TW201238988A - Compositions and methods for modifying polyolefin - Google Patents

Compositions and methods for modifying polyolefin Download PDF

Info

Publication number
TW201238988A
TW201238988A TW100111217A TW100111217A TW201238988A TW 201238988 A TW201238988 A TW 201238988A TW 100111217 A TW100111217 A TW 100111217A TW 100111217 A TW100111217 A TW 100111217A TW 201238988 A TW201238988 A TW 201238988A
Authority
TW
Taiwan
Prior art keywords
composition
polyolefin
modified polyolefin
weight
parts
Prior art date
Application number
TW100111217A
Other languages
Chinese (zh)
Other versions
TWI443117B (en
Inventor
Kuan-Yeh Huang
Ya-Lan Chuang
Chih-Hsiang Lin
Meng-Hui Sung
Yao-Chu Chung
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW100111217A priority Critical patent/TWI443117B/en
Priority to CN201110148172XA priority patent/CN102731725A/en
Publication of TW201238988A publication Critical patent/TW201238988A/en
Application granted granted Critical
Publication of TWI443117B publication Critical patent/TWI443117B/en

Links

Landscapes

  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Disclosed is a composition for modifying polyolefin, including 100 parts by weight of polyolefin, 0.01 to 5 parts by weight of cyclic radical initiator, and 1 to 20 parts by weight of a unsaturated reactive monomer. The composition may enhance grafting efficiency and reducing the β -scission of the modified polyolefin. Moreover, the composition can be applied to several thermal molding processes and equipments.

Description

201238988 六、發明說明: 【發明所屬之技術領域】 本發明係關於改質聚烯烴,更特別關於其組合物與相 關製程。 【先前技術】 聚丙烯(pp)具有低比重、物理機械性能佳、化學穩定性 好、及易回收等特點,應用廣泛,唯聚丙烯熔體強度低且 無極性,限制了其在後段加工之應用。隨著國人生活水平 水準的提高,導致聚丙烯漸漸不能滿足市場需求。尋求新 型高性能聚丙烯材料,近年受到國際極大的重視。以傳統 聚丙烯材料改質為例,藉由導入極性長支鏈可改善其熔體 強度及無極性之問題並拓展應用性,如可染性、接著性、 或吹膜成型等。然而PP改質過程中,因其高分子本質特 性,易產生高分子主鏈斷裂之情形而影響物性,難以廣泛 應用於工業生產和日常生活的各個領域。若能提升PP分子 鏈之極性化,抑制裂解,即可達成PP應用的多元化。 綜上所述,目前亟需在不大幅更動現有製程及設備的 情況下,有效降低改質聚丙烯的問題。 【發明内容】 本發明一實施例提供一種改質聚烯烴之組合物,包括 100重量份之聚烯烴;0.01至5重量份之環型自由基起始 劑;以及1至20重量份之具有雙鍵之反應性單體。 本發明另一實施例提供一種改質聚烯烴的方法,包括 201238988 混合上述之改質聚_之組合物;加熱改質聚_之組合 物;以及使具有雙鍵之反應型單體接枝至聚烯煙。 【實施方式】 本發明-實施例提供改質聚稀烴之組合物,基質為免 稀烴。上述之聚烯烴可為聚乙烯、聚丙烯、聚丁烯、聚2 烯、聚辛烯、上述之共聚物、或上述之組合。在本發明一 實施例中,上述聚烯烴於23〇ΐ下之融熔指數介於7至% g/lOmin之間。若聚烯烴之熔融指數過低(如低於 7g/10miW即重均分子量過高),則不利射出成型加工。若 聚烯烴之熔融指數過高(如高於5〇g/1〇min;即重均分子量 過低),則物性嚴重下降。 以100重量份之聚烯烴為準,上述組合物含有〇 〇1至 5重量份之環型自由基起始劑。在本發明另一實施例中, 上述組合物含有0.05至3重量份之環型自由基起始基。在 環型自由基起始劑受熱裂解產生自由基後,使環稀烴具有 自由基。具有雙鍵之反應性單體之雙鍵將進—步與環烯庐 上的自由基反應,使具有雙鍵之反應性單體接枝至環烯^ 上,並形成自由基於反應性單體中雙鍵原本的位置。接^ 後產物的自由基可進一步與環烯烴上其他位置的氣纟士人 再一次形成自由基反應位點於環烯烴上。若環型自由義起 始劑的比例過低,則無法讓聚烯烴產生足夠多的反位 點’且無法讓足夠量的具有雙鍵之反應性單體接枝至 烴。若環型自由基起始劑的比例過高,聚烯烴上的反廊位 點將過多而產生裂解反應(β-scission),並劣化產品物性。 4 201238988 適用於本發明之環型自由基起始劑於高溫下(比如200。〇 之半生期超過25秒,可在高溫下提供穩定的自由基,而不 致快速的大量生成自由基造成高分子降解。在本發明一實 施例中,環型自由基起始劑可為3,6,9-三乙基-3,6,9-三甲基 三 過氧烧 (3,6,9-triethyl_3,6,9-trimethyl-l,4,7-triperoxonane)、環甲 基乙基酮(cyclic methylethyl ketone)、環甲基異丁基酮過氧 化物(cyclic methylisobutyl ketone peroxide)、或環甲基異丙 基酮過氧化物(cyclic methylisopropyl ketone peroxide)。 以100重量份之聚烯烴為準,上述組合物含有1至20 重量份之具有雙鍵之反應性單體。在本發明另一實施例 中,上述組合物含有2至15重量份之具有雙鍵之反應性單 體。若具有雙鍵之反應性單體的比例過高,則反應性單體 易產生自聚效應。若具有雙鍵之反應性單體的比例過低, 則易造成極性官能基接枝含量低,未能改善其無極性問 題。如前所述’具有雙鍵之反應單體上的雙鍵可與聚烯烴 上的自由基進行接枝反應。另一方面,反應性單體除了雙 鍵以外’還可具有其他官能基如環氧基或醯胺基。如此一 來’改質後之聚烯烴可進一步進行其他反應。在本發明一 實施例中’具有雙鍵之反應性單體可為馬來酸酐、或丙稀 酸酯類(例如是甲基丙烯酸縮水甘油酯、曱基丙烯酸酯類、 丙烯酸曱酯或丙烯酸苯甲酯)。在本發明另一實施例中, 上述甲基丙烯酸酯類可例如為曱基丙烯酸甲酯或曱基丙稀 酸2-羥基乙酯。 201238988 在本發明另一實施例中,上述組合物可進一步含有高 分子降解抑制劑。高分子降解抑制劑可在聚烯烴降解時與 其反應,以讓斷裂之聚烯烴重新接合起來。高分子降解抑 制劑可為三經甲基丙烧三丙烯酸自旨。以100重量份之聚婦 烴為準,高分子降解抑制劑占0.5至10重量份。在本發明 另一實施例中,上述組合物含有0.5至5重量份之高分子 降解抑制劑。若高分子降解抑制劑之用量過高(如高於10 重量份),則產生過多之副反應,如自聚反應,而若高分子 降解抑制劑之用量過低(如低於0.5重量份),則無法有效抑 制降解反應生成。 在本發明一實施例中,上述組合物可一次進料至押出 機中進行反應,使具有雙鍵之反應性單體接枝至聚烯烴 上。由於本發明之組合物採用環型自由基起始劑,其於高 溫下具有較長之半生期,可提供穩定自由基活性反應點於 環烯烴上,減少環烯烴斷裂降解的問題。 在本發明另一實施例中,可將固態的聚烯烴主進料至 押出機,再將液態的具有雙鍵之反應性單體、環型自由基 起始劑、及視情況添加之高分子降解抑制劑以侧進料的方 式加入押出機中。此方式可提高具有雙鍵之反應性單體與 熔融態的聚烯烴兩者之混合均勻度,減少單體自聚及揮發 之情形,並有效提升接枝率。 不論採用一次主進料或搭配側進料的押出反應方式, 其反應溫度均需考慮環型自由基起始劑之裂解溫度、自由 基之半生期、以及反應押出之製程時間。一般而言,上述 6 201238988 押出反應之製程溫度約介於18(rc至24(rc之間。在本發明 一實施例中,押出反應之製程溫度約介於18〇。(:至22〇它之 間。在本發明一實施例中,適用之押出機可為雙螺桿押出 機、單螺桿押出機、或塑譜儀。在本發明其他實施例中, 上述改質聚烯烴之組合物亦可應用其他熱成型方法,比如 射出或吹膜。 在本發明又一實施例中,添加高分子抑制劑可促進斷 裂的1細經分子之自由基重新結合,在接枝過程中可穩定 自由基’以形成長支鏈結構,減少副反應(降解,p_scissi〇n) 之影響。 為了讓本發明之上述和其他目的、特徵、和優點能更 明顯易懂’下文特舉數實施例配合所附圖式,作詳細說明 如下: 【實施例】 比較例1 取1.8公斤之聚丙烯脂粒(pp ’溶融指數為9g/l〇min, 23〇C ’講自台化之K1108)、0.2公斤甲基丙烯酸缩水甘油 酯(GMA,購自 sigma-aldrich 之 CAS 106-91-2)、2g 之 2,5-一甲基雙(第二丁基過氧)己烧(dimethyl-2, 5-bis(t-buty】peroxy)hexane,T101,購自 Sigma-Aldrich 之 CAS 78-63-7)作為直線型過氧化物自由基起始劑、與40g 之二經曱基丙烧二丙細酸醋(賭自sigma-aldrich之CAS 15625-89-5 )均勻混合。以雙螺桿一次進料方式將上述混 合物進行押出製程同時進行反應。螺桿進料口溫度為200 201238988 出皿度為21 〇。〇,螺桿轉速200 rpm,且進料至射 出之過程費時約^ J y〇秒。取4 g射出產物溶於100 ml二甲 苯後’將產物溶液倒入l〇〇_15〇ml之丙酮中以析出產物。 將上述懸浮液攪拌1〇分鐘後抽氣過濾後,以曱醇、丙酮沖 洗遽餅二次’即得純化後之產物。將上述純化後之產物乾 燥後’即得白色粉末狀之曱基丙烯酸缩水甘油酯接枝之改 質聚丙烯高分子(PP_mGMA)。以三氯醋酸(Trichloroacetic acid ’ TCA ’ 購自 RDH 之 CAS 76-03-9)與 GMA 之環氣義 反應’並以電位自動滴定儀進行逆滴定,鑑定結果為滴定 接枝量為約2.3 wt%、熔融指數為29.2g/min(230t:)。融熔 指數越高’表示高分子降解的比例越高。 比較例2 與比較例1採用相同種類及重量比例的反應物、相同 的雙螺桿押出機參數如進料口溫度、射出段溫度、及螺桿 轉速’唯一差別在於此比較例之GMA、T101與4〇g之二 羥曱基丙烷三丙烯酸酯並非與PP混合後一次進料。在此比 較例中’固態的PP係由主進料口加入雙螺桿進料口,而液 態的GMA、T101與40g之三羥曱基丙烷三丙烯酸酯係以 側進料至雙螺桿押出機中,而侧進料口至射出之過程費時 約35秒。射出後之產物的純化及鑑定方式同比較例1,麵 疋結果為滴定接枝量為約4.4 wt%、溶融指數為14.7g/mjn (230 C)。與比較例1相較,比較例2之接枝量提高,且、嫁 融指數降低,指出側進料的方式可避免自由基起始劑裂解 8 201238988 pp主鏈的問題。 實施例1 取1.8公斤之聚丙婦脂粒(PP,,炫融指數為9g/10min, 230°C,購自台化之K1108)直接進料至比較例1所述之雙 螺桿押出機,再取0.2公斤曱基丙烯酸缩水甘油酯(GMA, 購自 sigma-aldrich 之 CAS 106-91-2) 、2g 之 3,6,9·三乙基 -3,6,9- 三曱基 -1,4,7- 三 過氧烷 (3,6,9-triethyl-3,6,9-trimethyl-l,4,7-triperoxonane,T301, 購自sigma-aldrich之CAS 24748-23-0)作為環酮類過氧化物 自由基起始劑、與40g之三羥甲基丙烷三丙烯酸酯以側進 料的方式進料至比較例1所述之雙螺桿押出機。螺桿進料 口溫度為200°C,射出段溫度為210°C,螺桿轉速200 rpm, 且侧進料口至射出之過程費時3 5秒。射出後之產物的純化 及鑑定方式同比較例1 ’鑑定結果為滴定接枝量為約7 2 wt%、熔融指數為9.3g/min (230°C)。與比較例2相較,採 用環酮類過氧化物作為自由基起始劑比直線型過氧化物之 自由基起始劑更能增加甲基丙嫦酸缩水甘油醋之接枝量, 並進一步降低自由基起始劑裂解PP主鏈的問題。 實施例2 取L8公斤之聚丙烯脂粒(PP,,熔融指數為9g/1〇min, 230。(:,購自台化之K1108)直接進料至比較例丨所述之雙 螺桿押出機,再取〇·2公斤曱基丙烯酸缩水甘油酯(GMA , 201238988 購自 sigma-aldrich 之 CAS 106-91-2)與 5g 之 3,6,9-三乙基 -3,6,9- 三甲基 4,4,7- 三 過氧烷 (3,6,9_triethyl-3,6,9-trimethyl-l,4,7-triperoxonane,T301, 購自sigma-aldrich之CAS 24748-23-0)作為環酮類過氧化物 自由基起始劑、與40g之三羥曱基丙燒三丙烯酸酯以側進 料的方式進料至比較例1所述之雙螺桿押出機。螺桿進料 口溫度為200 C ’射出段溫度為210°C,螺桿轉速200 rpm, 且侧進料口至射出之過程費時35秒。射出後之產物的純化 及鑑定方式同比較例1,鑑定結果為滴定接枝量為約 6.3wt°/。、熔融指數為n.8g/min(230°C)。與實施例1相較, 大幅增加環酮類過氧化物的用量反而降低甲基丙稀酸缩水 甘油酯之接枝量,甚至惡化自由基起始劑裂解pp主鏈的問 題。 實施例3 取1.9公斤之聚丙烯脂粒(pp,,熔融指數為9g/10min, 230 C ’購自台化之K1108)直接進料至比較例1所述之雙 螺才干押出機’再取0.1公斤之馬來酸針(Maleic anhydride, ΜΑ)(購自 Alfa 之 CAS108-31_6)、2g 之 3,6,9-三乙基-3,6,9- 三曱基 -1,4,7- 三 過氧烷 (3,6,9-triethyl-3,6,9-trimethyl-l,4,7-triperoxonane,T301, 購自sigma-aldrich之CAS 24748-23-0)作為環酮類過氧化物 自由基起始劑、與40g之三羥曱基丙烷三丙烯酸酯作為高 分子降解抑制劑以側進料的方式進料至比較例1所述之雙 201238988 螺桿押出機。螺桿進料口溫度為200°C,射出段溫度為210 °C ’螺桿轉速2〇〇 rpm,且侧進料口至射出之過程費時35 秒。射出後之產物的純化及鑑定方式同比較例1,鑑定結 果為滴定接枝量為約4.7 wt%、熔融指數為9.21g/min (230 °C)。與實施例1相較,採用三羥甲基丙烷三丙烯酸酯作為 高分子降解抑制劑,可有效降低高分子裂解的可能性。 實施例4 取1.8公斤之聚丙烯脂粒(PP,,熔融指數為9g/i〇min, 230°C,購自台化之K1108)、0.2公斤曱基丙烯酸缩水甘油 酯(GMA,購自 Sigma_aidrich 之 CAS 106-91-2)、2g 之 3,6,9· 二乙基-3,6,9-三甲基三過氧烷 (3,6,9_triethyl-3,6,9-trimethyl-l,4,7-triperox〇nane,T301, 購自sigma-aldrich之CAS 24748-23-0)作為環酮類過氧化物 自由基起始劑、與40g之三羥曱基丙烷三丙烯酸酯均勻混 合後,利用一次主進料進行反應,反應時間約為35秒,純 化及鑑定過程如比較例i中所示,接枝量約3 6彬%,熔融 指數為16.7g/min(23(TC)。與比較例!相較,採用三經甲 基丙烷三丙烯酸酯作為高分子降解抑制劑’可有效降^高 之 雖然本發明已以數個較佳實施例揭露如上,铁 用以蚊本發Ά何熟習此技#者,在不脫縣發明之 精,t耗圍内,#可作任意之更動與潤飾,因此本發明 保護範圍當視後附之申請專利範圍所界定者為準。 s 11 201238988 【圖式簡單說明】 無。 【主要元件符號說明】 無。 12201238988 VI. INSTRUCTIONS OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to modified polyolefins, and more particularly to compositions and related processes. [Prior Art] Polypropylene (pp) has the characteristics of low specific gravity, good physical and mechanical properties, good chemical stability, and easy recycling. It is widely used, but polypropylene has low melt strength and no polarity, which limits its processing in the latter stage. application. With the improvement of the standard of living of the Chinese people, polypropylene has gradually failed to meet market demand. The search for new high-performance polypropylene materials has received great attention from the international community in recent years. Taking conventional polypropylene material modification as an example, the introduction of polar long-chain branches can improve the melt strength and non-polarity problems and expand the applicability, such as dyeability, adhesion, or blown film forming. However, in the process of PP reformation, due to the nature of the polymer, it is easy to cause the polymer backbone to break and affect the physical properties, and it is difficult to be widely used in various fields of industrial production and daily life. If the polarity of the PP molecular chain can be increased and the cracking is inhibited, the diversification of the PP application can be achieved. In summary, there is an urgent need to effectively reduce the problem of modified polypropylene without significantly changing the existing processes and equipment. SUMMARY OF THE INVENTION An embodiment of the present invention provides a modified polyolefin composition comprising 100 parts by weight of a polyolefin; 0.01 to 5 parts by weight of a cyclic radical initiator; and 1 to 20 parts by weight of a double The reactive monomer of the bond. Another embodiment of the present invention provides a method for modifying a polyolefin, comprising: 201238988 mixing the above modified poly-polymer; heating the modified poly-polymer; and grafting the reactive monomer having a double bond to Polyene smoke. [Embodiment] The present invention provides an improved modified polyhydrocarbon composition having a substrate which is a hydrocarbon-free. The above polyolefin may be polyethylene, polypropylene, polybutene, polybutene, polyoctene, a copolymer as described above, or a combination thereof. In one embodiment of the invention, the polyolefin has a melt index of between 23 and % g/lOmin at 23 Torr. If the melt index of the polyolefin is too low (e.g., less than 7 g/10 miW, that is, the weight average molecular weight is too high), the injection molding process is disadvantageous. If the melt index of the polyolefin is too high (e.g., higher than 5 〇 g / 1 〇 min; that is, the weight average molecular weight is too low), the physical properties are seriously degraded. The above composition contains from 1 to 5 parts by weight of a cyclic radical initiator of ruthenium based on 100 parts by weight of the polyolefin. In another embodiment of the invention, the above composition contains 0.05 to 3 parts by weight of a cyclic radical initiator. After the cyclic radical initiator is thermally cracked to generate a radical, the ring-dilute hydrocarbon has a radical. The double bond of the reactive monomer having a double bond will further react with the radical on the cycloolefin to graft the reactive monomer having a double bond to the cycloolefin and form a free radical-based monomer. The original position of the double key. The free radicals of the product can further form a free radical reaction site on the cyclic olefin with the gas gents at other locations on the cycloolefin. If the proportion of the cyclic free radical initiator is too low, the polyolefin cannot be made to have enough anti-sites' and a sufficient amount of the reactive monomer having a double bond cannot be grafted to the hydrocarbon. If the proportion of the cyclic radical initiator is too high, the anti-corridor sites on the polyolefin will be excessive to cause a β-scission and deteriorate the physical properties of the product. 4 201238988 The cyclic radical initiator suitable for use in the present invention is at a high temperature (for example, 200. The half life of the crucible exceeds 25 seconds, and can provide stable free radicals at high temperatures without rapidly generating a large amount of free radicals to cause a polymer. Degradation. In one embodiment of the invention, the cyclic radical initiator may be 3,6,9-triethyl-3,6,9-trimethyltriperoxy (3,6,9-triethyl_3) ,6,9-trimethyl-l,4,7-triperoxonane), cyclic methylethyl ketone, cyclic methylisobutyl ketone peroxide, or cyclomethyl Hydroxymethylisopropyl ketone peroxide. The composition contains 1 to 20 parts by weight of a reactive monomer having a double bond, based on 100 parts by weight of the polyolefin. In another embodiment of the present invention The above composition contains 2 to 15 parts by weight of a reactive monomer having a double bond. If the proportion of the reactive monomer having a double bond is too high, the reactive monomer is liable to cause a self-polymerization effect. If the proportion of reactive monomers is too low, the polar functional group is easily grafted. The failure to improve its non-polarity problem. As described above, the double bond on the reactive monomer having a double bond can be grafted with a radical on the polyolefin. On the other hand, the reactive monomer is in addition to the double bond. 'There may also have other functional groups such as epoxy or guanamine groups. Thus, the modified polyolefin may further undergo other reactions. In one embodiment of the invention, the reactive monomer having a double bond may be Maleic anhydride, or acrylate (for example, glycidyl methacrylate, methacrylate, decyl acrylate or benzyl acrylate). In another embodiment of the invention, the above methacrylate The class may be, for example, methyl methacrylate or 2-hydroxyethyl thioglycolate. 201238988 In another embodiment of the present invention, the above composition may further comprise a polymer degradation inhibitor. The polyolefin reacts with it to decompose the ruptured polyolefin. The polymer degradation inhibitor can be trimethyl methacrylate triacrylate. Based on 100 parts by weight of polyglycol, the polymer is degraded. The preparation comprises 0.5 to 10 parts by weight. In another embodiment of the present invention, the composition contains 0.5 to 5 parts by weight of the polymer degradation inhibitor. If the amount of the polymer degradation inhibitor is too high (e.g., more than 10 parts by weight) Excessive side reactions, such as self-polymerization, and if the amount of the polymeric degradation inhibitor is too low (e.g., less than 0.5 parts by weight), the degradation reaction cannot be effectively inhibited. In an embodiment of the invention, The above composition can be fed to the extruder at a time for reaction to graft a reactive monomer having a double bond to the polyolefin. Since the composition of the present invention employs a cyclic radical initiator, which has a longer half-life at a high temperature, it can provide a problem of stabilizing the radical active reaction point on the cyclic olefin and reducing the degradation of the cyclic olefin. In another embodiment of the present invention, the solid polyolefin can be mainly fed to an extruder, and then a liquid reactive monomer having a double bond, a cyclic radical initiator, and optionally added polymer. The degradation inhibitor is added to the extruder in a side feed. This method can improve the mixing uniformity of both the reactive monomer having a double bond and the polyolefin in a molten state, reduce the self-polymerization and volatilization of the monomer, and effectively increase the graft ratio. Regardless of whether the primary feed or the side feed is used for the extrusion reaction, the reaction temperature should consider the cracking temperature of the cyclic radical initiator, the half life of the free radical, and the process time of the reaction. In general, the process temperature of the above-mentioned 6 201238988 extrusion reaction is about 18 (rc to 24 (rc). In one embodiment of the invention, the process temperature of the extrusion reaction is about 18 〇. (: to 22 〇 it In an embodiment of the present invention, the applicable extruder may be a twin-screw extruder, a single-screw extruder, or a plastic spectrometer. In other embodiments of the present invention, the modified polyolefin composition may also be used. Other thermoforming methods, such as injection or blown film, are applied. In another embodiment of the invention, the addition of a macromolecular inhibitor promotes free radical recombination of the broken fine molecules, and stabilizes the free radical during the grafting process. The above-mentioned and other objects, features, and advantages of the present invention will be more apparent and understood from the <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; The formula is described in detail as follows: [Examples] Comparative Example 1 Take 1.8 kg of polypropylene granules (pp 'melting index is 9 g/l 〇 min, 23 〇 C 'from K1108 from Taiwan), 0.2 kg of methyl group Glycidyl acrylate (GMA) CAS 106-91-2) from sigma-aldrich, 2g of 2,5-monomethylbis(t-butylperoxy)hexane (dimethyl-2, 5-bis(t-buty)peroxy)hexane , T101, purchased from Sigma-Aldrich, CAS 78-63-7) as a linear peroxide radical initiator, and 40 g of thioglycolic acid diacetate (between sigma-aldrich CAS) 15625-89-5 ) Uniform mixing. The mixture was extruded in a twin-screw single-feed process and the reaction was carried out at the same time. The screw inlet temperature was 200 201238988. The delivery rate was 21 〇. 〇, the screw speed was 200 rpm, and The process from the feed to the injection takes about ^ J y sec. After taking 4 g of the injected product in 100 ml of xylene, the product solution is poured into 1 〇〇 15 ml of acetone to precipitate the product. After 1 minute, after suction filtration, the cake was washed twice with decyl alcohol and acetone to obtain the purified product. After the above purified product was dried, the white powdery glycidyl acrylate was grafted. Modified polypropylene polymer (PP_mGMA). Trichloroacetic acid 'TCA' from RDH CAS 76-03-9) and GMA ring gas reaction 'and counter titration with potentiometric titrator, the identification results are titration grafting amount of about 2.3 wt%, melt index of 29.2g / min (230t:). The higher the melting index, the higher the proportion of polymer degradation. Comparative Example 2 and Comparative Example 1 used the same type and weight ratio of reactants, the same twin screw extruder parameters such as feed port temperature, injection section temperature, and The screw speed 'the only difference is that GMA, T101 and 4 g of dihydromercaptopropane triacrylate of this comparative example were not fed once with PP. In this comparative example, 'solid PP is fed from the main feed port to the twin screw feed port, while liquid GMA, T101 and 40 g of trishydroxylpropane triacrylate are fed side to the twin screw extruder. The process from the side feed to the injection takes about 35 seconds. The product after the injection was purified and identified in the same manner as in Comparative Example 1, and the result was a titration graft amount of about 4.4 wt% and a melt index of 14.7 g/mjn (230 C). Compared with Comparative Example 1, the graft amount of Comparative Example 2 was increased, and the margin index was lowered, indicating that the side feed method can avoid the problem of the radical initiator cleavage 8 201238988 pp main chain. Example 1 1.8 kg of polyacrylic fat (PP, having a melting index of 9 g/10 min, 230 ° C, purchased from K1108 of Taihua) was directly fed to the twin-screw extruder described in Comparative Example 1, and then Take 0.2 kg of glycidyl methacrylate (GMA, available from sigma-aldrich, CAS 106-91-2), 2 g of 3,6,9·triethyl-3,6,9-tridecyl-1, 4,7-triperoxyalkane (3,6,9-triethyl-3,6,9-trimethyl-l,4,7-triperoxonane, T301, CAS 24748-23-0 from sigma-aldrich) as a ring A ketone peroxide radical initiator, 40 g of trimethylolpropane triacrylate was fed in a side feed to the twin screw extruder described in Comparative Example 1. The screw inlet temperature is 200 ° C, the injection section temperature is 210 ° C, the screw speed is 200 rpm, and the side feed to the injection process takes 35 seconds. The product after the injection was purified and identified in the same manner as in Comparative Example 1 as a titration graft amount of about 7.2 wt% and a melt index of 9.3 g/min (230 ° C). Compared with Comparative Example 2, the use of a cyclic ketone peroxide as a radical initiator can increase the graft amount of methacrylic acid glycidyl vinegar more than the radical initiator of a linear peroxide, and further Reduce the problem of free radical initiators cleavage of the PP backbone. Example 2 L8 kg of polypropylene granules (PP, melt index: 9 g / 1 〇 min, 230. (:, K1108 from Taihua) was directly fed to the twin screw extruder described in Comparative Example , then take 2 kg of glycidyl methacrylate (GMA, 201238988 from sigma-aldrich CAS 106-91-2) and 5g of 3,6,9-triethyl-3,6,9-three Methyl 4,4,7-triperoxyalkane (3,6,9-triethyl-3,6,9-trimethyl-l,4,7-triperoxonane, T301, CAS 24748-23-0 from sigma-aldrich) As a cyclic ketone peroxide radical initiator, 40 g of trishydroxypropylpropane triacrylate was fed in a side feed to the twin screw extruder described in Comparative Example 1. Screw inlet temperature The 200 C 'ejection section temperature is 210 ° C, the screw rotation speed is 200 rpm, and the side feed port to the injection process takes 35 seconds. The product after injection is purified and identified in the same manner as in Comparative Example 1, and the identification result is titration grafting. The amount is about 6.3 wt%, and the melt index is n.8 g/min (230 ° C.) Compared with Example 1, the amount of cyclic ketone peroxide is greatly increased, and the glycidyl methacrylate is decreased. The amount of grafting, Even worsening the problem of the free radical initiator cleavage of the pp backbone. Example 3 1.9 kg of polypropylene granules (pp, melt index of 9 g/10 min, 230 C 'purchased from K1108 of Taihua) were directly fed to The double screw extruder described in Comparative Example 1 took another 0.1 kg of Maleic anhydride (CAS) from 2,6,9-triethyl-3 of Alfa. ,6,9-trimethyl-1,4,7-triperoxyalkane (3,6,9-triethyl-3,6,9-trimethyl-l,4,7-triperoxonane, T301, purchased from sigma- ALDRICH CAS 24748-23-0) as a cyclic ketone peroxide radical initiator and 40 g of trishydroxylpropane triacrylate as a polymer degradation inhibitor fed to the comparative example as a side feed 1 Double 201238988 screw extruder. Screw inlet temperature is 200 °C, injection section temperature is 210 °C 'screw speed 2 rpm, and the process from side feed to injection takes 35 seconds. After injection The product was purified and identified in the same manner as in Comparative Example 1, and the titration amount was about 4.7 wt% and the melt index was 9.21 g/min (230 ° C). Compared with Example 1, trimethylol was used. Propane Acrylate as a polymer degradation inhibitor can effectively reduce the possibility of cracking of the polymer. Example 4 1.8 kg of polypropylene granules (PP, melt index of 9 g/i 〇 min, 230 ° C, purchased from K1108 of Taihua), 0.2 kg of glycidyl methacrylate (GMA, purchased from Sigma_aidrich) were taken. CAS 106-91-2), 2g of 3,6,9·diethyl-3,6,9-trimethyltriperoxyl (3,6,9-triethyl-3,6,9-trimethyl-l , 4,7-triperox〇nane, T301, CAS 24748-23-0 from sigma-aldrich) as a cyclic ketone peroxide radical initiator, uniformly mixed with 40g of trishydroxylpropane triacrylate Thereafter, the reaction was carried out using one main feed, and the reaction time was about 35 seconds. The purification and identification process was as shown in Comparative Example i, the graft amount was about 36%, and the melt index was 16.7 g/min (23 (TC). Compared with the comparative example, the use of trimethyl methacrylate triacrylate as a polymer degradation inhibitor can be effectively reduced. Although the present invention has been disclosed in several preferred embodiments, the iron is used for mosquitoes. If you are familiar with this technique, you can make any changes and refinements in the inferiority of the invention, and the scope of protection of the invention is defined by the scope of the patent application attached. Prevail. S 11 201238988 [drawings briefly described None. Main reference numerals DESCRIPTION no. 12

Claims (1)

201238988 七、申請專利範圍: k一種改質聚烯烴之組合物,包括: 100重量份之聚燁烴; 0.01至5重量份之環型自由基起始劑;以及 1至20重量份之具有雙鍵之反應性單體。 2·如申睛專利範圍第1項所述之改質聚烯烴之組合 物’其中該聚烯烴包括聚乙烯、聚丙烯、聚丁稀、聚己稀、 聚辛烯、上述之共聚物、或上述之組合。 3·如申請專利範圍第丨項所述之改質聚烯烴之組合 物,其中該環型自由基起始劑包括3,6,9·三乙基_3,6,9-三甲 基1,4,7 —過氧烧、環曱基乙基酮、環曱基異丁基酮過氧 化物、或環甲基異丙基酮過氧化物。 4. 如申請專利範圍第1項所述之改質聚烯烴之組合 物’其+該具有雙鍵之反應性單體包括馬來酸酐或丙烯酸 酯類。 5. 如申凊專利範圍第1項所述之改質聚浠烴之組合 物,更包括0.5至10重量份之高分子降解抑制劑。 6. 如申請專利範圍第5項所述之改質聚烯烴之組合 物’其中該高分子降解抑制劑包括三羥甲基丙烷三丙烯酸 酉旨。 7. —種改質聚烯烴的方法,包括: 混合申請專利範圍第1項所述之改質聚烯烴之組合物; 加熱該改質聚烯烴之組合物;以及 使該具有雙鍵之反應型單體接枝至該聚烯烴。 8. 如申請專利範圍第7項所述之改質聚烯烴的方法,其 13 s 201238988 溫度介於180°C至240°C之間。 9. 如申請專利範圍第7項所述之改質聚稀烴的方法,其 中混合該改質聚烯烴之組合物之步驟包括: 直接將該改質聚烯烴之組合物混合後主進料至一押出 機。 10. 如申請專利範圍第7項所述之改質聚烯烴的方法, 其中混合該改質聚烯烴之組合物之步驟包括: 將該聚烯烴主進料至一押出機;以及 將該環型自由基起始劑與具有雙鍵之反應性單體混合 後,側進料至該押出機以與該聚烯烴混合。 14201238988 VII. Patent application scope: k A modified polyolefin composition comprising: 100 parts by weight of polyfluorene hydrocarbon; 0.01 to 5 parts by weight of a cyclic radical initiator; and 1 to 20 parts by weight of double The reactive monomer of the bond. 2. The composition of modified polyolefin according to claim 1, wherein the polyolefin comprises polyethylene, polypropylene, polybutylene, polyhexene, polyoctene, copolymers of the above, or Combination of the above. 3. The composition of modified polyolefin according to claim 2, wherein the cyclic radical initiator comprises 3,6,9·triethyl_3,6,9-trimethyl 1 4,7 - peroxy, cyclodecyl ethyl ketone, cyclodecyl isobutyl ketone peroxide, or cyclomethicone peroxide. 4. The composition of the modified polyolefin as described in claim 1 wherein + the reactive monomer having a double bond comprises maleic anhydride or acrylate. 5. The composition of modified polyanthracene according to item 1 of the patent application, further comprising 0.5 to 10 parts by weight of a polymeric degradation inhibitor. 6. The composition of the modified polyolefin according to claim 5, wherein the polymer degradation inhibitor comprises trimethylolpropane triacrylate. 7. A method for modifying a polyolefin, comprising: mixing a composition of a modified polyolefin according to claim 1; heating a composition of the modified polyolefin; and reacting the double bond A monomer is grafted to the polyolefin. 8. The method of modifying a modified polyolefin according to claim 7 wherein the temperature of 13 s 201238988 is between 180 ° C and 240 ° C. 9. The method of modifying a modified polyolefin according to claim 7, wherein the step of mixing the modified polyolefin composition comprises: directly mixing the modified polyolefin composition to the main feed to One is forced out. 10. The method of modifying a polyolefin according to claim 7, wherein the step of mixing the modified polyolefin composition comprises: feeding the polyolefin main to an extruder; and forming the ring After the free radical initiator is mixed with the reactive monomer having a double bond, the side is fed to the extruder to be mixed with the polyolefin. 14
TW100111217A 2011-03-31 2011-03-31 Methods for modifying polyolefin TWI443117B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW100111217A TWI443117B (en) 2011-03-31 2011-03-31 Methods for modifying polyolefin
CN201110148172XA CN102731725A (en) 2011-03-31 2011-05-25 Improved polyolefin composition and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100111217A TWI443117B (en) 2011-03-31 2011-03-31 Methods for modifying polyolefin

Publications (2)

Publication Number Publication Date
TW201238988A true TW201238988A (en) 2012-10-01
TWI443117B TWI443117B (en) 2014-07-01

Family

ID=46988089

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100111217A TWI443117B (en) 2011-03-31 2011-03-31 Methods for modifying polyolefin

Country Status (2)

Country Link
CN (1) CN102731725A (en)
TW (1) TWI443117B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI580718B (en) * 2014-03-12 2017-05-01 財團法人工業技術研究院 Polymer composition
TWI588170B (en) * 2015-04-10 2017-06-21 柏列利斯股份公司 Process for mixing olefin polymer with reactants

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI490108B (en) 2013-12-20 2015-07-01 Ind Tech Res Inst Composite and method for preparing the same
TWI843691B (en) * 2023-12-29 2024-05-21 財團法人工業技術研究院 Dyeable fiber and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2314254T3 (en) * 2002-12-06 2009-03-16 Akzo Nobel N.V. FORMULATIONS OF CYCLONE PEROXIDE OF CETONA.
US7750078B2 (en) * 2005-12-07 2010-07-06 Exxonmobil Chemical Patents Inc. Systems and methods used for functionalization of polymeric material and polymeric materials prepared therefrom
CN100443518C (en) * 2006-09-06 2008-12-17 江苏工业学院 Method of palliating degradation degree in polypropylene fusion graft process
BRPI0807769A2 (en) * 2007-02-20 2014-06-17 Dsm Ip Assets Bv Graffiti copolymer.
CN101423589B (en) * 2008-12-12 2011-05-18 江苏工业学院 Method for preparing polyethylene/maleic anhydride melt grafting high condensing pre-mixed master batch

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI580718B (en) * 2014-03-12 2017-05-01 財團法人工業技術研究院 Polymer composition
TWI588170B (en) * 2015-04-10 2017-06-21 柏列利斯股份公司 Process for mixing olefin polymer with reactants
US11028238B2 (en) 2015-04-10 2021-06-08 Borealis Ag Process for mixing olefin polymer with reactants

Also Published As

Publication number Publication date
CN102731725A (en) 2012-10-17
TWI443117B (en) 2014-07-01

Similar Documents

Publication Publication Date Title
TW426600B (en) Extrusion process for enhancing the melt strength of polypropylene
JP5424221B2 (en) Polypropylene resin composition excellent in melt tension and method for producing the same
CN108192027B (en) Polar polypropylene graft and preparation method thereof
JPS621737A (en) Blend of polyolefin and reactive additive-containing polymer
FR2498609A1 (en) TERPOLYMERS OF ETHYLENE, PROCESS FOR THEIR MANUFACTURE AND THEIR APPLICATION TO THE MANUFACTURE OF FILMS
NO862240L (en) POLYMER BLEND.
TW201238988A (en) Compositions and methods for modifying polyolefin
TW201623230A (en) Liquid and meltable solid grades of scorch protected peroxides
Ni et al. Enhancement of graft yield and control of degradation during polypropylene maleation in the presence of polyfunctional monomer
JP2014505148A (en) Peroxide blends to accelerate the cross-linking of ethylene vinyl acetate
JPS6019745B2 (en) Peroxide composition, its production method, its use
CN114195959B (en) Polypropylene graft with low degradation degree and preparation method thereof
KR101189558B1 (en) Process for preparing trioxepane composition and use thereof in crosslinking polymers
JPH02117908A (en) Manufacture of graft polymer
JP7141871B2 (en) Resin composition and its manufacturing method
JPH05331212A (en) Production of acrylic resin
JP5308891B2 (en) Acrylic polymer, method for producing the same, acrylic resin composition, retardation film, and image display device
KR101499360B1 (en) Manufacturing method polypropylene resin composition having high melt strength
JP2002226706A (en) Polyphenylene sulfide resin composition
KR20200051376A (en) Ethylene vinyl acetate resin and preparation method thereof
JP2020084178A (en) Molding resin composition and molding
CN110256632A (en) A kind of preparation method of chromium-free highly -branched degree polyolefin resin
JPS6356505A (en) Method of reforming crystalline propylene polymer
JPH01201307A (en) Production of methacrylate polymer
JP2001206436A (en) Styrene based resin food container and wrapping material