TW200840723A - Plurality color inkjet printhead - Google Patents

Plurality color inkjet printhead Download PDF

Info

Publication number
TW200840723A
TW200840723A TW96111691A TW96111691A TW200840723A TW 200840723 A TW200840723 A TW 200840723A TW 96111691 A TW96111691 A TW 96111691A TW 96111691 A TW96111691 A TW 96111691A TW 200840723 A TW200840723 A TW 200840723A
Authority
TW
Taiwan
Prior art keywords
address
ink jet
ink
wafer
heaters
Prior art date
Application number
TW96111691A
Other languages
Chinese (zh)
Other versions
TWI331571B (en
Inventor
Hsiang-Pei Ou
Rong-Ho Yu
Hsien-Chung Tai
Original Assignee
Microjet Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microjet Technology Co Ltd filed Critical Microjet Technology Co Ltd
Priority to TW96111691A priority Critical patent/TWI331571B/en
Publication of TW200840723A publication Critical patent/TW200840723A/en
Application granted granted Critical
Publication of TWI331571B publication Critical patent/TWI331571B/en

Links

Abstract

A plurality color inkjet printhead capable of printing with plurality color ink is disclosed. The inkjet printhead comprises a chip and a plurality of heating apparatuses disposed on three vertical axes of the chip, wherein the characteristic is that the heating apparatuses on each axis provide different color ink with others, and the heating apparatuses are arranged with a density more than 25 heating apparatuses every square millimeter.

Description

200840723 九、發明說明: 【發明所屬之技術領域】 本案係關於一種喷墨頭結構,尤指一種適用於墨水匣 之彩色噴墨頭結構。 【先前技術】200840723 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to an ink jet head structure, and more particularly to a color ink jet head structure suitable for ink cartridges. [Prior Art]

目前市面上常見的印表機除雷射印表機外,噴墨印表 機疋另一種被廣泛使用的機種,其具有價格低廉、操作容 易以及低噪音等優點,且可列印於如紙張、相片紙等多種 喷墨媒體。而喷墨印表機之列印品質主要取決於墨水匣的 。又°十專因素,尤其以控制列印晶片釋出墨滴至噴墨媒體之 喷墨頭機構設計為墨水匣設計的重要考量因素。 一般而言,喷墨印表機主要藉由喷墨頭分別在一個陣 列的特定位置列印獨立點的圖案來組合產生列印的圖 像,而獨立點的位置是由所要列印的圖像所決定且可被看 做是一個直線陣列中的一個小點。 習知喷墨頭結構可包含列印晶片、加熱器以及喷孔 =其中喷墨頭結構係組裝於—墨水£之本體上,且加熱 器係受控於列印晶片,墨水匣將提供墨水至加熱器,使^ 加熱器因應列印晶片的觸發對墨水進行加熱, 内部所儲存之墨水加熱並經由所對應之噴孔板之喷孔噴 射,喷墨媒體上,至於,墨滴噴墨時間的控制對應於要 列印圖案的像素點。 通常墨水!£係設置於喷墨印表機之内部,並藉由一承 5 200840723 耗而在t㈣體上枝行橫向_ 軸產L 使得噴墨頭與噴墨媒體之間沿一掃 對T其中掃描軸指的是平行於嘴墨媒體的 黑:於二組件的單次掃描意味著承载系統帶動喷 :員:贺墨媒體的大約整個寬度上移動一次次In addition to the laser printer, the inkjet printer is another widely used model, which has the advantages of low price, easy operation and low noise, and can be printed on paper. , photo paper and other inkjet media. The printing quality of inkjet printers depends mainly on the ink cartridges. Moreover, the ten factors, especially the ink jet head mechanism that controls the printing of the ink droplets to the inkjet medium, are an important consideration for the design of the ink cartridge. In general, an inkjet printer mainly combines and produces a printed image by printing a pattern of independent dots at specific positions of an array, respectively, and the position of the independent dot is determined by the image to be printed. It is determined and can be seen as a small point in a linear array. Conventional inkjet head structures can include a print wafer, a heater, and a spray orifice = wherein the ink jet head structure is assembled on the body of the ink, and the heater is controlled by the print wafer, and the ink cartridge will provide ink to The heater causes the heater to heat the ink according to the trigger of the printing wafer, and the ink stored in the interior is heated and ejected through the corresponding orifice of the orifice plate, on the inkjet medium, as for the ink droplet ejection time Controls the pixel points corresponding to the pattern to be printed. Usually the ink! is set inside the inkjet printer, and it is used to scan the inkjet head and the inkjet medium along the sweeping pair T by means of a bearing 5 200840723. The axis refers to the black parallel to the ink medium of the mouth: a single scan of the two components means that the carrying system drives the spray: the member: moves over the entire width of the ink medium once and again

間’喷墨媒體將相對於喷墨頭沿垂直於掃描軸 的,、、=軸前進,即沿噴墨媒體長度的方向。 m欠當育墨頭沿著掃描軸噴墨移動時將會產生-行間斷 二:所有的間斷線條組合起來即為列印的圖案的文字 =2、、’的進給軸㈣印分辨率被稱為 媒體谁體進給軸的密度,因此間斷線條在喷墨 、/°上的密度越大’沿該軸的列印分辨率就越高。 _知技術係藉由增加噴墨頭的加熱器的數目來提古 :斷:,喷墨媒體前進轴的密度,以提高列印分辨^ 進仃心列印的速度,雖然增加喷墨頭 以達到加快列印速度,妓眾多的加熱器會 能使得噴_的溫度快速升高4僅會 =熱 能使得整個喷墨頭㈣。 卩”更可 目月iJt界所發展出來的解決方式之— 墨頭的尺寸來職健獅溫㈣速升高,但是,ς加貫 等激烈的噴墨列印市場中,喷墨印表機的售價下降的於競 速’增加噴墨頭的尺寸將會提高生產噴墨印表=快 而消減市場競爭力。 战本,The ink jet medium will advance relative to the ink jet head along the axis, perpendicular to the scan axis, i.e., in the direction of the length of the ink jet media. m owing when the ink-removing head moves along the scanning axis, it will produce - line break two: all the intermittent lines are combined to print the pattern of the text = 2, 'the feed axis (four) print resolution is Called the media who is the density of the body feed axis, so the greater the density of the discontinuous lines on the inkjet, /°, the higher the print resolution along that axis. _ knowing the technology by increasing the number of heaters of the inkjet head: break: the density of the advancement axis of the inkjet media to improve the speed of printing and printing, although the inkjet head is increased To speed up the printing speed, many heaters can make the temperature of the spray _ rise rapidly 4 only = thermal energy makes the entire inkjet head (four).卩 更 更 i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i The price of the decline in the competition 'increasing the size of the inkjet head will increase the production of inkjet printers = fast and reduce market competitiveness.

A 而且當喷墨頭的噴孔數量多的時候, 會將噴墨碩設計 6 200840723 為序列傳輸以節省喷頭晶片輸入/輸出(I/O)上的數量, 但因為喷墨頭晶片所需驅動加熱器的控制方式仍為需要 結合位址控制以及列印資料信號,但是習知喷墨頭晶片中 對於位址控制的設計方式係為當控制喷墨頭加熱的位址 的數目為η時,位置解碼器需對應設置η條排線以供連接 至對應的喷墨驅動電路上,舉例而言,當控制喷墨頭加熱 的位址的數目為20時,位置解碼器需對應設置20條排 線,但是隨著加熱器數目的增加,習知的設計將增加晶片 ® 的面積,而增加喷墨頭的尺寸,因此如何縮減位址控制之 方式為節省晶片面積的一個重要問題。 因此,如何發展一種可改善上述習知技術缺失之彩色 喷墨頭結構,實為目前迫切需要解決之問題。 【發明内容】 本案之主要目的在於提供一種彩色喷墨頭結構,俾解 決習知增加喷墨頭的加熱器的數目而增加喷墨頭的尺寸 • 將會提高生產喷墨印表機的成本,以及習知位址控制之方 式將增加晶片的面積,而增加喷墨頭的尺寸等缺點。 本案提供了一種喷墨頭能夠實現高分辨率的高速列 印,同時因為有效利用喷墨頭空間而降低成本,提供以輕 便和廉價的組件來實現高性能列印。 本發明的噴墨頭結構用來實現高分辨率及高速列印 的方式係藉由增加加熱器的數量,並使不同組的加熱器交 錯排列,使加熱器以高頻率工作。 ^ 為達上述目的,本案之一較廣義實施樣態為提供一種 7 200840723 .喷墨頭結構,用以進行多色墨水之噴墨列印,其係包含一 晶片以及设置於該晶片上且沿縱向延伸之三個軸線陣列 的加熱器’其特徵在於:每_該轴線陣列的加熱器分別提 供不同顏色的墨滴,全部加熱器係以大於每平方毫米(麵2) 25個加熱器的密度設置於該晶片上。 一本案喷墨頭晶片上設置之加熱器之密度超過每平方 毫米(mm2) 25個加熱器且包含至少18〇〇個喷孔,每一轴 鲁線陣列的加熱器以及相對應之嘴孔排列成至少2個平行的 行,每-行相對於相鄰的行係交錯排列或偏移’以提供比 非交錯排列佈植更小的有效距離。 藉由將加熱器交錯排列於嘴墨頭上,可降低具有高密 度加熱器噴墨頭的列印成本,為了在晶片上實現高密度的 加,器佈植,本發明另外包含了—種利用減少位址排線的 數量來達到縮減晶片面積的目的。 根據上述構想,其中噴墨頭結構更進一步包含有至少 _接收-噴墨控制電路所輸出之串列位址信號的位址控制 電路,位址控制電路包含有將接收的串列位址信號轉換成 兩組並列位址信號輸出的串並位址信號轉換器及兩個分 別接收該串並位址#號轉換器之輸出信號並予以解碼的 位址解碼器,促使兩個位址解碼器形成MxN排並列的信號 輸送至具有及閘及加熱器的喷墨驅動電路中作為噴墨於 制信號。 〜、…工 200840723 【實施方式】 體現本案特徵與優 _ 說明中詳細敘逑。應理解、0一二/、型實施例將在後段的 有各種的變化,其;不在不同的態樣上具 用―制= 列喷墨頭上的大量要错由交錯排列的方式來排 .體在進给轴上的有效喷孔密度以提m可^衫媒 度,進而使得本案之噴墨頭 辨㈣列印速 墨印表機。 、 l用於相對低成本的喷 請參閱第一圖,其係為本 印表機内部之承载李统之社槿案例之適用於喷墨 統1可包含承载架112、控制器” 動承二糸 I™" k供正個承载糸統i運作能量的電源12卜 承載架112主要用來容置嘴墨頭111且其-端與第一 驅動馬達116連接’用以帶動噴墨頭111於掃描軸出方 ===移動,喷墨頭lu可以是可更換地或是永 久女衣在承载架112上,而控制器113係與承载架出 連接,用以傳送控制信號至噴墨頭ln上。一 録=驅動馬達116可為—步進馬達,但不以此為限, 據位置控制器117所傳送的控制信號沿著掃描軸 來移動承载架112,而位置控制器117則是藉由儲存 9 200840723 器118來確定承載架112於掃描軸115之位置,另外,位 置控制态117更可用來控制第二驅動馬達119運作,以驅 動喷墨媒體122,例如:紙張,與送紙結構12〇之間,進 而使喷墨媒體122可沿進給軸114方向移動。 當喷墨媒體122在列印區域(未圖示)中確定 定位後,第一驅動馬達u6在位置控制器117的驅動下將 使承載架112及噴墨頭1U在喷墨媒體122上沿掃描軸ιΐ5 移動而進行列印’於掃描軸115上進行一次或是多次掃描 後,位置控制器117將控制第二驅動馬達119運作,以驅 動喷墨媒體122與送紙結構ι2〇之間,使喷墨媒體122可 沿進給軸114方向移動,以將喷墨媒體122的另一區域放 置到列印區域中,而第一驅動馬達116將再帶動承載架ιΐ2 及2墨頭ill在喷墨媒體122上沿掃描軸115移動而進行 行列P 直重複到所有的列印資料都列印到嘴墨媒 體122上%,喷墨媒體122將被推出到噴墨印表機之輸出 拖架(未圖示)上,以完成列印動作。 +月ΐ閱弟一圖(a )’其係為本案第一較佳實施例之單 色贺墨頭之結構示意圖。其中第二圖(a)所示之喷墨頭2 係為-簡化後之結構示意圖,於本實施例中,噴墨頭2係 為一長條狀結構且包含晶片2卜電連接片22以及喷孔片 23’其中,晶片21表面上係具有複數個加熱器25 (如第 二圖(b)所示)’且噴孔片23上係包含複數個對應於加 …、為25的噴孔24,於本實施例中,噴孔 刪個,但不以此為限。 _里7為 於本實施例中,噴墨頭2的組合喷孔分辨率可為12〇〇 200840723 點每英吋(dpi),即沿著參考軸線L量測喷墨頭2的有效 喷墨距離為1/1200英吋,且參考轴線L係與第一圖所示 之喷墨媒體122的進給轴114方向一致。 為了實現高分辨率的功效,喷墨頭2上之喷孔24可排 列成為2個轴線組,圖中以I及Π來表示,且每個轴線組 I及Π均具有一中心線26,兩中心線26係互相平行設置 且均與參考轴線L平行,且每個軸線組I及Π中的喷孔24 相對於其它軸線組I或Π中的喷孔24以及參考轴線1是 ® 交錯排列的,每個軸線軸I或Π的軸線距離為Ρ,而全部 二個轴線組I及11組合起來相對於參考軸線1^的有效距離 為Ρ/2,即同一中心線26之兩喷孔24間的距離為Ρ,不 同中心線26相鄰之兩喷孔24間的垂直距離為Ρ/2,於本 實施例中Ρ可為1/600英吋,Ρ/2為1/1200英吋,但不以 此為限。 請參閱第二圖(b),其係為第二圖(a)移除喷孔片 後之結構示意圖,如圖所示,本實施例之喷墨頭2之晶片 ⑩ 21可為一矩形結構,其長寬比係以9· 0〜12. 5的區間為 佳,於本實施中,晶片21的寬度Wdl約為2. 8毫米(mm), 長度Ldl約為25. 4毫米(mm ),總面積為71 · 72毫米(mm ), 長寬比為9.0,因此本案之喷墨頭2於噴孔片23上每平方 毫米(mm2)約設置有1_0/71· 72与14個喷孔24 (如第二 圖(a)所示),且設置在晶片21上的加熱器25將墨水以 排列成為二個交錯行的喷孔24中喷出,於加熱器25總長 Lrl為5/6英吋的每一行中有500個噴孔24。 * 請再參閱第二圖(b),晶片21的表面上係具有1個 11 200840723 長條狀之中央供墨流道27以及分別設置於中央供墨流道 27兩侧邊之加熱器25,另外,中央供墨流道27的一侧邊 係包含排列著第I組加熱器25之第一縱向邊緣271,而另 一侧邊則包含排列著第Π組加熱器25之第二縱向邊緣 272。 於本實施例中,中央供墨流道27的寬度Sdl可為 0· 175毫米(mm),長度Lsl可為21· 24毫米(mm),且中 央供墨流道27的寬度佔晶片21的A-A截面積比例係為: • Sdl/Wdl = 0. 175mm/2· 8_=6· 25%。 中央供墨流道27兩侧邊之加熱器25可沿第一軸線及 第二軸線分別排列成為2排軸線組,圖中以I及Π來表 示,且軸線組I及Π的加熱器彼此之間係交錯排列設置, 同一排之相鄰兩加熱器25間的距離為P,不同排之相鄰兩 加熱器25間的垂直距離為P/2,於本實施例中P可為1/600 英吋,P/2為1/1200英吋,但不以此為限。 ⑩ 由於加熱器25係設置在高度緊湊的喷墨頭2晶片21 上,因此晶片21上的加熱器25密度至少要有每平方毫米 (腿2) 10個加熱器,以使喷墨頭2的成本比其它具有較 少喷孔24的喷墨頭2更低。在實施例中,晶片21上每平 方毫米(mm2)可具有以13· 5〜19.9個加熱器,即加熱器 的數量大約介於960至1415的區間。而較佳值係加熱器 25總數約為1000個,因此本案晶片21上每平方毫米(腿2) 的加熱器25密度約為1000/ ( 25.4x2.8) = 14。至於上述 • 計算晶片21上的加熱器25密度係將中央供墨流道27的 12 200840723 面積一起加入計算。 一般而言,為了使重量輕的墨滴能夠保持高速列 印,加熱器25需以很高的頻率運作,本案之喷墨頭2藉 由高喷射頻率結合高密度交錯排列的加熱器25的方式來 提供高分辨率的高速列印,本案之喷墨頭2的加熱器25 使用的喷射頻率超過20千赫茲,較佳的頻率範圍為22至 26千赫茲,本實施例係以24千赫茲的工作頻率運作。 請參閱第三圖(a),其係為本案第三較佳實施例之彩 色喷墨頭之結構示意圖。其中第三圖(a)所示之喷墨頭3 係為一簡化後之結構示意圖,於本實施例中,喷墨頭3係 為一長條狀結構且包含晶片31、電連接片32、喷孔片33 以及三個軸線陣列34的加熱器35 (如第三圖(b)所示), 且喷孔片33上係包含複數個對應於加熱器35的喷孔 331,主要藉由一定的列印分辨率來進行多道的彩色列 印,且於喷墨媒體轴線的點間距可小於或等於軸線喷孔的 間距。 請參閱第三圖(b)及(c),其中第三圖(b)其係 為第三圖(a)移除喷孔片後之結構示意圖,第三圖(c) 其係為第三圖(a)移除部分喷孔片後之結構示意圖,如 圖所示,本實施例之喷墨頭3之晶片31的表面上的加熱 器35係設置成沿參考軸線L延伸的轴線陣列34,並相對 參考轴線L橫向或側向相互隔離,另外,晶片31上更具 有三個與參考軸線L平行的供墨流道36,主要用來傳送不 同顏色的墨水,且彼此之間相對參考轴線L的垂直方向並 13 200840723 排分隔,進而為對應的三個軸線陣列34的加熱器35提供 不同顏色的墨水,每一軸線陣列34可由2排設置於供墨 流道36兩侧邊之同色墨水加熱器35所組成且均平行於參 考軸線L的方向,且2排加熱器35之間以交錯排列的方 式設置於供墨流道3 6的兩侧邊’故本貫施例之晶片31上 係具有2排x3色==6排的加熱器排數。 於本實施例中,每一轴線陣列34中可包含600個或 更多的加熱器35,即每一排的加熱器35可由300個加熱 器35所組成,因此加熱器35的總數可為1800個,且每 一轴線陣列34中同一排且兩相鄰之加熱器35間的距離為 P,不同排之相鄰兩加熱器35間的垂直距離為P/2,於本 實施例中P可為1/600英吋,P/2為1/1200英吋。 在一些實施例中,每一轴線陣列34中同一排且兩相 鄰之加熱器35間的距離可為1/600〜1/1200英吋,不同排 之相鄰兩加熱器35間的垂直距離可為1/1200〜1/2400英 口寸。 本實施例之喷墨頭2之晶片21可為一矩形結構,其 長寬比係以3. 6〜9.0的區間為佳,晶片31的寬度Wd2約 為4.5毫米(_)’長度Ld2約為16毫米(mm),總面積 為72毫米(mm),長寬比為Ld2/ Wd2=16/4· 5= 3· 6,且晶 片31上加熱器35的密度區間以20. 1〜30. 0為佳,每一 排的加熱器35總長Lr2約為1/2英吋,加熱器35總數約 為1800個,因此本案晶片31上每平方毫米(腿2)的加熱 器35密度約為18⑽/( 16x4· 5) =25。 14 200840723 另外,每一供墨流道36的寬度Sd2可為0.15毫米 (mm),長度Ls2可為12· 8毫米(mm),且相鄰兩供墨流 道36的間距Cd可為1. 27毫米(腿),因此三個供墨流道 36的總寬度佔晶片31的B-B截面積比例係為:(Sd2/Wd2) x3= ( 0· 15mm/4· 5mm) x3=10%。另一些實施例中,相鄰兩 供墨流道36的間距Cd可為1. 27毫米(腿),寬度Sd2區 間可為0· 17腿,可配合每一供墨流道36寬度Sd2區間為 0· 15腿〜0· 17腿,以及每一供墨流道36長度Ls2區間為 _ 0· 15mm〜0· 17mm,三個供墨流道36的總寬度佔晶片31的 B-B截面積比例區間可為6. 25%〜10%。 於另一實施例中,晶片31上可同樣具有6排的加熱 器排數,但是加熱器的總數可為2000〜3000個,晶片31 的寬度Wd2可為2. 5〜3. 5毫米(mm),長度Ld2可為12.7 〜25· 4毫米(mm ),總面積為3L 75〜88· 9毫米(mm ),長 寬比為3. 6〜10,且晶片31上加熱器35的密度區間以31 〜90為佳,每一排的加熱器35總長Lr2約為1/2英吋, • 因此晶片31上每平方毫米(mm2)的加熱器35密度約為 ( 2000/88· 9)〜(3000/31.75),即 22· 4〜94· 5。至於上 述計算晶片31上的加熱器35密度係將供墨流道37的面 積一起加入計算。 本案之喷墨頭除了藉由交錯排列的方式來於晶片上 設置更多的加熱器以有效利用喷墨頭空間而降低成本及 提高列印速度外,更可藉由縮減噴墨頭内部晶片之位址控 制方式來達到縮減晶片面積,使喷墨頭的尺寸相對縮小, 進而降低生產喷墨印表機的成本。 15 200840723 請參閱第四圖,其係為由喷墨印表機之喷墨控制電路 與嘴墨頭晶片之連接結構不意圖。如圖所不’嘴墨控制電 路41於喷墨印表機(未圖示)運作時將傳送時脈信號 (clock)、奇數位址資料信號(Data_odd)、偶數位址資 料信號(Data_even )、位址信號(address )、選通信號 (strobe)、加熱信號(Main fire,MF)以及預熱信號 (Preheat fire,PF)至喷墨頭晶片42端,以控制整個喷墨 頭的運作。 其中時脈信號為控制訊號輸入喷墨頭晶片42之依 據,奇數位址資料信號以及偶數位址資料信號為輸入到喷 墨頭晶片42之列印資料,位址信號為輸入到喷墨頭晶片 42之位置訊號,用以驅動需進行喷墨列印的加熱電路,選 通信號為控制喷墨頭晶片42將喷墨控制電路41傳入之信 號栓鎖(latch)住的信號,加熱信號為使喷墨頭之加熱 電路喷印出墨滴之訊號,預熱信號為讓喷墨頭預熱之訊 號。 請參閱第五圖(a)及(b),其中第五圖(a),其係 為弟四圖所不之嘴墨頭晶片之電路結構不意圖’第五圖 (b)係為第五圖(a)之C部份之電路放大結構示意圖, 如第五圖(a)所示,由於喷墨控制電路41為了防止傳送 至喷墨頭晶片42的資料信號遺失,而將資料信號分成奇 數位址資料信號以及偶數位址資料信號分別傳送至喷墨 頭晶片4 2内’因此嘴墨頭晶片4 2的内部電路分成2個部 分來分別接收奇數位址資料信號以及偶數位址資料信號 並搭配其它相對應的電路來進行喷墨運作,第一部份為接 16 200840723 ^ 收奇數位址資料信號(如第五圖(a)的左半部份)且由 第一串並資料信號轉換器(ser 2 par—odd) 4211、第一 串並位址信號轉換器(ser 2 par—address)4221、第一主 位址解碼器(MA)4231、第一次位址解碼器(sa)4241、第一 緩衝器(Fire Buffer,FB) 4251以及構成複數個組電路區 塊(Bank)的噴墨驅動電路426所組成。 至於,第二部份則是用來接收偶數位址資料信號(如 ⑩第五圖(a)的右半部份)且由第二串並資料信號轉換器 (ser 2 par—even) 4212、第二串並位址信號轉換器(ser 2 par—address)4222、第二主位址解碼器(MA)4232、第二 次位址解碼器(SA)4242、第二緩衝器(Fire Buffer FB) 4252以及構成複數個組電路區塊(Bank)的喷墨驅動電路 426 ’ ,由於第一部份與第二部份的電路架構實質上係相 似’差異點僅在於第一串並資料信號轉換器觀及第二 串並資料信號轉換器所分別接收的資料信號為奇數 籲位址或是偶數位址,因此以下將僅以第一部份提出說明, 即接收可數位址貧料信號之左半部份電路為例,而不再對 偶數位址資料信號之右半部份電路。 請再參㈣五圖⑻,第—串並資料信號轉換器觀 ^接收育墨控制電路41所輸出之時脈信號(—a)、奇 位址貢料信號(Data—碰)以及選通信號(伽⑹,並 將原本為串列輪入之奇數位址資料信號轉換成為經由 =odl4排線所輸出共15位元的並列信號輸出而第一 •串亚位址信號轉換器4221則是接收噴墨控制電路所輸 17 200840723 出之時脈信號(clock)、位址信號(address )以及選通 信號(strobe),並將原本為串列輸入之位址信號轉換成為 經由mO〜m2以及SO〜S2排線所輸出共5位元的並列信號 輸出,其中mO〜m2所輪出的信號係傳送至第一主位址解碼 器4231並經解碼且由排線MA0〜MA4輸出5位元的並列信 號’至於排線SO〜S2所輪出的信號係傳送至第一次位址 解碼器4241並經解碼且由排線SA0〜SA3輸出4位元的並 列信號。 第一緩衝器4251係接收喷墨控制電路41所輸出之加 熱信號(MF)以及預熱信號(pF),主要用來去除加熱信號以 及預熱信號的雜訊且加強信號強度,以增加信號穩定度, 並將處理後之加熱信號以及預熱信號傳送至噴墨驅動電 路 426 。 ^ 而每一喷墨驅動電路426主要包含及閘4261、電位轉 換電路、驅動電晶體4263以及加熱器R,及閘4261具有 • 3支接腳MA-X、SA-Y及Data—Ζ,ΜΑ—X係連接至排線ΜΑ〇 〜ΜΑ4其中之一,SA—Υ連接至排線SA0〜SA3其中之一, Data—Z則連接至排線〇_〜〇dl4其中之一,及閘將接 收第一主位址解碼器4231及第一次位址解碼器4241所輸 出之位址k號,以及第一串並資料信號轉換器4211所傳 运之奇數位址資料信號,並進行一乘法邏輯運算以輸出一 運算結果,即高電位信號(high)或是低電位信號(low)。 至於,電位轉換電路可為一升壓電路(L—>Hcircuit) 4262,其係與及閘4261以及與第一緩衝器425l連接,用 18 200840723 以接收及閘4261所輸出之運算結果以及第一緩衝器4251 所輪出之加熱信號(犯〇以及預熱信號(PF),當及閘4261 所輪出之運异結果為低電位信號時,升壓電路4262將選 擇接收預熱信號(PF),並將預熱信號(pF)由低電位轉換 成尚電位信號,主要用來觸發驅動電晶體4263導通,同 時將傳送一列印電壓(HV)至加熱器R,如此一來加熱器 R的溫度將升高,使部份墨水及噴墨頭預熱至一特定溫度。 反之,當及閘4261所輸出之運算結果為高電位信號 =,升壓電路4262將選擇接收加熱信號(MF),並將加熱 “唬由低電位轉換成高電位信號,主要用來觸發驅動電晶 體4263導通’同時將傳送一列印電壓(HV)至加熱器r, 如此一來加熱器R的溫度將升高,以將墨水加熱而產生氣 泡,使墨水喷至喷墨媒體上。 其中每一組電路區塊(Bank )中所包含的喷墨驅動 電路426只對應到一個資料排線,即排線〇d〇〜〇dl4其中 之一,且喷墨驅動電路426的數量係等同於位址信號的數 量,於本案之喷墨頭晶片42中主要將位址信號分為主位 址信號以及次位址信號,即習知技術使用單一個位址解碼 态來進行位址信號的解碼,而本案同時藉由第一主位址解 碼器4231及第一次位址解碼器4241來進行,其中主位址 ^號負責Μ個位元,次位址信號負責n個位元,M及N為 自然數,促使第一主位址解碼器4231及第一次位址解碼 态4241形成MxN排並列的信號輸送至具有及閘4261及加 熱器R的喷墨驅動電路426中作為喷墨控制信號。 200840723 於本實施例中主位址信號負責5個位元,即,次 位址信號負責4個位元,即,主位址信號即第一主位 址解碼器4231經由排線MA0〜MA4所輪出的5位元並列信 5虎’次位址信號即第一次位址解瑪器4241經由排線SA0 〜SA3所輸出的4位元並列信號,主位址信號以及次位址 信號經由及閘4261相乘之後將可產生與原本之位址總數 相同,即MxN=5x4=20,可解決習知技術需要設置2〇條 排線而增加晶片佈植(layout)尺寸的問題,進而達到縮 減排線所佔用喷墨頭晶片之面積空間’來達到縮減晶片面 積,使喷墨頭的尺寸相對縮小,進而降低生產噴墨印表 的成本。A. When the number of nozzles of the inkjet head is large, the inkjet design 6 200840723 is transmitted in sequence to save the number of input/output (I/O) on the nozzle wafer, but because the inkjet head wafer requires The driving mode of the heater is still required to combine the address control and the printing of the data signal, but the design of the address control in the conventional inkjet head wafer is such that when the number of addresses for controlling the inkjet head heating is η The position decoder needs to set n rows of wires for connection to the corresponding inkjet driving circuit. For example, when the number of addresses for controlling the inkjet head heating is 20, the position decoder needs to be correspondingly set by 20 Cables, but as the number of heaters increases, conventional designs increase the area of the wafer® and increase the size of the inkjet head, so how to reduce the address control is an important issue to save wafer area. Therefore, how to develop a color ink jet head structure which can improve the above-mentioned conventional techniques is an urgent problem to be solved. SUMMARY OF THE INVENTION The main object of the present invention is to provide a color ink jet head structure which solves the problem of increasing the number of heaters of an ink jet head and increasing the size of the ink jet head. • The cost of producing an ink jet printer will be increased. As well as the conventional address control method, the area of the wafer is increased, and the size of the ink jet head is increased. The present invention provides an ink jet head capable of high-resolution high-speed printing while reducing the cost by effectively utilizing the head space, providing high-performance printing with lightweight and inexpensive components. The ink jet head structure of the present invention is used to achieve high resolution and high speed printing by increasing the number of heaters and arranging different sets of heaters to operate at a high frequency. ^ In order to achieve the above object, one of the broader aspects of the present invention provides a 7 200840723 ink jet head structure for performing ink jet printing of multi-color ink, which comprises a wafer and is disposed on the wafer and along A longitudinally extending array of three axial array heaters is characterized in that each heater of the array of axes provides ink drops of different colors, all of which are greater than 25 heaters per square millimeter (face 2) The density is set on the wafer. The heater provided on the inkjet head wafer has a density exceeding 25 heaters per square millimeter (mm2) and contains at least 18 nozzles, and the heaters of each axis and the corresponding nozzle holes are arranged. In at least 2 parallel rows, each row is staggered or offset relative to adjacent rows to provide a smaller effective distance than a non-staggered arrangement. By staggering the heaters on the nozzle head, the printing cost of the high-density heater head can be reduced. In order to achieve high-density addition on the wafer, the invention additionally includes a reduction in utilization. The number of address lines is used to reduce the wafer area. According to the above concept, the ink jet head structure further includes an address control circuit having at least a serial address signal outputted by the receiving-ejection control circuit, the address control circuit including converting the received serial address signal A serial-to-parallel address signal converter outputting two sets of parallel address signals and two address decoders respectively receiving and decoding the output signals of the serial-to-serial address ## converter, causing two address decoders to form The MxN row juxtaposed signals are sent to an inkjet driving circuit having a gate and a heater as an inkjet signal. ~, ... work 200840723 [Embodiment] The characteristics and advantages of this case are reflected in the description. It should be understood that the 0-2/type embodiment will have various changes in the latter stage, and it is not used in different aspects. The system = a large number of errors on the inkjet head are arranged in a staggered manner. The effective orifice density on the feed shaft is used to improve the medium of the ink, thereby making the ink jet head of the present invention (4) print the ink jet printer. l For the relatively low-cost spray, please refer to the first figure, which is the case of the carrier that carries the Li Tongzhi inside the printer. It is applicable to the inkjet system 1 and can include the carrier 112 and the controller. TM" k provides a power supply for carrying the energy of the system i. The carrier 112 is mainly used to accommodate the ink nozzle 111 and its end is connected to the first driving motor 116 to drive the inkjet head 111 for scanning. The axis output === movement, the inkjet head lu can be replaceable or permanent female clothing on the carrier 112, and the controller 113 is connected to the carrier to transmit a control signal to the inkjet head ln A record = drive motor 116 can be a stepper motor, but not limited thereto, according to the control signal transmitted by the position controller 117, the carrier 112 is moved along the scan axis, and the position controller 117 is The storage device 118 is used to determine the position of the carrier 112 at the scanning axis 115. In addition, the position control state 117 can be used to control the operation of the second driving motor 119 to drive the inkjet medium 122, such as paper, and the paper feeding structure 12. Between the turns, the inkjet media 122 can be moved along the feed axis 114. After the inkjet medium 122 is positioned in the printing area (not shown), the first driving motor u6, under the driving of the position controller 117, will cause the carrier 112 and the inkjet head 1U to be in the inkjet medium 122. The upper edge is scanned along the scan axis ιΐ5 for one or more scans on the scan axis 115. The position controller 117 controls the second drive motor 119 to operate to drive the inkjet media 122 and the paper feed structure ι2. Between the inkjet media 122 is movable in the direction of the feed axis 114 to place another region of the inkjet media 122 into the print region, and the first drive motor 116 will again drive the carriages ι 2 and 2 The ill moves along the scanning axis 115 on the inkjet medium 122 to perform a straight line P repeat until all of the printed material is printed on the ink medium 122, and the inkjet medium 122 is pushed out to the output of the inkjet printer. On the trailer (not shown), the printing operation is completed. +月ΐΐ弟一图(a)' is a schematic structural view of the monochrome ink head of the first preferred embodiment of the present invention. (a) The inkjet head 2 shown is a simplified schematic diagram of the structure. In this embodiment, the inkjet head 2 is a strip-like structure and includes a wafer 2, an electrical connection piece 22, and a orifice sheet 23', wherein the surface of the wafer 21 has a plurality of heaters 25 (as shown in the second figure ( b) shown) and the orifice sheet 23 comprises a plurality of orifices 24 corresponding to the addition of 25, in the embodiment, the orifices are deleted, but not limited thereto. In the present embodiment, the combined nozzle resolution of the inkjet head 2 can be 12 〇〇 200840723 points per inch (dpi), that is, the effective ink ejection distance of the inkjet head 2 measured along the reference axis L is 1/ 1200 inches, and the reference axis L is aligned with the feed axis 114 of the inkjet medium 122 shown in the first figure. In order to achieve high resolution, the orifices 24 on the inkjet head 2 can be arranged in two axis groups, denoted by I and Π, and each axis group I and Π have a centerline 26 The two centerlines 26 are arranged parallel to each other and are both parallel to the reference axis L, and the orifices 24 in each of the axis groups I and Π are opposite to the orifices 24 in the other axis group I or 以及 and the reference axis 1 ® staggered, the axial distance of each axis axis I or Π is Ρ, and the effective distance of all two axis groups I and 11 combined with respect to the reference axis 1 Ρ /2, that is, the same center line 26 The distance between the two injection holes 24 is Ρ, and the vertical distance between the two injection holes 24 adjacent to the center line 26 is Ρ/2, which in this embodiment can be 1/600 inch, Ρ/2 is 1/ 1200 miles, but not limited to this. Please refer to the second figure (b), which is a schematic view of the second figure (a) after removing the orifice sheet. As shown in the figure, the wafer 10 21 of the inkjet head 2 of the present embodiment may have a rectangular structure. 4毫米(mm), the width Ldl of the wafer 21 is about 2.8 mm (mm), and the length Ldl is about 25. 4 mm (mm). The total area is 71 · 72 mm (mm), and the aspect ratio is 9.0. Therefore, the ink jet head 2 of the present invention has about 1_0/71·72 and 14 orifices per square millimeter (mm2) on the orifice sheet 23. 24 (as shown in the second figure (a)), and the heater 25 disposed on the wafer 21 ejects the ink into the two injection holes 24 arranged in two staggered rows, and the total length Lrl of the heater 25 is 5/6. There are 500 orifices 24 in each row of the inch. * Referring to FIG. 2(b) again, the surface of the wafer 21 has a central ink supply flow path 27 of 11 200840723 strips and heaters 25 respectively disposed on both sides of the central ink supply flow path 27, In addition, one side of the central ink supply passage 27 includes a first longitudinal edge 271 in which the first group heaters 25 are arranged, and the other side includes a second longitudinal edge 272 in which the second group heaters 25 are arranged. . In the embodiment, the width Sdl of the central ink supply flow path 27 may be 0·175 millimeters (mm), the length Ls1 may be 21·24 millimeters (mm), and the width of the central ink supply flow path 27 occupies the wafer 21. The AA cross-sectional area ratio is: • Sdl/Wdl = 0. 175mm/2· 8_=6· 25%. The heaters 25 on both sides of the central ink supply passage 27 can be arranged along the first axis and the second axis as two rows of axis groups, which are denoted by I and Π, and the heaters of the axis group I and the cymbal are mutually The distance between adjacent heaters 25 in the same row is P, and the vertical distance between adjacent heaters 25 in different rows is P/2. In this embodiment, P can be 1/600. Miles, P/2 is 1/1200 inches, but not limited to this. 10 Since the heater 25 is disposed on the highly compact inkjet head 2 wafer 21, the heater 25 on the wafer 21 has a density of at least 10 heaters per square millimeter (leg 2) to make the inkjet head 2 The cost is lower than other ink jet heads 2 having fewer orifices 24. In the embodiment, each square millimeter (mm2) of the wafer 21 may have 13 5 to 19.9 heaters, i.e., the number of heaters is approximately 960 to 1415. Preferably, the total number of heaters 25 is about 1000. Therefore, the density of the heater 25 per square millimeter (leg 2) on the wafer 21 of the present invention is about 1000 / (25.4 x 2.8) = 14. As for the above • The density of the heater 25 on the calculation wafer 21 is calculated by adding the area of the 12 200840723 of the central ink supply flow path 27 together. In general, in order to enable high-speed printing of light-weight ink droplets, the heater 25 is required to operate at a high frequency, and the ink jet head 2 of the present invention is combined with a high-density staggered heater 25 by a high jetting frequency. To provide high-resolution high-speed printing, the heater 25 of the inkjet head 2 of the present invention uses an ejection frequency of more than 20 kHz, preferably a frequency range of 22 to 26 kHz, and this embodiment is 24 kHz. Working frequency operates. Referring to Fig. 3(a), it is a schematic structural view of a color ink jet head according to a third preferred embodiment of the present invention. The ink jet head 3 shown in the third figure (a) is a simplified schematic view. In the embodiment, the ink jet head 3 is a long strip structure and includes a wafer 31 and an electrical connecting piece 32. The orifice sheet 33 and the heater 35 of the three axis arrays 34 (as shown in the third diagram (b)), and the orifice sheet 33 includes a plurality of nozzle holes 331 corresponding to the heater 35, mainly by a certain The print resolution is used for multi-pass color printing, and the dot pitch on the inkjet media axis can be less than or equal to the pitch of the axial orifice. Please refer to the third figure (b) and (c), wherein the third figure (b) is the structure of the third figure (a) after removing the orifice sheet, and the third figure (c) is the third figure. Figure (a) is a schematic view showing the structure after removing a part of the orifice sheet. As shown in the figure, the heater 35 on the surface of the wafer 31 of the ink-jet head 3 of the present embodiment is arranged in an array of axes extending along the reference axis L. 34, and laterally or laterally separated from each other with respect to the reference axis L. In addition, the wafer 31 further has three ink supply channels 36 parallel to the reference axis L, mainly for conveying inks of different colors, and are opposite to each other. The vertical direction of the reference axis L and the 13 200840723 row are separated, thereby providing the heaters 35 of the corresponding three axis arrays 34 with ink of different colors, and each axis array 34 can be disposed on both sides of the ink supply flow path 36 by two rows. The same color ink heaters 35 are formed in a direction parallel to the reference axis L, and the two rows of heaters 35 are arranged in a staggered manner on both sides of the ink supply path 36. The wafer 31 has a row of heater rows of 2 rows x 3 colors == 6 rows. In this embodiment, each axis array 34 may include 600 or more heaters 35, that is, each row of heaters 35 may be composed of 300 heaters 35, so the total number of heaters 35 may be 1800, and the distance between the two rows in each axis array 34 and the two adjacent heaters 35 is P, and the vertical distance between two adjacent heaters 35 in different rows is P/2, in this embodiment P can be 1/600 inch and P/2 is 1/1200 inch. In some embodiments, the distance between the same row and two adjacent heaters 35 in each axis array 34 may be 1/600 to 1/1200 inch, and the vertical between adjacent heaters 35 of different rows The distance can be from 1/1200 to 1/2400 inches. The wafer 21 of the inkjet head 2 of the present embodiment may have a rectangular structure, and the aspect ratio thereof is preferably in the range of 3.6 to 9.0, and the width Wd2 of the wafer 31 is about 4.5 mm (_) 'the length Ld2 is about 1〜30. The density of the heater 35 on the wafer 31 is 20. 1~30. The thickness of the heater 35 on the wafer 31 is 20. 1~30. Preferably, the heater 35 of each row has a total length Lr2 of about 1/2 inch, and the total number of heaters 35 is about 1800. Therefore, the density of the heater 35 per square millimeter (leg 2) on the wafer 31 of the present invention is about 18 (10). /( 16x4· 5) =25. 14 200840723 In addition, the width Sd2 of each ink supply flow path 36 may be 0.15 millimeters (mm), the length Ls2 may be 12·8 millimeters (mm), and the pitch Cd of the adjacent two ink supply flow paths 36 may be 1. 27 mm (leg), so the total width of the three ink supply passages 36 as a ratio of the BB cross-sectional area of the wafer 31 is: (Sd2/Wd2) x3 = (0·15 mm/4·5 mm) x3 = 10%. In other embodiments, the spacing Cd of the adjacent two ink supply channels 36 may be 1.27 mm (leg), and the width Sd2 interval may be 0·17 legs, which may be matched with the width Sd2 of each ink supply passage 36. 0·15 leg~0·17 legs, and each ink supply passage 36 length Ls2 interval is _ 0·15 mm~0·17 mm, and the total width of the three ink supply passages 36 occupies the ratio of the BB cross-sectional area of the wafer 31 It can be 6. 25%~10%. 5 毫米 (mm) The length Ld2 may be 12.7 to 25·4 mm (mm), the total area is 3L 75 to 88·9 mm (mm), the aspect ratio is 3. 6 to 10, and the density interval of the heater 35 on the wafer 31 Preferably, 31 to 90, the total length Lr2 of the heater 35 of each row is about 1/2 inch, so that the density of the heater 35 per square millimeter (mm2) on the wafer 31 is about (2000/88·9)~ (3000/31.75), ie 22·4~94·5. As for the density of the heater 35 on the above-mentioned calculation wafer 31, the area of the ink supply path 37 is added together for calculation. In addition to reducing the cost and increasing the printing speed by providing more heaters on the wafer to effectively utilize the head space, the ink jet head of the present invention can reduce the internal wafer of the ink jet head by reducing the cost of the ink jet head space. The address control method is used to reduce the wafer area, so that the size of the ink jet head is relatively reduced, thereby reducing the cost of producing an ink jet printer. 15 200840723 Please refer to the fourth figure, which is not intended to be a connection structure between the ink jet control circuit of the ink jet printer and the nozzle ink chip. As shown in the figure, the ink control circuit 41 transmits a clock signal, an odd address data signal (Data_odd), an even address data signal (Data_even), when operating in an ink jet printer (not shown). An address signal, a strobe, a main fire (MF), and a preheating (PF) are applied to the end of the ink jet head wafer 42 to control the operation of the entire ink jet head. The clock signal is the basis for the control signal input to the inkjet head wafer 42, the odd address data signal and the even address data signal are the printed data input to the inkjet head wafer 42, and the address signal is input to the inkjet head wafer. The position signal of 42 is used to drive a heating circuit that needs to perform inkjet printing. The strobe signal is a signal for controlling the inkjet head wafer 42 to latch the signal transmitted from the inkjet control circuit 41, and the heating signal is The heating circuit of the inkjet head is printed with the signal of the ink droplet, and the preheating signal is a signal for preheating the inkjet head. Please refer to the fifth figure (a) and (b), in which the fifth figure (a) is the circuit structure of the nozzle ink chip which is not the same as the fourth figure (b) is the fifth A schematic diagram of a circuit enlarged structure of a portion C of the figure (a), as shown in the fifth diagram (a), the ink jet control circuit 41 divides the data signal into odd parts in order to prevent the loss of the data signal transmitted to the ink jet head wafer 42. The digital address data signal and the even address data signal are respectively transmitted to the inkjet head wafer 42. Therefore, the internal circuit of the inkjet wafer 42 is divided into two parts to respectively receive the odd address data signal and the even address data signal. In conjunction with other corresponding circuits for inkjet operation, the first part is connected to 16 200840723 ^ to receive odd-numbered address data signals (such as the left half of Figure 5 (a)) and converted by the first string of data signals (ser 2 par-odd) 4211, first serial address signal converter (ser 2 par-address) 4221, first main address decoder (MA) 4231, first address decoder (sa) 4241, a first buffer (Fire Buffer, FB) 4251, and a plurality of groups of circuit areas The ink jet driving circuit 426 of the bank is composed of a bank. As for the second part, it is used to receive the even-numbered address data signal (such as the right half of Figure 5 (a)) and by the second serial data signal converter (ser 2 par-even) 4212, Second serial address signal converter (ser 2 par-address) 4222, second primary address decoder (MA) 4232, second address decoder (SA) 4242, second buffer (Fire Buffer FB 4252 and the inkjet driving circuit 426' constituting a plurality of groups of circuit blocks, since the circuit structures of the first part and the second part are substantially similar, the difference is only in the first string and data signal conversion The data signals received by the second and parallel data signal converters are either odd or even addresses, so the following will only be explained in the first part, that is, the left side of the receivable addressable poor signal is received. The half-circuit is an example, and the circuit is no longer the right half of the even-address data signal. Please refer to (4) five-figure (8), the first-string and data signal converters to receive the clock signal (-a) output from the ink-receiving control circuit 41, the odd-site tributary signal (Data-touch), and the strobe signal. (Gam (6), and the odd-numbered address data signal originally converted into a serial array is converted into a parallel signal output of a total of 15 bits outputted by the =odl4 cable, and the first-string sub-address signal converter 4221 is received. The inkjet control circuit inputs a clock signal (clock), an address signal (address), and a strobe signal (2008), and converts the address signal originally input into the serial port into mO~m2 and SO. ~S2 cable outputs a total of 5 bit parallel signal output, wherein the signals rotated by mO~m2 are transmitted to the first main address decoder 4231 and decoded, and 5 bits are outputted by the wires MA0~MA4. The parallel signal 'the signals that are rotated by the lines SO to S2 are transmitted to the first address decoder 4241 and decoded, and the parallel signals of 4 bits are outputted from the lines SA0 to SA3. The first buffer 4251 is received. The heating signal (MF) output by the inkjet control circuit 41 and preheating The signal (pF) is mainly used to remove the noise of the heating signal and the preheating signal and enhance the signal strength to increase the signal stability, and transmit the processed heating signal and the preheating signal to the inkjet driving circuit 426. Each of the inkjet driving circuits 426 mainly includes a gate 4261, a potential conversion circuit, a driving transistor 4263, and a heater R, and the gate 4261 has three pins MA-X, SA-Y, and Data-Ζ, ΜΑ-X. It is connected to one of the cables ΜΑ〇~ΜΑ4, SA-Υ is connected to one of the cables SA0~SA3, Data-Z is connected to one of the cables 〇~~〇dl4, and the gate will receive the first The address of the address of the address decoded by the main address decoder 4231 and the first address decoder 4241, and the odd address data signal transmitted by the first serial data signal converter 4211, and performing a multiplication logic operation Outputting an operation result, that is, a high-potential signal (high) or a low-potential signal (low). As for the potential conversion circuit, it can be a booster circuit (L->Hcircuit) 4262, which is connected to the gate 4261 and A buffer 4251 is connected and received by 18 200840723 The operation result outputted by the gate 4261 and the heating signal (the smashing and preheating signal (PF) rotated by the first buffer 4251 are boosted when the result of the rotation of the gate 4261 is a low potential signal. The circuit 4262 will select to receive the preheat signal (PF) and convert the preheat signal (pF) from a low potential to a potential signal, mainly for triggering the driving transistor 4263 to be turned on, while transmitting a printing voltage (HV) to the heating. The R is such that the temperature of the heater R will rise to preheat some of the ink and the ink jet head to a specific temperature. On the contrary, when the operation result output by the gate 4261 is a high potential signal=, the boosting circuit 4262 will select to receive the heating signal (MF), and convert the heating “唬 from a low potential to a high potential signal, which is mainly used to trigger the driving power. The crystal 4263 is turned "on" while transmitting a print voltage (HV) to the heater r, so that the temperature of the heater R will rise to heat the ink to create bubbles that are ejected onto the ink jet medium. The inkjet driving circuit 426 included in the group circuit block (Bank) corresponds to only one of the data lines, that is, one of the wires 〇d〇 to 〇dl4, and the number of the inkjet driving circuits 426 is equivalent to the address. The number of signals, in the inkjet head wafer 42 of the present invention, mainly divides the address signal into a primary address signal and a secondary address signal, that is, the prior art uses a single address decoding state to decode the address signal, and The present invention is simultaneously performed by the first primary address decoder 4231 and the first address decoder 4241, wherein the primary address ^ is responsible for one bit, the secondary address signal is responsible for n bits, and M and N are Natural number, causing the first main address solution The code 4231 and the first address decoding state 4241 form a MxN row parallel signal to be delivered to the inkjet driving circuit 426 having the gate 4261 and the heater R as an inkjet control signal. 200840723 In the present embodiment, the main address The signal is responsible for 5 bits, that is, the secondary address signal is responsible for 4 bits, that is, the main address signal, that is, the 5-bit parallel signal 5 that the first main address decoder 4231 rotates via the line MA0~MA4 The tiger's secondary address signal is the 4-bit parallel signal output by the first address solver 4241 via the lines SA0 to SA3, and the primary address signal and the secondary address signal are multiplied by the gate 4261 to generate The same as the original total number of addresses, that is, MxN=5x4=20, which can solve the problem that the conventional technology needs to set 2 lines of wires and increase the layout size of the wafer, thereby achieving the inkjet head wafer occupied by the reduced emission line. The area of space 'to reduce the wafer area, so that the size of the inkjet head is relatively reduced, thereby reducing the cost of producing inkjet printing.

請參閱下列表一,其係為m0〜m2排線輸入到第一主位 ^解碼器4231之並列位址信號,以及s〇〜S2排線輸入到 弟—次位址解碼器4241之並列位址信號, 個位址賴絲: °Please refer to the following list 1. It is the parallel address signal input to the first main position decoder 4231 for the m0~m2 cable, and the parallel input of the s〇~S2 cable input to the second-order address decoder 4241. Address signal, address:

20 200840723 7 001 10 8 001 11 9 010 00 10 010 01 11 010 10 12 010 11 13 011 00 14 011 01 15 011 10 16 011 11 17 100 00 18 100 01 19 100 10 20 100 11 表一20 200840723 7 001 10 8 001 11 9 010 00 10 010 01 11 010 10 12 010 11 13 011 00 14 011 01 15 011 10 16 011 11 17 100 00 18 100 01 19 100 10 20 100 11 Table 1

當然上述第一主位址解碼器4231及第一次位址解碼 器4241所輸出之排線數目並不以M= 5個及N=4個為限, 可以需求調整,舉例而言,當控制位址數目為16時,第 一主位址解碼器4231的排線數目可為M=4,而第一次位 址解碼器4241同樣維持為N=4,兩者相乘後MxN = 4x4 = 16。 21 200840723 綜上所述,本案之彩色喷墨頭結構主要藉由交錯排列 的方式來於晶片上設置更多的加熱器以有效利用喷墨頭 空間而降低成本及提高列印速度外,更可藉由主位址解碼 器及次位址解碼器來取代習知單一位址解碼器,縮減喷墨 頭内部晶片之佈植排線面積以縮減晶片面積,使喷墨頭的 尺寸相對縮小,進而降低生產喷墨印表機的成本。 是以,本案之彩色喷墨頭結構極具產業之價值,爰依 法提出申請。 本案得由熟知此技術之人士任施匠思而為諸般修 飾,然皆不脫如附申請專利範圍所欲保護者。Of course, the number of lines output by the first primary address decoder 4231 and the first address decoder 4241 is not limited to M=5 and N=4, and may be adjusted, for example, when controlling When the number of address bits is 16, the number of lines of the first main address decoder 4231 may be M=4, and the first address decoder 4241 is also maintained at N=4, and the two are multiplied by MxN = 4x4 = 16. 21 200840723 In summary, the color inkjet head structure of the present invention mainly uses a staggered arrangement to place more heaters on the wafer to effectively utilize the head space to reduce cost and increase printing speed, and more. By replacing the conventional single address decoder with the primary address decoder and the secondary address decoder, the layout area of the internal wafer of the inkjet head is reduced to reduce the wafer area, and the size of the inkjet head is relatively reduced. Reduce the cost of producing inkjet printers. Therefore, the color inkjet head structure of this case is of great industrial value and is submitted in accordance with the law. This case has been modified by people who are familiar with the technology, but it is not intended to be protected by the scope of the patent application.

22 200840723 —【圖式簡單說明】 第一圖:其係為本案較佳實施例之適用於喷墨印表機内部 之承载系統之結構示意圖。 ,一圖ja)··其係為本案第一較佳實施例之單色喷墨頭之 結構不意圖。 圖(a)移除喷孔片後之結構示意 第二圖(b):其係為第二 圖。22 200840723 — [Simple description of the drawings] First figure: It is a schematic structural view of a carrier system suitable for the inside of an inkjet printer according to a preferred embodiment of the present invention. Fig. ja) is a schematic view of the structure of the monochrome ink jet head of the first preferred embodiment of the present invention. Figure (a) Schematic diagram of the structure after removing the orifice sheet Fig. 2(b): This is the second diagram.

案第二較佳實施例之彩色噴墨頭之 第三圖(a):其係為本 結構示意圖。 = 0>):其係為第三圖(a)移除噴孔片後之結構示意 第三圖(C):其係為第三圖 示意圖。 )移除部分噴孔片後之結構 曰a 第四圖,其係為由喷墨印表機 片之連接結構示意圖。 之噴墨控制電路與噴墨頭 第五圖(a):其係為第 示意圖。 四圖所示之噴_晶片之電路結構 第五圖(b ) ··其係為第五圖( 構示意圖。 C部份之電路放大結 200840723 【主要元件符號說明】 承載系統:1 喷墨頭:111 承載架:112 控制器:113 進給轴:114 掃描軸:115 第一驅動馬達:116 控制器:117 儲存器:118 第二驅動馬達: 119 送紙結構:120 電源:121 喷墨媒體:122 喷墨頭:2、3 晶片:21、31 電連接片:22、 32 喷孔片:23、33 喷孔:24、331 加熱器:25、35 中心線:26 中央供墨流道:27 第一縱向邊緣: 271 第二縱向邊緣:272 軸線陣列:34 供墨流道:36 喷墨控制電路: 41 喷墨頭晶片:42 緩衝器:4251、 4252 及閘:4261 升壓電路:4262 驅動電晶體:4263 串並資料信號轉換器:4211、4212 串並位址信號轉換器:4221、4222 主位址解碼器:4231、4232 次位址解碼器:4241、4242 喷墨驅動電路426 24The third drawing (a) of the color ink jet head of the second preferred embodiment is a schematic view of the structure. = 0>): It is the third figure (a) Schematic diagram of the structure after removing the orifice sheet. Figure 3 (C): This is the diagram of the third diagram. Structure after removing part of the orifice sheet 曰a The fourth figure is a schematic view of the connection structure of the inkjet printer sheet. Inkjet control circuit and ink jet head Fig. 5(a): This is a schematic view. The fifth diagram (b) of the circuit structure of the jet-wafer shown in Fig. 4 is the fifth diagram (the schematic diagram of the circuit. The circuit amplification section of the C section is 200840723. [Main component symbol description] Carrier system: 1 inkjet head : 111 Carrier: 112 Controller: 113 Feed axis: 114 Scan axis: 115 First drive motor: 116 Controller: 117 Memory: 118 Second drive motor: 119 Paper feed structure: 120 Power supply: 121 Inkjet media : 122 Inkjet head: 2, 3 Chip: 21, 31 Electrical connection piece: 22, 32 orifice: 23, 33 Injection hole: 24, 331 Heater: 25, 35 Center line: 26 Central ink supply flow path: 27 First longitudinal edge: 271 Second longitudinal edge: 272 Axis array: 34 Ink flow channel: 36 Inkjet control circuit: 41 Inkjet chip: 42 Buffer: 4251, 4252 and gate: 4261 Boost circuit: 4262 Driver transistor: 4263 serial data signal converter: 4211, 4212 serial and address signal converter: 4221, 4222 main address decoder: 4231, 4232 address decoder: 4241, 4242 inkjet driver circuit 426 24

Claims (1)

200840723 十、申請專利範圍·· 1· 一種噴墨頭結構,用以進行多色墨水之喷墨列印,其係 包含一晶片以及設置於該晶片上且沿縱向延伸之三個軸 線陣列的加熱器,其特徵在於·· 每一該軸線陣列的加熱器分別提供不同顏色的墨 滴,全部加熱器係以大於每平方毫米(_2) 25個加熱器 的密度設置於該晶片上。200840723 X. Patent Application Scope 1. An ink jet head structure for performing ink jet printing of multi-color ink, comprising a wafer and heating of three axial arrays arranged on the wafer and extending in the longitudinal direction The heater is characterized in that each of the heaters of the array array respectively supplies ink droplets of different colors, and all the heaters are disposed on the wafer at a density greater than 25 heaters per square millimeter (-2). 2·如申請專利範圍第1項所述之喷墨頭結構,其中每一該 軸線陣列的加熱器係沿相互平行且相互間隔開的軸線排 列成至少2個軸線組。 3·如申請專利範圍第〗項所述之喷墨頭結構,其中每一該 軸線組包含之該複數個加熱器總長為1/2英对。 4·如申請專利範園第丨項所述之喷墨頭結構,其中該噴墨 ,結構更包含三個並列設置之供墨流道,其係分別設置於 母一該軸線陣列的加熱器之該至少2個軸線組間。 5.如申請專利範圍第4項所述之喷墨頭結構,苴中每一該 =墨岐讀道寬度料G. 15毫米(_),錢長度係為/ 耄米(mm)。 ^如:請專利範圍第4項所述之噴墨頭結構,其中該3個 7八墨机遏之間的流道間距係為127毫米 之長如寬申項所述m結構,其中該晶片 ===:述之喷_構,其中該晶片 25 200840723 9. 如申請翻範圍第丨韻狀健雜構, 上係設置1800個加熱器。 〜中忒日日片 10. 如申請專利範圍第!項所述之喷墨頭結構,談曰 片上设置該加敎哭之穷声F p弓在炎么^ Χ日日 ?训母平方毫米(咖2)20.1 至3 0 · 0個加熱器。 ϋ.Λ申請專利範圍第1項所述之喷墨頭結構,其中相鄰 兩加熱器之間距係為1/60()英忖。2. The ink jet head structure of claim 1, wherein each of the array of heaters is arranged in at least two axis groups along mutually parallel and mutually spaced axes. 3. The ink jet head structure of claim 1, wherein each of the plurality of heaters comprises a total length of 1/2 inch pairs. 4. The ink jet head structure according to the above application, wherein the ink jet, the structure further comprises three ink supply channels arranged side by side, which are respectively disposed on the heater of the mother array. The at least two axis groups are between. 5. The ink-jet head structure according to item 4 of the patent application, wherein each of the 岐 = 宽度 宽度 宽度 Width Width is G. 15 mm (_), and the length of the money is / 耄 (mm). For example, the ink jet head structure described in claim 4, wherein the flow path spacing between the three 7-ink machines is 127 mm long, as described in the wide application, wherein the wafer ===: The spray structure, wherein the wafer 25 200840723 9. If the application is to turn the range of the first rhyme, the upper system is set with 1800 heaters. ~ 中忒日日片 10. If you apply for a patent range! The inkjet head structure described in the item, the setting of the 敎 敎 之 之 F F F F F F F F F ^ ? ? ? ? ? ? ? ? ? ? 训 训 训 训 训 训 训 训 训 训 训 训 训 咖 咖 咖 咖 咖 咖 咖 咖The ink jet head structure of claim 1, wherein the distance between adjacent heaters is 1/60 () inch. 12.如申請專利範圍第丨項所述之喷墨頭結構,其中更進 一步包含有一至少接收一喷墨控制電路所輸出之一串列 位址信號的位址控制電路,該位址控制電路包含有一將接 收的串列位址k號轉換成兩組並列位址信號輸出的串並 位址4號轉換器及兩個分別接收該串並位址信號轉換器 之輪出信號並予以解碼的位址解碼器,促使該兩個位址解 嗎裔形成Μ X N排並列的信號輸送至具有一及閘及一加熱器 的噴墨驅動電路中作為嘴墨控制信號。12. The ink jet head structure of claim 2, further comprising an address control circuit for receiving at least one serial address signal output by an ink jet control circuit, the address control circuit comprising There is a bit-to-address address number 4 converter that converts the received serial address k number into two sets of parallel address signal outputs, and two bits that respectively receive and decode the round-out signal of the serial-to-serial address signal converter The address decoder causes the two addresses to form a parallel signal of the XN row to be sent to the inkjet driving circuit having a gate and a heater as a nozzle ink control signal. 2626
TW96111691A 2007-04-02 2007-04-02 Plurality color inkjet printhead TWI331571B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96111691A TWI331571B (en) 2007-04-02 2007-04-02 Plurality color inkjet printhead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96111691A TWI331571B (en) 2007-04-02 2007-04-02 Plurality color inkjet printhead

Publications (2)

Publication Number Publication Date
TW200840723A true TW200840723A (en) 2008-10-16
TWI331571B TWI331571B (en) 2010-10-11

Family

ID=44821274

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96111691A TWI331571B (en) 2007-04-02 2007-04-02 Plurality color inkjet printhead

Country Status (1)

Country Link
TW (1) TWI331571B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI586548B (en) * 2015-12-07 2017-06-11 研能科技股份有限公司 Ink-jet cartrige structure
TWI586549B (en) * 2015-12-07 2017-06-11 研能科技股份有限公司 Ink-jet cartrige structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6686425B2 (en) * 2015-12-25 2020-04-22 セイコーエプソン株式会社 Head unit control circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI586548B (en) * 2015-12-07 2017-06-11 研能科技股份有限公司 Ink-jet cartrige structure
TWI586549B (en) * 2015-12-07 2017-06-11 研能科技股份有限公司 Ink-jet cartrige structure

Also Published As

Publication number Publication date
TWI331571B (en) 2010-10-11

Similar Documents

Publication Publication Date Title
JP4182123B2 (en) Inkjet recording head and inkjet recording apparatus
JP3223901B2 (en) Driving method of ink jet recording head and circuit thereof
EP1899163B1 (en) Head substrate, printhead, head cartridge, and printing apparatus
CN101274515B (en) Monochrome ink gun structure
JP2001287365A (en) Recording head, driving method for recording head and data output unit
JP3352331B2 (en) Printhead substrate, printhead, head cartridge and printing apparatus using the printhead
JP2008114378A (en) Element substrate, and recording head, head cartridge and recorder using this
CN102689511B (en) Ink gun structure
CN101274514B (en) Color ink gun structure
TW200840723A (en) Plurality color inkjet printhead
WO2001074596A1 (en) On-demand inkjet printer and its drive method and drive circuit
CN102689512B (en) Ink gun structure
CN101274513B (en) Ink gun structure
TWI472436B (en) Inkjet head structure
TWI468303B (en) Inkjet head structure
JP2006231857A (en) Ink-jet recording method
JP2003311962A (en) Liquid ejection head, head cartridge employing the liquid ejection head, and imaging apparatus
CN103129146A (en) Color ink-jet head structure
TW200840720A (en) Inkjet printhead
TW200840722A (en) Plurality color inkjet printhead of ink cartridge
JP2005306048A (en) Print head with staggered arrangement and printing device using it
JP5553537B2 (en) Ink jet recording apparatus and recording head temperature adjusting method
JP4055361B2 (en) Printing using a print head with a staggered arrangement
TWI327529B (en) Inkjet printhead
CN101274516B (en) Polychromatic ink gun structure suitable for ink cartridge