TW201238777A - Inkjet head structure - Google Patents

Inkjet head structure Download PDF

Info

Publication number
TW201238777A
TW201238777A TW100109990A TW100109990A TW201238777A TW 201238777 A TW201238777 A TW 201238777A TW 100109990 A TW100109990 A TW 100109990A TW 100109990 A TW100109990 A TW 100109990A TW 201238777 A TW201238777 A TW 201238777A
Authority
TW
Taiwan
Prior art keywords
inkjet
ink
switching element
ink jet
area
Prior art date
Application number
TW100109990A
Other languages
Chinese (zh)
Other versions
TWI472436B (en
Inventor
Hao-Jan Mou
Ta-Wei Hsueh
Ying-Lun Chang
Rong-Ho Yu
Hsien-Chung Tai
Cheng-Ming Chang
Wen-Hsiung Liao
Yung-Lung Han
Original Assignee
Microjet Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microjet Technology Co Ltd filed Critical Microjet Technology Co Ltd
Priority to TW100109990A priority Critical patent/TWI472436B/en
Publication of TW201238777A publication Critical patent/TW201238777A/en
Application granted granted Critical
Publication of TWI472436B publication Critical patent/TWI472436B/en

Links

Abstract

An inkjet head structure is disclosed. The inkjet head structure is applicable to an ink cartridge with at least one ink tank, and the inkjet head structure comprises a nozzle plate and an inkjet IC. The nozzle plate has a plurality of orifices. The inkjet IC is used to control the inkjet, and the inkjet IC has a total area defined by a length and a width, wherein the total area comprises a non-layout area and a layout area. The non-layout area is set with at least one ink flow path, and the layout area is set with an inner circuit. The inner circuit includes a plurality of inkjet unit groups, and each one of the inkjet unit groups has a heater, which faces to a corresponding orifice. A ratio of the layout area of the inkjet IC to the total area of the inkjet IC is under 77%.

Description

201238777 六、發明說明: 【發明所屬之技術領域】 [0001]本案係關於一種噴墨頭結構,尤指一種適用於進行單色 或多色墨水之噴墨列印之喷墨頭結構。 【先前技術】 _]目前於喷墨列印的技術發展中,最佳及最有效提高列印 解析度及列印速度之方法,即是於喷墨晶片上直接增加 加熱元件的數量,即增加噴孔的數量,而在傳統加熱元 件的控制上,主要是透過單一個控制接點來控制單一個 對應的加熱元件。 [0003] 制加熱元件加熱之電路架賴 示意圖。如第1圖所示,加熱元件1G連接於驅動控制端i 及開關το件12之間’並由驅動控制端"接故—電壓信號 ,而開關元件12連接於㈣接點13及接地則4之門^ 控制接點13接收—位址峨,用以控制開關元件如 通與載止。舉例而言,當控舰點__之位址信號 為相對邏輯高電位(High)時,·她2導通此時, 電壓信號P提供電能予加熱辑1Q,以㈣經加熱元件i 上之墨水㈣應的噴孔(未_)噴塗至 之,當控制接點13所接收之位址信號A為相對邏輯嫌 (Low)時,開關元件12截止,此時, — 加熱元㈣提供電能,使加中= 法進行喷墨的工作。 τ止加熱’因而無 100109990 然而’使用上述控制加熱元件加熱的方法, 熱元件的數量以提高化卩解析度及列印^ 表單编號A0101 若要增加加 時,勢必需 第4頁/共6〇頁 [0004] 201238777 [0005] Ο [0006]201238777 VI. Description of the Invention: [Technical Field of the Invention] [0001] The present invention relates to an ink jet head structure, and more particularly to an ink jet head structure suitable for ink jet printing of single or multi-color ink. [Prior Art] _] Currently in the development of inkjet printing technology, the best and most effective way to improve the printing resolution and printing speed is to directly increase the number of heating elements on the inkjet wafer, that is, increase The number of orifices, while in the control of conventional heating elements, a single control element is controlled primarily by a single control contact. [0003] A circuit diagram for heating a heating element is shown. As shown in Fig. 1, the heating element 1G is connected between the drive control terminal i and the switch τ, and is connected to the (four) contact 13 and the ground by the drive control terminal < 4 door ^ Control contact 13 receiving - address 峨, used to control the switching elements such as pass and stop. For example, when the address signal of the control ship point __ is relatively high (High), the second signal is turned on, and the voltage signal P supplies power to the heating set 1Q to (4) the ink on the heating element i. (4) The nozzle hole (not _) should be sprayed to it. When the address signal A received by the control contact 13 is relatively logically low (Low), the switching element 12 is turned off. At this time, the heating element (4) supplies power, so that Add medium = method to perform inkjet work. τ止加热' thus no 100109990 However 'using the above method of controlling heating element heating, the number of heat elements to improve the resolution and printing of the surface ^ Form number A0101 To increase the overtime, the necessary page 4 / 6 Title [0004] 201238777 [0005] Ο [0006]

要對應増加控制接點的數目,以分別控制各個加熱元件 舉例而言,當控制噴墨頭加熱的位址信號4的數目為20 時,則需對應設置2 0個控制接點,因此導致噴墨晶片(未 圖示)的整體佈線區域之面積增大而使喷墨晶片實際設置 面積增加,且其生產成本也必須提高,其中,佈線區域 即為噴墨晶片上除了供墨流道以外之區域。 另外,為了達到減少控制接點的目的,利用N_M〇s元件來 设計加熱元件運作之控制方法便因應而生,但若要再進 一步增加加熱元件時,仍須增加對應吟控制接點。故, 目前更提出使用C-MOS元件的控制嫌式,來解決當控制接 點增加時導致佈線區域之面積增加,使得喷墨晶片面積 增大的問題’但C-MOS元件的製造成本較N-MOS元件的製 造成本高出許多,因此仍無法廣為應用。 因此’如何發展一種可改善上述習知技術缺失之喷墨頭 結構,實為目前迫切需要解決之問題。 【發明内容】 本案之目的為提供一種喷墨頭結構,可以相對較少的控 制接點控制較多的噴墨元件,且同時使噴墨晶片之可佈 線面積所佔的比例降低,及利用將加熱器交錯排列之方 式以增加喷墨頭之解析度,進而可以大幅縮減喷墨晶片 面積,使喷墨晶片可更精小,並降低喷墨晶片之設置成 本0 [0008] 為達上述目的,本案之一較廣義實施態樣為提供—種噴 墨頭結構,其適用於包含至少一供墨槽之一墨水匣,該 100109990 喷墨頭結構包含:喷孔板,具有複數個喷孔 表單編號A0101 第5頁/共60頁 以及噴墨 1002016866-0 201238777 晶片,用以控制墨水喷墨,其具有一長度及一寬度構成 一總面積區域,該總面積區域包含有:非佈線區域,設 置至少一供墨流道;以及佈線區域,設置一内部電路, 該内部電路包含複數個喷墨單元組,該複數個噴墨單元 組的每一個喷墨單元包含一加熱器,且該加熱器設置於 相對應之該喷孔。其中,該噴墨晶片之該佈線區域之面 積佔該喷墨晶片總面積區域77%以下。 [0009] 為達上述目的,本案之另一較廣義實施態樣為提供一種 喷墨頭結構,其適用於包含至少一供墨槽之一墨水匣, 該喷墨頭結構包含:喷孔板,具有複數個喷孔;以及喷 墨晶片,用以控制墨水喷墨,其具有一長度及一寬度構 成一總面積區域,該總面積區域包含有.:非佈線區域, 設置至少一供墨流道;以及佈線區域,設置一内部電路 ,該内部電路包含複數個喷墨單元組,該複數個噴墨單 元組的每一個喷墨單元包含一加熱器,且該加熱器設置 於相對應之該喷孔,每一個該喷墨單元組包括:第一噴 墨單元,用以接收一電壓信號、複數個位址信號以及一 選擇信號;以及第二噴墨單元,用以接收電壓信號以及 複數個位址信號,當選擇信號致能時,第一喷墨單元因 應電壓信號及複數個位址信號,以使加熱器產生加熱之 作動,而當選擇信號禁能時,第二喷墨單元因應電壓信 號及複數個位址信號,以使加熱器產生加熱之作動。其 中,喷墨晶片之佈線區域之面積佔喷墨晶片總面積區域 77%以下。 【實施方式】 100109990 表單編號A0101 第6頁/共60頁 1002016866-0 201238777 . ,[0010] [0011] οCorresponding to the number of control contacts to control the respective heating elements, for example, when the number of address signals 4 for controlling the heating of the inkjet head is 20, it is necessary to set 20 control contacts correspondingly, thus causing the spray The area of the entire wiring area of the ink wafer (not shown) is increased to increase the actual installation area of the ink-jet wafer, and the production cost thereof must also be increased, wherein the wiring area is the ink-jet wafer except for the ink supply flow path. region. In addition, in order to achieve the purpose of reducing the control contact, the control method of designing the operation of the heating element by using the N_M〇s component is made, but if the heating element is to be further increased, the corresponding control contact must be added. Therefore, it is now proposed to use the control mode of the C-MOS device to solve the problem that the area of the wiring area is increased when the control contact is increased, so that the area of the inkjet wafer is increased, but the manufacturing cost of the C-MOS device is higher than that of the N-component. - MOS components are much more expensive to manufacture and therefore cannot be widely used. Therefore, how to develop an ink jet head structure which can improve the above-mentioned conventional techniques is an urgent problem to be solved. SUMMARY OF THE INVENTION The object of the present invention is to provide an ink jet head structure, which can control a large number of ink jet components with relatively few control contacts, and simultaneously reduce the proportion of the wiring area of the ink jet wafer, and utilize The heaters are staggered to increase the resolution of the inkjet head, thereby greatly reducing the area of the inkjet wafer, making the inkjet wafer finer, and reducing the installation cost of the inkjet wafer. [0008] To achieve the above purpose, In a broader aspect of the present invention, there is provided an ink jet head structure suitable for use in an ink cartridge comprising at least one ink supply tank, the 100109990 ink jet head structure comprising: a orifice plate having a plurality of orifice form numbers A0101 page 5 of 60 and inkjet 1002016866-0 201238777 wafer for controlling ink inkjet, having a length and a width to form a total area area, the total area area comprising: a non-wiring area, at least An ink supply path; and a wiring area, an internal circuit including a plurality of ink ejection unit groups, each of the plurality of ink ejection unit groups A heater is included, and the heater is disposed in the corresponding nozzle hole. The area of the wiring region of the ink-jet wafer accounts for 77% or less of the total area of the ink-jet wafer. [0009] In order to achieve the above object, another broad embodiment of the present invention provides an ink jet head structure suitable for use in an ink cartridge comprising at least one ink supply tank, the ink jet head structure comprising: a orifice plate, Having a plurality of orifices; and an inkjet wafer for controlling inkjetting, having a length and a width to form a total area area, the total area area comprising: a non-wiring area, and at least one ink supply path And a wiring area, an internal circuit is provided, the internal circuit includes a plurality of inkjet unit groups, each of the plurality of inkjet unit groups includes a heater, and the heater is disposed in the corresponding spray a hole, each of the inkjet unit groups includes: a first inkjet unit for receiving a voltage signal, a plurality of address signals, and a selection signal; and a second inkjet unit for receiving the voltage signal and the plurality of bits Address signal, when the selection signal is enabled, the first inkjet unit responds to the voltage signal and the plurality of address signals to cause the heater to generate heating, and when the selection signal is disabled, The ink jet unit in response to a voltage signal and a plurality of address signals, so that the heating of the heater generates actuation. Among them, the area of the wiring area of the ink-jet wafer accounts for 77% or less of the total area of the ink-jet wafer. [Embodiment] 100109990 Form No. A0101 Page 6 of 60 1002016866-0 201238777 . , [0010] [0011]

[0012] 體現本案特徵與優點的一些典型實施例將在後段的說明 中詳細敘述。應理解的是本案能夠在不同的態樣上具有 各種的變化,然其皆不脫離本案的範圍,且其中的說明 及圖式在本質上係當作說明之用,而非用以限制本案。 請參閱第2Α圖,其係為本案較佳實施例之墨水匣之剖面 結構示意圖。如第2Α圖所示,墨水匣1係由本體la及蓋體 lb所組成,其中本體la及蓋體lb係定義形成至少一供墨 槽lc,例如一供墨槽、二供墨槽或三供墨槽,用以儲存 墨水,且墨水可經由設置於本體la之一供墨通道Id導入 喷墨頭2之一供墨流道(未圖示)。墨水匣1更包括一軟性 電路載板le,該軟性電路載板le的一侧與喷墨頭2之電連 接片(未圖示)連接,軟性電路載板le的另一侧設置複數 個金屬接點(未圖示)且彎曲延伸至本體la的一側邊貼附 ,用以與喷墨印表機之喷墨控制電路(未圖示)及噴墨頭2 連接,墨水匣1係透過軟性電路載板1之複數個金屬接點 接收系統之喷墨控制電路之控制信號,且因應該控制信 號開始作動。 請參閱第2B圖,其係為本案第一較佳實施例之單色噴墨 頭之結構示意圖。第2B圖所示之喷墨頭2係為一簡化後之 結構示意圖,於本實施例中,喷墨頭2係為一長條狀結構 且包含喷墨晶片21、電連接片22以及喷孔板23,其中, 電連接片22係設置於喷墨晶片21中,且喷墨晶片21表面 上係具有複數個加熱器25 (如第2C圖所示),且喷孔板 23上係包含複數個對應於加熱器25的喷孔24,於本實施 例中,喷孔24的數量可為至少750個,加熱器25之數量亦 100109990 表單編號A0101 第7頁/共60頁 1002016866-0 201238777 相對地為至少750個,但不以此為限。於本實施例中,喷 墨頭2的組合喷孔解析度(res〇luti〇n)可為12〇〇點每英 吋(dpi),即沿著參考軸線1量測喷墨頭2的有效喷墨距 離為1 /1 200英吋。為了實現高解析度的功效,喷墨頭2上 之喷孔24可排列成為—個包含二排軸線之軸線組,以圖 中之X及Y來表示二排軸線之χ排軸線及¥排軸線且每排 軸線X及Υ均具有一中心線26,兩中心線26係互相平行且 均與參考軸線L平行,且每排軸線\及丫中的喷孔24相對於 其它排軸線X或Υ中的噴孔24是交錯排列的,且同一中心 線26之任兩噴孔24間的距離為ρ,不同中心線26相鄰之任 兩喷孔24間的垂直距離為ρ/2,於本實施例中ρ可為 1/600英吋,Ρ/2為1 /1200英吋,但不以此為限。 _請參閱第2C圖’其係為第2Β圖移除喷孔板後之結構示意 圖,如圖所示,本實施例之噴墨頭2之噴墨晶片21可為一 矩形結構,其長寬比係以1 1〜2 Q的區間為佳,中央供墨 流道27的長度Lsl及加熱器25放置之總長LH會隨著設計 者選用之喷墨頭2之解析度及加熱器25之數量而變化,於 本實施中,噴墨晶片21的寬度Wdl約為127〜2.31毫米 (mm),長度Ldl約為25.4毫米(_),總面積為 32.258〜58.674平方毫米(mm2),因此本案之喷墨頭2 之喷孔24的數量為至少75〇時,於喷孔㈣上每平方毫米 (mm2)約設置有 750/58.674 与 13〜75〇/32 258 与23 個喷孔24(未圖示),即喷墨頭2之解析度(加熱器個數/ 每平方毫米)為13〜23個加熱器25,且設置在喷墨晶片 21上的加熱器25將墨水以相互交錯排列的喷孔24中喷出 100109990 表單編號A0101 1002016866-0 201238777 [0014] Ο ο ’於放置加熱器25的每一行中有375個喷孔24。 請再參閱第2C圖,噴墨晶片21的表面上係具有一個長條 狀之中央供墨流道2 7以及分別設置於中央供墨流道2 7單 侧或兩侧邊之加熱器25,於此實施例中,以設置於兩側 為例,另外,中央供墨流道27的一側邊係包含排列著X排 加熱器2 5之第一縱向邊緣2 71,而另一侧邊則包含排列著 Υ排加熱器25之第二縱向邊緣272。於本實施例中,中央 供墨流道27的寬度Sdl可為0.497〜0.562毫米(mm), 長度Lsl可為21. 24毫米(mm )。其中’喷墨晶片21之總 面積扣除中央供墨流道27之面積後,即為喷墨晶片21之 佈線區域,此即為可設置内部-電路之區域:。 由於加熱器25係設置在高度緊密的喷墨頭2之喷墨晶片21 上’因此噴墨晶片21上的加熱器25密度為:每平方毫米( mm2) 10個加熱器以上,才可以使喷墨頭2的成本比其它 較少喷孔24的喷墨頭2更低。在本實施例中,噴墨晶片21 上每平方毫米(mm2)可具有13〜23個加熱器25,即加熱 器25的數量大約介於760至1350之間。加熱器25總數約 為1 000個為較佳值’因此喷墨晶片21上每平方毫米(j^2 )的加熱器25密度約為1 000/ ( 25.4xl.27)乓31〜 1000/ ( 25.4x2.31 )与 17。 [0015] 根據本案之構想,喷墨晶片21之可佈線面積佔喷墨晶片 21總面積之比值可依下列公式計算: ((喷墨晶片總面積)-(供墨流道不佈線面積))/(喷墨晶 片總面積) [0016] 於本實施例中,該比值即為((喷墨晶片21長度Ldl X噴 100109990 表單編號A0101 第9頁/共60頁 1002016866-0 201238777 墨晶片21寬度Wdl)-(中央供墨流道27長度Lsl χ中央 供墨流道27寬度Sdl)) / (喷墨晶片21長度Ldl X噴墨 晶片21寬度Wdl),由於喷墨晶片21之佈線區域之面積為 :2 0. 32平方毫米(25. 4x1. 27-0. 497x21. 24)〜48. 11 平方毫米(25. 4x2· 31-0.562x21.24),因此喷墨晶片 21可佈線面積佔喷墨晶片21總面積之比值為2 0. 3 2平方 毫米/32. 258平方毫米=6 3%〜48. 11平方毫米/58. 6 74平 方毫米=82%,而本實施例之中央供墨流道27寬度Sdl最 佳可為0. 4 9 7〜0 · 5 5 2毫米,則可佈線面積佔喷墨晶片21 總面積之最佳比值為2〇. 32平方毫米/32. 258平方毫米 = 63%〜46. 939平方毫米/58. 674平方毫米=80%。 [0017] 一般而言,為了使重量輕的墨滴能夠保持高速列印,加 熱器25需以很高的頻率運作,本案之噴墨頭2藉由高噴射 頻率結合高密度交錯排列的加熱器25的方式來提供高解 析度的高速列印,本案之噴墨頭2的加熱器25使用的喷射 頻率超過20千赫茲(k Hz) ’較佳的頻率範圍為22至26千 赫茲’本實施例係以24千赫兹的工作頻率運作。 [_言青參閲第3A圖,其係為本案第二較佳實施例之彩色噴墨 頭之結構示意圖。其中第3A圖所示之喷墨頭3係為一簡化 後之結構示意圖,於本實施例中,噴墨頭3係為一長條狀 結構且包含喷墨晶片3卜電連接片32、噴孔板33,其中 ’電連接片32係設置於喷墨晶片31中,且喷墨晶片31包 含具三個軸線陣列34的加熱器35 (如第3b圖所示),且 喷孔板33上係包含複數個對應於加熱器35的喷孔331,其 主要藉由一定的列印解析度來進行多道的多色列印且 100109990 表單編號A0101 第10頁/共60頁 1002016866-0 201238777 [0019] Ο[0012] Some exemplary embodiments embodying the features and advantages of the present invention are described in detail in the following description. It is to be understood that the present invention is capable of various modifications in various aspects, and is not intended to limit the scope of the invention. Please refer to Fig. 2, which is a schematic cross-sectional view of the ink cartridge of the preferred embodiment of the present invention. As shown in FIG. 2, the ink cartridge 1 is composed of a body la and a cover lb. The body 1a and the cover lb are defined to form at least one ink supply slot lc, such as an ink supply tank, two ink supply slots or three. An ink supply tank for storing ink, and the ink can be introduced into one of the ink supply heads (not shown) via one of the ink supply channels Id provided in the body la. The ink cartridge 1 further includes a flexible circuit carrier le, one side of the flexible circuit carrier le is connected to an electrical connection piece (not shown) of the inkjet head 2, and the other side of the flexible circuit carrier le is provided with a plurality of metals A contact (not shown) is attached to one side of the body 1a for bending, and is connected to an inkjet control circuit (not shown) of the inkjet printer and the inkjet head 2, and the ink cartridge 1 is transmitted through The plurality of metal contacts of the flexible circuit carrier 1 receive the control signals of the inkjet control circuit of the system and start to act as a result of the control signal. Please refer to FIG. 2B, which is a schematic structural view of a monochrome inkjet head according to a first preferred embodiment of the present invention. The ink jet head 2 shown in FIG. 2B is a simplified schematic structural view. In the present embodiment, the ink jet head 2 is an elongated structure and includes an inkjet wafer 21, an electrical connecting sheet 22, and an orifice. The plate 23, wherein the electrical connection piece 22 is disposed in the inkjet wafer 21, and the surface of the inkjet wafer 21 has a plurality of heaters 25 (as shown in FIG. 2C), and the orifice plate 23 includes a plurality of In the embodiment, the number of the injection holes 24 may be at least 750, and the number of the heaters 25 is also 100109990. Form number A0101 Page 7 / Total 60 pages 1002016866-0 201238777 Relative The land is at least 750, but not limited to this. In the present embodiment, the combined orifice resolution of the inkjet head 2 can be 12 〇〇 per inch (dpi), that is, the effective measurement of the inkjet head 2 along the reference axis 1. The inkjet distance is 1 / 1 200 inches. In order to achieve the high-resolution effect, the nozzle holes 24 on the ink-jet head 2 can be arranged into a group of axes including two rows of axes, and X and Y in the figure represent the axis of the two rows of axes and the axis of the row. And each row axis X and Υ have a center line 26, the two center lines 26 are parallel to each other and are parallel to the reference axis L, and the orifices 24 in each row axis and 丫 are opposite to the other row axis X or Υ The nozzle holes 24 are staggered, and the distance between any two nozzle holes 24 of the same center line 26 is ρ, and the vertical distance between any two nozzle holes 24 adjacent to the center line 26 is ρ/2. In the example, ρ can be 1/600 inch, Ρ/2 is 1 /1200 inch, but not limited to this. _Please refer to FIG. 2C, which is a schematic view of the second embodiment after removing the orifice plate. As shown in the figure, the inkjet wafer 21 of the inkjet head 2 of the present embodiment may have a rectangular structure with a length and a width. Preferably, the ratio is 1 1 to 2 Q, and the length Ls1 of the central ink supply passage 27 and the total length LH of the heater 25 are set according to the resolution of the ink jet head 2 selected by the designer and the number of heaters 25. In this embodiment, the width Wdl of the inkjet wafer 21 is about 127 to 2.31 millimeters (mm), the length Ldl is about 25.4 millimeters (-), and the total area is 32.258 to 58.674 square millimeters (mm2), so the present case When the number of the injection holes 24 of the inkjet head 2 is at least 75 ,, about 750/58.674 and 13 to 75 〇/32 258 and 23 injection holes 24 are provided per square millimeter (mm 2 ) on the injection hole (4) (not shown). The resolution (the number of heaters per square millimeter) of the inkjet head 2 is 13 to 23 heaters 25, and the heater 25 disposed on the inkjet wafer 21 sprays the inks in a staggered manner. The hole 24 is ejected 100109990. Form number A0101 1002016866-0 201238777 [0014] Ο ο ' There are 375 nozzle holes 24 in each row of the heater 25 placedReferring to FIG. 2C, the surface of the inkjet wafer 21 has a strip-shaped central ink supply flow path 27 and heaters 25 respectively disposed on one side or both sides of the central ink supply flow path 27. In this embodiment, the two sides of the central ink supply flow path 27 include a first longitudinal edge 2 71 in which the X-row heaters 25 are arranged, and the other side is disposed on the two sides. A second longitudinal edge 272 is arranged that is aligned with the row of heaters 25. In the present embodiment, the central ink supply path 27 may have a width Sdl of 0.497 to 0.562 mm (mm) and a length Ls1 of 21.24 mm (mm). Where the total area of the ink-jet wafer 21 is subtracted from the area of the central ink supply path 27, it is the wiring area of the ink-jet wafer 21, which is the area where the internal-circuit can be disposed: Since the heater 25 is disposed on the inkjet wafer 21 of the highly compact inkjet head 2, the density of the heater 25 on the inkjet wafer 21 is: 10 heaters per square millimeter (mm2), so that the spray can be made. The cost of the ink head 2 is lower than that of the ink jet head 2 of the other less orifices 24. In the present embodiment, the ink-jet wafer 21 may have 13 to 23 heaters 25 per square millimeter (mm2), i.e., the number of heaters 25 is approximately between 760 and 1350. The total number of heaters 25 is about 1 000, which is a preferred value 'so the density of heaters 25 per square millimeter (j^2) on the inkjet wafer 21 is about 1 000 / (25.4 x 14.27). Pong 31 to 1000 / ( 25.4x2.31) and 17. [0015] According to the concept of the present invention, the ratio of the routable area of the inkjet wafer 21 to the total area of the inkjet wafer 21 can be calculated according to the following formula: ((total area of the inkjet wafer) - (the area of the ink supply flow path is not wired)) / (Total area of inkjet wafer) [0016] In the present embodiment, the ratio is ((Inkjet wafer 21 length Ldl X spray 100109990 Form number A0101 Page 9 / Total 60 pages 1002016866-0 201238777 Ink wafer 21 width Wdl) - (central ink supply passage 27 length Lsl χ central ink supply flow path 27 width Sd1)) / (inkjet wafer 21 length Ldl X inkjet wafer 21 width Wdl), due to the area of the wiring region of the inkjet wafer 21 It is: 2 0. 32 square millimeters (25. 4x1. 27-0. 497x21. 24) ~ 48. 11 square millimeters (25. 4x2 · 31-0.562x21.24), so the inkjet wafer 21 can be used for wiring area The ratio of the total area of the ink chip 21 is 20.3 2 mm 2 / 32. 258 mm 2 = 6 3% to 48. 11 mm 2 / 58. 6 74 mm 2 = 82%, and the central ink supply of this embodiment The optimum width of the flow path 27 width Sdl may be 0.49 7~0 · 5 5 2 mm, and the optimum ratio of the routable area to the total area of the ink jet chip 21 is 2 〇. 32 mm 2 / 32. 258 square millimeters = 63% to 46. 939 square millimeters / 58. 674 square millimeters = 80%. [0017] In general, in order to enable high-speed printing of light-weight ink droplets, the heater 25 needs to operate at a high frequency, and the inkjet head 2 of the present invention incorporates a high-density staggered heater by a high jetting frequency. 25 way to provide high-resolution high-speed printing, the heater 25 of the inkjet head 2 of the present invention uses an ejection frequency exceeding 20 kHz (better frequency range of 22 to 26 kHz). The example operates at a working frequency of 24 kHz. [_言青] Referring to Figure 3A, it is a schematic structural view of a color inkjet head according to a second preferred embodiment of the present invention. The ink jet head 3 shown in FIG. 3A is a simplified schematic structural view. In the embodiment, the ink jet head 3 is a long strip structure and includes an inkjet wafer 3, an electrical connecting piece 32, and a spray. The orifice plate 33, wherein the 'electrical connection piece 32 is disposed in the inkjet wafer 31, and the inkjet wafer 31 comprises a heater 35 having three axial arrays 34 (as shown in FIG. 3b), and on the orifice plate 33 The system includes a plurality of nozzle holes 331 corresponding to the heaters 35, which are mainly multi-color printing by a certain printing resolution and 100109990 Form No. A0101 Page 10 / Total 60 pages 1002016866-0 201238777 [ 0019] Ο

[0020] 噴墨媒體軸線的點間距可小於或等於軸線上之喷孔的間 距。 請參閱第3Β、3C圖,其中第3Β圖係為第3Α圖移除喷孔板 後之結構示意圖,第3C圖係為第3Α圖移除部分喷孔板後 之結構示意圖。如圖所示,本實施例之喷墨頭3之喷墨晶 片31的表面上的加熱器35係沿著與參考軸線L之延伸方向 相同的軸線陣列34設置,並相對參考軸線L之橫向或側向 相互隔離,另外,以第2Α圖之墨水匣1為基礎,於此實施 例中,墨水匣1可設置有三個供墨槽lc,分別儲存不同顏 色之墨水,而喷墨晶片31可對應每一供墨槽lc設置至少 一供墨流道36,喷墨晶片31上更具有三個與參考軸線L之 方向平行的供墨流道36,主要用來傳送不同顏色的墨水 ,且彼此之間相對參考轴線L的垂直方向並排分隔,進而 為對應的三個軸線陣列34的加熱器35提供相同或不同顏 色的墨水,每一轴線陣列34可為但不限為雙排設置於供 墨流道36兩侧邊之同色墨水加熱器35所組成且均平行於 參考軸線L的方向,且雙排加熱器35之間以交錯排列的方 式設置於相對應之供墨流道36的兩側邊,故本實施例之 喷墨晶片31上係具有6排(例如2排x3色)的加熱器排數。 每一轴線陣列34中可包含1 500〜2000個加熱器35,於此 實施例中,即每一排的加熱器35可由1 500〜2000個加熱 器35所組成,因此加熱器35的總數可為4500〜6000個, 且每一軸線陣列34中同一排且兩相鄰之加熱器35間的距 離為P,不同排之相鄰兩加熱器35間的垂直距離為P/2, 於本實施例中P可為1/60 0英吋,而P/2為1/1200英吋。 100109990 表單編號A0101 第11頁/共60頁 1002016866-0 201238777 在一些實施例中,每一軸線陣列34中同一排且兩相鄰之 加熱器35間的距離可為1 /600~1 /1 200英对,不同排之相 鄰兩加熱器35間的垂直距離可為1/1200〜1/2400英忖。 [0021] 本實施例中喷墨頭3之喷墨晶片31可為一矩形結構,其長 寬比係以6〜2 0之間為佳,喷墨晶片31的寬度w d 2約為 1.32〜4. 5毫米(nun),長度Ld2約為26. 5毫米(mm) ,總面積為34. 98〜119.25毫米(mm),長寬比為 (Ld2/ Wd2):6(26.5/4.5)〜20(26.5/1.32),因此本 案之喷墨頭3於喷孔板3 3上每平方..毫米(m m 2 )約設置有 4500/1 1 9. 25 %38〜6000/34. 98与 170個噴孔34 (未圖 示)’即嘴墨頭3之解析度(加熱器個數/每平方毫米)為 38〜170個加熱器35,且設置在喷墨晶片31上的加熱器 35將墨水由相互交錯排列的喷孔34中喷出。 [0022] 另外,於此實施例中,每一供墨流道36的寬度Sd2可為 0.346〜0.875毫米(111111),長度1^2可為12.8毫米(111111 ),加熱器25放置之總長Lr2可為12毫米(mm),且相 鄰兩供墨流道36的間距Cd可為1.27毫米(mm)。另一些 實施例中,相鄰兩供墨流道36的間距Cd可為1. 27毫米( mm),以及每一供墨流道36長度Ls2可為12毫米(mm) 〜22毫米(mm)。其中,喷墨晶片31之總面積扣除三個 供墨流道36之面積後,即為喷墨晶片31之可佈線區域之 面積’此即為可設置内部電路之區域。 [0023]根據本案之構想,喷墨晶片31之可佈線面積佔噴墨晶片 31總面積之比值可由下列公式計算: ((喷墨晶片總面積)-(供墨流道不佈線面積))/(喷墨晶 100109990 表單編號A0101 第12頁/共60頁 1002016866-0 201238777 片總面積) [0024] 於本實施例中,該比值即為((噴墨晶片31長度Ld2 X喷 墨晶片31寬度Wd2)-(供墨流道36長度Ls2 X供墨流 道36寬度Sd2 X 3組供墨流道36)) /(喷墨晶片31長度 Ld2 X喷墨晶片31寬度Wd2) ’由於供墨流道36之長度為 12.8毫米(mm),寬度為0.346〜0.875毫米(mm), 噴墨晶片31之佈線區域之面積為21. 69平方毫米(26. 5x 1.32 - 12.8x0.346x3)〜85.65 平方毫米(26.5x4.5 Ο [0025] -1 2. 8x0. 875x3) ’因此噴墨晶月31可佈線面積佔喷墨 :丨丨 . :. v - 晶片31總面積之比值為21. 69平方毫米/34. 98平方毫米 = 62%〜85. 65平方毫米/119. 25平方毫米= 72%。 ❹ 於一些實施例中,依據相似於第3A圖及第3B圖所示喷墨 頭之結構與原理,當喷墨晶片31僅具有二個供墨流道36 時,且每一供墨流道的寬度Sd2可為〇 533 ~1. 072毫米 ,該比值即為((喷墨晶片31長度Ld2 X喷墓晶片31寬度 Wd2)-(供墨流道36長度Ls2 X:供墨流道36寬度Sd2 X 2組供墨流道36)) /(喷墨晶片31長度Ld2 X喷墨晶片 31寬度Wd2),此時喷墨晶片31之可佈線區域之面積係為 21.34 平方毫米(26.5x1.32 - 12.8x0.533x2)〜 91.82 平方毫米(26.5x4.5 - 12.8x1.072x2),因此喷 墨晶片31可佈線面積佔喷墨晶片31總面積之比值為 21. 34平方毫米/34. 98平方毫米=61 %〜91. 82平方毫米/ 119. 25平方毫米=77%。於本實施例中,較佳之供墨流道 36長度Ls2可為:12. 8〜13. 9毫米,則可佈線面積佔喷 墨晶片31總面積之最佳比值為89. 437平方毫米/11 9. 25 100109990 表單編號A0101 第13頁/共60頁 1002016866-0 201238777 平方毫米=75%〜21. 34平方毫米/34. 98平方毫米=61%。 [_當喷墨晶片21、31上之不可佈線面積,即供墨流道25、 36之面積已固定時,若能夠減少於噴墨晶片、μ上之 電路配置之面積及接點數目,即減少佈線面積,噴墨晶 片21、31之面積可以對應更為減少,更可使噴墨頭的尺 寸相對縮小,進而降低生產噴墨頭結構的成本,以下將 說明如何降低喷墨晶片之佈線面積。 [0027] 睛參閱第4圖,其係為喷墨印表機之噴墨控制電路與喷墨 晶片之連接架構示意圖。如第4圖齋示,設置在喷墨晶片 4 2之佈線區域上之内部電路(亦即喷墨控制電路)包含複 數個噴墨單元組43,而複數個喷墨單元組43的每一個噴 墨單元包含一個加熱器(未圖示),且加熱器設置於對應 之喷孔,運作時,於喷墨印表機(未圖示)之喷墨控制 電路41將傳送複數個電壓信號p(1)~p(nl)、複數個位址 信號A(l)〜A(n2)以及複數個選舞信號c(1)~c(n3)至喷 墨晶片4 2之複數個喷墨單元組4 3,以控制整個喷墨頭的 運作。 [0028] 請參閱第5圖,其係為第4圖所示之其中一個喷墨單元組 之電路方塊示意圖。如第5圖所示,本案喷墨單元組43至 少包括第一喷墨單元431及第二噴墨單元432,其中第一 喷墨單元4 31係接收一電壓信號p (1 )、複數個位址信號 A ( η -1 )、A ( η )與A ( η +1) ’例如當η = 2時,即位址信號 A(l)、Α(2)與Α(3) ’以及一選擇信號c(i)。第二喷墨 單元432係接收該電壓信號ρ(ι)以及該複數個位址信號 A(l)、A(2)與A(3)。當選擇信號(:〇)致能(enabled) 100109990 表單編號A0101 1002016866-0 第14頁/共60頁 201238777 時,例如為相對邏輯高電位(Η i gh )之狀態,第一噴墨單 元431係因應電壓信號P(l)及複數個位址信號A(l)、 A(2)與A(3),以產生加熱之作動,而當選擇信號c(〇禁 能時,例如為相對邏輯低電位(Low)之狀態,第二噴墨單 元432係因應電壓信號P(l)及複數個位址信號A(l)、 A(2)與A(3),以產生加熱之作動。 Ο 請參閱第6A圖’其係為本案第5圖所示之喷墨單元組之内 部電路架構示意圖。如第6A圖所示,於本實施例中,第 一喷墨單元431包括第一開關岑件Ml〜第八開關元件M8及 第一加熱元件H1 ’其中第一開關元伴Ml〜第三開關元件M3 . . ...H ... ... ...... .... ·.... ... ..: ; . 及第五開關元件Μ 5 ~第八開關元件Μ 8較佳為N - Μ 0 S開關元 件,而第四開關元件Μ4較佳為P-M0S開關元件。 [0029] Ο 於本實施例中’第一開關元件Ml之基體(Base)與其源極 (Source)彼此連接後再連接於一接地端433,且第一開 關元件Ml之閘極(Gate)接收複數個位址信號之第一位址 信號A(l)。第二開關元件M2之基體(Base)與其源極 (Source)彼此連接後再連接於接地端433,且第二開關 元件M2之閘極(Gate)接收複數個位址信號之第三位址信 號A(3)。第三開關元件M3之基邀(Base)與其源極 (Source)彼此連接後再連接於接地端433。第四開關元 件M4之基體(Base)與其汲極(Drain)彼此連接並接收複 數個位址信號之第二位址信號A(2),且第四開關元件M4 之閘極(Gate)接收電壓信號ρ(ι)。第五開關元件M5之基 體(Base)與其源極(Source)彼此連接後再連接於接地端 433,第五開關元件M5之閘極(Gate)接收電壓信號P(l) 100109990 表單編號A0101 第15頁/共60頁 1002016866-0 201238777 ,以及第五開關元件M5之汲極(Drain)與第四開關元件 M4之源極(Source)共同連接於一第一共接點4311,且第 一共接點4311連接於第三開關元件M3之閘極(Gate)。 [0030] 於本實施例中,第四開關元件M4與第五開關元件M5係共 同組合成一反向元件,例如反向器,其作動方式為,當 反向元件之輸入端,即第四開關元件M4之閘極(Gate)與 第五開關元件M5之閘極(Gate)的連接端,所接收之電壓 信號P(l)為相對邏輯高電位時,即V(P(1)) = 1,第四開 關元件M4會截止且第五開關元件M5會導通,此時由於第 五開關元件M5之源極(Source)連接於接地端433,因此 反向元件之輸出端,即第一共接點4311,其電能V(Ka) 將會降至相對邏輯低電位,即V(Ka) = 0。 [0031] 相反地,當反向元件之輸入端所接收之電壓信號P(l)為 相對邏輯低電位時,即V(P(1)) = 0,第四開關元件M4將 因應其汲極(Drain)所接收之第二位址信號A(2)導通或 截止,也就是說,若第二位址信號A(2)為相對邏輯高電 位時,即V(A(2)) = 1,第四開關元件M4導通,此時第五 開關元件M5截止,因此反向元件之輸出端,即第一共接 點4311,其電能V(Ka)將會升至相對邏輯高電位,即 V(Ka) = l。由上述可知,當反向元件之輸入端為相對邏輯 高電位時,其輸出端為相對邏輯低電位,反之,當反向 元件之輸入端為相對邏輯低電位時,其輸出端為相對邏 輯高電位,此即為反向元件之動作原理。於本實施例中 ,反向元件之輸出電能係用以控制第七開關元件M7之導 通或截止。 100109990 表單編號A0101 第16頁/共60頁 1002016866-0 201238777 . .[0032] Ο 第六開關元件Μ6之基體(Base)連接於第三開關元件JJ3之 基體(Base) ’且第六開關元件M6之閘極(Gate)與其汲極 (Drain)分別接收電壓信號p(i)與第二位址信號人(2)。 第七開關元件M7之基體(Base)亦連接於第三開關元件!^ 之基體(Base),第七開關元件M7之汲極(Drain)連接於 第六開關元件M6之源極(Source),以及第七開關元件M7 之閘極(Gate)接收選擇信號c(l),例如用以驅動n-mos 開關元件之控制信號。第八開關元件M8之基體(Base)與 其源極(Source)彼此連接並連接於接地端433,而第八 開關元件M8之閘極(Gate)、第一開關元件Ml之汲極 (Drain)、第二開關元件M2之汲極(Drain)、第三開關 元件M3之汲極(Drain)與第七開關元件M7之源極 (Source)係共同連接於一第二共接點4312。此外,第一 加熱元件H1之一端接收電壓信號p(i),立其另一端連接 於第八開關元件M8之没極(Drain)。 · .丨:: [0033] Ο 於本實施例中’第二喷墨單元432包括第九開關元件M9〜 第十四開關元件Ml 4以及第二加熱元件H2,其中第九開關 元件M9〜第十一開關元件Ml 1及第十三開關元件Ml 3~第十 四開關元件M14較佳為N-M0S開關元件,而第十二開關元 件M12較佳為P-M0S開關元件。 [0034] 於本實施例中,第九開關元件M9之基體(Base)與其源極 (Source)彼此連接後再連接於接地端433,且第九開關 元件M9之閘極(Gate)接收第一位址信號A(l)。第十開關 元件M10之基體(Base)與其源極(Source)彼此連接後再 連接於接地端433,且第十開關元件M10之閘極(Gate)接 100109990 表單編號A0101 第17頁/共60頁 1002016866-0 201238777 收第三位址信號A(3)。第十一開關元件Mil之基體 (Base)與其源極(Source)彼此連接後再連接於接地端 433 ’且第十一開關元件Mil之閘極(Gate)連接於第一喷 墨單元431之第二共接點4312。 [0035] [0036] 第十二開關元件Ml2之基體(Base)與其汲極(Drain)彼 此連接並接收第二位址信號A(2),且第十二開關元件M12 之閘極(Gate)連接於第一喷墨單元431之第二共接點 4312。第十三開關元件M13之基體(Base)連接於第十一 開關元件Mil之基體(Base),第十三開關元件以3之汲極 (Drain)連接於第十二開關元件Ml2之源極(Source), 以及第十三開關元件Μ13之閘極(Gate)接收電壓信號 P(l) ◊第十四開關元件M14之基體(Base)與其源極 (Source)彼此連接後再連接於接地端433,而第十四開 關元件M14之閘極(Gate)、第九開關元件1|9之汲極 (Drain)、第十開關元件Ml0之沒極(Drain)、第Ί —開 關元件Mil之汲極(Drain)奐第十三開關元件M13之源極 (Source)係共同連接於一第三共接點4321。此外,第二 加熱元件H2之一端接收電壓信號ρ(ι),且其另一端連接 於第十四開關元件Μ14之汲極(Draiη)。 請參閱第6Β圖並配合第6Α圖’其中第6Β圖係為第6Α圖所 示之噴墨單元組之電路作動信號順向時序示意圖。如第 6Α、6Β圖所示,根據本案之構想,當電壓信號ρ(ι)、選 擇信號C(l)與第二位址信號α(2)同時為相對邏輯高電位 之情況下,即V(P(1)) = 1、V(C(1)) = 1、V(A(2)) = 1, 第六開關元件M6與第七開關元件M7將導通,於此同時, 100109990 表單編號A0101 第18頁/共60頁 1002016866-0 201238777 第二共接點431 2之電能V(Kb)將升至第二位址信號A( 2) 之電位,且第二位址信號A(2)依序通過第六開關元件M6 與第七開關元件M7亦使第八開關元件M8導通,再者,由 於第八開關元件M8之源極(Source)與接地端433連接, 因此使電壓信號P (1)選擇性地提供電能至第一加熱元件 H1,以選擇性地驅動第一加熱元件H1進行加熱之作動。 D [0037] 舉例而言,當電壓信號P (1)為相對邏輯高電位時,即 V(P(1)) = 1,電壓信號P(l)會驅動第一加熱元件H1加熱 ,並使流經第一加熱元件H1之墨水經由對應之喷孔(未圖 示)喷塗至列印載體,例如紙張,以順利完成喷墨的動作 另一方面,由於此時第二共接點4312與第二位址信號 A(2)皆為相對邏輯高電位,使得第二喷墨單元432之第十 二開關元件M12截止,進而使第十四開關元件M14亦為截 止,因此電壓信號P(l)無法提供電能至第二加熱元件H2 ,而使第二加熱元件Η 2無法被囉動加熱。[0020] The dot pitch of the ink jet media axis may be less than or equal to the pitch of the orifices on the axis. Please refer to Figures 3 and 3C. The 3rd diagram is the schematic diagram of the structure after removing the orifice plate in Figure 3, and the 3C diagram is the schematic diagram of the 3rd diagram after removing part of the orifice plate. As shown in the figure, the heaters 35 on the surface of the ink-jet wafer 31 of the ink-jet head 3 of the present embodiment are disposed along the same axis array 34 as the direction in which the reference axis L extends, and are transverse to the reference axis L or In the embodiment, the ink cartridge 1 can be provided with three ink supply slots lc for storing inks of different colors, and the inkjet wafer 31 can correspond to each other. Each ink supply tank lc is provided with at least one ink supply flow path 36, and the ink supply wafer 31 further has three ink supply flow paths 36 parallel to the direction of the reference axis L, mainly for conveying inks of different colors, and mutually The heaters 35 of the corresponding three axis arrays 34 are provided with the same or different colors of ink, which are spaced apart from each other in the vertical direction of the reference axis L. Each axis array 34 may be provided for, but not limited to, two rows. The same color ink heaters 35 on both sides of the ink flow path 36 are formed and are parallel to the direction of the reference axis L, and the two rows of heaters 35 are disposed in a staggered manner between the corresponding ink supply channels 36. Side, so the inkjet of this embodiment 6 based on the sheet 31 having rows (e.g. two rows of colors x3) heater rows. Each axis array 34 may include 1,500 to 2,000 heaters 35. In this embodiment, each row of heaters 35 may be composed of 1,500 to 2,000 heaters 35, so the total number of heaters 35 It can be 4500~6000, and the distance between the two rows in each axis array 34 and the two adjacent heaters 35 is P, and the vertical distance between two adjacent heaters 35 in different rows is P/2. In the embodiment, P may be 1/60 0 inch and P/2 is 1/1200 inch. 100109990 Form No. A0101 Page 11 of 60 1002016866-0 201238777 In some embodiments, the distance between the same row and two adjacent heaters 35 in each axis array 34 can be between 1 / 600 and 1 / 1 200 In English, the vertical distance between two adjacent heaters 35 of different rows may be 1/1200 to 1/2400 inches. [0021] The inkjet wafer 31 of the inkjet head 3 in this embodiment may have a rectangular structure, and the aspect ratio thereof is preferably between 6 and 20, and the width wd 2 of the inkjet wafer 31 is about 1.32 to 4. 5毫米(nun), length Ld2 is about 26.5 mm (mm), total area is 34. 98~119.25 mm (mm), aspect ratio is (Ld2/Wd2): 6 (26.5/4.5)~20 (26.5/1.32), so the inkjet head 3 of the present invention is provided with about 4500/1 1 9. 25 % 38 to 6000/34. 98 and 170 per square millimeter (mm 2 ) on the orifice plate 3 3 . The orifice 34 (not shown), that is, the resolution of the nozzle head 3 (number of heaters per square millimeter) is 38 to 170 heaters 35, and the heater 35 provided on the inkjet wafer 31 inks It is ejected from the nozzle holes 34 which are alternately arranged. [0022] In addition, in this embodiment, the width Sd2 of each ink supply flow path 36 may be 0.346 to 0.875 mm (111111), the length 1^2 may be 12.8 mm (111111), and the total length Lr2 of the heater 25 is placed. It may be 12 millimeters (mm), and the pitch Cd of the adjacent two ink supply channels 36 may be 1.27 millimeters (mm). In other embodiments, the pitch Cd of the adjacent two ink supply channels 36 may be 1.27 mm (mm), and the length Ls2 of each ink supply channel 36 may be 12 mm (mm) to 22 mm (mm). . Here, the total area of the ink-jet wafer 31 minus the area of the three ink supply channels 36 is the area of the wiring area of the ink-jet wafer 31, which is the area where the internal circuit can be disposed. [0023] According to the concept of the present invention, the ratio of the routable area of the ink-jet wafer 31 to the total area of the ink-jet wafer 31 can be calculated by the following formula: ((total area of the ink-jet wafer) - (the area of the ink supply path is not wired)) / (Inkjet Crystal 100109990 Form No. A0101 Page 12/Total 60 Page 1002016866-0 201238777 Total Area of Sheet) [0024] In the present embodiment, the ratio is ((Inkjet wafer 31 length Ld2 X inkjet wafer 31 width) Wd2)-(Ink supply passage 36 length Ls2 X Ink supply passage 36 width Sd2 X 3 group Ink supply passage 36)) / (Inkjet wafer 31 length Ld2 X Inkjet wafer 31 width Wd2) 'Because of the ink supply flow The length of the track 36 is 12.8 mm (mm), the width is 0.346 to 0.875 mm (mm), and the area of the wiring area of the ink jet chip 31 is 21.69 mm 2 (26. 5x 1.32 - 12.8 x 0.346 x 3) ~ 85.65 square Mm (26.5x4.5 Ο [0025] -1 2. 8x0. 875x3) 'Therefore, the inkjet crystal 31 can be used to cover the ink area: 丨丨. :. v - the ratio of the total area of the wafer 31 is 21. 69 square Mm / 34. 98 square mm = 62% ~ 85. 65 square mm / 119. 25 square mm = 72%. In some embodiments, according to the structure and principle of the ink jet head similar to those shown in FIGS. 3A and 3B, when the ink jet wafer 31 has only two ink supply flow paths 36, and each ink supply flow path The width Sd2 may be 〇533 to 1.072 mm, and the ratio is ((inking wafer 31 length Ld2 X blasting wafer 31 width Wd2) - (ink supply passage 36 length Ls2 X: ink supply passage 36 width) Sd2 X 2 group ink supply path 36)) / (inking wafer 31 length Ld2 X inkjet wafer 31 width Wd2), at this time, the area of the wiring area of the inkjet wafer 31 is 21.34 square millimeters (26.5 x 1.32) - 12.8x0.533x2) ~ 91.82 square millimeters (26.5x4.5 - 12.8x1.072x2), so the ratio of the wiring area of the inkjet wafer 31 to the total area of the inkjet wafer 31 is 21. 34 square millimeters / 34. 98 square Mm = 61% ~ 91. 82 square mm / 119. 25 square mm = 77%. 437平方毫米/11 The optimum ratio of the area of the ink-distributing area of the ink-jet wafer 31 is 89. 437 square mm / 11 9. 25 100109990 Form No. A0101 Page 13 of 60 1002016866-0 201238777 Square mm = 75% ~ 21. 34 mm 2 / 34. 98 mm 2 = 61%. [_When the area of the ink-discharged wafers 21, 31 is not rewritable, that is, when the area of the ink supply channels 25, 36 is fixed, if the area of the circuit arrangement and the number of contacts on the ink-jet wafer, μ can be reduced, By reducing the wiring area, the area of the inkjet wafers 21, 31 can be correspondingly reduced, and the size of the inkjet head can be relatively reduced, thereby reducing the cost of manufacturing the inkjet head structure. How to reduce the wiring area of the inkjet wafer will be explained below. . [0027] Referring to FIG. 4, it is a schematic diagram of a connection structure of an inkjet control circuit and an inkjet wafer of an inkjet printer. As shown in FIG. 4, the internal circuit (i.e., the inkjet control circuit) disposed on the wiring area of the ink-jet wafer 42 includes a plurality of ink-jet unit groups 43, and each of the plurality of ink-jet unit groups 43 is sprayed. The ink unit includes a heater (not shown), and the heater is disposed in the corresponding nozzle. During operation, the inkjet control circuit 41 of the inkjet printer (not shown) transmits a plurality of voltage signals p ( 1) ~p(nl), a plurality of address signals A(l)~A(n2), and a plurality of ejection signals c(1)~c(n3) to a plurality of inkjet unit groups of the inkjet wafer 4 4 3, to control the operation of the entire inkjet head. [0028] Please refer to FIG. 5, which is a circuit block diagram of one of the ink jet unit groups shown in FIG. 4. As shown in FIG. 5, the inkjet unit group 43 of the present invention includes at least a first inkjet unit 431 and a second inkjet unit 432, wherein the first inkjet unit 431 receives a voltage signal p(1), a plurality of bits. Address signals A ( η -1 ), A ( η ) and A ( η +1) ', for example, when η = 2, that is, address signals A(l), Α(2) and Α(3)', and a selection signal c(i). The second ink jet unit 432 receives the voltage signal ρ(ι) and the plurality of address signals A(1), A(2), and A(3). When the selection signal (:〇) is enabled (enabled) 100109990, the form number A0101 1002016866-0, page 14 / page 60, 201238777, for example, the state of the relative logic high potential (Η i gh ), the first ink ejection unit 431 is Corresponding to the voltage signal P(l) and the plurality of address signals A(l), A(2) and A(3) to generate heating, and when selecting the signal c (forbidden energy, for example, relatively low logic) In the state of the potential (Low), the second ink-ejection unit 432 responds to the voltage signal P(l) and the plurality of address signals A(1), A(2), and A(3) to generate heating. Referring to FIG. 6A, FIG. 6 is a schematic diagram of the internal circuit structure of the ink jet unit group shown in FIG. 5 of the present invention. As shown in FIG. 6A, in the embodiment, the first ink jet unit 431 includes the first switch element. M1~8th switching element M8 and first heating element H1', wherein the first switching element is accompanied by M1~3rd switching element M3 . . . . . . . . . . . .... . . . and the fifth switching element Μ 5 to the eighth switching element Μ 8 are preferably N - Μ 0 S switching elements, and the fourth switching element Μ 4 is preferably a P-M0S switch Component [0029] 本 In this implementation The base of the first switching element M1 and its source are connected to each other and then connected to a ground terminal 433, and the gate of the first switching element M1 receives the first of a plurality of address signals. Address signal A(l). The base of the second switching element M2 is connected to the source thereof and then connected to the ground terminal 433, and the gate of the second switching element M2 receives a plurality of bits. The third address signal A(3) of the address signal. The base of the third switching element M3 is connected to the source thereof and then connected to the ground terminal 433. The base of the fourth switching element M4 (Base) The second address signal A(2) connected to the plurality of address signals is connected to the drain Drain, and the gate of the fourth switching element M4 receives the voltage signal ρ(ι). The base of M5 and its source are connected to each other and then connected to ground 433. The gate of fifth switching element M5 receives voltage signal P(l) 100109990 Form No. A0101 Page 15 of 60 Page 1002016866-0 201238777, and the drain of the fifth switching element M5 and the fourth switching element The source of the device M4 is commonly connected to a first common contact 4311, and the first common contact 4311 is connected to the gate of the third switching element M3. [0030] In this embodiment, the fourth switching element M4 and the fifth switching element M5 are combined to form a reverse component, such as an inverter, which is actuated by the input terminal of the reverse component, that is, the fourth switch. The connection between the gate of the element M4 and the gate of the fifth switching element M5, when the received voltage signal P(l) is relatively logic high, that is, V(P(1)) = 1 The fourth switching element M4 is turned off and the fifth switching element M5 is turned on. At this time, since the source of the fifth switching element M5 is connected to the ground terminal 433, the output end of the opposite element, that is, the first common connection At point 4311, its power V(Ka) will drop to a relatively logic low, ie V(Ka) = 0. [0031] Conversely, when the voltage signal P(l) received at the input of the inverting element is relatively logic low, ie, V(P(1)) = 0, the fourth switching element M4 will respond to its drain (Drain) The received second address signal A(2) is turned on or off, that is, if the second address signal A(2) is relatively logic high, that is, V(A(2)) = 1 The fourth switching element M4 is turned on, and at this time, the fifth switching element M5 is turned off, so the output end of the inverting element, that is, the first common contact 4311, its electric energy V(Ka) will rise to a relatively logic high potential, that is, V (Ka) = l. It can be seen from the above that when the input end of the reverse component is relatively logic high, its output terminal is relatively logic low, and vice versa, when the input terminal of the reverse component is relatively logic low, its output terminal is relatively logic high. Potential, this is the principle of operation of the reverse component. In this embodiment, the output power of the inverting element is used to control the on or off of the seventh switching element M7. 100109990 Form No. A0101 Page 16 of 60 1002016866-0 201238777 . [0032] 基 The base of the sixth switching element Μ6 is connected to the base of the third switching element JJ3 and the sixth switching element M6 The gate (Gate) and its drain (Drain) receive the voltage signal p(i) and the second address signal (2), respectively. The base of the seventh switching element M7 is also connected to the base of the third switching element, and the drain of the seventh switching element M7 is connected to the source of the sixth switching element M6. And a gate of the seventh switching element M7 receives the selection signal c(1), for example, a control signal for driving the n-mos switching element. The base of the eighth switching element M8 and its source are connected to each other and connected to the ground terminal 433, and the gate of the eighth switching element M8, the drain of the first switching element M1, The drain of the second switching element M2, the drain of the third switching element M3, and the source of the seventh switching element M7 are commonly connected to a second common junction 4312. Further, one end of the first heating element H1 receives the voltage signal p(i), and the other end thereof is connected to the drain of the eighth switching element M8.丨:: [0033] In the present embodiment, the 'second ink-ejection unit 432 includes the ninth switching element M9 to the fourteenth switching element M14 and the second heating element H2, wherein the ninth switching element M9~ The eleventh switching element M1 1 and the thirteenth switching element M13 to the fourteenth switching element M14 are preferably N-MOS switching elements, and the twelfth switching element M12 is preferably a P-MOS switching element. [0034] In this embodiment, the base of the ninth switching element M9 and its source are connected to each other and then connected to the ground 433, and the gate of the ninth switching element M9 receives the first Address signal A(l). The base of the tenth switching element M10 and its source are connected to each other and then connected to the ground 433, and the gate of the tenth switching element M10 is connected to 100109990. Form No. A0101 Page 17 of 60 1002016866-0 201238777 Receive the third address signal A (3). The base of the eleventh switching element Mil is connected to the source thereof and then connected to the ground terminal 433 ′ and the gate of the eleventh switching element Mil is connected to the first inkjet unit 431 . A total of 4312 contacts. [0036] The base of the twelfth switching element M12 and its drain are connected to each other and receive the second address signal A(2), and the gate of the twelfth switching element M12 (Gate) Connected to the second common junction 4312 of the first inkjet unit 431. The base of the thirteenth switching element M13 is connected to the base of the eleventh switching element Mil, and the thirteenth switching element is connected to the source of the twelfth switching element M12 by a drain of 3 (Drain) Source), and the gate of the thirteenth switching element Μ13 receives the voltage signal P(l). The base of the fourteenth switching element M14 is connected to the source thereof and then connected to the ground 433. And the gate of the fourteenth switching element M14, the drain of the ninth switching element 1|9, the drain of the tenth switching element M10, and the drain of the third switching element Mil (Drain) The source of the thirteenth switching element M13 is commonly connected to a third common contact 4321. Further, one end of the second heating element H2 receives the voltage signal ρ(ι), and the other end thereof is connected to the drain of the fourteenth switching element Μ14. Please refer to Fig. 6 and cooperate with Fig. 6', where Fig. 6 is a schematic diagram of the sequence of circuit actuation signals of the ink jet unit group shown in Fig. 6. As shown in the sixth and sixth diagrams, according to the concept of the present case, when the voltage signal ρ(ι), the selection signal C(l) and the second address signal α(2) are simultaneously relatively high logic, that is, V (P(1)) = 1, V(C(1)) = 1, V(A(2)) = 1, the sixth switching element M6 and the seventh switching element M7 will be turned on, at the same time, 100109990 form number A0101 Page 18 of 60 1002016866-0 201238777 The second common contact 431 2 power V (Kb) will rise to the potential of the second address signal A ( 2), and the second address signal A (2) The eighth switching element M8 is also turned on in sequence through the sixth switching element M6 and the seventh switching element M7. Further, since the source of the eighth switching element M8 is connected to the ground terminal 433, the voltage signal P is 1) selectively supplying electrical energy to the first heating element H1 to selectively drive the first heating element H1 for heating. D [0037] For example, when the voltage signal P (1) is relatively logic high, that is, V (P (1)) = 1, the voltage signal P (l) will drive the first heating element H1 to heat, and The ink flowing through the first heating element H1 is sprayed to a printing carrier, such as paper, via a corresponding orifice (not shown) to smoothly complete the inkjet operation. On the other hand, since the second common contact 4312 is The second address signal A(2) is relatively logic high, so that the twelfth switching element M12 of the second inkjet unit 432 is turned off, and the fourteenth switching element M14 is also turned off, so the voltage signal P(l) It is impossible to supply electric power to the second heating element H2, so that the second heating element Η 2 cannot be heated by swaying.

另外,當選擇信號C(l)轉變為一相對邏輯低電位時,即 V(C(1)) = 0,第七開關元件M7及第八開關元件M8將截止 ,此時,由於電壓信號P(l)提供至第一加熱元件H1之電 能無法接地,使得第一加熱元件H1將停止進行該加熱之 作動。 [0038] 接著,若電壓信號P(l)轉變為一相對邏輯低電位時,即 V(P(1)) = 0,其經過反向元件後將使得第一共接點4311 之電能V(Ka)轉變為一相對邏輯高電位,即V(Ka) = l,或 者,當第一位址信號A(l)或第三位址信號A(3)其中之一 100109990 表單編號A0101 第19頁/共60頁 1002016866-0 201238777 位址信號為相對邏輯高電位時,即V(A(l)) = l或 V(A(3)) = 1,將分別使第一噴墨單元431之第三開關元件 M3、第一開關元件Ml或第二開關元件M2導通,因此殘留 於第二共接點4312上之電能V(Kb)將經由第三開關元件 M3、第一開關元件Ml或第二開關元件M2其中之一開關元 件被導引至接地端4 3 3,進而使第二共接點4 312上之電能 V(Kb)降至0V,且使第八開關元件回復到未動作之初 始狀態。 [_ 於本實施例中,當電壓信號P(l)再次轉變為相對邏輯高 電位及第一位址h號A('2)持續為相身邏輯高電位,且選 擇信號C(l)為相對邏輯低電位(即第二共接點4312亦為 相對邏輯低電位),即V(P(1)) = 1、v(a(2)) = 1、 v(c(i))=o(即v(Kb)=o)之情況下,第十二開關元件M12 及第十二開關元件M13將導通’於此同時,第三丑_接點 4321之電能V(Kc)將升至第二位址信號A(2)之電位,且 第二位址信號A( 2)可依序通過第十二開關元件M丨2及第十 三開關元件M13亦使第十四開關元件M14導通,再者,由 .... ::丨::.' . 於第十四開關元件M14之源極(Source)與接地端433連接 ,進而使電壓信號P(l)選擇性地提供電能至第二加熱元 件H2,同理,電壓信號P(1)用以驅動第二加熱元件⑽加 熱,並使流經第二加熱元件H2之墨水經由對應之喷孔喷 塗至列印載體上,以順利完成喷墨的動作。 [0040]於本實施例中,由於電壓信號P(l)、複數個位址信號 A(l)、A(2)及A(3)以及選擇信號C(1)具有週期性輸出 之特性,使得電路將週期性地重複上述之運作,並進行 100109990 表單編號A0101 第20頁/共60頁 S 1002016866-0 201238777 ❹ [0041]In addition, when the selection signal C(l) transitions to a relatively logic low potential, that is, V(C(1)) = 0, the seventh switching element M7 and the eighth switching element M8 are turned off, at this time, due to the voltage signal P (l) The electrical energy supplied to the first heating element H1 cannot be grounded, so that the first heating element H1 will stop the heating. [0038] Next, if the voltage signal P(l) transitions to a relatively logic low potential, that is, V(P(1)) = 0, after passing through the reverse component, the electrical energy V of the first common junction 4311 is obtained ( Ka) transitions to a relative logic high, ie V(Ka) = l, or, when the first address signal A(l) or the third address signal A(3) is one of 100109990, form number A0101, page 19 / Total 60 pages 1002016866-0 201238777 When the address signal is relatively logic high, ie V(A(l)) = l or V(A(3)) = 1, the first inkjet unit 431 will be respectively The three switching element M3, the first switching element M1 or the second switching element M2 are turned on, so the electric energy V(Kb) remaining on the second common contact 4312 will be via the third switching element M3, the first switching element M1 or the second One of the switching elements M2 is guided to the ground terminal 433, thereby reducing the power V(Kb) on the second common contact 4 312 to 0V, and returning the eighth switching element to the initial stage of inactivity. status. [_ In this embodiment, when the voltage signal P(l) is again converted to a relatively logic high potential and the first address h number A ('2) continues to be a logic high potential, and the selection signal C(l) is Relatively low logic (ie, the second common junction 4312 is also relatively logic low), ie V(P(1)) = 1, v(a(2)) = 1, v(c(i))=o (In the case of v(Kb)=o), the twelfth switching element M12 and the twelfth switching element M13 will be turned on. At the same time, the electric energy V(Kc) of the third ugly_contact 4321 will rise to the first The potential of the two address signals A(2), and the second address signal A(2) can also turn on the fourteenth switching element M14 through the twelfth switching element M丨2 and the thirteenth switching element M13 in sequence, Furthermore, the source of the fourteenth switching element M14 is connected to the ground terminal 433 by the .... ::丨::.', so that the voltage signal P(l) selectively supplies power to the first Similarly, the heating element H2, similarly, the voltage signal P(1) is used to drive the second heating element (10) to heat, and the ink flowing through the second heating element H2 is sprayed onto the printing carrier via the corresponding nozzle hole to smoothly Complete the inkjet action. [0040] In this embodiment, since the voltage signal P(1), the plurality of address signals A(1), A(2), and A(3), and the selection signal C(1) have periodic output characteristics, This will cause the circuit to periodically repeat the above operations and proceed to 100109990 Form No. A0101 Page 20 of 60 S 1002016866-0 201238777 ❹ [0041]

[0042] 喷墨的工作。因此,當第一位址信號A(l)或第三位址信 號A(3)再度轉變為相對邏輯高電位時,即V(A(1)) = 1或 V(A(3)) = 1,將使得第二喷墨單元432之第九開關元件M9 或第十開關元件Ml 0其中之一開關元件導通,或者,當電 壓信號P(l)、選擇信號C(l)及第二位址信號A(2)再度皆 轉變為相對邏輯高電位時,第二共接點4312之電能 V(Kb)亦為相對邏輯高電位,將使得第二喷墨單元432之 第十一開關元件Mil導通,此時,殘留於第三共接點4321 上之電能V(Kc)將經由第九開關元件M9、第十開關元件 Ml 0或第十一開關元件Ml 1其中之一開關元件被導引至接 地端433,進而使第三共接點4321上之電能V(Kb)降至0V ,並使第十四開關元件M14截止,且第二加熱元件H2無法 被驅動加熱,藉此達到確保同一時間内僅有第一喷墨單 元431或第二喷墨單元432之任單一個喷墨單元進行加熱 動作之目的。 由上述可知,本實施例之喷墨單元組43之第一喷墨單元 431係由第一開關元件Ml、第二開關元件M2或第三開關元 件M3其中之一開關元件來達到放電的目的,以及第二喷 墨單元432係由第九開關元件M9、第十開關元件M10或第 十一開關元件Mil其中之一開關元件來達到放電的目的。 另外,本案之喷墨單元組43僅需使用一電壓信號P(l)、 複數個位址信號A(l)、A(2)與A(3)以及一選擇信號 C(l),便可選擇性地控制第一加熱元件H1及第二加熱元 件H2加熱,進而達到喷墨的目的。 請參閱第6C圖並配合第6A圖,其中第6C圖係為第6A圖所 100109990 表單編號A0101 第21頁/共60頁 1002016866-0 201238777 示之喷墨單元組之電路作動信號逆向時序示意圖。如第 6A、6C圖所示,其中噴墨單元組43之第-嘴墨單元431 及第二喷墨單元432係分別根據電壓信號P(l)、複數個位 址信號A(l)、A⑵、a(3)與選擇信默⑴以選擇性地 進行喷墨之作動,且其作動方式與第6β圖相似,於此不 再贅述。惟,於本實施例中,複數個位址信號A(1)、 A⑵與A(3)以及選擇信默⑴之時序係與獅圖之複數 個位址信號A(l)、A(2)與A(3)以及選擇信號c(1)之時 序相反。 [0043] 也就是說,當噴墨單元組4 3於順向列印之狀態時,即複 數個位址信號為相對邏輯高電位之狀態依序由 A(l)〜A(3)輸出,且第三位址信號A(3)輸出後再接續第 一位址信號A(l),以此週而復始地傳輸信號,第一喷墨 單元431將先進行喷墨之作動,而後第二噴墨單元432再 進行喷墨之作動。反之,當噴墨單元組43於逆向列印之 狀態時,即複數個位址信號為相對邏輯高電位之狀態係 依序由A(3)~A(1)輸出,且第一位址信號A(1)輸出後再 接續第十三位址信號A(3),以此週而復始地傳輸信號, 第二喷墨單元432將先進行喷墨之作動,而後第一喷墨單 元4 31再進行噴墨之作動。 [0044] 凊參閱第7A圖,其係為本案第5圖所示之噴墨單元組之另 一内部電路架構示意圖。如第7 A圖所示,於本實施例中 ,第一噴墨單元441包括第十五開關元件Ml 5〜第二十一開 關元件M21及第三加熱元件H3,其中第十五開關元件[0042] The work of inkjet. Therefore, when the first address signal A(1) or the third address signal A(3) is again converted to a relatively logic high level, that is, V(A(1)) = 1 or V(A(3)) = 1. The switching element of the ninth switching element M9 or the tenth switching element M10 of the second inkjet unit 432 is turned on, or when the voltage signal P(l), the selection signal C(l), and the second bit are When the address signal A(2) is again converted to a relatively logic high potential, the electric energy V(Kb) of the second common contact 4312 is also a relatively logic high potential, which will cause the eleventh switching element of the second ink ejection unit 432 to be Mil. Turning on, at this time, the electric energy V(Kc) remaining on the third common contact 4321 will be guided via one of the ninth switching element M9, the tenth switching element M10 or the eleventh switching element Ml 1 Up to the ground terminal 433, thereby reducing the electric energy V(Kb) on the third common contact 4321 to 0V, and turning off the fourteenth switching element M14, and the second heating element H2 cannot be driven and heated, thereby ensuring the same Only one of the first inkjet unit 431 or the second inkjet unit 432 performs the heating operation for a single time. It can be seen from the above that the first ink-ejection unit 431 of the ink-jet unit group 43 of the present embodiment achieves the discharge by one of the first switching element M1, the second switching element M2 or the third switching element M3. And the second inkjet unit 432 is configured to discharge by one of the ninth switching element M9, the tenth switching element M10, or the eleventh switching element Mil. In addition, the ink jet unit group 43 of the present invention only needs to use a voltage signal P(l), a plurality of address signals A(l), A(2) and A(3), and a selection signal C(l). The first heating element H1 and the second heating element H2 are selectively controlled to be heated, thereby achieving the purpose of inkjet. Please refer to Fig. 6C and Fig. 6A, wherein Fig. 6C is Fig. 6A. 100109990 Form No. A0101 Page 21 of 60 1002016866-0 201238777 The reverse timing diagram of the circuit actuation signal of the ink jet unit group. As shown in FIGS. 6A and 6C, the first nozzle unit 431 and the second ink unit 432 of the ink jet unit group 43 are respectively based on the voltage signal P(1) and the plurality of address signals A(1) and A(2). , a (3) and the selection signal (1) to selectively perform the inkjet operation, and the actuation mode is similar to that of the 6β map, and details are not described herein again. However, in the present embodiment, the plurality of address signals A(1), A(2), and A(3), and the timing of the selection signal (1) are combined with the plurality of address signals A(l), A(2) of the lion diagram. Contrary to the timing of A(3) and selection signal c(1). [0043] That is to say, when the inkjet unit group 43 is in the state of the forward printing, that is, the state in which the plurality of address signals are relatively logic high is sequentially outputted by A(1) to A(3), And the third address signal A(3) is outputted and then connected to the first address signal A(1), thereby transmitting signals in a repeated manner, the first inkjet unit 431 will perform the inkjet operation first, and then the second inkjet Unit 432 is again actuated by the ink jet. On the contrary, when the inkjet unit group 43 is in the state of reverse printing, that is, the state in which the plurality of address signals are relatively logic high is sequentially outputted by A(3)~A(1), and the first address signal is After the output of A(1), the thirteenth address signal A(3) is connected, and the signal is repeatedly transmitted in the same manner. The second ink-ejection unit 432 will perform the ink-jet operation first, and then the first ink-ejection unit 41 continues. Inkjet action. [0044] Referring to FIG. 7A, it is a schematic diagram of another internal circuit structure of the ink jet unit set shown in FIG. 5 of the present invention. As shown in FIG. 7A, in the embodiment, the first ink ejection unit 441 includes a fifteenth switching element M15 to a twenty-first switching element M21 and a third heating element H3, wherein the fifteenth switching element

Ml 5〜第十七開關元件Ml 7及第十九開關元件Ml 9〜第二十 100109990 表單編號A0101 第22頁/共60頁 1002016866-0 201238777 ,關元件M21較佳為n-mos開關元件,而第十八開關元 件M18較佳為P_M0S開關元件。 於本實知例中’第十五開關元件M15之基體咖⑷與其 源極(S〇urce)彼此連接後再連接於一接地端,且第 十五開關元件Μ15之閘極(Gate)接收複數個位址信號之 第一位址信號Α(1)〇第十六開關元件M16之基體(Base) 與其源極(Source)彼此連接後再連接於接地端443,且 第十六開關元件Ml6之閘極(Gate)接收複數個位址信號 之第三位址信號A(3)。第十七開關元件M17之基體 (Base )與其源極(Sour ce )彼此連接後再連接於接地端 443。第十八開關元件M18之基想(Base)與其汲極 (Drain)彼此連接並接收複數個位址信號之第二位址信號 A(2),且第十八開關元件ΜΓ8之閘極(Gate)接收電壓信 號P(l)。第十九開關元件M19之基體(Base)與其源極 (Source)彼此連接後再連接於接地端443 ’第十九開關 元件M19之閘極(Gate)接收電壓信號P(〗),以及第十九 開關元件Ml9之汲極(Drain)與第十八開關元件Ml8之源 極(Source)共同連接於一第四共接點4411 ’且第四共接 點4411連接於第十七開關元件…7之閘極(Gate)。 於本實施例中,第十八開關元件Μ18與第十九開關元件 Μ19係共同組合成一反向元件’例如反向器’其作動方式 係與第6Α圖中之第四開關元件Μ4與第五開關元件奶組合 成之反向元件相似,於此不再贅述。惟’於本實施例中 ,反向元件之輸出電能係用以控制第十七開關元件肘17之 導通或截止。 100109990 表單煸號Α0101 第23頁/共60頁 1002016866-0 201238777 [0045] 弟二十開關元件Μ2 0之基體(Base )連接於第十七開關元 件M17之基體(Base) ’且第二十開關元件M2〇之閘極 (Gate)與其汲極〇^3丨11)分別接收選擇信號以1 )與複數 個位址信號之第二位址信號A(2)。第二十一開關元件M21 之基體(Base)與其源極(Sour ce)彼此連接並連接於接地 端443,而第二十一開關元件M21之閘極(Gate)、第十五 開關元件Ml5之汲極(Drain)、第十六開關元件M16之沒 極(Drain)、第十七開關元件M17之汲極(Drain)與第二 十開關元件M20之源極(Source)係共同連接於一第五共 接點4 412。此外,第三加熱元件Η 3 :¾: —端接收電壓信號 P(l),且其另一端連接於第二開關元件M21之汲極 (Drain)。 [0046] 於本實施例中’第五共接點4412於第7B圖之T1時間與第 7C圖之T2時間之電壓值係由第十七開關元件们7之内阻與 第二十開關元件M20之内阻分壓所得,且第十七開關元件 M17之内阻係為一高阻抗電阻,藉此當第十七開關元件 Ml7與第二十開關元件M2〇同碑導通時,第五共接點4412 之電能V(Ke)將維持在相對邏輯高電位,即y(Ke) = i。 [0047] 於本實施例中’第二喷墨單元442包括第二十二開關元件 M22〜第一十六開關元件M26以及第四加熱元件H4,其中 第二十二開關元件M22 -第二十四開關元件M24及第二十六 開關元件M26較佳為N-M0S開關元件,而第二十五開關元 件M25較佳為P-M0S開關元件。 [0048] 於本實施例中,第二十二開關元件M22之基體(Base)與 其源極(Source)彼此連接後再連接於接地端443,且第 100109990 表單編號A0101 第24頁/共60頁 1002016866-0 201238777 二十二開關元件M22之閘極(Gate)接收第一位址信號 A(l)。第二十三開關元件M23之基體(Base)與其源極 (Source)彼此連接後再連接於接地端443,且第二十三 開關元件M23之閘極(Gate)接收第三位址信號A(3)。第 二十四開關元件M24之基體(Base)與其源極(Source)彼 此連接後再連接於接地端443,且第二十四開關元件M24 之閘極(Gate)連接於第一噴墨單元441之第五共接點 4412。 ^ [0049] 〇 第一十五開關元件M25之基禮(B:ase)與其沒極(Drain) 彼此連接並接收第二位址:信號A(2),且第二十五開關元 件M25之閘極(Gate)連接於第一喷墨單元43:1之第五共接 點4412。第二十六開關元件M26之基魏(Base)與其源極 (Source)彼此連接後再連接於接地端443,而第二十六 開關元件M26之閘極(Gate)、第二十二開關元件M22之汲 極(Drain)、第二十三開關元件M23之汲極(Drain)、第 二十四開關元件]«24之汲極(1^34)與第二十五開關元件 〇 M25之源極(Source)係共同連接於一第六共接點4421。 此外,第四加熱元件H4之一端接收電壓信號P(l),且其 另一端連接於第二十六開關元件M26之汲極(Drain)。 [0050] 請參閱第7B圖並配合第7A圖,其中第7B圖係為第7A圖所 示之喷墨單元組之電路作動信號順向時序示意圖。如第 7A、7B圖所示’根據本案之構想,當選擇信號cd)與第 二位址信號A(2)同時為相對邏輯高電位之情況下,即 V(C(1)) = 1、V(A(2)) = 1,第二十開關元件M20將導通, 於此同時,第五共接點4412之電能V(Ke)將升至第二位 100109990 表單編號A0101 第25頁/共60頁 1002016866-0 201238777 址信號A(2 )之電位,且第二位址信號A( 2 )通過第二十開 關元件M20亦使第二十一開關元件M21導通,再者,由於 第一十一開關元件M21之源極(Source)與接地端443連接 ,因此使電壓信號P(l)選擇性地提供電能至第三加熱元 件H3,以選擇性地驅動第三加熱元件H3進行加熱之作動 ,並使流經第三加熱元件H3之墨水經由對應之噴孔喷塗 至列印載體,例如紙張,以順利完成喷墨的動作。 [0051] 另一方面,由於此時第五共接點4412與第二位址信號 A(2)皆為相對邏輯高電位,使得第二喷墨單元442之第二 十五開關元件M25截正,進而使第二十六開關元件M 2 6亦 為截止,因此電壓信號P(l)無法提供電能至第四加熱元 件H4,而使第四加熱元件H4無法被驅叙加熱。 另外,當選擇信號C(l)轉變為一相對邏輯低電位時,即 V(C(l)) = 〇,第二十開關元件肘2〇及第二十一開關元件 M21將載止,此時,由於電壓信號p(1)提供至第三加熱元 件H3之電能無法接地,使得第三加熱元件H3將停止進行 該加熱之作動。 [0052] 接著,若電壓信號P(l)轉變為一相對邏輯低電位時,即 V(P(l)) = 〇,其經過反向元件後使得第四共接點4411之 電能V(Kd)轉變為一相對邏輯高電位,即v(Ka) = i,或者 ,當第一位址信號A(l)或第三位址信號a(3)其中之—位 址信號為相對邏輯高電位時,即V (A (1 )) = 1或 V(A(3)) = 1 ’將分別使第一喷墨單元441之第十七開關元 件M17、第十五開關元件M15或第十六開關元件M16導通 ,因此殘留於第五共接點4412上之電能V(Ke)將經由第 100109990 表單編號A0101 第26頁/共60頁 1002016866-0 201238777 十七開關元件Μ17、第十五開關元件Μ15或第十六開關元 件Μ16其中之一開關元件被導引至接地端443,進而使第 五丘接,點4412上之電月bV(Ke)降至0V ’且使第二十一開 關元件M21回復到未動作之初始狀態。 [0053] Ο ο [0054] 於本實施例中,當第二位址信號A(2)持續為相對邏輯高 電位立遂擇信號以1)為相對邏輯低電位(即第五共接點 4412亦為相對邏輯低電位),即V(A(2)) = 1、 v(c(i))s0(^pV(Ke)=0)之情況下’第二十五開關元件 M25將導適’於此同時’第六共接點4421之電能v(Kf)將 升至第二位址信號A(2)之電位’且第二位址信號A(2)可 通過第二十五開關元件M25亦使第二十六開關元件M26導 通,再者’由於第二十六開關元休M26之源極(S ource) 與接地端443連接’進而使電壓信號ρ(ι)選擇性地提供電 能至第四加熱元件H4,同理,電壓信號ρ(ι)用以驅動第 四加熱元件H4加熱,並使流經第四加熱元件H4之墨水經 由對應之噴孔喷塗至列印載體上,以順利完成喷墨的動 作。 相同地,於本實施例中’由於複數個位址信號A(D、 A(2)及A(3)以及選擇#说C(1)具有週期性輸出之特性, 使得電路將週期性地重複上述之運作,並進行噴墨的工 作。因此,當第一位址信號A(l)或第三位址信號八(3) 再度轉變為相對邏輯高電位時,即V(A(l)) = l或 V(A(3)) = 1 ’將使得第二喷墨單元442之第二十二開關元 件M22或第二十三開關元件M23其中之一開關元件導通, 或者,當選擇信號C(l)及第二位址信號a(2)再度皆轉變 100109990 表單編號A0101 第27頁/共60頁 1002016866-0 201238777 為相對邏輯高電位時,第五共接點4412之電能V(Ke)亦 為相對邏輯高電位,將使得第二喷墨單元442之第二十四 開關元件M24導通,此時,殘留於第六共接點4421上之電 能V(Kf)將經由第二十二開關元件M22、第二十三開關元 件M23或第二十四開關元件M24其中之一開關元件被導引 至接地端443,進而使第六共接點4421上之電能V(Kf)降 至0V,並使第二十六開關元件M26截止,且第四加熱元件 Η 4無法被驅動加熱,藉此達到確保同一時間内僅有第一 喷墨單元441或第二喷墨單元442之任單一個喷墨單元進 行加熱之作動。 [0055] 由上述可知,本實施例之喷墨單元組44之第一喷墨單元 441係由第十五開關元件Ml 5~第十七開關元件Ml 7其中之 一開關元件來達到放電的目的,以及第二喷墨單元442係 由第二十二開關元件M22〜第二十四開關元件M24其中之一 開關元件來達到放電的目的。另外,本案之喷墨單元組 44僅需使用一電壓信號P(l)、複數個位址信號A(l)、 A(2)與A(3)以及一選擇信號C(l),即可選擇性地控制第 三加熱元件H3及第四加熱元件H4加熱,進而達到喷墨的 目的0 [0056] 請參閱第7C圖並配合第7A圖,其中第7C圖係為第7A圖所 示之喷墨單元組之電路作動信號逆向時序示意圖。如第 7A、7C圖所示,其中喷墨單元組44之第一喷墨單元441 及第二喷墨單元442係分別根據電壓信號P(l)、複數個位 址信號A(l)、A(2)與A(3)以及選擇信號C(l)來進行喷 墨之作動,且其作動方式與第7B圖相似,於此不再贅述 100109990 表單編號A0101 第28頁/共60頁 1002016866-0 201238777 。惟,於本實施例中,複數個位址信號A(l)、A(2)與 A(3)以及選擇信號C(l)之時序係與第7B圖之複數個位址 信號A(l)、A(2)與A(3)以及選擇信號C(l)之時序相反 ,也就是說,當喷墨單元組44於順向列印之狀態時,第 一喷墨單元441將先進行喷墨之作動,而後第二喷墨單元 442再進行喷墨之作動。反之,當喷墨單元組44於逆向列 印之狀態時,第二喷墨單元442將先進行喷墨之作動,而 後第一喷墨單元441再進行喷墨之作動。 0 [0057] 請參閱第8A、8B、8C圖,其中第8A圖係為本案較佳實施 例之喷墨陣列方塊示意圖;第8B圖係為第6A圖之延伸電 路架構示意圖;第8C圖係為第7A圖之延伸電路架構示意 圖。如第8A、8B、8C圖所示,喷墨陣列4包括複數個喷墨 單元組,例如第一喷墨單元組4a~第十三喷墨單元組4m, 每一該喷墨單元組4a〜4m之内部電路架構可為例如第8B圖 或第8C圖所示之電路架構,但不以此為限,其電路連接 方式與運作係分別如同第6A圖或第7A圖,於此不再贅述 G 。 惟,於本實施例中,每一喷墨單元組4a~4m係分別對應接 收電壓信號PO )以及第一位址信號A( 1)〜第十三位址信 號A(13),而每一第一喷墨單元4a卜4ml係對應接收選擇 信號C(l),用以分別控制複數個喷墨單元組4a~4m加熱 之作動。於本實施例中,喷墨陣列4係架構於設置在一喷 墨晶片(未圖示)上。於一些實施例中,喷墨晶片上可設 置複數個喷墨陣列4,用以提高喷墨列印技術中之列印解 析度及列印速度。 100109990 表單編號A0101 第29頁/共60頁 1002016866-0 201238777 [0058] 第8B圖之噴墨單元組係為噴墨陣列4之複數個噴墨單元組 4a〜4m的其中之一 ’例如當時序n = 4時,即為第四噴墨單 元組4d °該第四喷墨單元組4d包括第一喷墨單元4dl及第 二喷墨單元4d2,而第一喷墨單元4dl包括第一開關元件 Μ卜第八開關元件M8及第一加熱元件H1,以及第二喷墨單 疋4d2包括第九開關元件Μ9~第十四開關元件"4及第二 加熱元件Η2,且其連接方式與運作係如同第6人圖,於此 不再贅述。惟,於本實施例中,時序η = 4,第一喷墨單元 4dl係對應接收電壓信號ρ(1)、複數個位址信號Μη—" 、A(n)與A(n + 1) ’在此即分别為第三位址信號A(3)、第 四位址信號A(4)與第五位址信號奴5),以及選擇信號 C(l)。第二噴墨單元4d2係對應接收該電壓信號p(i)a 及該複數個位址信號A(3)、A(4)與A(5)。其中,當選擇 信號C(l)致能,例如為相對邏輯高電位(High)i狀態時 ,第一喷墨單元4dl因應電壓信號P(1)及複數個位址信號 A(3)、A(4)與A(5) ’以產生加熱之作動,反之,當選擇 仏號c(1)禁能時,例如為相對邏輯低電位(L〇w)之狀態 ,第二喷墨單兀4d2因應電壓禮號p(丨)及複數個位址信號 A(3)、A(4)與A(5),以產生加熱之作動。 [0059] 同理,第8C圖之噴墨單元組亦為喷墨陣列4之複數個喷墨 單兀組4a~4m的其中之一,例如當時序〇 = 13時,即為第 十三喷墨單元組4m。該第十三喷墨單元組4m包括第一噴 墨單兀4ml及第二噴墨單元4m2,而第一喷墨單元4ml包 括第十五開關το件Ml 5〜第二十—開關元件M2丨及第三加熱 元件H3,以及第二喷墨單元4m2包括第二十二開關元件 100109990 表單編號A0101 第30頁/共6〇頁 1002016866-0 201238777 Μ22〜第二十六開關元件Μ26及第四加熱元件Η4,且其連 接方式與運作係如同第7Α圖,於此不再贅述。惟,於本 實施例中’時序η = ΐ3,第一喷墨單元4ml係對應接收電壓 信號P(l)、複數個位址信號A(n-l)、A(n)與A(n+1), Ο [0060] Ο [0061] 在此即分別為第十二位址信號A(12)、第十三位址信號 A(13)與第一位址信號a(1),以及選擇信號c(1)。第二 喷墨單元4m2係對應接收該電壓信號ρ(ι)、該複數個位址 信號A(12)、A(13)與A(1)。其中’當選擇信號c(l)致 能時’第一喷墨單元4ml因應電壓信號ρ(ι)及複數個位址 信號A(12)、A(13)與A(l) ’以產生加熱之作動,反之, 當選擇信號C(l)禁能時,第二喷墨單元4m2因應電壓信號 P(l)及複數個位址信號A(12)、A(13)與Α(Γ),以產生 加熱之作動。 於一些實施例中,喷墨陣列4可接收Ν個位址信號a,其中 N為整數,例如但不限於n = 16,也就是說,喷墨陣列4可 接收1 6個位址jg號’且時序^乃=ι〜16。因此當η=ι時,複 數個位址信號即為A(n-1 )=16、A(n) = l與A(n+1 ) = 2,而 當n = 16時,複數個位址信號即為4(11_1) = 15、A(n) = 16 與A(n + l) = l,藉此分別控制喷墨陣列4之每一喷墨單元 組,以產生加熱之作動。 請參閱第9A、9B圖,其中第9A圖係為本案實施例之第一 列印方向位址信號時序圖;第犯圖係為本案實施例之第 二列印方向位址信號時序圖。如第9A、9B圖所示,其中 第一列印方向,例如順向之列印方向,即複數個位址信 號為相對邏輯高電位之狀態依序由輸出,且 100109990 表單編號A0101 第31頁/共60頁 1002016866-0 201238777 第十三位址信號A( 13)輸出後再接續第一位址信號A(l) ’以此週而復始地傳輸信號。相反地,第二列印方向, 例如逆向之列印方向’即複數個位址信號為相對邏輯高 電位之狀態係依序由A(13)~A(1)輸出,且第一位址信號 A(l)輪出後再接續第十三位址信號A(13),以此週而復 始地傳輸信號’進而達到使喷墨頭(未圖示)可進行雙向 列印之目的。 [0062] [0063] 此外’根據本案之構想,該雙向列印的機制係使用前一 個位址彳§號人(11-1 )及後一個位址信號Α(η+ι )以達到有效 放電的目的,並使被驅動之開關元件回復到未動作之初 始狀態。 本案之喷墨頭除了藉由交錯排列的方式來於晶片上設置 更多的加熱器以有效利用噴墨頭空間而降低成本及提高 列印速度外,更可藉由縮減喷墨頭内部晶片之位址控制 方式來達到縮減喷墨晶片之,俺線、面積,可使噴墨頭之喷 墨晶片之佈線面積僅佔喷墨晶片之總面積約75%〜63%為 最佳實施例,,以應用於多供墨槽之多色或單色噴墨頭之 喷墨晶片為例,或雙供墨槽分別經由供墨通道將墨水導 至雙色或單色喷墨晶片,且雙色喷墨晶片之佈線面積僅 佔喷墨晶片之總面積約75%〜61 %為最佳實施例,三供墨 槽分別經由供墨通道將墨水導至三色或單色喷墨晶片, 且一色喷墨b曰片之佈線面積僅佔喷墨晶片之總面積約π% 〜62%為最佳實施例;以單供墨槽之單色喷墨頭之喷墨晶 片為例’單色喷墨頭之噴墨晶片之佈線面積僅佔噴墨晶 片之總面積80%〜63%為最佳實施例。如此可使得喷墨頭 100109990 表單編號A0101 第32頁/共60頁 1002016866-0 201238777 [0064] [0065] [0066] Ο [0067] [0068] [0069] [0070]Ml 5 to the seventeenth switching element Ml 7 and the nineteenth switching element Ml 9 to the twentieth 100109990 form number A0101 page 22 / total 60 pages 1002016866-0 201238777, the closing element M21 is preferably an n-mos switching element, The eighteenth switching element M18 is preferably a P_M0S switching element. In the present embodiment, the base coffee (4) of the fifteenth switching element M15 and its source (S〇urce) are connected to each other and then connected to a ground, and the gate of the fifteenth switching element Μ15 receives a plurality of gates. The first address signal of the address signal Α(1)〇the base of the sixteenth switching element M16 is connected to the source thereof and then connected to the ground terminal 443, and the sixteenth switching element M16 The gate receives the third address signal A(3) of the plurality of address signals. The base (Base) of the seventeenth switching element M17 and its source (Sour ce ) are connected to each other and then to the ground terminal 443. The base of the eighteenth switching element M18 and its drain are connected to each other and receive the second address signal A(2) of the plurality of address signals, and the gate of the eighteenth switching element ΜΓ8 (Gate) ) receiving the voltage signal P(l). The base of the nineteenth switching element M19 and its source are connected to each other and then connected to the ground terminal 443. The gate of the nineteenth switching element M19 receives the voltage signal P(〗), and the tenth The drain of the nine switching element M11 and the source of the eighteenth switching element M18 are connected in common to a fourth common contact 4411 ' and the fourth common contact 4411 is connected to the seventeenth switching element. Gate (Gate). In this embodiment, the eighteenth switching element Μ18 and the nineteenth switching element Μ19 are combined to form a reverse element 'eg, an inverter', and the fourth switching element Μ4 and fifth in the sixth drawing. The switching element milk is combined into a reverse element similar to that, and will not be described herein. However, in the present embodiment, the output power of the reverse element is used to control the turning on or off of the elbow 17 of the seventeenth switching element. 100109990 Form Α Α 0101 Page 23 / Total 60 pages 1002016866-0 201238777 [0045] The base of the twenty-second switching element Μ20 is connected to the base of the seventeenth switching element M17 and the twentieth switch The gate of the element M2〇 and its gate 〇3丨11) respectively receive the selection signal 1) and the second address signal A(2) of the plurality of address signals. The base of the twenty-first switching element M21 and its source (Sour ce) are connected to each other and connected to the ground terminal 443, and the gate of the twenty-first switching element M21 and the fifteenth switching element M15 The Drain, the Drain of the sixteenth switching element M16, the Drain of the seventeenth switching element M17, and the source of the twentieth switching element M20 are commonly connected to one The total number of contacts is 4 412. Further, the third heating element Η 3 : 3⁄4: the terminal receives the voltage signal P(l), and the other end thereof is connected to the drain of the second switching element M21. [0046] In the present embodiment, the voltage value of the fifth common contact 4412 in the T1 time of FIG. 7B and the T2 time of the seventh embodiment is the internal resistance of the seventeenth switching element 7 and the twentieth switching element. The internal resistance of the M20 is obtained by partial pressure, and the internal resistance of the seventeenth switching element M17 is a high-impedance resistor, whereby when the seventeenth switching element Ml7 and the twentieth switching element M2 are turned on, the fifth total The power V(Ke) of contact 4412 will remain at a relatively high logic level, ie y(Ke) = i. [0047] In the present embodiment, the 'second ink-ejection unit 442 includes the second-second switching element M22 to the first sixteen switching element M26 and the fourth heating element H4, wherein the second-second switching element M22 - the twentieth The four switching elements M24 and the twenty-sixth switching elements M26 are preferably N-MOS switches, and the twenty-fifth switching elements M25 are preferably P-MOS switches. [0048] In this embodiment, the base of the twenty-second switching element M22 and its source are connected to each other and then connected to the ground 443, and the number of the form is A1091, page 24/60 pages. 1002016866-0 201238777 The gate of the twenty-two switching element M22 receives the first address signal A(l). The base of the twenty-third switching element M23 is connected to the source thereof and then connected to the ground terminal 443, and the gate of the twenty-third switching element M23 receives the third address signal A ( 3). The base of the twenty-fourth switching element M24 is connected to the source thereof and then connected to the ground terminal 443, and the gate of the twenty-fourth switching element M24 is connected to the first inkjet unit 441. The fifth total contact 4412. [0049] The base of the fifteenth switching element M25 (B: ase) and its drain (Drain) are connected to each other and receive the second address: signal A (2), and the twenty-fifth switching element M25 A gate is connected to a fifth common junction 4412 of the first ink jet unit 43:1. The base of the twenty-sixth switching element M26 is connected to the source thereof and then connected to the ground terminal 443, and the gate of the twenty-sixth switching element M26 is the gate and the twenty-second switching element. The drain of M22, the drain of the twenty-third switching element M23, the twenty-fourth switching element] the drain of the «24 (1^34) and the source of the twenty-fifth switching element 〇M25 The source is commonly connected to a sixth common junction 4421. Further, one end of the fourth heating element H4 receives the voltage signal P(l), and the other end thereof is connected to the drain of the twenty-sixth switching element M26. [0050] Please refer to FIG. 7B and cooperate with FIG. 7A, wherein FIG. 7B is a schematic diagram of the sequence of circuit actuation signals of the inkjet unit group shown in FIG. 7A. As shown in FIGS. 7A and 7B, 'in the case of the present invention, when the selection signal cd) and the second address signal A(2) are simultaneously at a relatively high logic level, that is, V(C(1)) = 1, V(A(2)) = 1, the twentieth switching element M20 will be turned on, at the same time, the electric energy V(Ke) of the fifth common contact 4412 will rise to the second place 100109990 Form No. A0101 Page 25 / Total 60 pages 1002016866-0 201238777 The potential of the address signal A(2), and the second address signal A(2) also turns on the twenty-first switching element M21 through the twentieth switching element M20, and again, due to the first ten A source of a switching element M21 is connected to the ground terminal 443, thereby causing the voltage signal P(1) to selectively supply power to the third heating element H3 to selectively drive the third heating element H3 for heating. And spraying the ink flowing through the third heating element H3 to the printing carrier, such as paper, through the corresponding orifice to smoothly complete the inkjet operation. On the other hand, since the fifth common contact 4412 and the second address signal A(2) are both relatively high-level at this time, the twenty-fifth switching element M25 of the second ink-ejection unit 442 is corrected. Further, the twenty-sixth switching element M 26 is also turned off, so that the voltage signal P(1) cannot supply electric power to the fourth heating element H4, and the fourth heating element H4 cannot be driven to be driven. In addition, when the selection signal C(l) transitions to a relatively logic low potential, that is, V(C(l)) = 〇, the twentieth switching element elbow 2〇 and the twenty-first switching element M21 will be loaded, this At this time, since the electric energy supplied to the third heating element H3 by the voltage signal p(1) cannot be grounded, the third heating element H3 will stop the heating operation. [0052] Next, if the voltage signal P(l) transitions to a relatively logic low potential, that is, V(P(l)) = 〇, after passing through the reverse component, the electric energy V of the fourth common contact 4411 (Kd) Transition to a relatively logic high, ie v(Ka) = i, or, when the first address signal A(l) or the third address signal a(3), the address signal is relatively logic high At that time, V (A (1 )) = 1 or V (A(3)) = 1 ' will make the seventeenth switching element M17, the fifteenth switching element M15 or the sixteenth of the first ink-ejection unit 441, respectively. The switching element M16 is turned on, so the electric energy V(Ke) remaining on the fifth common contact 4412 will pass through the 100109990 form number A0101. Page 26/60 pages 1002016866-0 201238777 Seventeen switching elements Μ17, fifteenth switching element One of the switching elements Μ15 or the sixteenth switching element Μ16 is guided to the grounding end 443, thereby causing the fifth hill to be connected, the electric moon bV(Ke) at the point 4412 is lowered to 0V' and the twenty-first switching element is made M21 returns to the initial state of no action. [0053] In the present embodiment, when the second address signal A(2) continues to be a relatively logic high potential, the decision signal is 1) is a relatively logic low potential (ie, the fifth common contact 4412). Also for the relative logic low potential), that is, V(A(2)) = 1, v(c(i))s0(^pV(Ke)=0), the twenty-fifth switching element M25 will be introduced. 'At the same time' the sixth common contact 4421 power v(Kf) will rise to the potential of the second address signal A(2)' and the second address signal A(2) can pass the twenty-fifth switching element M25 also turns on the twenty-sixth switching element M26, and further 'connects the source of the twenty-sixth switch element M26 (Source) to the ground terminal 443, thereby selectively supplying the voltage signal ρ(ι) To the fourth heating element H4, the voltage signal ρ(ι) is used to drive the fourth heating element H4 to heat, and the ink flowing through the fourth heating element H4 is sprayed onto the printing carrier via the corresponding nozzle hole. In order to successfully complete the inkjet action. Similarly, in the present embodiment, 'since a plurality of address signals A (D, A(2) and A(3) and select # say C(1) have periodic output characteristics, so that the circuit will be periodically repeated The above operation, and the operation of inkjet. Therefore, when the first address signal A(l) or the third address signal eight(3) is again converted to a relatively logic high potential, that is, V(A(l)) = l or V(A(3)) = 1 ' will turn on one of the twenty-second switching element M22 or the twenty-third switching element M23 of the second ink-ejection unit 442, or when the signal C is selected (l) and the second address signal a (2) are again changed to 100109990 Form No. A0101 Page 27 / Total 60 pages 1002016866-0 201238777 When the relative logic is high, the fifth common contact 4412 power V (Ke) Also being relatively logic high, the twenty-fourth switching element M24 of the second ink-ejection unit 442 will be turned on. At this time, the electric energy V(Kf) remaining on the sixth common contact 4421 will pass through the twenty-second switch. One of the element M22, the twenty-third switching element M23 or the twenty-fourth switching element M24 is guided to the ground terminal 443, thereby making the sixth total The electric energy V(Kf) at the point 4421 drops to 0V, and the twenty-sixth switching element M26 is turned off, and the fourth heating element Η 4 cannot be driven and heated, thereby ensuring that only the first ink ejection unit is in the same time. 441 or any one of the second ink-jet units 442 performs heating operation. [0055] As can be seen from the above, the first ink-ejection unit 441 of the ink-jet unit group 44 of the present embodiment is constituted by the fifteenth switching element. One of the Ml 5 to the seventeenth switching elements M1 7 to achieve the purpose of discharging, and the second ink-ejection unit 442 is one of the twenty-two switching elements M22 to the twenty-fourth switching element M24 In order to achieve the purpose of discharging. In addition, the ink jet unit group 44 of the present invention only needs to use a voltage signal P(l), a plurality of address signals A(l), A(2) and A(3), and a selection signal C. (l), the third heating element H3 and the fourth heating element H4 can be selectively controlled to be heated, thereby achieving the purpose of inkjetting. [0056] Please refer to Figure 7C and cooperate with Figure 7A, wherein Figure 7C is Figure 7A shows the reverse timing diagram of the circuit actuation signal of the ink jet unit group. As shown in FIG. 7C, the first inkjet unit 441 and the second inkjet unit 442 of the inkjet unit group 44 are respectively based on the voltage signal P(1), the plurality of address signals A(l), A(2) and A (3) and the selection signal C (l) are used for the inkjet operation, and the actuation mode is similar to that of FIG. 7B, and no further details are given herein. 100109990 Form No. A0101 Page 28/60 pages 1002016866-0 201238777. However, in this embodiment, the sequence of the plurality of address signals A(1), A(2) and A(3) and the selection signal C(1) is combined with the plurality of address signals A of the 7B diagram. ), A(2) is opposite to A(3) and the timing of the selection signal C(1), that is, when the inkjet unit group 44 is in the state of being printed in the forward direction, the first inkjet unit 441 will be performed first. The ink jet is activated, and then the second ink jet unit 442 performs the ink jet operation. On the other hand, when the ink jet unit group 44 is in the reverse printing state, the second ink jet unit 442 will perform the ink jet operation first, and then the first ink jet unit 441 performs the ink jet operation. [0057] Please refer to FIGS. 8A, 8B, and 8C, wherein FIG. 8A is a block diagram of an ink jet array according to a preferred embodiment of the present invention; FIG. 8B is a schematic diagram of an extended circuit structure of FIG. 6A; It is a schematic diagram of the extended circuit architecture of Figure 7A. As shown in Figs. 8A, 8B, and 8C, the ink jet array 4 includes a plurality of ink jet unit groups, for example, a first ink jet unit group 4a to a thirteenth ink jet unit group 4m, each of which has an ink jet unit group 4a~ The internal circuit structure of 4m can be, for example, the circuit architecture shown in FIG. 8B or FIG. 8C, but not limited thereto, and the circuit connection mode and operation system are respectively like FIG. 6A or FIG. 7A, and details are not described herein again. G. However, in this embodiment, each of the inkjet unit groups 4a to 4m respectively correspond to the received voltage signal PO) and the first address signal A(1) to the thirteenth address signal A(13), and each The first ink jet unit 4a 4ml corresponds to the reception selection signal C(1) for controlling the heating of the plurality of ink jet unit groups 4a to 4m, respectively. In the present embodiment, the ink jet array 4 is constructed on an ink jet wafer (not shown). In some embodiments, a plurality of inkjet arrays 4 can be disposed on the inkjet wafer to improve print resolution and print speed in ink jet printing techniques. 100109990 Form No. A0101 Page 29/60 pages 1002016866-0 201238777 [0058] The inkjet unit group of FIG. 8B is one of a plurality of inkjet unit groups 4a to 4m of the inkjet array 4, for example, when timing When n = 4, it is the fourth ink ejection unit group 4d. The fourth ink ejection unit group 4d includes the first ink ejection unit 4d1 and the second ink ejection unit 4d2, and the first ink ejection unit 4d1 includes the first switching element. The eighth switching element M8 and the first heating element H1, and the second ink jet unit 4d2 include a ninth switching element Μ9~fourteenth switching element"4 and a second heating element Η2, and the connection mode and operation thereof It is like the figure of the sixth person, and will not be described here. However, in the present embodiment, the timing η = 4, the first ink-ejection unit 4dl corresponds to the received voltage signal ρ(1), the plurality of address signals Μη-", A(n) and A(n + 1) 'This is the third address signal A (3), the fourth address signal A (4) and the fifth address signal slave 5), respectively, and the selection signal C (l). The second ink jet unit 4d2 receives the voltage signal p(i)a and the plurality of address signals A(3), A(4) and A(5). Wherein, when the selection signal C(1) is enabled, for example, in a relative logic high (high) i state, the first ink ejection unit 4d1 corresponds to the voltage signal P(1) and the plurality of address signals A(3), A. (4) and A(5)' to generate heating, and vice versa, when the apostrophe c(1) is disabled, for example, a state of relatively logic low (L〇w), the second ink jet unit 4d2 In response to the voltage ceremony p (丨) and a plurality of address signals A (3), A (4) and A (5), to generate heating. [0059] Similarly, the inkjet unit group of FIG. 8C is also one of a plurality of inkjet unit groups 4a-4m of the inkjet array 4, for example, when the timing 〇=13, it is the thirteenth jet. Ink unit set 4m. The thirteenth ink-ejection unit group 4m includes a first ink-jet unit 4ml and a second ink-ejection unit 4m2, and the first ink-ejection unit 4ml includes a fifteenth switch τ° M1 5 to twentieth-switching element M2丨And the third heating element H3, and the second inkjet unit 4m2 includes the twenty-second switching element 100109990 Form No. A0101 Page 30 / Total 6 100 Page 1002016866-0 201238777 Μ 22 ~ Twenty-sixth switching element Μ 26 and fourth heating The component Η4, and its connection mode and operation system are the same as the figure 7 and will not be described here. However, in the present embodiment, 'timing η = ΐ3, the first inkjet unit 4ml corresponds to the received voltage signal P(1), the plurality of address signals A(nl), A(n), and A(n+1). [0060] 006 [0061] Here, respectively, the twelfth address signal A (12), the thirteenth address signal A (13) and the first address signal a (1), and the selection signal c (1). The second ink jet unit 4m2 receives the voltage signal ρ(ι), the plurality of address signals A(12), A(13) and A(1). Wherein 'when the selection signal c(l) is enabled', the first inkjet unit 4ml generates a heating in response to the voltage signal ρ(ι) and the plurality of address signals A(12), A(13) and A(l)' Actuation, conversely, when the selection signal C(l) is disabled, the second inkjet unit 4m2 is responsive to the voltage signal P(l) and the plurality of address signals A(12), A(13) and Α(Γ), In order to generate heating action. In some embodiments, the inkjet array 4 can receive a single address signal a, where N is an integer, such as but not limited to n = 16, that is, the inkjet array 4 can receive 16 address jg numbers' And the timing ^ is = ι ~ 16. Therefore, when η = ι, the complex address signals are A(n-1)=16, A(n) = l and A(n+1) = 2, and when n = 16, multiple addresses The signal is 4 (11_1) = 15, A(n) = 16 and A(n + l) = l, whereby each of the ink jet unit groups of the ink jet array 4 is separately controlled to generate a heating operation. Please refer to FIG. 9A and FIG. 9B, wherein FIG. 9A is a timing chart of the first printing direction address signal of the embodiment of the present invention; the first drawing is a timing chart of the second printing direction address signal of the embodiment of the present invention. As shown in Figures 9A and 9B, the first printing direction, for example, the printing direction in the forward direction, that is, the plurality of address signals are sequentially outputted in a state of relatively high logic, and 100109990 Form No. A0101, page 31 / Total 60 pages 1002016866-0 201238777 The thirteenth address signal A (13) is output and then the first address signal A(l) is transmitted. Conversely, the second printing direction, for example, the reverse printing direction, that is, the state in which the plurality of address signals are relatively logic high is sequentially outputted by A(13)~A(1), and the first address signal is After the A(l) is rotated, the thirteenth address signal A(13) is connected, and the signal is transmitted repeatedly in a repeated manner to further enable the inkjet head (not shown) to perform bidirectional printing. [0063] Furthermore, according to the concept of the present invention, the bidirectional printing mechanism uses the previous address 彳§ person (11-1) and the latter address signal Α(η+ι) to achieve effective discharge. The purpose is to return the driven switching element to the initial state of no action. In addition to reducing the cost and increasing the printing speed by providing more heaters on the wafer to effectively utilize the head space, the ink jet head of the present invention can reduce the internal wafer of the ink jet head by reducing the cost of the ink jet head space. The address control method is used to reduce the size and area of the inkjet chip, and the wiring area of the inkjet chip of the inkjet head can be only about 75% to 63% of the total area of the inkjet wafer. For example, an inkjet wafer applied to a multi-color or monochrome inkjet head of a multi-ink supply tank, or a double ink supply tank respectively guides ink to a two-color or monochrome inkjet wafer via an ink supply passage, and a two-color inkjet wafer The wiring area is only about 75%~61% of the total area of the inkjet wafer. In the preferred embodiment, the three ink supply channels respectively guide the ink to the three-color or monochrome ink-jet wafer via the ink supply channel, and the one-color inkjet b The wiring area of the cymbal is only about π% to 62% of the total area of the inkjet wafer is a preferred embodiment; the inkjet wafer of the monochrome inkjet head of the single ink supply tank is taken as an example. The wiring area of the ink chip is only 80% to 63% of the total area of the ink-jet wafer as a preferred embodiment. Thus, the ink jet head 100109990 Form No. A0101 Page 32 / Total 60 pages 1002016866-0 201238777 [0064] [0066] [0067] [0070] [0070]

[0071] [0072] [0073] 100109990 的尺寸相對縮小,進而降低生產喷墨印表機的成本。 縱使本發明已由上述之實施例詳細敘述而可由熟悉本技 藝之人士任施匠思而為諸般修飾,然皆不脫如附申請專 利範圍所欲保護者。 【圖式簡單說明】 第1圖:其係為傳統控制加熱元件加熱之電路架構示意圖 〇 第2Α圖:其係為本案較佳實施例之墨水匣之剖面結構示 意圖。 第2Β圖:其係為本案第一較佳實施例之單色喷墨頭之結 構示意圖。 第2C圖:其係為第2Β圖移除喷孔板後之結構示意圖。 第3Α圖:其係為本案第二較佳實施例之彩色喷墨頭之結 構示意圖。 第3Β圖:其係為第3Α圖移除噴孔板後之結構示意圖。 第3C圖:其係為第3Α圖移除部分喷孔板後之結構示意圖 〇 第4圖:其係為喷墨印表機之噴墨控制電路與喷墨晶片之 連接架構示意圖。 第5圖:其係為第4圖所示之其中一個喷墨單元組之電路 方塊示意圖。 第6Α圖:其係為本案第5圖所示之喷墨單元組之内部電路 表單編號Α0101 第33頁/共60頁 1002016866-0 [0074] 201238777 架構示意圖。 [0075] 第6B圖:其係為第6A圖所示之喷墨單元組之電路作動信 號順向時序示意圖。 [0076] 第6C圖:其係為第6A圖所示之喷墨單元組之電路作動信 號逆向時序示意圖。 [0077] 第7A圖:其係為本案第5圖所示之喷墨單元組之另一内部 電路架構示意圖。 [0078] 第7B圖:其係為第7A圖所示之喷墨單元組之電路作動信 號順向時序示意圖。 [0079] 第7C圖:其係為第7A圖所示之喷墨單元組之電路作動信 號逆向時序示意圖。 [0080] 第8A圖:其係為本案較佳實施例之喷墨陣列方塊示意圖 〇 [0081] 第8B圖:其係為第6A圖之延伸電路架構示意圖。 [0082] 第8C圖:其係為第7A圖之延伸電路架構示意圖。 [0083] 第9A圖:其係為本案實施例之第一列印方向位址信號時 序圖。 [0084] 第9B圖:其係為本案實施例之第二列印方向位址信號時 序圖。 【主要元件符號說明】 [0085] 墨水匣:1 [0086] 本體:la 100109990 表單編號 A0101 第 34 頁/共 60 頁 1002016866-0 201238777 Ο [0087] 蓋體:lb [0088] 供墨槽:lc [0089] 供墨通道:id [0090] 軟性電路載板: 1 e [0091] 加熱元件:10 [0092] 驅動控制端:11 [0093] 開關元件:12 [0094] 控制接點:13 [0095] 接地端:14 [0096] 噴墨頭:2、3 [0097] 喷墨晶片:21、 31 > 42 [0098] 電連接片:22、 32 [0099] 喷孔片:23、33 [0100] 噴孔:24、331 [0101] 加熱器:25、34 [0102] 中心線:2 6 [0103] 中央供墨流道: 27 [0104] 第一縱向邊緣: 271 [0105] 第二縱向邊緣: 272[0073] The size of 100109990 is relatively reduced, thereby reducing the cost of producing an inkjet printer. The present invention has been described in detail by the above-described embodiments, and may be modified by those skilled in the art, without departing from the scope of the application. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic diagram of a circuit structure for heating a conventional control heating element. Fig. 2 is a schematic view showing the structure of an ink cartridge of the preferred embodiment of the present invention. Fig. 2 is a schematic view showing the structure of a monochrome ink jet head of the first preferred embodiment of the present invention. Figure 2C: This is a schematic diagram of the structure after removing the orifice plate in Figure 2. Fig. 3 is a schematic view showing the structure of a color ink jet head according to a second preferred embodiment of the present invention. Figure 3: This is a schematic diagram of the structure after removing the orifice plate in Figure 3. Figure 3C: This is a schematic diagram of the structure after removing part of the orifice plate in Figure 3. 〇 Figure 4: It is a schematic diagram of the connection structure between the inkjet control circuit and the inkjet wafer of the inkjet printer. Fig. 5 is a block diagram showing the circuit of one of the ink jet unit groups shown in Fig. 4. Figure 6: This is the internal circuit of the inkjet unit group shown in Figure 5 of this case. Form No. 1010101 Page 33 of 60 1002016866-0 [0074] 201238777 Schematic diagram of the architecture. 6B is a schematic diagram showing the sequence of the circuit actuation signals of the ink jet unit group shown in FIG. 6A. 6C is a schematic diagram showing the reverse timing of the circuit actuation signal of the ink jet unit group shown in FIG. 6A. 7A is a schematic diagram showing another internal circuit structure of the ink jet unit group shown in FIG. 5 of the present invention. 7B is a schematic diagram showing the sequential operation of the circuit actuation signals of the ink jet unit group shown in FIG. 7A. 7C is a schematic diagram showing the reverse timing of the circuit actuation signal of the ink jet unit group shown in FIG. 7A. 8A is a block diagram of an ink jet array according to a preferred embodiment of the present invention. [0081] FIG. 8B is a schematic diagram of an extended circuit structure of FIG. 6A. 8C is a schematic diagram of an extended circuit architecture of FIG. 7A. Figure 9A is a timing diagram of the first printing direction address signal of the embodiment of the present invention. [0084] FIG. 9B is a timing diagram of the second printing direction address signal of the embodiment of the present invention. [Main component symbol description] [0085] Ink cartridge: 1 [0086] Body: la 100109990 Form number A0101 Page 34 of 60 1002016866-0 201238777 Ο [0087] Cover: lb [0088] Ink tank: lc [0089] Ink supply channel: id [0090] Flexible circuit carrier: 1 e [0091] Heating element: 10 [0092] Drive control terminal: 11 [0093] Switching element: 12 [0094] Control contact: 13 [0095 Grounding terminal: 14 [0096] Inkjet head: 2, 3 [0097] Inkjet wafer: 21, 31 > 42 [0098] Electrical connection piece: 22, 32 [0099] orifice sheet: 23, 33 [0100] ] Spray hole: 24, 331 [0101] Heater: 25, 34 [0102] Center line: 2 6 [0103] Central ink supply flow path: 27 [0104] First longitudinal edge: 271 [0105] Second longitudinal edge : 272

100109990 表單編號Α0101 第35頁/共60頁 1002016866-0 201238777 [0106] 轴線陣列:34 [0107] 供墨流道:3 6 [0108] 喷墨控制電路:41 [0109] 喷墨單元組:43 [0110] 第一喷墨單元:431、441、4al~4ml [0111] 第二喷墨單元:432、442、4a2~4m2 [0112] 接地端:433、443 [0113] 第一共接點:4311 [0114] 第二共接點:4312 [0115] 第三共接點:4321 [0116] 第四共接點:4411 [0117] 第五共接點:4412 [0118] 第六共接點:4421 [0119] 喷墨陣列:4 [0120] 第一喷墨單元組〜第十三喷墨單元組:4a~4m [0121] 時序:η [0122] 位址信號:A(l)〜Α(η2) [0123] 第一位址信號〜第十三位址信號:Α(1)~Α(13) [0124] 目前位址信號:Α(η) 100109990 表單編號Α0101 第36頁/共60頁 1002016866-0 201238777 • · [0125] 前一個位址信號:A(n-1) [0126] 後一個位址信號:A(n+1 ) [0127] 選擇信號:C(l)〜C(n3) [0128] 第一加熱元件〜第四加熱元件:H1〜H4 [0129] 第一開關元件〜第二十六開關元件:Μ卜M26 [0130] 電壓信號:P(l)〜P(nl) [0131] 時間:ΤΙ、Τ2 1) [0132] 第一位址信號之邏輯電位〜第三位址信號之邏輯電位 V(A(1))~V(A(3)) [0133] 第一共接點之邏輯電位〜第六共接點之邏輯電位: V(Ka)~V(Kf) [0134] 電壓信號之邏輯電位:V(P(1)) [0135] 選擇信號之邏輯電位:V(C(1)) 〇 [0136] 喷孔間距離:P [0137] 參考轴線,L [0138] 軸線:X、Y [0139] 喷墨晶片長度:Ldl、Ld2 [0140] 喷墨晶片寬度:Wdl、Wd2 [0141] 中央供墨流道長度:Lsl、Ls2 [0142] 中央供墨流道寬度:Sdl、Sd2 100109990 表單編號A0101 第37頁/共60頁 1002016866-0 201238777 [0143] 加熱器放置之總長度:Lrl、Lr2 [0144] 供墨流道間距100109990 Form number Α 0101 Page 35 / Total 60 pages 1002016866-0 201238777 [0106] Axis array: 34 [0107] Ink flow path: 3 6 [0108] Inkjet control circuit: 41 [0109] Inkjet unit: 43 [0110] First inkjet unit: 431, 441, 4al~4ml [0111] Second inkjet unit: 432, 442, 4a2~4m2 [0112] Ground terminal: 433, 443 [0113] First common contact :4311 [0114] Second common contact: 4312 [0115] Third common contact: 4321 [0116] Fourth common contact: 4411 [0117] Fifth common contact: 4412 [0118] Sixth common contact :4421 [0119] Inkjet Array: 4 [0120] First Ink Jet Unit Group to Thirteenth Ink Jet Unit Group: 4a~4m [0121] Timing: η [0122] Address Signal: A(l)~Α (η2) [0123] First address signal ~ thirteenth address signal: Α(1)~Α(13) [0124] Current address signal: Α(η) 100109990 Form number Α0101 Page 36 of 60 Page 1002016866-0 201238777 • · [0125] Previous address signal: A(n-1) [0126] Next address signal: A(n+1) [0127] Select signal: C(l)~C( N3) [0128] First heating element to fourth heating element: H1 to H4 [0129] First switching element Pieces ~ Twenty-sixth switching element: Μ M M26 [0130] Voltage signal: P (l) ~ P (nl) [0131] Time: ΤΙ, Τ 2 1) [0132] Logic potential of the first address signal ~ The logic potential of the three-address signal V(A(1))~V(A(3)) [0133] The logic potential of the first common contact ~ the logic potential of the sixth common contact: V(Ka)~V( Kf) [0134] Logic potential of voltage signal: V(P(1)) [0135] Logic potential of selection signal: V(C(1)) 〇[0136] Distance between nozzles: P [0137] Reference axis L [0138] Axis: X, Y [0139] Inkjet wafer length: Ldl, Ld2 [0140] Inkjet wafer width: Wdl, Wd2 [0141] Central ink supply flow path length: Lsl, Ls2 [0142] Central supply Ink flow path width: Sdl, Sd2 100109990 Form No. A0101 Page 37 / Total 60 pages 1002016866-0 201238777 [0143] Total length of heater placement: Lrl, Lr2 [0144] Ink flow path spacing

Cd 100109990 表單編號A0101 第38頁/共60頁 1002016866-0Cd 100109990 Form No. A0101 Page 38 of 60 1002016866-0

Claims (1)

201238777 •七、申請專利範圍: 1 . 一種喷墨頭結構,其適用於包含至少一供墨槽之一墨水匣 ,該喷墨頭結構包含: 一喷孔板,具有複數個喷孔;以及 一喷墨晶片,用以控制墨水喷墨,其具有由一長度 及一寬度構成一總面積區域,該總面積區域包含有: 一非佈線區域,設置至少一供墨流道;以及 一佈線區域,設置一内部電路,該内部電路包含 複數個喷墨單元組,該複數個喷墨單元組的每一個喷墨單 〇 元包含一加熱器,且該加熱器設置於相對應之該喷孔; 其中,該喷墨晶片之該佈線區域之面積佔該喷墨晶 片總面積區域77%以下。 2 .如申請專利範圍第1項所述之喷墨頭結構,其中該喷墨晶 片之該佈線區域之面積係佔該喷墨晶片總面積區域較佳者 為 75% 〜63%° 3 .如申請專利範圍第1項所述之喷墨頭結構,其中該喷墨晶 q 片之長寬比係為11〜20。 4 .如申請專利範圍第1項所述之噴墨頭結構,其中該喷墨晶 片之寬度係為1.27〜2.31毫米。 5 .如申請專利範圍第1項所述之喷墨頭結構,其中該喷墨晶 片之長度係為25. 4毫米。 6 .如申請專利範圍第1項所述之喷墨頭結構,其中該喷墨晶 片之最大面積區域係為58. 67平方毫米。 7 .如申請專利範圍第1項所述之喷墨頭結構,其中該喷墨晶 片包含至少750個該加熱器。 100109990 表單編號A0101 第39頁/共60頁 1002016866-0 201238777 8 ·如申請專利範圍第丨項所述之喷墨頭結構,其中該加熱器 之數目係為每平方毫米13至23個,且該加熱器至少排列 成為一轴線。 9. 一種噴墨頭結構,其適用於包含至少一供墨槽之一墨水匣 ,該喷墨頭結構包含: 一喷孔板,具有複數個噴孔;以及 一喷墨晶片’用以控制墨水喷墨,其具有一長度及 一寬度構成一總面積區域,該總面積區域包含有: 一非佈線區域,設置至少一供墨流道;以及 一佈線區域,,赞’置一::內、.部:電路,該内部電路包含 複數個喷墨單元組,該複數個喷墨單元組的每一個噴墨單 元包含一加熱器,且該加熱器設置於相對應之該喷孔,每 一個該喷墨單元組包括: 一第一喷墨單元’用以接收一電壓信號、複 數個位址信號以及一選擇信號;以及 一第二喷墨單元,用以接收讓電壓信號以及 該複數個位址信號,當該選擇偉號致能時,該第一噴墨單 元因應該電壓信號及該複數捕位址信號,以使該加熱器產 生加熱之作動,而當該選擇信號禁能時,該第二喷墨單元 因應該電壓信號及該複數個位址信號,以使該加熱器產生 加熱之作動; 其中’ έ亥喷墨晶片之該佈線區域之面積佔該噴墨晶 片總面積區域7 7%以下。 1 0 .如申請專利範圍第9項所述之喷墨頭結構,其中該喷墨晶 片之該佈線區域之面積係佔該喷墨晶片總面積區域較佳者 為75%〜63% 。 100109990 表單編號Α0101 第40頁/共60頁 1002016866-0201238777 • VII. Patent application scope: 1. An ink jet head structure, which is suitable for an ink cartridge comprising at least one ink supply tank, the ink jet head structure comprising: an orifice plate having a plurality of orifices; An inkjet wafer for controlling ink inkjet, comprising a total area area formed by a length and a width, the total area area comprising: a non-wiring area, at least one ink supply flow path; and a wiring area, An internal circuit is provided, the internal circuit includes a plurality of inkjet unit groups, each of the plurality of inkjet unit groups includes a heater, and the heater is disposed in the corresponding nozzle hole; The area of the wiring region of the inkjet wafer accounts for 77% or less of the total area of the inkjet wafer. 2. The ink jet head structure according to claim 1, wherein the area of the wiring area of the ink jet wafer is preferably 75% to 63% ° 3 of the total area of the ink jet wafer. The ink jet head structure according to claim 1, wherein the ink jet crystal q sheet has an aspect ratio of 11 to 20. 4. The ink jet head structure of claim 1, wherein the ink jet wafer has a width of 1.27 to 2.31 mm. 5毫米。 The length of the inkjet film is 25. 4 mm. 6. The ink jet head structure of claim 1, wherein the ink jet wafer has a maximum area of 58.67 square millimeters. 7. The ink jet head structure of claim 1, wherein the ink jet wafer comprises at least 750 of the heaters. 100109990 Form No. A0101 Page 39/60 pages 1002016866-0 201238777 8 The ink jet head structure according to the above application, wherein the number of the heaters is 13 to 23 per square millimeter, and The heaters are arranged at least in one axis. 9. An ink jet head structure suitable for use in an ink cartridge comprising at least one ink supply tank, the ink jet head structure comprising: an orifice plate having a plurality of orifices; and an inkjet wafer 'for controlling ink Inkjet, having a length and a width to form a total area area, the total area area comprising: a non-wiring area, at least one ink supply flow path; and a wiring area, and a set of:: Part: a circuit, the internal circuit includes a plurality of inkjet unit groups, each of the plurality of inkjet unit groups includes a heater, and the heater is disposed in the corresponding nozzle hole, each of the The inkjet unit group includes: a first inkjet unit 'for receiving a voltage signal, a plurality of address signals, and a selection signal; and a second inkjet unit for receiving the voltage signal and the plurality of addresses a signal, when the selection of the megaphone is enabled, the first inkjet unit responds to the voltage signal and the plurality of address signals to cause the heater to generate heating, and when the selection signal is disabled, the Two spray Voltage signal and a unit to be due to the plurality of address signals, so that the heating of the heater generates actuation; wherein the area of the wiring area 'έ Hai inkjet wafer total area of the region of the inkjet wafer 77% or less. The ink jet head structure according to claim 9, wherein the area of the wiring region of the ink jet wafer is preferably 75% to 63% of the total area of the ink jet wafer. 100109990 Form number Α0101 Page 40 of 60 1002016866-0
TW100109990A 2011-03-23 2011-03-23 Inkjet head structure TWI472436B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100109990A TWI472436B (en) 2011-03-23 2011-03-23 Inkjet head structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100109990A TWI472436B (en) 2011-03-23 2011-03-23 Inkjet head structure

Publications (2)

Publication Number Publication Date
TW201238777A true TW201238777A (en) 2012-10-01
TWI472436B TWI472436B (en) 2015-02-11

Family

ID=47599329

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100109990A TWI472436B (en) 2011-03-23 2011-03-23 Inkjet head structure

Country Status (1)

Country Link
TW (1) TWI472436B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI719864B (en) * 2020-03-20 2021-02-21 研能科技股份有限公司 Narrow type inkjet print head chip
TWI719863B (en) * 2020-03-20 2021-02-21 研能科技股份有限公司 Manufacturing method of narrow type inkjet print head chip
CN113497023A (en) * 2020-03-20 2021-10-12 研能科技股份有限公司 Long and narrow ink jet head chip

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6863381B2 (en) * 2002-12-30 2005-03-08 Lexmark International, Inc. Inkjet printhead heater chip with asymmetric ink vias
JP4350408B2 (en) * 2003-04-10 2009-10-21 キヤノン株式会社 Printhead substrate, printhead, and printing apparatus
TWI225009B (en) * 2003-12-26 2004-12-11 Ind Tech Res Inst Printing apparatus, ink jetting head, ink jetting head driving control circuit and method for controlling same
US7871143B2 (en) * 2004-06-30 2011-01-18 Lexmark International, Inc. Ground structure for temperature-sensing resistor noise reduction
TWI277525B (en) * 2005-10-03 2007-04-01 Microjet Technology Co Ltd Print chip
EP2173561B1 (en) * 2007-07-30 2013-03-27 Zamtec Limited Inkjet printhead with opposing actuator electrode polarities

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI719864B (en) * 2020-03-20 2021-02-21 研能科技股份有限公司 Narrow type inkjet print head chip
TWI719863B (en) * 2020-03-20 2021-02-21 研能科技股份有限公司 Manufacturing method of narrow type inkjet print head chip
CN113497023A (en) * 2020-03-20 2021-10-12 研能科技股份有限公司 Long and narrow ink jet head chip
US11440322B2 (en) 2020-03-20 2022-09-13 Microjet Technology Co., Ltd. Narrow type inkjet print head chip
CN113497023B (en) * 2020-03-20 2024-02-06 研能科技股份有限公司 Long and narrow type ink jet head chip

Also Published As

Publication number Publication date
TWI472436B (en) 2015-02-11

Similar Documents

Publication Publication Date Title
EP1899163B1 (en) Head substrate, printhead, head cartridge, and printing apparatus
KR100980124B1 (en) Inkjet printhead
US7354139B2 (en) Printhead substrate, printhead, head cartridge, and printing apparatus
CN102689511B (en) Ink gun structure
JP2004050742A (en) Recording head and image recorder
CN102689512B (en) Ink gun structure
US7267429B2 (en) Ink-jet printhead substrate, driving control method, ink-jet printhead and ink-jet printing apparatus
TW201238777A (en) Inkjet head structure
CN102689513B (en) Ink gun structure
TWI468303B (en) Inkjet head structure
JP5063314B2 (en) Element substrate, recording head, head cartridge, and recording apparatus
JP2009137196A (en) Inkjet recording head and inkjet recording apparatus
TWI472438B (en) Inkjet head structure
JP4474126B2 (en) Ink jet recording head and driving method of ink jet recording head
TW200840723A (en) Plurality color inkjet printhead
TWI472437B (en) Inkjet head structure
US20090015608A1 (en) Inkjet image forming apparatus
JP2006007762A (en) Substrate for recording head, recording head, head cartridge, and recorder
CN102689514B (en) Ink gun structure
TW200840720A (en) Inkjet printhead
US9522529B2 (en) Substrate for liquid ejection head, liquid ejection head, and apparatus and method for ejecting liquid
TW200840722A (en) Plurality color inkjet printhead of ink cartridge