TW201238083A - Light emitting diode structure - Google Patents

Light emitting diode structure Download PDF

Info

Publication number
TW201238083A
TW201238083A TW100107775A TW100107775A TW201238083A TW 201238083 A TW201238083 A TW 201238083A TW 100107775 A TW100107775 A TW 100107775A TW 100107775 A TW100107775 A TW 100107775A TW 201238083 A TW201238083 A TW 201238083A
Authority
TW
Taiwan
Prior art keywords
light
emitting diode
semiconductor layer
layer
metal electrode
Prior art date
Application number
TW100107775A
Other languages
Chinese (zh)
Inventor
zi-yang Lin
Yu-Hong Lai
Original Assignee
Genesis Photonics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genesis Photonics Inc filed Critical Genesis Photonics Inc
Priority to TW100107775A priority Critical patent/TW201238083A/en
Priority to CN2012100184059A priority patent/CN102683539A/en
Publication of TW201238083A publication Critical patent/TW201238083A/en

Links

Landscapes

  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

The present invention relates to a light emitting diode structure, which is to configure an optical color filter on top of a transparent conductive layer of a light emitting diode die. The optical color filter has the selective reflectance and transmissivity for different wavelength of light, so that the light emitted by the light emitting diode die may penetrate the optical color filter, and the excited light generated by the fluorescent material excited by the light emitted by the diode die may be reflected. Thus, the present invention may reduce the light energy loss caused by the absorption of the excited light after scattering back to the die, and further enhance the brightness of the light emitting diode.

Description

201238083 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明係有關於一種發光二極體結構,特別是指一 種可提升亮度之發光二極體結構。 [0002] 〇 ❹ 【先前技術】 照明設備為人類生活中不可或缺,隨著技術的發展 ,具有更好照度及更省電的照明工具也逐漸應運而生。 目前發光二極體逐漸地被使用為照明光源,發光二極體 (Light-Emitting Diode ! LED)與傳統光源比較,發 光二極體係具有體積小、省電、發光效率佳、壽命長、 ,操作反應速度快、且無熱轎射與水銀等有毒物質的污染 等優點。為了照明領域上的使用’其中更以白光發光二 極體備受各界的關注與研究。 目前已商品化之白光LED所使用的製作技術主要有三 :1.藍光LED配合黃色螢光粉:所使用的螢光粉主要為釔 鋁石榴石結構之YAG螢光粉’粉體發出之黃光與未被吸收 之藍光混合即可產生白光;2.藍光LED配合紅色與綠色螢 光粉:所使用的螢光粉主要以含硫之螢光粉為主,粉體 發出之紅、綠光與未被吸收之藍光混合即可產生白光; 3.紫外光LED配合紅色、藍色和綠色三色螢光粉:利用 LED所產生之紫外光同時激發三種或三種以上可分別發出 紅、藍、綠光之螢光粉’勞光粉被激發後發出三色光再 混合成白光。然而’部分的發光二極體之激發光會被螢 光粉背向散射回晶粒内部’激發光經反射數次後被吸收 ,導致激發光之利用率大幅降低。 100107775 請參閱第一圖,其係為習知技術之發光二極體的結 表單編號A0101 第3頁/共18頁 1002013188-0 201238083 構示意圖,如圖所示’習知的發光二極體包含一基板12 ,一第一半導體層22、一第二半導體層24與一透明導電 層26 ’第一半導體層22設於基板12上方,第二半導體層 24设於第一半導體層22上方,透明導電層26設於第二半 導體層24上方,第一金屬電極32與第二金屬電極34則分 別設於第一半導體層22及透明導電層26上,最後再以一 絕緣層42覆蓋於透明導電層26上方,並讓絕緣層42覆蓋 第一半導體層22,同時讓第一金屬電極32與第二金屬電 極34裸露。由於該絕緣層42由一固定折射率的絕緣材質 所構成,對於不同波長的光皆具有相同的反射率與穿透 率,因此,不論是發光二極體所發出的光或是激發螢光 粉後產生的光都可穿透該絕緣層42而被散射進晶粒内部 ,導致光能損失。 因此’本發明提供一種發光二極體結構,其係可減 少激發光進入發光二極體内,以提升亮度,並解決上述 之問題。 【發明内容】 [0003] 100107775 本發明之主要目的,在於提供一種發光二極體結構 ,其係藉由光學濾光膜對不同波長的光具有選擇性反射 率及穿透率,因此,發光二極體晶粒所發出的光可穿透 光學濾光膜,而二極體晶粒所發出的光激發螢光材料後 所產生的激發光則被反射,如此可減少激發光散射回晶 粒後被吸收所造成的光能損失。 本發明之發光二極體結構,包含一基板、一第一半 導體層、一主動層、一第二半導體層與一透明導電層, 第一半導體層設於基板上方,主動層設於部分之第一半 表單編號A0101 第4頁/共18頁 u 201238083 導體層上方,該發光層可發出具第一波長之光,第二半 k體層设於主動層上方,透明導電層設於第二半導體層 上方,其中,第一半導體層上方設置一第一金屬電極, 透明導電層上方設置一第二金屬電極,更進一步包含至 少一光學濾光膜,光學濾光膜設於透明導電層上方並延 伸覆蓋部分之第二半導體層與部分之第一半導體層,第 一金屬電極與第二金屬電極裸露於光學濾光膜。 利用光學濾光膜反射激發光,卻不會遮蔽發光二極 體晶教所發出的光,藉此提高發光二極體的亮度。 Ο [0004] Ο 100107775 【實施方式】 &為使貴審查委員對本發明之結構特徵及所達成 之功效有更進一步之瞭解與認識,謹佐以較佳之實施例 及配合詳細之說明’說明如後: 請參閱第二圖’其係為本發明較佳實施例之發光二 極體之結構示意圖;如圖所示,本發明之發光二極體1之 結構,包含一基板52、一第一半導體層54、一主動層74 、一第一金屬電極62、一第二半導體層56、一透明導電 層58、一第二金屬電極64與至少一光學濾光膜72,第一 半導體層54設於基板52上方,第一金屬電極62設於第一 半導體層54上方’主動層74設於該第一半導體層之上方 ,該發光層可發出具第一波長之光,第二半導體層56設 於主動層74上方,透明導電層58設於第二半導體層56上 方,第二金屬電極64設於透明導電層58上方,光學濾光 膜72設於透明導電層58上方並延伸覆蓋第二半導體層56 與第一半導體層54,第一金屬電極62與第二金屬電極64 裸露於光學濾光膜72。該光學濾光膜對該第一波長之光 表單編號A0101 第5頁/共18頁 1002013188-0 201238083 具有5〇二=率’且對非第-波長之光具咖以 上的反射率,更者為對該第—波長之光具有8〇%以上的 穿透率’且對波長之光具有5咖上的反射率 學濾光膜72可讓發光:極體晶粒所發之光線通過,並且 將該發光二極體晶粒所發之光線激發外部」 產生的激發光反射’可避免激發光進入發光二核= 内,而造成光損失,如此可提高螢光的產生致率,“ 提高發光二極體的亮度。 ^^ 基板52可為透光基板或不透光基板,μ光義板之 材料例如為Si、GaAs GaN/Si、或其組合;透光 材料,如:sapphire、Sic、GaP、GaAs 土 之 、 glass 、201238083 VI. Description of the Invention: [Technical Field] [0001] The present invention relates to a light-emitting diode structure, and more particularly to a light-emitting diode structure capable of improving brightness. [0002] 〇 ❹ [Prior Art] Lighting equipment is indispensable in human life. With the development of technology, lighting tools with better illumination and more power saving have emerged. At present, the light-emitting diode is gradually used as an illumination source, and the light-emitting diode (LED) is compared with the conventional light source, and the light-emitting diode system has small volume, power saving, good luminous efficiency, long life, and operation. The reaction speed is fast, and there is no advantage of hot car and pollution of toxic substances such as mercury. In order to use in the field of lighting, the white light emitting diode has received much attention and research from all walks of life. At present, there are three main production technologies used in commercial white LEDs: 1. Blue LED with yellow phosphor: The phosphor used is mainly YAG phosphor powder of yttrium aluminum garnet structure. Blending with unabsorbed blue light to produce white light; 2. Blue LED with red and green phosphor: The phosphor used is mainly composed of sulfur-containing phosphor powder, and the red and green light emitted by the powder The unabsorbed blue light can be mixed to produce white light; 3. The ultraviolet light LED is matched with the red, blue and green three-color fluorescent powder: three or more kinds of ultraviolet light generated by the LED can simultaneously emit red, blue and green respectively. The light fluorescing powder 'Laoguang powder is excited to emit three colors of light and then mixed into white light. However, the excitation light of the portion of the light-emitting diode is backscattered back into the grain by the phosphor. The excitation light is absorbed and reflected for several times, resulting in a significant decrease in the utilization of the excitation light. 100107775 Please refer to the first figure, which is a schematic diagram of a conventional LED light-emitting diode form number A0101, page 3 / 18 pages 1002013188-0 201238083, as shown in the figure 'known light-emitting diodes contain A substrate 12, a first semiconductor layer 22, a second semiconductor layer 24 and a transparent conductive layer 26' are disposed above the substrate 12, and the second semiconductor layer 24 is disposed over the first semiconductor layer 22, transparent The conductive layer 26 is disposed on the second semiconductor layer 24, and the first metal electrode 32 and the second metal electrode 34 are respectively disposed on the first semiconductor layer 22 and the transparent conductive layer 26, and finally covered with an insulating layer 42 to be transparently conductive. Above the layer 26, the insulating layer 42 is covered with the first semiconductor layer 22 while the first metal electrode 32 and the second metal electrode 34 are exposed. Since the insulating layer 42 is composed of a fixed refractive index insulating material, it has the same reflectance and transmittance for light of different wavelengths, and therefore, whether it is light emitted by the light emitting diode or excited fluorescent powder The resulting light can penetrate the insulating layer 42 and be scattered into the interior of the die, resulting in loss of light energy. Therefore, the present invention provides a light-emitting diode structure which can reduce excitation light into the light-emitting diode to enhance brightness and solve the above problems. SUMMARY OF THE INVENTION [0003] The main object of the present invention is to provide a light-emitting diode structure which has selective reflectivity and transmittance for light of different wavelengths by an optical filter film. The light emitted by the polar crystal grains can penetrate the optical filter film, and the excitation light generated by the light emitted by the diode crystal grains is excited, so that the excitation light is scattered back to the crystal grains. Loss of light energy caused by absorption. The light emitting diode structure of the present invention comprises a substrate, a first semiconductor layer, an active layer, a second semiconductor layer and a transparent conductive layer. The first semiconductor layer is disposed above the substrate, and the active layer is disposed on the portion Half of the form number A0101 Page 4 of 18 u 201238083 Above the conductor layer, the luminescent layer emits light having a first wavelength, the second half of the k-layer is disposed above the active layer, and the transparent conductive layer is disposed on the second semiconductor layer Above, a first metal electrode is disposed above the first semiconductor layer, a second metal electrode is disposed above the transparent conductive layer, and further includes at least one optical filter film disposed above the transparent conductive layer and extending over the cover A portion of the second semiconductor layer and a portion of the first semiconductor layer, the first metal electrode and the second metal electrode being exposed to the optical filter film. The optical filter film is used to reflect the excitation light without shielding the light emitted by the light-emitting diode crystal, thereby increasing the brightness of the light-emitting diode. 0004 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 The following is a schematic view of the structure of the light-emitting diode according to the preferred embodiment of the present invention; as shown in the figure, the structure of the light-emitting diode 1 of the present invention comprises a substrate 52 and a first a semiconductor layer 54, an active layer 74, a first metal electrode 62, a second semiconductor layer 56, a transparent conductive layer 58, a second metal electrode 64 and at least one optical filter film 72, the first semiconductor layer 54 is provided Above the substrate 52, the first metal electrode 62 is disposed above the first semiconductor layer 54. The active layer 74 is disposed above the first semiconductor layer. The light emitting layer can emit light having a first wavelength, and the second semiconductor layer 56 is disposed. Above the active layer 74, the transparent conductive layer 58 is disposed above the second semiconductor layer 56, the second metal electrode 64 is disposed above the transparent conductive layer 58, and the optical filter film 72 is disposed above the transparent conductive layer 58 and extends over the second semiconductor. Layer 56 The first metal electrode 62 and the second metal electrode 64 are exposed to the optical filter film 72 with the first semiconductor layer 54. The optical filter film has a 5 〇 2 = rate of the first wavelength of the light form number A0101 page 5 / 18 pages 1002013188-0 201238083 and a reflectivity of more than the wavelength of the non-first wavelength, and more For the first wavelength of light having a transmittance of 8% or more 'and a wavelength of light having a reflectivity filter 72 for the wavelength of light, the light can be emitted: the light emitted by the polar body grains passes, and The light emitted by the light-emitting diode grains excites the excitation light generated by the external excitation to prevent the excitation light from entering the light-emitting dinucleus = and causing light loss, thereby increasing the generation rate of the fluorescent light, "increasing the light emission." Luminance of the diode. ^^ The substrate 52 can be a light-transmitting substrate or an opaque substrate, such as Si, GaAs GaN/Si, or a combination thereof; and a light-transmitting material such as sapphire, Sic, GaP , GaAs earth, glass,

ZnSe、ZnS、或ZnSSe,基於材料性質與晶格特性上的考 量’較佳者為sapphire、SiC^Si。第一丰 τ導體層54設 於基板52上方’第-半導體層54可為n型半導體化合物層 ,例如為氮化鎵(GaN)、氮化銘銦鎵⑴InGap〇或氮化銦 鎵(InGaN)。主動層74設於第广半導體層54上方主動 層74具有多重量子井(顧),可促進電子與電洞的結合而 增加發光效率。第二半導體層56設於主動層74上方第 二半導體層56可為p型半導體化合物層,例如為氮化嫁、 氮化銘銦鎵或氮化銦鎵。 100107775 透明導電層58之材料係選自於錄/金、氧化銦錫、氧 化鎘錫、氧化銻錫、透明導電黏劑、氧化鋅、氧化鋅系 及上述組任意組合之其中之—者。透明導電層58以氧化 銦錫為例,氧化銦錫具有透明及導電的特性,因此適入 作為第二金屬電極64與第二半導體層56之間連接。透明 導電層58用以將外部供應的電流均勻分布,可加以應用 表單編號A0101 第6頁/共18頁 10〇2〇13188-〇 201238083 於大尺寸晶粒LED’也可避免電流集中產生的能耗。第一 金屬電極⑽與n型第-半導體層54形成歐姆接觸,作為 Π型的接觸層以連接至外部電源之—負極,第二金屬電極 64與透明導電層58接觸並連接至外部電源之一正極。 此實施例以白光發光二極體為例,當主動層發出藍 光(主波長介於㈣.彻nm之光藍光發射至發光 二極體外之一黃色螢光粉層(圖未示),以激發黃色光螢 光粉而產生黃光,所產生的黃光再與部分未激發黃色螢 Ο 光粉之藍光混合而產生白光。而此實施例之光«光膜 72為一單向膜,讓主動層所發之_可穿透出光學渡光 膜72,而光學濾光膜72外之黃光則無法穿透入光學濾光 膜72内,反被光料光膜72反射,如此避免黃光被散射 回晶粒後被吸收所產生的光能耗損,進而提升發光二極 體的整體亮度。 Ο 100107775 另外,光學據光膜72包含對不同波長的光具有選擇 性反射率或穿透率的材料,而實施例係以單層光學渡光 膜72為範例作說明,藉由單層的光學濾光膜72提升白光 的產生效率’而本發财、可❹衫層結構的光學濾光 膜72 ’舉例來說,光學渡光膜如二種或更多種不同折 射率的材料堆疊組合而成的—多層結構,更佳者,光學 慮光膜72係由二種不同折射率之材料堆疊組合而成,以 蒸锻或塗佈方式形成於透明導電_之上錢伸覆蓋第 二半導體層56與第一半導體層54。上述二種具不同折射 率之材料組合較佳的選擇為折射&值介於2 q_2 6之高 t射率物質,與η值介於U — 1.7之低折射率物質,光學 =72是由高咖„,料物㈣構成的ZnSe, ZnS, or ZnSSe, based on material properties and lattice characteristics, is preferred as sapphire, SiC^Si. The first abundance τ conductor layer 54 is disposed above the substrate 52. The first semiconductor layer 54 may be an n-type semiconductor compound layer, such as gallium nitride (GaN), nitrided indium gallium (1) InGap or indium gallium nitride (InGaN). . The active layer 74 is disposed above the first semiconductor layer 54 and has a plurality of quantum wells (Gu) for promoting the combination of electrons and holes to increase luminous efficiency. The second semiconductor layer 56 is disposed above the active layer 74. The second semiconductor layer 56 may be a p-type semiconductor compound layer, such as nitrided, nitrided indium gallium or indium gallium nitride. 100107775 The material of the transparent conductive layer 58 is selected from the group consisting of gold/gold, indium tin oxide, cadmium tin oxide, antimony tin oxide, transparent conductive adhesive, zinc oxide, zinc oxide, and any combination of the above. The transparent conductive layer 58 is exemplified by indium tin oxide. Indium tin oxide is transparent and electrically conductive, and therefore is suitable for connection between the second metal electrode 64 and the second semiconductor layer 56. The transparent conductive layer 58 is used to evenly distribute the externally supplied current, and can be applied. Form No. A0101 Page 6 of 18 10〇2〇13188-〇201238083 The large-sized die LED can also avoid the energy generated by current concentration. Consumption. The first metal electrode (10) forms an ohmic contact with the n-type first-semiconductor layer 54 as a germanium-type contact layer to be connected to the negative electrode of the external power source, and the second metal electrode 64 is in contact with the transparent conductive layer 58 and is connected to one of the external power sources. positive electrode. In this embodiment, a white light emitting diode is taken as an example. When the active layer emits blue light (the main wavelength is between (4) and the light of the blue light is emitted to a yellow phosphor powder layer (not shown) outside the light emitting diode to excite The yellow light phosphor produces yellow light, and the generated yellow light is mixed with the blue light of the partially unexcited yellow fluorite powder to produce white light. The light film 72 of this embodiment is a one-way film for active The layer emitted by the layer can penetrate the optical light-passing film 72, and the yellow light outside the optical filter film 72 cannot penetrate into the optical filter film 72, and is reflected by the light-weight film 72, thus avoiding the yellow light being Light energy loss caused by absorption after scattering back to the crystal grain, thereby improving the overall brightness of the light-emitting diode. Ο 100107775 In addition, the optical light film 72 contains a material having selective reflectance or transmittance for light of different wavelengths. The embodiment is described by taking a single-layer optical light-receiving film 72 as an example, and the optical filter film 72 of the present invention is improved by the single-layer optical filter film 72. 'For example, an optical light film like two or more A multi-layer structure in which a plurality of refractive index materials are stacked, and more preferably, the optical light-receiving film 72 is formed by stacking two materials of different refractive indexes, and is formed by vapor-forging or coating on a transparent conductive film. The money stretches over the second semiconductor layer 56 and the first semiconductor layer 54. The above two combinations of materials having different refractive indices are preferably selected to have a high refractive index value of 2 q_2 6 and a value of η. For the low refractive index material of U - 1.7, the optical = 72 is composed of high energy, material (four)

、單編號 A0101 ^ 7 1/* 18 I 1002013188-0 201238083 周期性结構。 上述之高折射率物質,例如:二氧化鈦(Ti〇2)、五 氧化二鈮(NbqO,) 或五氧化二鈕(TaqC^ )等;上述之低 L 5 L b 折射率物質,例如:二氧化矽(Si〇2)或氟化鎂(MgF2) 等。光學濾光膜72之厚度依材料特性可為約數十埃至數 十微米之間。 第三圖,其係為本發明較佳實施例之光學濾光膜之 光線穿透與反射動作示意圖;如圖所示,當發光二極體 晶粒通電時,主動層中的電子與電洞結合,而這些電子 與電洞結合的能量以光L1的形式發出,並且激發發光二 極體晶粒外之螢光粉層(圖未示)而產生激發光L2,由於 光學濾光膜對於不同波長的光線具有選擇性的穿透率與 反射率,因此發光二極體晶粒所發出之光L1可透過該光 學濾光膜72,而波長較長的激發光L2不但無法穿透該光 學濾光膜72進入晶粒内部,反被光學濾光膜72反射,因 而提升發光二極體的亮度。 請參閱第四圖.,其係為本發明另一較佳實施例之發 光二極體結構之結構示意圖,如圖所示,此實施例不同 於第二圖之實施例在於此實施例更包含一絕緣層60,絕 緣層60設於光學濾光膜72與透明導電層58之間,絕緣層 60覆蓋透明導電層58、部分之第一半導體層54與部分之 第二半導體層56,第一金屬電極62與第二金屬電極64穿 過絕緣層60而裸露於光學濾光膜72。絕緣層60之材料為 二氧化矽、二氧化鈦、三氧化二鋁、五氧化二鈕、五氧 化三鈦及上述組任意組合之其中之一者,由於二氧化矽 為一透光性高且絕緣性強之材質,因此為較佳選擇,藉 100107775 表單編號A0101 第8頁/共18頁 1002013188-0 201238083 由絕緣層_封裝料二鋪晶粒之各部件,以避免發 光二極體晶粒之各部件受外力而損害。此實施例可於設 置絕緣層60後,再該上鮮敍膜72,㈣緣層⑽也 可作為光學濾光膜72之多層結構中的〜部分。, single number A0101 ^ 7 1/* 18 I 1002013188-0 201238083 Periodic structure. The above-mentioned high refractive index material, for example, titanium dioxide (Ti〇2), niobium pentoxide (NbqO) or pentoxide oxide (TaqC^), etc.; the above-mentioned low L 5 L b refractive index substance, for example: dioxide矽 (Si〇2) or magnesium fluoride (MgF2). The thickness of the optical filter film 72 may be between about several tens of angstroms and several tens of micrometers depending on the material characteristics. The third figure is a schematic diagram of the light penetrating and reflecting action of the optical filter film according to the preferred embodiment of the present invention; as shown in the figure, when the light emitting diode die is energized, the electrons and holes in the active layer In combination, the energy of the combination of these electrons and the hole is emitted in the form of light L1, and the phosphor powder layer (not shown) outside the crystal of the light-emitting diode is excited to generate the excitation light L2, since the optical filter film is different. The light of the wavelength has a selective transmittance and a reflectivity, so that the light L1 emitted from the light-emitting diode crystal grains can pass through the optical filter film 72, and the longer-range excitation light L2 can not penetrate the optical filter. The light film 72 enters the inside of the crystal grain and is reflected by the optical filter film 72, thereby increasing the brightness of the light-emitting diode. Please refer to FIG. 4 , which is a schematic structural diagram of a structure of a light emitting diode according to another preferred embodiment of the present invention. As shown in the figure, an embodiment different from the second embodiment in this embodiment further includes An insulating layer 60 is disposed between the optical filter film 72 and the transparent conductive layer 58. The insulating layer 60 covers the transparent conductive layer 58, a portion of the first semiconductor layer 54 and a portion of the second semiconductor layer 56. The metal electrode 62 and the second metal electrode 64 pass through the insulating layer 60 and are exposed to the optical filter film 72. The material of the insulating layer 60 is one of cerium oxide, titanium dioxide, aluminum oxide, pentoxide oxide, trititanium pentoxide and any combination of the above, since cerium oxide is highly transparent and insulating. Strong material, so it is a better choice, by 100107775 Form No. A0101 Page 8 / 18 pages 1002013188-0 201238083 The components of the die are laid by the insulating layer _ package material to avoid the light-emitting diode die Parts are damaged by external forces. In this embodiment, after the insulating layer 60 is disposed, the upper layer 72 and the (four) edge layer (10) may also serve as a portion of the multilayer structure of the optical filter film 72.

請參閱第五圖,其係為本發明另1㈣施例之發 光二極體結構之結構示意圖,如圖所示,此實施例不同 於第二圖之實施例在於此實施例之發光二極體i更包含__ 電流阻絕層76,電流阻絕層76設於第二半導體層56上方 並與第二金屬電極64相對。㈣第二金屬電極6日4並非透 光之材質,因此第二金屬電極64將遮蔽邹分光線,如此 則會影響發光二極體的發光效率,故此實施例更使用電 流阻絕層76用以遮蔽第二半導趙層他於第二金屬電極 64之正下方所通過之電流,讓第二半導體層“其他位置 所通電流增加,如此則會使第二金屬電極64之正下方的 發光效率降低,而提升其他位置之發光效率。 〇 綜上所述,本發明係有關於一種發光匕極體結構, 其係於一發光二極體之上方設置至少一光學濾光膜,藉 由光學濾光膜以讓發光二極體晶粒所發之光線穿透,以 激發一螢光材料而產生一激發光’並且可藉由光學濾光 膜以避免激發光進入發光二極體體晶内,如此可提高激 發光的產生效率’错此提而發光~•極體的整體亮度。 故本發明係實為一具有新賴性、進步性及可供產業 利用者,應符合我國專利法所規定之專利申請要件無疑 ,爰依法提出發明專利申請’祈鈞局早曰賜准專利, 至感為禱。 惟以上所述者,僅為本發明之一較佳實施例而已, 100107775 表單編號A0101 1002013188-0 201238083 並非用來限定本發明實施之範圍,舉凡依本發明申請專 利範圍所述之形狀、構造、特徵及精神所為之均等變化 與修飾,均應包括於本發明之申請專利範圍内。 【圖式簡單說明】 [0005] 第一圖為習知技術之發光二極體之結構示意圖; _第二圖為本發明較佳實施例之發光二極體之結構示意圖 第三圖為本發明較佳實施例之光學濾光膜之光線穿透動 作示意圖; 第四圖為本發明另一較佳實施例之發光二極體結構之結 構示意圖;及 第五圖為本發明另一較佳實施例之發光二極體結構之結 構示意圖。 【主要元件符號說明】 [0006] 1 發光二極體 12 基板 22 第一半導體層 24 第二半導體層 26 透明導電層 32 第一金屬電極 34 第二金屬電極 42 絕緣層 52 基板 54 第一半導體層 56 第二半導體層 58 透明導電層 表單編號A0101 第10頁/共18頁 100107775 1002013188-0 201238083 60 絕緣層 62 第一金屬電極 64 第二金屬電極 72 光學濾光膜 74 主動層 76 電流阻絕層 L1 光 L2 激發光 Ο Ο 100107775 表單編號Α0101 第11頁/共18頁 1002013188-0Please refer to FIG. 5 , which is a schematic structural diagram of a light emitting diode structure according to another embodiment of the present invention. As shown in the figure, the embodiment is different from the embodiment of the second embodiment in the light emitting diode of the embodiment. The i further includes a __ current blocking layer 76, and the current blocking layer 76 is disposed above the second semiconductor layer 56 and opposite to the second metal electrode 64. (4) The second metal electrode 6 is not a material for transmitting light, so the second metal electrode 64 will shield the ray light, which affects the luminous efficiency of the light-emitting diode. Therefore, the embodiment further uses the current blocking layer 76 for shielding. The second semiconductor layer passes the current directly under the second metal electrode 64, so that the current flowing through the other semiconductor layer is increased, so that the luminous efficiency directly under the second metal electrode 64 is lowered. In addition, the present invention relates to a light-emitting diode structure in which at least one optical filter film is disposed above a light-emitting diode, by optical filtering. The film penetrates the light emitted by the light-emitting diode grains to excite a fluorescent material to generate an excitation light and can be used to prevent the excitation light from entering the light-emitting diode body by the optical filter film. It can improve the efficiency of the excitation light. This is the result of the illuminating light. The overall brightness of the polar body. Therefore, the present invention is a new, progressive and available industrial use, and should comply with the provisions of the Chinese Patent Law. The patent application requirements are undoubtedly 爰 提出 提出 提出 提出 提出 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 - 0 2012 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 BRIEF DESCRIPTION OF THE DRAWINGS [0005] The first figure is a schematic structural view of a light-emitting diode of the prior art; the second figure is a schematic structural view of a light-emitting diode according to a preferred embodiment of the present invention. FIG. 4 is a schematic structural view of a light emitting diode structure according to another preferred embodiment of the present invention; and FIG. 5 is another preferred embodiment of the present invention. Schematic diagram of the structure of the light-emitting diode structure. [Description of main components] [0006] 1 Light-emitting diode 12 Substrate 22 First semiconductor layer 24 Second semiconductor layer 26 Conductive layer 32 first metal electrode 34 second metal electrode 42 insulating layer 52 substrate 54 first semiconductor layer 56 second semiconductor layer 58 transparent conductive layer form number A0101 page 10 / total 18 page 100107775 1002013188-0 201238083 60 insulation layer 62 First metal electrode 64 Second metal electrode 72 Optical filter film 74 Active layer 76 Current blocking layer L1 Light L2 Excitation light Ο 100107775 Form number Α 0101 Page 11 / Total 18 pages 1002013188-0

Claims (1)

201238083 七、申請專利範圍: 1 . 一種發光二極體結構,包含: 一基板; 一第一半導體層,設於該基板上方; 一主動層,係設於該第一半導體層之上方,該發光層可發 出具一第一波長之光; 一第二半導體層’設於該主動層之上方;及 一透明導電層,設於該第二半導體層上方; 其中,該第一半導體層上方設置一第一金屬電極,該透明 導電層上方設置一第二金屬電極,更進一步包含至少一光 學濾光膜,該光學濾光膜設於該透明導電層上方並延伸覆 蓋部分之該第二半導體層與部分之該第一半導體層,該第 一金屬電極與該第二金屬電極裸露於該光學濾光膜。 2 .如申晴專利範圍第1項所述之發光二極體結構,其中該光 學濾光膜包含對不同波長的光具有選擇性反射率及穿透率 的材料。 3 .如申凊專利範圍第丨項所述之發光二植體結構其中該光 學濾光膜對該第一波長之光具有5〇%以上的穿透率,且對 非第一波長之光具有50%以上的反射率。 •如申凊專利範圍第1項所述之發光二極體結構,其中該光 學據光膜包含二種以上不同折射率的材料以堆疊成多層結 構。 5.如申請專利範圍第4項所述之發光二極體結構,其中該光 學遽光膜之-種材料具高折射率,其折射率介於2 〇_ 2·6之間’另—種材料具低折射率,其折射率介於U- 100107775 第丨2頁/共is頁 1002013188-0 201238083 1. 7之間。 6 .如申請專利範圍第5項所述之發光二極體結構,其中該光 學濾光膜中之高折射率材料可為二氧化鈦(Ti〇2)、五氧 化二鈮(NbQ0e)、或五氧化二钽(TaQ0c)。 L 5 L b 7 .如申請專利範圍第5項所述之發光元件,其中該光學濾光 膜中之低折射率材料可為二氧化矽(Si〇2)或二氟化鎂 (MgF2)。 8 .如申請專利範圍第1項所述之發光二極體結構,其中該第 一波長之光為主波長介於440 nm〜490 nm之光。 〇 9 .如申請專利範圍第1項所述之發光二極體結構,更包含一 絕緣層,該絕緣層設於該光學渡光膜與該透明導電層之間 ,該絕緣層覆蓋部分之該第一半導體層部分之該第二半導 體層,該第一金屬電極與該第二金屬電極穿過該絕緣層而 裸露於該光學濾光膜。 10 .如申請專利範圍第1項所述之發光二極體結構,更包含一 電流阻絕層,該電流阻絕層設於該第二半導體層上方並與 該第二金屬電極相對。 100107775 表單編號A0101 第13頁/共18頁 1002013188-0201238083 VII. Patent application scope: 1. A light-emitting diode structure comprising: a substrate; a first semiconductor layer disposed above the substrate; an active layer disposed above the first semiconductor layer, the light emitting The layer may emit light having a first wavelength; a second semiconductor layer 'before the active layer; and a transparent conductive layer disposed above the second semiconductor layer; wherein a first semiconductor layer is disposed above a first metal electrode, a second metal electrode is disposed above the transparent conductive layer, and further comprising at least one optical filter film disposed above the transparent conductive layer and extending over the portion of the second semiconductor layer And partially surrounding the first semiconductor layer, the first metal electrode and the second metal electrode are exposed to the optical filter film. 2. The light-emitting diode structure of claim 1, wherein the optical filter film comprises a material having selective reflectance and transmittance for light of different wavelengths. 3. The illuminating di implant structure of claim 2, wherein the optical filter film has a transmittance of 5% or more for the light of the first wavelength, and has a light for the non-first wavelength of light. More than 50% reflectivity. The light-emitting diode structure according to claim 1, wherein the optical light film comprises two or more materials having different refractive indices to be stacked in a plurality of layers. 5. The light-emitting diode structure according to claim 4, wherein the material of the optical light-emitting film has a high refractive index and a refractive index of between 2 〇 _ 2 · 6 'another species The material has a low refractive index and its refractive index is between U-100107775, page 2 / total is page 1002013188-0 201238083 1. 7. 6. The light-emitting diode structure according to claim 5, wherein the high refractive index material in the optical filter film is titanium dioxide (Ti〇2), tantalum pentoxide (NbQ0e), or pentoxide. Two (TaQ0c). The light-emitting element according to claim 5, wherein the low refractive index material in the optical filter film may be cerium oxide (Si〇2) or magnesium difluoride (MgF2). 8. The light-emitting diode structure according to claim 1, wherein the light of the first wavelength is light having a wavelength of from 440 nm to 490 nm. The light-emitting diode structure of claim 1, further comprising an insulating layer disposed between the optical light-emitting film and the transparent conductive layer, the insulating layer covering the portion The second semiconductor layer of the first semiconductor layer portion, the first metal electrode and the second metal electrode are exposed through the insulating layer to be exposed to the optical filter film. 10. The light emitting diode structure of claim 1, further comprising a current blocking layer disposed over the second semiconductor layer and opposite the second metal electrode. 100107775 Form No. A0101 Page 13 of 18 1002013188-0
TW100107775A 2011-03-08 2011-03-08 Light emitting diode structure TW201238083A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW100107775A TW201238083A (en) 2011-03-08 2011-03-08 Light emitting diode structure
CN2012100184059A CN102683539A (en) 2011-03-08 2012-01-16 Light emitting diode structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100107775A TW201238083A (en) 2011-03-08 2011-03-08 Light emitting diode structure

Publications (1)

Publication Number Publication Date
TW201238083A true TW201238083A (en) 2012-09-16

Family

ID=46815175

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100107775A TW201238083A (en) 2011-03-08 2011-03-08 Light emitting diode structure

Country Status (2)

Country Link
CN (1) CN102683539A (en)
TW (1) TW201238083A (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005062514A1 (en) * 2005-09-28 2007-03-29 Osram Opto Semiconductors Gmbh Multi-purpose light emitting diode incorporates selective wavelength trap
TWI344221B (en) * 2006-12-22 2011-06-21 Epistar Corp Gan light-emitting diode and method for manufacturing the same
JP4264109B2 (en) * 2007-01-16 2009-05-13 株式会社東芝 Light emitting device
TWI352438B (en) * 2007-08-31 2011-11-11 Huga Optotech Inc Semiconductor light-emitting device

Also Published As

Publication number Publication date
CN102683539A (en) 2012-09-19

Similar Documents

Publication Publication Date Title
Narukawa et al. White light emitting diodes with super-high luminous efficacy
TW533604B (en) Light emitting device
US8093610B2 (en) Optoelectronic component
KR101739851B1 (en) Light emitting device comprising wavelength conversion structures
CN105308763B (en) Light-emitting diode component
TWI423420B (en) Radiation-emitting device
US9537062B2 (en) Solid state light emitter package, a light emission device, a flexible LED strip and a luminaire
JPWO2011004795A1 (en) Light emitting device
KR20180064348A (en) Light-emitting device with multiple light-emitting stacked layers
US8835963B2 (en) Light converting and emitting device with minimal edge recombination
TWI487136B (en) Light converting construction
TWI546933B (en) Light emitting system
JP3195229U (en) Light emitting device
EP3882988A1 (en) Light-emitting diode
JP2006054313A (en) Semiconductor light-emitting device
KR101288367B1 (en) White light emitting diode and manufacturing method thereof
JP5983068B2 (en) Semiconductor light emitting element and light emitting device
CN104576627B (en) A kind of White LED with high color rendering property structure and preparation method thereof
CN203607398U (en) A highly color rendering white light LED structure
KR101157705B1 (en) Light Emitting Device Having Fluorescent Substance Unit Isolated From Mold Unit
CN112436085A (en) Light-emitting diode filament and lighting device
TW201238083A (en) Light emitting diode structure
CN114623418B (en) Light emitting device with high red light brightness and high reliability
JP2007258486A (en) White light emitting diode
JP4207363B2 (en) Light emitting diode