TW201237479A - Optical waveguide and method for producing the same - Google Patents

Optical waveguide and method for producing the same Download PDF

Info

Publication number
TW201237479A
TW201237479A TW100140110A TW100140110A TW201237479A TW 201237479 A TW201237479 A TW 201237479A TW 100140110 A TW100140110 A TW 100140110A TW 100140110 A TW100140110 A TW 100140110A TW 201237479 A TW201237479 A TW 201237479A
Authority
TW
Taiwan
Prior art keywords
core
layer
sheath
optical waveguide
forming
Prior art date
Application number
TW100140110A
Other languages
Chinese (zh)
Other versions
TWI477835B (en
Inventor
Toru Nakashiba
Naoyuki Kondo
Junko Yashiro
Shinji Hashimoto
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Publication of TW201237479A publication Critical patent/TW201237479A/en
Application granted granted Critical
Publication of TWI477835B publication Critical patent/TWI477835B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

One aspect of the present invention relates to a method for producing an optical waveguide 1 with a core 17 and clad 13, 21, which includes a first step to form a resin layer 12 for forming clad consisting of unhardened photo-hardening resin, a second step to form a resin layer 14 for forming core on the resin layer 12 for forming clad, an irradiation step to irradiate, within the said resin layer 14 for forming core, a light only on a part to be formed into the core 17, and to irradiate, within the said resin layer 12 for forming clad, only on a part to be formed into core, and a thermal treatment step to conduct thermal treatment on the resin layer 14 for forming core and the resin layer 12 for forming clad.

Description

201237479 六、發明說明: 【發明所屬之技術領域】 【0001】 ‘種光波 本發明係屬於光波導之技術領域,詳而言之係關於 導之製造方法及光波導。 、 【先前技術】 【0002】 言,光波導’係使入射在—端部的光在折射率相 核心與護套之界面受到全反射,錢行傳遞,而從另—端射、之 ^在’此類光波導’如專利文獻i所揭示,係藉由將下部套° 核心層、上部護套層依序個卿絲製造之。在下部層、 2核=層之情形,為了提高下部護套層與核心層 t I力卜有時會對下部護套層的外表面預先施以賴處理以 【0003】 若像這樣對下部護套層的外表面施以電裝處理 ί套層的外表面變得錄,該絲_平雜降低。^下2.= ^外表蚊平雜降低,齡有紋加觀、波導損失變从 [習知技術文獻] [專利文獻] 【0004】 專利文獻1 :曰本特開2009-265340號公報 【發明内容】 【0005】 結i發日f的目的在於提供—種無須似處理,而™套 層與核心層之間的層間密接力優良之光波導及其製造方法y蒦套 【0006】 【0006】201237479 其特護絲級導讀造方法, 形成由未硬化的光硬化f生樹脂套形成用樹脂層之上, 分分3及1Ϊ·成層中對應用以繼 成用樹脂層進行熱驟職核心形成用樹脂層及該護套形 【0007】 該光ΐΐΪΐΐί法t ’宜包含:壓模步驟,在該第2步驟之後’ ^驟Ϊα^ίγ牛^ ’在該核心形成用樹脂層形成傾斜面;該壓模 對設有對應該傾斜面的成形面娜 心形成用&旨層形ΐΐ傾 雜心形油_層,藉此在該核 【0008】 心二之2形模的凸部之高度’宜為大於該核 【0009】 驟之ΪΙίΐΞϊ中’ ί包含:金屬膜形成步驟,在該壓模步 二=驟之則或之後’使在該核心形成賴脂層所 金屬膜轉印形成在該傾斜面上以作為金屬接藉此使以 【0010】 處理第2護套層形成步驟,在該熱 覆蓋而Ξ其i沒。 以將所形成的護套層及核心層 【0011】 又’本發賴另—態樣,係具有核心及護套的光波導;該光 5 201237479 波導:由上述製造方法所製造。 波導之特彳^係具有核心及護套的級導;該光 核心,疊置1護套’部分地形成在該基板之上; 護套及該核心^而使t埋、及第2護套,以將該第1 時,該第1罐其之方式形成;對該基板以俯視觀之 蠖套料按°、$輪廓形狀與該核心的輪靡形狀一致;在該第1 »隻套”該核心之間的層間,產生化學結合力。 【實施方式】 【0014】 依本發明的實施形態,來說明本發明。 用以部用侧; 括、、' 茨°隻晉形成用樹脂層12申對庫用,ν 形成核、的部分之部分;以及熱處理 二,用Μ 用m4/該護套形成用樹脂層12進$熱= 在本貫施形態中,例如參照圖7,宜包 2步驟(圖7(d))之後,該光照射步驟(圖7( i二;’在該第 用麵層14形成傾斜面i8a模步驟之二下成 對設有對應該傾斜面l8a的成形面鳩之為:^驟(圖卿: 行鍾’以使該凸部16a進入該核心形成二成=二, 核心形成用樹脂層14形成該傾斜面18a。曰θ 14猎此在该 6 【0017】 201237479 又’在本實施形態中,例如參照圖3,該成形模16的凸部i6a 的高度(D),宜為大於該核心形成用樹脂層14的厚度之高度。 【0018】 又’在本實施形態中’例如參照圖7,宜包含:金屬膜形成步 驟(圖7(〇),在該壓模步驟(圖7⑼之後,該光照射步驟(圖冲))之 前或之後,使在該核心形成用樹脂層14所形成的該傾斜面18a, 與疊層有金屬膜15b的轉印用薄膜15密接,藉此使該金屬膜15b 轉印形成在該傾斜面18a上以作為金屬反射膜。 【0019】 又,在本實施形態中,例如參照圖5,宜包含:第2護套層形 成步驟(圖5(f)),在該熱處理步驟(圖5(d))之後,形成第2護^^ 21,以將所形成的護套層13及核心層17覆蓋而使其埋沒。曰 【0020】 ' 依本實施形態的光波導,例如參照圖5,係具有核心17及 套13之光波導1 ;並由該光波導之製造方法所製造。 ° 【0021】 依本實施形態的光波導,例如參照圖5(g)、圖5() 核心17及護套13之光波導丨;其具有:基板u ;第丨套 部分地形成在基板11之上;核心17 ,疊置在第1護 二 ,成·,以及第2護套,以將第i護套13及核心層i = -埋/又之方式形成;對基板U以俯視觀之時,第1 摩形狀與核心17的輪赫狀—致;在該第卿、= 層間,產生化學結合力。 U核〜之間的 [0022] 依本實施形態之光波導之製造方法的—特 未硬化的護套形成用樹脂層保持不硬化,於复:在於.使 心形成用樹脂層;同時對未硬化的護套形成化的核 核心形成用樹脂層照射光,同時施以熱處理。曰a未硬化的 201237479 【0023】’ 如圖1(a)所示,形成未硬化的光硬化性之護套形 12 ’於其上形成未硬化的光硬化性之核心形成用樹脂層w。、 2個脂層12、14在未硬化的狀態下疊層而互相接Ϊ。’ 接著’如圖1(b)所示,例如,在核心形成用樹 f置開設有曝光圖案的負型遮罩22,使紫外光(在ffil(b)中丄: 符號⑴表不之紫外光)透射負型遮罩22而照射在 層μ及護套形成用樹脂層12。藉此,護套形成用樹 心形成用樹脂層.14兩個光硬化性樹脂層之中,對應負^2^亥 =光随之部分受到曝光。曝光圖案,形成為核心形成用 θ中用以形成核心17的部分之輪廓形狀。亦即,核 = 樹脂層14中,僅有用以形成核心17的部分受到曝光。又^ 12中,僅有對應用以形成核心的部分之部分受 ,,的部分’成為半硬化狀態。而細細形 八及ίίίί _旨512進行熱纽,解硬錄態_光曰部曰 i未硬;硬ίϊ態。亦即’使未硬化的護套形成用樹脂層12 一未更化的核心形成用樹脂層14同時硬化。 【0025】 部八因1匕·^,,進订顯影處理,則如圖l(c)所示,去除未曝光 ϋ成騎翻旨層12的曝光部分硬化之護麵13,與核 =部分硬化之批層侧細17,係以相 即從朵日3|+二Θ對此等瘦套層13與核心17以俯視觀之,亦 即乂照射方向觀察之時,輪一致。 【0026】 成用形成用樹脂層12與未硬化的核心形 進行電祕理,紐之魏,因此無須 I7 J徒同遵套層13與核心層17之層間密接力。 201237479 吾人思及,此係因在疫套層13與核心層17之間,有化與^士入 作動。亦即,吾人思及原因在於··在使未硬化的護套带=二二二 層12與未硬化的核心形成用樹脂層14疊層之狀態下 f熱使之硬化,因此護套形顧翻旨層12與未硬 樹脂層14之間的層間有化學性結合。 成用 【0027】 依本實施形態之光波導之製造方法的另一特徵部分 步驟。壓模步驟,係在第2步驟之後,光照射步驟之進^。、 =圖2⑻所不,在壓模步驟中’對於核心形成用樹 J向推壓成形模丨6,其所具備之凸部施設有成形面祕。^頭 如圖2(b)所示,成形模16之凸部16a進入核 $ 因^藉由凸部16a的成形面16b,在核心形成用 二 2ΪΓ之二而該:力面Λ係,變更光的路徑(例如‘更為略ϊ 電子級導,龄於光波導與 【0028】 豫中戶施形態之光波導之製造方法的壓模步 及凸部i6a,在模本體16x的下面16c之中狀= 16a具有成形面16b。成形面脱,從相對於模^體面凸口 P 之垂線(短舰)開始在45。±3。的範圍内相 體 c 16c與凸部16a前端之間的距離。 又①)糸下面 【0029】 大致如下所述。在圖2(a)及圖2(b)tJ,θ ς t之度:3其$ 核心形成用翻旨層Η表面之W。在,U表不在進彳了壓模前, :^Λ郫曲之间度在壓板步驟中,若成形模16 ° W形朗樹脂層14 ’則如® 2(b)的向下箭頭所 201237479 不’樹脂層14沾―\ 的向上箭頭所示有二== 皮凸部施推開,這些量,如圖剛 此情形,隆起的± , X ^开^成用樹脂層14的表面隆起。在 假設,若成形模16灯面16⑽平坦地成形 μ的厚度相喊較並低^,與核心形成用樹脂層 言之,穿越核心形成、f 彡成财_14完全(換 隆起的樹脂層14的表面抵曰θ 度)开^^面版之前, 行壓模。因此,成形描1/;认n 模16的下面16〇而無法再進 用樹脂層14的厚/之古⑹的高度⑼採用大於核心形成 完全形成傾斜面可確保在核心形成用樹脂層Μ 的_量、或樹㈣)Α的上限,雖可因應凸部16a所推開 心形成料,但例如,係與核 之厚度的總和相^ίί ί絲成職騎12(例如參照圖卿 之高度等。胃㈤又’更佳的是與該總和加上5陣的值相當 【_】201237479 VI. Description of the Invention: [Technical Field of the Invention] [0001] The present invention relates to the technical field of optical waveguides, and more particularly to a manufacturing method and an optical waveguide. [Prior Art] [0002] The optical waveguide is such that the light incident on the end portion is totally reflected at the interface between the core of the refractive index phase and the sheath, and the money is transmitted, and the light is transmitted from the other end. The 'such optical waveguide' is disclosed in Patent Document i by sequentially splicing the lower core layer and the upper sheath layer. In the case of the lower layer and the second core=layer, in order to improve the lower sheath layer and the core layer, the outer surface of the lower sheath layer may be pre-treated to the front layer. [0003] The outer surface of the jacket is electrically sheathed. The outer surface of the jacket layer becomes recorded, and the filament is reduced. ^下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下Contents] [0005] The purpose of the invention is to provide an optical waveguide excellent in interlayer adhesion between the TM sheath layer and the core layer, and a method for manufacturing the same, [0006] 201237479 The special wire-level guide method is formed on the resin layer formed by the uncured photohardenable resin sleeve, and is divided into 3 and 1 Ϊ. The layer is used to form the thermal break core for the subsequent resin layer. The resin layer and the sheath shape [0007] The optical film t' preferably comprises: a stamping step, after which the '^Ϊα^ίγ牛^' forms an inclined surface in the core forming resin layer; The stamper is formed with a forming surface corresponding to the inclined surface, and the layer is formed by a layer of the heart-shaped oil, thereby at the height of the convex portion of the core of the core. It is better to be larger than the core [0009] a step of: after the stamper step 2 = step or after - the metal film formed on the core layer is formed on the inclined surface to serve as a metal joint to thereby process the second sheath [0010] The layer forming step is covered by the heat and is not. The sheath layer and the core layer to be formed are an optical waveguide having a core and a sheath; the light 5 201237479 waveguide: manufactured by the above manufacturing method. The waveguide has a core and a sheathed level guide; the optical core, the stacked 1 sheath ' is partially formed on the substrate; the sheath and the core are buried, and the second sheath In the first case, the first can is formed; the substrate is viewed in a plan view, and the contour shape is the same as the shape of the rim of the core; The chemical bonding force is generated between the layers between the cores. [Embodiment] The present invention will be described in accordance with an embodiment of the present invention. The side portion for use, and the resin layer 12 for forming only For the library, ν forms part of the core, and heat treatment 2, with m using m4 / the sheath forming resin layer 12 into the heat = in the present embodiment, for example, refer to Figure 7, Yi Bao 2 After the step (Fig. 7 (d)), the light irradiation step (Fig. 7 (i 2; 'the formation of the inclined surface i8a in the first surface layer 14 is formed in pairs with the corresponding molding surface corresponding to the inclined surface 18a) The 鸠 为 ^ 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图In the present embodiment, for example, referring to FIG. 3, the height (D) of the convex portion i6a of the molding die 16 is preferably larger than that of the core forming resin layer 14. [0018] Further, in the present embodiment, for example, referring to FIG. 7, it is preferable to include a metal film forming step (FIG. 7 (〇), after the stamping step (FIG. 7 (9), the light irradiation step (Fig. 7) The inclined surface 18a formed in the core forming resin layer 14 is adhered to the transfer film 15 on which the metal film 15b is laminated, and the metal film 15b is transferred and formed thereon. The inclined surface 18a is provided as a metal reflective film. [0019] In the present embodiment, for example, referring to FIG. 5, it is preferable to include a second sheath layer forming step (Fig. 5(f)), in which the heat treatment step ( After FIG. 5(d)), the second protective layer 21 is formed to cover and embed the formed sheath layer 13 and the core layer 17. [0020] 'The optical waveguide according to the present embodiment is, for example, referred to Figure 5 is an optical waveguide 1 having a core 17 and a sleeve 13; and is manufactured by the method of manufacturing the optical waveguide. ° [0021] According to the optical waveguide of the present embodiment, for example, referring to FIG. 5(g), FIG. 5(), the core 17 and the optical waveguide 护套 of the sheath 13; the substrate has a substrate u; the second sleeve is partially formed on the substrate 11; 17 , stacked on the first protector, the second, and the second sheath to form the i-th sheath 13 and the core layer i = - buried / again; when the substrate U is viewed from above, the first The shape of the ring is the same as that of the core 17; the chemical bond is generated between the layer and the layer. [0022] [0022] The method of manufacturing the optical waveguide according to the embodiment is not hardened. The resin layer for forming a sheath is not cured, and the resin layer for forming a core is formed in the same manner. The resin layer for forming a core core formed by the uncured sheath is irradiated with light while being subjected to heat treatment.曰a uncured 201237479 [0023] As shown in Fig. 1(a), an uncured photocurable sheath layer 12' is formed thereon to form an uncured photocurable core-forming resin layer w. The two grease layers 12, 14 are laminated in an uncured state and joined to each other. 'Next', as shown in Fig. 1(b), for example, a negative-type mask 22 provided with an exposure pattern is placed in the core forming tree f to make ultraviolet light (in the ffil (b): the symbol (1) indicates ultraviolet The light-transmitting negative mask 22 is irradiated onto the layer μ and the sheath-forming resin layer 12. Thereby, among the two photocurable resin layers of the resin-forming resin layer for forming the sheath core, the light is partially exposed to light corresponding to the negative light. The exposure pattern is formed into a contour shape of a portion of the core forming portion θ for forming the core 17. That is, in the core = resin layer 14, only the portion for forming the core 17 is exposed. Further, in the case of 12, only the portion corresponding to the portion for forming the core is subjected to the semi-hardened state. And the thin shape of eight and ί ί _ _ 512 for the hot New Zealand, the hard record state _ light 曰 曰 i not hard; hard ϊ state. That is, the resin layer 14 for core formation which is not cured by the uncured sheath forming resin layer 12 is simultaneously hardened. [0025] The part 8 is subjected to the development and development process, and as shown in FIG. 1(c), the exposed portion 13 of the exposed portion of the unexposed layer 12 is removed, and the core portion is removed. The side layer 17 of the hardened layer is the same as that of the thin layer 13 and the core 17 from the day of the day, and the core 17 is in a plan view, that is, when the direction of the 乂 is observed, the wheel is identical. The forming resin layer 12 and the uncured core layer are electrically secreted, so that it is not necessary to have the adhesion between the layers of the core layer 17 and the core layer 17. 201237479 I think that this is due to the fact that there is a change between the epidemic layer 13 and the core layer 17. In other words, the reason for this is that the heat is hardened by laminating the unhardened sheath tape = the two-two layer 12 and the uncured core-forming resin layer 14 so that the sheath is formed. The layer between the layer 12 and the layer of the unhardened resin layer 14 is chemically bonded. Use [0027] Another characteristic part of the method of manufacturing an optical waveguide according to this embodiment. The stamping step is followed by the step of light irradiation after the second step. = = Fig. 2 (8). In the press molding step, the core forming member J is pressed against the core forming mold 6, and the convex portion provided therein is provided with a molding surface. As shown in Fig. 2(b), the convex portion 16a of the molding die 16 enters the core, and the forming surface 16b of the convex portion 16a is formed by the second surface of the core portion. The path of the light (for example, 'more slightly electronically guided, the age of the optical waveguide and the method of manufacturing the optical waveguide of the medium-sized optical waveguide, and the convex portion i6a, under the mold body 16x, 16c The middle shape = 16a has a forming surface 16b. The forming surface is separated from the front end of the phase body c 16c and the front end of the convex portion 16a in a range of 45 ± 3% from the perpendicular (short ship) with respect to the convex surface of the die face P Distance 1)) Below [0029] It is roughly as follows. In Fig. 2(a) and Fig. 2(b)tJ, the degree of θ ς t is 3, and the thickness of the core forming layer is W. In the U table is not before the die is pressed, : ^ between the twists in the platen step, if the forming die 16 ° W-shaped resin layer 14 ' then as the downward arrow of the ® 2 (b) 201237479 The upper arrow of the resin layer 14 is not indicated by the upward arrow. The amount of the convex portion is pushed away. These amounts are as shown in this case, and the surface of the resin layer 14 is raised by the ridges. It is assumed that if the thickness of the lamp surface 16 (10) of the forming die 16 is flat and the thickness of the μ is relatively low, and the resin layer for forming the core is formed, it is formed through the core, and becomes a solid resin layer 14 (for the embossed resin layer 14) The surface is pressed against the θ degree). Before the surface is opened, the stamper is pressed. Therefore, the forming 1/; the lower 16 〇 of the n-die 16 can be reused, and the thickness (9) of the thickness (6) of the resin layer 14 can no longer be used. The formation of the resin layer in the core can be ensured by forming the inclined surface completely larger than the core. The upper limit of the amount of _, or the tree (4)), although it can be swayed by the convex portion 16a, for example, the sum of the thickness of the core and the core is the same as the height of the core 12 (for example, referring to the height of the figure, etc.) Stomach (5) and 'better' is equivalent to the sum plus 5 arrays [_]

14m^M 恤品作4^鏡而發揮功月巨’但為了提高反射效率,宜在 等真空製程所形成者、由電鍍製程所开」者且二g ί7用4膜之轉印製程所形成者等,而可採用之。 【0031】 ,照〗4’依本發_實施賴之光波導之製造方法中所使 =轉印用薄膜(反射膜轉印用薄膜)1S,其構造為:在作為基^ =PET薄膜以(厚度為例如1〇μηι等)之上,依序作屬膜 的金(亦可為其他金屬)膜15b(厚度為例如韻及= 15c(厚度為例如ιμηι等)。 ^接層 依本實施形態之光波導之製造方法的再另—特徵部分 用轉印用細15之金屬膜形成步驟。金屬_成步驟,= 步驟之後’細射步驟之前或之後所進行。在金屬卿成步驟$ : 201237479 首先’以黏接層15c與核心形成用满 用薄膜u。而使核心形成用相^層對接的方式配置轉印 印用薄膜I5密接,藉此使金屬膜曰斤形成的傾斜面版,與轉 作為金屬反射膜。 屬膜说轉印形成在傾斜面18a上以 【0033】 脂層======核心形成用樹 樹脂宜為透明樹脂。樹脂層的外,)而硬化的樹脂層。 合)來進行。樹脂薄膜,宜為將樹脂薄膜疊層(壓 薄膜形狀之乾薄膜等,而#採用^。至〉皿下無樹脂流動性,可保持 【0034】 在本貫施形態中,光硬化柯格 ==型環訧,其種類有:雙心 「彻7G」、—ΕΡ_Resins & PG=SmS 成製之「侧」、Daicel化學工苹==6FS」、東都化 Γ〇611οχ^〇21Ρ, . ^ DIC rEpidon850^ ^ ° ^ 【0035】”’ S使用’藉此作為光硬化性樹脂而發揮功能。 上容在核心露出的狀態,則會發生以下問題:核心 產生或是在容躲露的·憎遞特性容易 第2縣21將4 1縣層1及核心層17覆蓋而使直埋沒。 :料機,可與第1護套層13的材料或核心層17的 形態亦L Ιΐϊϊ同3 \不僅是樹脂薄膜的形態,液狀的 '、折射率亦财1護套層13相同,只要是小於核心 201237479 層17的折射率,便無特別 [0036] 熱處i步形it驟’3如圖巧或圖7(n)所示,雖亦可在 成之後,便益特別k 第1護套層13及核心層17形 【οοίϊ期疋。亦卩,亦可在熱處理步驟之前進行。 能樣ίΐίΐ細說Γ了依本發明的實施形態,但上述說明在所有 解釋為並本於此。未例示的無數變形例,亦 [實施例] 【0038】 以下,藉由實施例更具體地說明本發明。另外,本發明 圍並不因實施例而有任何限定。 【0039】 首先,製作出下述護套用環氧薄膜及核心用環氧薄膜,以作 為用於製作光波導的材料。 【0040】 [護套用環氧薄膜之製作] _ w將下述滲合成分,溶解於曱苯3〇質量份/丁酮7〇質量份的混 合溶媒’以孔徑Ιμιη的薄膜濾器進行過濾,並進行減壓消泡,藉 此5周製出環氧樹脂清漆。利用Hirano Tecseed製之雙|昆筒塗布頭的 夕重塗布,將該清漆塗布在PET薄膜(東洋紡績製之「A4100」) 之上,並使其乾燥’藉此製作出厚度為1〇μιη、40μιη、5〇μιη之三 種護套用環氧薄膜。 — 【0041】 (滲合成分) •聚丙二醇環氧丙醚(東都化成製之「PG207」)7質量份 .液狀的氫化雙酿 Α型環氧樹脂(Japan Epoxy Resins製之 「YX8000」)25質量份 12 201237479 •固體的氫化雙紛A型環氧樹脂(Japan Epoxy Resins製之 「YL7170」)20質量份 • 2,2-雙(羥曱基)_ι_ 丁醇之1,2-環氧-4-(2-環氧乙烷基)環己烷 加成物(Daicel化學工業製之「EHPE3150」)8質量份 •固體雙紛A型環氧樹脂(Japan Epoxy Resins製之「Epikote 1006FS」)2質量份 •苯氧基樹脂(東都化成製之「YP50」)20質量份 •光陽離子硬化開始劑(Adeka製之「SP-170」)0.5質量份 •熱陽離子硬化開始劑(三新化學工業製之「SI-150L」)0.5質 量份 •表面調整劑(DIC製之「F470」)〇.1質量份 【0042】 [核心用環氧薄膜之製作] 將下述滲合成分’溶解於甲苯3〇質量份/丁酮70質量份的混 合溶媒’以孔徑Ιμιη的薄膜濾器進行過濾,並進行減壓消泡,藉 此調製出環氧樹脂清漆。利用Hirano Tecseed製之雙親筒塗布頭的 多重塗布,將該清漆塗布在PET薄膜(東洋紡績製之rA41〇〇」) 之上,並使其乾燥,藉此製作出厚度為3〇μπι之核心用環氧薄膜。 【0043】 (渗合成分) • 3,4-環氧環己烯甲基_3,,4,_環氧環己烯羧酸酯 • 2,2_雙(經曱基丁醇之I,2-環氧·4-(2_環氧乙烷基)環己烷 加合物(Daicel化學工業製之「ΕΗΡΕ315〇」)12質量份 固體雙盼Α型環氧樹脂(Japan Epoxy Resins製之「Epikote 1006FS」)37質量份 •二官能環氧樹脂(三井化學製之「VG-3101」)15質量份 •固體酚醛型環氧樹脂(日本化藥製之「EPPN201」)18質量 份 •液狀雙朌A型環氧樹脂(DIC製之rEpicl〇n850S」)1〇質量 13 201237479 份 •光陽離子硬化開始劑(Adeka製之「sp_17〇 量份•熱騎子硬化開始劑(三新化私業狀「SI_15(^」y5質 •表面調整劑(DIC製之「F470」)〇 1質量份 【0044】 、 m蝴人輸㈣級導之損失評财法,私下所述。 [在端面輸入輸出的光波導之損失評價] 的光光源的85Qnm的光,通過核心徑ig_、_.21 ’ 油(石烟油),入射在光波導一方的端面。介由同 η ’接通核心徑20〇Mm、NA0.4的光纖,以光功率叶測 、十方的端面射出之光的功率⑽。又,以光功率計測定在上 =個光纖直接碰觸而沒有插人光波導之狀態出之 =㈣。根據「(舞撕_」之算式算出: 光波導之插入損失。 贝仕鲕面輸入輸出的 【0046】 Ιοίί輸人輸出的練導之損失評價方法,係如下所述。 [在鏡輸入輸出的光波導之損失評價] 來tED光源的Μ—的光,通_心徑1()_、議21 1先義,”由匹配油(石夕酮油),入射在光波導—方入. =,油’接通核心徑·啤、戰4的光纖,以光^率= 疋從另一方的微鏡射出之光的功率(Ρ1)。又, 力率什測 述2個光纖直接碰觸❿沒有插入光波導之狀能^相定在上 =°:?失:(赛_」之算式算“ ^ 【0048】 [實施例1] 14 201237479 參照圖5來說明實施例1的光波導1之製作。 【0049】 (圖 5(a)) 對由聚碳酸酯樹脂所構成的140_χ 120mm之基板(帝人化成 製之「PanlitePC1151」)11施以氧電漿處理。條件定為1〇sccm, 300W,2 分 30 秒。 【0050】 (圖 5(b)) 使用加壓式真空壓合器(Nichigo-morton製之「v_13〇」),在 60 C,0.2MPa的條件下,將厚度10μηι的護套用環氧薄膜12,壓 合在基板11之上。將PET薄膜從環氧薄膜12上剝除。、土 【0051】 (圖 5(c)) 使3蒦套用環氧薄臈12保持不硬化,使用加壓式真空壓八芎 (Nichigo-morton 製之「V_130」),在 6〇。〇,〇 的條件 厚度30μιη的核心用環氧薄膜14,壓合在護套用環氧薄膜守 i理=:從環氧薄膜14上剝除。此時’没有進行任何概 【0052】 圖 5(d)) 用Ϊ氧薄膜14之側’將負型遮罩22定位並疊置之。 〇遮f 22’其構造為:在不透射紫外線的薄片上,形成有 14 ^ > 箭頭符轳m矣-々此在4J/Cm之條件下,使紫外光(在圖5(d)中以 薄膜負型遮罩22而照射在核心用環氧 的水類助料的祕理。顯練,雜_整至抑 、/ / θ (化川化學工業製之「PineAlphaST-l〇〇sx」), 15 201237479 ^行顯影處理。顯影處 護套之間沒有發生任何層 洗機。此時,核心與 水進仃最終清洗,進行吹氣之 ^ y洛解而去除。再以 理。 〇c進行10分鐘的乾燥處 【0053】 (圖 5(e)) 土上步驟’護套用環氧薄膜12硬化㈣1嚷太a 成於基板11之上,核心用 b的弟1護套層13形 於第1護套層13之上。換=心層17疊置形成 硬化的第1護套層13嗤核12的曝光部分 心層: (圖 5(f)) 如。广使^力式真空摩合器Wicilig0-morton製之「V-130、,产 J J19上剝除。使用超高i“,在 =圖至5(_箭頭符號⑴表示之紫外光)照射在護套用ίί薄 膜19。再以140 C進行60分鐘的熱處理。 貧用减4 【0055】 (圖 5(g)) 藉由以上步驟,護套用環氧薄膜19硬化的第2 成於核心層Π之上及—部分的基板u之上。第2護套 將第1護套13及核心層17覆蓋而使其埋沒之方式形成胃 f有第1護套層I3與核心層π與第2護套廣Μ之光波心 導:平面波導)ι。光波導1係與基板η接合。 / 【0056】 (圖 5(g’)) 16 201237479 、若對基板u以俯視觀之’亦即從紫外光的照射方向(在圖5⑷ 或圓5(f)中之箭頭符號(4))進行觀察,則第丨護套層13部分地形成 在基板11之上。又,若對基板U以俯視觀之,則第1護套層13 的輪廓形狀與核心17的輪廓形狀一致。 【0057】 進行所製作的光波導1在端面輸入輪出之損失評價,係0.1 d B/cm之良好結果。 、. 【0058】 [比較例1] 參照圖6來說明比較例i的光波導丨之製作。另外,與實施 例1相同或相當的要素係使用相同符號。 /'、 【0059】 (圖 6(a)) 使用加壓式真空壓合器㈣chig〇_m〇rt〇n製之「v_i3〇」),在 = i〇.2MPa的條件下’將厚度的護套用環氧薄^ & 合,由聚碳酸醋樹月旨所構成的⑽麵叩。^之 ^ ρ·Ρα151」)n之上。使用超高壓水銀燈, ii·、4下使糸外光(丄)照射在護套用環氧薄膜〗2 氧薄膜上剝除之後,再以赋進行3〇 里杨从 【0060】 (圖 6(b)) 々认ΐ?以上步驟,護套用環氧薄膜12硬化的第1護套層13來 成於基板η之上。對第1護套層施以氧電漿處理隻 lOsccm,300W,2分30秒。 手电水疫里條件疋為 【0061】 (圖 6(c)) 使用力σ[式真空虔合II脚打⑽ 6(TC,0.2MPa 的條件下,^,在 合在已施行氧電漿處理的第j蹲矣14 ’摩 地王扪弟1漫套層13之上。將PFT薄膜從環氣 17 201237479 薄膜14上剝除。 【0062】 (圖 6(d)) 在核心用環氧薄膜14之側, 負型遮罩22,其構造為:在 並疊置之。 •、長線圖案之:=、===成有寬 箭頭符號⑴表示之紫外光)it射負^ 圖6⑻中以 rim η 〇 i4?t ^^ 之狹縫之部分受轉光。再以M(TC進彳:;直線圖案 液,係使用調整至55〇CM太2刀在里的熱處理。顯影 音波清洗機。㈣,核哗護套之間;影處理係使用超 影處理,核心贿氧薄膜14之中,=* 。藉由顯 水進行最終清洗,進行吹氣之後,除。再以 理。 uuc進仃10分鐘的乾燥處 【0063】 (圖 6(e)) 苐1 核心用環氧薄臈14硬化的核心層17形成於 【0064】 (圖 6(f)) 8(ΤγΛ用^塵式真空麼合器_吨〇侧_製之「V-130 ),力 8〇 C,0.3MPa的條件下,脾」)’在 合在核心層17之m護套用環氧薄臈19,壓 卜先(在圖6(f)中以箭頭符號⑴表 ^下’ 壤1膜19。再以戰進行6。分鐘的熱=桃射麵套用 [0065】 18 201237479 (圖6(g》 成;^由^上步驟,護細環氧_ 19硬化的第2護套声21护 17之上及一部分的第i護套層13之上。 平面波導)2。光_係態Sit層之7反波導: 【0066】 盖柘fi實施1目比較’第2護套層21,僅覆蓋到核心層17。掛 板11以俯視觀之時,第丨護套層13 \ , 又,對基板η以俯視觀之時,則第1護 心17的輪_狀不-致。 *胃啸獅狀與核 【0067】 光波導2在端面輪入輸出之損_,係_ 【0068】 對在該比姻1的損失評倾在實 父:發現係同等的損失。由此發現,根 即使不進行電漿處理,亦可得刭一 的衣k方法, 施彻處_咖丨 之間的層間密接力。 卜卩縣層與核心層 【0069】 [實施例2] 參照圖7來說明實施例2的光波導㈣ 例1相同或相當的要素係使用相同符號。J另外’與只施 【0070】 (圖 7(a)) 準備撓性雙面包銅疊層板(panas〇ni 75」),其構造為:在厚遼25_沾取挤兀衣之fELIOS(R-F7 12μπι的娜。對該撓性A㊣板、Λ ^ ^之雙面切層有厚度 電子電路,紐s Ir i ㉙純摘取預先形成 電子電路’並對另所有㈣進行_財除之,藉此製作 19 201237479 出外型尺寸為130mmxl30mm的撓性印刷電路板,令其為撓性 板31。 【0071】 (圖 7(b)) 使用加壓式真空壓合器製之「v_13〇 在 條件下,使外型尺寸為14GmmXl4G聰的玻璃板 (=·度2_)32的一面,與可再次剝離的雙面膠帶(寺岡製作所 No.7692」)33的強黏著面對接,並進行壓合。使用加壓式 Ϊ合ί 製之/v·130」)’在6〇°c,〇.2贿的條件 使又面膠帶33的弱黏著面,與撓性基板31的電子 板^于壓合。捷性基板31係隔著雙面膠帶33暫時黏接 【0072】 (圖 7(c)) 。使用加壓式真空壓合器⑼ichig〇_m〇rt〇n製之 條件下,將厚度1ί)μιη的護套用環氧“12,壓 銅羯除去面之上。將ΡΕΤ薄膜從環氧薄膜12 【0073】 (圖 7(d)) 使用加壓式真空壓合器⑽chig〇_m〇rt〇n製之 ? 3〇μΠ1 14 > Μ m 2之上。將ρετ薄膜從環氧薄膜14上剝除。 (圖 7(e)) 如圖3所示,以黃銅製作出模具16,其所1 度成形面16b。在核心形成用環氧薄膜^ = 杈具16疋位在鏡形成位置。 J Γ万將 【0075】 20 201237479 (圖 7(¾ 進入,推入模具Μ,以使該凸部- 【0076] (圖 7(g)) 具有======_膜Μ上,形成了 【0077】 (圖 7(h)) 負型H^14之側’將負型遮罩22定位並疊置之。 上,形成⑽ 高塵水銀燈,/ 1Τ/ 2 ^狹縫《衣乳缚膜14之侧,使用超 號⑴表示之紫外^射之圖W以箭頭符 及護套用if 4 U ” ^鮮Μ而'射在核心用環氧薄膜14 之中二==及護套用環氧薄膜12 【_】罩的直線圖案狹、缝之部分同時受到曝光。 (圖 7(i)) 鐘·^熱處理之後’顯影液,係使用調整至 ST-100SX」)、’來^顔旦!荒川化學工業製之「PineAlpha 氧薄膜12之中理。核心用環氧薄膜14及護套用環 中,未曝光部分溶解而去除。再以水進行Sm 1 ^人軋之後,以100它進行10分鐘的乾燥處理。萨由以、二轳 f,薄膜12硬化的第i護套層13形成 【0079] (圖 7(j)) 在核心層η的凹溝18b之上,攤開並設置了反射膜轉印用薄 21 201237479 ΐ 轉、3薄ί 5如圖4所示’其構造為:在PET薄膜15a(厚 ㈣。轉印用薄f15,係、以黏接層以與核心層己 者凹f18b内面的形狀之凸部之矽酮橡膠模2〇, ,1,’ 0.5, ’ 15秒的條件下,將轉印用薄膜15推入凹 18b之中’使其與傾斜面18a密接。 【0080】 (圖 7(k)) 將石夕酮橡膠模20拔出,並將轉印用薄膜 薄 剝除。於核心層Π,形成了微鏡18,其構 二= 射膜貼附在成形為45。的傾斜面18a。 々至腺⑽作為反 【0081】 (圖7㈣) 使用加壓式真空壓合器㈣咖明個咖製「 =仿。.=的條件下,將厚度5一的護套用環氧薄膜;9在 合在核心層17之上及-部分的撓性基板31之上。在以12〇 仃30分鐘的熱處理之後,使用超高壓水銀燈,在2驗2之 圖7(m)中以箭頭符號⑴表示之紫外光)照射在護I用The 14m^M shirt is used as a 4^ mirror to play the role of the moon. But in order to improve the reflection efficiency, it should be formed by the process of forming a vacuum process, by the electroplating process, and by the transfer process of the film. And so on, but can be used. [0031] According to the present invention, the film for transfer (transparent film for transfer film transfer) 1S is used in the method for producing a light-transmitting waveguide, and the structure is as follows: For example, on the basis of 1 〇μηι, etc., the gold (may be other metal) film 15b (the thickness is, for example, rhyme and = 15c (thickness such as ιμηι, etc.)). Further, in the manufacturing method of the optical waveguide, the metal film forming step of the transfer fine 15 is used. The metal_forming step, = after the step, is performed before or after the fine spraying step. In the metal forming step $: 201237479 First 'The adhesive layer 15c is formed with the core to form the full-use film u. The core-forming layer is placed in contact with each other, and the transfer printing film I5 is placed in close contact with each other, thereby forming the inclined surface plate formed by the metal film. The metal film is a resin layer which is formed by being transferred onto the inclined surface 18a to be hardened by [0033] a lipid layer ====== the core resin is preferably a transparent resin. Come together. For the resin film, it is preferable to laminate the resin film (a dry film in the shape of a film, etc., and the resin flowability can be maintained under the use of ^. to the dish). [0034] In the present embodiment, the light hardening Kege = = type ring 訧, the types are: double heart "complete 7G", - ΕΡ _ Resins & PG = SmS formed "side", Daicel Chemical Gong = = 6FS", Dongdu Huayu 611οχ ^ 〇 21Ρ, . ^ DIC rEpidon850^ ^ ° ^ [0035] "S use" is used as a photocurable resin to function. When the core is exposed, the following problems occur: the core is generated or hidden. It is easy for the second county 21 to cover the 4 1 county layer 1 and the core layer 17 and directly bury it. The material can be the same as the material of the first sheath layer 13 or the core layer 17 It is a form of a resin film, and the liquid-like 'refractive index' is the same as the sheath layer 13 as long as it is smaller than the refractive index of the layer of the core 201237479 layer 17, and there is no special [0036] heat step i step shape '3 as shown in the figure As shown in Fig. 7(n), although it is possible to make a special k, the first sheath layer 13 and the core layer 17 are shaped [οοίϊϊ卩 卩 卩 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The present invention will be more specifically described by the following examples. The present invention is not limited by the examples. [0039] First, the following epoxy film for sheath and epoxy for core are produced. A film is used as a material for fabricating an optical waveguide. [0040] [Production of epoxy film for sheathing] _ w The following osmotic component is dissolved in 3 parts by mass of toluene and 7 parts by mass of butanone. The mixed solvent was filtered through a membrane filter having a pore size of Ιμηη, and defoamed under reduced pressure to prepare an epoxy resin varnish for 5 weeks. The varnish was coated by a double coating of a double cylinder coated head made by Hirano Tecseed. On a PET film ("A4100" manufactured by Toyobo Co., Ltd.), and dried it, 'Eating epoxy films for thickness of 1 〇μιη, 40 μm, and 5 〇μηη were produced. — [0041] Synthetic points) • Polypropylene glycol ring Oxypropyl ether ("PG207" manufactured by Tosei Chemicals Co., Ltd.) 7 parts by mass. Liquid hydrogenated double-branched epoxy resin ("YX8000" manufactured by Japan Epoxy Resins) 25 parts by mass 12 201237479 • Solid hydrogenated double type A Epoxy resin ("Yellow" by Japan Epoxy Resins) 20 parts by mass • 1,2-epoxy-4-(2-oxiranyl) ring of 2,2-bis(hydroxyindenyl)_ι-butanol Hexane adduct ("EHPE3150" manufactured by Daicel Chemical Industry Co., Ltd.) 8 parts by mass • Solid double-type A-type epoxy resin ("Epikote 1006FS" manufactured by Japan Epoxy Resins) 2 parts by mass • Phenoxy resin (Dongdu Chemical Co., Ltd.) "YP50") 20 parts by mass • Photocationic curing starter ("SP-170" manufactured by Adeka) 0.5 parts by mass • Thermal cation hardening starter ("SI-150L" manufactured by Sanshin Chemical Industry Co., Ltd.) 0.5 parts by mass Surface Conditioning Agent ("F470" by DIC) 1.1 parts by mass [0042] [Production of epoxy film for core] The following osmotic component was dissolved in a mixture of 3 parts by mass of toluene and 70 parts by mass of methyl ethyl ketone. The solvent was filtered through a membrane filter having a pore size of Ιμηη, and defoamed under reduced pressure to prepare an epoxy resin varnish. The varnish was applied to a PET film (rA41〇〇 manufactured by Toyobo Co., Ltd.) by a multiple coating of a double-coated cylinder coating head manufactured by Hirano Tecseed, and dried to prepare a core having a thickness of 3 μm. Epoxy film. [0043] (infiltrated component) • 3,4-epoxycyclohexenemethyl_3,,4,_epoxycyclohexenecarboxylate • 2,2_bis (by mercaptobutanol I, 2-epoxy 4-(2-oxiranyl)cyclohexane adduct ("ΕΗΡΕ315〇", manufactured by Daicel Chemical Industry Co., Ltd.) 12 parts by mass of solid double-presence type epoxy resin (made by Japan Epoxy Resins) "Epikote 1006FS") 37 parts by mass • Difunctional epoxy resin ("VG-3101" manufactured by Mitsui Chemicals Co., Ltd.) 15 parts by mass • Solid phenolic epoxy resin ("EPPN201" manufactured by Nippon Kasei Co., Ltd.) 18 parts by mass • Liquid Double-type A-type epoxy resin (rEpicl〇n850S made by DIC) 1〇Quality 13 201237479 parts • Photocationic hardening starter ("Adeka" "sp_17〇份份•热骑子硬剂剂(三新化私Business type "SI_15 (^" y5 quality • Surface conditioner ("F470" by DIC) 〇 1 part by mass [0044], m-following (four)-level loss assessment method, privately stated. Evaluation of the loss of the output optical waveguide] The light of the light source of 85Qnm passes through the core diameter ig_, _.21 'oil (stone oil), and is incident on the end face of the optical waveguide. The optical fiber with a core diameter of 20 〇Mm and NA0.4 is turned on, and the power of the light emitted from the end face of the ten-party is measured by the optical power (10). Further, the optical power meter is used to directly touch the upper optical fiber without intervening. The state of the optical waveguide is = (4). It is calculated according to the formula of "Dancing _": the insertion loss of the optical waveguide. [0046] 贝οίί The output loss evaluation method of the output is as follows [Evaluation of Loss of Optical Waveguide Input and Output in Mirror] To the light of the tED light source, the pass_heart diameter 1()_, the discussion of 21 1 first meaning," by the matching oil (the gas oil) Incident on the optical waveguide - square entry. =, oil 'on the core diameter · beer, battle 4 fiber, the light ^ rate = 疋 the power of the light emitted from the other micromirror (Ρ1). It is determined that the two fibers are directly touched and the optical waveguide is not inserted into the optical waveguide. The phase is determined by the upper = °: loss: (the formula of "赛_" is calculated as "^ [0048] [Embodiment 1] 14 201237479 Referring to Figure 5 The production of the optical waveguide 1 of the first embodiment will be described. [0049] (Fig. 5(a)) A substrate of 140_χ 120 mm made of polycarbonate resin (Panlit made by Teijin Chemicals Co., Ltd.) ePC1151")11 is treated with oxygen plasma. The condition is set to 1 〇sccm, 300W, 2 minutes and 30 seconds. [0050] (Fig. 5(b)) Using a pressurized vacuum press (made by Nichigo-morton) V_13〇”), a sheath having a thickness of 10 μm was bonded to the substrate 11 with an epoxy film 12 at 60 C and 0.2 MPa. The PET film was peeled off from the epoxy film 12. [ soil [0051] (Fig. 5(c)) The epoxy crucible 12 is kept from being hardened by a vacuum, and a pressurized vacuum pressure gossip ("V_130" manufactured by Nichigo-morton) is used at 6 inches. 〇, 〇 Conditions The epoxy film 14 of the core having a thickness of 30 μm is pressed against the epoxy film for the sheath to be removed from the epoxy film 14. At this time, no generalization is performed. [0052] Fig. 5(d)) The negative mask 22 is positioned and superposed with the side of the silicon oxide film 14. 〇 f f 22 ' is constructed as follows: on the non-transmissive ultraviolet ray, 14 ^ > arrow symbol 轳 m 矣 々 々 々 々 々 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 4 4 4 紫外 紫外The secret of the water-based auxiliary material for the core epoxy with the negative-film mask 22, which is practicable, _ _ _ _ _ _ _ (PineAlphaST-l〇〇sx made by Chemical Chemical Industry Co., Ltd.) ), 15 201237479 ^Development treatment. No layer washing machine occurs between the jackets at the developing point. At this time, the core and the water are finally cleaned, and the blowing is removed and removed. Again. Drying for 10 minutes [0053] (Fig. 5(e)) Soil step 'Sheath is cured with epoxy film 12 (4) 1 嚷 too a is formed on the substrate 11, and the core is b-shaped with a sheath 1 of b On top of the first sheath layer 13. The core layer 17 is laminated to form a hardened first sheath layer 13 of the exposed portion of the core 12 of the core 12 (Fig. 5(f)). "V-130, manufactured by J. Wichilig0-morton, stripped on J J19. Use ultra-high i", irradiated on the sheath with ίί film 19 in the = to 5 (_ arrow symbol (1)) And then at 140 C 60 minutes of heat treatment. Lean reduction 4 [0055] (Fig. 5 (g)) By the above steps, the sheath is hardened with the epoxy film 19, and the second layer is formed on the core layer and above the substrate u. The second sheath covers the first sheath 13 and the core layer 17 to form a stomach. The first sheath layer I3 and the core layer π and the second sheath are widely distributed: a planar waveguide )ι. The optical waveguide 1 is bonded to the substrate η. / [0056] (Fig. 5 (g')) 16 201237479, if the substrate u is viewed in a plan view, that is, from the direction of ultraviolet light (arrow symbol (4) in Figure 5 (4) or circle 5 (f)) When observed, the second sheath layer 13 is partially formed on the substrate 11. Further, when the substrate U is viewed in a plan view, the outline shape of the first sheath layer 13 coincides with the contour shape of the core 17. [0057] The evaluation of the loss of the input optical waveguide 1 at the end face input was performed, which was a good result of 0.1 d B/cm. [Comparative Example 1] The fabrication of the optical waveguide 比较 of Comparative Example i will be described with reference to Fig. 6 . In addition, the same or equivalent elements as in the first embodiment are denoted by the same reference numerals. /', [0059] (Fig. 6(a)) Using a pressurized vacuum press (4) "v_i3" made by chig〇_m〇rt〇n), under the condition of = i〇.2MPa The sheath is made of epoxy thinner and combined with (10) facial enamel composed of polycarbonate. ^^ ρ·Ρα151”)n above. Use ultra-high pressure mercury lamp, ii·, 4 to make the external light (丄) irradiated on the epoxy film of the jacket with the epoxy film, and then carry out 3〇里杨 from [0060] (Fig. 6 (Fig. 6 b)) In the above step, the sheath is formed on the substrate η by the first sheath layer 13 which is cured by the epoxy film 12. The first sheath layer was treated with oxygen plasma for only 10 seccm, 300 W, 2 minutes and 30 seconds. The condition of the flashlight in the flashlight is [0061] (Fig. 6(c)). Using force σ [vacuum vacuum fit II foot (10) 6 (TC, 0.2 MPa, ^, in the combined oxygen plasma treatment The jth蹲矣14 'Motor's brother-in-law 1 is over the layer 13. The PFT film is stripped from the ring gas 17 201237479 film 14. [0062] (Fig. 6(d)) Epoxy film in the core On the side of 14, a negative type mask 22, which is configured to be stacked on top of each other. • Long line pattern: =, === into a wide arrow symbol (1) indicates ultraviolet light) it is shot negative ^ Figure 6 (8) Part of the slit of rim η 〇i4?t ^^ is converted. Then use M (TC 彳:; linear pattern liquid, the use of heat treatment adjusted to 55 〇 太 too 2 knives. Developed sound wave cleaning machine. (4), between the core jacket; shadow processing system using super shadow processing, Among the core brittle oxygen film 14, =*. After the final cleaning by sensible water, after blowing, remove. Then uuc enters the dry place for 10 minutes [0063] (Fig. 6(e)) 苐1 The core layer 17 hardened by the epoxy thin crucible 14 is formed in [0064] (Fig. 6(f)) 8 ("V-130" for the Τ Λ ^ ^ 尘 真空 制 制 , , , , , , , , , , 〇C, 0.3MPa, spleen ")' in the core layer 17 of the sheath with epoxy thin 臈 19, press the first (in Figure 6 (f) with the arrow symbol (1) table ^ ' 1 film 19. Then fight for 6. minutes of heat = peach face application [0065] 18 201237479 (Figure 6 (g) into; ^ by ^ step, protective epoxy _ 19 hardened second sheath sound Above the 21st and a portion of the ith sheath layer 13. Planar waveguide 2. Optical _ Sit layer 7 anti-waveguide: [0066] Cover 柘 fi implementation 1 mesh comparison '2nd sheath layer 21 Covering only the core layer 17. When the hanging plate 11 is viewed from above, The second sheath layer 13 \ , and when the substrate η is viewed in a plan view, the wheel _ shape of the first core 17 is not caused. * Stomach lion shape and nucleus [0067] The optical waveguide 2 is wheeled at the end surface Output loss _, system _ [0068] The loss in the marriage 1 is evaluated in the real father: the same loss is found. It is thus found that even if the root is not subjected to plasma treatment, it can be obtained. Method, the inter-layer adhesion between the _ 丨 。 卩 卩 卩 卩 卩 卩 卩 卩 卩 卩 卩 卩 卩 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 光 光 光 光 光 光 光Use the same symbol. J additionally 'and only apply [0070] (Fig. 7(a)) Prepare a flexible double-bread copper laminate (panas〇ni 75), which is constructed as follows: EL衣的 fELIOS (R-F7 12μπι娜娜. The flexible A-plate, Λ ^ ^ double-sided layer has a thickness of electronic circuit, New s Ir i 29 purely pre-formed electronic circuit 'and all other (4) Performing the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ "V_13" made by a vacuum presser, the side of the glass plate of the 14GmmXl4G Satoshi (= degree 2_) 32, and the double-sided tape which can be peeled off again (Shijioka Works No. 7692) 33 Strongly adhered to the face and pressed. Use the pressure-type ί ί / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / The electronic board of the flexible substrate 31 is pressed together. The sleek substrate 31 is temporarily bonded via the double-sided tape 33 [0072] (Fig. 7(c)). Under the condition of a pressurized vacuum press (9) ichig〇_m〇rt〇n, the sheath of thickness 1 ί) μη was removed with epoxy "12, pressed copper enamel. The ruthenium film was removed from the epoxy film. 12 [0073] (Fig. 7(d)) Using a pressurized vacuum press (10) chig〇_m〇rt〇n made of 3〇μΠ1 14 > Μ m 2. The ρετ film is taken from the epoxy film 14 (Fig. 7(e)) As shown in Fig. 3, the mold 16 is made of brass, and the molding surface 16b is formed at one degree. The epoxy film is formed in the core ^ = the crucible 16 is placed in the mirror. Position. J Γ万将【0075】 20 201237479 (Fig. 7 (3⁄4 enter, push into the mold Μ so that the convex part - [0076] (Fig. 7(g)) has ======_ Formed [0077] (Fig. 7(h)) The side of the negative type H^14 'positions and overlaps the negative type mask 22. On top, forms (10) high-dust mercury lamp, / 1Τ / 2 ^ slit On the side of the nipple film 14, the ultraviolet ray image W shown by the super number (1) is used as an arrow symbol and a sheath with if 4 U ” ^ Μ Μ ' 射 射 核心 核心 核心 核心 核心 核心 核心 核心 核心 核心 核心 核心 核心 核心 核心Applying epoxy film 12 [_] The straight line pattern of the cover is narrow and the part of the seam is simultaneously (Fig. 7(i)) After the heat treatment, the 'developer is adjusted to ST-100SX'.), 'To ^ Yan Dan! Made in Arakawa Chemical Industry's "PineAlpha Oxygen Film 12". In the epoxy film 14 and the sheath ring, the unexposed portion was dissolved and removed, and after Sm 1 ^man rolling with water, it was dried for 10 minutes at 100. Sa, Y, F, and film 12 were hardened. The i-th sheath layer 13 is formed [0079] (Fig. 7(j)). On the groove 18b of the core layer η, the reflective film transfer thin film 21 is spread out and set. 201237479 ΐ 、, 3 thin ί 5 Fig. 4 shows the structure of the PET film 15a (thickness (4). The thin film f15 for transfer, the ketone rubber mold 2 of the convex portion in the shape of the inner surface of the f18b with the adhesive layer. , , 1, '0.5, ', under the condition of 15 seconds, the transfer film 15 is pushed into the recess 18b to make it adhere to the inclined surface 18a. [0080] (Fig. 7(k)) The mold 20 is pulled out, and the transfer film is thinly peeled off. On the core layer, a micromirror 18 is formed, and the structure 2 is attached to the inclined surface 18a formed into 45. The 々 to the gland (10) is reversed. 0081] (Fig. 7 (4)) Using a pressurized vacuum press (4), under the condition of "imitation..=, the sheath of thickness 5 is made of epoxy film; 9 is combined with core layer 17 Above and below part of the flexible substrate 31. After heat treatment for 12 〇仃 30 minutes, using an ultra-high pressure mercury lamp, the ultraviolet light indicated by the arrow symbol (1) in Fig. 7(m) of Fig. 2 is irradiated. Protection I

=溥膜。將PET薄膜從環氧薄膜19上剥除之後,再以= 用 進行30分鐘的熱處理。 C 【0082】 (圖7⑻) 藉由以上步驟,護套用環氧薄膜19硬化的第2護套層 =核心層17之上及-部分的撓性基板31之上。第2護套層^ 的表面係施加了氧電漿處理。 【0083】 (圖7⑹) 使用加壓式真空壓合器製之「),在 12(TC,0.3MPa的條件下,將表覆層薄膜(]?麵〇血電工製之 22 201237479 「halogen-free coverlay film R-CAES」,聚醯亞胺製,厚度 12.5μιη, 黏接層厚度15μιη)24,壓合在第2護套層21之上。再以16〇。(:進 行60分鐘的熱處理。 【0084】 (圖 7(ρ)) 藉由以上步驟,製作出具有第1護套層13與核心層17與第2 護套^ 21之光波導(通道波導)3。光波導3係與撓性基板31及表 覆層薄膜24接合。亦即,製作出光電複合撓性配線板。將玻 32及雙面膠帶33去除。 【0085】 。進行所製作的光電複合撓性配線板之光波導3在鏡輸入輸出 之損失評彳貝,係3.8dB之良好結果。另外,此損失的值,係使 附有微鏡的絲導來進行測定之結果。亦即,係包含鏡損失之值。 耶边迥尽發明的實施形態及實施例,舉出呈 本實卿態的級導之製造方法,例如參 八有核〜17域套13的光波導i之製造方法;其包含 牛、 驟(圖5(b)) ’形成由未硬化的光硬化性樹 = 驟(圖5(c)),在該護套形成用 t 部分’及_套形成用樹脂層丨2中對肩用 以軸核叫部分之部分;以及熱處 ^i用 成用樹脂層Μ及該護套形成用樹脂層12進:(二對該,心形 硬化的護套形成用樹脂層12,保持不硬化^ 匕’未 核心形成用樹脂層14。而同時對未硬 套开;22硬化的 硬化的核娜成觸簡光,層及未 使未硬化的護套形成用樹脂層12與 的^ =果,在 14 4層之狀態下同時藉由光及熱使之硬化:二= 處 23 201237479 理,即可提高護套層13與核心層17 此係因如上所述,在使未硬化的護套接力。吾人思及’ 核心形成麟脂層U4層之狀能 樹脂層12與未硬化的 而在護套層13與核^及f使之硬化,因 【0087】 门有化學結合力作動。 在本實施形態中’例如參照圖7,宜包 2步驟(圖7(d))之後,該光照射步驟(圖 .二,、在該第 用樹脂層14形成傾斜面18a;該壓模步 月以:二^成 對設有對應該傾斜面l8a的成形面16且^^下步驟(圖7妳 行推壓,以使該凸部=的成形模16進 核心形成卿旨層Μ形成該傾斜面lga。 ^4心 脂層Μ形成有傾斜面18a。該倾㈣…士核4成用樹 ,略呈垂直)之微鏡而 /人σ於級導與奸電路複合化縣賴 【0088】 辦 ^本實施形態巾,例如參照圖3,該成形模16的凸部恤 同度(D) ’宜為大於該核心形成用樹脂層14的厚度之高度。因 在核心形成用樹脂層14完全(穿越核心形成用樹ί層14的 王尽度)形成傾斜面18a 〇 【0089】 在本實施形態中’例如參照圖7,宜包含4屬膜形成步驟(圖 =()))’在該壓模步驟(圖7(f))之後,該光照射步驟(圖7(h))之前或之 後’使在該核心形成用樹脂層14所形成的傾斜面18a,與疊層有 金屬膜15b的轉印用薄膜15密接,藉此使該金屬膜15b/轉ϋ成 在該傾斜面18a上以作為金屬反射膜。因此,可簡便且低成本匕, 在傾斜面18a形成金屬反射膜,可提高微鏡的反射效率。 【0090】 在本實施形態中,例如參照圖5,宜包含:第2護套層形成步 驟(圖5(f)) ’在該熱處理步驟⑽5⑷)之後,形成第2護套層21 ^ 24 .201237479= 溥 film. After peeling off the PET film from the epoxy film 19, heat treatment was carried out for 30 minutes using =. C [0082] (Fig. 7 (8)) By the above steps, the second sheath layer which is cured by the epoxy film 19 of the sheath = above the core layer 17 and above the flexible substrate 31 of the portion. The surface of the second sheath layer is subjected to an oxygen plasma treatment. [0083] (Fig. 7 (6)) Using a pressure-type vacuum press "", under the condition of 12 (TC, 0.3 MPa, the surface coating film (22? Free coverlay film R-CAES", made of polyimide, thickness 12.5 μm, thickness of adhesive layer 15 μm) 24, pressed onto the second sheath layer 21. Further, 16 〇. (: 60 minutes heat treatment) [0084] (Fig. 7 (ρ)) By the above steps, an optical waveguide (channel waveguide) 3 having the first sheath layer 13 and the core layer 17 and the second sheath 21 is fabricated. The flexible substrate 31 and the cover film 24 are bonded to each other, that is, a photoelectric composite flexible wiring board is produced, and the glass 32 and the double-sided tape 33 are removed. [0085] The light of the produced photoelectric composite flexible wiring board is performed. The loss of the waveguide 3 at the input and output of the mirror is a good result of 3.8 dB. In addition, the value of this loss is the result of measuring the wire guide with the micromirror, that is, the value of the mirror loss. Execution of the invention and examples of the invention, the manufacturing method of the level guide in the form of the real state, for example, the octagonal nucleus a method for producing an optical waveguide i of a ~17 domain sleeve 13; comprising a bovine, a step (Fig. 5(b)) 'formed by an uncured photocurable tree = Fig. 5(c)), formed in the sheath The portion of the resin layer 丨2 for forming the portion of the resin layer 丨2 for the shoulder portion is used; and the resin layer Μ and the resin layer 12 for forming the sheath are used for the heat portion: The core-hardened sheath-forming resin layer 12 is kept from the hardened resin layer 14 without being hardened, and at the same time, the hardened core is hardened, and the hardened core is hardened, and the layer is The uncured sheath is not formed with the resin layer 12, and is hardened by light and heat in the state of 14 layers: 2 = 23, 201237479, the sheath layer 13 can be improved. The core layer 17 is because of the above, the uncured sheath is relayed. I think that the core layer of the U4 layer of the linoleic layer is uncured and the ferrule 13 and the nucleus are f hardens it, because [0087] the door has chemical bonding action. In the present embodiment, 'for example, referring to Fig. 7, after the step 2 (Fig. 7 (d)), the light irradiation step (Fig. 2, the inclined surface 18a is formed in the first resin layer 14; the stamping step is performed by: forming a forming surface 16 corresponding to the inclined surface l8a in pairs and performing the lower step (Fig. 7 Pushing so that the forming die 16 of the convex portion is formed into the core layer to form the inclined surface lga. The ^4 core layer is formed with the inclined surface 18a. The tilting (four)...the core is made into a tree, slightly The micro-mirror of the vertical) and the human σ are combined with the circuit of the circuit and the circuit of the priest [0088]. For example, referring to FIG. 3, the convexity of the forming die 16 is the same (D) It is larger than the thickness of the core forming resin layer 14. Since the core-forming resin layer 14 is completely formed (through the core of the core forming layer 14), the inclined surface 18a is formed. [0089] In the present embodiment, for example, referring to FIG. 7, it is preferable to include a 4-gene film forming step ( Figure = ())) ' After the stamping step (Fig. 7 (f)), before or after the light irradiation step (Fig. 7 (h)), the inclined surface formed by the core forming resin layer 14 is formed. 18a is in close contact with the transfer film 15 on which the metal film 15b is laminated, whereby the metal film 15b/ is turned on the inclined surface 18a to serve as a metal reflection film. Therefore, the metal reflective film can be formed on the inclined surface 18a at a simple and low cost, and the reflection efficiency of the micromirror can be improved. In the present embodiment, for example, referring to FIG. 5, it is preferable to include a second sheath layer forming step (FIG. 5(f)) 'after the heat treatment step (10) 5 (4)), a second sheath layer 21 24 is formed. 201237479

=所形成的護套層13及核心層17覆 A 避免以下問題:核心17上容易附著 ,:、^又因此’可 的環境中傳遞雜容易產生變化。〃 f或触,或是在容易結露 【0091】 的護套形ΐ用樹月,’12tl二ΐ方法所製造。因此’在使未硬化 =下同時使之硬化,因而無騎行電漿處理 $ 13,心層17之層間密接力。吾人思及,此係因如上所冋述H 晶層12與未硬化的核心形成用樹脂層Η ,目喊細與核心 【0092】 依本實施形.態的光波導,例如參照圖5()、圖 π is 1 ; : ^ π; 邛分地形成在基板11之上;核心17,疊置在第丨護套13之上 :巧二以及第_ 21 ’以將第!護套13及核心層17覆蓋而使 ν、里/又之方式形成;對基板η以俯視觀之時,第丨護套η的 廓形狀與核心17的輪細嫌-致;在第丨護套與核心之 / 間’產生化學結合力。 曰 【0093】 此種構造’係無法在各層之個別形成中取得之構造。所謂各 層之個別形成,係例如先使護套形成用樹脂層硬化,於該硬化層(護 套層)之上,形成未硬化的核心形成用樹脂層,而僅對核心形^°用 樹月曰層中用以形成核心的部分照射光,以使其硬化。(參照比較例 1)。亦即,此種構造,正是藉由依本實施形態的光波導之製造方法 製造而取得之構造。亦即,係在使未硬化的護套形成用樹脂層12 與未硬化的核心形成用樹脂層14疊層之狀態下,僅對用以形成核 心的部分同時選擇性地進行曝光,以使其硬化而取得之構造。/ 25 [0094] [0094]201237479 的護=成ίίΐϊΐΐ!的本實施形態的光料,在使未硬化 狀能下π時更化的核心形成用樹脂層14疊層之 =下即夺使之硬化,因而無須進行電梁處理,即可提高護套層 之層間密接力。吾人思及,此侧如上所述,^使 樹脂層12與未硬化的核心形成用樹脂層14 =曰之狀恶下同時藉由光及熱使之硬化,因而 層17之間,有化學結合力作動。 备a ,、杈^ [產業上利用性] 【0095】 根據本㉝明,可提供—種光波導之製造方法,其無須施以電 f處理’即可製造護套層與核心層之間的制密接力優良之光波 導。又’可提供-鶴由該光波導之製造方法所製造之光波導。 【圖式簡單說明】 圖1(a)〜(c)係用以說明依本發明的實施形態之光波導之製造 方法的一特彳故部分之主要部分放大圖。 圖2(a)〜(b)係用以說明依本發明的實施形態之光波導之製造 方法的壓模步驟之主要部分放大剖面圖。 圖3係用以說明依本發明的實施形態之光波導之製造方法的 壓模步驟中所使用的成形模規格之侧視圖。 圖4係用以說明依本發明的實施形態之光波導之製造方法中 所使用的反射膜轉印用薄膜之構造之侧視圖。 圖5(a)〜(g’)係用以說明實施例1之光波導之製造方法之步驟 圖。 圖6(a)〜(g)係用以說明比較例1之光波導之製造方法之步驟 圖。 圖7(a)〜(p)係用以說明實施例2之光波導之製造方法之步驟 圖。 、 26 201237479 【主要元件符號說明】 1、2、3 :光波導 11 :基板 12 :護套形成用樹脂層 13 :第1護套 14 :核心形成用樹脂層 15 :轉印用薄膜 15a ·· PET 薄膜 15b :金屬膜 15c :黏接層 16 :.成形模 16a :凸部 16b :成形面 16c :下面 16x :模本體 17 :核心 18 :微鏡 18a :傾斜面 18b :凹溝 19 :護套用環氧薄膜 20 夕嗣橡膠模 21 :第2護套 22 :負型遮罩 24 :表覆層薄膜 31 :撓性基板 32 :玻璃板 33 :雙面膠帶 D :凸部16a的高度 201237479 S :在進行壓模前,核心形成用樹脂層14表面之高度 28= The formed sheath layer 13 and the core layer 17 are covered A to avoid the problem that the core 17 is easily attached, and the transfer of impurities in the environment is likely to change. 〃 f or touch, or in the case of easy condensation [0091], the sheath shape is made by the tree, the '12tl two method. Therefore, it is hardened at the same time as uncured =, so there is no riding plasma treatment. As I have thought, this is because the H-layer 12 and the uncured core-forming resin layer are described above, and the core is in the form of an optical waveguide according to the present embodiment. For example, refer to FIG. 5(). Figure π is 1 ; : ^ π; is formed on the substrate 11 in a split manner; the core 17 is stacked on the second sheath 13: Qiao and _ 21 'to be the first! The sheath 13 and the core layer 17 are covered to form ν, 里 / 且; when the substrate η is viewed in a plan view, the profile of the second sheath η is similar to the wheel of the core 17; The set creates a chemical bond with the core.曰 [0093] Such a structure is a structure that cannot be obtained in the individual formation of each layer. In the individual formation of the respective layers, for example, the resin layer for forming a sheath is first cured, and a resin layer for forming an uncured core is formed on the hardened layer (sheath layer), and only the core shape is used. The portion of the germanium layer used to form the core illuminates the light to harden it. (Refer to Comparative Example 1). That is, such a structure is obtained by the manufacturing method of the optical waveguide of the present embodiment. In a state in which the uncured sheath-forming resin layer 12 and the uncured core-forming resin layer 14 are laminated, only the portion for forming the core is simultaneously selectively exposed so that The structure obtained by hardening. In the light material of the present embodiment, the resin layer 14 of the core forming layer which is uncured when the uncured energy is π is laminated, and the film is laminated. Hardening, thus improving the adhesion between the layers of the jacket layer without the need for electrical beam treatment. I think that, as described above, the resin layer 12 and the uncured core-forming resin layer 14 are in the form of a crucible, and are hardened by light and heat, so that there is a chemical bond between the layers 17. Acting. A, 杈^ [Industrial Applicability] [0095] According to the present invention, a method of manufacturing an optical waveguide can be provided, which can be manufactured between the sheath layer and the core layer without applying an electric f treatment. An optical waveguide with excellent precision bonding. Further, it is possible to provide an optical waveguide manufactured by the method of manufacturing the optical waveguide. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 (a) to (c) are enlarged views of essential parts for explaining a part of a method for manufacturing an optical waveguide according to an embodiment of the present invention. Figs. 2(a) to 2(b) are enlarged cross-sectional views showing main parts of a stamper step for explaining a method of manufacturing an optical waveguide according to an embodiment of the present invention. Fig. 3 is a side view for explaining a specification of a molding die used in a press molding step of a method of manufacturing an optical waveguide according to an embodiment of the present invention. Fig. 4 is a side view showing the structure of a film for transfer film transfer used in the method for producing an optical waveguide according to the embodiment of the present invention. Figs. 5(a) to 5(g') are diagrams for explaining the steps of the method of manufacturing the optical waveguide of the first embodiment. 6(a) to 6(g) are diagrams for explaining the steps of the method of manufacturing the optical waveguide of Comparative Example 1. 7(a) to 7(p) are diagrams for explaining the steps of the method of manufacturing the optical waveguide of the second embodiment. 26 201237479 [Description of main component symbols] 1, 2, 3: Optical waveguide 11 : Substrate 12 : Resin layer 13 for sheath formation: First sheath 14 : Core layer 15 for forming a core 15 : Transfer film 15 a · · PET film 15b: metal film 15c: adhesive layer 16: Forming die 16a: convex portion 16b: forming surface 16c: lower surface 16x: mold body 17: core 18: micromirror 18a: inclined surface 18b: groove 19: sheath Epoxy film 20 Enamel rubber mold 21: Second sheath 22: Negative mask 24: Surface coating film 31: Flexible substrate 32: Glass plate 33: Double-sided tape D: Height of convex portion 16a 201237479 S : the height of the surface of the core forming resin layer 14 before the press molding is performed 28

Claims (1)

201237479 七、申睛專利範圍: 1、一種光波導之製】皮古、土 之製,方法的特徵、為包含广光波導具有核心及護套;該光波導 用樹, ^ ’形成由未硬化喊硬綱m所構成之護套形成 硬化’形成由未硬化的光 先…射步驟’僅對以下兩 中用以形成核心的部分,及射光·該核心形成用樹脂層 核心的部分之部::及及該瘦套形成用樹脂層中對應用以形成 進行步驟,對該核娜成職脂層及該縣形成用樹脂層 2 ㈣1項的光波導之製造方法,复包含· 壓核步驟’在該第2步驟之德,兮#昭舢丰‘、、 心形成用樹脂層形成傾斜面; 。a ’ v驟之前,在該核 部的下s=r斜面的成形面之凸 此在該核脂該核心形輪層’藉 3、 如申請專利範圍第2項的光波導之製造方法,其中, 之高Ϊ成職的凸部之高度,為大於該批形__層的厚度 4、 如申睛專利範圍第2或3項的光波導之製造方法,其包含: /金屬膜形成步驟,在該壓模步驟之後,該光照射步驟之前或 之後,使在該核心形成用樹脂層所形成的該傾斜面,與疊層有金 屬膜的轉印用薄膜密接,藉此使該金屬膜轉印形成在it傾^面上 以作為金屬反射膜。 5、 如申請專利範圍第1項的光波導之製造方法,其包含: 第2護套層形成步驟,在該熱處理步驟之後,形成第2護套 層’以將所形成的護套層及核心層覆蓋而使其埋沒。 29 201237479 6'—種光波導,具有核心及護套;該光波導之特徵為. 利範圍第1項的光波導之製造方法所製造。 月專 7、一種光波導,具有核心及護套;該光波導之特徵為具有: 第1護套,部分地形成在該基板之上; 核心,疊置在該第1護套之上而形成;以及 形成第2龜,職帛1縣卿峨咐埋沒之方式 對該基板以俯視觀之時,該第丨護 : 輪獅狀-致; #的輪_狀與該核, 在該第1護套與該核心之間的層間,產生化學結合力201237479 VII. Applicable scope of the patent: 1. A system of optical waveguides] The method of the method of skin and earth, the method of the method, the core and the sheath of the wide-waveguide are included; the tree for the optical waveguide, ^ 'formed by the unhardened The sheath formed by the hard m is formed to be hardened 'formed by the uncured light first...the first step is for the part of the following two to form the core, and the part of the core for forming the core of the resin layer: And a manufacturing method of the optical waveguide for forming the resin layer of the thin sleeve, which is used to form the optical waveguide and the resin layer 2 (4) for forming the core layer, and the pressure-nucleating step In the second step, 兮#昭舢丰', and the resin layer for forming a heart form an inclined surface; Before the 'v step, the forming surface of the lower s=r slope of the core portion is convex in the core-shaped wheel layer of the nucleus, as in the manufacturing method of the optical waveguide of claim 2, wherein The height of the raised portion of the sorghum is a manufacturing method of the optical waveguide larger than the thickness 4 of the batch __ layer, such as the second or third item of the patent application, which comprises: / a metal film forming step, After the stamping step, the inclined surface formed in the core forming resin layer is adhered to the transfer film laminated with the metal film before or after the light irradiation step, thereby rotating the metal film The stamp is formed on the surface of the it as a metal reflective film. 5. The method of manufacturing an optical waveguide according to claim 1, comprising: a second sheath layer forming step, after which the second sheath layer is formed to form the sheath layer and the core The layers are covered and buried. 29 201237479 6' - An optical waveguide having a core and a sheath; the optical waveguide is characterized by being manufactured by the method of manufacturing the optical waveguide of the first item. The optical waveguide has a core and a sheath; the optical waveguide is characterized by: a first sheath partially formed on the substrate; a core stacked on the first sheath to form And the formation of the second turtle, the occupation of the 1st county, the burial of the substrate in a plan view, the first protection: the lion-like-like; #轮__ and the core, in the first Chemical bonding between the layers between the sheath and the core
TW100140110A 2010-11-05 2011-11-03 Optical waveguide and method for producing the same TWI477835B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010248614A JP5728655B2 (en) 2010-11-05 2010-11-05 Manufacturing method of optical waveguide

Publications (2)

Publication Number Publication Date
TW201237479A true TW201237479A (en) 2012-09-16
TWI477835B TWI477835B (en) 2015-03-21

Family

ID=46024218

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100140110A TWI477835B (en) 2010-11-05 2011-11-03 Optical waveguide and method for producing the same

Country Status (3)

Country Link
JP (1) JP5728655B2 (en)
TW (1) TWI477835B (en)
WO (1) WO2012060092A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI648565B (en) * 2013-09-27 2019-01-21 日商松下知識產權經營股份有限公司 Dry film for optical waveguide, manufacturing method of optical waveguide using the same, optical waveguide, optoelectronic composite substrate, and optical waveguide constituent member

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6236180B1 (en) * 2017-03-07 2017-11-22 株式会社エンジニア Tool and cover member
JP6236179B1 (en) * 2017-03-07 2017-11-22 株式会社エンジニア Water pump pliers and cover members
WO2019093460A1 (en) * 2017-11-09 2019-05-16 パナソニックIpマネジメント株式会社 Optical waveguide and method for manufacturing same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258537A (en) * 1993-03-08 1994-09-16 Mitsubishi Rayon Co Ltd Dry film resist and printing circuit board using the same
JPH08234034A (en) * 1995-02-24 1996-09-13 Toyota Central Res & Dev Lab Inc Production of optical branching circuit
JPH1010302A (en) * 1996-06-25 1998-01-16 Hitachi Chem Co Ltd Optical parts with multilayered film of alicyclic polyimide
JP3753508B2 (en) * 1996-07-31 2006-03-08 日本電信電話株式会社 Optical path conversion element manufacturing method and optical path conversion element manufacturing blade
JP2002277663A (en) * 2001-03-21 2002-09-25 Sumitomo Bakelite Co Ltd Method for manufacturing optical waveguide
JP4059835B2 (en) * 2003-10-15 2008-03-12 セントラル硝子株式会社 Multi-channel optical path conversion element
JP2006003868A (en) * 2004-05-20 2006-01-05 Ngk Spark Plug Co Ltd Optical waveguide device and its manufacturing method
JP2006098731A (en) * 2004-09-29 2006-04-13 Kansai Paint Co Ltd Manufacturing method of optical waveguide
JP5018254B2 (en) * 2007-06-06 2012-09-05 日立電線株式会社 Optical waveguide with mirror and manufacturing method thereof
JP2009103804A (en) * 2007-10-22 2009-05-14 Fuji Xerox Co Ltd Optical waveguide and method of manufacturing the same
JP4994310B2 (en) * 2008-06-10 2012-08-08 日東電工株式会社 Manufacturing method of optical waveguide
CN102246071B (en) * 2008-12-22 2013-10-16 松下电器产业株式会社 Method for forming mirror-reflecting film in optical wiring board, and optical wiring board
TWI432806B (en) * 2009-03-26 2014-04-01 Panasonic Corp Method of manufacturing optical waveguide having mirror face
JP5465453B2 (en) * 2009-03-26 2014-04-09 パナソニック株式会社 Epoxy resin composition for forming optical waveguide, curable film for forming optical waveguide, flexible printed wiring board for optical transmission, and electronic information device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI648565B (en) * 2013-09-27 2019-01-21 日商松下知識產權經營股份有限公司 Dry film for optical waveguide, manufacturing method of optical waveguide using the same, optical waveguide, optoelectronic composite substrate, and optical waveguide constituent member

Also Published As

Publication number Publication date
TWI477835B (en) 2015-03-21
JP2012098672A (en) 2012-05-24
JP5728655B2 (en) 2015-06-03
WO2012060092A1 (en) 2012-05-10

Similar Documents

Publication Publication Date Title
TW201040600A (en) Method of manufacturing optical waveguide core, method of manufacturing optical waveguide, optical waveguide, and optoelectric composite wiring board
JP5498219B2 (en) Manufacturing method of optical waveguide having mirror surface and photoelectric composite wiring board
KR20050004884A (en) Material for substrate mounting optical circuit-electric circuit mixedly and substrate mounting optical circuit-electric circuit mixedly
TW201527816A (en) Optical waveguide dry film, and optical waveguide manufacturing method and optical waveguide using optical waveguide dry film
TW201004528A (en) Method of fabricating wiring board, photo-electrical composite parts and photo-electrical composite substrate
TW201237479A (en) Optical waveguide and method for producing the same
JP2009104084A (en) Light guide and photoelectric compound panel
JP5475428B2 (en) Mirror reflection film forming method for optical wiring board and optical wiring board
WO2012093462A1 (en) Optoelectric complex flexible circuit substrate
JP2009276724A (en) Method of manufacturing optical waveguide device
US8541050B2 (en) Method for manufacturing optical waveguide
JP2006039231A (en) Method for manufacturing photoelectric wiring consolidated board
TWI502234B (en) Optical waveguide production method
JP5378172B2 (en) Optical waveguide core manufacturing method, optical waveguide manufacturing method, optical waveguide, and photoelectric composite wiring board
JP5378173B2 (en) Optical waveguide manufacturing method, optical waveguide, and photoelectric composite wiring board
JP6857835B2 (en) Optical waveguide coupling
JP5631697B2 (en) MANUFACTURING METHOD FOR OPTICAL WAVEGUIDE WITH MICRO MIRROR, INTERMEDIATE STRUCTURE USABLE FOR MANUFACTURING METHOD
JP6782423B2 (en) Manufacturing method of optical waveguide
JP2015004855A (en) Optical waveguide with mirrors, and method for producing the same
JP4458328B2 (en) Optical waveguide manufacturing method
TW201213906A (en) Method of manufacturing optical waveguide
JP2023073892A (en) hybrid lens
JP2012098332A (en) Method of manufacturing photoelectric composite wiring board and photoelectric composite wiring board
JPWO2015029262A1 (en) Manufacturing method of optical member, optical member, transparent member for forming optical member, optical waveguide, and optical module
JP2008122897A (en) Photomask for negative exposure and photocuring type pattern produced using the same