) (1) [式(1)中,P爲藉由薄膜捲取時的張力而對薄膜表 面之鄰接的凸部間施加之荷重(N),且由式(2)表示, E爲薄膜的彈性率(MPa) ,I爲由式(3)表示之薄膜的 截面二次矩(mm4 )]; 201239420 P = (F/x)xSm (2) (式(2)中’ x爲薄膜捲取時的薄膜寬度(mm),F爲 薄膜捲取時的薄膜張力(N)); I = (Smxt3)xl〇'3/12 (3) (式(3)中’t爲薄膜的膜厚(mm))。 此外,本發明係關於一種光學薄膜的製造方法,其特 徵爲:具有將凹凸形成於微粒相對於樹脂成分之含量爲 0.2重量%以下的聚合物薄膜表面之凹凸形成步驟,以使 —方的面之表面的中心線平均粗糙度Ra(mm)與凹凸平均 間隔Sm(mm)滿足式(1);Ra^3.125xPxSm3/(ExI) (1) [In the formula (1), P is a load (N) applied between adjacent convex portions of the film surface by the tension at the time of film winding, and is expressed by the formula (2). ) indicates that E is the modulus of elasticity (MPa) of the film, and I is the second moment of the section of the film represented by the formula (3) (mm4 )]; 201239420 P = (F/x)xSm (2) (Formula (2) Medium 'x is the film width (mm) when the film is taken up, F is the film tension (N) when the film is taken up; I = (Smxt3)xl〇'3/12 (3) (in the formula (3) t is the film thickness (mm) of the film. Further, the present invention relates to a method for producing an optical film, which comprises the step of forming a concavity and convexity on a surface of a polymer film having a content of irregularities of 0.2% by weight or less with respect to a resin component, so as to have a square surface. The center line average roughness Ra (mm) of the surface and the uneven interval Sm (mm) satisfy the formula (1);

Ra^ 3. 125 xPxSm3/(ExI) (1) [式(1)中,P爲藉由薄膜捲取時的張力而對薄膜表 面之鄰接的凸部間施加之荷重(N),且由式(2)表示, E爲薄膜的彈性率(MPa) ,1爲由式(3)表示之薄膜的 截面二次矩(mm4)]; P = (F/x)xSm (2) (式(2 )中,x爲薄膜捲取時的薄膜寬度(mm),F爲 薄膜捲取時的薄膜張力(N)); I = (Smxt3)x 10'3/12 (3) (式(3)中,t爲薄膜的膜厚(mm))。 本發明之光學薄膜,藉由具有上述構成,即使具有相 對較小的霧度,在薄膜輥的保管及輸送時亦可充分地防止 結塊。 201239420 【實施方式】 (光學薄膜) 本發明之光學薄膜,爲一方的面之表面的中心線平均 粗糙度Ra(mm)與凹凸平均間隔Sm(mm)滿足式(1 )之光 學薄膜,Ra^ 3. 125 xPxSm3/(ExI) (1) [In the formula (1), P is a load (N) applied between adjacent convex portions of the film surface by the tension at the time of film winding, and (2) indicates that E is the modulus of elasticity (MPa) of the film, and 1 is the second moment of the section (mm4) of the film represented by the formula (3); P = (F/x)xSm (2) (Formula (2) Where x is the film width (mm) when the film is taken up, and F is the film tension (N) when the film is taken up; I = (Smxt3) x 10'3/12 (3) (in equation (3) , t is the film thickness (mm) of the film). According to the optical film of the present invention, even if it has a relatively small haze, it is possible to sufficiently prevent agglomeration during storage and transportation of the film roll. [Embodiment] (Optical film) The optical film of the present invention has an optical film of the formula (1) in which the center line average roughness Ra (mm) of the surface of one surface and the average interval Sm (mm) of the unevenness are satisfied.

Ra^ 3. 125 xPxSm3/(ExI) (1) 本發明之光學薄膜,該形態並無特別限定,例如該光 學薄膜可爲具有在捲芯的周圍被捲取爲多層狀而成之薄膜 捲的形態,或是具有從該光學薄膜捲被捲出,並因應用途 裁切成既定尺寸而成之作爲液晶顯示裝置的安裝零件之薄 膜薄片的形態。 式(1 )中,Ra爲薄膜表面的中心線平均粗糙度(mm )。Ra係採用藉由New View 5010(ZYGO公司製)在任 意1 〇點中所測定之値的平均値。Ra在式(1 )中以「mm 」單位表示,當換算爲「nmj時,通常爲0.4〜70nm,較 佳爲0.5〜50nm。光學薄膜之該一方的面之Ra,可藉由後 述鑄模輥表面的Ra或/及鑄模輥的轉印率來控制。例如, 當增大鑄模輥表面的Ra且/或轉印率時,該一方的面之Ra 會增大。當降低鑄模輥表面的Ra且/或轉印率時,該一方 的面之Ra會降低。鑄模輥的轉印率,可藉由薄膜的運送 張力及與鑄模輥之接觸時間等來調整。 式(1 )中,Sm爲薄膜表面的凹凸平均間隔(mm ) 。Sm係採用藉由New View 5010 (ZYGO公司製)在任意 1 〇點中所測定之値的平均値。Sm在式(1 )中以「mm」 -8- 201239420 單位表示,當換算爲「μηι」時,通常爲1~12μιη’較佳爲 1~5μπι。光學薄膜之該一方的面之Sm,可藉由調整後述鑄 模輥表面的S m來控制。例如,當增大鑄模輥表面的Sm 時,該一方的面之Sm會增大。當降低鑄模輥表面的Sm 時,該一方的面之Sm會降低。 式(1)中,P爲薄膜捲取時對薄膜表面之鄰接的凸 部間所施加之荷重(N ),且由式(2 )表示之値。 P = (F/x)xSm (2) 本說明書中,所謂薄膜捲取時,係意味著在光學薄膜 的連續製造過程中,將光學薄膜最終在捲芯的周圍捲取爲 多層狀時,並藉由捲取來製造出薄膜捲。薄膜捲取時,薄 膜通常是以薄膜運送方向長度 200〜1 0000m,較佳爲 2000〜9000m所捲取。該薄膜長度愈長,愈容易產生結塊 ,但在本發明中,即使如上述般相對較長的薄膜長度,亦 可有效地防止結塊。 式(2)中,X爲薄膜捲取時的薄膜寬度(mm)。所 謂薄膜寬度,爲薄膜寬度方向的長度。所謂寬度方向,爲 與薄膜捲取時所使用之捲芯的軸方向平行之方向,換言之 ,爲在薄膜表面上與薄膜的連續製造時之薄膜的運送方向 正交之方向。薄膜寬度X愈大,結塊愈顯著地產生。本發 明中,即使薄膜寬度大,亦可有效且充分地防止結塊。X 較佳爲 1 3 00~4000mm,尤佳爲 1 400〜2200mm。 式(2)中,F爲薄膜捲取時的薄膜張力(N)。所謂 薄膜張力,爲捲取時對薄膜所賦予之最大張力。薄膜張力 -9- 201239420 ,通常在捲取時從初期至終期逐漸降低,此時,F爲薄膜 捲取時的初期薄膜張力(N),通常每1000 mm寬度爲 40~600N,較佳爲 60-300N。 式(2)中,Sm與前述相同,爲薄膜表面的凹凸平均 間隔(m m )。 式(1)中,E爲薄膜的彈性率(MPa) 。E是由構成 薄膜之樹脂所決定。例如該樹脂爲纖維素樹脂時,E約爲 3 000 MPa。此外,例如該樹脂爲(甲基)丙烯酸酯樹脂時 ,E約爲3 lOOMPa。此外,例如該樹脂由50重量%纖維素 系樹脂、5 0重量% (甲基)丙烯酸酯樹脂所構成時,E 約爲3050MPa。此外,例如該樹脂爲環烯烴樹脂時,E約 爲 2400MPa。 I爲薄膜的截面二次矩(mm4),且由式(3)表示之 値。 I = (Smxt3)x 1 0*3/1 2 (3) 式(3)中,Sm與式(1)中的定義相同。 式(3)中,t爲「mm」單位的薄膜厚度,當換算爲 「μηι」時,通常爲1〜ΙΟΟμηι,較佳爲2〇~80μηι。 式(1) ’當薄膜的撓曲量5(nm)由式(xl)表示[ 式(xl)中,P、Sm、E及I與前述式(1)中者相同]時 δ = Ρ X Sm3/(4 8 X E X I) (xl) 係意味著Rag 150χδ。亦即,當具有薄膜被施加張力 所捲取而成爲薄膜捲之形態時’如第1圖所示,薄膜表面 -10- 201239420 之鄰接的凸部間,係藉由張力來施加荷重而產生撓 意味著該薄膜的撓曲量δ之1 5 0倍的値爲中心線平 度Ra以下。150χδ之値爲Ra以下時,可充分地防 重P所撓曲之薄膜Π與正下方的薄膜f2接觸,故 地防止結塊。當150χδ之値大於Ra時,即使因荷 撓曲之薄膜Π在初期未與正下方的薄膜f2接觸, 在保管或輸送時之薄膜的收縮或薄膜間的空氣脫離 接觸,故無法充分地防止結塊。 式(X1 )中’如第2圖所示,係根據結構力學 構件之樑結構的撓曲量δ’時之式(yl ), δ' = (Ρ'χί3)/(48χΕ'χΓ) (yl) [式(yl)中,δ旧樑的撓曲量(mm) ;p•爲 樑之荷重(n) ; L爲支撐樑之支柱間距離(mm) 構成樑之材料的彎曲彈性率(MPa ); Γ爲樑構件 二次矩(mm4) ,Γ由b't'3/12表示。b·爲樑的寬度 ’ t'爲樑的厚度(m m )],來進行精心探討所得者。 本實施形態中’上述式(1 ),就防止結塊之 看,較佳爲式(zl),尤佳爲式(z2), 1.0^Ra-3.125xPxSm3/(ExI)^25.0 (zl) 1.2^Ra-3.125xPxSm3/(ExI)^5.0 (z2) 本發明之光學薄膜,係在該一方的面之大致全 成有微小凹凸。凹凸的尺寸,只要是使上述Ra及 足既定範圍內(滿足上述式(1)之範圍)之尺寸 凹凸的形狀並無特別限定,例如可爲在寬度方向、 曲。並 均粗糙 止因荷 可充分 重p所 但由於 而彼此 中求取 施加於 ;E'爲 的截面 (mm ) 觀點來 面上形 Sm滿 即可。 與該寬 -11 - 201239420 度方向正交之運送方向、或斜向等之種種方 凸條部相互平行地重複形成之條狀凹凸,或 凸部呈規則或不規則地形成之點狀凹凸。此 部及凹部的剖面形狀,通常分別獨立地呈大 大致半圓形狀。該剖面形狀,只要在相對於 直剖面或相對於薄膜運送方向之垂直剖面上 本發明之光學薄膜之另一方的面,只要 之表面的中心線平均粗糙度Ra與凹凸平均 上述式即可,並無特別限定,但較佳爲平滑 ,該另一方的面之中心線平均粗糙度R a, 述一方的面之Ra,通常爲5nm以下,特佳j 此外,該另一方的面之凹凸平均間隔Sm較 特佳爲1.5〜5μηι。光學薄膜之該另一方的面: 可藉由在後述凹凸形成步驟中使該另一方的 接觸,或是在凹凸形成步驟中使用與鑄模輥 輥時,調整該背輥表面的Ra及Sm來達成。 本發明之光學薄膜可具有任意形態,例 芯的周圍將該光學薄膜捲取爲多層狀而成之 ,或是具有從該光學薄膜捲被捲出,並因應 定尺寸而成之作爲液晶顯示裝置等的裝載零 的形態。 當本發明之光學薄膜具有薄膜薄片的形 方的面涵蓋全面而滿足前述式,且較佳者是 上述般呈平滑者即可。 向上所連接之 是錐體形狀的 般凹凸中之凸 致三角形狀或 寬度方向之垂 具有即可。 上述一方的面 間隔Sm滿足 者。詳細而言 較佳係小於前 等 0.0 1 〜3 nm 〇 佳爲1〜5 μ m, 之Ra及Sm * 面不與任何輥 對向設置之背 如可具有在捲 薄膜捲的形態 用途裁切成既 件之薄膜薄片 態時,只要一 另一方的面如 -12- 201239420 當本發明之光學薄膜具有薄膜捲的形態時,只 的面涵蓋全面而滿足前述式,且較佳者是另一方的 述般呈平滑者即可》本發明之光學薄膜捲,尤其在 度方向的兩端上具有滾紋部時,只要該一方的面之 紋部更內側的區域涵蓋全區域而滿足前述式,且較 另一方的面之較該滾紋部更內側的區域如上述般呈 即可。 本發明之光學薄膜,只要一方的面滿足前述式 一方的面之Ra可在寬度方向上大致呈均一,或是 方向上具有從中央部朝兩端部減少或增加之梯度^ 在寬度方向上具有從中央部朝兩端部減少或增加之 ,前述式,只要在至少中央部及兩端部的各部上滿 〇 本說明書中,所謂Ra在寬度方向上大致呈均 意味著在寬度方向上的任意10點測定Ra時,最大 小値的差未達l.Onm者,較佳爲0.5nm以下。 所謂Ra在寬度方向上具有從中央部朝兩端部 增加之梯度,係意味著中央部的Ra較兩端部更大 端部的Ra較中央部更大之關係,此時,中央部與 之間之中間部的Ra,只要位於中央部的Ra與該端; 之間之値即可。當中央部的Ra較兩端部更大時, 步有效地防止在中央部所經常發生之貼附故障。當 的Ra較中央部更大時,可進一步有效地防止在兩 經常發生之凸狀故障。Ra在寬度方向上的變化, 要一方 面如上 薄膜寬 較該滾 佳者是 平滑者 時,該 在寬度 當 Ra 梯度時 足即可 一,係 値與最 減少或 或是兩 各ϊ而部 迅的Ra 可進一 兩端部 端部所 可呈連 -13- 201239420 續性或階段性,就薄膜的不均等之外觀、霧度之觀點來看 ,較佳爲連續性。 例如當中央部的Ra較兩端部更大時,從寬度方向中 央部朝兩端部之Ra的變化率,就防止貼附故障之觀點來 看,較佳爲-2.5〜-40%。 所謂變化率,係意味著將中央部的中心線表面粗糙度 設爲Rac(mm),端部的中心線表面粗糙度設爲Rae(mm)時 ,由變化率 Cr(%)={(Rae-Rac)/RaC}xlOO表示之表面粗糙 梯度。從中央部朝一端部之變化率cri與從中央部朝另一 端部之變化率Cr2,只要分別獨立地位於上述範圍內即可 。較佳是Ch與Cr2之差的絕對値爲1 %以下,尤佳爲 0.5%以下。 本說明書中,所謂寬度方向的中央部,係意味著在薄 膜的寬度方向上從中央(線)的距離位於50mm的範圍內 之區域(寬度方向長度l〇〇mm的中央區域)。中央部的 Rac,係使用在該區域上測定任意1 0點之Ra的平均値。 所謂寬度方向的端部,係意味著在薄膜的寬度方向上 從薄膜端面的距離位於l〇〇mm的範圍內之區域。尤其當 本發明之光學薄膜在薄膜寬度方向的兩端上具有滾紋部時 ,所謂端部,係意味著從滾紋部的中央部側交界線往中央 部側之距離位於1 〇〇mm的範圍內之區域。端部的Rae,係 使用在該區域上測定任意1 〇點之Ra的平均値。 此外,例如當兩端部的Ra較中央部更大時,從寬度 方向中央部朝兩端部之Ra的變化率,就防止凸狀故障之 -14- 201239420 觀點來看,較佳爲2.5〜75%。變化率,是由與上述相同之 變化率表示。從中央部朝一端部之變化率Cn與從中央部 朝另一端部之變化率Cr2,只要分別獨立地位於上述範圍 內即可,較佳是Cn與Cr2之差的絕對値爲1%以下,尤佳 爲0.5 %以下。 本發明之光學薄膜至少含有樹脂,可進一步含有可塑 劑、紫外線吸收劑、抗氧化劑、粗糙劑、阻滯上升劑等之 添加劑。本發明中,尤其是粗糙劑的含量,相對於構成光 學薄膜之樹脂,爲0.2重量%以下,較佳爲0.1重量%以下 ,最佳爲0重量%。此係由於當粗糙劑的含量過多時,薄 膜的霧度會上升之故。本發明中,粗糙劑含量,至少如上 述般可有效地防止結塊。 粗糙劑係使用微粒。所謂微粒,係意味著薄膜中或存 在於其表面之平均粒徑未達Ιμηι,尤其是5 nm以上且未達 Ιμηι之微粒。微粒,在薄膜中可存在作爲一次粒子,或是 複數個粒子聚集並形成二次粒子(二次凝聚體)而存在》 微粒的折射率,當與薄膜中所使用之樹脂成分的折射率接 近時,霧度上升較少,故較佳。纖維素酯薄膜的折射率約 爲1.4 7〜1.49,故微粒的折射率較佳亦爲1.46至1.50,更 佳爲1.47至1.49。 微粒的平均粒徑,當微粒存在作爲一次粒子時,係測 定該一次粒子的粒徑,存在作爲二次粒子時,係測定該二 次粒子的粒徑,並將此等的粒徑進行平均而求取之値。此 般平均粒徑,例如以電子顯微鏡觀察微粒,並從1 00個任 -15- 201239420 意粒子的粒徑來求取。在此,各個粒徑是以將投影面積假 定爲圓時之直徑來表示。或是將微粒溶解於溶劑,並使用 動態光散射法粒徑測定裝置Zetasizer 1 000HS ( Malvern 公司製)來測定並求取。 微粒的種類可爲無機化合物或有機化合物。無機化合 物的例子,可列舉出二氧化矽、二氧化鈦、氧化鋁、氧化 鉻、氧化錫等》當中較佳爲含有矽原子之化合物,特佳爲 二氧化矽。二氧化矽微粒,例如可列舉出Aerosil股份有 限公司製的 AEROSIL 200、200V、300、R972、R972V、 R974、R202、R812、R805、0X50、TT600 等。有機化合 物的例子,可列舉出丙烯酸樹脂、聚矽氧烷樹脂、氟化合 物樹脂、胺基甲酸酯樹脂等。 粗糙劑可爲彈性體微粒。所謂彈性體微粒,爲具有核 殼結構之聚合物微粒,其係在橡膠狀聚合物微粒(核(芯 )部)的表面上,具有含有甲基丙烯酸甲酯系聚合物等之 硬質殼層之微粒。構成彈性體微粒的核部之橡膠狀聚合物 ,較佳爲丙烯酸烷酯系橡膠。核部的製造方法,爲人所知 者有藉由種晶乳化聚合所形成之方法。構成殻層之甲基丙 烯酸甲酯系聚合物,係意味著甲基丙烯酸甲酯的同元聚合 物、以及包含該甲基丙烯酸甲酯及可與其共聚合之單體的 共聚物者。殼層,可在核乳膠的存在下使既定的單體乳化 聚合而製造出。 構成本發明之光學薄膜之樹脂成分,可使用以往光學 薄膜的領域中所使用之一般所知的聚合物,具體而言,可Ra^ 3. 125 x PxSm3/(ExI) (1) The optical film of the present invention is not particularly limited in this embodiment. For example, the optical film may be a film roll having a plurality of layers wound around the core. In the form of a film sheet which is rolled up from the optical film roll and cut into a predetermined size for use as a mounting member of the liquid crystal display device. In the formula (1), Ra is the center line average roughness (mm) of the surface of the film. Ra is the average enthalpy of enthalpy measured by any of the 1 point in New View 5010 (manufactured by ZYGO Corporation). Ra is expressed by the unit of "mm" in the formula (1), and is usually 0.4 to 70 nm, preferably 0.5 to 50 nm when converted to "nmj." Ra of the one surface of the optical film can be formed by a casting roll described later. The Ra of the surface or/and the transfer rate of the mold roll are controlled. For example, when the Ra of the surface of the mold roll is increased and/or the transfer rate is increased, the Ra of the one surface is increased. When Ra is lowered on the surface of the mold roll And/or the transfer rate, the Ra of the one surface is lowered. The transfer rate of the mold roll can be adjusted by the transport tension of the film and the contact time with the mold roll, etc. In the formula (1), Sm is The average pitch of the concavities and convexities on the surface of the film (mm). The Sm is the average enthalpy of the enthalpy measured by any of the 1 point in New View 5010 (manufactured by ZYGO Co., Ltd.). Sm is "mm" -8 in the formula (1). - 201239420 The unit indicates that when converted to "μηι", it is usually 1~12μιη', preferably 1~5μπι. The Sm of the one surface of the optical film can be controlled by adjusting the S m of the surface of the casting roll to be described later. For example, when Sm of the surface of the mold roll is increased, the Sm of the one side surface increases. When the Sm of the surface of the mold roll is lowered, the Sm of the one side surface is lowered. In the formula (1), P is a load (N) applied between adjacent convex portions of the film surface when the film is taken up, and is represented by the formula (2). P = (F/x)xSm (2) In the present specification, the film winding means that when the optical film is finally wound into a plurality of layers around the core in the continuous manufacturing process of the optical film, A film roll is produced by taking up. When the film is taken up, the film is usually taken up in a film transport direction length of 200 to 1 0000 m, preferably 2000 to 9000 m. The longer the length of the film, the more likely it is to cause agglomeration, but in the present invention, even a relatively long film length as described above can effectively prevent agglomeration. In the formula (2), X is the film width (mm) at the time of film winding. The film width is the length in the film width direction. The width direction is a direction parallel to the axial direction of the winding core used for film winding, in other words, a direction orthogonal to the conveying direction of the film at the time of continuous production of the film on the film surface. The larger the film width X, the more pronounced the agglomerates are formed. In the present invention, even if the film width is large, agglomeration can be effectively and sufficiently prevented. X is preferably from 1 3 00 to 4000 mm, and particularly preferably from 1,400 to 2,200 mm. In the formula (2), F is the film tension (N) at the time of film winding. The film tension is the maximum tension imparted to the film during winding. Film tension -9- 201239420, usually gradually decreases from the initial stage to the final stage during coiling. At this time, F is the initial film tension (N) at the time of film winding, and is usually 40 to 600 N, preferably 60, per 1000 mm width. -300N. In the formula (2), Sm is the same as the above, and is the average interval (m m ) of the unevenness on the surface of the film. In the formula (1), E is the modulus of elasticity (MPa) of the film. E is determined by the resin constituting the film. For example, when the resin is a cellulose resin, E is about 3 000 MPa. Further, for example, when the resin is a (meth) acrylate resin, E is about 3 lOOMPa. Further, for example, when the resin is composed of 50% by weight of a cellulose resin and 50% by weight of a (meth) acrylate resin, E is about 3050 MPa. Further, for example, when the resin is a cycloolefin resin, E is about 2,400 MPa. I is the second moment of the section of the film (mm4), and is represented by the formula (3). I = (Smxt3)x 1 0*3/1 2 (3) In the formula (3), Sm is the same as defined in the formula (1). In the formula (3), t is a film thickness of "mm" unit, and when converted to "μηι", it is usually 1 to ΙΟΟμηι, preferably 2 〇 to 80 μm. Formula (1) 'When the deflection amount of the film 5 (nm) is represented by the formula (xl) [in the formula (xl), P, Sm, E and I are the same as those in the above formula (1)] δ = Ρ X Sm3/(4 8 XEXI) (xl) means that Rag 150 χ δ. That is, when the film is wound by the tension applied to form a film roll, as shown in Fig. 1, the adjacent convex portions of the film surface -10- 201239420 are subjected to a load by tension to cause scratching. This means that 値 of 150 times the deflection amount δ of the film is equal to or less than the center line flatness Ra. When the enthalpy of 150 χ is Ra or less, the film 挠 which is deflected by the P can be sufficiently prevented from coming into contact with the film f2 immediately below, so that agglomeration is prevented. When the enthalpy of 150 χ δ is larger than Ra, even if the film entanglement due to the deflection does not come into contact with the film f2 immediately below, the shrinkage of the film during storage or transportation or the contact of the air between the films is prevented from being sufficiently prevented. Piece. In the formula (X1), as shown in Fig. 2, the formula (yl) is based on the deflection amount δ' of the beam structure of the structural mechanical member, δ' = (Ρ'χί3) / (48χΕ'χΓ) (yl [In the formula (yl), the deflection of the δ old beam (mm); p• is the load of the beam (n); L is the distance between the pillars of the support beam (mm). The bending elastic modulus of the material constituting the beam (MPa) Γ is the second moment of the beam member (mm4), and Γ is represented by b't'3/12. b· is the width of the beam ’ t' is the thickness of the beam (m m )], and the result is carefully explored. In the present embodiment, the above formula (1) is preferably a formula (zl), particularly preferably a formula (z2), 1.0^Ra-3.125xPxSm3/(ExI)^25.0 (zl) 1.2 in order to prevent agglomeration. ^Ra-3.125xPxSm3/(ExI)^5.0 (z2) The optical film of the present invention has substantially fine irregularities on the one surface. The size of the concavities and convexities is not particularly limited as long as it is a size in which the Ra and the predetermined range of the foot (the range satisfying the above formula (1) are satisfied). For example, the shape of the concavities and convexities may be curved in the width direction. Both of them are rough and the load can be fully weighted by p, but because of each other, the cross section (mm) applied to ;E' is sufficient. The strip-shaped irregularities repeatedly formed in parallel with each other in the transport direction or the oblique direction orthogonal to the width direction of the width -11 - 201239420 degrees, or the dot-shaped irregularities in which the convex portions are regularly or irregularly formed. The cross-sectional shape of the portion and the recess is generally independently a substantially semi-circular shape. The cross-sectional shape may be such that the other surface of the optical film of the present invention is perpendicular to the cross section or the vertical cross section with respect to the film transport direction, as long as the center line average roughness Ra of the surface and the unevenness are averaged. Although it is not particularly limited, it is preferably smooth, and the center line average roughness R a of the other surface is usually 5 nm or less in the surface of the other surface, and particularly, the average unevenness of the unevenness of the other surface is The Sm is particularly preferably 1.5 to 5 μm. The other surface of the optical film can be achieved by adjusting the other contact in the unevenness forming step described later or by adjusting the Ra and Sm of the surface of the back roll when the roll is used in the uneven forming step. . The optical film of the present invention may have any form, and the optical film may be wound into a plurality of layers around the core, or may be rolled out from the optical film, and the liquid crystal display may be formed according to the size. The zero-loaded form of the device or the like. When the optical film of the present invention has a face shape of a film sheet which is comprehensive and satisfies the above formula, and preferably is smooth as described above. The upward connection is a convex shape in the shape of a cone, which is a triangular shape or a width direction. The surface interval Sm of the above one is satisfied. In detail, it is preferably less than the former 0.011 to 3 nm, preferably 1 to 5 μm, and the Ra and Sm* faces are not disposed opposite to any of the rolls, as may be used in the form of the roll of the film roll. When the film is in the form of a film, as long as the other side of the film is as in the form of a film roll, the film of the present invention covers the entire form and satisfies the above formula, and preferably the other side. The optical film roll of the present invention may have a knurled portion at both ends in the width direction, and the region inside the groove portion of the one surface may cover the entire region and satisfy the above formula. Further, the area on the inner side of the embossed portion on the other side may be as described above. In the optical film of the present invention, if one surface satisfies the surface of one of the above formulas, Ra may be substantially uniform in the width direction, or may have a gradient which decreases or increases from the central portion toward both end portions in the direction. It is reduced or increased from the central portion toward both end portions, and the above-described formula is sufficient for each of the at least the central portion and the both end portions, and the term "Ra" in the width direction substantially means any in the width direction. When Ra is measured at 10 points, the difference of the maximum small enthalpy is less than 1. Onm, preferably 0.5 nm or less. The gradient in which the Ra increases from the central portion toward the both end portions in the width direction means that the Ra of the central portion is larger than the central portion of the larger end portion of the Ra portion at the both end portions, and at this time, the central portion is The Ra of the middle portion between the two is as long as it is located between the Ra of the central portion and the end. When the Ra of the center portion is larger than the both end portions, the step effectively prevents the attachment failure frequently occurring in the center portion. When the Ra is larger than the central portion, the convex failure which occurs frequently in two cases can be further effectively prevented. Ra varies in the width direction. On the one hand, if the film width is smoother than the roll, the width can be one when the Ra gradient is the same, the system is the most reduced or the two are different. The Ra can be extended to the end of the end portion to be -13 - 201239420. The continuity or the gradation is preferable. From the viewpoint of the uneven appearance of the film and the haze, it is preferably continuous. For example, when Ra of the center portion is larger than both end portions, the rate of change of Ra from the central portion toward the both end portions in the width direction is preferably -2.5 to -40% from the viewpoint of preventing the attachment failure. The rate of change means that when the center line surface roughness of the center portion is Rac (mm) and the center line surface roughness of the end portion is Rae (mm), the rate of change Cr (%) = {(Rae) -Rac)/RaC}xlOO represents the surface roughness gradient. The rate of change cri from the central portion toward the one end portion and the rate of change Cr2 from the central portion toward the other end portion may be independently located within the above range. Preferably, the absolute enthalpy of the difference between Ch and Cr2 is 1% or less, and particularly preferably 0.5% or less. In the present specification, the central portion in the width direction means a region (the central region having a length of l〇〇mm in the width direction) in a range of 50 mm from the center (line) in the width direction of the film. The Rac at the center is used to measure the average 値 of any 10 points Ra in this area. The end portion in the width direction means a region in the range of 10 mm from the end face of the film in the width direction of the film. In particular, when the optical film of the present invention has a knurled portion at both ends in the film width direction, the term "end portion" means that the distance from the center portion side boundary line of the embossed portion to the center portion side is 1 mm. The area within the scope. The Rae at the end is the average 値 of Ra measured at any 1 point in this area. Further, for example, when the Ra of the both end portions is larger than the central portion, the rate of change of Ra from the central portion toward the both end portions in the width direction prevents the convex failure from the viewpoint of -14,394,420, which is preferably 2.5 to 75%. The rate of change is expressed by the same rate of change as above. The rate of change Cn from the central portion toward the one end portion and the rate of change Cr2 from the central portion toward the other end portion may be independently within the above range, and it is preferable that the absolute 値 of the difference between Cn and Cr2 is 1% or less. It is preferably 0.5% or less. The optical film of the present invention contains at least a resin, and may further contain an additive such as a plasticizer, an ultraviolet absorber, an antioxidant, a roughening agent, a retardation enhancer or the like. In the present invention, the content of the roughening agent is, in particular, 0.2% by weight or less, preferably 0.1% by weight or less, and most preferably 0% by weight based on the resin constituting the optical film. This is because when the content of the roughening agent is too large, the haze of the film rises. In the present invention, the content of the roughening agent can be effectively prevented from agglomerating at least as described above. Roughizers use microparticles. By microparticles, it is meant that the average particle size in the film or on the surface thereof is less than ημηι, especially particles of 5 nm or more and less than Ιμηι. The fine particles may exist as primary particles in the film, or a plurality of particles may aggregate and form secondary particles (secondary aggregates) and have a refractive index of the particles, when the refractive index of the resin component used in the film is close to The haze rises less, so it is better. The refractive index of the cellulose ester film is about 1.4 7 to 1.49, so that the refractive index of the fine particles is preferably from 1.46 to 1.50, more preferably from 1.47 to 1.49. The average particle diameter of the fine particles is determined by measuring the particle diameter of the primary particles when the particles are present as primary particles, and measuring the particle diameter of the secondary particles when the particles are secondary particles, and averaging the particle diameters. Ask for it. The average particle diameter is, for example, observed by an electron microscope, and is determined from the particle diameter of 100 -15 - 201239420 particles. Here, each particle diameter is represented by a diameter when a projected area is assumed to be a circle. Alternatively, the fine particles were dissolved in a solvent, and measured by a dynamic light scattering particle size measuring device Zetasizer 1 000HS (manufactured by Malvern). The kind of the fine particles may be an inorganic compound or an organic compound. Examples of the inorganic compound include a compound containing a ruthenium atom among ruthenium dioxide, titanium oxide, aluminum oxide, chromium oxide, tin oxide, etc., and particularly preferably ruthenium dioxide. Examples of the cerium oxide microparticles include AEROSIL 200, 200V, 300, R972, R972V, R974, R202, R812, R805, 0X50, and TT600 manufactured by Aerosil Co., Ltd. Examples of the organic compound include an acrylic resin, a polyoxyalkylene resin, a fluorinated resin, and a urethane resin. The roughening agent can be an elastomeric particle. The elastomer fine particles are polymer fine particles having a core-shell structure, and are provided on the surface of the rubber-like polymer fine particles (core (core) portion) and have a hard shell layer containing a methyl methacrylate polymer or the like. particle. The rubbery polymer constituting the core portion of the elastomer fine particles is preferably an alkyl acrylate rubber. The method for producing the core portion is known by a method of seed crystal emulsion polymerization. The methyl methacrylate-based polymer constituting the shell layer means a homopolymer of methyl methacrylate and a copolymer containing the methyl methacrylate and a monomer copolymerizable therewith. The shell layer can be produced by emulsification polymerization of a predetermined monomer in the presence of a core latex. The resin component constituting the optical film of the present invention can be a generally known polymer used in the field of conventional optical films, and specifically,

-16- 201239420 列舉出纖維素樹脂、(甲基)丙烯酸樹脂、環烯烴樹脂及 此等之混合物等。較佳係含有纖維素樹脂、(甲基)丙烯 酸樹脂、環烯烴樹脂或此等之混合物。 纖維素樹脂較佳爲纖維素的低級脂肪酸酯。所謂纖維 素的低級脂肪酸酯中之低級脂肪酸,係意味著碳原子數6 以下的脂肪酸。纖維素樹脂的具體例,例如可使用纖維素 乙酸酯、纖維素丙酸酯、纖維素丁酸酯等,或是日本特開 平1 0-45 804號、日本特開平08-23 1 76 1號、美國專利第 2,'3 1 9,05 2號等所記載之纖維素乙酸丙酸酯、纖維素乙酸 丁酸酯等之混合脂肪酸酯。上述記載中,可特佳地使用之 纖維素的低級脂肪酸酯,爲纖維素三乙酸酯、纖維素乙酸 丙酸酯。此等纖維素酯可單獨或混合使用。 纖維素樹脂,以乙醯基的取代度爲X,以丙醯基或丁 醯基的取代度爲Y時,較佳爲同時滿足下列式(I)及( II)之纖維素樹脂。 式(I) 2.6 ^X + Y ^3.0 式(II) 0SXS2.5 當中較佳爲1.9SXS2.5、0.1SYS0.9。未以醯基取 代之部分,通常是存在作爲羥基。此等可藉由一般所知的 方法來合成。醯基之取代度的測定方法,可依據ASTM-D817-96來測定》 纖維素樹脂的分子量,較佳係以數量平均分子量(Μη )計爲 60000〜300000,更佳爲 70000〜200000。本發明中 所使用之纖維素樹脂,其重量平均分子量(Mw) /數量平 -17- 201239420 均分子量(Μη )之比較佳爲4.0以下,更佳爲1.4〜2 ·3。 本說明書中,樹脂的平均分子量及分子量分布,可使 用高速液體層析法來測定,故可使用此來算出數量平均分 子量(Μη)、重量平均分子量(Mw),並計算其比。 測定條件如下。 溶劑:二氯甲烷 管柱:Shodex K806、K805、K803 G (將昭和電工股 份有限公司製的3根連接使用) 管柱溫度:25°C 試樣濃度:0.1質量% 偵測器:RI Model 5 04 ( GL Science 公司製) 泵浦:L6 000 (日立製作所股份有限公司製) 流量:1 .Oml/min 校正曲線:使用標準聚苯乙烯STK standard聚苯乙 烯(Tosoh股份有限公司製)Mw=l,000,000~5 00爲止之 1 3個樣本的校正曲線。13個樣本較佳係使用幾乎爲等間 隔者。 纖維素樹脂,可單獨或混合使用將棉絨紙、木漿、洋 麻等用作爲原料所合成之纖維素酯。特佳係單獨或混合使 用由棉絨紙(以下有時僅稱爲絨紙)所合成之纖維素酯。 (甲基)丙烯酸樹脂係含有丙烯酸樹脂及甲基丙烯酸 樹脂。(甲基)丙烯酸樹脂並無特別限制,較佳是由甲基 丙烯酸甲酯單位50~99質量%、以及可與其共聚合之其他 單體單位1〜50質量%所構成者。 -18- 201239420 可與甲基丙烯酸甲酯共聚合之其他單體,可列舉出烷 數的碳數爲2〜18之甲基丙烯酸烷酯、烷數的碳數爲1~18 之丙烯酸烷酯、丙烯酸、甲基丙烯酸等之α,β-不飽和酸; 馬來酸、反丁烯二酸、亞甲基丁二酸等之含有不飽和基的 二價羧酸;苯乙烯、α-甲基苯乙烯等之芳香族乙烯基化合 物;丙烯腈、甲基丙烯腈等之α,β-不飽和腈;馬來酸酐、 馬來醯亞胺、Ν-取代馬來醯亞胺、戊二酸酐等,此等可單 獨或倂用2種以上的單體來使用。此等當中,就共聚物的 耐熱分解性和流動性之觀點來看,較佳可使用丙烯酸甲酯 、丙烯酸乙酯、丙烯酸正丙酯、丙烯酸正丁酯、丙烯酸二 級丁酯、丙烯酸2-乙基己酯等,特佳可使用丙烯酸甲酯或 丙烯酸正丁酯。 (甲基)丙烯酸樹脂,較佳爲重量平均分子量(Mw )80000以上’尤佳爲80000〜1000000的範圍內,特佳爲 100000~600000的範圍,最佳爲150000〜400000的範圍內 〇 (甲基)丙烯酸樹脂的製造方法並無特別限制,可使 用懸浮聚合、乳化聚合、塊狀聚合、或是溶液聚合等之一 般所知的方法中之任一種。在此,聚合起始劑可使用一般 的過氧化物系及偶氮系者,此外,亦可使用還原氧化系者 。聚合溫度,在懸浮聚合或乳化聚合中,可在30〜l〇〇t中 實施’在塊狀聚合或溶液聚合中,可在80〜160 °C中實施。 爲了控制所得之共聚物的還原黏度,亦可使用烷基硫醇等 作爲連鎖移動劑來實施聚合。 -19- 201239420 (甲基)丙烯酸樹脂亦可使用市售品。例如可列舉出 Delpet 60N、80N(Asahi Kasei Chemicals 股份有限公司 製)、Dianal BR52、BR80、BR83、BR85、BR88 ( Mitsubishi Rayon股份有限公司製)、KT75 (電氣化學工 業股份有限公司製)等。丙烯酸樹脂可倂用2種以上。 環烯烴樹脂爲具有脂環型結構之聚合性樹脂。較佳的 環烯烴樹脂,爲使環狀烯烴進行聚合或共聚合之樹脂。環 狀烯烴,可列舉出降莰烯、二環戊二烯、四環十二烯、乙 基四環十二烯、亞乙基四環十二烯、四環[7.4.0.110, 13.02,7]十三-2,4,6,11-四烯等之多環結構的不飽合烴及其 衍生物;環丁烯、環戊烯、環己烯、3,4-二甲基環戊烯、 3 -甲基環己烯、2-(2-甲基丁基)-1-環己烯、環辛烯、 3&,5,6,73-四氫-4,7-甲醇-1^茚、環庚烯、環戊二烯、環 己二烯等之單環結構的不飽合烴及其衍生物等。此等環狀 烯烴可具有極性基作爲取代基。極性基,可列舉出羥基、 羧基、烷氧基、環氧基、縮水甘油基、氧羰基、羰基、胺 基、酯基、羧酸酐基等,特佳爲酯基、羧基或羧酸酐基。 較佳的環烯烴樹脂,爲可與環狀烯烴以外的單體進行加成 共聚合者。可進行加成共聚合之單體,可列舉出乙烯、丙 烯、1-丁烯、1-戊烯等之乙烯或α-烯烴;1,4-己二烯、4-甲基-1,4-己二烯、5-甲基-1,4-己二烯、1,7-辛二烯等之二 烯。 環烯烴樹脂,可藉由加成聚合反應或複分解開環聚合 反應而得。聚合係在觸媒的存在下進行。加成聚合用觸媒 a -20- 201239420 ,例如可列舉出由釩化合物與有機鋁化合物所構成之聚合 觸媒等。開環聚合用觸媒,例如可列舉出由釕、鍺、鈀、 餓、銥、鈾等之金屬的鹵化物、硝酸鹽或乙醯丙酮化合物 ,與還原劑所構成之聚合觸媒;或是由欽、紙、銷、鎢、 鉬等之金屬的鹵化物或乙醯丙酮化合物,與有機鋁化合物 所構成之聚合觸媒等。聚合溫度、壓力等並無特別限定, 通常在- 50°C~l〇〇°C的聚合溫度、〇〜49 0N/cm2的聚合壓力 下進行聚合。 環烯烴樹脂,使環狀烯烴進行聚合或共聚合後,較佳 係進行加氫反應以將分子中的不飽和鍵改變爲飽和鍵。加 氫反應可在一般所知之氫化觸媒的存在下,吹入氫氣來進 行。氫化觸媒,可列舉出乙酸鈷/三乙基鋁、乙醯乙酸鎳/ 三異丁基鋁、二氯二茂鈦/正丁基鋰、二茂锆/二級丁基鋰 、四丁氧基鈦酸酯/二甲基鎂般之由過渡金屬化合物/烷基 金屬化合物之組合所構成之均一系觸媒;鎳、鈀、鉛等之 不均一系觸媒:鎳/二氧化矽、鎳/矽藻土、鎳/氧化鋁、鈀 /碳、鈀/二氧化矽、鈀/矽藻土、鈀/氧化鋁般之將金屬觸 媒撐持於撐體而成之非均一系固體撐持觸媒等。 環烯烴樹脂,亦可列舉出下列降莰烯系樹脂。降莰烯 系樹脂’較佳係具有降莰烯骨架作爲重複單位者,該具體 例可列舉出日本特開昭62-252406號公報、日本特開昭 62-252407號公報、日本特開平2-133413號公報、日本特 開昭63-145324號公報、日本特開昭63-264626號公報、 日本特開平1-240517號公報、日本特公昭57-8815號公報 -21 - 201239420 、曰本特開平5-2108號公報、曰太胜M术c W ΰ不特開平5-39403號公報 、日本特開平5-43663號公報、 咖二跑日本特開平5-43834號公 報、日本特開平5-70665號公報、日本特開平MW號-16- 201239420 A cellulose resin, a (meth)acrylic resin, a cycloolefin resin, and the like are listed. It is preferred to contain a cellulose resin, a (meth)acrylic resin, a cyclic olefin resin or a mixture thereof. The cellulose resin is preferably a lower fatty acid ester of cellulose. The lower fatty acid in the lower fatty acid ester of cellulose means a fatty acid having 6 or less carbon atoms. Specific examples of the cellulose resin, for example, cellulose acetate, cellulose propionate, cellulose butyrate, or the like, or Japanese Patent Laid-Open No. 0-45 804, Japanese Patent Application Laid-Open No. 08-23 1 76 1 A mixed fatty acid ester such as cellulose acetate propionate or cellulose acetate butyrate described in U.S. Patent No. 2, '3, 9,05, and the like. In the above description, the lower fatty acid ester of cellulose which can be particularly preferably used is cellulose triacetate or cellulose acetate propionate. These cellulose esters can be used singly or in combination. The cellulose resin preferably has a degree of substitution of an ethyl ketone group of X and a degree of substitution of a propyl fluorenyl group or a butyl group with Y, and preferably a cellulose resin of the following formulas (I) and (II). Formula (I) 2.6 ^X + Y ^3.0 Formula (II) 0SXS2.5 is preferably 1.9SXS2.5, 0.1SYS0.9. A portion that is not substituted with a thiol group is usually present as a hydroxyl group. These can be synthesized by a generally known method. The method for measuring the degree of substitution of the thiol group can be determined according to ASTM-D817-96. The molecular weight of the cellulose resin is preferably from 60000 to 300,000, more preferably from 70,000 to 200,000, in terms of number average molecular weight (??). The cellulose resin used in the present invention preferably has a weight average molecular weight (Mw) / quantity of -17 - 201239420 average molecular weight (?η) of 4.0 or less, more preferably 1.4 to 2 · 3. In the present specification, the average molecular weight and molecular weight distribution of the resin can be measured by high-speed liquid chromatography, so that the number average molecular weight (?n) and the weight average molecular weight (Mw) can be calculated and the ratio can be calculated. The measurement conditions are as follows. Solvent: Dichloromethane column: Shodex K806, K805, K803 G (to be used by three joints made by Showa Denko Co., Ltd.) Column temperature: 25 ° C Sample concentration: 0.1% by mass. Detector: RI Model 5 04 (manufactured by GL Science Co., Ltd.) Pump: L6 000 (manufactured by Hitachi, Ltd.) Flow rate: 1.0 ml/min Calibration curve: Standard polystyrene STK standard polystyrene (manufactured by Tosoh Co., Ltd.) Mw=l Calibration curve for 13 samples up to ,000,000~500. The 13 samples are preferably used almost equally. As the cellulose resin, cellulose ester synthesized by using lint paper, wood pulp, kenaf or the like as a raw material can be used singly or in combination. The cellulose ester synthesized from cotton velvet paper (hereinafter sometimes referred to simply as velvet paper) is used singly or in combination. The (meth)acrylic resin contains an acrylic resin and a methacrylic resin. The (meth)acrylic resin is not particularly limited, and is preferably composed of 50 to 99% by mass of methyl methacrylate unit and 1 to 50% by mass of other monomer units copolymerizable therewith. -18- 201239420 Other monomers copolymerizable with methyl methacrylate include alkyl methacrylates having a carbon number of 2 to 18 and alkyl acrylates having a carbon number of 1 to 18 , α,β-unsaturated acid such as acrylic acid or methacrylic acid; unsaturated acid-containing divalent carboxylic acid such as maleic acid, fumaric acid or methylene succinic acid; styrene, α-A An aromatic vinyl compound such as styrene; an α,β-unsaturated nitrile such as acrylonitrile or methacrylonitrile; maleic anhydride, maleimide, fluorene-substituted maleimide, glutaric anhydride Alternatively, these may be used alone or in combination of two or more kinds of monomers. Among these, methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, n-butyl acrylate, and acrylic acid 2- are preferably used from the viewpoint of heat decomposition resistance and fluidity of the copolymer. Ethyl hexyl ester or the like, particularly preferably methyl acrylate or n-butyl acrylate. The (meth)acrylic resin preferably has a weight average molecular weight (Mw) of 80,000 or more, particularly preferably in the range of 80,000 to 1,000,000, particularly preferably in the range of 100,000 to 600,000, and most preferably in the range of 150,000 to 400,000. The method for producing the acrylic resin is not particularly limited, and any of generally known methods such as suspension polymerization, emulsion polymerization, bulk polymerization, or solution polymerization can be used. Here, as the polymerization initiator, a general peroxide system or an azo group can be used, and a reducing oxidation system can also be used. The polymerization temperature, in suspension polymerization or emulsion polymerization, can be carried out in 30 to 1 Torr, in bulk polymerization or solution polymerization, and can be carried out at 80 to 160 °C. In order to control the reduction viscosity of the obtained copolymer, it is also possible to carry out polymerization using an alkyl mercaptan or the like as a chain shifting agent. -19- 201239420 (Meth)acrylic resin can also be used commercially. For example, Delpet 60N, 80N (made by Asahi Kasei Chemicals Co., Ltd.), Dianal BR52, BR80, BR83, BR85, BR88 (manufactured by Mitsubishi Rayon Co., Ltd.), KT75 (manufactured by Electric Chemical Industry Co., Ltd.), and the like can be given. Two or more types of acrylic resins can be used. The cycloolefin resin is a polymerizable resin having an alicyclic structure. A preferred cycloolefin resin is a resin which polymerizes or copolymerizes a cyclic olefin. Examples of the cyclic olefin include norbornene, dicyclopentadiene, tetracyclododecene, ethyltetracyclododecene, ethylene tetracyclododecene, and tetracyclo [7.4.0.110, 13.02, 7 Unsaturated hydrocarbons and derivatives thereof having a polycyclic structure such as thirteen-2,4,6,11-tetraene; cyclobutene, cyclopentene, cyclohexene, 3,4-dimethylcyclopentane Alkene, 3-methylcyclohexene, 2-(2-methylbutyl)-1-cyclohexene, cyclooctene, 3&, 5,6,73-tetrahydro-4,7-methanol-1 An unsaturated hydrocarbon having a monocyclic structure such as hydrazine, cycloheptene, cyclopentadiene or cyclohexadiene, and a derivative thereof. These cyclic olefins may have a polar group as a substituent. The polar group may, for example, be a hydroxyl group, a carboxyl group, an alkoxy group, an epoxy group, a glycidyl group, an oxycarbonyl group, a carbonyl group, an amine group, an ester group or a carboxylic anhydride group, and particularly preferably an ester group, a carboxyl group or a carboxylic anhydride group. A preferred cycloolefin resin is an addition copolymerizable monomer other than a cyclic olefin. The monomer which can be subjected to addition copolymerization includes ethylene or an α-olefin such as ethylene, propylene, 1-butene or 1-pentene; 1,4-hexadiene and 4-methyl-1,4; - a diene such as hexadiene, 5-methyl-1,4-hexadiene or 1,7-octadiene. The cycloolefin resin can be obtained by addition polymerization or metathesis ring-opening polymerization. The polymerization is carried out in the presence of a catalyst. The catalyst for addition polymerization a -20- 201239420 is, for example, a polymerization catalyst composed of a vanadium compound and an organoaluminum compound. Examples of the catalyst for ring-opening polymerization include a halide, a nitrate or an acetoacetone compound of a metal such as ruthenium, rhodium, palladium, ruthenium, osmium or uranium, and a polymerization catalyst composed of a reducing agent; A polymerization catalyst composed of a metal halide or an acetonitrile acetone compound such as a paper, a paper, a pin, a tungsten or a molybdenum, and an organoaluminum compound. The polymerization temperature, pressure, and the like are not particularly limited, and polymerization is usually carried out at a polymerization temperature of -50 ° C to 10 ° C and a polymerization pressure of 〇 4 0 0 N/cm 2 . The cycloolefin resin, after subjecting the cyclic olefin to polymerization or copolymerization, is preferably subjected to a hydrogenation reaction to change an unsaturated bond in the molecule to a saturated bond. The hydrogenation reaction can be carried out by blowing hydrogen gas in the presence of a generally known hydrogenation catalyst. The hydrogenation catalyst may, for example, be cobalt acetate/triethylaluminum, acetonitrile nickel acetate/triisobutylaluminum, dichlorotitanium dichloride/n-butyllithium, zirconocene/secondary butyllithium, tetrabutoxy a homogeneous catalyst composed of a combination of a transition metal compound/alkyl metal compound like a titanate/dimethylmagnesium; a heterogeneous catalyst such as nickel, palladium or lead: nickel/cerium oxide, nickel / 矽 矽 algae, nickel / alumina, palladium / carbon, palladium / cerium oxide, palladium / diatomaceous earth, palladium / alumina like a non-uniform solid support catalyst supported by a metal catalyst Wait. The cycloolefin resin may also be exemplified by the following norbornene-based resins. The decene-based resin is preferably a decene-based skeleton as a repeating unit, and a specific example thereof is disclosed in JP-A-62-252406, JP-A-62-252407, and JP-A-2002- Japanese Laid-Open Patent Publication No. SHO-63-145324, Japanese Laid-Open Patent Publication No. SHO-63-264626, Japanese Laid-Open Patent Publication No. Hei No. Hei No. Hei No. Hei No. Hei. Bulletin No. 5-2108, 曰太胜 M术 c W ΰ 特 特 5 5 - - 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 - - - - - - - - - - - - - - - - - Bulletin, Japan Special Kaiping MW

公報、日本特開平6_206985號公報、日本特開平'MOM 號公報、日本特開平m6411號公報、日本特開平9_ 24 1484號公報、日本特開2〇〇1_27743〇號公報、日本特開 2003 139950號公報、日本特開2003-14901號公報、日本 特開2003- 1 6 1 832號公報、日本特開2〇〇3_ 1 95268號公報 、日本特開2003 -2 1 1 5 8 8號公報、日本特開2〇〇3_211589 號公報、日本特開2003-268 1 87號公報、日本特開2004_ 133209號公報、日本特開2004-309979號公報、日本特開 2005-121823號公報、日本特開2005-164632號公報、日 本特開2006-72309號公報、日本特開2006-178191號公報 、日本特開2006-215333號公報、日本特開2006-268065 號公報、日本特開2006-299 1 99號公報等所記載者,但並 不限定於此等。此外,此等可單獨使用1種或倂用2種以 上。具體而言’較佳可使用日本Zeon股份有限公司製的 Zeonex、Zeonor、JSR股份有限公司製的 Arton、三井化 學股份有限公司製的 Apel ( APL8008T、APL6509T、 APL6013T、 APL5014DP、 APL6015T)等。 環烯烴樹脂的分子量,可因應使用目的來適當地選擇 ,以環己烷溶液(無法溶解聚合物樹脂時爲甲苯溶液)的 凝膠滲透層析法所測定之經聚異戊二烯或聚苯乙烯換算的 重量平均分子量計,通常位於 5000〜5 00000 ’較佳位於 201239420 8000〜200000,尤佳位於1 0000〜1 00000的範圍時,成 的機械強度及成形加工性可達到高度均衡,故較佳。 可塑劑並無特別限定,例如可使用多元醇酯系可 、乙醇酸酯系可塑劑、鄰苯二甲酸酯系可塑劑、檸檬 系可塑劑、脂肪酸酯系可塑劑、磷酸酯系可塑劑、多 酸酯系可塑劑、聚酯系可塑劑、丙烯酸系可塑劑等。 的可塑劑爲多元醇酯系可塑劑、聚酯系可塑劑等。尤 可塑劑爲多元醇酯系可塑劑。可塑劑可組合2種以上 ,此時較佳者係至少1種爲多元醇酯系可塑劑。 多元醇酯系可塑劑,是由2價以上的脂肪族多元 單羧酸的酯所構成之可塑劑,較佳係於分子內具有芳 或環烷環。較佳爲2~20價的脂肪族多元醇酯。 構成多元醇酯系可塑劑之多元醇,是由下列一般 a )表示。 —般式(a) Rl-(〇H)na 惟R!表示η價的有機基,na表示2以上的正數 基表示醇性及/或酚性羥基。較佳之多元醇的例子, 可列舉如下,但本發明並不限定於此等。核糖醇、阿 糖醇、乙二醇、二乙二醇、三乙二醇、四乙二醇、1 二醇、1,3-丙二醇、二丙二醇、三丙二醇、1,2-丁二 1,3-丁 二醇、1,4-丁二醇、二丁 二醇、1,2,4-丁 三醇、 戊二醇、1,6-己二醇、戊三醇、半乳糖醇、甘露糖醇 甲基戊烷-1,3,5-三醇、醍醇(pinacol )、山梨醇、三 基丙烷、三羥甲基乙烷、木糖醇等。特佳爲三乙二醇 形體 塑劑 酸酯 兀殘 較佳 佳的 使用 醇與 香環 式( ,OH 例如 拉伯 ,2-丙 醇、 1,5-' 3-羥甲 、四 -23- 201239420 乙二醇、二丙二醇、三丙二醇、山梨醇、三羥甲基丙烷' 木糖醇。 構成多元醇酯系可塑劑之單羧酸並無特別限制,可使 用一般所知的脂肪族單羧酸、脂環族單羧酸、芳香族單羧 酸等。使用脂環族單羧酸、芳香族單羧酸時,就提升透濕 性、保留性之觀點來看爲較佳。較佳之單羧酸的例子可列 舉如下,但本發明並不限定於此等。脂肪族單羧酸,較佳 爲使用具有碳數1〜3 2的直鏈或側鏈之脂肪酸。更佳爲碳 數1〜20,特佳爲1〜10。當使用纖維素樹脂作爲樹脂成分 時,含有乙酸時可增加與纖維素樹脂之相溶性,故較佳, 較佳亦可混合使用乙酸與其他單羧酸。較佳的脂肪族單羧 酸,可列舉出乙酸、丙酸、丁酸、戊酸、己酸、庚酸、辛 酸、壬酸、癸酸、2-乙基-己酸、十一酸、十二酸、十三酸 、十四酸、十五酸、十六酸、十七酸、十八酸、十九酸、 二十酸、二十二酸、二十四酸、二十六酸、二十七酸、二 十八酸、三十酸、三十二酸等之飽和脂肪酸;十一烯酸、 十八烯酸、山梨酸、亞麻油酸、次亞麻油酸、二十碳四烯 酸等之不飽和脂肪酸等。較佳之脂環族單羧酸的例子,可 列舉出環戊烷羧酸、環己烷羧酸、環辛烷羧酸、或此等之 衍生物。較佳之芳香族單羧酸的例子,可列舉出苯甲酸、 甲基苯甲酸等之苯甲酸的苯環上導入有1〜3個烷基、甲氧 基或乙氧基等的烷氧基者,聯苯羧酸、萘羧酸、四氫萘羧 酸等之具有2個以上的苯環之芳香族單羧酸,或此等之衍 生物。特佳爲苯甲酸。多元醇酯中所使用之羧酸可爲1種 -24- 201239420 或是2種以上的混合物。多元醇中的OH基,可爲全 酯化者,或是一部分殘留作爲OH基。多元醇酯的分 並無特別限制,較佳爲300〜1 500,更佳爲3 50〜750。 乙醇酸酯系可塑劑並無特別限定,較佳可使用烷 苯二甲酸羥乙酸烷酯類。烷基鄰苯二甲酸羥乙酸烷酯 例如可列舉出甲基鄰苯二甲酸羥乙酸甲酯、乙基鄰苯 酸羥乙酸乙酯、丙基鄰苯二甲酸羥乙酸丙酯、丁基鄰 甲酸羥乙酸丁酯、辛基鄰苯二甲酸羥乙酸辛酯、甲基 二甲酸羥乙酸乙酯、乙基鄰苯二甲酸羥乙酸甲酯、乙 苯二甲酸羥乙酸丙酯、甲基鄰苯二甲酸羥乙酸丁酯、 鄰苯二甲酸羥乙酸丁酯、丁基鄰苯二甲酸羥乙酸甲酯 基鄰苯二甲酸羥乙酸乙酯、丙基鄰苯二甲酸羥乙酸丁 丁基鄰苯二甲酸羥乙酸丙酯、甲基鄰苯二甲酸羥乙酸 、乙基鄰苯二甲酸羥乙酸辛酯、辛基鄰苯二甲酸羥乙 酯、辛基鄰苯二甲酸羥乙酸乙酯等。 鄰苯二甲酸酯系可塑劑,可列舉出鄰苯二甲酸二 、鄰苯二甲酸二甲氧乙酯、鄰苯二甲酸二甲酯、鄰苯 酸二辛酯、鄰苯二甲酸二丁酯、鄰苯二甲酸二-2_乙基 、鄰苯二甲酸二辛酯、鄰苯二甲酸二環己酯、對苯二 二環己酯等。 檸檬酸酯系可塑劑,可列舉出檸檬酸乙醯三甲酯 檬酸乙醯三乙酯、檸檬酸乙醯三丁酯等。 脂肪酸酯系可塑劑’可列舉出十八烯酸丁酯、蓖 酸甲基乙醯酯、癸二酸二丁酯等。 部經 子量 基鄰 類, 二甲 苯二 鄰苯 基鄰 乙基 、丁 酯、 辛酯 酸甲 乙酯 二甲 己酯 甲酸 、檸 麻油 -25- 201239420 磷酸酯系可塑劑,可列舉出磷酸三苯酯、磷酸三甲苯 酯、磷酸甲苯二苯酯、磷酸辛基二苯酯、磷酸二苯聯苯酯 、磷酸三辛酯、磷酸三丁酯等。 多元羧酸酯系可塑劑,是由2價以上的多元羧酸與醇 的酯所構成。 構成多元羧酸酯系可塑劑之多元羧酸,可列舉出2〜20 價的脂肪族多元羧酸、3價〜20價的芳香族多元羧酸、3價 ~20價的脂環型多元羧酸。多元羧酸是由下列一般式(b) 表示。 —般式(b) R2(COOH)mb(OH)nb R2爲(mb + nb )價的有機基,mb爲2以上的正整數 ,nb爲0以上的整數,COOH基爲羧基,OH基爲醇性或 酚性羥基。較佳之多元羧酸的例子可列舉如下,但本發明 並不限定於此等》較佳可使用偏苯三甲酸、苯三甲酸、焦 蜜石酸般之3價以上的芳香族多元羧酸或其衍生物;琥珀 酸、己二酸、壬二酸、癸二酸、草酸、反丁烯二酸、馬來 酸、四氫鄰苯二甲酸般之脂肪族多元羧酸;酒石酸、羥丙 二酸、蘋果酸、檸檬酸般之氧多元羧酸等。尤其就提升保 留性之觀點來看,使用氧多元羧酸者較佳。 構成多元羧酸酯系可塑劑之醇並無特別限制,可使用 一般所知的醇類、酚類。例如較佳可使用具有碳數1〜32 的直鏈或側鏈之脂肪族飽和醇或脂肪族不飽和醇。更佳爲 碳數1〜20,特佳爲1〜10。較佳亦可使用環戊醇、環己醇 等之脂環型醇或其衍生物;苄醇、桂皮醇等之芳香族醇或 -26- 201239420 其衍生物等。本發明中所能夠使用之多元羧酸酯系可塑劑 中所使用之醇,可爲1種或混合2種以上。 多元羧酸酯系可塑劑的分子量並無特別限制,較佳爲 分子量300〜1 000的範圔內,更佳爲3 50〜750的範圍內。 就提升保留性之觀點來看,較大者愈佳,就透濕性、與纖 維素酯之相溶性之觀點來看,較小者愈佳。 特佳之多元羧酸酯系可塑劑的例子如下所示,但本發 明並不限定於此等。例如可列舉出檸檬酸三乙酯、檸檬酸 三丁酯、檸檬酸乙醯三乙酯(AT AC )、檸檬酸乙醯三丁 酯(ATBC )、檸檬酸苯甲醯三丁酯、檸檬酸乙醯三苯酯 、檸檬酸乙醯三苄酯、酒石酸二丁酯、酒石酸二乙醯二丁 酯、偏苯三甲酸三丁酯、焦蜜石酸四丁酯等。 聚酯系可塑劑,可使用分子內具有芳香環或環烷環之 聚酯系可塑劑。較佳之聚酯系可塑劑,例如可使用由下列 一般式(c)表示之芳香族末端酯系可塑劑。Japanese Unexamined Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. Japanese Patent Laid-Open Publication No. 2003-14901, Japanese Laid-Open Patent Publication No. 2003-161-832, Japanese Patent Laid-Open Publication No. Hei. No. Hei. Japanese Laid-Open Patent Publication No. 2003-2681, JP-A-2003-2681, JP-A-2004-133209, JP-A-2004-309979, JP-A-2005-121823, and JP-A-2005 Japanese Laid-Open Patent Publication No. 2006-172309, Japanese Laid-Open Patent Publication No. 2006-178191, Japanese Laid-Open Patent Publication No. Hei. No. 2006-215333, Japanese Laid-Open Patent Publication No. 2006-268065, No. 2006-299 No. The person who is described in the Gazette or the like is not limited thereto. Further, these may be used alone or in combination of two or more. Specifically, it is preferable to use Zeonex manufactured by Zeon Co., Ltd., Zeonor, Arton manufactured by JSR Co., Ltd., Apel (APL8008T, APL6509T, APL6013T, APL5014DP, APL6015T) manufactured by Mitsui Chemicals, Inc., and the like. The molecular weight of the cycloolefin resin can be appropriately selected depending on the purpose of use, and the polyisoprene or polyphenylene is determined by gel permeation chromatography of a cyclohexane solution (a toluene solution when the polymer resin cannot be dissolved). The ethylene-based weight average molecular weight meter is usually located at 5,000 to 50,000 00', preferably at 201239420 8000 to 200000, and particularly preferably in the range of 10,000 to 10,000. The mechanical strength and formability can be highly balanced, so good. The plasticizer is not particularly limited, and examples thereof include a polyol ester-based, a glycolate-based plasticizer, a phthalate-based plasticizer, a lemon-based plasticizer, a fatty acid ester-based plasticizer, and a phosphate-based plasticizer. , polyacid ester plasticizer, polyester plasticizer, acrylic plasticizer, and the like. The plasticizer is a polyol ester-based plasticizer, a polyester-based plasticizer, or the like. The special plasticizer is a polyol ester-based plasticizer. Two or more kinds of plasticizers may be combined. In this case, at least one of them is preferably a polyol ester-based plasticizer. The polyol ester-based plasticizer is a plasticizer composed of an ester of a divalent or higher aliphatic polymonocarboxylic acid, and preferably has an aryl or naphthene ring in the molecule. It is preferably a 2 to 20 valent aliphatic polyol ester. The polyol constituting the polyol ester-based plasticizer is represented by the following general a). - (a) Rl-(〇H)na, wherein R! represents an η-valent organic group, and na represents a positive number of 2 or more and represents an alcoholic and/or phenolic hydroxyl group. Examples of preferred polyols include the following, but the present invention is not limited thereto. Ribool, arabitol, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1 diol, 1,3-propanediol, dipropylene glycol, tripropylene glycol, 1,2-butane 1, 3-butanediol, 1,4-butanediol, dibutylene glycol, 1,2,4-butanetriol, pentanediol, 1,6-hexanediol, pentanetriol, galactitol, mannose Sugar alcohol methylpentane-1,3,5-triol, pinacol, sorbitol, triethylpropane, trimethylolethane, xylitol, and the like. It is preferably a triethylene glycol-shaped plasticizer ester residue which is preferably used in the form of an alcohol and an aromatic ring (, OH such as Rabbi, 2-propanol, 1,5-' 3-hydroxymethyl, tetra-23- 201239420 Ethylene glycol, dipropylene glycol, tripropylene glycol, sorbitol, trimethylolpropane' xylitol. The monocarboxylic acid constituting the polyol ester-based plasticizer is not particularly limited, and generally known aliphatic monocarboxylic acid can be used. When an alicyclic monocarboxylic acid or an aromatic monocarboxylic acid is used, it is preferred from the viewpoint of improving moisture permeability and retention. Examples of the carboxylic acid are as follows, but the present invention is not limited thereto. The aliphatic monocarboxylic acid is preferably a fatty acid having a linear or side chain having 1 to 3 carbon atoms, more preferably a carbon number of 1. 〜20, particularly preferably 1 to 10. When cellulose resin is used as the resin component, compatibility with cellulose resin can be increased when acetic acid is contained, and therefore it is preferred to use acetic acid and other monocarboxylic acid in combination. Preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, heptanoic acid, and octane. Acid, citric acid, citric acid, 2-ethyl-hexanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, palmitic acid, heptadecanoic acid, octadecanoic acid, nineteen a saturated fatty acid such as acid, icosonic acid, behenic acid, tetracosic acid, hexamic acid, octadecanoic acid, octadecanoic acid, tridecanoic acid or tridecanoic acid; undecylenic acid, ten An unsaturated fatty acid such as oleic acid, sorbic acid, linoleic acid, linoleic acid or arachidonic acid. Preferred examples of the alicyclic monocarboxylic acid include cyclopentanecarboxylic acid and a ring. A hexane carboxylic acid, a cyclooctane carboxylic acid, or a derivative thereof. Preferred examples of the aromatic monocarboxylic acid include a benzoic acid such as benzoic acid or methylbenzoic acid. An alkoxy group such as an alkyl group, a methoxy group or an ethoxy group; an aromatic monocarboxylic acid having two or more benzene rings such as a biphenylcarboxylic acid, a naphthalenecarboxylic acid or a tetrahydronaphthalenecarboxylic acid; or These derivatives are particularly preferably benzoic acid. The carboxylic acid used in the polyol ester may be one type of -24 to 201239420 or a mixture of two or more. The OH group in the polyol may be a fully esterified person. , A part of the polyol ester is not particularly limited, and is preferably 300 to 1 500, more preferably 3 to 50 to 750. The glycolate plasticizer is not particularly limited, and an alkane is preferably used. The alkyl hydroxyacetate dicarboxylate. The alkyl hydroxyacetate alkyl phthalate may, for example, be methyl hydroxyacetate, ethyl hydroxyethyl phthalate or hydroxy propyl phthalate. Propyl acetate, butyl butyl hydroxyacetate, octyl octyl phthalate, ethyl hydroxyethyl dicarboxylate, methyl hydroxyacetate, hydroxyacetic acid Propyl ester, butyl hydroxyacetate, butyl phthalate, butyl phthalate, methyl hydroxyacetate, hydroxyethyl phthalate, hydroxy hydroxy phthalate Butyl butyl phthalate hydroxyacetate, methyl phthalic acid glycolic acid, ethyl phthalate octyl hydroxyacetate, hydroxyethyl octyl phthalate, octyl phthalic acid glycolic acid Ethyl ester and the like. a phthalate-based plasticizer, which may be exemplified by phthalic acid phthalate, dimethoxyethyl phthalate, dimethyl phthalate, dioctyl phthalate, and dibutyl phthalate. Ester, di-2-ethyl phthalate, dioctyl phthalate, dicyclohexyl phthalate, p-benzene dicyclohexyl ester, and the like. Examples of the citrate-based plasticizer include acetaminophen citrate, triethyl citrate, and tributyl citrate. The fatty acid ester-based plasticizer' may, for example, be octadecyl phthalate, methyl decyl phthalate or dibutyl sebacate. Part of the meridian group, xylene di-phenyl phenyl o-ethyl, butyl ester, octyl ester methyl ethyl dimethyl hexyl ester formic acid, linseed oil - 25 - 201239420 phosphate ester plasticizer, can be listed as phosphoric acid Phenyl ester, tricresyl phosphate, toluene diphenyl phosphate, octyl diphenyl phosphate, diphenyl biphenyl phosphate, trioctyl phosphate, tributyl phosphate, and the like. The polycarboxylic acid ester-based plasticizer is composed of an ester of a divalent or higher polycarboxylic acid and an alcohol. Examples of the polyvalent carboxylic acid constituting the polyvalent carboxylate plasticizer include an aliphatic polycarboxylic acid having a valence of 2 to 20, an aromatic polycarboxylic acid having a valence of 20 to 20, and an alicyclic polyvalent carboxylic acid having a valence of 20 to 20 valent. acid. The polycarboxylic acid is represented by the following general formula (b). - (b) R2(COOH)mb(OH)nb R2 is an organic group of (mb + nb ) valence, mb is a positive integer of 2 or more, nb is an integer of 0 or more, a COOH group is a carboxyl group, and an OH group is Alcoholic or phenolic hydroxyl. Examples of preferred polyvalent carboxylic acids include the following, but the present invention is not limited thereto. It is preferred to use a trivalent or higher aromatic polycarboxylic acid such as trimellitic acid, trimellitic acid or pyromic acid. a derivative thereof; succinic acid, adipic acid, azelaic acid, sebacic acid, oxalic acid, fumaric acid, maleic acid, tetrahydrophthalic acid-like aliphatic polycarboxylic acid; tartaric acid, hydroxypropyl Acid, malic acid, citric acid-like oxygen polycarboxylic acid, and the like. Especially in terms of improving the retention, it is preferred to use an oxygen polycarboxylic acid. The alcohol constituting the polyvalent carboxylate plasticizer is not particularly limited, and generally known alcohols and phenols can be used. For example, an aliphatic saturated alcohol or an aliphatic unsaturated alcohol having a linear or side chain having a carbon number of 1 to 32 can be preferably used. More preferably, the carbon number is 1 to 20, and particularly preferably 1 to 10. Preferably, an alicyclic alcohol or a derivative thereof such as cyclopentanol or cyclohexanol; an aromatic alcohol such as benzyl alcohol or cinnamyl alcohol; or a derivative thereof, -26-201239420, or the like can be used. The alcohol to be used in the polycarboxylic acid ester-based plasticizer which can be used in the present invention may be one type or two or more types. The molecular weight of the polycarboxylate-based plasticizer is not particularly limited, and is preferably in the range of 300 to 1,000 in molecular weight, more preferably in the range of 3 to 50. From the standpoint of improving retention, the larger one is better, and the smaller one is better in terms of moisture permeability and compatibility with cellulose ester. Examples of the particularly preferred polycarboxylic acid ester-based plasticizer are as follows, but the present invention is not limited thereto. For example, triethyl citrate, tributyl citrate, acetaminoethyl citrate (AT AC ), butyl tributyl citrate (ATBC), benzhydryl citrate tributyl citrate, citric acid Ethylenetriphenyl ester, tribenzyl citrate, dibutyl tartrate, dibutyl butyl tartrate, tributyl trimellitate, tetrabutyl pyromelliate, and the like. As the polyester-based plasticizer, a polyester-based plasticizer having an aromatic ring or a cycloalkane ring in the molecule can be used. A preferred polyester-based plasticizer, for example, an aromatic terminal ester-based plasticizer represented by the following general formula (c) can be used.

—般式(c) B-(G-A)nc-G-B 式中,B表示芳香族羧酸殘餘基,G表示碳數2~ 12 的烷二醇殘餘基或碳數6〜12的芳二醇殘餘基或碳數4〜12 的氧烷二醇殘餘基,A表示碳數4〜12的烷二羧酸殘餘基 或碳數6〜12的芳二羧酸殘餘基,nc表示1以上的整數。 芳香族末端聚酯系可塑劑,例如在一般式(c)中, 是由以B表示之苯單羧酸殘餘基與以G表示之烷二醇殘餘 基或氧烷二醇殘餘基或芳二醇殘餘基,和以A表示之烷二 羧酸殘餘基或芳二羧酸殘餘基所構成者,可藉由與通常的 -27- 201239420 聚酯系可塑劑同樣之反應而得。 芳香族末端聚酯系可塑劑之苯單羧酸成分,例如有苯 甲酸、對三級丁基苯甲酸、鄰甲基苯甲酸、間甲基苯甲酸 、對甲基苯甲酸、二甲基苯甲酸、乙基苯甲酸、正丙基苯 甲酸、胺基苯甲酸、乙醯氧基苯甲酸等。此等可分別使用 1種或2種以上的混合物。 芳香族末端聚酯系可塑劑之碳數2〜12的烷二醇成分 ,有乙二醇、1,2-丙二醇、1,3·丙二醇、1,2-丁 二醇、1,3-丁 二醇、1,2-丙二醇、2-甲基-1,3-丙二醇、1,4-丁 二醇、 1,5-戊二醇、2,2-二甲基-1,3-丙二醇(新戊二醇)、2,2-二 乙基-1,3-丙二醇(3,3-二羥甲基戊烷)、2-正丁基-2-乙 基-1,3-丙二醇(3,3-二羥甲基丁烷)、3-甲基-1,5-戊二醇 、1,6-己二醇、2,2,4-三甲基-1,3·戊二醇、2-乙基-1,3-己 二醇、2-甲基-1,8-辛二醇、1,9-壬二醇、1,10-癸二醇、 1,12-十八烷二醇等,此等二醇可使用1種或2種以上的混 合物。尤其是碳數2〜12的烷二醇與纖維素酯之相溶性佳 ,故特佳。 芳香族末端聚酯系可塑劑之碳數4~ 12的氧烷二醇成 分,例如有二乙二醇、三乙二醇、四乙二醇 '二丙二醇、 三丙二醇等二醇可使用1種或2種以上的混合物。 芳香族末端聚酯系可塑劑之碳數4〜12的烷二羧酸成 分,例如有琥珀酸、馬來酸、反丁烯二酸、戊二酸、己二 酸、壬二酸、癸二酸、十二烷二羧酸等,此等可分別使用 1種或2種以上的混合物。碳數6~ 12的芳二羧酸成分,有 -28- 201239420 鄰苯二甲酸、對苯二甲酸、間苯二甲酸、1,5萘二羧酸、 1,4萘二羧酸等。 聚酯系可塑劑,其數量平均分子量較佳爲300~1 500, 尤佳爲400〜1 0 00的範圍。此外,該酸値爲0.5mgKOH/g 以下,羥値爲 25mgKOH/g以下,尤佳者,酸値爲 0.3 mgKOH/g以下,經値爲15mgKOH/g以下。 可塑劑的含量,相對於構成光學薄膜之全部成分,較 佳爲3~20質量%。可塑劑可組合2種以上使用,此時,此 等的合計含量位於上述範圍內即可。 紫外線吸收劑,係以吸收400nm以下的紫外線來提升 耐久性者爲目的,尤其是波長37〇nm時的穿透率,較佳爲 10%以下,尤佳爲5%以下,更佳爲2%以下。紫外線吸收 劑並無特別限定,例如可列舉出氧二苯基酮系化合物、苯 並三唑系化合物、柳酸酯系化合物、二苯基酮系化合物、 丙烯酸氰酯系化合物、三嗪系化合物、鎳錯合物系化合物 、無機粉體等。例如有5-氯-2-(3,5-二(二級丁基)-2-羥苯基)-2H-苯並三唑、(2-2 H-苯並三唑-2-基)-6-(直 鏈及側鏈十二基)-4-甲基酚、2-羥基-4-苄基氧二苯基酮 、2,4-苄基氧二苯基酮等,此外,有丁丨111^111〇9、 Tinuvin 171 、 Tinuvin 234 、 Tinuvin 326 、 Tinuvin 327 、- (c) B-(GA)nc-GB wherein B represents an aromatic carboxylic acid residue, G represents an alkanediol residue having 2 to 12 carbon atoms or an aromatic diol residue having a carbon number of 6 to 12 The oxyalkylene glycol residue having a carbon number of 4 to 12, A represents an alkanedicarboxylic acid residue having 4 to 12 carbon atoms or an aromatic dicarboxylic acid residue having 6 to 12 carbon atoms, and nc represents an integer of 1 or more. An aromatic terminal polyester-based plasticizer, for example, in the general formula (c), is a benzene monocarboxylic acid residue represented by B and an alkanediol residue or an oxyalkylene glycol residue or a aryl group represented by G The alcohol residue and the alkanedicarboxylic acid residue or the aromatic dicarboxylic acid residue represented by A can be obtained by the same reaction as the usual -27-201239420 polyester-based plasticizer. A benzene monocarboxylic acid component of an aromatic terminal polyester plasticizer, for example, benzoic acid, p-terphenyl benzoic acid, o-methylbenzoic acid, m-methylbenzoic acid, p-methylbenzoic acid, dimethylbenzene Formic acid, ethyl benzoic acid, n-propyl benzoic acid, aminobenzoic acid, ethoxylated benzoic acid, and the like. These may be used alone or in combination of two or more. Aromatic terminal polyester-based plasticizer having an alkanediol component having 2 to 12 carbon atoms, such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, and 1,3-butylene Glycol, 1,2-propanediol, 2-methyl-1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol ( Neopentyl glycol), 2,2-diethyl-1,3-propanediol (3,3-dihydroxymethylpentane), 2-n-butyl-2-ethyl-1,3-propanediol (3 , 3-dimethylolbutane), 3-methyl-1,5-pentanediol, 1,6-hexanediol, 2,2,4-trimethyl-1,3·pentanediol, 2-ethyl-1,3-hexanediol, 2-methyl-1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-octadecane As the alcohol or the like, one type or a mixture of two or more types may be used. In particular, an alkanediol having a carbon number of 2 to 12 is particularly excellent in compatibility with a cellulose ester. The aryl diol component having 4 to 12 carbon atoms of the aromatic terminal polyester-based plasticizer may be, for example, a diol such as diethylene glycol, triethylene glycol, tetraethylene glycol 'dipropylene glycol or tripropylene glycol. Or a mixture of two or more. The alkanedicarboxylic acid component having 4 to 12 carbon atoms of the aromatic terminal polyester-based plasticizer, for example, succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, sebacic acid, and bismuth An acid, a dodecanedicarboxylic acid, etc. may be used, and one type or a mixture of two or more types may be used. The aromatic dicarboxylic acid component having 6 to 12 carbon atoms is -28-201239420 phthalic acid, terephthalic acid, isophthalic acid, 1,5 naphthalene dicarboxylic acid, 1,4 naphthalene dicarboxylic acid, and the like. The polyester-based plasticizer preferably has a number average molecular weight of from 300 to 1,500, particularly preferably from 400 to 1,000. Further, the acid strontium is 0.5 mgKOH/g or less, and the oxindole is 25 mgKOH/g or less. More preferably, the acid strontium is 0.3 mgKOH/g or less, and the cerium is 15 mgKOH/g or less. The content of the plasticizer is preferably from 3 to 20% by mass based on the total of the components constituting the optical film. The plasticizer may be used in combination of two or more kinds. In this case, the total content of these may be within the above range. The ultraviolet absorber is intended to absorb the ultraviolet rays of 400 nm or less to improve the durability, and particularly the transmittance at a wavelength of 37 〇 nm, preferably 10% or less, particularly preferably 5% or less, more preferably 2%. the following. The ultraviolet absorber is not particularly limited, and examples thereof include an oxydiphenyl ketone compound, a benzotriazole compound, a salicylate compound, a diphenyl ketone compound, a cyanoacrylate compound, and a triazine compound. , a nickel complex compound, an inorganic powder, and the like. For example, 5-chloro-2-(3,5-di(secondary butyl)-2-hydroxyphenyl)-2H-benzotriazole, (2-2 H-benzotriazol-2-yl) -6-(linear and side chain dodecyl)-4-methylphenol, 2-hydroxy-4-benzyloxydiphenyl ketone, 2,4-benzyloxydiphenyl ketone, etc. Ding Wei 111^111〇9, Tinuvin 171, Tinuvin 234, Tinuvin 326, Tinuvin 327,

Tinuvin 328 等之 Tinuvin 類,此等均爲 Ciba Specialty Chemicals公司製的市售品,可較佳地使用。 可較佳地使用之紫外線吸收劑,爲苯並三唑系紫外線 吸收劑、二苯基酮系紫外線吸收劑 '三嗪系紫外線吸收劑 -29- 201239420 ’特佳爲苯並三唑系紫外線吸收劑、二苯基酮系紫外線吸 收劑。此外’亦可較佳地使用具有1,3,5-三嗪環之化合物 等的圓盤狀化合物作爲紫外線吸收劑。 紫外線吸收劑,亦可較佳地使用高分子紫外線吸收劑 ’特佳可使用日本特開平6- 1 4843 0號公報所記載之聚合 物型式的紫外線吸收劑。 紫外線吸收劑的含量,相對於構成光學薄膜之樹脂成 分爲0.5〜10重量%,特佳爲〇.6~4重量%。紫外線吸收劑 可組合2種以上使用,此時,只要使此等的合計含量位於 上述範圍內即可。 抗氧化劑亦稱爲抗劣化劑。抗氧化劑,尤其在使用纖 維素樹脂作爲樹脂成分時,可較佳地使用。 抗氧化劑,較佳係使用受阻酚系化合物,例如可列舉 出2,6-二(三級丁基)-對甲酚、新戊四醇-四[3-(3,5_二 (三級丁基)-4-羥苯基)丙酸酯]、三乙二醇-雙[3-(3_三 級丁基-5-甲基-4-羥苯基)丙酸酯]、1,6·己二醇·雙[3-( 3,5-二(三級丁基)-4-羥苯基)丙酸酯]、2,4·雙·(正辛 基硫)-6- ( 4-羥基-3,5-二(三級丁基)苯胺基)-13,5-三 嗪' 2,2-硫-二乙烯雙[3-(3,5-二(三級丁基)-4-羥苯基 )丙酸酯]、十八基-3- ( 3,5-二(三級丁基)-4_羥苯基) 丙酸酯、Ν,Ν·-六亞甲雙(3,5-二(三級丁基)·4·經基-羥 基桂皮醯胺)、1,3,5-三甲基-2,4,6·三(3,5-二(三級丁基 )-4·羥苄基)-苯、三-(3,5-二(三級丁基)-4·羥苯基)·異 氛酸醋等。特佳爲2,6-二(三級丁基)-對甲酣、新戊四 -30- 201239420 醇-四[3- (3,5-二(三級丁基)-4-羥苯基)丙酸酯]、三乙 二醇-雙[3- (3-三級丁基-5-甲基-4-羥苯基)丙酸酯]。此 外’亦可倂用例如Ν,Ν1-雙[3- ( 3,5-二(三級丁基)-4-羥 苯基)丙醯]肼等之肼系的金屬非活性劑或是三(2,4-二( 三級丁基)苯基)亞膦酸酯等之磷系加工穩定劑。 抗氧化劑的含量,相對於構成光學薄膜之樹脂成分爲 lppm~l.〇重量%,特佳爲10〜l〇〇〇ppm。抗氧化劑可組合2 種以上使用,此時,只要使此等的合計含量位於上述範圍 內即可。 本發明之光學薄膜可具有單層構造,或是具有在基材 層上具有表面層而成之多層構造。當本發明之光學薄膜具 有多層構造時,構成表面層之樹脂及構成基材層之樹脂, 可由同一樹脂所構成,或是分別獨立地從例示作爲薄膜構 成樹脂之樹脂中選擇。 (光學薄膜的製造方法) 本發明之光學薄膜的製造方法,在所謂溶液鑄膜法或 熔融鑄膜法等之以往爲人所知的光學薄膜製造方法中,具 有將凹凸形成於聚合物薄膜表面之凹凸形成步驟,以使光 學薄膜之一方的面之表面的中心線平均粗糙度Ra滿足前 述式。較佳是以使光學薄膜之另一方的面呈平滑之方式來 進行凹凸形成步驟。以下係使用第3圖、第4圖來說明本 發明之光學薄膜的製造方法,但並不限定於此等實施形態 ,第3圖係用以說明藉由溶液鑄膜法來製造本發明之光學 -31 - 201239420 薄膜之方法的一例之製造裝置的槪略構成圖。第4圖係用 以說明藉由熔融鑄膜法來製造本發明之光學薄膜之方法的 一例之製造裝置的槪略構成圖。 例如在第3圖所示之溶液鑄膜法中,係依序進行:將 使前述薄膜原料溶解或分散於溶劑之摻雜物,從鑄膜模具 101鑄膜於支撐體100上之鑄膜步驟;從鑄膜後的摻雜物 中’在支撐體100上使溶劑蒸發之溶劑蒸發步驟;藉由剝 離輥1 02,從支撐體1 〇〇中將使溶劑蒸發所得之聚合物薄 膜剝離之剝離步驟;藉由鑄模輥104在聚合物薄膜的表面 上形成凹凸之凹凸形成步驟;在拉幅機106內將聚合物薄 膜1〇5在寬度方向或運送方向之至少一方的方向上進行拉 伸之拉伸步驟;在乾燥裝置107內使聚合物薄膜乾燥而得 光學薄膜之乾燥步驟;以及藉由捲取機108,在捲芯的周 圍將光學薄膜捲取爲多層狀之捲取步驟。第3圖中,凹凸 形成步驟是在剝離步驟與拉伸步驟之間實施,但只要可形 成既定凹凸者即可,並無特別限制,亦可在拉伸步驟與乾 燥步驟之間或是乾燥步驟與捲取步驟之間實施。 摻雜物中之樹脂成分的濃度,較佳爲1 0〜3 5質量%, 更佳爲1 5〜25質量%。摻雜物中所使用之溶劑,係使用至 少可溶解樹脂成分者,較佳係使用可同時溶解樹脂成分及 添加劑者。溶劑可單獨使用或倂用2種以上,就生產效率 之方面來看,較佳係混合樹脂的良溶劑與不良溶劑來使用 ,尤其就樹脂溶解性來看,特佳爲良溶劑較多者。良溶劑 與不良溶劑之混合比率的較佳範圍,良溶劑爲7 0〜9 8質量 -32- 201239420 %,不良溶劑爲2〜3 0質量%。所謂良溶劑、不良溶劑,係 將可單獨溶解所使用的樹脂者定義爲良溶劑,將單獨使用 時產生膨潤或無法溶解者定義爲不良溶劑。良溶劑並無特 別限定,可列舉出二氯甲烷等之有機鹵化物、二氧戊環類 、丙酮、乙酸甲酯、乙醯乙酸甲酯等。當使用纖維素樹脂 或(甲基)丙烯酸樹脂作爲樹脂成分時,特佳的良溶劑可 列舉出二氯甲烷或乙酸甲酯。不良溶劑並無特別限定,較 佳例如可使用甲醇、乙醇、正丁醇、環己烷、環己酮等。 此外,例如在第4圖所示之熔融鑄膜法中,係依序進 行:將前述薄膜原料的熔融物,從鑄膜模具301在第1冷 卻輥3 02上鑄膜,並以接觸輥3 0 3進行按壓之鑄膜步驟; 將鑄膜後的熔融物捲繞至第2冷卻輥及第3冷卻輥並進行 冷卻之冷卻步驟;藉由剝離輥3 06,從輥中將冷卻所得之 聚合物薄膜剝離之剝離步驟;藉由鑄模輥307,在聚合物 薄膜的表面上形成凹凸之凹凸形成步驟;在拉幅機309內 將聚合物薄膜在寬度方向或運送方向之至少一方的方向上 進行拉伸之拉伸步驟;藉由捲取機310,在捲芯的周圍將 聚合物薄膜(光學薄膜)捲取爲多層狀之捲取步驟。第4 圖中,凹凸形成步驟是在剝離步驟與拉伸步驟之間實施’ 但只要可形成既定凹凸者即可,並無特別限制,亦可在拉 伸步驟與捲取步驟之間實施。 以下詳細說明凹凸形成步驟。凹凸形成步驟的說明’ 在無特別說明下,在溶液鑄膜法或熔融鑄膜法中均爲共通 -33- 201239420 凹凸形成步驟中所採用之凹凸形成方法,只要是可將 期望的凹凸形成於薄膜者即可,並無特別限制,例如可使 用以鑄模將薄膜予以模壓而將鑄模所具有的凹凸形狀轉印 至薄膜之方法。第3圖、第4圖中,係顯示出使用鑄模輥 104、307將凹凸轉印至聚合物薄膜的表面之輥版模壓方式 ’但不限定於此,例如可使用平板版模壓方式、連續輸送 帶版模壓方式。較佳爲輥版模壓方式。 採用輥版模壓方式時,如第3圖所示,可將聚合物薄 膜交互地捲繞於運送輥1 0 3與鑄模輥1 0 4,以將鑄模輥的 表面形狀轉印至聚合物薄膜,或是如第4圖所示,使聚合 物薄膜通過背輥3 08與鑄模輥3 07之間,以將鑄模輥的表 面形狀轉印至聚合物薄膜。前者時,可藉由薄膜的運送張 力、捲繞薄膜之鑄模輥的數目、薄膜相對於鑄模輥所呈之 角度來控制轉印率。運送張力愈大,或鑄模輥的數目愈多 ,轉印率增大。薄膜的運送張力,較佳例如爲每1 000mm 寬度爲60〜300N。後者時,可藉由鑄模輥相對於背輥之按 壓力來控制轉印率。此般按壓力較佳爲150〜2 5 0kg/cm。 以溶液鑄膜法來製造薄膜時,提供至凹凸形成步驟之 聚合物薄膜的殘留溶劑量,較佳爲20〜100%。該聚合物薄 膜的殘留溶劑量,可藉由改變鑄模輥的設置場所、薄膜的 溶劑蒸發步驟中之乾燥條件或摻雜物的固體成分濃度、調 整薄膜的運送速度等、將溶劑浸泡、塗佈或將溶劑噴霧至 薄膜來控制。亦可藉由調整殘留溶劑量來控制轉印率。 本說明書中,殘留溶劑量可由下列式表示。Tinuvin, such as Tinuvin 328, which is commercially available from Ciba Specialty Chemicals, is preferably used. A UV absorber which can be preferably used is a benzotriazole-based ultraviolet absorber, a diphenylketone-based ultraviolet absorber, a triazine-based ultraviolet absorber -29-201239420 'Specially a benzotriazole-based ultraviolet absorber Agent, diphenyl ketone UV absorber. Further, a discotic compound having a compound having a 1,3,5-triazine ring or the like can be preferably used as the ultraviolet absorber. As the ultraviolet absorber, a polymer ultraviolet absorber can be preferably used. The polymer type ultraviolet absorber described in JP-A-6-140438 can be used. The content of the ultraviolet absorber is 0.5 to 10% by weight, particularly preferably 6% to 4% by weight, based on the resin constituting the optical film. The ultraviolet absorber may be used in combination of two or more kinds. In this case, the total content of these may be within the above range. Antioxidants are also known as anti-deterioration agents. The antioxidant can be preferably used especially when a cellulose resin is used as the resin component. The antioxidant is preferably a hindered phenol-based compound, and examples thereof include 2,6-di(tri-butyl)-p-cresol, pentaerythritol-tetra[3-(3,5-di (three-stage) Butyl)-4-hydroxyphenyl)propionate], triethylene glycol-bis[3-(3-tris-butyl-5-methyl-4-hydroxyphenyl)propionate], 1, 6.·hexanediol·bis[3-(3,5-di(tributyl)-4-hydroxyphenyl)propionate], 2,4·bis(n-octylsulfanyl)-6- ( 4-hydroxy-3,5-di(tri-butyl)anilino)-13,5-triazine' 2,2-sulfan-divinyl bis[3-(3,5-di(tri-butyl) 4-hydroxyphenyl)propionate], octadecyl-3-(3,5-di(tributyl)-4-hydroxyphenyl)propionate, hydrazine, hydrazine--hexamethylene double (3,5-di(tri-butyl)·4·trans-hydroxycincoinamide), 1,3,5-trimethyl-2,4,6·tris (3,5-di (three-stage) Butyl)-4.hydroxybenzyl)-benzene, tris-(3,5-di(tributyl)-4.hydroxyphenyl)-isophthalic acid vinegar, and the like. Particularly preferred is 2,6-di(tributyl)-p-methylhydrazine, neopentatetra-30-201239420 alcohol-tetrakis[3-(3,5-di(tri-butyl)-4-hydroxyphenyl) Propionate], triethylene glycol-bis[3-(3-tri-butyl-5-methyl-4-hydroxyphenyl)propionate]. In addition, it is also possible to use a metal inactive agent such as lanthanum, lanthanum 1-bis[3-(3,5-di(tri-butyl)-4-hydroxyphenyl)propene] oxime or the like. A phosphorus-based processing stabilizer such as (2,4-di(tri-butyl)phenyl)phosphinate. The content of the antioxidant is from 1 ppm to 1.0% by weight, particularly preferably from 10 to 1 ppm, based on the resin component constituting the optical film. The antioxidant may be used in combination of two or more kinds. In this case, the total content of these may be within the above range. The optical film of the present invention may have a single layer structure or a multilayer structure having a surface layer on the substrate layer. When the optical film of the present invention has a multilayer structure, the resin constituting the surface layer and the resin constituting the substrate layer may be composed of the same resin or independently selected from the resins exemplified as the film-forming resin. (Manufacturing Method of Optical Film) The method for producing an optical film of the present invention has a conventional method for producing an optical film, such as a solution casting method or a melt casting film method, in which a concave-convex surface is formed on a surface of a polymer film. The unevenness forming step is such that the center line average roughness Ra of the surface of one of the surfaces of the optical film satisfies the above formula. Preferably, the unevenness forming step is performed such that the other surface of the optical film is smooth. Hereinafter, the method for producing an optical film of the present invention will be described with reference to FIGS. 3 and 4, but the present invention is not limited to the embodiments. FIG. 3 is a view for explaining the production of the optical body of the present invention by a solution casting method. -31 - 201239420 A schematic diagram of a manufacturing apparatus of an example of a method of a film. Fig. 4 is a schematic view showing the configuration of a manufacturing apparatus which is an example of a method for producing an optical film of the present invention by a melt casting method. For example, in the solution casting method shown in Fig. 3, the step of casting a film from the casting mold 101 onto the support 100 is carried out in sequence: a dopant which dissolves or disperses the film raw material in a solvent. a solvent evaporation step of evaporating the solvent on the support 100 from the dopant after casting; peeling off the polymer film obtained by evaporating the solvent from the support 1 by the peeling roller 102 a step of forming a concavity and convexity on the surface of the polymer film by the molding roll 104; and stretching the polymer film 1〇5 in the direction of at least one of the width direction and the conveying direction in the tenter 106 a stretching step; a drying step of drying the polymer film in the drying device 107 to obtain an optical film; and a winding step of winding the optical film into a plurality of layers around the core by the winder 108. In Fig. 3, the unevenness forming step is carried out between the peeling step and the stretching step, but it is not particularly limited as long as it can form a predetermined unevenness, and may be between the stretching step and the drying step or the drying step. Implemented with the take-up step. The concentration of the resin component in the dopant is preferably from 10 to 35 mass%, more preferably from 15 to 25 mass%. The solvent used in the dopant is preferably one which dissolves the resin component, and is preferably one which dissolves the resin component and the additive at the same time. The solvent may be used singly or in combination of two or more kinds. In terms of production efficiency, it is preferred to use a good solvent for the mixed resin and a poor solvent, and in particular, in view of solubility of the resin, it is particularly preferred as a good solvent. A preferred range of the mixing ratio of the good solvent to the poor solvent is 70 to 98 mass -32 to 201239420%, and the poor solvent is 2 to 30% by mass. The good solvent and the poor solvent are defined as those which are used for dissolving the resin alone, and those which are swollen or insoluble when used alone are defined as poor solvents. The good solvent is not particularly limited, and examples thereof include an organic halide such as dichloromethane, dioxolane, acetone, methyl acetate, and ethyl acetacetate. When a cellulose resin or a (meth)acrylic resin is used as the resin component, a particularly preferred good solvent is methylene chloride or methyl acetate. The poor solvent is not particularly limited, and for example, methanol, ethanol, n-butanol, cyclohexane, cyclohexanone or the like can be preferably used. Further, for example, in the molten cast film method shown in Fig. 4, the melt of the film raw material is sequentially cast from the casting die 301 on the first cooling roll 302, and the contact roll 3 is used. 0: a casting step of pressing the film; a cooling step of winding the melted material after the casting film to the second cooling roll and the third cooling roll, and cooling; and cooling by a peeling roll 306 from the roll a peeling step of peeling off the film; forming a concavity and convexity forming step on the surface of the polymer film by the casting roll 307; and performing the polymer film in the tenter 309 in the direction of at least one of the width direction and the conveying direction Stretching step of stretching; by the winder 310, the polymer film (optical film) is wound into a multi-layer winding step around the core. In Fig. 4, the unevenness forming step is carried out between the peeling step and the stretching step. However, it is not particularly limited as long as a predetermined unevenness can be formed, and it can also be carried out between the stretching step and the winding step. The unevenness forming step will be described in detail below. The description of the unevenness forming step is a common method for forming the unevenness in the solution forming method in the solution casting method or the molten cast film method, unless otherwise specified, as long as the desired unevenness can be formed in the concave and convex forming step. The film is not particularly limited, and for example, a method in which a film is molded by a mold to transfer the uneven shape of the mold to the film can be used. In the third and fourth figures, the roll plate molding method for transferring the unevenness to the surface of the polymer film by the mold rolls 104 and 307 is shown, but is not limited thereto, and for example, a flat plate molding method or a continuous conveyance can be used. With version molding. It is preferably a roll plate molding method. When the roll plate molding method is employed, as shown in Fig. 3, the polymer film can be alternately wound around the conveying roller 103 and the casting roll 104 to transfer the surface shape of the casting roll to the polymer film. Alternatively, as shown in Fig. 4, the polymer film is passed between the back roll 308 and the mold roll 307 to transfer the surface shape of the mold roll to the polymer film. In the former case, the transfer rate can be controlled by the transport tension of the film, the number of mold rolls for winding the film, and the angle of the film with respect to the mold roll. The greater the transport tension, or the greater the number of mold rolls, the greater the transfer rate. The conveying tension of the film is preferably, for example, 60 to 300 N per 1 000 mm width. In the latter case, the transfer rate can be controlled by the pressing force of the casting roll relative to the back roll. The pressing force is preferably 150 to 250 kg/cm. When the film is produced by the solution casting method, the amount of residual solvent supplied to the polymer film in the uneven forming step is preferably from 20 to 100%. The residual solvent amount of the polymer film can be soaked and coated by changing the installation place of the mold roll, the drying condition in the solvent evaporation step of the film, the solid content concentration of the dopant, adjusting the transport speed of the film, and the like. Or spray the solvent to the film to control. The transfer rate can also be controlled by adjusting the amount of residual solvent. In the present specification, the amount of residual solvent can be expressed by the following formula.

-34- 201239420 殘留溶劑量(質量%) = {(Μ-Ν)/Ν} χ 100-34- 201239420 Amount of residual solvent (% by mass) = {(Μ-Ν)/Ν} χ 100

式中,Μ爲薄膜在既定時點時的質量,N爲在110 °C 下使Μ乾燥3小時後的質量。尤其在算出提供至凹凸形成 步驟之聚合物薄膜的殘留溶劑量時之Μ,爲進行凹凸形成 步驟不久前之網模的質量。 以熔融鑄膜法來製造薄膜時,提供至凹凸形成步驟之 聚合物薄膜的溫度,當將薄膜的玻璃轉移溫度設爲Tg( °C )時,較佳爲Tg~Tg + 80°C。此時,較佳亦將鑄模輥的 表面溫度設定在使薄膜溫度位於上述範圍內。藉由調整聚 合物薄膜及鑄模輥的溫度來控制轉印率。 鑄模輥104、3 07,係在外周表面具有對應於薄膜表面 所應具有的既定凹凸之凹凸。尤其在製造出一方的面滿足 前述式的同時,Ra具有在寬度方向上從中央部朝兩端部 減少或增加之梯度之光學薄膜捲時,係使用表面具有對應 於此般凹凸(尤其是Ra )之凹凸之鑄模輥。鑄模輥的表 面凹凸,可藉由噴砂法、微噴法、化學蝕刻法、磨砂加工 來形成,更可藉由手工加工來形成。 轉印率通常爲1〜50%。欲實現超過50%之轉印率時, 薄膜的殘留溶劑量過高,無法使薄膜充分地從鑄模輥剝離 ,或是薄膜的運送張力過大,而在運送中斷裂’故不佳。 本說明書中,轉印率係設爲轉印加工後所得之光學薄 膜的Ra相對於鑄模輥表面的Ra之比率。轉印加工可在進 行拉伸前實施,或在拉伸後實施轉印加工’在此所謂轉印 率,當在轉印加工後進行拉伸時,並不包含拉伸所形成之 产, •3 -35- 201239420 凹凸的衰減》 背輥3 08通常使用鏡面加工輥。背輥的表面粗糙度 Ra較佳爲10nm以下,尤佳爲5nm以下》 本發明之光學薄膜的製造方法中,在捲取步驟前,可 實施滾紋步驟而在薄膜的寬度方向兩端部上形成滾紋部。 滾紋步驟,爲在薄膜寬度方向上,於薄膜的兩側緣部 設置滾紋部之步驟。所謂滾紋部,爲從未加工區域以既定 高度突出之凸部,藉由形成該滾紋部,可進一步有效地防 止結塊。滾紋部的形成面可爲與鑄模輥接觸之面,或是與 該面爲相反側之面,或是此等的雙面。 滾紋部的高度,係設定在薄膜膜厚T之0.05〜3倍的 範圍,寬度(寬度方向上的長度)設定在薄膜寬度L之 0.005〜0.02倍的範圍。例如在薄膜膜厚40μιη,薄膜寬度 1 000mm時,滾紋部的高度設定在2〜12μηι,寬度設定在 5〜2 0mm »滾紋部,通常在涵蓋運送方向全長上連續地形 成。 滾紋步驟通常藉由壓花加工裝置來達成》 在滾紋步驟與捲取步驟間,可實施薄膜的除電步驟》 (用途) 本發明之光學薄膜,特別適合使用作爲例如偏光板用 保護薄膜、視角擴大薄膜、相位差薄膜等。 當將本發明之光學薄膜用作爲偏光板用保護薄膜時, 偏光板可藉由一般方法來製作。較佳係將黏著層貼設置在 -36- 201239420 本發明之光學薄膜的裏面側,並貼合於浸漬在碘溶液中進 行拉伸而製作出之偏光元件的至少一方的面。另一方的面 ,可使用本發明之光學薄膜或其他偏光板用保護薄膜。例 如,較佳可使用市售的纖維素酯薄膜(例如 Konica Minolta TAC KC8UX、KC4UX、KC5UX、KC8UY、KC4UY 、KC12UR、KC8UCR-3、K C 8 U C R - 4、K C 8 U C R - 5、K C 8 U E 、KC4UE、KC4FR-3、KC4FR-4、KC4HR-1、KC8UY-HA、 KC8UX-RHA,以上爲Konica Minolta Opto股份有限公司 製)等。偏光板的主要構成要素之偏光元件,爲僅讓一定 方向之偏波面的光通過之元件,目前所知的代表性偏光膜 ,爲聚乙烯醇系偏光薄膜,此係有將碘染色於聚乙烯醇系 薄膜者以及將雙色性染料染色於聚乙烯醇系薄膜者。偏光 元件’可採用使聚乙烯醇水溶液成膜並將其進行單軸拉伸 並染色,或是在染色後進行單軸拉伸,較佳是以碘化合物 進行耐久性處理者。 藉由將貼合有本發明之光學薄膜之偏光板組裝於液晶 顯示裝置,可製作出各種觀看性佳之液晶顯示裝置。尤其 較佳可使用在大型的液晶顯示裝置或是電子看板等之室外 用途的液晶顯示裝置。本發明之偏光板,係夾介前述黏著 層等而貼合於液晶單元。 本發明之偏光板’較佳可使用在反射型、穿透型、半 穿透型LCD或TN型、STN型、0CB型、HAN型、VA型 (PVA型、MVA型)、IPS型(包含FFS方式等)等之各 種驅動方式的LCD。尤其畫面爲30吋型以上,特別是在 -37- 201239420 30吋型~5 4吋型的大畫面顯示裝置中,畫面周邊部亦無泛 白等,該效果可維持長期間。 此外,色彩不均、閃爍或起伏不均較少,長時間觀賞 下,眼睛亦不會疲勞。 〔實施例〕 [實驗例1] <實施例1 A > (摻雜物的調製) 以下列比率來調配各種成分,以進行摻雜物的調製。 纖維素乙酸丙酸酯(CAP) 100重量份 (乙醯基取代度 1.9、丙醯基取代度0.8、Mn = 70000 、Mw = 220000、Mw/Mn = 3.14) 多元醇酯可塑劑(苯甲酸三羥甲基丙烷酯)5重量份 芳香族末端聚酯可塑劑(安息酸三羥甲基丙烷酯) 1 5重量份 二氯甲院 430重量份 乙醇 40重量份 將上述材料依序投入於密閉容器中,將容器內的溫度 從20°C升溫至80°C後,將溫度保持在80°C下攪拌3小時 ,使纖維素乙酸丙酸酯完全溶解。然後停止攪拌,將液溫 降低至43 °C。使用濾紙(安積濾紙股份有限公司製,安積 濾紙No. 2 44 )將該摻雜物過濾而得摻雜物。 -38- 201239420 (光學薄膜的製造) 在凹凸形成步驟中,將鑄模輥104的數目增加爲5根 ,將運送輥103的數目增加爲6根,並將薄膜交互地捲繞 於運送輥與鑄模輥,除此之外,其他藉由與第3圖所示之 裝置同樣的裝置來製造出光學薄膜捲。 從模具101中,將前述摻雜物在經鏡面處理的不鏽鋼 製支撐體輸送帶100上進行鑄膜》摻雜物溫度爲35 °C,支 撐體溫度爲25 °C。以44 °C的乾燥風對支撐體上的摻雜物 膜進行乾燥後,乾燥至摻雜物膜的殘留溶劑量成爲1 〇〇重 量%,並藉由剝離輥102,以剝離張力162N/m從支撐體中 將網膜剝離。在使剝離後之薄膜的殘留溶劑量成爲80重 量%下,使鑄模輥1 04接觸於網膜表面以轉印凹凸形狀。 凹凸形成步驟中,詳細而言,運送張力爲180N。以90度 來包覆之方式,捲繞聚合物薄膜。所有的鑄模輥,其Ra 在軸方向上具有大致呈均一的凹凸(Ra及Sm),爲具備 有具有第1表所示之Ra及Sm之凹凸。轉印凹凸形狀後 的薄膜,係使用拉幅機106,一邊以夾箝握持薄膜兩端一 邊往薄膜的寬度方向拉伸3 0%而製作出聚合物薄膜。此時 拉伸溫度爲140°C。所製作之薄膜,在乾燥裝置107內以 120°C的乾燥風進行乾燥。膜厚爲40μπι。將所得之薄膜裁 切爲寬度1 980mm後,於兩端施以寬度10mm、高度5μιη 的滾紋加工,以初期張力爲3 00Ν、錐部爲100%、角落部 爲30%之條件下,將5000m捲取至外徑15cm的捲芯(芯 )。與鑄模輥之非接觸面,爲鑄膜步驟中之與支撐體之非 -39- 201239420 接觸面,係假定稱爲A面。與鑄模輥之接觸面,爲鑄膜步 驟中之與支撐體之接觸面,係假定稱爲B面。 <實施例IB、1D〜9D/比較例1A〜3A、1B〜3B、1 D > 在摻雜物調製步驟中改變樹脂、將CAP與丙烯酸樹 脂的混合比率以重量比計設爲50 : 5 0 ;於摻雜物中更含有 既定量的既定無機微粒;藉由調整輥轉印位置來將轉印凹 凸形狀時之薄膜的殘留溶劑量控制爲第1表所示之値;以 及在凹凸形成步驟中使用第1表所示之鑄模輥;並且將此 等的輥數設定爲達成第1表所示之轉印率之根數,除此之 外,其他藉由與實施例1A相同之方法,製得光學薄膜捲 。所有的鑄模輥,在寬度方向上具有大致呈均一的凹凸形 狀(Ra 及 Sm )。 丙烯酸樹脂係使用Dianal BR85 (Mitsubishi Rayon股 份有限公司製)Mw280000者。 「IPA-ST」,係使用二氧化矽微粒分散物(平均粒徑 10nm ;有機二氧化矽溶膠 IPA-ST,日產化學工業公司製 )° 「Aerosil 200V」,係使用經下列方法處理者。以轉 數 500rpm 將 Aerosil 200V (— 次粒徑:12nm,NipponIn the formula, Μ is the mass of the film at the timed point, and N is the mass after drying the mash at 110 ° C for 3 hours. In particular, when the amount of residual solvent supplied to the polymer film of the unevenness forming step is calculated, it is the mass of the net mold not long before the uneven forming step. When the film is produced by the melt casting method, the temperature of the polymer film to be formed in the uneven portion forming step is preferably Tg to Tg + 80 °C when the glass transition temperature of the film is Tg (°C). At this time, it is preferred to set the surface temperature of the casting rolls so that the film temperature is within the above range. The transfer rate is controlled by adjusting the temperature of the polymer film and the mold roll. The casting rolls 104, 307 have irregularities on the outer peripheral surface corresponding to predetermined irregularities which the film surface should have. In particular, when the surface of the optical film which satisfies the above formula is satisfied, and Ra has a gradient which decreases or increases from the central portion toward both end portions in the width direction, the surface to be used has a corresponding unevenness (especially Ra). ) The concave and convex mold roll. The surface unevenness of the mold roll can be formed by sandblasting, micro-spraying, chemical etching, or sanding, and can be formed by hand processing. The transfer rate is usually from 1 to 50%. In order to achieve a transfer rate of more than 50%, the residual solvent amount of the film is too high, and the film cannot be sufficiently peeled off from the mold roll, or the film transport tension is excessively large, and breakage during transportation is not preferable. In the present specification, the transfer rate is a ratio of Ra of the optical film obtained after the transfer processing to Ra of the surface of the mold roll. The transfer processing can be carried out before the stretching, or after the stretching, the transfer rate is referred to herein, and when the stretching is performed after the transfer processing, the production by stretching is not included. 3 -35- 201239420 Attenuation of Concavities and Concavities Back Roller 3 08 usually uses a mirror-finishing roller. The surface roughness Ra of the back roll is preferably 10 nm or less, and more preferably 5 nm or less. In the method for producing an optical film of the present invention, the embossing step may be performed on both end portions in the width direction of the film before the winding step. A knurling portion is formed. The embossing step is a step of providing a knurled portion on both side edges of the film in the film width direction. The knurled portion is a convex portion that protrudes from the unprocessed region at a predetermined height, and by forming the knurled portion, it is possible to further effectively prevent agglomeration. The forming surface of the knurling portion may be a surface in contact with the casting roll, or a surface opposite to the surface, or both sides. The height of the knurled portion is set in the range of 0.05 to 3 times the film thickness T of the film, and the width (length in the width direction) is set in the range of 0.005 to 0.02 times the film width L. For example, when the film thickness is 40 μm and the film width is 1 000 mm, the height of the knurled portion is set to 2 to 12 μm, and the width is set to 5 to 20 mm. The embossed portion is usually continuously formed over the entire length of the conveying direction. The embossing step is usually achieved by an embossing device. The film can be subjected to a static elimination step between the embossing step and the winding step. (Application) The optical film of the present invention is particularly suitable for use as, for example, a protective film for a polarizing plate, The viewing angle is expanded by a film, a retardation film, or the like. When the optical film of the present invention is used as a protective film for a polarizing plate, the polarizing plate can be produced by a general method. Preferably, the adhesive layer is attached to the back side of the optical film of the present invention at -36 to 201239420, and bonded to at least one surface of a polarizing element which is formed by stretching in an iodine solution and stretched. On the other side, the optical film of the present invention or other protective film for a polarizing plate can be used. For example, a commercially available cellulose ester film (for example, Konica Minolta TAC KC8UX, KC4UX, KC5UX, KC8UY, KC4UY, KC12UR, KC8UCR-3, KC 8 UCR - 4, KC 8 UCR - 5, KC 8 UE, KC4UE, KC4FR-3, KC4FR-4, KC4HR-1, KC8UY-HA, KC8UX-RHA, the above is manufactured by Konica Minolta Opto Co., Ltd.) and the like. A polarizing element which is a main component of a polarizing plate is an element which allows only light of a polarizing surface in a certain direction to pass therethrough. A representative polarizing film which is known in the art is a polyvinyl alcohol-based polarizing film, which is obtained by dyeing iodine to polyethylene. Those who have an alcohol film and those who dye a dichroic dye to a polyvinyl alcohol film. The polarizing element ' can be formed by forming a film of a polyvinyl alcohol aqueous solution and subjecting it to uniaxial stretching and dyeing, or uniaxially stretching after dyeing, preferably by iodine compound. By assembling a polarizing plate to which the optical film of the present invention is bonded to a liquid crystal display device, various liquid crystal display devices having excellent visibility can be produced. In particular, a liquid crystal display device for outdoor use such as a large liquid crystal display device or an electronic signboard can be preferably used. The polarizing plate of the present invention is bonded to the liquid crystal cell by interposing the above-mentioned adhesive layer or the like. The polarizing plate of the present invention is preferably used in a reflective, transmissive, semi-transmissive LCD or TN type, STN type, 0CB type, HAN type, VA type (PVA type, MVA type), IPS type (including LCDs of various driving methods such as FFS method and the like. In particular, in the large-screen display device of the -37-201239420 30吋--5 4吋 type, the screen is not whitened, and the effect can be maintained for a long period of time. In addition, the color is uneven, flickering or uneven, and the eyes will not be fatigued after a long time of viewing. [Examples] [Experimental Example 1] <Example 1 A > (Modulation of dopant) Various components were formulated at the following ratios to prepare a dopant. Cellulose Acetate Propionate (CAP) 100 parts by weight (acetamyl substitution degree 1.9, propyl ketone substitution degree 0.8, Mn = 70000, Mw = 220000, Mw / Mn = 3.14) Polyol ester plasticizer (benzoic acid III Methylolpropane ester) 5 parts by weight of aromatic terminal polyester plasticizer (trimethylolpropane benzoate) 15 parts by weight of chloroform 430 parts by weight of ethanol 40 parts by weight. The above materials are sequentially placed in a closed container. In the case where the temperature in the vessel was raised from 20 ° C to 80 ° C, the temperature was maintained at 80 ° C and stirred for 3 hours to completely dissolve the cellulose acetate propionate. Then stop stirring and reduce the liquid temperature to 43 °C. The dopant was filtered using a filter paper (manufactured by Anjun Filter Paper Co., Ltd., filter paper No. 2 44) to obtain a dopant. -38- 201239420 (Manufacturing of Optical Film) In the unevenness forming step, the number of the casting rolls 104 is increased to five, the number of the conveying rolls 103 is increased to six, and the film is alternately wound around the conveying rolls and the mold In addition to the rolls, an optical film roll was produced by the same apparatus as the apparatus shown in Fig. 3. From the mold 101, the dopant was cast on a mirror-treated stainless steel support conveyor belt 100 at a dopant temperature of 35 ° C and a support temperature of 25 ° C. After drying the dopant film on the support with a dry air of 44 ° C, the amount of residual solvent dried to the dopant film was 1% by weight, and the peeling tension was 162 N/m by the peeling roller 102. The web is peeled off from the support. When the amount of the residual solvent of the film after peeling was 80% by weight, the mold roll 104 was brought into contact with the surface of the web to transfer the uneven shape. In the unevenness forming step, in detail, the transport tension was 180N. The polymer film was wound by coating at 90 degrees. All the casting rolls have Ra which have substantially uniform irregularities (Ra and Sm) in the axial direction, and have irregularities having Ra and Sm shown in the first table. The film after the uneven shape was transferred was formed by using a tenter 106, and a polymer film was produced by stretching the both ends of the film by a clamp and stretching it by 30% in the width direction of the film. At this time, the stretching temperature was 140 °C. The produced film was dried in a drying device 107 at a drying air of 120 °C. The film thickness was 40 μm. After the obtained film was cut to a width of 1,980 mm, a knurling process having a width of 10 mm and a height of 5 μm was applied to both ends, and the initial tension was 300 Å, the taper portion was 100%, and the corner portion was 30%. 5000 m is taken up to a core (core) having an outer diameter of 15 cm. The non-contact surface with the mold roll is the non-contact surface of the support in the casting step, which is assumed to be referred to as the A side. The contact surface with the mold roll, which is the contact surface with the support in the casting step, is assumed to be referred to as the B side. <Examples IB, 1D to 9D/Comparative Examples 1A to 3A, 1B to 3B, 1 D > In the dopant preparation step, the resin was changed, and the mixing ratio of CAP and acrylic resin was set to 50 by weight: 50; further containing a predetermined amount of predetermined inorganic fine particles in the dopant; controlling the amount of residual solvent of the film when transferring the uneven shape to the enthalpy shown in Table 1 by adjusting the transfer position of the roll; In the forming step, the casting rolls shown in Table 1 were used; and the number of rolls was set to the number of transfer rates shown in Table 1, except that the other ones were the same as in Example 1A. In the method, an optical film roll is produced. All the casting rolls have a substantially uniform concavo-convex shape (Ra and Sm) in the width direction. As the acrylic resin, Dianal BR85 (manufactured by Mitsubishi Rayon Co., Ltd.) Mw280000 was used. "IPA-ST" is a dispersion of cerium oxide microparticles (average particle size: 10 nm; organic cerium oxide sol IPA-ST, manufactured by Nissan Chemical Industries, Ltd.) ° "Aerosil 200V", which is treated by the following method. Aerosil 200V at a revolution of 500 rpm (-time particle size: 12 nm, Nippon)

Aerosil公司製)攪拌 30分鐘,使液體通過 Manton Gaul in型高壓分散機(H20型;三和機械工業公司製)3 次》此時的負荷壓力爲25MPa。平均分散粒徑(二次粒徑 )爲 100nm。 -40- 201239420 「Aerosil R8 1 2」,係使用以與「A e r o s i 1 2 0 0 V」相同 之方法對 Aerosil R812(—次粒徑:8nm,Nippon Aerosil 公司製)進行處理者。平均分散粒徑(二次粒徑)爲 8 Onm 〇 <實施例1C > (粒狀物的調製) 將作爲環烯烴樹脂之Zeonor 1420 (日本Zeon公司製 )100質量份、作爲酚系抗氧化劑之Sumilizer GS (住友 化學公司製)0.3質量份、作爲酚系化合物之新戊四醇四 [3- ( 3,5-二(三級丁基)-4-羥苯基)丙酸酯](市售品之 Irganox 1〇1〇 ( Ciba Specialty Chemicals 公司製))0.5 質 量份、作爲磷系化合物之四(2,4-二(三級丁基)-5-甲基 苯基)-4,4'-聯苯二膦酸酯(市售品之GSY-P101 (堺化學 工業公司製))0.3質量份混合,在60°C下進行5小時的 減壓乾燥。使用雙軸型擠壓機,在23 5 °C下將該樹脂混合 物熔融混合後,進行乾燥並構成粒狀。此時,爲了抑制捏 揉時的剪切所造成之放熱,係不使用捏揉碟,而是使用全 螺桿型式的螺桿。此外,從通風孔進行真空抽引,以吸引 去除捏揉中所產生之揮發成分。從供給至擠壓機之進料器 或供料斗、擠壓機模具至冷卻槽間,係構成爲乾燥氮氣環 境以防止水分往樹脂之吸濕。 (光學薄膜的製造) -41 - 201239420 藉由第4圖所示之裝置來製造出光學薄膜捲。 將上述粒狀物供給至擠壓機(圖中未顯示)並熔融’ 將270°C的熔融物從模具301以薄膜狀熔融擠壓於表面溫 度13(TC的第1冷卻輥3 02上,以延伸比20製得鑄製薄膜 。此時,係使用唇板間距1.5mm、唇板部平均表面粗糙度 RaO.Olpm之模具301。第1冷卻輥3 02、第2冷卻輥304 及第3冷卻輥305係構成爲直徑40cm的不鏽鋼製’且於 表面施以硬鉻鍍層。此外,於內部使溫度調整用油循環, 以控制輥表面溫度。接觸輥3 03係構成爲直徑20cm,內 筒及外筒均爲不鏽鋼製,且於外筒的表面施以硬鉻鍍層。 外筒的層厚設爲2mm,於內筒與外筒之間的空間內使溫度 調整用油循環,以控制彈性接觸輥的表面溫度。然後在第 1冷卻輥3 02上,藉由具有2mm厚的金屬表面之接觸輥 3 03,以線壓lOkg/cm來按壓薄膜。按壓時之接觸輥側的 薄膜溫度爲1 80°C ± 1 °C。在此所謂按壓時之接觸輥側的薄 膜溫度,是指使用非接觸型溫度計,將第1冷卻輥上之接 觸輥所接觸的位置之薄膜的溫度,在使接觸輥後退而無接 觸輥之狀態下遠離50cm的位置,在寬度方向上測定10點 所得之薄膜表面溫度的平均値。該薄膜的玻璃轉移溫度 Tg爲137°C。玻璃轉移溫度Tg,係使用DSC6200 ( Seiko 股份有限公司製),藉由DSC法(氮氣中、升溫溫度10 °C /分)來測定從模具所擠壓出之薄膜的玻璃轉移溫度。 接觸輥的表面溫度設爲130 °C,第2冷卻輥的表面溫度設 爲1 〇〇°C。接觸輥、第1冷卻輥、第2冷卻輥及第3冷卻After stirring for 30 minutes, the liquid was passed through a Manton Gaul in-type high-pressure disperser (H20 type; manufactured by Sanwa Machinery Co., Ltd.) three times. The load pressure at this time was 25 MPa. The average dispersed particle diameter (secondary particle diameter) was 100 nm. -40- 201239420 "Aerosil R8 1 2" is used to treat Aerosil R812 (manufactured by Nippon Aerosil Co., Ltd.) in the same manner as "A e r o s i 1 2 0 0 V". The average dispersed particle diameter (secondary particle diameter) was 8 Onm 〇 <Example 1C > (Preparation of granules) 100 parts by mass of Zeonor 1420 (manufactured by Zeon Corporation, Japan) as a cycloolefin resin was used as a phenolic resistance. Sumilizer GS (manufactured by Sumitomo Chemical Co., Ltd.) of oxidizing agent 0.3 parts by mass of neopentyltetrakis[3-(3,5-di(tri-butyl)-4-hydroxyphenyl)propionate as a phenolic compound] (Irganox 1〇1〇 (manufactured by Ciba Specialty Chemicals Co., Ltd.) of the commercial product) 0.5 parts by mass of tetrakis(2,4-di(tri-butyl)-5-methylphenyl)-4 as a phosphorus compound The mixture was mixed with 0.3 parts by mass of 4'-biphenyl diphosphonate (GSY-P101 (manufactured by Seiko Chemical Co., Ltd.)), and dried under reduced pressure at 60 ° C for 5 hours. The resin mixture was melt-mixed at 23 ° C using a biaxial extruder, and dried to form a pellet. At this time, in order to suppress the heat generation caused by the shearing during kneading, a full screw type screw is used instead of the kneading disc. In addition, vacuum extraction is performed from the vent holes to attract and remove volatile components generated in the kneading. From the feeder supplied to the extruder or the supply hopper, the extruder die to the cooling bath, a nitrogen gas atmosphere is formed to prevent moisture from absorbing moisture into the resin. (Manufacture of Optical Film) -41 - 201239420 An optical film roll was produced by the apparatus shown in Fig. 4. The pellets are supplied to an extruder (not shown) and melted. The melt at 270 ° C is melt-extruded from the mold 301 in a film form on the surface temperature 13 (the first cooling roll 302 of the TC, A cast film was produced at an elongation ratio of 20. In this case, a mold 301 having a lip pitch of 1.5 mm and a lip surface average surface roughness RaO. Olpm was used. The first cooling roll 302, the second cooling roll 304, and the third The cooling roll 305 is made of stainless steel having a diameter of 40 cm and is provided with a hard chrome plating on the surface. Further, the temperature adjustment oil is circulated internally to control the surface temperature of the roll. The contact roll 303 is formed to have a diameter of 20 cm, and the inner tube Both the outer cylinder and the outer cylinder are made of stainless steel, and the surface of the outer cylinder is coated with hard chrome. The thickness of the outer cylinder is set to 2 mm, and the temperature adjustment oil is circulated in the space between the inner cylinder and the outer cylinder to control the elasticity. The surface temperature of the contact roll was then pressed on the first cooling roll 302 by a contact roll 303 having a metal surface of 2 mm thick, and the film was pressed at a linear pressure of 10 kg/cm. 1 80 ° C ± 1 ° C. Here, the film temperature on the contact roller side when pressed, The temperature of the film at the position where the contact roller on the first cooling roller is in contact with the non-contact type thermometer is measured at a position away from 50 cm in a state where the contact roller is retracted without a contact roller, and 10 points in the width direction are measured. The average surface temperature of the film is 値. The glass transition temperature Tg of the film is 137 ° C. The glass transition temperature Tg is DSC6200 (manufactured by Seiko Co., Ltd.) by DSC method (nitrogen gas, heating temperature 10 ° C / The glass transition temperature of the film extruded from the mold was measured. The surface temperature of the contact roll was set to 130 ° C, and the surface temperature of the second cooling roll was set to 1 〇〇 ° C. The contact roll, the first cooling roll , the second cooling roller and the third cooling

-42- 201239420 輥之各輥的表面溫度,是指使用非接觸型溫度計’將從薄 膜最初接觸於輥之位置相對於旋轉方向呈9〇°面前的位置 之輥表面的溫度,在寬度方向上測定點所得之平均値 ,設爲各輥的表面溫度。 然後使薄膜通過由鑄模輥3 07與背輥3 08所構成之一 對輥之間,以轉印凹凸。此時鑄模輥保持在1 80°C,線壓 設爲200kg/cm。鑄模輥,係在軸方向上具有大致呈均一的 凹凸(Ra及Sm),爲具備有具有第1表所示之Ra及Sm 之凹凸。此外,背輥的表面溫度爲100 °C、表面粗糙度Ra 爲3.2nm、Sm爲4.4μιη。接著將薄膜導入於具有預熱區、 拉伸區、保持區、冷卻區(爲了確保各區之間的隔熱,各 區之間亦具有中立區)之拉幅機309,在寬度方向上以 160°C拉伸30%。然後冷卻至70°C,之後開放夾箝,切除 夾箱握持部,於兩端施以寬度10mm、高度5μιη的滾紋加 工,裁切爲寬度1980mm,以初期張力爲30ON、錐部爲 100%、角落部爲 30%之條件下,將 5000m捲取至外徑 15cm的捲芯(芯)。膜厚爲40μπα。與鑄模輥之非接觸面 ’爲鑄膜步驟中之與接觸輥之接觸面,係假定稱爲Α面。 與鑄模輥之接觸面,爲鑄膜步驟中之與第1冷卻輥之接觸 面,係假定稱爲B面。 〈比較例1 C〜3C &gt; 在粒狀物調製步驟中於粒狀物中更含有既定量的既定 無機微粒;以及在凹凸形成步驟中使用第丨表所示之鑄模 - 43- 201239420 輥,除此之外,其他藉由與實施例1C相同之方法’製得 光學薄膜捲。鑄模輥,在軸方向上具有大致呈均一的凹凸 形狀(Ra及Sm)。 「KE-P10」,係使用平均粒徑 l〇〇nm的二氧化矽微 粒分散物(Seahostar-ΚΕ-ΡΙΟ,一次粒徑:lOOnm (日本 觸媒公司製))。 &lt;評估&gt; (Ra及Sm的測定) 藉由前述方法來測定光學薄膜中之A面及B面的Ra 及Sm。 (荷重P的算出) 根據前述式(2)來算出P。 (彈性率E的測定) 依據ISO 527-3’使用東洋精機製作所股份有限公司 製的拉伸試驗機,在2 3 °C、5 5 %RH下進行拉伸測試,從 10 %扭曲的強度資料中’求取薄膜運送方向(MD方向) 以及與運送方向正交之方向(TD方向)的兩方向上的彈 性率。例如,實施例1 A之光學薄膜於MD方向上的彈性 率爲2890MPa,TD方向上的彈性率爲3121MPa,平均値 爲 3 006MPa。 -44 - 201239420 (截面二次矩I的算出) 根據前述式(3)來算出I。 (式(1)右邊的値之算出) 根據所得之P、Sm、E及I來算出。 (結塊) 在40°C、相對濕度80%RH的條件下將光學薄膜捲保 持1週後,將薄膜捲出並進行評估。詳細而言,從捲芯中 捲出1 00 0m長度的薄膜,並以下列方式來評估貼附或凸狀 之結塊的產生狀態。 *貼附故障 ◎:完全未產生貼附故障; 〇;僅從距離捲芯l〇〇m處的薄膜中央部產生貼附故 障,仍爲良好: △:雖然從距離捲芯500m處的薄膜中央部產生貼附 故障,但實用上仍無問題: X ;從距離捲芯1 〇〇〇m處的薄膜中央部產生貼附故障 ’實用上具有問題。 。凸狀故障 ◎:完全未產生凸狀故障; 〇;僅從距離捲芯l〇〇m處的薄膜端部產生凸狀故障 ,仍爲良好: △;雖然從距離捲芯5 00m處的薄膜端部產生凸狀故 -45- 201239420 障,但實用上仍無問題: X ;從距離捲芯l〇〇〇m處的薄膜端部產生凸狀故障 實用上具有問題。 (霧度) 從光學薄膜捲將薄膜捲出,依據JIS-K6714並藉由 Haze Meter NDH2 0 00 (日本電色公司製)來測定任意3點 ,求取該平均値HA。 ◎ : ΗA&lt;0. 1 0 ; 〇:0.10 盔 ΗΑ&lt;0·50 ; △ : 0.50鑫ΗΑ&lt;1·00 (實用上無問題); X : l.OOS ΗΑ (實用上具有問題)。 (動摩擦係數) 依據JIS-K-7 1 25 ( 1 987 )來測定薄膜表面與裏面間的 動摩擦係數。詳細而言,從光學薄膜捲裁切出薄膜薄片, 以使薄膜的表裏面接觸之方式來載置,施加150g的砝碼 ,在樣本移動速度100mm /分、接觸面積30mmx30mm的條 件下水平地拉伸砝碼,並測定出砝碼移動時的荷重(F ) ,從下列式中求取動摩擦係數。 動摩擦係數=F(gf)/砝碼重量P(gf) -46- 201239420 00 鑄模輥 ⑶ 轉印率 se 00 CO g in S5 oo CO * 求 CO CO g in as oo CO * 求 OO CO 5β CM CO Ο μ 求 GO CM ΙΟ LO ΙΟ as LO in CM C0 輥數 m LO 嗒 in m ID * m LO 皞 l〇 m in * 嗒 r— m T&quot;· 嗒 * 嗒 CO m CO m m 嗒 τ— τ— 嗒 T— m τ*·· m τ— Sm( jU m) C\J t—· cvj L 12,5_| * CM CM I 12.5 I * CM &lt;N I 12·5 I * σ&gt; σ&gt; CO CO CO CO CO τ* Ra(nm) 130nm | 80nm | 130nm | * 130nm 80nm | 130nm I * | 130nm | 80nm I 130nm * | 130nm I 80nm 80nm | 80nm I 80nm I 80nm | 100nm | 16nm 1 16nm 16nm 輥酿 1 1 I * 1 1 1 * | 180°C | | 180°C | | 180°C | * 1 i I \ \ 1 1 1 1 1 殘留 \mm 80% 80% 80% * 80% 80% g 00 * I 1 1 * 1 60% 60% 60% | 60% 60% 60% 60% | 30% | 25% se 00 無機微粒⑴ 含量⑵ (重量%) 1 1 1 l 0.50 | 1 1 1 1 0.50 1 I 1 1 1 0.50 1 I I 0.15 0.10 0.10 1 0.04 1 1 1 1 平均分 散粒徑 1 1 1 100nm| 1 1 1 100nm I I 1 1 100nm 1 I I 80nm 80nm 100nm 10nm 1 1 1 騷 Wr&gt; tlrtnl P 1 1 1 Aerosil 200V 1 1 1 Aerosil 200V I 1 1 KE-P10 1 I I Aerosil R8121 Aerosil R812 Aerosil 200V IPA-ST 1 1 1 樹脂 m 郷 CAP CAP CAP CAP CAP/丙烯酸樹脂 CAP/丙烯酸樹脂 CAP/丙烯酸樹月旨 CAP/丙烯酸樹脂 環烯烴樹脂 環烯烴樹脂 環烯烴樹脂 環烯烴樹脂 CAP/丙烯酸樹脂 CAP/丙烯酸樹脂 GAP/丙烯酸樹脂 GAP/丙烯酸樹脂 CAP/丙烯酸樹脂 CAP/丙烯酸樹脂 CAP/丙烯酸樹脂 CAP/丙烯酸樹脂 CAP/丙烯酸樹脂 GAP/丙烯酸樹脂 丨麵例1 All 比較例1A I比較例2A| 比較例3A I實施例ib| I比較例1B| 比較例2B 比較例3B 實施例1C 比較例1C 比較例2G 比較例3C 實施例1D 實施例2D 實施例3D 實施例4D 實施例5D 實施例6D 實施例7D 實施例8D 實施例9D 比較例1D 。豳赃職鏺呂伥长谳「丨」*酸#链辁幻3港|«伥长fK「*」-fl-fcs(co) 。讲丑^余13§§遐^寂琚雔1«411*-0-贮£(3) 。概啦张长谳「|」&lt;43贮§(1.) -47- 201239420-42- 201239420 The surface temperature of each roller of the roller refers to the temperature of the roller surface using the non-contact type thermometer 'the position from the position where the film is initially in contact with the roller at a position of 9 〇 relative to the direction of rotation, in the width direction. The average enthalpy obtained at the measurement point was set to the surface temperature of each roller. The film is then passed between a pair of rolls consisting of a casting roll 307 and a back roll 308 to transfer the irregularities. At this time, the casting rolls were maintained at 180 ° C and the line pressure was set to 200 kg/cm. The casting rolls have substantially uniform concavities and convexities (Ra and Sm) in the axial direction, and are provided with irregularities having Ra and Sm shown in the first table. Further, the back roll had a surface temperature of 100 ° C, a surface roughness Ra of 3.2 nm, and an Sm of 4.4 μm. Then, the film is introduced into a tenter 309 having a preheating zone, a stretching zone, a holding zone, and a cooling zone (in order to ensure insulation between the zones, the zones also have a neutral zone), in the width direction Stretch 30% at 160 °C. Then, the mixture was cooled to 70 ° C, and then the clamp was opened, and the grip portion was cut out, and a knurling process with a width of 10 mm and a height of 5 μm was applied to both ends, and the width was changed to 1980 mm, and the initial tension was 30 ON and the taper was 100. %, the corner portion is 30%, and 5000m is taken up to a core (core) having an outer diameter of 15 cm. The film thickness was 40 μπα. The non-contact surface with the mold roll is the contact surface with the contact roll in the casting step, which is assumed to be referred to as a kneading surface. The contact surface with the mold roll is the contact surface with the first cooling roll in the casting step, and is assumed to be referred to as a B surface. <Comparative Example 1 C to 3C &gt; In the granule preparation step, the granules further contain a predetermined amount of predetermined inorganic fine particles; and in the unevenness forming step, the mold shown in the third table is used - 43-201239420 rolls, Except for this, other optical film rolls were produced by the same method as in Example 1C. The casting rolls have a substantially uniform uneven shape (Ra and Sm) in the axial direction. "KE-P10" is a cerium oxide microparticle dispersion having an average particle diameter of 1 〇〇 nm (Seahostar-ΚΕ-ΡΙΟ, primary particle diameter: 100 nm (manufactured by Nippon Shokubai Co., Ltd.)). &lt;Evaluation&gt; (Measurement of Ra and Sm) Ra and Sm of the A surface and the B surface in the optical film were measured by the above method. (Calculation of Load P) P is calculated from the above formula (2). (Measurement of the modulus of elasticity E) According to ISO 527-3', a tensile tester manufactured by Toyo Seiki Seisakusho Co., Ltd. was used for tensile test at 23 ° C and 5 5 % RH, and the strength data from 10% twist was used. In the middle, the elastic modulus in both directions of the film transport direction (MD direction) and the direction orthogonal to the transport direction (TD direction) is obtained. For example, the optical film of Example 1 A has an elastic modulus in the MD direction of 2,890 MPa, an elastic modulus in the TD direction of 3,121 MPa, and an average enthalpy of 3,006 MPa. -44 - 201239420 (Calculation of the second moment I of the section) I is calculated from the above formula (3). (calculation of 値 on the right side of equation (1)) Calculated based on the obtained P, Sm, E, and I. (Agglomeration) After the optical film roll was held for one week at 40 ° C and a relative humidity of 80% RH, the film was taken up and evaluated. Specifically, a film of a length of 100 m was taken out from the core, and the state of generation of the attached or convex agglomerates was evaluated in the following manner. * Attachment fault ◎: There is no attachment failure at all; 〇; only the attachment failure from the center of the film at the distance from the core l〇〇m is still good: △: Although from the center of the film at a distance of 500m from the core The part is attached with a failure, but there is still no problem in practical use: X; there is a problem with the attachment failure from the center of the film at a distance of 1 距离m from the core. . Convex fault ◎: no convex fault at all; 〇; only convex fault from the end of the film at the distance from the core l〇〇m, still good: △; although the film end from the distance of the core 50,000m The part is convex-45-201239420, but it is still practically problem-free: X; there is a problem in that a convex fault is generated from the end of the film at a distance from the core l〇〇〇m. (Haze) The film was taken up from the optical film roll, and any three points were measured by Haze Meter NDH2000 (manufactured by Nippon Denshoku Co., Ltd.) in accordance with JIS-K6714, and the average 値HA was obtained. ◎ : ΗA&lt;0. 1 0 ; 〇: 0.10 Helmet ΗΑ &lt;0·50 ; △ : 0.50 Xin ΗΑ &lt;1·00 (no problem in practical use); X : l.OOS ΗΑ (practical problem). (Dynamic Coefficient of Friction) The coefficient of dynamic friction between the surface and the inside of the film was measured in accordance with JIS-K-7 1 25 (1 987). Specifically, the film sheet was cut out from the optical film, placed in such a manner as to contact the inside and outside of the film, and a weight of 150 g was applied to horizontally pull the sample at a moving speed of 100 mm/min and a contact area of 30 mm x 30 mm. The weight is extended, and the load (F) when the weight is moved is determined, and the dynamic friction coefficient is obtained from the following formula. Dynamic friction coefficient=F(gf)/weight weight P(gf) -46- 201239420 00 Molding roll (3) Transfer rate se 00 CO g in S5 oo CO * Find CO CO g in as oo CO * Find OO CO 5β CM CO Ο μ Find GO CM ΙΟ LO ΙΟ as LO in CM C0 Number of rolls m LO 嗒in m ID * m LO 皞l〇m in * 嗒r— m T&quot;· 嗒* 嗒CO m CO mm 嗒τ— τ— 嗒T— m τ*·· m τ— Sm( jU m) C\J t—· cvj L 12,5_| * CM CM I 12.5 I * CM &lt;NI 12·5 I * σ&gt;σ&gt; CO CO CO CO CO τ* Ra(nm) 130nm | 80nm | 130nm | * 130nm 80nm | 130nm I * | 130nm | 80nm I 130nm * | 130nm I 80nm 80nm | 80nm I 80nm I 80nm | 100nm | 16nm 1 16nm 16nm Roll 1 1 I * 1 1 1 * | 180°C | | 180°C | | 180°C | * 1 i I \ \ 1 1 1 1 1 Residual \mm 80% 80% 80% * 80% 80% g 00 * I 1 1 * 1 60% 60% 60% | 60% 60% 60% 60% | 30% | 25% se 00 Inorganic particles (1) Content (2) (% by weight) 1 1 1 l 0.50 | 1 1 1 1 0.50 1 I 1 1 1 0.50 1 II 0.15 0.10 0.10 1 0.04 1 1 1 1 Average dispersed particle size 1 1 1 100nm| 1 1 1 100nm II 1 1 100nm 1 II 80nm 80nm 100nm 10nm 1 1 1 Sao Wr> tlrtn l P 1 1 1 Aerosil 200V 1 1 1 Aerosil 200V I 1 1 KE-P10 1 II Aerosil R8121 Aerosil R812 Aerosil 200V IPA-ST 1 1 1 Resin m 郷CAP CAP CAP CAP CAP/Acrylic CAP/Acrylic CAP/Acrylic Tree Moon CAP/Acrylic Resin Cycloolefin Resin Cycloolefin Resin Cycloolefin Resin Cycloolefin Resin CAP/Acrylic Resin CAP/Acrylic Resin GAP/Acrylic Resin GAP/Acrylic CAP/Acrylic CAP/Acrylic CAP/Acrylic CAP/Acrylic Resin CAP/Acrylic Resin GAP/Acrylic Resin Synthetic Example 1 All Comparative Example 1A I Comparative Example 2A| Comparative Example 3A I Example ib| I Comparative Example 1B| Comparative Example 2B Comparative Example 3B Example 1C Comparative Example 1C Comparative Example 2G Comparative Example 3C Example 1D Example 2D Example 3D Example 4D Example 5D Example 6D Example 7D Example 8D Example 9D Comparative Example 1D.豳赃 鏺 鏺 伥 伥 谳 谳 * * 酸 酸 酸 酸 酸 酸 酸 酸 酸 酸 酸 酸 酸 酸 酸 酸 酸 酸 酸 酸 酸 酸 酸 酸 酸 酸 酸 酸 酸Speak ugly ^ 余13§§遐^Lonely 1«411*-0-store £(3). General Zhang Changyu "|" &lt;43 Storage § (1.) -47- 201239420

pm 摩擦 係數 0.76 0.92 0.97 0.71 0.72 I 0.86 I l〇.89 I t 0.69 | L〇J5 I 0.89 I I 0.94 I I 0-71 I 072 I 0.69 I I 0.66 I 0J1 I 0.67 I I 0.62 I I 0.64 I I 0.68 I I 0.66 I 0.97 霧度 〇 〇 〇 X 〇 〇 〇 X 〇 〇 〇 x 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 0.52 in ό 0.49 Λ16Ι I 0.46 LMlJ [Μη CO r— I 0.62 I 0.48 0.59 [2Δ2\ | 0.36 I 0.29 I 0.12 0.26 0.24 0.28 0.16 0.08 0.07 0.07 結塊 凸狀 〇 X X 〇 〇 X X 〇 〇 X X 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 X 貼附 〇 X X 〇 〇 X &lt; 〇 〇 X X 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 X 式⑴ 的 右邊⑷ | 47.30 | | 48.52 | | 53.63 | 144.92 | I 46.60 | | 49.03 | I 50.28 | | 45.42 | 丨 49.15 | I 50.51 | I 53.29 | I 47.82 | | 27.39 | 16.64| 3.42 3.42 I 3.64 I 3.86 3.22 0.08 0.06 I 0.06 光學薄膜輥 薄膜 厚度 t iU m) o o o o o o o o o o o o o o o o o o o 〇 〇 o N 職 職 硪 i 雇 CSJ — CO 寸· CSJ 寸· - 3 Tj; — CSI — CC — in 寸· CM — 卜 CO CO 寸· 寸 00 CO CO in c6 CD CO 卜· 7— 05 in BI9 15 Ra (nm) CD csi CNi csi Ύ-· CO lO c\i 卜 csi ί- ον! 寸 Csi r- cvi 00 csi csi Cvj CO c\i 00 o CO 00 〇 0.09 o 0.08 •N 磕 m m s 接觸面(B面)| E E CO ^ &quot;r— 00 T-· r— 12-2 I in t— T-* I 11-9 I I 12.0 I I 11.6 I I 110 I T-· T-· CO r— t— I 10.9 | 00 CT) CO CO 寸· σ\ 寸· o lO in 00 CO 00 r- Ra (nm) 49.2 39.8 48.9 | 49.5 39.5 49.0 | 50.1 I |5〇il ^3J ^2| 48.6 |5L〇J 22.0 CO 寸· 00 &lt;Ji LO 卜 寸’ CO o 寸 o’ 0.05 (mm4) 6.24 x 10-8 6.29 x 10-8 6.51 X10~8 6.13 X10~8 6.24X10—8 I 6.35X1CT8 I I 6.40X1 (T8 I I 6·19Χ1(Γ8 I 5.87x10-8 5.92X10-8 6.03 x 10-8 15.81 x10~8l I 5.23 X 10-8 I 4.43 x 10-8 2.61 x 10~8 2.61 x 10~8 2.67X10-8 2.72X10-8 2.56 x 10-8 7.47 x 10~9 6.93 x 10'9 6.93 x 10-9 CL § 1.77 x 10~3 1.79X 1〇-3 1.85X 10-3 1.74X 10~3 1.77X 10-3 | 1.80X 10~3 I 1.82 X 10~3 1.76 x 10-3 ! 1.67 x 10-3 I 1.68 x 10~3 I 1.71 X10-3| I 1.65 x 10~3 I 1.48 x 10-3 1.26 x 10~4 7.42 x 10~4 7.42 x 10-4 7.58 x 10~4 7.73 x 10~4 7.27 x 10~4 2.12 x 10-4 1.97 x 10~4 1.97 x 10~4 LU (MPa) | 3006 | | 3006 | | 3006 | 3006 |3051 | | 3051 | I 3051 | |3051 | | 2404| | 2404| I 2404| I 2404 | 3051 | 3051 I 3051] I 3051 I 3051 | I 3051 | I 3051 | 3051 |3051| |3051| 實施例1A 比較例1A 比較例2A 比較例3A I實施例1B| 比較例IB 比較例2B 比較例3B 實施例1C I比較例1C丨 比較例2C 比較例3C 實施例1D 實施例2D 實施例3D 實施例4D 實施例5D 實施例6D 實施例7D 實施例8D 實施例9D 比較例1D 。一3}·Νίι^«【ι】·Η&amp;^,ΈΕ?0τ™χ〕^ιι,^·Ν「(Ιώ)/(Εω.&amp;·ιη3*Ι—.ε」^«^δα)^^(17) 除了將實施例IB、ID〜9D之CAP與丙烯酸樹脂的混 -48- 201239420 合比率以重量比計設爲5 : 95之外,其他與實施例1 B、 1D~9D相同而製作出光學薄膜。其結果與IB、1D〜9D相 同,未產生結塊,且霧度、動摩擦係數亦良好。 [實驗例2] &lt;實施例1E~12E&gt; 在粒狀物調製步驟中於粒狀物中更含有既定量的既定 無機微粒:以及在凹凸形成步驟中使Ra在軸方向上從中 央部朝兩端部連續的變化,並且使用Sm在軸方向上大致 呈均一之鑄模輥(參照第3表),除此之外,其他藉由與 實施例3 D相同之方法,製得光學薄膜捲。 &lt;評估&gt; 將光學薄膜從光學薄膜捲中捲出,並在寬度方向上從 中央部、一方的端部及另一方的端部製作出試樣;對於中 央部、一方的端部及另一方的端部來進行光學薄膜B面及 A面上之各値的測定及算出;使用從中央部所製作出之試 樣作爲貼附故障的評估試樣;以及使用從端部所製作出之 試樣作爲凸狀故障的評估試樣,除此之外,其他藉由與實 驗例1的評估方法相同之方法來進行評估。一方的端部之 各値,在另一方的端部顯示出相同値。 該結果如第4表所示,實施例1 E~4E,於結塊試驗後 完全未產生寬度中央部的貼附故障。此外,實施例 7E-10E,於結塊試驗後完全未產生於寬度端部附近容易產 -49- 201239420 生之凸狀故障,容易從薄膜捲中捲出薄膜。 se搬】 鑄模輥⑶ 蠢 m t—· 蹈 τ·* τ— m m τ— τ— 嗒 m m r— m Ύ~· m τ~· 輥端部 另一方的端部 Sm 1 (&quot; m) csi 7— τ— csi CD 寸· σ&gt; oq 00 〇 c\i ▼-· ο CVJ o in Ο in oo 寸· ① Ra (nm) 另 T- ο CO cn 卜 σ&gt; ο 00 σ&gt; 卜 σ&gt; CNJ τ~ O) CM r— CM CO r^· CSJ CO 7— CO 00 CVJ CO Τ-™ 一方的端部 Sm (jU m) csi τ— csi τ— &lt;7i σ&gt; 寸· σ&gt; 00 — σ&gt; Ύ— σ&gt; T— σ&gt; 寸· σ&gt; σϊ 00 — Ra (nm) r·* r— CO τ— σ&gt; σ&gt; § σ&gt; 卜 CO CO CO CO τ— CSI CO CsJ CO T™ CO 00 Csi CO τ— 輥中央部 1_ Sm (&quot;m) o csi Ο c\i ο LO Ο iri oq 05 τ— τ- ΟΝ CD 寸' cn ① oq 寸_ Ra (nm) in CO T~ ΙΟ CQ CM CO τ— CM CO y-^ 00 oo 荔 τ·· τ— C0 τ— Ύ— CO Ύ— § § 卜 無機微粒⑴ 含量⑵ (重量%) 1 ir&gt; O 1 in o 1 1 1 m τ- Ο 1 ID 5 1 I 1 80nm | 1 80nm 1 1 1 80nm 1 80nm 1 l Μ ' •Kf\ tlmtl m 1 Aerosil R812 1 Aerosil R812 1 1 1 Aerosil R812 1 Aerosil R812 1 l 樹脂 m m CAP/丙烯酸樹脂 CAP/丙烯酸樹脂 CAP/丙烯酸樹脂 CAP/丙烯酸樹脂 CAP/丙烯酸樹脂 CAP/丙烯酸樹脂 CAP/丙烯酸樹脂 CAP/丙烯酸樹脂 CAP/丙烯酸樹脂 CAP/丙烯酸樹脂 CAP/丙烯酸樹脂 CAP/丙烯酸樹脂 實施例1E 實施例2E 實施例3E 實施例4E 實施例5E 實施例6E 實施例7Ε 實施例8E 實施例9E 實施例10E 實施例11E 實施例12E 。褂丑?:余堪®癍毋脈S邻- frlts (3) 。邮如张长«「—J - frlts α) -50- 201239420 si】 光學薄膜輥 與鑄模輥之 非接觸面 (A面) Sm (&quot;m) OO co CO CO 00 CO in co Oi CO σ&gt; co CO c6 l〇 CO O) CO 00 CO Ra (nm) p 00 o •r— p CD 〇 CO σί Ο 05 Ο p 〇 1— 與鑄模輥之接觸面(B面) 兩綱 Ra 變化率 lj^.54% I 1-2.48% I ^39.39% I [-40.00%! 1-2.17% I |-41.79%| 1 2.67¾ 12.61 % I 164.10% I I 65.00% I I 2.44% I 73.68% 式(1) 的 右邊⑷ | 49.04 | [50.28」 U42J I 3.22 I U42 I 3.22 | 1 49.04」 I 50.28 I L3.64 3.64 L342J I 3.42 | Sm (U m) I 11.9 I σ&gt; 寸’ 00 寸· σ&gt; 00 — σ&gt; τ— I 12.0 I o ici o LO &lt;Ji — 寸· Ra (nm) 49.9 51.2 ο cn co in — cn co 50.01 51.2 寸 cd &lt;〇 CO CM CO cd I (mm4) |6.35X10_8I 16.40X10'81 12.61 Χ10~8| I2.56X10-8! 12.61 X10~81 I2.56X10-8! Ι6.35Χ10-8! |6.4〇χΐ〇-8Ι |2.67X10~8| |2.67x1〇-8I 12.61 xur8 丨 2.61 xur8 Q. 2 |1.8〇x1〇-3| |1.82X10'3| 17.42x10—41 |7.27x1〇-4| 17.42 xur41 「7.27 xur41 1.80x10-3 |1.82χ1〇-3| 17.58 xur41 Γ7.58Χ10-4! 17.42X10-41 [7.42X10-41 中央部 式(1) 的 右邊⑷ | 50.28 | | 51.55 | I 3.64 I I 3.64 I | 3.42 | I 3.64 I | 47.81 | | 49.04 | | 3.22 | [3.22 | I 3.42 I | 3.22 | Sm (U m) mmJ t— csi o in o lO 〇&gt; o in C0 Ύ&quot; τ— &lt;Ji 00 句; 00 — CT) 寸· 00 句_ Ra (nm) L512I 152^ CO cd in cd &lt;〇 cd 「49.9 σ&gt; co 〇· 寸· — 00 co I (mm4) |6.40x10_8| 16.45x10-81 |2.67x1〇-8| |2.67x10~8| 12.61 x1〇-8| I2.67X10-8! |6.29χ1〇-8| fa35xi〇-8l i2.56x1〇-8| [2.56X10-8! 12.61 χΐο~8| ,2.56 x1ο-8 Dl Z I1.82x10~3I I1.83X 10_3I |7.58x1〇-4| |7.58x1〇-4| 17.42 X 10-41 7.58 ΧΗΓ4 |1.79χ10~3| |l.8〇x 1〇-31 I127X 10-^1 17.27X10'41 17.42x1 O'41 丨 7.27 xUT4 I I E (MPa) | 3051 | | 3051 | | 3051 | | 3051 | | 3051 | I 3051 | | 3051 | I 3051 | | 3051 | | 3051 I | 3051 | I 3051 I 丨實施例1E| 丨實施例2E| 實施例3E 丨實施例4E| 丨實施例5E| 實施例 I實施例7Ε| 實施例8E 實施例9E 實施例1〇E 實施例11E I實施例12E| 。日TyoIB:鳐嫩 &lt;·&amp;_* 。Ml-Nl^e 目】ffidml伶,EEglcn χ,M}-hl「?UJ)/(eES · d) ·Incvlr ε」^^4^δα )狀赃(寸) s -51 - 201239420 [第5表] 結塊 貼附 凸狀 實施例1Ε ◎ 〇 實施例2Ε ◎ 〇 實施例3Ε ◎ 〇 實施例4Ε ◎ 〇 實施例5Ε 〇 〇 實施例6Ε 〇 〇 實施例7Ε 〇 ◎ 實施例8Ε 〇 ◎ 實施例9Ε 〇 ◎ 實施例10Ε 〇 ◎ 實施例11Ε 〇 〇 實施例12Ε 〇 〇 產業上之可應用性: 本發明在光學薄膜的技術領域中’具有廣泛的產業上 之可應用性。 【圖式簡單說明】 第1圖係用以說明本發明所規定之式的示意圖。 第2圖係用以說明結構力學中求取構件的樑結構中的 撓曲量δ1時之計算式的示意圖。 第3圖係用以說明藉由溶液鑄膜法來製造本發明之光 學薄膜之方法的一例之製造裝置的槪略構成圖。 第4圖係用以說明藉由熔融鑄膜法來製造本發明之光 學薄膜之方法的—例之製造裝置的槪略構成圖。Pm friction coefficient 0.76 0.92 0.97 0.71 0.72 I 0.86 I l〇.89 I t 0.69 | L〇J5 I 0.89 II 0.94 II 0-71 I 072 I 0.69 II 0.66 I 0J1 I 0.67 II 0.62 II 0.64 II 0.68 II 0.66 I 0.97 Haze 〇〇〇X 〇〇〇X 〇〇〇x 〇〇〇〇〇〇〇〇〇〇0.52 in ό0.49 Λ16Ι I 0.46 LMlJ [Μη CO r— I 0.62 I 0.48 0.59 [2Δ2\ | 0.36 I 0.29 I 0.12 0.26 0.24 0.28 0.16 0.08 0.07 0.07 Agglomerated convex 〇 XX 〇〇 XX 〇〇 XX 〇〇〇〇〇〇〇〇〇〇X Attached 〇 XX 〇〇X &lt; 〇〇XX 〇〇〇〇〇〇〇 〇〇〇X (1) to the right of (1) | 47.30 | | 48.52 | | 53.63 | 144.92 | I 46.60 | | 49.03 | I 50.28 | | 45.42 | 丨49.15 | I 50.51 | I 53.29 | I 47.82 | | 27.39 | 16.64| 3.42 I 3.64 I 3.86 3.22 0.08 0.06 I 0.06 Optical film roll film thickness t iU m) ooooooooooooooooooo 〇〇o N Job 硪i Employment CSJ — CO inch · CSJ inch · - 3 Tj; — CSI — CC — in inch · CM — Bu CO CO inch · inch 00 CO CO i n c6 CD CO 卜 7-05 in BI9 15 Ra (nm) CD csi CNi csi Ύ-· CO lO c\i 卜 csi ί- ον! inch Csi r- cvi 00 csi csi Cvj CO c\i 00 o CO 00 〇0.09 o 0.08 •N 磕mms Contact surface (B side)| EE CO ^ &quot;r- 00 T-· r— 12-2 I in t— T-* I 11-9 II 12.0 II 11.6 II 110 I T-· T-· CO r— t— I 10.9 | 00 CT) CO CO inch·σ\ inch· o lO in 00 CO 00 r- Ra (nm) 49.2 39.8 48.9 | 49.5 39.5 49.0 | 50.1 I |5〇 Il ^3J ^2| 48.6 |5L〇J 22.0 CO inch· 00 &lt;Ji LO 卜'' CO o inch o' 0.05 (mm4) 6.24 x 10-8 6.29 x 10-8 6.51 X10~8 6.13 X10~8 6.24X10—8 I 6.35X1CT8 II 6.40X1 (T8 II 6·19Χ1 (Γ8 I 5.87x10-8 5.92X10-8 6.03 x 10-8 15.81 x10~8l I 5.23 X 10-8 I 4.43 x 10-8 2.61 x 10~8 2.61 x 10~8 2.67X10-8 2.72X10-8 2.56 x 10-8 7.47 x 10~9 6.93 x 10'9 6.93 x 10-9 CL § 1.77 x 10~3 1.79X 1〇-3 1.85 X 10-3 1.74X 10~3 1.77X 10-3 | 1.80X 10~3 I 1.82 X 10~3 1.76 x 10-3 ! 1.67 x 10-3 I 1.68 x 10~3 I 1.71 X10-3| I 1.65 x 10~3 I 1.48 x 10-3 1.26 x 10~4 7.42 x 10~4 7.42 x 10-4 7.58 x 10 ~4 7.73 x 10~4 7.27 x 10~4 2.12 x 10-4 1.97 x 10~4 1.97 x 10~4 LU (MPa) | 3006 | | 3006 | | 3006 | 3006 |3051 | | 3051 | I 3051 | |3051 | | 2404| | 2404| I 2404| I 2404 | 3051 | 3051 I 3051] I 3051 I 3051 | I 3051 | I 3051 | 3051 |3051| |3051| Example 1A Comparative Example 1A Comparative Example 2A Comparative Example 3A I Example 1B| Comparative Example IB Comparative Example 2B Comparative Example 3B Example 1C I Comparative Example 1C Comparative Example 2C Comparative Example 3C Example 1D Example 2D Example 3D Example 4D Example 5D Example 6D Example 7D Example 8D Example 9D Comparative Example 1D. A 3}·Νίι^«[ι]·Η&^,ΈΕ?0τTMχ]^ιι,^·Ν“(Ιώ)/(Εω.&·ιη3*Ι—.ε”^«^δα) ^^(17) The same as Example 1 B, 1D to 9D except that the ratio of the CAP of Examples IB and ID to 9D to the acrylic resin-48-201239420 is 5:95 by weight ratio. An optical film was produced. The results were the same as those of IB and 1D to 9D, and no agglomeration occurred, and the haze and dynamic friction coefficient were also good. [Experimental Example 2] &lt;Examples 1E to 12E&gt; In the granular material preparation step, a predetermined amount of predetermined inorganic fine particles are further contained in the granular material: and in the unevenness forming step, Ra is axially oriented from the central portion toward An optical film roll was produced by the same method as in Example 3 D except that the both end portions were continuously changed, and a mold roll having a substantially uniform Sm in the axial direction (see Table 3) was used. &lt;Evaluation&gt; The optical film is taken up from the optical film roll, and a sample is prepared from the center portion, one end portion, and the other end portion in the width direction; for the center portion, one end portion, and the other Measuring and calculating the respective flaws on the B side and the A side of the optical film at one end; using the sample prepared from the center portion as an evaluation sample for the attachment failure; and using the end portion The sample was evaluated by the same method as the evaluation method of Experimental Example 1, except that the sample was evaluated as a convex failure. The ends of one end show the same flaw at the other end. As a result, as shown in the fourth table, in Examples 1 to 4E, the attachment failure at the center of the width was not generated at all after the agglomeration test. Further, in Examples 7E to 10E, after the agglomeration test, it was not produced at the vicinity of the width end, and it was easy to produce a convex failure of -49 - 201239420, and it was easy to roll out the film from the film roll. Se moving] Molding roller (3) Stupid mt—· τ·* τ— mm τ— τ— 嗒mmr— m Ύ~· m τ~· The other end of the roller end Sm 1 (&quot; m) csi 7— Τ— csi CD inch · σ> oq 00 〇c\i ▼-· ο CVJ o in Ο in oo 寸 · 1 Ra (nm) Another T- ο CO cn 卜σ> ο 00 σ&gt;卜σ&gt; CNJ τ~ O) CM r— CM CO r^· CSJ CO 7—CO 00 CVJ CO Τ-TM One end Sm (jU m) csi τ — csi τ— &lt;7i σ> ·· σ&gt; 00 — σ> Ύ —σ> T— σ> ·· σ&gt; σϊ 00 — Ra (nm) r·* r— CO τ— σ> σ> § σ&gt; Bu CO CO CO CO τ — CSI CO CsJ CO TTM CO 00 Csi CO τ—The center of the roll 1_ Sm (&quot;m) o csi Ο c\i ο LO Ο iri oq 05 τ— τ- ΟΝ CD inch' cn 1 oq inch _ Ra (nm) in CO T~ ΙΟ CQ CM CO τ — CM CO y-^ 00 oo 荔τ·· τ— C0 τ— Ύ—CO Ύ—§§ Bu Inorganic particles (1) Content (2) (% by weight) 1 ir> O 1 in o 1 1 1 m τ- Ο 1 ID 5 1 I 1 80nm | 1 80nm 1 1 1 80nm 1 80nm 1 l Μ ' • Kf\ tlmtl m 1 Aerosil R812 1 Aerosil R812 1 1 1 Aerosil R812 1 Aerosil R812 1 l Resin mm CAP/Acrylic CAP/Acrylic CAP/Acrylic CAP/Acrylic CAP/Acrylic CAP/Acrylic CAP/Acrylic CAP/Acrylic CAP/Acrylic CAP/Acrylic CAP/Acrylic Resin CAP/Acrylic Resin Example 1E Example 2E Example 3E Example 4E Example 5E Example 6E Example 7 实施 Example 8E Example 9E Example 10E Example 11E Example 12E. Oh, ugly? : Yukan® 癍毋 veins S-frts (3).邮如张长«“—J - frlts α) -50- 201239420 si] Non-contact surface of optical film roll and mold roll (A side) Sm (&quot;m) OO co CO CO 00 CO in co Oi CO σ&gt; Co CO c6 l〇CO O) CO 00 CO Ra (nm) p 00 o •r— p CD 〇CO σί Ο 05 Ο p 〇1—contact surface with the mold roll (B side) Two-class Ra change rate lj^ .54% I 1-2.48% I ^39.39% I [-40.00%! 1-2.17% I |-41.79%| 1 2.673⁄4 12.61 % I 164.10% II 65.00% II 2.44% I 73.68% of formula (1) Right (4) | 49.04 | [50.28] U42J I 3.22 I U42 I 3.22 | 1 49.04” I 50.28 I L3.64 3.64 L342J I 3.42 | Sm (U m) I 11.9 I σ&gt; Inch ' 00 inch · σ> 00 — σ&gt τ—I 12.0 I o ici o LO &lt;Ji — inch · Ra (nm) 49.9 51.2 ο cn co in — cn co 50.01 51.2 inch cd &lt;〇CO CM CO cd I (mm4) |6.35X10_8I 16.40X10' 81 12.61 Χ10~8| I2.56X10-8! 12.61 X10~81 I2.56X10-8! Ι6.35Χ10-8! |6.4〇χΐ〇-8Ι |2.67X10~8| |2.67x1〇-8I 12.61 xur8 丨2.61 xur8 Q. 2 |1.8〇x1〇-3| |1.82X10'3| 17.42x10—41 |7.27x1〇-4| 17.42 xur41 “7.27 xur41 1.80x10-3 |1.8 2χ1〇-3| 17.58 xur41 Γ7.58Χ10-4! 17.42X10-41 [7.42X10-41 Right side of the central part (1) (4) | 50.28 | | 51.55 | I 3.64 II 3.64 I | 3.42 | I 3.64 I | 47.81 49.04 | | 3.22 | [3.22 | I 3.42 I | 3.22 | Sm (U m) mmJ t — csi o in o lO 〇&gt; o in C0 Ύ&quot; τ— &lt;Ji 00 sentence; 00 — CT) inch · 00 sentences _ Ra (nm) L512I 152^ CO cd in cd &lt;〇cd ”49.9 σ&gt; co 〇· inch· — 00 co I (mm4) |6.40x10_8| 16.45x10-81 |2.67x1〇-8| |2.67x10~8| 12.61 x1〇-8| I2.67X10-8! |6.29χ1〇-8| fa35xi〇-8l i2.56x1〇-8| [2.56X10-8! 12.61 χΐο~8| , 2.56 x1ο -8 Dl Z I1.82x10~3I I1.83X 10_3I |7.58x1〇-4| |7.58x1〇-4| 17.42 X 10-41 7.58 ΧΗΓ4 |1.79χ10~3| |l.8〇x 1〇-31 I127X 10-^1 17.27X10'41 17.42x1 O'41 丨7.27 xUT4 IIE (MPa) | 3051 | | 3051 | | 3051 | | 3051 | | 3051 | I 3051 | | 3051 | I 3051 | | 3051 | | 3051 I | 3051 | I 3051 I 丨 Example 1E| 丨 Example 2E| Example 3E 丨 Example 4E| 丨 Example 5E| Example I Example 7 Ε | Example 8E Example 9E Example 1 〇 E Implementation 11E I Example 12E |. Day TyoIB: 鳐嫩 &lt;·&amp;_*. Ml-Nl^e 目]ffidml伶, EEglcn χ, M}-hl“?UJ)/(eES · d) ·Incvlr ε”^^4^δα ) 赃 (inch) s -51 - 201239420 [第5 Table] Agglomerate-attached convex embodiment 1 Ε 〇 Example 2 ◎ 〇 Example 3 Ε 〇 Example 4 ◎ 〇 Example 5 〇〇 Example 6 Ε Example 7 〇 ◎ Example 8 Ε ◎ Example 9 Ε 〇 ◎ Example 10 〇 ◎ Example 11 Ε Example 12 〇〇 Industrial Applicability: The present invention has a wide range of industrial applicability in the technical field of optical films. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view for explaining the formula prescribed by the present invention. Fig. 2 is a schematic view for explaining a calculation formula when the amount of deflection δ1 in the beam structure of the member is obtained in the structural mechanics. Fig. 3 is a schematic structural view of a manufacturing apparatus for explaining an example of a method for producing an optical film of the present invention by a solution casting method. Fig. 4 is a schematic structural view showing a manufacturing apparatus of a method for producing an optical film of the present invention by a melt casting method.

-52- 201239420 【主要元件符號說明】 100 :支撐體 I 0 1、3 0 1 :鑄膜模具 1 0 2、3 0 6 :剝離輥 104 、 307 :鑄模輥 105 :聚合物薄膜 106、 309:拉幅機 1 〇 7 :乾燥裝置 108 、 310 :捲取機 3 02 :第1冷卻輥 3 03 :接觸輥 3 0 8 :背輥 -53--52- 201239420 [Explanation of main component symbols] 100: Support body I 0 1 , 3 0 1 : Cast film mold 1 0 2, 3 0 6 : Peeling roll 104, 307: Mold roll 105: Polymer film 106, 309: Tenter 1 〇 7 : Drying device 108 , 310 : Coiler 3 02 : 1st cooling roll 3 03 : Contact roll 3 0 8 : Back roll -53-

Claims (1)

201239420 七、申請專利範園: 1. 一種光學薄膜,其特徵爲: —方的面之表面的中心線平均粗糙度Ra(mm)與凹凸 平均間隔Sm(mm)係滿足式(1),並且含有樹脂,微粒相 對於樹脂成分之含量爲0.2重量%以下; Ra^3.125xPxSm3/(ExI) (1) [式(1)中,P爲藉由薄膜捲取時的張力而對薄膜表 面之鄰接的凸部間施加之荷重(N),且由式(2)表示, E爲薄膜的彈性率(MPa ) ,1爲由式(3)表示之薄膜的 截面二次矩(mm4 )]; P = (F/x)xSm (2) (式(2)中,x爲薄膜捲取時的薄膜寬度(mm),F爲 薄膜捲取時的薄膜張力(N)); I = (Smxt3)x 1 0*3/1 2 (3) (式(3)中,t爲薄膜的膜厚(mm))。 2. 如申請專利範圍第1項之光學薄膜,其中另一方 的面具有5nm以下的中心線平均粗糙度Ra。 3. 如申請專利範圍第1或2項之光學薄膜,其中前 述一方的面之中心線平均粗糙度Ra爲0.4〜70nm。 4. 如申請專利範圍第1項之光學薄膜,其中前述樹 脂係含有纖維素樹脂。 5. 如申請專利範圍第1項之光學薄膜,其中前述樹 脂係含有(甲基)丙烯酸樹脂》 6. —種光學薄膜捲,其係在捲芯的周圍將如申請專 • 54 - 201239420 利範圍第1至5項中任一項之光學薄膜捲取爲多層狀而成 之光學薄膜捲’其特徵爲: 前述一方的面之Ra,係具有在寬度方向上從中央部 朝兩端部減少或增加之梯度。 7. 一種光學薄膜的製造方法,其特徵爲: 具有將凹凸形成於微粒相對於樹脂成分之含量爲0.2 重量%以下的聚合物薄膜表面之凹凸形成步驟,以使一方 的面之表面的中心線平均粗糙度Ra(mm)與凹凸平均間隔 Sm(mm)滿足式(1 ); Ra 2 3 . 1 2 5 X P x Sm3/(E X I) (1) [式(1)中,p爲藉由薄膜捲取時的張力而對薄膜表 面之鄰接的凸部間施加之荷重(N) ’且由式(2)表示, E爲薄膜的彈性率(MPa) ,1爲由式(3)表示之薄膜的 截面二次矩(mm4 )]; P = (F/x)xSm (2) (式(2)中,x爲薄膜捲取時的薄膜寬度(mm),F爲 薄膜捲取時的薄膜張力(N)); I = (Smxt3)x 10'3/12 (3) (式(3)中,t爲薄膜的膜厚(mm))。 8. 如申請專利範圍第7項之光學薄膜的製造方法, 其係進行前述凹凸形成步驟以使光學薄膜之另一方的面具 有5nm以下的中心線平均粗糙度Ra。 -55-201239420 VII. Patent application garden: 1. An optical film characterized in that: - the center line average roughness Ra (mm) of the surface of the square surface and the average interval Sm (mm) of the concave and convex satisfy the formula (1), and The resin is contained, and the content of the fine particles with respect to the resin component is 0.2% by weight or less; Ra^3.125xPxSm3/(ExI) (1) [In the formula (1), P is adjacency to the surface of the film by the tension when the film is taken up; The load (N) applied between the convex portions is represented by the formula (2), E is the elastic modulus (MPa) of the film, and 1 is the second moment of the film (mm4) of the film represented by the formula (3); = (F/x)xSm (2) (in equation (2), x is the film width (mm) when the film is taken up, and F is the film tension (N) when the film is taken up); I = (Smxt3)x 1 0*3/1 2 (3) (in the formula (3), t is the film thickness (mm) of the film). 2. The optical film of claim 1, wherein the other side has a center line average roughness Ra of 5 nm or less. 3. The optical film according to claim 1 or 2, wherein the center line average roughness Ra of the one surface is 0.4 to 70 nm. 4. The optical film of claim 1, wherein the aforementioned resin contains a cellulose resin. 5. The optical film of claim 1, wherein the resin comprises (meth)acrylic resin. 6. An optical film roll, which is wrapped around the core, as claimed in the application. The optical film roll in which the optical film of any one of the items 1 to 5 is wound into a plurality of layers is characterized in that: Ra of the one surface is reduced from the central portion toward both end portions in the width direction. Or increase the gradient. 7. A method for producing an optical film, comprising: forming a concavity and convexity on a surface of a polymer film having a content of the fine particles of 0.2% by weight or less with respect to a resin component, so as to form a center line of a surface of one surface The average roughness Ra (mm) and the uneven interval Sm (mm) satisfy the formula (1); Ra 2 3 . 1 2 5 XP x Sm3/(EXI) (1) [In the formula (1), p is a film The load applied to the adjacent convex portions of the film surface by the tension at the time of winding (N)' is represented by the formula (2), E is the elastic modulus (MPa) of the film, and 1 is the film represented by the formula (3) The second moment of the section (mm4)]; P = (F/x)xSm (2) (in the formula (2), x is the film width (mm) when the film is taken up, and F is the film tension when the film is taken up. (N)); I = (Smxt3) x 10'3/12 (3) (in the formula (3), t is the film thickness (mm) of the film). 8. The method of producing an optical film according to claim 7, wherein the unevenness forming step is performed so that the other mask of the optical film has a center line average roughness Ra of 5 nm or less. -55-
TW100140339A 2010-11-05 2011-11-04 Optical film roll and optical film manufacturing method TWI522659B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010248308 2010-11-05

Publications (2)

Publication Number Publication Date
TW201239420A true TW201239420A (en) 2012-10-01
TWI522659B TWI522659B (en) 2016-02-21

Family

ID=46024210

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100140339A TWI522659B (en) 2010-11-05 2011-11-04 Optical film roll and optical film manufacturing method

Country Status (3)

Country Link
JP (1) JP5915536B2 (en)
TW (1) TWI522659B (en)
WO (1) WO2012060082A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106959477A (en) * 2016-01-08 2017-07-18 柯尼卡美能达株式会社 Optical film, the manufacture method of optical film, polarizer and image display device
TWI666117B (en) * 2014-12-11 2019-07-21 日商日東電工股份有限公司 Laminated body for manufacturing polarizing film, and manufacturing method of polarizing film

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101931378B1 (en) * 2012-08-09 2018-12-20 도레이케미칼 주식회사 Manufacturing method of multilayer reflective polizer and device thereof
KR101938892B1 (en) * 2012-08-09 2019-01-15 도레이케미칼 주식회사 Manufacturing method of reflective polarizer dispered polymer and device thereof
KR101938893B1 (en) * 2012-08-09 2019-01-15 도레이케미칼 주식회사 Manufacturing method of reflective polarizer dispered polymer and device thereof
KR101931376B1 (en) * 2012-08-09 2018-12-20 도레이케미칼 주식회사 Manufacturing method of reflective polizer dispered polymer and device thereof
KR101930552B1 (en) * 2012-08-09 2018-12-18 도레이케미칼 주식회사 Manufacturing method of reflective polizer dispered polymer and device thereof
KR101930549B1 (en) * 2012-08-09 2018-12-18 도레이케미칼 주식회사 Manufacturing method of multilayer reflective polizer and device thereof
JP2018124579A (en) * 2018-04-27 2018-08-09 日東電工株式会社 Laminate for producing polarizing film
JP2020190687A (en) * 2019-05-23 2020-11-26 コニカミノルタ株式会社 Optical film, polarizer and liquid crystal display device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4788072B2 (en) * 2001-06-29 2011-10-05 コニカミノルタホールディングス株式会社 Cellulose ester film, protective film for polarizing plate and polarizing plate
JP2005313467A (en) * 2004-04-28 2005-11-10 Konica Minolta Opto Inc Method for producing cellulose ester film and cellulose ester film
JP2006240228A (en) * 2005-03-07 2006-09-14 Konica Minolta Opto Inc Optical film and its manufacturing method
WO2007074662A1 (en) * 2005-12-28 2007-07-05 Konica Minolta Opto, Inc. Optical film and process for producing optical film
JP2007271942A (en) * 2006-03-31 2007-10-18 Konica Minolta Opto Inc Optical film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI666117B (en) * 2014-12-11 2019-07-21 日商日東電工股份有限公司 Laminated body for manufacturing polarizing film, and manufacturing method of polarizing film
CN106959477A (en) * 2016-01-08 2017-07-18 柯尼卡美能达株式会社 Optical film, the manufacture method of optical film, polarizer and image display device

Also Published As

Publication number Publication date
JP5915536B2 (en) 2016-05-11
JPWO2012060082A1 (en) 2014-05-12
TWI522659B (en) 2016-02-21
WO2012060082A1 (en) 2012-05-10

Similar Documents

Publication Publication Date Title
TW201239420A (en) Optical film and process for production thereof
TWI491908B (en) Liquid crystal display device with touch panel
JP5811096B2 (en) Method for producing long polymer film
JP5799954B2 (en) Antiglare film, method for producing antiglare film, polarizing plate and liquid crystal display device
JP2014178709A (en) Process for producing polarizing plate
JP2015094823A (en) Polarizing plate with cellulose ester film
WO2012073437A1 (en) Optical film, image display device, and image display device comprising touch panel
WO2012026192A1 (en) Hardcoat film, polarizing plate, and liquid crystal display device
WO2012035837A1 (en) Production method and production system for optical display device
JP5737287B2 (en) Retardation film, polarizing plate using the same, and liquid crystal display device
JP5633300B2 (en) Method for producing long polymer film, λ / 4 plate, polarizing plate, and stereoscopic image display device
JP6048506B2 (en) Optical film
JP5835230B2 (en) Vertical alignment type liquid crystal display device and manufacturing method thereof
JP5707855B2 (en) Method for producing hard coat film
TW201610462A (en) Optical film, polarizer, and image display device
JP2008307730A (en) Method for manufacturing optical film, optical film, polarizing plate and liquid crystal display
KR20160095054A (en) Cellulose ester film and cellulose ester film manufacturing method
WO2011148504A1 (en) Light diffusing film, method for manufacturing same, and polarizing plate, roll-shaped polarizing plate, and liquid crystal display device which employ same
JP5821850B2 (en) Manufacturing system of polarizing plate long roll and optical display device
JPWO2010119732A1 (en) Polarizer protective film, polarizing plate using the same, and method for producing the same
JP5531929B2 (en) Light scattering film, light scattering polarizing plate, and liquid crystal display device
JP2012063666A (en) Backside polarizing plate of liquid crystal display device and liquid crystal display device including the same
TWI451960B (en) Anti-glare film, and manufacturing method thereof
JP2014061643A (en) Production method of optical film
JP2014095729A (en) Vertical alignment type liquid crystal display device and method for manufacturing the same