TW201236751A - Dual vessel chemical modification and heating of wood with optional vapor containment - Google Patents

Dual vessel chemical modification and heating of wood with optional vapor containment Download PDF

Info

Publication number
TW201236751A
TW201236751A TW100147209A TW100147209A TW201236751A TW 201236751 A TW201236751 A TW 201236751A TW 100147209 A TW100147209 A TW 100147209A TW 100147209 A TW100147209 A TW 100147209A TW 201236751 A TW201236751 A TW 201236751A
Authority
TW
Taiwan
Prior art keywords
heater
microwave
reactor
wood
door
Prior art date
Application number
TW100147209A
Other languages
Chinese (zh)
Inventor
Jarvey Eugene Felty Jr
David Carl Attride
Brad William Overturf
Andrew C Hiester
Tyler Littrell
Jared Moore
James S Nelson
Original Assignee
Eastman Chem Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/323,133 external-priority patent/US20120160835A1/en
Application filed by Eastman Chem Co filed Critical Eastman Chem Co
Publication of TW201236751A publication Critical patent/TW201236751A/en

Links

Landscapes

  • Chemical And Physical Treatments For Wood And The Like (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

A commercial scale system and process for chemically modifying wood and then heating the chemically-modified wood. The system/process separates the chemical modification step from the heating step by utilizing two different vessels for the modification and heating steps. The system and process can, in certain situations, include a containment room for preventing escape of vapors from a chemical wood modification reactor, a wood heater, and/or a chemically-modified bundle of wood as the bundle is transported from the wood modification reactor to the wood heater.

Description

201236751 六、發明說明: 【發明所屬之技術領域】 本發明一般而言係關於用於化學改質木材之系統。 【先前技術】 . 諸如微波輻射之電磁輻射係用於將能量遞送至一物件之 一習知機制。已證明用以既迅速又有效地穿透及加熱一物 件之電磁輻射能力在諸多化學及工業過程中係有利的。此 外,由於使用微波能作為一熱源通常係非侵害性的,因此 微波加熱特別有利於處理「敏感」電介質材料(諸如,食 物及藥物)且甚至有利於加熱具有一相對不良的導熱性之 材料(諸如,木材)。然而,安全且有效地應用微波能之複 雜性及細微差別(尤其在—商業規模上)已嚴格限制其在數 種類型之工業過程中之應用。 由於其對各種應用之廣泛適用性、其可再生性質及其相 對低成本,因此木材係現有的最廣泛使用之建築材料中之 〇 一者。然而,由於木材係一自然產物,因此其物理及結構 性質可實質上不僅在不同物種當中而且在不同樹或甚至同 一木材塊内之不同位置當中有所不同。此外,木材通常係 吸‘、的在匕衫響其尺寸穩定性,且其生化組成使得其易受 昆蟲及真菌侵餘。因此,已開發數種類型之木材處理過程 =透過其化學、物理及/或結構性質之改質來增加木材穩 定性。處理過程之實例包含浸潰處理、塗佈處理、熱改質 及化予改質。與其他情況相比,後兩種處理過程通常將木 材性質變更至—更劇烈程度,且因此此等類型之過程通常 160981.doc 201236751 涉及更複雜之方案及系統。舉例而言,諸多化學及熱處理 過程可在真空下及/或在存在一或多種處理化學品之情兄 下實施。因此,此等類型之技術之商業化已受限制,且為 使此等過程大規模地工業化仍需克服多個挑戰。 因此,需要適於化學或熱處理木材之一更高效且更成本 有效之商業規模系統。亦需要適於在各種各樣之過程及應 用(包含木材處理)中使用之一高效且成本有效之工業規模 微波加熱系統。 【發明内容】 本發明之一項實施例係關於一種用於生產經化學改質之 木材之系統,該系統包括:一化學改質反應器,其用於生 產一化學潤濕木材束,其中該化學改質反應器包括一第一 反應器門且界定至少100立方英尺之一内部反應器體積; 及一微波加熱器,其用於自該化學潤濕木材束移除一或多 種熱可移除化學品之至少一部分’其中該微波加熱器包括 一第一加熱器門且界定至少100立方英尺之一内部加熱器 體積。該内部反應器體積與該内部加熱器體積在位置上相 異。 本發明之另一貫施例係關於—種用於生產經化學改質之 木材之系.統,該系統包括:一木材乙酿化反應器,其用於 生產經乙化之化學潤濕木材束,其中該乙醯化反應器 包括一第一反應器門且界定至少1〇〇立方英尺之一内部反 應器體積;及-加熱器’其用於自該經乙酿化之化學潤濕 木材束移除一或多種熱可移除化學品之至少一部分其申 160981 .doc 201236751 該加熱器包括一第一加熱器門且界定至少1〇〇立方英尺之 一内部加熱器體積。該内部反應器體積與該内部加熱器體 積在位置上相異。 本發明之又一實施例係關於一種用於生產經化學改質之 • 木材之系統,該系統包括:一化學改質反應器,其包括用 . 於在化學改質之後自該化學改質反應器排出該木材束之一 第一反應器門·’一加熱器,其包括用於在自該化學改質反 ο 應器排出之後接納該木材束之一第一加熱器門;及一容納 至,其界定該木材束在自該第一反應器門輸送至該第一加 熱器門期間穿過之一傳送區。該容納室耦合至該化學改質 反應器及該加熱器且可操作以在將該木材束自該化學改質 反應器輸送至該加熱器期間實質上隔離一外部環境與該傳 送區。 本發明之又一實施例係關於一種用於生產經化學改質之 木材之方法,該方法包括:(a)將一定量之木材裝載至一化 〇 學改質反應器中,其中該一定量之木材在裝載至該反應器 中時重達至少500磅;(b)化學改質該一定量之木材之至少 一部分以藉此提供一定量之化學潤濕木材,其中該一定量 之化予濁濕木材包括由該化學改質產生之至少一種熱可移 除化學組分;(c)將該一定量之化學潤濕木材之至少一部分 自該化學改質反應器中輸送出且輸送至一微波加熱器中; 及(d)在該微波加熱器中加熱該一定量之化學潤濕木材之至 少一部分以藉此在該微波加熱器中汽化該至少一種熱可移 除化學組分之至少一部分以藉此提供一定量之經乾燥經化 160981.doc 201236751 學改質木材。 本發明之又一實施例係關於一種用於生產經化學改質之 木材之方法,該方法包括:(a)在一化學改質反應器中化學 改質一木材束之至少一部分以藉此提供一化學潤濕木材 束’其中該化學潤濕木材束包括由該化學改質產生之至少 一種熱可移除化學組分;(…將該化學潤濕木材束之至少一 刀自ϋ亥化學改質反應器輸送經過一容納室且輸送至一加 ,、、、器中其中在6亥輸送期間該容納室減少存在於該化學改 質反應器中、自該化學潤濕木材束發射及存在於該加熱器 中之蒸汽之洩漏,以免被排放至在該化學改質反應器及該 加熱器外部之—環境中;及⑷在該加熱器中加熱該化學潤 濕木材束之至少一部分以汽化該熱可移除化學組分之至少 邛为且藉此提供一經乾燥經化學改質之木材束。 【實施方式】 康本毛月之一項實施例,提供一種加熱系统。根據本 :::之各種實施例組態之加熱系統可包括一熱源、一加熱 容器(例如,—加熱器)及一選用真空系統。it常,根據本 發明之一項實施例組態之加熱系統可適於用作獨立加熱單 兀或可作為或連同化學反應器用於各種各樣之過程卜現 =參考各圖在下文中詳細闡述根據本發明之數個實施例組 態之加熱系統。 纖LI ”,本發明之一加熱系統可用以加熱木1 :素材料。木質纖維素材料可包含包括以下各項之㈣ 纖維素素錢(視需要)諸如半_素等其令 160981.doc 201236751 材料。木質纖維素材料之實例 皮、洋麻、大麻、西沙爾麻、 椰子殼、稻草與縠物殼及莖、 闊葉樹材樹皮、玉米穗軸及其 合。 可包含(但不限於)木材、樹 育麻、作物結稈、堅果殼、 玉米秸桿、蔗渣、針葉樹及 他作物殘餘物以及其任一組 在一項實施例中,木皙綸换主t, 也紅 f纖維素材料可係木材。該木材可 係一針葉樹材或一闊葉樹 ^才適合的木材物種之實例可包 含(但不限於)松樹、洽杉 _ t Ο ,^ v5杉、揚樹、橡樹、楓樹及山 毛櫸。在一項實施例中,太铋 毛m 材可匕括紅橡、紅楓、德國山 毛櫸或太平净白楓。在另—音 實施例中,該木材可包括一松 樹物種’其包含(舉例而士 ^ 。)輻射松、歐洲赤松、火炬松、 長葉松、短葉松或濕地松, 私具中後四種可統稱為「南方黃 松」。藉由根據本發明之—奋 、 項只施例之加熱系統處理之木 材可係呈任一適合形式。士 j:』 . 木材之適合形式之非限制性實例 可包含(但不限於)碎木、太 木纖維、木粉、木片、小木塊、 Ο 木刨花、木條及木絲。在— 以 你項貫施例中,在本發明之一或 多個加熱系統中處理之太 材可£>括鑛材、經剝皮之樹幹或 樹枝、板、厚板、薄板、拇、齡& , j, 裸斷面、方材或任何其他型材 之木料。 、常木材之大小可藉由兩個或兩個以上尺寸來界定。 該等尺寸可係實際「所量測」尺寸或可係標稱尺寸。如本 文中所使用,術語「標稱尺寸」係指使用木材之大小名稱 所計算之尺寸。標稱大小可大於所量測尺寸。舉例而言, 乾燥2x4」可具有15英吋χ35英吋之實際尺寸,但仍 160981.doc 201236751 使用「2x4」之標稱尺寸。庫理組 應埋解,除非另有說明,否則 本文中所提及之尺寸通常係標稱尺寸。 在-項實施例中,木材可具有三個尺寸:一長度或最長 尺寸;-寬度或第二長尺寸;及—厚度或最短尺寸。該等 尺寸中之每一者可實質上相同,或該等尺寸中之一或多者 可不同於其他尺寸中之一或多者。 ^ ^ ^ 根據一項實施例,木材 之長度可係至少6英吋、至少1革尺 央尺、至少3英尺、至少4英 尺、至少6英尺或至少10英尺。 、 人在另一實施例中,木材之 寬度可係至少0 · 5英忖、至少丨龙 丁主夕1央吋、至少2英吋、至少4英 时、至少8英吋、至少12英吋戋 ^ 叮义至)24英吋及/或不大於10 英尺、不大於8英尺、不大於6箪圮 τι 央尺、不大於4英尺、不大 於3英尺、不大於2英尺、不大於丨 ^ — 吳尺或不大於6英忖。在 又一實施例中,木材之厚度可伟 J 1示主> 0.25英吋、至少〇 5英 吋、至少0.75英吋、至少}英尺、 、 王^ I·5央尺或至少2英尺 及/或不大於4英尺、不大於3箪 ^ 央尺、不大於2英尺、不大於 1奂尺及/或不大於6英叶。 根據一項實施例,木材可包括_或多個實木塊、工 木塊或其一組合。如太女巾齡你 ……θ本文中所使用,術語「實木」係指在 至v 個尺寸上量測至少1 0螫丰h # j少υ釐米但在其他方面具有任一尺 寸=木材(❹,具有如先前利述之尺寸之 文中所使用,術語「工程實木」係指具有實木之最小尺t (例如n -個尺寸為至少1〇叫但由若干個 本 體形成且至少為一個之一木f 木材本 不衣本體。工程實木中 小木材本體可i古+ 丁 s Α τ υ寺季乂 、有或不具有以相對於實木所闡述之尺寸 160981.doc 201236751 中之或夕者i程實木之非限制性實例可包含木材層壓 板、纖維板、定向创花板、膠合板、華夫板(油 board)、粒片板及經層壓單板木料。 在-項實施财’木材可按束編組。如本文中所使用, #語「束」係指以任—適合方式堆疊、放置及/或緊固在 一起之兩個或兩個以上木材塊。根據一項實施例,一束可 包括經堆疊並經由-皮帶、條帶或其他適合裝置彼此_合 ❹ t複數個板。在一項實施例中,該兩個或兩個以上木材塊 可係直接接觸’或在另-實施例中,該等木材塊可係使用 安置於其間的至少一個間隔件或「黏附*(sticker)」而至 少部分地隔開。 在一項實施例t,該束可具有任何適合尺寸及/或形 狀。在一項實施例中,該束可具有至少2英尺、至少4英 尺、至少8英尺、至少1〇英尺、至少12英尺、至少16英尺 或至少20英尺及/或不大於6〇英尺、不大於4〇英尺或不大 Q 於25英尺之一總長度或最長尺寸。該束可具有至少 尺、至少2英尺、至少4英尺、至少6英尺、至少8英尺及/ 或不大於16英尺、不大於12英尺、不大於1〇英尺、不大於 8英尺、不大於6英尺或不大於4英尺之一高度或第二長尺 寸。在一項實施例中,該束可具有至少1英尺、至少2英 尺、至少4英尺 '至少6英尺及/或不大於20英尺、不大於 16英尺、不大於12英尺、不大於1〇英尺、不大於8英尺或 不大於6英尺之一寬度或最短尺寸。該束之包含該等板之 間的空間(若存在)之總體積可係至少5〇立方英尺、至少1〇〇 160981.doc 201236751 立方英尺、至少250立方英尺、至少375立方英尺 500立方英尺。根據一項實施 ^ ^ ]丨八主本發明之一或多 個加熱系統之反應器及/或加熱器中(例如,在加執或處理 之前)之木材束之重量(或欲處理之_或多個物 負載之累積重量)可係至少_碎、至少5啊、 崎或至少5,0G_。在-項實施例巾,該束可在形狀上係 立方體或立方形的。 在另-實施例中,本發明之—或多個加熱系統可用以化 學改質、乾燥及/或熱改質木材’藉此生產經化學改質、 乾燥及/或熱改質之木材。已被乾燥及/或熱改質之木材可 稱為「經熱處理」木材,以使得術語「經熱處理木材」係 指已被加熱、乾燥及/或熱改質之木材。如本文中所使 用,術語「熱改質」意指在無一外源處理劑之情況下至少 部分地改質-或多個木材塊之至少—部分之化學結構。在 一項實施例中,一加熱系統(稍後將詳細闡述其特定組態) 可用以在熱改貝過程中加熱及/或乾燥木材以藉此提供 一經熱改質木材束。根據一項實施例,熱改質可與一木材 加熱器及/或乾燥器中之木材加熱及/或乾燥同時發生,而 在另一實施例中,可在一木材加熱器或乾燥器中加熱及/ 或乾燥木材而不對其進行熱改質。如本文中所使用,術語 「乾燥」意指經由熱量添加或其他適合能量形式而致使或 加速一或多種液體之至少一部分或另外可熱移除組分之汽 化或以其他方式自木材移除一或多種液體之至少一部分或 另外可熱移除組分。熱改質過程可包含使木材與一或多種 160981.doc -10- 201236751 熱傳送劑(諸如,舉 氣或空氣)或甚至液體:;::體=惰性蒸汽(如氮 觸之-步驟。在另一施^ (諸如’心熱之油))接 射敎谓 只施例中,可在熱改質期間使用-輕 材:二、=質之木材可具有實質上低於未經處理之木 如(舉例…!且可具有強化的物理及/或機械性質,諸 如^而言)增加之撓性、對腐朽及生物侵襲之較高抵抗 力及增加之尺寸穩定性。 系實施例中,根據本發明之各種實施例组態之加轨 化學改質木材。如本文中所使用,術語「化學 θ在存在或多種外源處理劑之情況下至少部分 =3個木材塊之至少,之化學結構。化學改 特疋類型可包含(但不限於)乙醯化及其他類型之 醋化、環氧化、鱗化、糠基化、甲基化及/或三聚氰胺處 理。適合處理劑之非限制性實例可包含酸st (例如,乙酸 酐、酞酸酐、琥轴酸酐、馬來酸酐、丙酸酐或丁酸酐). 醯氣;乙烯酮;羧酸;$氰酸鹽;醛(例如,甲醛、乙醛 或二官能團路);氯路;硫酸二甲酯;烧基氯化物;β•丙内 醋;丙稀腈;環氧化物(例如,環氧乙烧、環氧丙院或環 氧丁烧);二官能團環氧化物;爛酸鹽;丙稀酸鹽; 鹽;及其組合。 用於化學改質木材之過程可包含-化學改質步驟,隨後 係-加熱步驟。在可於一化學改質反應器中實施之化學改 質或反應步驟期間,木材可曝露至先前所闡述之外源處理 μ中之$多者’該—或多個外源處理劑可與未經處理之 160981.doc 201236751 木材之官能團(例如,羥基)之至少一部分反應以藉此提供 經化學改質之木材。在該化學改質步驟期間,可發生一或 多個熱起始之化學反應,此可係或並非由一外部能量(例 如,熱能或電磁能,包含(舉例而言)微波能)源起始。化學 改質過程之特定細節在諸多類型之化學改質當中有所不 同,但與未經處理之木材相比,大部分經化學改質之木材 可具有強化的結構、化學及/或機械性質,包含較低的吸 濕性、較高的尺寸穩定性、更耐生物危害及耐蟲性、增加 之抗腐朽性及/或較高的耐氣候性。 在一項實施例中,可使木材在一木材乙醯化反應器中乙 醯化。乙醯化可包含用乙醢基替換表面或近表面之羥基。 在一項實施例中,在乙醯化期間所利用之處理劑可包括濃 度為至少50 wt% '至少60 wt%、至少7〇 wt%、至少8〇 wt%、至少9〇 wt%、至少98 wt%或1〇〇 wt%之乙酸酐而 剩餘部分(若存在)包括乙酸及/或一或多種稀釋劑或選用乙 醯化催化劑。在一項實施例中’用於乙醯化之處理劑可包 括乙酸與乙酸酐之混合物,其具有至少8〇:2〇、至少 85:15、至少90:10、或至少95:5之一酸酐對酸重量比。 在乙醯化之前,可使用窯乾法、真空除氣法或其他適合 方法使木材乾燥以將其濕度(例如,水)含量減小至不大於 25 wt%、不大於2〇 wt%、不大於15 wt%、不大於η wt /〇、不大於9 wt%或不大於6 wt%。在乙醯化期間,可科 由任一適合方法使木材與處理劑接觸。適合接觸方法之實 例可包含(但不限於)蒸汽接觸、喷射、液體浸泡或其組 160981.doc 201236751 合。在一項實施例中’在木材與處理劑接觸之時間期間, 處理容器之溫度可係不大於50°c、不大於4(^c或不大於 30 C,而氣壓可係至少25 psig、至少50 psig、至少75 psig 及/或不大於500 psig、不大於25〇 psig或不大於15〇 psig。 一旦接觸步驟完成,即可視需要自反應器中排出液體處 理劑(若存在)之至少一部分且可添加熱量以起始及/或催化 反應。在一項實施例中’可將微波能、熱能或其組合引入 〇 至該容器中以將木材之溫度增加至至少5〇。〇、至少65〇C、 至少80 C及/或至不大於175°c、不大於15〇π或不大於 120 C,同時將反應器中之一壓力維持為至少75〇托、至少 1,〇〇〇托、至少1,200托或至少2,〇〇〇托及/或不大於7,700 托、不大於5,000托' 不大於3,5〇〇托或不大於25〇〇托。根 據一項實施例’添加至反應器之熱量之至少一部分可自一 非祕波源傳送至該木材,諸如(舉例而言)包括至少5 〇 wt%、至少75 wt%、至少90 wt〇/〇或至少95 wt%之乙酸之一 Q 熱蒸汽流,而剩餘部分包括乙酸酐及/或稀釋劑。在一項 實施例中,可將熱蒸汽(其一部分可凝結於正處理之木材 束之至少一部分上)引入至反應容器中達至少2〇分鐘、至 少35分鐘或至少45分鐘及/或不大於ι8〇分鐘、不大於15〇 分鐘或不大於120分鐘。 在反應步驟之後,「化學潤濕」之經化學改質木材可包 括能夠藉由熱量及/或汽化移除之至少一個化學組分。如 貫穿本申請案所使用,術語「化學潤濕(chemically_wet)」 或「化學潤濕(chemical-wet)」係指含有作為一化學處理或 160981.doc -13- 201236751 改質之一結果而至少部分地以一液相存在之一或多種化學 np之木材。一「化學潤濕」木材束可係指其至少一部分係 至少部分地化學潤濕之一木材束。該一或多種化學品之某 些貫例可包含反應物、浸潰物、反應產物或諸如此類。舉 例而言,當使木材乙醯化時,可藉由汽化移除殘餘乙酸及/ 或酸酐之至少一部分。如本文中所使用,術語「酸潤濕」 係指含有殘餘乙酸及/或酸針之木材。一「酸潤濕」木材 束係指其至少一部分係至少部分地酸潤濕之一木材束。根 據本發明之一項實施例,化學潤濕或酸潤濕木材可包括至 少20 Wt%、至少30 wt%、至少40 Wt%或至少45 wt%及/或 不大於75 wt0/。、不大於60 wt%或不大於50 wt%之一或多種 熱可移除或可ru化化學品,諸如(舉例而言)乙酸及/或酸 酐。如本文中所使用,術語「熱可移除」或「可汽化」化 學組分係指可藉由熱量及/或汽化移除之一組分。在一項 實施例中,可汽化或熱可移除組分或化學品可包括乙酸。 接著,可經由驟汽化自化學潤濕木材移除一或多種熱可 移除化學品之至少一部分。在一項實施例中,可藉由將反 應器中之壓力自至少ΐ,θθθ托、至少ΐ,2θθ托、至少18〇〇耗 或至少2,000托及/或不大於77〇〇托、不大於5〇〇〇托不大 於3,500托、不大於2,500托或不大於2,〇〇〇托之一壓力減小 至大氣壓來達成驟汽化步驟。在另一實施例中,可藉由將 反應器之壓力自一升高之壓力(如上文所闡述)或大氣壓減 小至不大於100托、不大於75托、不大於5〇托或不大於h 托之一壓力來達成驟汽化步驟。根據一項實施例,在驟汽 160981.doc -14- 201236751 化步驟之後剩餘在化學潤濕木材中之一或多種熱可移除化 學組分之量(例如,化學含量)可係至少6 wt%、至少8 wt%、至少10 wt%、至少12 wt%或至少15 wt%及/或不大 於60 wt%、不大於40 wt%、不大於3〇 wt%、不大於乃 wt%、不大於20 wt%或不大於15 wt%。 Ο Ο 根據一項實施例,可在化學改質步驟之後實施一加熱步 驟以進一步加熱及/或乾燥經化學改質(或化學潤濕)木材以 藉此提供一經加熱及/或乾燥之經化學改質木材束。如本 文中所使用,僅出於便利而將一束或其他物品或材料稱為 「經加熱」以指示該束之至少一部分之一溫度已升高至環 境溫度以上。類似地,如貫穿本申請案所使用,僅出於便 利而將-束或其他物品或材料稱為「經乾燥」以指示已藉 由(在某些實施例中)加熱而自該束之至少一部分移除至少 某些熱可移除化學品。在—項實施例中,該加熱步驟可操 作以進纟減少存在於木材中之一或多種熱可移除化學組 分之含量。在加熱步驟期間所利用之能源可係適於加熱及/ 或乾燥木材之任-_、傳導及/或對流能源。在一項實 把例中,加熱益可係採用一微波能之一微波加熱器。在另 實施例中,可利用另一熱源來直接或間接(經由(舉例而 °)熱氣體庄入、一失套式或熱追蹤式容器或其他手段) 加熱谷器之至少-部分,諸如(舉例而言)-或多個側壁。 在此實施例中,可將側壁加熱至至少45。(:、至少饥或至 二c及/或不大於115<5(:、不大於1〇5。〇或不大於价之 -溫度。該加熱步驟可在任何適合條件下實施,包含高 160981.doc 15 201236751 於、處於或接近大氣壓之壓力。稍後將詳細論述適於在生 產經化學改質及/或經熱改質之木材中使用之各種加熱系 統之特定實施例。 加熱步驟可經實施以使得移除剩餘在化學潤濕木材中之 一或多種熱可移除化學組分之總量之至少50%、至少 65 /〇 '至少75%或至少95%。在一項實施例中,此可對應 於移除總液體之至少1〇〇磅、至少25〇磅、至少5〇〇磅或至 少1,0〇〇磅。作為加熱步驟之一結果,在一項實施例中, 基於邊束之初始(預加熱之)重量,經加熱或乾燥之化學改 質木材可包括不大於5 wt%、不大於4 wt%、不大於3 wt〇/。、不大於2 wt%或不大於1%之該一或多種熱可移除化 學品(例如,乙酸)。另外,基於該木材之初始(預加熱之) 重量,經加熱或乾燥之化學改質木材可具有不大於6 wt%、不大於5 wt%、不大於3 wt%、不大於2 wt%或不大 於1 wt%或不大於0.5 wt%之一水含量。在一項實施例中, 在加熱步驟之後,該木材可具有大致〇%之一水含量。 在—項實施例中,化學改質步驟及加熱步驟可發生於一 早個容器巾。在另—實施例中,化學改f步驟及加熱步驟 可在單獨容器中實施,以使得化學改質反應器及加熱器之 内部體積在位置上相異。如本文中所使用,一容器之「内 部體積」係指由該容器囊括之空間整體’包含由該容器之 (一或多個)門在關閉時所界定或在門内之任何體積。如本 文中所使用,術言吾「在位置上相異」意指内部體積係不重 疊的。當化學改質反應器及加熱器包括單獨容器時,可利 160981.doc 】6 201236751 用各種類型之木材輸送系統以在兩個容器之間輸送木材。 在一項實施例中,該輪送系統可包括軌條(如圖丨中所圖解 說明)、軌道、皮▼、鉤子、滾輪(如圖3中所圖解說明)、 條帶、搬運車、電動化車輛、堆高車、滑輪、轉臺(如圖2 中所圖解說明)及其任—組合。現將關於圖丨至3詳細論述201236751 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates generally to systems for chemically modifying wood. [Prior Art] Electromagnetic radiation such as microwave radiation is a conventional mechanism for delivering energy to an object. The ability to electromagnetically penetrate and heat an object both quickly and efficiently has proven to be advantageous in a variety of chemical and industrial processes. In addition, since the use of microwave energy as a heat source is generally non-invasive, microwave heating is particularly advantageous for processing "sensitive" dielectric materials (such as foods and drugs) and even for heating materials having a relatively poor thermal conductivity ( Such as wood). However, the safe and efficient application of microwave energy complexity and nuances (especially on a commercial scale) has severely limited its use in several types of industrial processes. Wood is one of the most widely used building materials available due to its wide applicability to a wide range of applications, its recyclability and its relatively low cost. However, since wood is a natural product, its physical and structural properties can be substantially different not only in different species but also in different locations within different trees or even in the same wood block. In addition, wood usually absorbs the styling, and its biochemical composition makes it susceptible to insect and fungal infestation. As a result, several types of wood treatment processes have been developed to improve wood stability through modification of their chemical, physical and/or structural properties. Examples of the treatment process include impregnation treatment, coating treatment, thermal modification, and upgrading. The latter two processes typically change the properties of the wood to - more severely than in other cases, and therefore these types of processes are usually 160981.doc 201236751 involves more complex solutions and systems. For example, many chemical and thermal processing processes can be carried out under vacuum and/or in the presence of one or more processing chemicals. As a result, the commercialization of these types of technologies has been limited and many challenges have to be overcome in order to modernize such processes. Therefore, there is a need for a commercial scale system that is more efficient and more cost effective for one of chemical or heat treated wood. There is also a need for an efficient and cost effective industrial scale microwave heating system for use in a wide variety of processes and applications, including wood processing. SUMMARY OF THE INVENTION One embodiment of the present invention is directed to a system for producing chemically modified wood, the system comprising: a chemical upgrading reactor for producing a chemically wet wood bundle, wherein The chemical upgrading reactor includes a first reactor door and defining an internal reactor volume of at least 100 cubic feet; and a microwave heater for removing one or more heat removable from the chemically wetted wood bundle At least a portion of the chemical wherein the microwave heater includes a first heater door and defines an internal heater volume of at least 100 cubic feet. The internal reactor volume is positionally different from the internal heater volume. Another embodiment of the present invention relates to a system for producing chemically modified wood, the system comprising: a wood brewing reactor for producing a chemically wetted wood bundle Wherein the acetonitrile reactor comprises a first reactor door and defines an internal reactor volume of at least 1 cubic foot; and a heater for the chemically wetted wood bundle from the brewed Removing at least a portion of one or more thermally removable chemicals thereof is claimed 160981.doc 201236751 The heater includes a first heater door and defines at least one cubic foot of internal heater volume. The internal reactor volume is spatially distinct from the internal heater volume. Yet another embodiment of the present invention is directed to a system for producing a chemically modified wood comprising: a chemical upgrading reactor comprising: for chemical upgrading after chemical upgrading Discharging one of the first reactor doors of the wood bundle, a heater comprising a first heater door for receiving the bundle of wood after being discharged from the chemical modification counter; and Defining the bundle of wood through a transfer zone during transport from the first reactor door to the first heater door. The containment chamber is coupled to the chemical upgrading reactor and the heater and is operable to substantially isolate an external environment from the transfer zone during transport of the bundle of wood from the chemical upgrading reactor to the heater. Yet another embodiment of the present invention is directed to a method for producing a chemically modified wood, the method comprising: (a) loading a quantity of wood into a chemical conversion reforming reactor, wherein the amount The wood weighs at least 500 pounds when loaded into the reactor; (b) chemically modifying at least a portion of the amount of wood to thereby provide a quantity of chemically wetted wood, wherein the amount is turbid The wet wood comprises at least one thermally removable chemical component resulting from the chemical modification; (c) at least a portion of the amount of chemically wet wood is transported from the chemical upgrading reactor and transported to a microwave And (d) heating at least a portion of the quantity of chemically wet wood in the microwave heater to thereby vaporize at least a portion of the at least one thermally removable chemical component in the microwave heater Thereby providing a certain amount of dried and chemicalized 160981.doc 201236751 modified wood. Yet another embodiment of the present invention is directed to a method for producing a chemically modified wood, the method comprising: (a) chemically modifying at least a portion of a bundle of wood in a chemical upgrading reactor to thereby provide a chemically wetted wood bundle 'where the chemically wetted wood bundle comprises at least one thermally removable chemical component produced by the chemical modification; (... at least one of the chemically wetted wood bundles is modified from the chemical The reactor is conveyed through a holding chamber and transported to an additive, wherein the receiving chamber is reduced in the chemical upgrading reactor, emitted from the chemically wetted wood beam, and is present in the apparatus during the 6-hour transport period. Leaking of steam in the heater to prevent discharge to the environment outside the chemical upgrading reactor and the heater; and (4) heating at least a portion of the chemically wet wood bundle in the heater to vaporize the heat At least one of the chemical components can be removed and thereby provide a dried chemically modified wood bundle. [Embodiment] An embodiment of Kangben Maoyue provides a heating system. According to this::: The heating system configured in an embodiment may include a heat source, a heating vessel (eg, a heater), and an optional vacuum system. It is common that a heating system configured in accordance with an embodiment of the present invention may be suitable for use as Independent heating of the unitary unit can be used as or in conjunction with a chemical reactor for a wide variety of processes. Referring to the drawings, a heating system configured in accordance with several embodiments of the present invention is described in detail below. Fiber LI", one of the present inventions The heating system can be used to heat the wood 1 material. The lignocellulosic material can comprise (iv) cellulosic money (if needed) such as smectin, etc. 160981.doc 201236751 material. Examples of lignocellulosic material Peel, kenaf, marijuana, sisal, coconut shell, straw and stalk shells and stems, broadleaf tree bark, corn cobs and their combinations. May include (but not limited to) wood, tree breeding, crop stalks, nuts Shell, corn straw, bagasse, conifer and other crop residues, and any of the groups thereof. In one embodiment, the wood rayon is replaced by a main t, and the red f cellulosic material can be wood. Examples of wood species suitable for a conifer or a broad-leaved tree may include, but are not limited to, pine, cedar, tv, cedar, eucalyptus, oak, maple, and beech. In one embodiment The sapphire m material may include red oak, red maple, German beech or taiping white maple. In the alternative embodiment, the wood may include a pine species 'which contains (for example, 士^.) radiata pine , European red pine, Pinus taeda, long-leaf pine, short-leaf pine or slash pine, the private and the latter four can be collectively referred to as "Southern yellow pine". By the heating system according to the invention - Fen, only the example The treated wood may be in any suitable form. Non-limiting examples of suitable forms of wood may include, but are not limited to, shredded wood, taiwan fiber, wood flour, wood chips, small wood blocks, eucalyptus shavings , wood strips and wood wool. In the case of your embodiment, the material processed in one or more of the heating systems of the present invention may include minerals, peeled trunks or branches, plates, slabs, sheets, thumbs, Age & , j, bare section, square or any other form of wood. The size of the regular wood can be defined by two or more sizes. These dimensions may be actual "measured" dimensions or may be nominally sized. As used herein, the term "nominal size" refers to the size calculated using the size of the wood. The nominal size can be greater than the measured size. For example, a dry 2x4" can have an actual size of 15 inches by 35 inches, but still 160981.doc 201236751 uses a nominal size of "2x4". The Kuli Group shall be buried, unless otherwise stated, the dimensions referred to herein are usually nominal. In the embodiment, the wood may have three dimensions: a length or a longest dimension; a width or a second long dimension; and - a thickness or a shortest dimension. Each of the dimensions may be substantially identical, or one or more of the dimensions may differ from one or more of the other dimensions. ^ ^ ^ According to one embodiment, the length of the wood may be at least 6 inches, at least 1 square foot, at least 3 feet, at least 4 feet, at least 6 feet, or at least 10 feet. In another embodiment, the width of the wood may be at least 0. 5 inches, at least 1 inch, at least 2 inches, at least 4 inches, at least 8 inches, at least 12 inches.戋^ 叮义至) 24 inches and / or no more than 10 feet, no more than 8 feet, no more than 6 箪圮 τι central feet, no more than 4 feet, no more than 3 feet, no more than 2 feet, no more than 丨 ^ — Wu Ji or no more than 6 inches. In yet another embodiment, the thickness of the wood may be 256 inches, at least 吋5 inches, at least 0.75 inches, at least feet, or at least 2 feet and at least 2 feet and / or no more than 4 feet, no more than 3 箪 ^ central ruler, no more than 2 feet, no more than 1 foot and / or no more than 6 inches. According to an embodiment, the wood may comprise - or a plurality of solid wood blocks, work blocks or a combination thereof. For example, if you are a woman, you can use the term "solid wood" to measure at least 10 螫 h h # j less υ cm in v dimensions but in any other way have any size = wood ( ❹, having the term "engineered solid wood" as used in the context of the foregoing description, the term "engineered solid wood" means the smallest ruler t with solid wood (eg n - one size is at least 1 〇 but formed by several bodies and at least one Wood f wood is not cloth body. Engineering solid wood small wood body can i ancient + Ding s Α τ υ 乂 乂 乂, with or without the size of the solid wood 160981.doc 201236751 or the evening of the i Non-limiting examples may include wood laminates, fiberboard, oriented flower panels, plywood, waffle boards, granule sheets, and laminated veneer lumber. As used herein, the term "bundle" refers to two or more pieces of wood that are stacked, placed, and/or fastened together in any suitable manner. According to one embodiment, a bundle may include Stacked and belted, strapped or other suitable a plurality of plates for each other. In one embodiment, the two or more pieces of wood may be in direct contact with each other or in another embodiment, the pieces of wood may be at least disposed between them. A spacer or "sticker" is at least partially spaced apart. In an embodiment t, the bundle can have any suitable size and/or shape. In one embodiment, the bundle can have at least 2 Feet, at least 4 feet, at least 8 feet, at least 1 foot, at least 12 feet, at least 16 feet or at least 20 feet and/or no more than 6 feet, no more than 4 feet or less than a total length of 25 feet Degree or longest dimension. The bundle may have at least feet, at least 2 feet, at least 4 feet, at least 6 feet, at least 8 feet and/or no more than 16 feet, no more than 12 feet, no more than 1 foot, no more than 8 feet No more than 6 feet or no more than 4 feet in height or a second long dimension. In one embodiment, the beam may have at least 1 foot, at least 2 feet, at least 4 feet 'at least 6 feet and/or no more than 20 feet, no more than 16 feet, no more than 12 inches a ruler, no more than 1 foot, no more than 8 feet, or no more than 6 feet in width or shortest size. The total volume of the bundle containing the space between the plates, if any, may be at least 5 cubic feet, At least 1 〇〇 160,981.doc 201236751 cubic feet, at least 250 cubic feet, at least 375 cubic feet, 500 cubic feet. According to one implementation, the reactor and/or heating of one or more of the heating systems of the present invention The weight of the bundle of wood (e.g., the cumulative weight of the load to be treated or the load of the plurality of loads) in the apparatus (e.g., prior to the addition or processing) may be at least -, at least 5, or at least 5,0 G. In the embodiment of the invention, the bundle can be cubic or cuboid in shape. In another embodiment, the present invention - or a plurality of heating systems may be used to chemically modify, dry and/or thermally reform the wood' to thereby produce chemically modified, dried and/or thermally modified wood. Wood that has been dried and/or thermally modified may be referred to as "heat treated" wood such that the term "heat treated wood" refers to wood that has been heated, dried, and/or thermally modified. As used herein, the term "thermically modified" means at least partially modified - or at least a portion of the chemical structure of a plurality of wood blocks without an exogenous treatment agent. In one embodiment, a heating system (which will be described in detail later) may be used to heat and/or dry the wood during the thermal reforming process to thereby provide a thermally modified wood bundle. According to one embodiment, the thermal modification may occur simultaneously with heating and/or drying of the wood in a wood heater and/or dryer, while in another embodiment it may be heated in a wood heater or dryer. And / or dry the wood without thermal modification. As used herein, the term "drying" means to cause or accelerate the vaporization or otherwise removal of at least a portion or one or more of the heat-removable components of one or more liquids via heat addition or other suitable form of energy. At least a portion or additionally of the plurality of liquids may be thermally removable. The thermal upgrading process can include making the wood with one or more of 160981.doc -10- 201236751 heat transfer agents (such as gas or air) or even liquid:;:: body = inert steam (such as nitrogen touch - step. Another application (such as 'heart heat oil)) is only used in the application, it can be used during thermal reforming - light material: second, = quality wood can have substantially lower than untreated wood Such as (for example... and may have enhanced physical and / or mechanical properties, such as ^) increased flexibility, higher resistance to decay and biological attack and increased dimensional stability. In an embodiment, the orbital chemically modified wood is configured in accordance with various embodiments of the present invention. As used herein, the term "chemical θ is at least partially = at least 3 of the wood blocks in the presence or presence of a plurality of exogenous treating agents. The chemical structure may include, but is not limited to, acetylation. And other types of acetification, epoxidation, squaring, thiolation, methylation and/or melamine treatment. Non-limiting examples of suitable treatment agents may include acid st (eg, acetic anhydride, phthalic anhydride, succinic anhydride) , maleic anhydride, propionic anhydride or butyric anhydride). helium; ketene; carboxylic acid; cyanate; aldehyde (for example, formaldehyde, acetaldehyde or difunctional route); chlorine circuit; dimethyl sulfate; Chloride; β•propene vinegar; acrylonitrile; epoxide (for example, ethylene bromide, epoxy propylene or butyl bromide); difunctional epoxide; rotten acid salt; Salt; and combinations thereof. The process for chemically modifying wood may comprise a chemical upgrading step followed by a heating step. During the chemical upgrading or reaction step that can be carried out in a chemical upgrading reactor, the wood may Exposed to more than $ of the source processing μ previously stated The or more exogenous treatment agents can react with at least a portion of the untreated 160981.doc 201236751 wood functional group (eg, hydroxyl groups) to thereby provide chemically modified wood. During the chemical upgrading step, One or more thermally initiated chemical reactions may occur which may or may not be initiated by an external energy source (eg, thermal or electromagnetic energy, including, for example, microwave energy). Specific details of the chemical upgrading process It varies among many types of chemical modifications, but most chemically modified woods have enhanced structural, chemical and/or mechanical properties, including lower hygroscopicity, compared to untreated wood. Higher dimensional stability, greater biohazard and insect resistance, increased resistance to decay and/or higher weatherability. In one embodiment, wood can be made in a wood acetonitrile reactor The acetylation may include replacing the hydroxyl group on the surface or near surface with an acetamidine group. In one embodiment, the treatment agent utilized during acetamization may include a concentration of at least 50 wt% 'at least 60 Wt%, at least 7〇 Wt%, at least 8% by weight, at least 9% by weight, at least 98% by weight or 1% by weight of acetic anhydride and the remainder, if any, comprises acetic acid and/or one or more diluents or acetylated Catalyst. In one embodiment, the treatment agent for acetamylation can comprise a mixture of acetic acid and acetic anhydride having at least 8 〇: 2 〇, at least 85: 15, at least 90: 10, or at least 95: 5 a ratio of anhydride to acid. Prior to acetylation, the kiln drying method, vacuum degassing method or other suitable method may be used to dry the wood to reduce its humidity (for example, water) content to not more than 25 wt%, Not more than 2〇wt%, not more than 15 wt%, not more than η wt /〇, not more than 9 wt% or not more than 6 wt%. During the acetylation period, the wood can be made into a treatment agent by any suitable method. contact. Examples of suitable contact methods may include, but are not limited to, steam contact, spray, liquid soaking, or combinations thereof. 160981.doc 201236751. In one embodiment, the temperature of the processing vessel may be no greater than 50 ° C, no greater than 4 (^c or no greater than 30 C, and at least 25 psig, at least 25 psig, at least the time during which the wood is contacted with the treating agent. 50 psig, at least 75 psig and/or no more than 500 psig, no more than 25 psig or no more than 15 psig. Once the contacting step is completed, at least a portion of the liquid treatment (if present) may be discharged from the reactor as needed and Heat may be added to initiate and/or catalyze the reaction. In one embodiment, microwave energy, thermal energy, or a combination thereof may be introduced into the vessel to increase the temperature of the wood to at least 5 〇. 〇, at least 65 〇 C, at least 80 C and/or to not more than 175 ° C, not more than 15 〇 π or not more than 120 C, while maintaining one of the pressures in the reactor at least 75 Torr, at least 1, 〇〇〇, at least 1,200 Torr or at least 2, chin rest and/or no more than 7,700 Torr, no more than 5,000 Torr' no more than 3,5 Torr or no more than 25 Torr. According to one embodiment 'Add to reaction At least a portion of the heat of the device can be transferred to the wood from a non-secret source. For example, including at least 5 〇 wt%, at least 75 wt%, at least 90 wt 〇/〇, or at least 95 wt% of one of the acetic acid vapors of Q, and the remainder comprising acetic anhydride and/or diluent. In one embodiment, hot steam, a portion of which may be condensed on at least a portion of the bundle of wood being treated, may be introduced into the reaction vessel for at least 2 minutes, at least 35 minutes, or at least 45 minutes and/or no greater than ι 8 〇 minutes, no more than 15 〇 minutes or no more than 120 minutes. After the reaction step, the "chemically wetted" chemically modified wood may include at least one chemical component that can be removed by heat and/or vaporization. As used throughout this application, the terms "chemically-wet" or "chemical-wet" are meant to include at least one of the chemical treatments or one of the modifications of 160981.doc -13-201236751. Partially presenting one or more chemical np woods in a liquid phase. A "chemically wetted" wood bundle may mean that at least a portion thereof is at least partially chemically wetted with one of the wood bundles. Some Reactants, impregnates, reaction products, or the like may be included. For example, when the wood is acetylated, at least a portion of the residual acetic acid and/or anhydride may be removed by vaporization. As used herein, the term " "Acid wetting" means wood containing residual acetic acid and/or acid needles. An "acid wetted" wood bundle means that at least a portion thereof is at least partially acid wetted with one of the wood bundles. According to an embodiment of the present invention The chemically wet or acid wet wood may comprise at least 20 Wt%, at least 30 wt%, at least 40 Wt% or at least 45 wt% and/or no more than 75 wt0/. No more than 60 wt% or no more than 50 wt% of one or more heat removable or rufiable chemicals such as, for example, acetic acid and/or acid anhydride. As used herein, the term "thermally removable" or "vaporizable" chemical component means that one component can be removed by heat and/or vaporization. In one embodiment, the vaporizable or thermally removable component or chemical can include acetic acid. Next, at least a portion of the one or more thermally removable chemicals can be removed from the chemically wetted wood via flash vaporization. In one embodiment, the pressure in the reactor can be from at least ΐ, θθθ, at least ΐ, 2θ θ, at least 18 〇〇 or at least 2,000 Torr and/or no more than 77 Torr, no greater than 5 〇〇〇 support is not more than 3,500 Torr, no more than 2,500 Torr or not more than 2, and one of the pressures of the chin rest is reduced to atmospheric pressure to achieve a flashing step. In another embodiment, the pressure of the reactor can be reduced from an elevated pressure (as set forth above) or atmospheric pressure to no more than 100 Torr, no greater than 75 Torr, no greater than 5 Torr, or no greater than h One of the pressures to achieve the step of vaporization. According to one embodiment, the amount (eg, chemical content) of one or more of the thermally removable chemical components remaining in the chemically wet wood after the steaming step 160981.doc -14 - 201236751 may be at least 6 wt %, at least 8 wt%, at least 10 wt%, at least 12 wt% or at least 15 wt% and/or no more than 60 wt%, no more than 40 wt%, no more than 3 wt%, no more than wt%, no More than 20 wt% or no more than 15 wt%. Ο Ο According to one embodiment, a heating step may be performed after the chemical upgrading step to further heat and/or dry the chemically modified (or chemically wetted) wood to thereby provide a heated and/or dried chemical Modified wood bundles. As used herein, a bundle or other item or material is referred to as "heated" for convenience only to indicate that the temperature of at least a portion of the bundle has risen above the ambient temperature. Similarly, as used throughout this application, a bundle or other item or material is referred to as "dried" for convenience only to indicate that at least the bundle has been heated by (in some embodiments) heating. A portion of at least some of the thermally removable chemicals are removed. In the embodiment, the heating step is operable to reduce the amount of one or more thermally removable chemical components present in the wood. The energy source utilized during the heating step may be suitable for heating and/or drying the wood--, conduction and/or convection energy sources. In one embodiment, the heating benefit is to use a microwave heater. In another embodiment, another source of heat may be utilized to directly or indirectly (via (for example) hot gas entanglement, a lost sleeve or heat traceable container or other means) to heat at least a portion of the granulator, such as ( For example) - or multiple side walls. In this embodiment, the sidewalls can be heated to at least 45. (:, at least hunger or to two c and / or no more than 115 < 5 (:, no more than 1 〇 5. 〇 or not greater than the price - temperature. This heating step can be carried out under any suitable conditions, including high 160981. Doc 15 201236751 Pressure at, at or near atmospheric pressure. Specific embodiments of various heating systems suitable for use in the production of chemically modified and/or thermally modified wood will be discussed in detail later. So that at least 50%, at least 65 / 〇 'at least 75% or at least 95% of the total amount of one or more of the thermally removable chemical components remaining in the chemically wet wood is removed. In one embodiment, This may correspond to removing at least 1 lb, at least 25 lbs, at least 5 lbs, or at least 10,000 lbs of total liquid. As a result of one of the heating steps, in one embodiment, based on the edges The initial (preheated) weight of the bundle, the heated or dried chemically modified wood may include no more than 5 wt%, no more than 4 wt%, no more than 3 wt〇 /, no more than 2 wt% or no more than 1 One or more of the one or more thermally removable chemicals (eg, acetic acid). Additionally, based on the The initial (preheated) weight of the material, the heated or dried chemically modified wood may have no more than 6 wt%, no more than 5 wt%, no more than 3 wt%, no more than 2 wt% or no more than 1 wt% Or a water content of not more than 0.5 wt%. In one embodiment, after the heating step, the wood may have a water content of approximately one %. In the embodiment, the chemical upgrading step and the heating step may be Occurs in a container towel in the morning. In another embodiment, the chemical modification step and the heating step can be carried out in a separate container such that the internal volume of the chemical upgrading reactor and the heater are different in position. As used herein, "internal volume" of a container means that the space as a whole encompassed by the container contains any volume defined by the door(s) of the container when closed or within the door. As used herein, The words "different in position" mean that the internal volume does not overlap. When the chemical upgrading reactor and heater comprise separate containers, it can be 160981.doc 】 6 201236751 with various types of wood conveying systems to Between two containers Wood is delivered. In one embodiment, the wheeling system can include rails (as illustrated in Figure 、), rails, skins ▼, hooks, rollers (as illustrated in Figure 3), strips, handling Cars, electrified vehicles, stackers, pulleys, turntables (as illustrated in Figure 2) and their combinations - will now be discussed in detail in Figures 1-3

能夠生產經化學改質及/或經熱改質之木材之木材處理設 施之各種實施例D 現參考圖1,一木材處理設施10之一項實施例圖解說明 為包括一化學改質系統2〇、一加熱系統3〇、一輸送系統 以及原料儲存區域60a及成品材料儲存區域6〇b。化學改質 系統20包括一化學改質反應器22、一反應器加熱系統以及 一選用反應器加壓/減壓系統26。加熱系統3〇包括一加熱 器32、一能源34及一選用加熱器加壓/減壓系統%。輸送 系統40包括用於在儲存區域6〇a、6〇b、反應器22與加熱器 32之間輸送木材之複數個輸送段42a至42e,如下文詳細闡 述。 在操作中,可經由輸送段42&自原料儲存區域6〇&移除一 或多個木材束。儘管圖丨中圖解說明為包括軌道或軌條, 但應理解,輸送段423可包括適於在儲存區域6〇a與反應器 22之間移動木材之任一類型之輸送機構。如圖丨中所展 不,接著,可經由一開放反應器入口門28將木材引入或裝 載至反應器22中。此後,可關閉第一反應器入口門28以允 許根據上文所闡述之一或多個過程使安置於反應器22内之 木材化學改質。 160981.doc 201236751 —旦反應完成’即可自反應器22抽出化學潤濕木材並將 其輸送至加熱ϋ32。根據—項實施例,化學潤濕木材可經 由反應器人af128自反應器22移除並經由輸送段杨輸送 至加熱器32。在另一實施例中,該木材可經由一選用反應 器出口門29移除並經由輸送段42c輸送至加熱器Μ,如圖上 中所展示。接著’可經由一開放加熱器入口門㈣化學潤 濕木材引入或裝載至加熱器32中,接著可將開放加熱器入 口門38關閉以藉此在起始木材之加熱之前在加熱器入口門 38與加熱器32之本體之間形成一流體密封。當存在選用反 應器出口門29及選用加熱器出口門39時,出口門”、”可 位於反應器22及加熱器32之除各別反應器入口門28及加熱 器入口門3 8以外之大體相對端上。 在各種實施例中,在於加熱器32内加熱木材期間,加壓 系統36可用以將加熱器32内之一壓力維持為不大於55〇 托、不大於450托、不大於350托、不大於25〇托不大於 200托、不大於150托、不大於1〇〇托或不大於75托。在一 項實施例中,該真空系統可操作以將加熱器32中之壓力減 小至不大於10毫托(1〇3托)、不大於5毫托不大於2毫 托、不大於1毫托、不大於0.5毫托或不大於〇1毫托。另 外,當加熱器32包括一微波加熱器時,可使用稍後詳細闡 述之一或多個特徵(包含(舉例而言)一選用微波阻流器、一 或多個微波發射器及諸如此類)以將能量引入至加熱器3 2 之内部中,藉此加熱及/或乾燥其中含有之木材束之至少 一部分。 160981.doc -18- 201236751 根據一項實施例,木材處理設施1〇可包括多個反應器及/ 或加熱器。可採用任意數目個反應器及/或加熱器,且該 等反應器及/或加熱器可配置成任一適合組態。舉例而 言,木材處理設施10可利用至少丨個、至少2個、至少3 個、至少5個及/或不大於10個、不大於8個或不大於6個反 應器及/或加熱器。當採用多個反應器及/或加熱器時,可 以任一適合組合或比率使該等容器配對。舉例而言,反應 器對加熱器的比率可係1:1、1:2、2:1、1:3、3:1、2:3、 3.2、1:4、4:1、4:2、2:4、3:4、4:3 或任一可行組合。根 據一項實施例,反應器及/或加熱器中之一或多者可包括 單獨入口及出口門,而在另一實施例中,反應器及/加熱 器中之一或多者可包括用於裝載及卸載木材之一單個門。 在項實細*例中,經加熱及/或乾燥之木材可經由加熱器 入口門38自加熱器34移除並經由輸送段42d輸送至儲存區 域6〇b。另一選擇係,該木材可經由一選用加熱器出口門 ❹ 39(若存在)抽出並經由段426輸送至儲存區域6仙,如圖1中 所圖解說明。將關於圖2及3簡單地闡述採用根據本發明之 數個貫施例組態之多個反應器及加熱器之木材處理設施之 各種組態。 現翻至圖2,圖解說明根據本發明之一項實施例組態之 一木材處理設施110。木材處理設施11〇包括複數個反應器 (圖解說明為122a、122b、122η)及複數個加熱器(圖解說明 為132a、132b、132η)。根據一項實施例,反應器122a、 122b、122η中之每一者及加熱器132a、132b、132n中之每 160981.doc -19- 201236751 一者包括用於選擇性地准許進出每一容器之木材之通行之 一單個門 128a、128b、128n、138a、138b、138η。另外, 木材處理設施110可包括一可旋轉平臺(圖解說明為一轉臺 14〇) ’ β玄可旋轉平臺可操作以定位一木材束1 〇2以使得可 沿各種方向(大體由箭頭19〇a至190c指示)在反應器122a、 122b、122η、加熱器132、132b、132n與一儲存區域16〇之 間輸送該木材束。 現參考圖3,一木材處理設施210之另一實施例展示為包 括複數個化學改質反應器(圖解說明為222a、222n)及複數 個加熱器(圖解說明為232a、232b、232η)。如圖3中所展 示’反應器中之每一者包括一各別反應器入口門228a、 228n及一選用反應器出口門229a、229η。類似地,加熱器 232a、232b、232η中之每一者包括一加熱器入口門238a、 238b、238n及一選用加熱器出口門239a、239b、239η。圖 3中所展示之輸送系統24〇包括複數個段242&至242』·及24牝 至244e ’其可操作以將木材輸送至反應器222a、222η及加 熱器232a、232b、232η、自該等反應器及該等加熱器輸送 木材及在該等反應器與該等加熱器之間輸送木材。儘管圖 解說明為包括連續傳動帶段,但輸送系統240可包括一或 多個段,其包括任一適合輸送機構,如先前詳細論述。 根據一項實施例,在操作中,可透過反應器入口門228a 引入經由輸送段242a裝載至第一反應器222a中之木材。一 旦化學改質過程完成,即可經由反應器入口門22仏自反應 器222a移除化學潤濕木材並可隨後經由各別輸送段μ。、 160981.doc -20- 201236751 242f、242g將其輸送至加熱器232a、232b或232η中之一 者。在一替代實施例中’自反應器222a移除之木材可在被 輸送至加熱器232a、232b或232η之前經由輸送段244a透過 反應器出口門229a移除,如先前所闡述。另外,在反應器 222n中處理之木材可以如先前所闡述之一類似方式裝載、 化學改質及輸送至加熱器232a、232b、232η甲之一者。 此後’可根據本文中所闡述之一或多個方法加熱及/或 乾餘輸送至加熱器232a、232b及232η之一或多個化學潤濕 木材束。在一項實施例中,加熱器23 2a、23 2b及23 2η中之 至少一者可包括一微波加熱器。一旦完成加熱步驟,經加 熱及/或乾無之束即可經由各別入口門238a、238b、238η 或視需要經由各別出口門239a、239b、239η(當存在時)自 加熱器232a、232b及232η抽出。隨後,端視經改質之束係 自加熱器入口門238a、238b、238η還是加熱器出口門 239a、239b、239η移除,可經由輸送段 242h、242i、242j 或244c、244d、244e將該等束輸送至後續處理及/或儲存。 可按任一適合規模實施先前所論述之化學改質過程。舉 例而言,上文所闡述之木材處理設施可包括實驗室規模、 試驗工場規模或商業規模之木材處理設施。在一項實施例 中’用以生產經化學改質及/或熱改質之木材之木材處理 設施可係具有至少50〇,〇〇〇板英尺、至少1百萬板英尺、至 少2.5百萬板英尺或至少5百萬板英尺之一年產量之一商業 規模設施。如本文中所使用,術語「板英尺」係指以量測 144立方英吋為單位表達之一木材體積。舉例而言,具有2 160981.doc •21· 201236751 ,寸4英寸x36英忖之尺寸之一板具有288立方英叶或2板 英尺之i«體積。在各種實施例中,一單個化學改質反應 器之内部體積(亦即,「内部反應器體積」)及/或一單個加 熱器^内部體積(亦即,「内部加熱器體積」)可係至少100 立方英尺至少5〇〇立方英尺、至少!,〇〇〇立方英尺、至少 ,立方英尺、至少5,〇〇〇立方英尺或至少10,000立方英 尺以容納商業規模操作。 、P使田按商業規模實施時,如本文中所聞述之化學及/ 或熱改質過程亦可以1日p Μ城π m j以相對短的總循環時間實施。舉例而 言’根據-項實施例,使用本發明之一或多個系統實施之 化,及/或熱改質過程之總循環時_起始改質步驟之時 間量測至完成加熱步驟之時間)可係不大於48小時、不大 於36小時、不大於24小時或不大於12小時、不大於10小 時不大於8小時或不大於6小時。此與可具有持續數天或 甚至數周之總循環時間之諸多習用木材處理過程形成對 比。 根據本發日m實施例,本發明之木材處理設施可包 括一或多個蒸汽容納室及/或通氣結構,其用於在木材之 輸送期間實質上隔離外部環境(亦即,緊接化學改質反摩 益及加熱器夕Η則之環境)與化學潤濕之經化學改質之木 材:蒸汽容納室及/或通氣結構可連接至一通氣系統,該 通孔系統自谷納/通氣區域中移除氣體環境之至少一部 分’藉此最小化-或多種非期望蒸汽狀態化學品茂漏至外 部環境中。現將關於圖W4d更詳細地閣述採用蒸汽容納 160981.doc •22- 201236751 至及/或通氣結構之一木材處理設施之額外細節及一項實 施例。 圖4a係耦合至一化學改質反應器322及—加熱器332之一 蒸汽容納室360之一俯視圖。蒸汽容納室36〇可操作以在經 由位於反應器322與加熱器332之間的一傳送區361將木材 自化學改質反應器322輸送至加熱器332時部分地或幾乎完 全地隔離外部環境與一經化學改質之木材束。如本文中所 ◎ 使用,術語「隔離」係指一或多個區域、地帶或區之間的 流體傳遞之抑制。根據一項實施例,蒸汽容納室36〇可耦 合至一通氣系統(圖4a中未展示),其可操作以自蒸汽容納 室360之内部移除蒸汽及氣體之至少一部分,藉此減小、 最小化或防止反應器322之内部内、加熱器332之内部内所 含有及/或自經化學改質之木材束至外部環境之一或多種 熱可移除化學組分之洩漏。 在一項實施例中,化學改質反應器322可包括用於自一 〇 外部環境接納一木材束之一反應器入口門328及用於在化 學改質之後自化學改質反應器322排出該木材束之一反應 益出口門329。另外,加熱器332可包括用於接納自化學改 質反應器322排出之經化學改質、化學潤濕木材束之一加 熱器入口門328。根據一項實施例,加熱器332亦可包含用 於自加熱器332排出一木材束之與加熱器入口門分離之 一加熱器出口門339。在一項實施例中,各別反應器入口 門328及加熱器入口門338以及反應器出口門或加熱器 出口門339(當存在時)可定位於反應器322或加熱器332之一 160981.doc -23· 201236751 大體相對端上以使得反應器322及加熱器扣之各別中心伸 長軸(在圖4b中表示為軸37〇a、3鳩)可延伸穿過各別入口 328、338及出σ 329、339門。在—項實施例中,反應器 322及加熱器332彼此軸向對準以使得圖4b中之中心伸長軸 370a、370b彼此實質上對準,而在其他一項實施例中軸 37〇a、370b可彼此平行。如本文中所使用,術語「實質上 對準」係扣兩個或兩個以上容器經組態以使得在其各別中 伸長軸之又又之間形成之最大銳角係不大於2〇。。在某 些實施例中,實質上對準之容器之 的最大銳角可係不大於1。。、不大於5。、不大於2。或= 於1 。在某些實施例中,反應器322及加熱器332可配置成 一並排組態(未展示)。 根據圖4a中所展示之一項實施例,蒸汽容納室36〇可密 封地耦合至反應器322及加熱器332以使得在將木材束自反 應器322輸送至加熱器332期間外部環境實質上與傳送區 361隔離。如本文中所使用,術語「密封地耦合」係指兩 個或兩個以上物件經附接、緊固或以其他方式相關聯以使 得自此等物件之接面實質上減小或幾乎避免流體洩漏。在 一項實施例中,反應器入口門328及/或加熱器出口門 339(當存在時)可對外部環境開放,而反應器出口門329及/ 或加熱器入口門338可對蒸汽容納室360之内部開放,藉此 在經由傳送區361在反應器322與加熱器332之間輸送期間 隔離外部環境與來自化學反應器322、加熱器332及/或化 學潤濕木材束之蒸汽或氣體。 160981 .doc •24- 201236751 蒸Ά谷納室360可以任一適合方式組態。在圖4&及朴中 所繪示之一項實施例中’蒸汽容納室36〇包括耦合至一天 花板結構344及一地板(未展示)之四個大體直立壁342a至 342d °儘管在圖4a及4b中圖解說明為大體附接至天花板結 - 構344,但用於自蒸汽容納室360之内部移除蒸汽及氣體之 一蒸汽出口管道349可替代地附接至壁342a至342d中之一 者或至該地板。稍後將更詳細地闡述關於自蒸汽容納室 3 60移除蒸汽及氣體之額外細節。 〇 在本發明之一項實施例中,壁3423至342d中之至少一者 可包括用於在蒸汽容納室36〇内之一爆炸或迅速加壓情形 下控制一壓力釋放之方向之至少一個鼓風板或鼓風壁 343。在一項實施例中,鼓風板343可附接至蒸汽容納室 360之天花板344及/或地板(未展示)。鼓風板或壁343可鉸 接、拴係或以其他方式緊固至蒸汽容納室360之另一結構 以避免或減少鼓風板或壁343將由於一爆炸而向離開蒸汽 〇 谷納室360之方向以一非期望速度隨意地凸出之可能性。 鼓風板或壁343可具有一實質上固體表面(如圖仆中所展示) 或可包括複數個板條或槽(未展示)。通常,壁342a至“Μ 2並非鼓風板/壁343之區段係由高強度材料(諸如(舉例而 。)預製混凝土板、混凝土塊或鋼板)構成之建構。儘管本 文中圖解說明為具有四個壁,但應理解,亦可採用具有各 種其他形狀之蒸汽容納室。 如圖4c中所繪示,蒸汽容納室36〇可裝備有用於選擇性 地准許流體自外部環境流動至蒸汽容納室36〇之内部中之 16098l.doc -25· 201236751 一或多個通氣孔370a、370b。在一項實施例中通氣孔 370a、37Gb係單向通氣孔,其准許流體自外部環境流動至 蒸汽容納室360中(如在圖4c由箭頭38〇a、38〇b所指示),伸 減小、抑制或實質上防止流體自蒸汽容納室36〇之内部= 出至外部環境中。可經由通氣孔37〇a、37〇b流動至蒸汽= 納室360中之外部流體之實例包含環境空氣或—或多種惰 性氣體(諸如,氮氣)。 在一項實施例中,通氣孔370a、37〇b可經組態以維持蒸 汽容納室360之内部與外部環境之間的一預定壓力差。藉 由維持蒸汽容納室360之内部與外部環境之間的一預定壓 力差,通氣孔370a、370b可控制將來自外部環境之—流體 抽取至蒸汽容納室360中之速率。為維持蒸汽容納室36〇之 内部與外部環境之間的-相對壓力差,通氣孔⑽、 POb可裝備有用於基於跨越通氣孔37〇a、37肋之壓力差來 改變通氣孔37〇a、雇之開放程度之—控制機構(例如, -電子致動器、一液壓致動器、一氣動致動器或一機械彈 簣)。當外部環境與蒸汽容納室36〇之内部之間的壓力差過 高時,通氣孔37〇a、370b開放得較寬,且類似地,當該壓 力差過低時,通氣孔370a、37〇b朝向一關閉位置移動。在 一項實施例中,通氣孔37〇a、3鳩可裝載有彈簧且朝向關 閉位置偏移,以使得當蒸汽容納室36〇與外部環境之間的 壓力差低於一臨限值時,關閉通氣孔37〇a、37〇b,但當蒸 汽容納室360中之壓力比外部環境低超過臨限壓力差值之 一量時’職孔37Ga、37_放以允許將—料流體抽取 160981.doc -26 - 201236751 至蒸汽容納室360中。 此外,當通氣孔37〇a、37〇b裝載有彈簧時,該等通氣孔 藉由在壓力差高時自動開放得較寬而在壓力差低時自動朝 向關閉位置移動來幫助維持蒸汽容納室則之内部與外部 裒兄之間# f處上恆定壓力差。在一項實施例中,蒸汽 容納室360在冑送期間維持處於—低氣壓且可維持處於至 少0_05水柱英对數、至少Q」水柱英叶數或至纽15水柱英 吋數及/或不大於10水柱英吋數、不大於丨水柱英吋數或不 大於0· 5 7K柱英忖數之—真空。在-項實施例中,通氣孔 370a、370b經組態以准許以致使每小時至少2次交換、至 少4次父換或至少5次交換地自蒸汽容納室36〇抽取出之一 速率將流體自外部環境(例如,環境空氣)抽取至蒸汽容納 室360中,其中一次交換等於蒸汽容納室36〇之一個體積。 如本文中所使用,術語r每小時交換次數」係指每小時該 系統中之流體之總體積被替換之總次數,其係藉由使自系 統移除之蒸汽之體積流率除以總系統體積來計算。 在一項實施例中,蒸汽容納室36〇之大小可使得反應器 322及加熱器332(例如,定位反應器及加熱器之内部體積) 彼此相隔至少2英尺、至少4英尺或至少6英尺及/或不大於 50英尺、不大於30英尺或不大於20英尺之一距離。在一項 實施例中’蒸汽容納室之長度可與反應器322與加熱器332 之間的距離相同或實質上相同。根據一項實施例,蒸汽容 納室360之長度對反應器322之總長度及/或加熱器332之總 長度之比率可係至少〇 1:1、至少〇 2:1、或至少〇 3:1及/或 零27· 160981.doc 201236751 不大於1:1、不大於0.6:1或不大於0.5:1。當反應器322與加 熱器332之間的間隔減至最小時,反應器出口門329及加熱 器入口門338可能夠在打開期間彼此接觸。在此一實施例 中,反應器出口門329及加熱器入口門338可經組態以在其 兩者皆完全打開時彼此嵌套/重疊(但彼此不接觸)。 圖4d係包括一反應器322、一加熱器332及安置於其間的 一蒸汽容納室360之一木材處理設施41 6之一側視圖。圖4d 另外繪示採用位於加熱器332之出口門339附近之一產品蒸 汽移除系統或結構400之一實施例。產品蒸汽移除系統400 可經組態以自加熱器332之出口門339輸送出蒸汽且使其遠 離出口門339附近之區域(例如,恢復室)。此組態可實質上 減小且在某些實施例中可幾乎防止來自退出加熱器332之 經化學處理之木材束之蒸汽及/或來自退出反應器322及/或 加熱器332之蒸汽逸出至外部環境。如圖4d中所展示,蒸 汽容納室360及產品蒸汽移除系統400可連接或以其他方式 可操作地耦合至一常見通氣系統402。通氣系統402用以自 蒸汽容納室360抽取出蒸汽及氣體及/或使其通過產品蒸汽 移除系統400。儘管圖4d圖解說明一個常見通氣系統402用 於蒸汽容納室360及產品蒸汽移除系統400兩者,但亦可針 對木材處理設施之每一容納/通氣區域使用個別通氣系 統。 在圖4d中所繪示之實施例中,產品蒸汽移除系統400包 括一通氣罩404及安置於通氣罩404與加熱器332之間的一 通氣室406。通氣罩404及通氣室406可連接至通氣系統 160981.doc -28- 201236751 402,通氣系統402自通氣罩404及/或通氣室406抽取出蒸 汽。通氣室406可經組態以透過加熱器出口門339(其開放 至通氣室406中)接納一經化學改質之木材束。 通氣室406可裝備有一通氣室出口 408,經化學改質之木 材通過通氣室出口 408通行至通氣罩404下面之一冷卻位 置。在一項實施例中,通氣室出口 408可裝備有一門409, 門409在關閉時實質上隔離外部環境與通氣室406之内部。 當通氣室裝備有此一門時,通氣室亦可裝備有類似於先前 參考圖4c所闡述之蒸汽容納室360之通氣孔370a、370b之 通氣孔(未展示)。然而,在另一實施例中,通氣室出口 408 經組態以不斷地准許流體自外部環境通行至通氣室406之 内部中。在此一實施例中,通氣室出口 408可完全開放以 便准許穿過其之流體之自由流動。另一選擇係,通氣室出 口 408可部分地覆蓋有一撓性材料(例如,一懸掛 VISQUEEN薄片或VISQUEEN條帶),其准許穿過其之經化 學處理之木材束之通行,但至少部分地抑制穿過其之流體 之自由流動。在本發明之一項實施例中,可完全消除通氣 室406且通氣罩404可定位於毗鄰加熱器332之出口門339 處。 如圖4d中所展示,通氣系統402可包含一或多個真空產 生器410、一處理裝置412、一引流器414及複數個蒸汽出 口管道349a至349c。真空產生器410可操作以分別經由出 口管道349a、349b、349c自蒸汽容納室360、通氣罩404及/ 或通氣室406抽取出蒸汽。處理裝置412可操作以移除或改 160981.doc -29- 201236751 變來自經由真空產生器410自蒸汽容納室360、通氣罩404 及/或通氣室406中抽取出之蒸汽之一或多種組分之至少一 部分之組成。適合處理裝置之實例可包含(但不限於)滌氣 器、熱氧化器、催化氧化器或其他催化過程及/或沈澱 器。 根據一項實施例,引流器414可操作以藉由(舉例而言) 引導蒸汽出口管道349a、349b、349c當中之蒸汽流藉此在 蒸汽容納室360與產品蒸汽移除結構(例如,通氣罩404及/ 或通氣室406)之間分佈通氣系統402之總通氣容量來調整 真空產生器410之總通氣容量。如本文中所使用,術語 「總通氣容量」係指可經由一真空產生器或其他源自系統 移除之最大蒸汽體積,其表達為一基於時間之速率。舉例 而言,蒸汽容納室360、通氣罩404及/或通氣室406當中之 總通氣容量之分佈可有利於容納一化學改質處理之各種步 驟。在一項實施例中,引流器414可操作以均勻分佈總通 氣容量(一般表示為「X」),以使得將V3X提供至蒸汽容納 室360、將V3X提供至通氣罩404且將V3X提供至通氣室 406。在另一例示性實施例中,引流器414可將更多通氣容 量分配至該三個區域中之一者(諸如(舉例而言)蒸汽容納室 3 60),以使得將2/3X提供至蒸汽容納室360、將V6X提供至 通氣罩404且將V6X提供至通氣室406。 現將關於圖4d詳細闡述木材處理設施4 1 6之操作之一項 實施例。可經由反應器入口門328將一第一木材束(本文中 由字母「C」表示)裝載至化學改質反應器322中並對其進 160981.doc -30- 201236751 行化學處理。同時 材束(此處由字母「 ’可經由加熱器入口門338將一第二木 B」表示)引入至加熱器332中並對其進 行加熱及/或㈣。當纟分別在化學改質反應器322及 力,、、、器332中進行化學改質及加熱/乾燥時,彳自通氣室 406移除-第三木材束(本文中用字母「八」表示)並將其定 位於通氣罩404下方,如圖4d中大體展示。Various Embodiments of a Wood Treatment Facility capable of producing chemically modified and/or thermally modified wood Referring now to Figure 1, an embodiment of a wood treatment facility 10 is illustrated as including a chemical upgrading system. A heating system 3, a conveying system, and a raw material storage area 60a and a finished material storage area 6〇b. The chemical upgrading system 20 includes a chemical upgrading reactor 22, a reactor heating system, and a selective reactor pressurization/depressurization system 26. The heating system 3 includes a heater 32, an energy source 34, and a heater pressurization/decompression system %. The conveyor system 40 includes a plurality of conveyor sections 42a through 42e for transporting wood between the storage areas 6a, 6b, the reactor 22 and the heater 32, as will be explained in detail below. In operation, one or more wood bundles may be removed from the stock storage area 6& via the transport section 42&; Although illustrated in the figures as including rails or rails, it should be understood that the transport section 423 can include any type of transport mechanism suitable for moving wood between the storage area 6a and the reactor 22. As shown in Figure 木材, wood can then be introduced or loaded into reactor 22 via an open reactor inlet door 28. Thereafter, the first reactor inlet door 28 can be closed to permit chemical modification of the wood disposed within the reactor 22 in accordance with one or more of the processes set forth above. 160981.doc 201236751 Once the reaction is complete, the chemically wet wood can be withdrawn from the reactor 22 and sent to the heated crucible 32. According to the embodiment, the chemically wet wood can be removed from the reactor 22 via the reactor af128 and delivered to the heater 32 via the transport section. In another embodiment, the wood can be removed via a selective reactor outlet door 29 and delivered to the heater port via delivery section 42c, as shown in the figures. Then 'the wetted wood can be introduced or loaded into the heater 32 via an open heater inlet door (4), and then the open heater inlet door 38 can be closed to thereby pass the heater inlet door 38 prior to the heating of the starting wood. A fluid seal is formed with the body of the heater 32. When there is a choice of reactor outlet door 29 and a heater outlet door 39, the outlet door "" can be located generally outside of the reactor 22 and heater 32 except for the respective reactor inlet door 28 and heater inlet door 38. On the opposite end. In various embodiments, during heating of the wood within the heater 32, the pressurization system 36 can be used to maintain a pressure within the heater 32 to no greater than 55 Torr, no greater than 450 Torr, no greater than 350 Torr, and no greater than 25 The chin rest is not more than 200 Torr, not more than 150 Torr, not more than 1 Torr or not more than 75 Torr. In one embodiment, the vacuum system is operable to reduce the pressure in the heater 32 to no more than 10 mTorr (1 〇 3 Torr), no more than 5 mTorr, no more than 2 mTorr, no more than 1 mA. Support, no more than 0.5 mTorr or no more than 毫 1 mTorr. Additionally, when the heater 32 includes a microwave heater, one or more of the features (including, for example, a microwave choke, one or more microwave emitters, and the like) may be used in detail later. Energy is introduced into the interior of the heater 3 2 thereby heating and/or drying at least a portion of the wood bundle contained therein. 160981.doc -18- 201236751 According to an embodiment, the wood treatment facility 1 may include a plurality of reactors and/or heaters. Any number of reactors and/or heaters can be employed and the reactors and/or heaters can be configured to any suitable configuration. By way of example, the wood treatment facility 10 can utilize at least one, at least two, at least three, at least five, and/or no more than ten, no more than eight, or no more than six reactors and/or heaters. When multiple reactors and/or heaters are employed, the containers can be paired in any suitable combination or ratio. For example, the ratio of reactor to heater can be 1:1, 1:2, 2:1, 1:3, 3:1, 2:3, 3.2, 1:4, 4:1, 4:2 , 2:4, 3:4, 4:3 or any feasible combination. According to an embodiment, one or more of the reactors and/or heaters may include separate inlet and outlet doors, while in another embodiment, one or more of the reactors and/or heaters may include A single door for loading and unloading timber. In the example, the heated and/or dried wood can be removed from the heater 34 via the heater inlet door 38 and transported to the storage area 6〇b via the delivery section 42d. Alternatively, the wood can be withdrawn via a selected heater outlet door 39 (if present) and conveyed via section 426 to the storage area 6 sen, as illustrated in FIG. Various configurations of wood processing facilities employing multiple reactors and heaters configured in accordance with various embodiments of the present invention will be briefly described with respect to Figures 2 and 3. Turning now to Figure 2, a wood processing facility 110 configured in accordance with an embodiment of the present invention is illustrated. The wood treatment facility 11A includes a plurality of reactors (illustrated as 122a, 122b, 122n) and a plurality of heaters (illustrated as 132a, 132b, 132n). According to one embodiment, each of the reactors 122a, 122b, 122n and each of the heaters 132a, 132b, 132n, 160981.doc -19-201236751, includes one for selectively permitting access to each container. One of the passages of wood is a single door 128a, 128b, 128n, 138a, 138b, 138n. Additionally, the wood treatment facility 110 can include a rotatable platform (illustrated as a turntable 14A). The beta metastable platform is operable to position a bundle of wood 1 〇 2 so as to be traversable in various directions (generally by arrows 19 〇 A to 190c indicate) transporting the bundle of wood between the reactors 122a, 122b, 122n, the heaters 132, 132b, 132n and a storage area 16A. Referring now to Figure 3, another embodiment of a wood processing facility 210 is shown to include a plurality of chemical upgrading reactors (illustrated as 222a, 222n) and a plurality of heaters (illustrated as 232a, 232b, 232n). As shown in Figure 3, each of the reactors includes a respective reactor inlet gate 228a, 228n and a selective reactor outlet gate 229a, 229n. Similarly, each of the heaters 232a, 232b, 232n includes a heater inlet door 238a, 238b, 238n and a selected heater outlet door 239a, 239b, 239n. The delivery system 24A shown in Figure 3 includes a plurality of segments 242 &242" and 24A to 244e' that are operable to deliver wood to the reactors 222a, 222n and heaters 232a, 232b, 232n, from The reactor and the heaters transport the wood and transport the wood between the reactors and the heaters. Although illustrated as including a continuous belt segment, the conveyor system 240 can include one or more segments that include any suitable transport mechanism, as discussed in detail above. According to one embodiment, in operation, wood loaded into the first reactor 222a via the delivery section 242a can be introduced through the reactor inlet door 228a. Once the chemical upgrading process is complete, the chemically wetted wood can be removed from reactor 222a via reactor inlet port 22 and can then be passed through separate delivery sections μ. 160981.doc -20- 201236751 242f, 242g delivers it to one of the heaters 232a, 232b or 232n. In an alternate embodiment, the wood removed from reactor 222a can be removed through reactor outlet port 229a via delivery section 244a prior to being conveyed to heater 232a, 232b or 232n, as previously described. Alternatively, the wood treated in reactor 222n can be loaded, chemically modified, and delivered to one of heaters 232a, 232b, 232n in a similar manner as previously described. Thereafter, one or more of the heaters 232a, 232b, and 232n may be heated and/or dried to deliver one or more chemically wet wood bundles in accordance with one or more of the methods set forth herein. In one embodiment, at least one of the heaters 23 2a, 23 2b, and 23 2η may include a microwave heater. Once the heating step is completed, the heated and/or dried bundles can be passed through the respective inlet gates 238a, 238b, 238n or, as desired, via respective outlet gates 239a, 239b, 239n (when present) from the heaters 232a, 232b And 232η extracted. Subsequently, the end-view modified beam is removed from the heater inlet doors 238a, 238b, 238n or the heater exit doors 239a, 239b, 239n, which may be via the transport segments 242h, 242i, 242j or 244c, 244d, 244e The beam is delivered to subsequent processing and/or storage. The chemical upgrading process previously discussed can be carried out at any suitable scale. For example, the wood treatment facilities described above may include laboratory scale, pilot plant scale or commercial scale wood treatment facilities. In one embodiment, the wood treatment facility used to produce the chemically modified and/or thermally upgraded wood may have at least 50 feet, seesaw feet, at least 1 million board feet, at least 2.5 million. A commercial scale facility with one of the board feet or at least 5 million board feet per year. As used herein, the term "plate foot" means a volume of wood expressed in units of 144 cubic feet. For example, a board with 2 160981.doc • 21· 201236751, 4 inches by 36 inches in size has a volume of 288 cubic inches or 2 feet. In various embodiments, the internal volume of a single chemical upgrading reactor (ie, "internal reactor volume") and/or a single heater internal volume (ie, "internal heater volume") can be At least 100 cubic feet at least 5 feet cubic feet, at least! , 〇〇〇 cubic feet, at least, cubic feet, at least 5, 〇〇〇 cubic feet or at least 10,000 cubic feet to accommodate commercial scale operations. When P is used on a commercial scale, the chemical and/or thermal upgrading process as described in this article can also be carried out on a 1 day p Μ π π m j with a relatively short total cycle time. For example, 'in accordance with the embodiment, using one or more systems of the present invention, and/or the total cycle of the thermal upgrading process _ the time of the initial reforming step is measured until the time of completing the heating step It may be no more than 48 hours, no more than 36 hours, no more than 24 hours or no more than 12 hours, no more than 10 hours, no more than 8 hours or no more than 6 hours. This is in contrast to many conventional wood treatment processes that can have a total cycle time that lasts for days or even weeks. According to an embodiment of the present invention, the wood treatment facility of the present invention may include one or more steam containment chambers and/or aeration structures for substantially isolating the external environment during transport of the wood (ie, immediately following chemical modification) Chemically modified wood with chemical wetting: The steam holding chamber and/or the venting structure can be connected to a venting system that is self-contained/ventilated At least a portion of the gaseous environment is removed 'by thereby minimizing - or a plurality of undesired vapor state chemicals are leaked into the external environment. Additional details and an embodiment of a wood treatment facility using steam to accommodate 160981.doc • 22-201236751 to and/or a venting structure will now be described in more detail with respect to Figure W4d. Figure 4a is a top plan view of one of the vapor containing chambers 360 coupled to a chemical upgrading reactor 322 and a heater 332. The vapor containing chamber 36 is operable to partially or nearly completely isolate the external environment from the transfer of wood from the chemical upgrading reactor 322 to the heater 332 via a transfer zone 361 located between the reactor 322 and the heater 332. A chemically modified wood bundle. As used herein, the term "isolation" refers to the inhibition of fluid transfer between one or more zones, zones or zones. According to an embodiment, the vapor containing chamber 36A can be coupled to a venting system (not shown in Figure 4a) operable to remove at least a portion of the steam and gas from the interior of the steam containing chamber 360, thereby reducing, Leakage of one or more of the thermally removable chemical components contained within the interior of the reactor 322, within the interior of the heater 332, and/or from the chemically modified wood bundle to the external environment is minimized or prevented. In one embodiment, the chemical upgrading reactor 322 can include a reactor inlet gate 328 for receiving a bundle of wood from an external environment and for discharging the chemical upgrading reactor 322 after chemical upgrading. One of the wood bundles reacts to the exit gate 329. Additionally, heater 332 can include a heater inlet gate 328 for receiving a chemically modified, chemically wetted wood bundle exiting from chemical reforming reactor 322. According to one embodiment, heater 332 may also include a heater outlet door 339 for separating a bundle of wood from heater 332 from the heater inlet door. In one embodiment, the respective reactor inlet gate 328 and heater inlet gate 338 and the reactor outlet gate or heater outlet gate 339 (when present) may be positioned at one of the reactor 322 or heater 332 160981. Doc -23· 201236751 generally opposite ends such that the respective center extension axes of the reactor 322 and the heater buckle (shown as axes 37〇a, 3鸠 in Figure 4b) extend through the respective inlets 328, 338 and Out σ 329, 339. In the embodiment, reactor 322 and heater 332 are axially aligned with each other such that central elongated shafts 370a, 370b in Figure 4b are substantially aligned with one another, while in other embodiments shafts 37a, 370b Can be parallel to each other. As used herein, the term "substantially aligned" means that two or more containers are configured such that the maximum acute angle formed between the axes of elongation in each of them is no more than 2 inches. . In some embodiments, the maximum acute angle of the substantially aligned container may be no greater than one. . No more than 5. No more than 2. Or = at 1. In certain embodiments, reactor 322 and heater 332 can be configured in a side-by-side configuration (not shown). According to an embodiment shown in Figure 4a, the vapor containing chamber 36 is sealingly coupled to the reactor 322 and the heater 332 such that during transport of the wood bundle from the reactor 322 to the heater 332 the external environment is substantially The transfer zone 361 is isolated. As used herein, the term "sealedly coupled" means that two or more items are attached, fastened, or otherwise associated such that the junctions from such items substantially reduce or substantially avoid fluids leakage. In one embodiment, reactor inlet door 328 and/or heater outlet door 339 (when present) may be open to the external environment, while reactor outlet door 329 and/or heater inlet door 338 may be directed to the vapor storage chamber. The interior of 360 is open thereby isolating the external environment from steam or gas from chemical reactor 322, heater 332, and/or chemically wet wood bundles during transport between reactor 322 and heater 332 via transfer zone 361. 160981 .doc •24- 201236751 Steamed Shibuya Room 360 can be configured in any suitable way. In one embodiment illustrated in Figures 4 & and Park, the 'steam containment chamber 36' includes four generally upstanding walls 342a through 342d coupled to a ceiling structure 344 and a floor (not shown), although in Figure 4a And 4b is illustrated as being generally attached to the ceiling junction 344, but for removing steam and gas from the interior of the steam containment chamber 360. One of the steam outlet conduits 349 may alternatively be attached to one of the walls 342a through 342d Or to the floor. Additional details regarding the removal of steam and gas from the vapor containment chamber 3 60 will be explained in more detail later. In one embodiment of the invention, at least one of the walls 3423 to 342d may include at least one drum for controlling a direction of pressure release in the event of an explosion or rapid pressurization in one of the vapor containing chambers 36A. Wind panel or blast wall 343. In one embodiment, the blast plate 343 can be attached to the ceiling 344 and/or floor (not shown) of the steam containment chamber 360. The blower panel or wall 343 can be hinged, tethered, or otherwise fastened to another structure of the steam containment chamber 360 to avoid or reduce the blower panel or wall 343 from exiting the steam valley chamber 360 due to an explosion. The possibility that the direction arbitrarily bulges at an undesired speed. The blast plate or wall 343 can have a substantially solid surface (as shown in the servant) or can include a plurality of slats or slots (not shown). Typically, the wall 342a to "Μ 2 is not a section of the blast plate/wall 343 constructed of a high strength material such as, for example, a precast concrete slab, concrete block or steel plate. Although illustrated herein as having Four walls, but it should be understood that steam storage chambers having various other shapes may also be employed. As illustrated in Figure 4c, the vapor containing chamber 36A may be equipped with means for selectively permitting fluid to flow from the external environment to the vapor containing chamber 16098l.doc -25· 201236751 One or more vents 370a, 370b in the interior of the 36. In one embodiment the vents 370a, 37Gb are unidirectional vents that permit fluid to flow from the external environment to the vapor containment In chamber 360 (as indicated by arrows 38〇a, 38〇b in Figure 4c), the extension reduces, inhibits or substantially prevents fluid from being inside the vapor containing chamber 36〇 out into the external environment. 37〇a, 37〇b Flow to Steam = Examples of external fluids in the chamber 360 include ambient air or—or multiple inert gases (such as nitrogen). In one embodiment, the vents 370a, 37〇b may Configured to dimension A predetermined pressure difference between the interior of the vapor containing chamber 360 and the external environment. By maintaining a predetermined pressure differential between the interior of the vapor containing chamber 360 and the external environment, the vents 370a, 370b can be controlled from the external environment - The rate at which fluid is drawn into the vapor containing chamber 360. To maintain a relative pressure differential between the interior and exterior environment of the vapor containing chamber 36, the vents (10), POb may be equipped for ribs based on spanning vents 37a, 37 The pressure difference is used to change the vent hole 37〇a, the degree of openness of the employee—the control mechanism (for example, an electronic actuator, a hydraulic actuator, a pneumatic actuator, or a mechanical magazine). When the pressure difference between the interiors of the steam containing chambers 36 is too high, the vent holes 37a, 370b are opened wider, and similarly, when the pressure difference is too low, the vent holes 370a, 37b are turned toward one off. Positional movement. In one embodiment, the vents 37a, 3鸠 may be loaded with a spring and offset toward the closed position such that when the pressure difference between the vapor containing chamber 36 and the external environment is below a threshold When the value is turned off The air holes 37〇a, 37〇b, but when the pressure in the steam containing chamber 360 is lower than the external environment by more than one of the threshold pressure difference, the 'holes 37Ga, 37_ are placed to allow the fluid to be extracted 160981.doc -26 - 201236751 to the steam accommodating chamber 360. Further, when the vent holes 37〇a, 37〇b are loaded with springs, the vent holes are automatically opened wider when the pressure difference is high, and when the pressure difference is low Automatically moving toward the closed position to help maintain a constant pressure differential between the interior and exterior of the vapor containing chamber. In one embodiment, the vapor containing chamber 360 is maintained at - low pressure during the pumping and is Maintain at least 0_05 water column logarithm, at least Q" water column English leaf number or to New 15 water column inch number and / or not more than 10 water column inch number, not more than water column column inch number or not more than 0 · 5 7K column The number of miles in the UK - vacuum. In an embodiment, the vents 370a, 370b are configured to permit a rate of fluid to be drawn from the vapor containing chamber 36A at least 2 exchanges per hour, at least 4 parent exchanges, or at least 5 exchanges per hour. The external environment (e.g., ambient air) is drawn into the steam containing chamber 360, wherein one exchange is equal to one volume of the steam containing chamber 36. As used herein, the term "hours of exchange per hour" refers to the total number of times the total volume of fluid in the system is replaced per hour, which is obtained by dividing the volumetric flow rate of steam removed from the system by the total system. Volume to calculate. In one embodiment, the vapor containing chamber 36 is sized such that the reactor 322 and the heater 332 (eg, the internal volume of the positioning reactor and heater) are at least 2 feet apart, at least 4 feet, or at least 6 feet apart from each other. / or no more than 50 feet, no more than 30 feet or no more than 20 feet. In one embodiment, the length of the vapor containing chamber may be the same or substantially the same as the distance between the reactor 322 and the heater 332. According to one embodiment, the ratio of the length of the vapor containing chamber 360 to the total length of the reactor 322 and/or the total length of the heater 332 may be at least 1:1, at least 〇2:1, or at least 〇3:1. And / or zero 27 · 160981.doc 201236751 no more than 1:1, no more than 0.6:1 or no more than 0.5:1. When the spacing between reactor 322 and heater 332 is minimized, reactor outlet door 329 and heater inlet door 338 may be able to contact each other during opening. In this embodiment, the reactor outlet door 329 and the heater inlet door 338 can be configured to nest/overlap each other (but not in contact with each other) when both are fully open. Figure 4d is a side elevational view of a wood processing facility 416 including a reactor 322, a heater 332, and a vapor containment chamber 360 disposed therebetween. Figure 4d additionally illustrates an embodiment of a product vapor removal system or structure 400 employing one of the outlet doors 339 located adjacent the heater 332. The product vapor removal system 400 can be configured to deliver steam from the outlet gate 339 of the heater 332 and away from an area near the exit gate 339 (e.g., a recovery chamber). This configuration can be substantially reduced and in some embodiments can substantially prevent vapor from the chemically treated wood bundle exiting heater 332 and/or steam exiting reactor 322 and/or heater 332 from escaping. To the external environment. As shown in Figure 4d, the vapor containment chamber 360 and product vapor removal system 400 can be coupled or otherwise operatively coupled to a common venting system 402. The venting system 402 is for extracting steam and gas from the vapor containing chamber 360 and/or passing it through the product vapor removal system 400. Although Figure 4d illustrates one common venting system 402 for both the vapor containment chamber 360 and the product vapor removal system 400, an individual venting system can also be used for each containment/venting region of the wood treatment facility. In the embodiment illustrated in Figure 4d, the product vapor removal system 400 includes a venting shroud 404 and a venting chamber 406 disposed between the venting shroud 404 and the heater 332. The venting cap 404 and the venting chamber 406 can be coupled to a venting system 160981.doc -28-201236751 402, and the venting system 402 draws steam from the venting shroud 404 and/or the plenum 406. The plenum 406 can be configured to receive a chemically modified bundle of wood through the heater outlet door 339 (which opens into the plenum 406). The plenum chamber 406 can be equipped with a venting chamber outlet 408 through which the chemically modified wood material passes to a cooling location below the venting hood 404. In one embodiment, the plenum outlet 408 can be equipped with a door 409 that substantially isolates the exterior environment from the interior of the plenum 406 when closed. When the venting chamber is equipped with such a door, the venting chamber may also be equipped with venting holes (not shown) similar to the venting holes 370a, 370b of the steam containing chamber 360 previously described with reference to Figure 4c. However, in another embodiment, the plenum outlet 408 is configured to continually permit fluid to pass from the external environment into the interior of the plenum 406. In this embodiment, the plenum outlet 408 can be fully open to permit free flow of fluid therethrough. Alternatively, the plenum outlet 408 may be partially covered with a flexible material (eg, a suspended VISQUEEN sheet or a VISQUEEN strip) that permits passage of chemically treated wood bundles therethrough, but at least partially inhibits The free flow of fluid through it. In one embodiment of the invention, the plenum 406 can be completely eliminated and the venting shroud 404 can be positioned adjacent the exit gate 339 of the heater 332. As shown in Figure 4d, the venting system 402 can include one or more vacuum generators 410, a processing device 412, a flow finder 414, and a plurality of steam outlet conduits 349a through 349c. The vacuum generator 410 is operable to draw steam from the vapor containing chamber 360, the venting shroud 404, and/or the plenum 406 via outlet conduits 349a, 349b, 349c, respectively. The processing device 412 is operable to remove or modify 160981.doc -29-201236751 from one or more components of the vapor extracted from the vapor containing chamber 360, the venting shroud 404, and/or the plenum 406 via the vacuum generator 410. The composition of at least part of it. Examples of suitable processing means may include, but are not limited to, a scrubber, a thermal oxidizer, a catalytic oxidizer or other catalytic process and/or a precipitator. According to an embodiment, the flow director 414 is operable to direct steam flow among the steam outlet conduits 349a, 349b, 349c, for example, thereby in the steam containment chamber 360 and the product vapor removal structure (eg, a venting hood) The total venting capacity of the venting system 402 is distributed between 404 and/or the plenum 406) to adjust the total venting capacity of the vacuum generator 410. As used herein, the term "total venting capacity" refers to the maximum vapor volume that can be removed via a vacuum generator or other source system, expressed as a time based rate. For example, the distribution of the total venting capacity among the vapor containing chamber 360, the venting shroud 404, and/or the plenum 406 can facilitate the various steps of a chemical upgrading process. In one embodiment, the flow director 414 is operable to evenly distribute the total venting capacity (generally indicated as "X") such that the V3X is provided to the vapor containing chamber 360, the V3X is provided to the venting shroud 404, and the V3X is provided to Vent chamber 406. In another exemplary embodiment, the flow director 414 can distribute more venting capacity to one of the three regions (such as, for example, the vapor accommodating chamber 366) such that 2/3X is provided to The vapor containing chamber 360 provides V6X to the vent hood 404 and V6X to the plenum 406. An embodiment of the operation of the wood treatment facility 416 will now be described in detail with respect to Figure 4d. A first wood bundle (indicated by the letter "C" herein) can be loaded into the chemical upgrading reactor 322 via a reactor inlet gate 328 and chemically treated in 160981.doc -30-201236751. At the same time, the bundle (herein indicated by the letter "' can be represented by a heater door 338 to a second wood B") is introduced into the heater 332 and heated and/or (d). When the hydrazine is chemically modified and heated/dried in the chemical upgrading reactor 322 and the force, the 332, respectively, the crucible is removed from the venting chamber 406 - the third wood bundle (indicated by the letter "eight" in the text) And position it below the venting hood 404, as generally shown in Figure 4d.

一旦束A已被充分乾燥,即可將其自通氣罩404移除並輸 送至一儲存區域(未展示)。接*,可使用引流器414調整通 观系統402之總通氣容量之分配以使得增加分配至蒸汽容 納至360之通氣容量之量,而減少分配至通氣罩404之通氣 容量之量。接下來,在完成束「B」之加熱之後,加熱器 入口門338及加熱器出口門339可連續開放且存在於加熱器 3 3 2之内中之任何殘餘蒸汽或氣體可被移除並在進入通 氣系統402之前穿過蒸汽容納室36〇。在一項實施例中,加 熱器332之此排空亦可包括透過通氣罩4〇4及通氣室4〇6(當 存在時)將一外部流體(例如,環境空氣或其他惰性氣體)抽 取至該系統中。該外部流體可接著經由加熱器出口門339 進入加熱器332且在經由加熱器入口門338退出加熱器332 並通行至蒸 >飞容納室36〇中之前穿過加熱器332之内部。一 旦處於蒸汽容納室360中,該外部流體連同自加熱器332之 内部移除之任何殘餘蒸汽或氣體即可藉助通氣系統4〇2以 每小時至少2次交換、每小時至少4次交換或每小時至少6 次交換之一速率自蒸汽容納室36〇抽出。舉例而言,若該 通氣系統具有100立方米之一總體積且蒸汽移除之速率係 160981.doc •31 - 201236751 200立方米/小時,則每小時交換次數將係(200立方米/小 時)/( 100立方米)或每小時2次交換。 一旦已自蒸汽容納室3 60移除外部流體及殘餘蒸汽/氣 體,束B即可經由加熱器出口門339自加熱器332移除、穿 過通氣室406(若存在)並定位於通氣罩4〇4下方以冷卻及/或 進步乾燥束B,如先前詳細論述。可接著在順序地打開 反應器出口門329及反應器入口門328之前關閉加熱器出口 門339。此後,可使用通氣系統4〇2以自化學改質反應器 322之内部排空殘餘蒸汽或氣體。在一項實施例中,一外 部流體(例如,環境空氣或其他惰性氣體)可經由反應器入 口門328抽取至反應器322中且在經由反應器出口門329退 出至蒸汽容納室360中之前穿過反應器322之内部。如上文 所闡述,該外部流體及任何殘餘蒸汽或氣體可接著經由蒸 A出口管道349a以每小時至少2次交換、每小時至少4次交 換或每小時至少6次交換之-速率自蒸汽容納室360抽出。 此後束c可經由反應器出口門329自化學改質反應器 322移除並沿—輸送路徑399穿過蒸汽容納室则。在一項 貫施例中’產品通氣系統術可用以在於反應㈣2與加熱 器332之間輸送該束期間自蒸汽容納室36〇抽取氣體及蒸 汽。可接著在起始束C之加熱之前經由加熱器入口門338將Once bundle A has been sufficiently dried, it can be removed from venting hood 404 and transported to a storage area (not shown). In turn, the drain 414 can be used to adjust the distribution of the total venting capacity of the viewing system 402 such that the amount of venting capacity assigned to the steam capacity to 360 is increased, while the amount of venting capacity dispensed to the vent 404 is reduced. Next, after the completion of the heating of the bundle "B", the heater inlet door 338 and the heater outlet door 339 may be continuously opened and any residual steam or gas present in the heater 332 may be removed and The steam accommodating chamber 36 is passed before entering the venting system 402. In one embodiment, the evacuation of the heater 332 may also include extracting an external fluid (eg, ambient air or other inert gas) through the venting cover 4〇4 and the plenum chamber 4〇6 (when present) to In the system. The external fluid can then enter the heater 332 via the heater exit gate 339 and pass through the interior of the heater 332 before exiting the heater 332 via the heater inlet gate 338 and passing through the steaming > Once in the vapor containing chamber 360, the external fluid, along with any residual vapor or gas removed from the interior of the heater 332, can be exchanged by the venting system 4〇2 at least 2 times per hour, at least 4 times per hour, or every One of the exchanges of at least 6 exchanges per hour is withdrawn from the steam containing chamber 36. For example, if the venting system has a total volume of 100 cubic meters and the rate of steam removal is 160981.doc • 31 - 201236751 200 cubic meters per hour, the number of exchanges per hour will be (200 cubic meters per hour). / (100 cubic meters) or 2 exchanges per hour. Once the external fluid and residual steam/gas have been removed from the vapor containment chamber 3 60, the bundle B can be removed from the heater 332 via the heater outlet gate 339, passed through the plenum 406 (if present), and positioned in the hood 4 Below the crucible 4 to cool and/or progressively dry the bundle B, as discussed in detail above. The heater outlet gate 339 can then be closed prior to sequentially opening the reactor outlet gate 329 and the reactor inlet gate 328. Thereafter, aeration system 4〇2 can be used to evacuate residual steam or gas from the interior of the chemical upgrading reactor 322. In one embodiment, an external fluid (eg, ambient air or other inert gas) may be drawn into the reactor 322 via the reactor inlet gate 328 and worn before exiting into the vapor containing chamber 360 via the reactor outlet gate 329. Passing through the interior of reactor 322. As explained above, the external fluid and any residual steam or gas may then be exchanged via steaming outlet conduit 349a at least twice per hour, at least 4 exchanges per hour, or at least 6 exchanges per hour at a rate from the steam storage chamber. 360 pulled out. Thereafter the bundle c can be removed from the chemical upgrading reactor 322 via the reactor outlet gate 329 and passed through the vapor containing chamber along the delivery path 399. In one embodiment, the 'product venting system can be used to extract gas and steam from the vapor containing chamber 36(R) during transport of the bundle between reaction (4) 2 and heater 332. It can then be passed through the heater inlet gate 338 before the heating of the starting bundle C

160981.doc 第四束(未展示)裝載至化學改質反應器322 可減少至療汽容納室36〇之總通氣容量之分 •32- 201236751 配,同時增加至通氣罩404之分配,以藉此冷卻及/或進— 步乾燥束B。在重複上文所提及之步驟以處理—新木材束 序列之前在-裝載區域(未展示)令或在反應器人口門奶附 近裝配一第五束(未展示)。 應理解,在上文所闡述之操作順序中,某些步驟可較佳 以所闡述之次序實施,而某些步驟可同時實施及/或可切 換某些步驟之次序。僅為闡述操作木材處理系統416之一 個例示性方法而包含以上步驟序列。 微波加熱系統 根據一項實施例,上文所闡述之加熱系統中之一或多者 可包括利用微波能來加熱一或多個物件或物項之微波加熱 系統。除上文所闞述之木材處理設施之一項實施例以外’,、 粑據本發月之項實施例組態之微波力口熱系統亦可廣泛適 用於各種各樣之其他過程。應理解,雖然本文中主要關於 用於加熱「木材」或一「木材束」之過程進行闊述,但本 〇 文中所闡述之過程及系統可等效地適用於其中加熱一或多 個物品、物件或負載之應用。可利用如本文中所闡述之微 波加熱系統之其他類型之應用之實例可包含(但不限於)各 - 種材料之高溫真空陶瓷及金屬燒結、熔融、硬銲及熱處 理。在一項貫施例中,該微波加熱系統可包含一真空系統 (例如 彳政波真空加熱器)且可用於諸如礦物及半導體等 材料之真空乾燥、諸如水果及蔬菜等食品之真空乾燥、陶 瓷及纖維模具之真空乾燥以及化學溶液之真空乾燥。 現翻至圖5,根據本發明之一項實施例組態之—微波加 160981.doc -33- 201236751 熱系統420圖解說明為包括至少一個微波產生器422、一微 波加熱器430、一微波分佈系統44〇及一選用真空系統 450 °由微波產生器422生產之微波能可經由微波分佈系統 440之一或多個組件引導至微波加熱器43(^稍後將詳細論 述關於微波分佈系統44〇之組件及操作之額外細節。當存 在時’真空系統450可操作以將微波加熱器430中之壓力減 小至不大於550托、不大於45〇托、不大於35〇托、不大於 250托、不大於2〇〇托、不大於15〇托、不大於1〇〇托或不大 於75托。在一項實施例中,該真空系統可操作以將微波加 熱器43 0中之壓力減小至不大於1〇毫托(1〇_3托)、不大於$ 毫托、不大於2毫托、不大於丨毫托、不大於〇5毫托或不 大於〇.1毫托。現將在下文中詳細論述微波加熱系統42〇之 組件中之每一者。 微波產生器4 2 2可係能夠生產或產生微波能之任一裝 置。如本文中所使用,術語「微波能」係指具有在3训 MHz與30 GHz之間的-頻率之電磁能。如本文中所使用, 在-範圍中使用之術語「在·.·之間」意欲包含所列舉之端 點。舉例而言,一數字「在♦之間」可係χ”或自X至y 之間的任—值。在—項實施例中,微波加㈣統之各 種組態可利用具有9丨5耻之_頻率或Μ邮之一頻率 之微波能,此兩個頻率通常已指定為工業微波頻率。微波 產生器之適合類型之實例可包含(但不限於)磁控管、速調 首、行波管*喊管。在各種實施财,1多 生器422可能夠遞送(例如,具有以下項之-最大輪出)至少 160981.doc •34· 201236751 5 kW、至少30 kW、至少50 kW、至少60 kW、至少65 kW、至少75 kW、至少100 kW、至少i5〇 kW、至少200 kW、至少250 kW、至少350 kW、至少400 kW、至少500 kW、至少600 kW、至少750 kW或至少i,00〇 1^及/或不大 於2,500 kW、不大於1,500 kW或不大於i,〇〇〇 kW。儘管圖 解說明為包括一個微波產生器422,但微波加熱系統42〇可 包括級組態以按一類似方式操作之兩個或兩個以上微波產 生器。160981.doc The fourth bundle (not shown) loaded into the chemical upgrading reactor 322 can be reduced to the total ventilation capacity of the treatment storage chamber 36〇•32-201236751, and added to the distribution of the ventilation cover 404 to borrow This cools and/or further drys the bundle B. A fifth bundle (not shown) is assembled in the -loading zone (not shown) or in the vicinity of the reactor population door before repeating the steps mentioned above to process the new wood bundle sequence. It will be understood that in the sequence of operations set forth above, some of the steps may be carried out in the order illustrated, and some steps may be performed simultaneously and/or the order of the steps may be interchanged. The above sequence of steps is included merely to illustrate one exemplary method of operating wood processing system 416. Microwave Heating System According to one embodiment, one or more of the heating systems set forth above may include a microwave heating system that utilizes microwave energy to heat one or more items or items. In addition to an embodiment of the wood treatment facility described above, the microwave force oral heat system configured according to the embodiment of the present month is also widely applicable to a wide variety of other processes. It should be understood that although the process for heating "wood" or "wood bundle" is generally described herein, the processes and systems described in this document are equally applicable to heating one or more articles therein, Object or load application. Examples of other types of applications that may utilize a microwave heating system as set forth herein may include, but are not limited to, high temperature vacuum ceramics and metal sintering, melting, brazing, and heat treatment of various materials. In one embodiment, the microwave heating system can include a vacuum system (eg, a sinister vacuum heater) and can be used for vacuum drying of materials such as minerals and semiconductors, vacuum drying of foods such as fruits and vegetables, ceramics. And vacuum drying of the fiber mold and vacuum drying of the chemical solution. Turning now to Figure 5, a microwave system 160981.doc-33-201236751 thermal system 420 is configured to include at least one microwave generator 422, a microwave heater 430, a microwave distribution, configured in accordance with an embodiment of the present invention. The system 44 and a selected vacuum system 450 ° microwave energy produced by the microwave generator 422 can be directed to the microwave heater 43 via one or more components of the microwave distribution system 440 (^ will be discussed in detail later with respect to the microwave distribution system 44 Additional details of the components and operation. When present, the vacuum system 450 is operable to reduce the pressure in the microwave heater 430 to no more than 550 Torr, no more than 45 Torr, no more than 35 Torr, and no more than 250 Torr. No more than 2 Torr, no more than 15 Torr, no more than 1 Torr or no more than 75 Torr. In one embodiment, the vacuum system is operable to reduce the pressure in the microwave heater 43 0 Up to 1 〇 milliTorr (1〇_3 Torr), no more than $mTorr, no more than 2 mTorr, no more than 丨 millitorr, no more than 〇5 mTorr or no more than 〇.1 mTorr. The components of the microwave heating system 42 are discussed in detail below. Each of the microwave generators 42 2 can be any device capable of producing or generating microwave energy. As used herein, the term "microwave energy" means having a frequency between 3 MHz and 30 GHz. Electromagnetic energy. As used herein, the term "between" and "in the context" is intended to include the recited endpoints. For example, a number "between ♦" can be "" Any value between X and y. In the embodiment, the various configurations of the microwave plus (four) system can utilize microwave energy having a frequency of 9丨5 shame or a frequency of the mail, the two frequencies It has been generally designated as an industrial microwave frequency. Examples of suitable types of microwave generators may include, but are not limited to, magnetrons, speed-adjusting heads, traveling wave tubes, and shouting tubes. In various implementations, a multi-unit 422 may be capable of Delivery (eg, with the following - maximum rotation) at least 160981.doc • 34· 201236751 5 kW, at least 30 kW, at least 50 kW, at least 60 kW, at least 65 kW, at least 75 kW, at least 100 kW, at least i5 〇kW, at least 200 kW, at least 250 kW, at least 350 kW, at least 400 kW, at least 500 kW, at least 6 00 kW, at least 750 kW or at least i,00〇1^ and/or no more than 2,500 kW, no more than 1,500 kW or no more than i, 〇〇〇 kW. Although illustrated as including a microwave generator 422, microwave heating System 42A can include two or more microwave generators that are configured in stages to operate in a similar manner.

微波加熱器430可係能夠接納並使用微波能加熱一或多 個物品(包含(舉例而言)木材束或木料束)之任一裝置。在 一項實施例中,由微波加熱器430提供之熱量或能量之至 少75%、至少85%、至少95%或實質上全部可由微波能提 供。微波加熱器430亦可用作一微波乾燥器,其可進一步 操作以使用如本文中所闡述之微波能來乾燥安置於其中之 一或多個物項。 見翻至圖6, 一微波加熱器530之一項實施例圖解說明為 包括一容器本體532及用於選擇性地准許及阻擋進出微波 加熱器530之内部536之一或多個物件之存取或通行之一門 別。在-項實施例中,微波加熱器53()之容器本體说可 沿-中心伸長軸535伸長,該軸可沿一實質上水平方向定 向’如圖6中所圖解說明。容器本體532可具有任一適合形Microwave heater 430 can be any device capable of receiving and using microwave energy to heat one or more items, including, for example, wood bundles or wood bundles. In one embodiment, at least 75%, at least 85%, at least 95%, or substantially all of the heat or energy provided by microwave heater 430 can be provided by microwave energy. Microwave heater 430 can also be used as a microwave dryer that can be further operative to dry one or more items disposed therein using microwave energy as set forth herein. Turning to Fig. 6, an embodiment of a microwave heater 530 is illustrated as including a container body 532 and access for selectively permitting and blocking access to one or more items of the interior 536 of the microwave heater 530. Or pass one of the doors. In the embodiment, the container body of the microwave heater 53() is said to be extendable along a central extension axis 535 which can be oriented in a substantially horizontal direction' as illustrated in FIG. The container body 532 can have any suitable shape

新或大】t爿面。在—項實施例中,容器M2之剖面實 :上可係圓形或修圓的’而在另—實施例中 擴圓形的。根據一項實施例,容器本體如之剖面之J 16098 丨.doc •35- 201236751 及/或形狀可沿伸長方向改變,而在另一實施例中,其剖 面之形狀及/或大小可保持實質上相同。在圖6中所繪示之 實施例中’微波加熱器530之容器本體532包括具有一圓形 剖面之一水平伸長、圓柱形容器本體。 微波加熱器530可具有一總的最大内部尺寸或長度l及一 最大内徑D ’如圖6中所展示。在一項實施例中,l可係至 少8英尺、至少1〇英尺、至少16英尺至少2〇英尺至少 30奂尺、至少50英尺、至少75英尺、至少1〇〇英尺及/或不 大於500英尺、不大於35〇英尺、不大於25〇英尺。在另一 f! 貫施例中,D可係至少3英尺、至少5英尺、至少丨〇英尺、 至少12央尺、至少18英尺、至少2〇英尺至少25英尺或至 少30英尺及/或不大於25英尺、不大於汕英尺或不大於15 英尺。在一項實施例中,微波加熱器530之長度對其内徑 (L:D)之比率(ld)可係至少1:1、至少2:1、至少3 ^、至少 4:1、至少6:1、至少8:1、至少1〇:1及/或不大於5〇丨、不大 於40:1或不大於25:1。 微波加熱器530可由任一適合材料建構。在—項實施例< 中’微波加熱器530可包括至少一種導電及/或高反射材 料。適合材料之實例可包含(但不限於)選定碳鋼、不錄-鋼、鎳合金、銘合金及銅合金。微波加熱器53〇可幾乎完· 全由一單種材料建構’或可使用多種材料來建構微波加敎 器530之各種部分。舉例而言,在一項實施例中,微波加 熱β 530可由_第一材料建構且可接著在其内部及/或外部 表面之至少—部分上塗佈或分層一第二材料。在一項實施 160981.doc • 36 · 201236751 例中,該塗層或層可包括上文所列舉之金屬或合金中之一 或夕者而在另貫施例中,該塗層或層可包括玻璃、聚 合物或其他電介質材料。 微波加熱器530可界定適於接納一負載之一或多個空 • 間。舉例而言,在—項實施例中,微波加熱器530可界定 • 、經組態以接納及固持一或多個木材束(圖6中未展示)之-束 接納空間 <=該負載(例如,木材)可以—靜態或動態方式定 〇 位於微波加熱器53〇之内部536内。舉例而言,在其中該負 載靜態定位於微波加熱器530中之一項實施例中,該負载 可在加熱期間相對不運動且可使用靜態定位裝置(未展 示)(諸如舉例而吕一架子、一平臺、一停放之的搬運 車 知止的傳動帶或諸如此類)保持於適當位置。在其 中該負載動態定位於微波加熱器53〇内之另一實施例中, ^負載可在加熱期間在使用一或多個動態定位裝置(未展 示)進行加熱之至少一部分期間處於運動中。動態定位裝 〇 置之實例可包含(但不限於)連續移動傳動帶、滾輪、水平 及/或垂直振盪平臺以及旋轉平臺,在一項實施例中,一 或多個動態定位裝置可用於一大體連續過程中,而一或多 個靜態定位裝置可用於一分批或半分批過程中。 根據本發明之一項實施例,微波加熱器530亦可包括一 或多個密封機構以減小、抑制、最小化或實質上防止在處 理期間進出容器内部536之流體及/或微波能之洩漏。如圊 6中所圖解說明,容器本體532及門534可各自具有各別本 體側密封表面53 1及門側密封表面533。在一項實施例中, 160981 .doc •37. 201236751 本體側密封表面531及門側密封表面533可在關閉門534時 在門534與容器本體532之間直接或間接形成一流體密封。 可在本體側密封表面53 1及門側密封表面533之至少一部分 實現彼此直接實體接觸時形成一直接密封。可在於門534 密封時抵靠門側密封表面533及本體側密封表面531至少部 刀地壓縮用於流體地隔離微波加熱器5 3 0之内部與一外部 %境(圖6中未展示)之一或多個彈性密封構件時在門與 容器本體532之間形成一間接密封。彈性密封構件之實例 可包含(但不限於)〇型環、螺旋纏繞式墊片、片狀墊片及諸 如此類。根據一項實施例,當經受使用一 VaHan型號第 93841號偵測器根據在Alcatel Vacuum Techn〇i〇gy發佈之 標題為「Helium Leak Detection Techniques」之文件中闡 述之標題為「Spraying Testing」之程序B1進行之—氦洩漏 測試時,在容器本體532與門534之間形成之直接或間接密 封可使得微波加熱器530可在本體532與門534之接面處或 接近該接面具有不大於1〇-2托.升/秒、不大於1〇·4托升/秒 或不大於1〇_8托.升/秒之一流體茂漏率。在一項實施例中7 流體密封可在微波加熱器530内側之環境包括一低氣壓且 以其他方式具有挑戰性之處理環境時特別有利。 根據本發明之一項實施例組態之微波加熱器亦可包括一 微波阻流器,其用於在關閉門534時抑制或實質上防止噥 波加熱器530之門534與容器本體532之間的能量茂漏二 如,在門534與容器本體532之接面處或接近該接面)。如 本文中所使用,術語「阻流器」係指_微波容器之可操作 160981.doc •38- 201236751 以在施加微波能期間減小自該容器或逸出該容器之能量洩 漏之量之任一裝置或組件。在一項實施例中,阻流器可係 可操作以在與不採用一阻流器時相比將自該容器之微波洩 漏之量減小至少25%、至少50%、至少75%或至少90%之任 一裝置。在本發明之一項實施例中,微波阻流器可操作以 在藉助一\3“3 1^(^〇111^型號83 00之寬頻帶各向同性輻射 監視器(300 MHz至18 GHz)自容器量測5 cm時允許不大於 5〇毫瓦/平方釐米(mw/cm2)、不大於25 mW/cm2、不大於 10 mW/cm2、不大於5 mw/cm2或不大於2 mW/cm2之微波能 透過阻流器自加熱器洩漏。 進一步地’與習用微波阻流器(其通常在經受低氣壓時 出故障)相比’根據本發明之一項實施例組態之微波阻流 器可操作以甚至在全真空條件下實質上抑制微波能洩漏。 舉例而言,在一項實施例中,如本文中所闡述之一微波阻 流器可抑制微波能自加熱器洩漏至上文所闡述之在微波加 熱器中之壓力係不大於550托、不大於450托、不大於350 托、不大於250托、不大於2〇〇托、不大於1〇〇托或不大於 75托時之程度。在一項實施例中,如本文中所闡述之一微 波阻流器可抑制微波能自加熱器洩漏至如上文所闡述之在 微波加熱器中之壓力係不大於10毫托〇〇-3托)、不大於5毫 托、不大於2毫托、不大於【毫托、不大於〇5毫托或不大 於0.1毫托時之程度。進一步地,根據本發明之一項實施 例之-微波阻流器可在大型單元上維持料漏防止位準, 諸如(舉例而言)具有至少5kw、至少30kw、至少50kw、 160981.doc •39- 201236751 至少60 kW、至少65 kW、至少75 kw、至少i〇〇 kw、至少 150 kW、至少200 kW、至少25〇 kw、至少35〇 kw、至少 400 kW、至少500 kW、至少600 kw、至少75〇 kw或至少 1,000 kW及/或不大於2,5〇G kW、不大於丨’則kw或不大於 1,000 kW之一微波能輸入率之微波加熱器。 在一項實施例中,在甚至以上文所闡述之微波能及真空 壓力之位準將微波能引入至容器中時(例如,在加熱步驟 期間),實質上不在接近阻流器650處發生發弧。如本文中 所使用,術語「發弧」係指至少部分地藉由一周圍流體之 離子化所致之非期望、不受控制之放電。發弧(其可損壞 設備及材料且引起一實質上起火或爆炸危險)在較低壓力 (尤其低氣壓(例如,真空)壓力)下具有一較低臨限值。通 常’習用系統限制能量輸入之速率以最小化或避免發弧。 然而,與習用系統相比,根據本發明之實施例組態之微波 加熱器可操作以在壓力係不大於550托、不大於450托、不 大於350托、不大於250托、不大於200托' 不大於托、 不大於75托、不大於1〇毫托(10_3托)、不大於5毫托、不大 於2毫托、不大於1毫托、不大於〇·5毫托或不大於〇1毫托 及/或至少50托或至少75托時,以至少5 kW、至少30 kW、 至少50 kW、至少60 kW、至少65 kW、至少75 kW、至少 100 kW、至少150 kW、至少200 kW、至少250 kW、至少 350 kW、至少 400 kW、至少 500.kW、至少 600 kW、至少 750 kW或至少1,〇〇〇 kW及/或不大於2,500 kW、不大於 1,500 kW或不大於1,000 kW之一速率接納微波能並可將其 160981.doc •40· 201236751 引入至-微波加熱器(視需要稱為一真空微波加熱器或一 真空微波乾燥器)令而在阻流器處或接近阻流器處實質上 無發弧。 現參考圖7a,提供用於在關閉門㈣時實f上抑制―微 . 波加熱器之—卩1 634與—容器本體632之間的微波能浅漏之 一微波阻流器650之一項實施例之一剖面段。如圖〜中所 展示,當關閉門634且各別門側633及本體側631密封表面 彼此直接或間接接觸時,微波阻流器65〇之至少一部分協 作地界定或形成於門634與容器本體632之間。在一項實施 例中,亦可存在一選用流體密封構件66〇以抑制、最小化 或實質上防止進出微波加熱器之流體之洩漏,如先前所論 述。流體密封構件660(當存在時)可耦合至容器本體632或 (如圖7a中所展示)耦合至門634。 根據圖7a中所展示之一項實施例中,微波阻流器65〇界 定一第一徑向延伸阻流器腔652、一第二徑向延伸阻流器 ) 腔654及在關閉微波加熱器之門634時至少部分地安置於第 一阻流器腔652與第二阻流器腔654之間的一徑向延伸阻流 器導流壁656。在圖7a中所圖解說明之一項實施例中,當 關閉門634時第一阻流器腔652界定於容器本體632與阻流 器導流壁656之間,而第二阻流器腔654至少部分地安置於 門634與阻流器導流壁656之間,以使得阻流器導流壁656 貫質上搞合至門634。第一阻流器腔652可對微波加熱器之 内部開放且可徑向定位於微波加熱器之内部與藉由密封構 件660(當存在時)形成之流體密封之間。在本發明之另一實 160981.doc •41 - 201236751 施例(圖7a中未展示)中,第二阻流器腔654可至少部分地由 容器本體632界定,以使得當關閉門634時第二阻流器腔 654可定位於容器本體632與阻流器導流壁656之間,以使 得阻流器導流壁656實質上耦合至容器本體632。 在一項實施例中,當關閉門634時第二阻流器腔654之至 少一部分可靠攏著第一阻流器腔652之至少一部分延伸。 在一項實施例中,當關閉門634時第二阻流器腔654之總長 度之至少4G%、至少6G%、至少嶋或至少9()%可靠撤著第 一阻流器腔654延伸。第一阻流器腔652及/或第二阻流器 腔654之總長度(在圖乃中用字母「L」指定)可係微波加熱 器内部之微波能之主要波長長度之至少1/16倍、至少1/8 倍、至少U4倍及/或不大於丨倍、不大於3/4倍或不大於ι/2 倍。第一阻流器腔652及/或第二阻流器腔654 至少】英尺-至少丨.5英尺、至少2英尺或至少2.5英二 不大於8英尺、不大於6英尺或不大於$英尺。 如圖7b中所圖解說明,一相對延伸角①可界定於第一阻 流器腔652之延伸方向(由線69〇指定)與第二阻流器腔6以之 延伸方向(由線692指定)之間。在各種實施例中,相對延伸 角Φ可係不大於60。、不大於45。、不大於3〇。或不大於 15°。在某些實施例中,第二阻流器腔654之延伸方向可實 貝上平行於第一阻流器腔652之延伸方向,如圖h中所繪 示。 八現參考圖7c ’提供-微波阻流器之一局部等軸剖面部 分。如圖7C中所展#,阻流器導流壁656可整體地形成至 16098I.doc -42- 201236751 門634中。根據一項實施例,導流壁656可包括沿導流壁 656圓周地安置之複數個經隔開之開端式間隙670。在一項 實施例中^,該等間隙中之每一者之中心線之間的間隔可係 至〆0.5英寸、至少丨英吋、至少2英吋或至少2 $英吋及/或 不大於8英吋、不大於6英吋或不大於5英吋。 根據本發明之另一實施例,阻流器650之至少一部分可 包括可移除地耦合至容器本體632或門634之一可移除部分 ❹ 651。在一項實施_中,彳移除部分651可係可移除地耦合 至門634。如本文中所使用,術語「可移除地耦合」意指 以使得可在實質上不損壞或破壞容器本體、阻流器及/或 門之情況下移除阻流器之一部分之一方式附接。在一項實 施例中,可移除阻流器部分65丨可包括導流壁656之至少一 部分或全部。圖7d圖解說明具有至少一個可移除部分65 i 之祕波阻流器。在圖7 d中所繪示之一項實施例中,導流 壁656可耦合至可移除阻流器部分651。可移除阻流器部分 Q 651可包括各自可移除地耦合至門634或容器本體632(實施 例未展示)之複數個可移除阻流器段653&至653e。在一項 實施例中’可移除阻流器部分651可包括至少2個、至少3 個、至少4個、至少6個、至少8個及/或不大於16個、不大 於12個、不大於1 〇個或不大於8個可移除阻流器段653。根 據其中可移除阻流器部分651具有一大體環形直徑之一項 實施例’可個別移除阻流器段653&至6536可具有一大體弧 形形狀’如圖7d中所展示。 可移除阻流器部分65 1可根據任一習知方法(包含(舉例 160981.doc -43· 201236751 而。)螺栓、螺針或任一其他類型之適合可移除緊固裝置) 緊固至門634或容器本體632。在—項實施例中,可移除阻 流器部分651可磁性地緊固至門634或容器本體632。部分 地端視期望之緊固方法,可移除阻流器部分651可具有各 種各樣之剖面形狀。舉例而言,如圖至7h中所圖解說 明,可移除阻流器部分651可界定大體〇形(如圖k中所展 不)、大體J形或U形(如圖7f中所展示)、大體[形(如圖化中 所展示)或大體1形(如圖711中所展示)之一剖面。 在操作中,可在不移除容器本體632及/或門634之部分 或實質上再機械加卫容器本體632及/或門㈣之情況下附 接、移除及/或隨後替換可移除阻流器部分651以恢復微波 加熱器之正常操作。舉例而言,在一項實施例中,複數個 可個別移除阻流器段653&至653e可單獨地且個別地附接至 門634及/或容器本體632。隨後’當微波阻流器之一或多 個部分變得受損或以其他方式需要替換時,一或多個可個 別移除阻流器段653及/或整個可移除阻流器部分65丨可單 獨地且個別地自容器本體632或門634拆卸或移除並用一或 多個新(例如,替換)可移除阻流器段653及/或一新可移除 阻流器部分651替換。在一項實施例中,可自容器本體632 或門634拆卸且接著再附接至容器本體632或門634(例如, 自其移除且替換至其上)之可移除阻流器段653a、653b、 653c、653d及/或653e之數目可至多或不大於係可移除部分 6 5 1之阻流器段6 5 3 a至6 5 3 e之總數目。 知支波加熱器530(在圖6中一般性地表示)可端視其中之微 160981.doc -44 - 201236751 波能表現如何而分類為一單模式腔、一多模式腔或一準光 學腔。如本文中所使用,術語「單模式腔」係指經設計及 插作以將其中之微波能維持為一單個、特定模式型樣之一 腔。經常地,一單模式腔之設計及性質可限制容器之大小 及/或一負載可如何定位於該室内。因此,在一項實施例 中,微波加熱器530可包括一多模式或一準光學模式腔。 如本文中所使用,術語「多模式腔」係指其中以一半隨機 或未經引導方式將微波能激發成複數個駐波型樣之一腔或 室。如本文中所使用,術語「準光學模式腔」係指其中以 一受控方式朝向一特定區域引導大部分但並非全部能量之 一腔或至。在一項實施例中,一多模式腔在接近容器之中 心處具有比一準光學腔高之一能量密度,而準光學腔可利 用微波能之準光學性質以更緊密地控制及引導至腔内部中 之能量之發射。 翻回至圖5中所圖解說明之微波加熱系統420,微波分佈 系統440可操作以將由微波產生器422生產之微波能之至少 一部分傳輸或引導至微波加熱器430中,如上文簡單地論 述。如圖5中示意性地展示,微波分佈系統440可包含可操 作地麵合至一或多個微波發射器(圖解說明為發射器444a 至444c)之至少一個波導442。視需要,微波分佈系統440 可包括用於改變穿過其之微波能之模式之一或多個微波模 式轉換器446及/或用於將微波能選擇性地路由至微波發射 器444a至44^中之一或多者之一或多個微波切換器(未展 示)°現將在下文中詳細論述關於微波分佈系統440之特定 160981.doc • 45- 201236751 組件及各種實施例之額外細節。 波導442可操作以將微波能自微波產生器422輸送至微波 發射器444a至444c中之一或多者。如本文中所使用,術語 「波導」係指能夠將電磁能自一個位置引導至另一位置之 任一裝置或材料。適合波導之實例可包含(但不限於)同軸 電纜、包覆光纖、填充電介質之波導或任一其他類型之傳 輸線。在一項實施例中,波導442可包括用於將微波能自 微波產生422輸送至發射器444a至444c中之一或多者之 一或多個填充電介質之波導段。 波導442可經設計及建構以按一特定主要模式傳播微波 能。如本文中所使用,術語r模式」係指微波能之一大體 固疋剖面場型樣。在本發明之一項實施例中,波導442可 經組態以按一 TE^模式傳播微波能,其中$係自1至5之範 圍中之一整數且3;係〇。在本發明之另一實施例中,波導 442可經組態以按一 丁河心模式傳播微波能,其中&係〇且b係 自1至5之範圍中之一整數。應理解,如本文中所使用,在 用以闡述微波傳播之一模式時之α、&、1及少值之上文所界 定範圍貫穿此說明適用。進一步地,在某些實施例中,當 一系統之兩個或兩個以上組件闡述為「ΤΜα6」或「ΤΕ〇」 組件時’對於每一組件,α、6、λ:及/或少之值可係相同或不 同。在一項實施例中,對於一既定系統之每一組件,α、 石、X及/或;;之值係相同。 波導442之形狀及尺寸可至少部分地取決於將穿過其之 微波能之期望模式。舉例而言,在一項實施例中,波導 160981.doc -46 - 201236751 442之至少一部分可包括具有一大體矩形剖面之τΕ叮波 導,而在另一實施例中,波導442之至少一部分可包括具 有大體圓形剖面之TMfl6波導。根據本發明之一項實施例, 圓形剖面波導可具有至少8英吋、至少1〇英吋、至少12英 吋、至少24英吋、至少36英吋或至少4〇英吋之一直徑。在 另一實施例中,矩形剖面波導可具有至少丨英吋、至少2英 吋、至少3英吋及/或不大於6英吋、不大於5英吋或不大於 4英忖之一短尺寸’而長尺寸可係至少6英吋、至少1〇英 吋、至少12英吋、至少18英吋及/或不大於5〇英吋、不大 於35英吋或不大於24英吋。 如圖5中示意性地圖解說明,微波分佈系統44〇可包括可 操作以改變穿過其之微波能之模式之一或多個模式轉換段 446。舉例而言,模式轉換器446可包括用於將微波能之至 少一部分之模式自一 ΤΜαδ模式改變至一 ΤΕχ;;模式之一 ΤΜα6 至ΤΕ”模式轉換器。在另一實施例中,模式轉換段446可 包括用於接收TMai模式能量並將呈一 TE^模式之微波能轉 換及排放之一 TE^至ΤΜαδ模式轉換器。α、6、^及^之值可 在先前所闡述之範圍内。微波分佈系統44〇可包括任意數 目個模式轉換器446,且在一項實施例中可包含定位於微 波分佈系統44〇内之各種位置處之至少1個、至少2個、至 少3個或至少4個模式轉換器。 再次翻至圖5,微波分佈系統440可包括用於經由波導 442自產生器422接收微波能並將該微波能之至少—部分發 射或排放至微波加熱器430之内部中之一或多個微波發射 160981.doc •47· 201236751 器444。如本文中所使用,術語「微波發射器」或「發射 器」係指能夠將微波能發射至一微波加熱器之内部中之任 一裝置。根據本發明之各種實施例之微波分佈系統可採用 至少1個、至少2個、至少3個、至少4個、至少5個、至少6 個、至少8個、至少1〇個及/或不大於1〇〇個、不大於⑼個 或不大於25個微波發射器。微波發射器可係任—適合形狀 及/或大小且可由任何材料建構,包含(舉例而言)選定碳 鋼、不銹鋼、鎳合金、鋁合金及銅合金。在其中微波分佈 系統440包括兩個或兩個以上微波發射器之—項實施例 中,每一發射器可由相同材料製成,而在另—實施例中, 兩個或兩個以上發射器可由不同材料製成。 在操作中,由一或多個微波產生器422產生之微波能可 視需要經由波導442路由或引導至一#多個才莫式轉換器 446(若存在)。此後,波導442中之微波能可在被引導至一 或多個微波發射器(在圖5中圖解說明為㈣至444〇之前視 需要地分裂成兩個或兩個以上單獨微波部分(例如,如圖5 中所展不之至少三個部分)。微波發射器444&至*⑷可部 分地或整體地安置於微波加熱器43〇内且可操作以經由一 或多個經隔開之發射位置將通行至其之微波能之至少一部 :引入或發射至加熱器43〇之内部中,藉此加熱及/或乾燥New or big] t爿 face. In the embodiment, the cross-section of the container M2 is: rounded or rounded, and rounded in another embodiment. According to one embodiment, the container body has a profile such as J 16098 丨.doc • 35- 201236751 and/or the shape may vary in the direction of elongation, while in another embodiment, the shape and/or size of the profile may remain substantial. Same on the same. In the embodiment illustrated in Figure 6, the container body 532 of the microwave heater 530 includes a horizontally elongated, cylindrical container body having a circular cross-section. Microwave heater 530 can have a total maximum internal dimension or length l and a maximum inner diameter D' as shown in FIG. In one embodiment, l may be at least 8 feet, at least 1 foot, at least 16 feet, at least 2 feet, at least 30 feet, at least 50 feet, at least 75 feet, at least 1 foot, and/or no more than 500. Feet, no more than 35 feet, no more than 25 feet. In another embodiment, D may be at least 3 feet, at least 5 feet, at least 丨〇 feet, at least 12 央 feet, at least 18 feet, at least 2 feet, at least 25 feet, or at least 30 feet and/or not More than 25 feet, no more than 汕 feet or no more than 15 feet. In one embodiment, the ratio of the length of the microwave heater 530 to its inner diameter (L:D) (ld) may be at least 1:1, at least 2:1, at least 3^, at least 4:1, at least 6 : 1. At least 8:1, at least 1〇:1 and/or no more than 5〇丨, no more than 40:1 or no more than 25:1. Microwave heater 530 can be constructed from any suitable material. The microwave heater 530 may comprise at least one electrically conductive and/or highly reflective material. Examples of suitable materials may include, but are not limited to, selected carbon steels, non-recorded steels, nickel alloys, alloys, and copper alloys. The microwave heater 53 can be constructed almost entirely from a single material' or various materials can be used to construct various portions of the microwave heater 530. For example, in one embodiment, microwave heating β 530 can be constructed from a first material and can then be coated or layered on at least a portion of its inner and/or outer surface. In an embodiment 160981.doc • 36 · 201236751, the coating or layer may comprise one or the other of the metals or alloys listed above and in another embodiment, the coating or layer may comprise Glass, polymer or other dielectric material. The microwave heater 530 can define one or more spaces suitable for receiving a load. For example, in an embodiment, the microwave heater 530 can be defined, configured to receive and hold one or more wood bundles (not shown in FIG. 6) - the beam receiving space <= the load ( For example, wood) can be placed in a static or dynamic manner within the interior 536 of the microwave heater 53A. For example, in one embodiment in which the load is statically positioned in the microwave heater 530, the load can be relatively inactive during heating and a static positioning device (not shown) can be used (such as, for example, a shelf, A platform, a parked truck-carrying belt or the like is held in place. In another embodiment in which the load is dynamically positioned within the microwave heater 53A, the load can be in motion during heating for at least a portion of the heating using one or more dynamic positioning devices (not shown). Examples of dynamic positioning devices may include, but are not limited to, continuous moving belts, rollers, horizontal and/or vertical oscillating platforms, and rotating platforms, in one embodiment, one or more dynamic positioning devices may be used for a substantially continuous In the process, one or more static positioning devices can be used in a batch or semi-batch process. In accordance with an embodiment of the present invention, microwave heater 530 may also include one or more sealing mechanisms to reduce, inhibit, minimize, or substantially prevent leakage of fluid and/or microwave energy into and out of container interior 536 during processing. . As illustrated in Fig. 6, the container body 532 and the door 534 may each have a respective body side sealing surface 53 1 and a door side sealing surface 533. In one embodiment, 160981 .doc • 37. 201236751 The body side sealing surface 531 and the door side sealing surface 533 may form a fluid seal directly or indirectly between the door 534 and the container body 532 when the door 534 is closed. A direct seal can be formed when at least a portion of the body side sealing surface 53 1 and the door side sealing surface 533 are in direct physical contact with each other. The door 534 is sealed against the door side sealing surface 533 and the body side sealing surface 531 at least partially compressed for fluidly isolating the interior of the microwave heater 530 from an external environment (not shown in FIG. 6). One or more resilient sealing members form an indirect seal between the door and the container body 532. Examples of resilient sealing members can include, but are not limited to, 〇-shaped rings, spiral wound gaskets, sheet gaskets, and the like. According to one embodiment, the procedure entitled "Spraying Testing" as set forth in the document entitled "Helium Leak Detection Techniques" issued by Alcatel Vacuum Techn〇i〇gy is subjected to the use of a VaHan Model No. 93841 detector. The direct or indirect sealing formed between the container body 532 and the door 534 during the leak test performed by B1 may cause the microwave heater 530 to have no more than 1 at or near the junction of the body 532 and the door 534. 〇-2 Torr. liters/second, no more than 1 〇·4 Torr/sec or no more than 1 〇8 Torr. In one embodiment, the 7 fluid seal may be particularly advantageous when the environment inside the microwave heater 530 includes a low pressure and otherwise challenging processing environment. The microwave heater configured in accordance with an embodiment of the present invention may also include a microwave choke for suppressing or substantially preventing the gate 534 of the chopper heater 530 from the container body 532 when the door 534 is closed. The energy leakage is, for example, at or near the junction of the door 534 and the container body 532). As used herein, the term "flow blocker" means _ microwave container operable 160981.doc • 38-201236751 to reduce the amount of energy leakage from the container or the escape of the container during application of microwave energy. A device or component. In one embodiment, the choke can be operable to reduce the amount of microwave leakage from the container by at least 25%, at least 50%, at least 75%, or at least as compared to when a choke is not employed. 90% of any device. In one embodiment of the invention, the microwave choke is operable to operate with a wideband isotropic radiation monitor (300 MHz to 18 GHz) with a \3"3 1^(^〇111^ model 83 00) Allow no more than 5 〇mW/cm2 (mw/cm2), no more than 25 mW/cm2, no more than 10 mW/cm2, no more than 5 mw/cm2 or no more than 2 mW/cm2 when measuring 5 cm from the container. The microwave energy leaks from the heater through the choke. Further 'compared to a conventional microwave choke (which typically fails when subjected to low air pressure) - a microwave choke configured in accordance with an embodiment of the present invention Operable to substantially inhibit microwave energy leakage even under full vacuum conditions. For example, in one embodiment, a microwave spoiler as described herein can inhibit microwave energy leakage from the heater to the above The pressure in the microwave heater is not more than 550 Torr, no more than 450 Torr, no more than 350 Torr, no more than 250 Torr, no more than 2 Torr, no more than 1 Torr or no more than 75 Torr. In one embodiment, a microwave choke as described herein can suppress microwave energy The heater leaks to a pressure of no more than 10 mTorr〇〇-3 Torr in the microwave heater as described above, no more than 5 mTorr, no more than 2 mTorr, no more than [MTorr, no more than 〇 Further, the microwave choke can maintain a level of material leakage prevention on a large unit, such as, for example, having at least a level of no more than 0.1 mTorr. 5kw, at least 30kw, at least 50kw, 160981.doc •39- 201236751 at least 60 kW, at least 65 kW, at least 75 kw, at least i〇〇kw, at least 150 kW, at least 200 kW, at least 25〇kw, at least 35〇kw At least 400 kW, at least 500 kW, at least 600 kw, at least 75 〇kw or at least 1,000 kW and/or no more than 2,5 〇 G kW, no more than 丨' then kw or no more than 1,000 kW Microwave heater with microwave energy input rate. In one embodiment, when microwave energy is introduced into the container even at the level of microwave energy and vacuum pressure as set forth above (eg, during the heating step), substantially absent Arcing occurs near the choke 650. As used herein, The term "arcing" refers to an undesired, uncontrolled discharge resulting at least in part by ionization of a surrounding fluid. Arcing (which can damage equipment and materials and cause a substantial fire or explosion hazard) has a lower threshold at lower pressures (especially low pressure (e.g., vacuum) pressure). Conventional systems often limit the rate of energy input to minimize or avoid arcing. However, the microwave heater configured according to an embodiment of the present invention can be operated at a pressure system of no more than 550 Torr, no more than 450 Torr, no more than 350 Torr, no more than 250 Torr, and no more than 200 Torr. 'Not greater than Torr, no more than 75 Torr, no more than 1 〇 milliTorr (10 _ 3 Torr), no more than 5 mTorr, no more than 2 mTorr, no more than 1 mTorr, no more than 〇·5 mTorr or no more than 〇 1 mTorr and/or at least 50 Torr or at least 75 Torr, at least 5 kW, at least 30 kW, at least 50 kW, at least 60 kW, at least 65 kW, at least 75 kW, at least 100 kW, at least 150 kW, at least 200 kW, at least 250 kW, at least 350 kW, at least 400 kW, at least 500.kW, at least 600 kW, at least 750 kW or at least 1, 〇〇〇kW and / or no more than 2,500 kW, no more than 1,500 kW or not Receives microwave energy at a rate greater than 1,000 kW and can introduce 160981.doc •40· 201236751 to the microwave heater (as needed, referred to as a vacuum microwave heater or a vacuum microwave dryer) at the choke There is substantially no arcing at or near the choke. Referring now to Figure 7a, one of the microwave chokes 650 for suppressing microwave energy leakage between the "microwave heater" - the 卩1 634 and the container body 632 is provided on the real door f (4). A section of an embodiment. As shown in FIG. 9, when the door 634 is closed and the respective door side 633 and the body side 631 sealing surfaces are in direct or indirect contact with each other, at least a portion of the microwave choke 65 is cooperatively defined or formed on the door 634 and the container body. Between 632. In one embodiment, there may be a fluid sealing member 66 selected to inhibit, minimize or substantially prevent leakage of fluid entering and exiting the microwave heater, as previously discussed. Fluid seal member 660, when present, can be coupled to container body 632 or (as shown in Figure 7a) coupled to door 634. According to an embodiment shown in Figure 7a, the microwave choke 65 defines a first radially extending choke chamber 652, a second radially extending choke chamber 654, and the microwave heater is turned off. The gate 634 is at least partially disposed at a radially extending baffle diversion wall 656 between the first choke chamber 652 and the second choke chamber 654. In one embodiment illustrated in Figure 7a, the first choke chamber 652 is defined between the container body 632 and the choke deflector wall 656 when the door 634 is closed, while the second choke chamber 654 At least partially disposed between the door 634 and the baffle diversion wall 656 such that the baffle diversion wall 656 is snugly engaged to the door 634. The first choke chamber 652 can be open to the interior of the microwave heater and can be positioned radially between the interior of the microwave heater and the fluid seal formed by the sealing member 660 (when present). In another embodiment of the invention 160981.doc • 41 - 201236751 (not shown in Figure 7a), the second choke chamber 654 can be at least partially defined by the container body 632 such that when the door 634 is closed The two choke chamber 654 can be positioned between the vessel body 632 and the baffle diversion wall 656 such that the baffle diversion wall 656 is substantially coupled to the vessel body 632. In one embodiment, at least a portion of the second choke chamber 654 reliably extends over at least a portion of the first choke chamber 652 when the door 634 is closed. In one embodiment, at least 4 G%, at least 6 G%, at least 嶋, or at least 9 (%) of the total length of the second choke chamber 654 when the door 634 is closed is reliably withdrawn from the first choke chamber 654 . The total length of the first choke chamber 652 and/or the second choke chamber 654 (designated by the letter "L" in the figure) may be at least 1/16 of the main wavelength length of the microwave energy inside the microwave heater. Multiple, at least 1/8 times, at least U4 times and/or no more than 丨 times, no more than 3/4 times or no more than ι/2 times. The first choke chamber 652 and/or the second choke chamber 654 are at least [foot] at least -5 feet, at least 2 feet, or at least 2.5 inches, no more than 8 feet, no more than 6 feet, or no more than $ feet. As illustrated in Figure 7b, a relative extension angle 1 can be defined in the direction of extension of the first choke chamber 652 (specified by line 69A) and the direction in which the second choke chamber 6 extends (designated by line 692) )between. In various embodiments, the relative extension angle Φ can be no greater than 60. No more than 45. No more than 3 inches. Or no more than 15°. In some embodiments, the second choke chamber 654 extends in a direction parallel to the direction of extension of the first choke chamber 652, as depicted in Figure h. Eight is now provided with a partial isometric section of the microwave choke, with reference to Figure 7c'. As shown in Figure 7C, the baffle diversion wall 656 can be integrally formed into the gate 634 of 16098I.doc - 42 - 201236751. According to an embodiment, the flow guiding wall 656 can include a plurality of spaced apart open ends 670 disposed circumferentially along the flow guiding wall 656. In one embodiment, the spacing between the centerlines of each of the gaps may be 〆0.5 inches, at least 丨 吋, at least 2 inches, or at least 2 $ inches and/or no greater than 8 inches, no more than 6 inches or no more than 5 inches. In accordance with another embodiment of the present invention, at least a portion of the flow blocker 650 can include a removable portion 651 that is removably coupled to the container body 632 or the door 634. In one implementation, the 彳 removal portion 651 can be removably coupled to the gate 634. As used herein, the term "removably coupled" means to attach one of the portions of the choke that can be removed without substantially damaging or destroying the container body, the flow blocker and/or the door. Pick up. In one embodiment, the removable baffle portion 65A can include at least a portion or all of the flow guiding wall 656. Figure 7d illustrates a secret wave blocker having at least one removable portion 65i. In an embodiment illustrated in Figure 7d, the flow guiding wall 656 can be coupled to the removable baffle portion 651. Removable spoiler portion Q 651 can include a plurality of removable spoiler segments 653 & 653e that are each removably coupled to door 634 or container body 632 (not shown). In one embodiment, the 'removable baffle portion 651 can include at least 2, at least 3, at least 4, at least 6, at least 8, and/or no more than 16, no more than 12, no More than 1 或 or no more than 8 removable choke segments 653. Depending on the embodiment in which the removable baffle portion 651 has a large annular diameter, the respective blocker segments 653 & 6536 can be removed to have a generally arcuate shape' as shown in Figure 7d. The removable baffle portion 65 1 can be secured according to any conventional method (including (for example, 160981.doc -43· 201236751) bolts, screws, or any other type of suitable removable fastening device) To the door 634 or the container body 632. In the embodiment, the removable baffle portion 651 can be magnetically fastened to the door 634 or the container body 632. Partially depending on the desired fastening method, the removable baffle portion 651 can have a wide variety of cross-sectional shapes. For example, as illustrated in Figures 7h, the removable baffle portion 651 can define a generally dome shape (as shown in Figure k), a generally J-shape or a U-shape (as shown in Figure 7f). A section of a general shape (shown in the figure) or a general shape (as shown in Figure 711). In operation, the attachment, removal, and/or subsequent replacement may be removed without removing the container body 632 and/or the portion of the door 634 or substantially mechanically securing the container body 632 and/or the door (4). The choke portion 651 recovers the normal operation of the microwave heater. For example, in one embodiment, a plurality of individually removable spoiler segments 653 & 653e can be individually and individually attached to door 634 and/or container body 632. Then one or more may individually remove the choke section 653 and/or the entire removable baffle portion 65 when one or more portions of the microwave choke become damaged or otherwise require replacement. The crucible can be detached or removed from the container body 632 or the door 634 individually and individually and with one or more new (eg, replacement) removable spoiler segments 653 and/or a new removable spoiler portion 651. replace. In one embodiment, the removable spoiler segment 653a can be detached from the container body 632 or the door 634 and then reattached to the container body 632 or door 634 (eg, removed therefrom and replaced) The number of 653b, 653c, 653d, and/or 653e may be at most or not greater than the total number of spoiler segments 6 5 3 a to 6 5 3 e of the removable portion 615. Known wave heater 530 (generally shown in Figure 6) can be classified as a single mode cavity, a multimode cavity or a quasi-optical cavity depending on how the wave performance is 160981.doc -44 - 201236751 . As used herein, the term "single mode cavity" refers to a cavity that is designed and inserted to maintain the microwave energy therein as a single, specific mode pattern. Frequently, the design and nature of a single mode cavity can limit the size of the container and/or how a load can be positioned within the chamber. Thus, in one embodiment, microwave heater 530 can include a multi-mode or quasi-optical mode cavity. As used herein, the term "multi-mode cavity" refers to a cavity or chamber in which microwave energy is excited into a plurality of standing wave patterns in a half random or unguided manner. As used herein, the term "quasi-optical mode cavity" refers to a cavity or to which most, but not all, of the energy is directed toward a particular area in a controlled manner. In one embodiment, a multi-mode cavity has an energy density higher than a quasi-optical cavity near the center of the container, and the quasi-optical cavity can utilize the quasi-optical properties of microwave energy to more closely control and direct to the cavity The emission of energy in the interior. Turning back to the microwave heating system 420 illustrated in Figure 5, the microwave distribution system 440 is operable to transfer or direct at least a portion of the microwave energy produced by the microwave generator 422 into the microwave heater 430, as briefly discussed above. As schematically shown in Fig. 5, microwave distribution system 440 can include at least one waveguide 442 operatively coupled to one or more microwave emitters (illustrated as emitters 444a through 444c). The microwave distribution system 440 can include one or more microwave mode converters 446 for varying the microwave energy passing therethrough and/or for selectively routing microwave energy to the microwave emitters 444a through 44^, as desired. One or more of the one or more microwave switchers (not shown) ° Additional details regarding the specific 160981.doc • 45-201236751 components and various embodiments of the microwave distribution system 440 will now be discussed in detail below. Waveguide 442 is operable to deliver microwave energy from microwave generator 422 to one or more of microwave emitters 444a through 444c. As used herein, the term "waveguide" refers to any device or material that is capable of directing electromagnetic energy from one location to another. Examples of suitable waveguides can include, but are not limited to, coaxial cables, coated fibers, dielectric filled waveguides, or any other type of transmission line. In one embodiment, waveguide 442 can include a waveguide segment for delivering microwave energy from microwave generation 422 to one or more of the dielectrics 444a through 444c. Waveguide 442 can be designed and constructed to propagate microwave energy in a particular primary mode. As used herein, the term "r-mode" refers to a pattern of substantially solid-state profile fields of microwave energy. In one embodiment of the invention, waveguide 442 can be configured to propagate microwave energy in a TE^ mode, where $ is an integer from 3 to 5 and 3; In another embodiment of the invention, the waveguide 442 can be configured to propagate microwave energy in a singular mode, where & 〇 and b is an integer from one of the ranges of 1 to 5. It will be understood that as used herein, the above defined ranges of alpha, &, 1 and minor values when used to illustrate one mode of microwave propagation are applicable throughout this description. Further, in some embodiments, when two or more components of a system are described as "ΤΜα6" or "ΤΕ〇" components, 'for each component, α, 6, λ: and/or less Values can be the same or different. In one embodiment, the values of alpha, stone, X, and/or; are the same for each component of a given system. The shape and size of the waveguide 442 can depend, at least in part, on the desired mode of microwave energy that will pass through it. For example, in one embodiment, at least a portion of the waveguide 160981.doc -46 - 201236751 442 can include a τ Ε叮 waveguide having a generally rectangular cross section, while in another embodiment, at least a portion of the waveguide 442 can include TMfl6 waveguide with a generally circular cross section. According to an embodiment of the invention, the circular section waveguide may have a diameter of at least 8 inches, at least 1 inch, at least 12 inches, at least 24 inches, at least 36 inches, or at least 4 inches. In another embodiment, the rectangular section waveguide may have a short dimension of at least 丨 吋, at least 2 inches, at least 3 inches, and/or no more than 6 inches, no more than 5 inches, or no more than 4 inches. 'The long dimension may be at least 6 inches, at least 1 inch, at least 12 inches, at least 18 inches and/or no more than 5 inches, no more than 35 inches or no more than 24 inches. As schematically illustrated in Figure 5, the microwave distribution system 44A can include one or more mode transition segments 446 that are operable to change the mode of microwave energy therethrough. For example, mode converter 446 can include a mode for changing at least a portion of the microwave energy from one ΤΜαδ mode to one ΤΕχ; one of modes ΤΜα6 to ΤΕ” mode converter. In another embodiment, mode conversion Segment 446 may include one of the TE^ to ΤΜαδ mode converters for receiving the TMai mode energy and converting and discharging the microwave energy in a TE^ mode. The values of α, 6, ^, and ^ may be within the ranges previously set forth. The microwave distribution system 44A can include any number of mode converters 446, and in one embodiment can include at least one, at least two, at least three, or at various locations within the microwave distribution system 44A. At least 4 mode converters. Turning again to FIG. 5, the microwave distribution system 440 can include receiving microwave energy from the generator 422 via the waveguide 442 and emitting or discharging at least a portion of the microwave energy to the interior of the microwave heater 430. One or more of the microwave emissions 160981.doc • 47· 201236751 444. As used herein, the term "microwave emitter" or "transmitter" refers to the ability to transmit microwave energy to a micro The internal heater of an apparatus according to any of. The microwave distribution system according to various embodiments of the present invention may employ at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 8, at least 1 and/or no more than 1 、, no more than (9) or no more than 25 microwave emitters. The microwave emitter can be adapted - suitable for shape and/or size and constructed from any material, including, for example, selected carbon steel, stainless steel, nickel alloys, aluminum alloys, and copper alloys. In embodiments where the microwave distribution system 440 includes two or more microwave emitters, each emitter may be made of the same material, while in another embodiment, two or more emitters may be Made of different materials. In operation, microwave energy generated by one or more microwave generators 422 can be routed or directed via waveguide 442 to a plurality of array converters 446, if any. Thereafter, the microwave energy in the waveguide 442 can be split into two or more separate microwave portions as desired before being directed to one or more microwave emitters (illustrated as (4) to 444 图 in FIG. 5 (eg, As shown in Figure 5, at least three portions) microwave transmitters 444 & to * (4) may be partially or wholly disposed within microwave heater 43A and operable to transmit via one or more spaced apart At least one portion of the microwave energy that is passed to it: introduced or launched into the interior of the heater 43, thereby heating and/or drying

女置於其中之物件、物〇斗、A 千物。°或負載,包含(舉例而言)一或多 個木材束。現將在下文中詳細論述關於微波加熱系統之各 種實施例之特定組態及細節。 現翻至圖8至10 提供根據本發明組態之微波加熱系統 160981.doc -48- 201236751 之數個貫施例。儘管闡述為經組態以接納及加熱一木材 束,但應理解,下文所闡述之微波加熱系統可適於在先前 所闡述之其他過程及系統中之任一者中以及其中使用微波 加熱之任一系統或過程中使用。進一步地,應理解,儘管 - 參考一特定圖或實施例闡述,但下文所闡述之所有元件及 ’卫件了適於在根據本發明之一或多個實施例組態之任一微 波加熱系統中使用。 ❹ 現翻至圖8&及8b,一微波加熱系統720之一項實施例係 圖解說明為包括一微波加熱器73〇及用於將微波能自一微 波產生器(未展示)遞送至加熱器73〇之一微波分佈系統 740。在各種實施例中,一選用真空系統(未展示)可操作以 將微波加熱器730之内部中之壓力減小至(舉例而言)不大於 550托、不大於450托、不大於35〇托、不大於3〇〇托不大 於250托、不大於20〇托、不大於15〇托不大於ι〇〇托不 大於75托及/或不大於1〇毫托(1〇_3托)、不大於5毫托、不大 〇 於2毫托、不大於1毫托、不大於0.5毫托或不大於(^丨毫 托。下文將詳細論述微波加熱系統72〇之一或多個實施例 之數個特徵。 現翻至圖8a,微波分佈系統74〇係圖解說明為包括一經 伸長之波導發射器760,其至少部分地且可整體地安置於 微波加熱器730之内部内。如圖“中所展示,經伸長之波 V心射器760可只質上水平地延伸於微波加熱器73〇之内部 内。如本文中所使用,術語「實質上水平地」意指在水平 面之1〇内。在一項實施例中,經伸長之波導發射器760之 160981.doc -49- 201236751 長度對微波加熱器730之内部空間之總長度之比率可係(舉 例而言)至少0.3··卜至少〇.5:1、至少〇75:1或至少〇9〇/ 在-項實施例中,實質上水平地延伸之經伸長之波導發射 器760可位於朝向微波加熱器咖之内部體積之上半部或下 半部處且可至少部分地或整體地垂直安置於加熱 738及一選用加熱器出口門(未展示)上面,該選用加孰号出 口門(若存在)安置於微波加熱器73〇之-大體相對端上。如 本文中所使用,術語「上部」及「下部」體積係指位於容 器之内部體積之上部垂直或下部垂直部分中之區。在—項 Λ施例中’經伸長之波導發射n 可(舉例而言)整體地安 置於微波加熱器730之内部體積之最上部三分之一、四分 之-或五分之-内,而在另一實施例中,經伸長之波導發 射器760可(舉例而言)安置於微波加熱器73〇之總内部體積 之最下部三分之一、四分之一或五分之一内。為量測上文 所閣述之總内部體積之「最上部」或「最下部」分率部 分,自容器之各別最上部或最下部壁朝向剖面之期望部分 (例如,三分之一、时之一或五分之一)之中心伸長軸延 伸之容器剖面之部分可沿中心伸長軸延伸以藉此界定内部 容器空間之「最上部」或「最下部」分率體積。 如圖8a中所展示,可經組態以接納及加熱一木材束之微 波加熱器730包括一加熱器入口門738,纟可視需要包括經 組態以允許將一木材束702引入至一束接納空間739中之一 阻流器(未展示)。儘管圖解說明為直接接觸,但應理解, 束702亦可包括安置於板之間的一或多個間隔件或「黏附 I6098l.doc •50- 201236751Women placed in them, things, fighting, A thousand things. ° or load, including, for example, one or more wood bundles. Specific configurations and details regarding various embodiments of the microwave heating system will now be discussed in detail below. Turning now to Figures 8 through 10 is provided a number of embodiments of a microwave heating system 160981.doc-48-201236751 configured in accordance with the present invention. Although illustrated as being configured to receive and heat a bundle of wood, it should be understood that the microwave heating system set forth below may be adapted to be used in any of the other processes and systems previously described and in which microwave heating is used. Used in a system or process. Further, it should be understood that all of the elements and 'guards' set forth below are suitable for use in any of the microwave heating systems configured in accordance with one or more embodiments of the present invention, although described with reference to a particular figure or embodiment. Used in. Turning now to Figures 8 & and 8b, an embodiment of a microwave heating system 720 is illustrated as including a microwave heater 73A and for delivering microwave energy from a microwave generator (not shown) to the heater. One of the 73 微波 microwave distribution systems 740. In various embodiments, a vacuum system (not shown) is operable to reduce the pressure in the interior of the microwave heater 730 to, for example, no greater than 550 Torr, no greater than 450 Torr, and no greater than 35 Torr. , not more than 3 〇〇 不 no more than 250 Torr, no more than 20 〇 、, no more than 15 〇 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不Not more than 5 mTorr, not more than 2 mTorr, not more than 1 mTorr, not more than 0.5 mTorr or not more than (^ 丨 mTorr. One or more embodiments of the microwave heating system 72 下文 will be discussed in detail below. Turning now to Figure 8a, the microwave distribution system 74 is illustrated as including an elongated waveguide emitter 760 that is at least partially and integrally disposed within the interior of the microwave heater 730. As shown, the elongated wave V-emitter 760 can only extend horizontally within the interior of the microwave heater 73. As used herein, the term "substantially horizontal" means 1 in the horizontal plane. In one embodiment, the elongated waveguide emitter 760 is 160981.doc - 49-201236751 The ratio of the length to the total length of the internal space of the microwave heater 730 may be, for example, at least 0.3··· at least 〇.5:1, at least 〇75:1 or at least 〇9〇/ at-item In an embodiment, the substantially horizontally extending elongated waveguide emitter 760 can be located at an upper or lower half of the interior volume of the microwave heater and can be disposed at least partially or integrally vertically at the heating 738 and Upon selection of a heater exit door (not shown), the optional exit door (if present) is placed on the substantially opposite end of the microwave heater 73. As used herein, the terms "upper" and "lower" are used. "Volume" means the zone located in the vertical or lower vertical portion above the internal volume of the container. In the embodiment, the elongated waveguide emission n may, for example, be integrally disposed within the microwave heater 730 The uppermost third, quarter, or fifth of the volume is within, while in another embodiment, the elongated waveguide emitter 760 can be disposed, for example, in the total of the microwave heater 73 The lower third of the internal volume Within a quarter or a fifth. To measure the "top" or "lowest" fraction of the total internal volume as described above, from the top or bottommost wall of each container A portion of the cross-section of the container from which the central portion of the desired portion of the profile (eg, one-third, one-time, or one-fifth) extends may extend along the central axis of elongation to thereby define the "uppermost" portion of the inner container space or The "lowermost" fractional volume. As shown in Figure 8a, the microwave heater 730, which can be configured to receive and heat a bundle of wood, includes a heater inlet door 738, optionally configured to allow for a The wood bundle 702 is introduced into one of a bundle of receiving spaces 739 (not shown). Although illustrated as being in direct contact, it should be understood that the bundle 702 can also include one or more spacers disposed between the plates or "adhering I6098l.doc • 50-201236751

Ο 物」。在一項實施例(未展示)中,微波加熱器73〇亦可包括 定位於微波加熱器730之與加熱器入口門73 8相對之端上之 一選用加熱器出口門739。當微波加熱器730包括一單獨加 熱器出口門739時,束702可視需要經由入口門738裝載、 穿過微波加熱器730並經由出口門739卸載,而非透過加熱 器入口門73 8裝載及卸載。在此實施例中提及「入口」及 「出口」門並非限制性的,且束702可視需要經由門739裝 載、穿過微波加熱器730並經由門738卸載。此外,在另一 實施例中,當(舉例而言)不存在選用出口門739時,束702 可既自入口門738裝載(插入)又自入口門738卸載(移除)。 在一項實施例中,經伸長之波導發射器76〇可定位於微波 加熱器730中#質上在束7〇2下面(未展示)或上面以使得當 束702通行至加熱器73〇之内部中、自加熱器73〇之内部通 打出及/或穿過加熱器73〇之内部時,不必移動、移除、撤 回或以其他方式重新定位經伸長之發射器。 現參考圖8b ’提供經伸長之波導發射^ 之—局部詳 細等,視®。在—項實施例中,經伸長之波導發射器760 y係實質上中空的且包括—或多個側壁。該―或多個側壁 ° 種各樣之方式組態以使得經伸長之波導發射器760 可具有各種各樣之剖面形狀。舉例而言,在一項實施例 中’經伸長之波導發射器剔可具有m質上圓形或 橢圓形剖面形狀之-單個側壁。在另-實施例中,如圖8b 中所展不經伸長之波導發射器760可包括四個實質上平 面之側壁764Q 764d,其經配置以將—大體矩形橫向(或 160981.doc •51 - 201236751 在另一實施例中,正方形)剖面組態賦予發射器%卜經伸 長之波導發射器760可經組態以按任一適合模式(包含了心 及/或ΤΜ心模式)傳播及/或發射微波能,如先前詳細論述; 根據-項實施例’經伸長之波導發射器76〇可包括一經伸 長之TExy發射器’且在—項實施例中,可實施有市售之矩 形波導大小,諸如WR284、WR43(^WR34〇。經伸長之波 導發射器760之特定尺寸可係任何適合尺寸,且在二項實 施例中’可係定製製作的。 如圖时所圖解說明,經伸長之波導發射器76()之一或 多個側壁可界定用於將微波能排放或發射至微波加熱器 730之内部中之複數個發射開口。儘管在圖朴中繪示為界 定具有帶有修圓端部之-大體矩形形狀之複數個經伸長之 槽7673至767e ’但發射開口雇至767e可具有任—適合形 狀。經伸長之槽7673至76化中之每一者可界定一長度(在 圖8b中指定為「L」)及—寬度(在圖❿中指定為「w」)。 在一項實施例中,經伸長之槽76乃至767e之長度對寬度 (L:W)比率可係(舉例而言)至少2:1、至少3:1、至少或至 少5:1。另外,如圖肋中所展示,經伸長之槽767&至76化可 相對於水平面以各種角度定向。在一項實施例中,經伸長 之槽767a至767e可相對於水平面以(舉例而言)至少1〇。、至 少20。、至少30。及/或(舉例而言)不大於8〇。、不大於%。或 不大於60。之一角度延伸。在一項實施例中,經伸長之槽 767a至767e中之每-者可具有相同形狀、大小及/或定向。 在一項實施例中,個別經伸長之槽76以至767e之形狀、大 160981.doc •52- 201236751 小及/或定向可不同βΟ物". In an embodiment (not shown), the microwave heater 73A may also include a selected heater outlet door 739 positioned opposite the heater heater inlet door 73 8 of the microwave heater 730. When the microwave heater 730 includes a separate heater exit gate 739, the bundle 702 can optionally be loaded via the inlet gate 738, passed through the microwave heater 730 and unloaded via the outlet gate 739, rather than being loaded and unloaded through the heater inlet gate 73 8 . Reference to "inlet" and "outlet" doors in this embodiment is not limiting, and bundle 702 can be loaded via door 739, through microwave heater 730, and unloaded via door 738, as desired. Moreover, in another embodiment, when, for example, no exit door 739 is selected, the bundle 702 can be loaded (inserted) from the entry door 738 and unloaded (removed) from the entry door 738. In one embodiment, the elongated waveguide emitter 76 can be positioned in the microwave heater 730 in the mass below the beam 7〇2 (not shown) or above such that when the beam 702 passes to the heater 73 It is not necessary to move, remove, withdraw or otherwise reposition the elongated emitter when the interior of the heater 73 is driven out and/or through the interior of the heater 73. Referring now to Figure 8b', an elongated waveguide emission is provided - a partial detail, etc., depending on the ®. In an embodiment, the elongated waveguide emitter 760y is substantially hollow and includes - or a plurality of sidewalls. The "or multiple sidewalls" are configured in a variety of ways such that the elongated waveguide emitter 760 can have a wide variety of cross-sectional shapes. For example, in one embodiment, an elongated waveguide emitter can have a single sidewall with an m-shaped circular or elliptical cross-sectional shape. In another embodiment, the waveguide emitter 760, which is not elongated as shown in Figure 8b, can include four substantially planar sidewalls 764Q 764d that are configured to be - generally rectangular laterally (or 160981.doc • 51 - 201236751 In another embodiment, a square) profile configuration imparts a transmitter to the elongated waveguide transmitter 760 that can be configured to propagate in any suitable mode (including cardiac and/or cardiac modes) and/or The microwave energy is emitted as previously discussed in detail; the elongated waveguide transmitter 76 can comprise an elongated TExy transmitter 'and in an embodiment, a commercially available rectangular waveguide size can be implemented, Such as WR284, WR43 (^WR34〇. The specific dimensions of the elongated waveguide emitter 760 can be any suitable size, and can be custom made in the two embodiments. As illustrated, the elongation One or more sidewalls of the waveguide emitter 76(s) may define a plurality of emission openings for discharging or emitting microwave energy into the interior of the microwave heater 730. Although illustrated in FIG. End - big The plurality of elongated slots 7673 to 767e' of the rectangular shape may have any suitable shape for the firing opening 767e. Each of the elongated slots 7673 to 76 may define a length (specified in Figure 8b) "L") and - width (designated as "w" in the figure). In one embodiment, the length to width (L:W) ratio of the elongated groove 76 or even 767e may be (for example, At least 2:1, at least 3:1, at least or at least 5: 1. Additionally, as shown in the ribs, the elongated grooves 767 & 76 can be oriented at various angles relative to the horizontal plane. In one embodiment The elongated grooves 767a to 767e may be, for example, at least 1 〇, at least 20, at least 30, and/or, for example, not more than 8 〇, not more than %, relative to the horizontal plane. Not more than 60. One of the angular extensions. In one embodiment, each of the elongated grooves 767a through 767e can have the same shape, size, and/or orientation. In one embodiment, the individual is elongated The groove 76 is up to the shape of 767e, the size of 160981.doc •52-201236751 is small and/or the orientation can be different β

丨〗心伸長之槽767a至767e之形狀、大小 及/或疋向之改變可马纟前A ^ 了〜I自經伸長之波導發射器760發射之 能置之分佈。儘答A园〇1丄 s在圖8b中所圖解說明之實施例中展示為 未經覆蓋,但一或客伽2欠& 4多個發射開口 767可實質上由毗鄰於發 射開口之或夕個覆蓋結構(未展示)覆蓋,該-或多個覆 i ”、σ才冓可知作以防止進出開口 767之流體之流動但允許自 其排放微波能。 0 如圖8b中所展不’發射開π 767a至767e可係至少部分地 或整體地由經伸長之波導發射器76〇之一或多個側壁76^ 至764d界疋。在一項實施例中,發射開口 767a至767e之厚 度之至)50/。、至少75%、至少85%或至少9〇%(舉例而言) 可由一或多個侧壁764&至764d界定。根據圖肫中所圖解說 明之實施例’發射開口 767&至7676可至少部分地或整體地 由兩個實質上直立側壁764a、764c界定。如本文中所使 用術ecr實質上直立」意指在垂直面之30。内。在一項 ◎ 實施例中’經伸長之發射器760之側壁764a至764d可係相 對厚’而在其他一項實施例中,側壁76乜至764£1可係相對 薄。舉例而言’側壁764a至764d之平均厚度(在圖8b中指 定為λ:)可係至少ι/32(〇.〇3 125)英吋、至少1/8(0.125)英吋、 至少3/16(0‘1875)英吋及/或(舉例而言)不大於1/2(0.5)英 叶、不大於1/4(0.25)英吋、不大於3/16(0.1875)英11寸或不大 於1/8(0.125)英吋。根據其中經伸長之波導發射器760之一 或多個側壁係相對薄之一項實施例,經伸長之波導發射器 760可以至少50%、至少75%、至少85%、至少90%或至少 160981.doc -53· 201236751 95%之一微波發射效率將微波能發射至微波加熱器730之 内部中。如本文中所使用,術語「微波發射效率」可藉由 將以下方程式之結果轉換成一百分比來界定:(引入至發 射器中之總能量-自發射器之所有開口中排放之總能 量Μ引入至發射器中之總能量)。 發射開口 767a至767e可係根據任一適合組態或配置沿經 伸長之波導發射器760配置。在圖8b中所圖解說明之一項 實施例中,發射開口 767a至767e可包含安置於發射器760 之一個側上之一第一發射開口(例如,發射開口 767a、 767b)組及安置於經伸長之波導發射器760之另一大體相對 側上之一第二發射開口(例如,發射開口 767c至767e)組。 根據一項實施例,第一發射開口組及第二發射開口組可彼 此軸向交錯,以使得對應開口(例如,展示為發射對或開 口對780a之開口 767a、767c及展示為發射對或開口對780b 之開口 767b、767d)並非彼此軸向對準。儘管在圖8b中圖 解說明為僅具有兩個發射開口對780a、780b,但應理解, 可利用任意期望數目個發射開口對。 根據一項實施例,每一發射對780a、780b包含安置於經 伸長之波導發射器7 6 0之一個側上之一個發射開口(例如, 兩者皆安置於側壁764a上之對780a之開口 767a及對780b之 開口 767b)及安置於發射器760之相對側上之另一發射開口 (例如,在圖8b中兩者皆安置於側壁764c上之對780a之開 口 767c及對780b之開口 767d)。在一項實施例中,安置於 經伸長之波導發射器760之相對側上之開口 767a、767c及 160981.doc -54- 201236751 開口 767b、767d可軸向對準,而在另一實施例中,相對隔 開之開口 767a、767c及開口 767b、767d可形成複數個「接 近相鄰者」對(例如,發射對780a、780b分別包括「接近 相鄰者」開口 767a、767e及開口 767b、767d)。在一項實 施例中舉例而言,當使用偶數個發射開口時,一或多個 單端發射開口可係獨立的而不與任一其他開口形成一對。 在項實施例中,獨立開口可係一端部開口,諸如圖8b中 所展示之端部開口 767e。 根據其中對780a、780b包括接近相鄰者開口對之一項實 施例發射開口對780a、780b之發射開口 767a至767d中之 至夕者可經組態以抵消如由接近相鄰者對780a、780b之 其他發射開口 767ap67d中之—或多者產生之反射回至波 導760之内空間中之微波能之至少一部分。舉例而言, 由對780a之開口 767a所致之微波能反射可至少部分地、實 貝上或戎乎整體地藉由對78〇&之另一開口 MU之組態而抵 消。以-類似方式’由對鳩之開口 767作致之微波能反 射可至v 刀地、實質上或幾乎整體地藉由對之另一 開口 767d之組態而抵消。 此外在項實施例中,當發射開口 767&至767d配置成 接近相鄰者對時,自開σ對78()a、鳩之發射開口 至 767d中之每-者傳送至微波加熱器73〇之㈣中之能量之 總量可等於引入至發射器76〇中之微波能之總量之一分 率舉例而5,在其中發射器包括N對發射開口及一單端 開口之-項實施例中’自每一發射開口對(及,或未配對開 16098 丨.doc -55- 201236751 口或單端開口)發射之微波能之分率可由以下公式表達: 1/(N+1)。因此’根據圖8b中所圖解說明之一項實施例(其 中N=2) ’由對78〇a、780b中之每一者發射之能量之總量可 等於引入至經伸長之波導發射器760中之總能量之1/(2+1) 或1/3。類似地,在此實施例中,自一未配對發射開口(例 如’圖8b中之單端開口 767e)發射之能量可由公式1/(N+1) 表達。因此,在圖8b中所展示之實施例中,發射開口 767e 亦可發射引入至經伸長之波導發射器760中之總能量之大 致 1/3。 在圖9a至9h中提供一微波加熱系統820之另一實施例。 如圖9a中所展示’微波加熱系統82〇包括一微波加熱器82〇 及可操作以將微波能自一微波產生器(未展示)輸送至加熱 器820之一微波分佈系統84〇。在一項實施例中,微波加熱 系統820亦可包括用於將微波加熱器83〇中之壓力減小至低 於大氣壓之一真空系統(未展示)。如圖9&中所展示,微波 加熱器830可包含用於將一木材束(或其他負載)引入至加熱 器83 0之内部中之一加熱器入口門838。視需要,微波加熱 器830可包括安置於加熱器830之與加熱器入口門838大體 相對之端上之一加熱器出口門(圖9a中未展示)。另外,微 波加熱器830可包括位於沿微波加熱器83〇之一或多個外部 側壁83 1之各種位置處之複數個經隔開之發射開口(諸如, 在圖9a中圖解說明為84 la、84 lb之彼等發射開口)。發射 開口 841a、84 lb可操作以容納微波分佈系統84〇之一或多 個組件,藉此促進至微波加熱器83〇中之微波能之傳輸。 160981.doc -56- 201236751 現將關於圖9b至9h更詳細地論述關於微波分佈系統84〇之 額外細節。 翻至圖9b ’提供微波加熱器830之一俯視局部剖視圖, 其特定而言圖解說明直接或間接耦合至微波加熱器83〇之 相對側壁831a ' 831b之複數個微波發射器料牦至以牝。如 本文中所使用,術語「間接耦合」係指用以將一或多個發 射器至少部分地連接至容器之一或多個中間設備件。發射 器844a至844d可操作以經由一或多個開放出口料“至845d 將微波能發射至微波加熱器830之内部中,如圖外中所展 示。儘管在圖9b中圖解說明為包括四個發射器844&至 844d,但應理解,微波加熱器83〇可包括任意期望數目個 發射器。在一項實施例(未展示)中,微波加熱器83〇可包括 軸向定位至圖9b中之發射器844a、84扑左側及/或定位至 發射器844c、844d右侧之兩個額外發射器。該等額外發射 器(未展示)可面向相同方向及/或不同方向。舉例而言,在 圖9b中所展示之一項實施例中,發射器以牦至以“係展示 為面向相反方向。此外,在一項實施例(未展示)中微波 加熱器830可包括以與圖外中所圖解說明之發射器84乜至 844d類似之一方式配置之四個額外發射器,如下文進一步 闡述。 微波發射器844可係根據任一適合組態沿微波加熱器 830、在微波加熱器830内或接近微波加熱器83〇定位。在 -項實施例中,微波發射器844可經組態以包括兩個發射 器對。該對内之個別發射器可位於微波加熱器83〇之大體 160981.doc •57· 201236751 相同侧上(例如’該對包括發射器844a及844d且另一對包 括發射器844b及844c)或位於微波加熱器83〇之大體相對側 上(例如,該對包括微波發射器844a及844b且另一對包括 844c及 844d)。 如本文中所使用,術語「大體相對側」或「相對側」係 才曰兩個發射器經定位以使得其間所界定之徑向對準角介於 自至少90。至180。之範圍中。「徑向對準角(β)」係界定為在 自每一發射器之中心至容器之中心伸長軸所繪製之兩個直 線之間形成之角。舉例而言’圖9(:展示其間界定一徑向對 準角Bl之例示性發射器845及846a。定位於一容器之大體 相對侧上之兩個發射器之間的徑向對準角可係至少120。、 至夕150 、至少165。及/或不大於180。或大致180。。在一項 貫施例中’兩個發射器可定位於大體相對側壁上,如圖9b 中大體緣示,而在另一實施例中,兩個相對安置之發射器 可疋位於加熱器(未展示)之垂直頂部或底部處或在其附 近。 在其中一或多個發射器對包含位於一微波加熱器之大體 相對側上之個別發射器(例如,圖9b中之發射器844b及 844a或發射器844(:及844d)之一項實施例中,該等對内之 個別發射為亦可彼此軸向對準。如本文中所使用,術語 軸向對準」係指兩個發射器在其間界定介於自〇。至45。 之範圍中之一軸向對準角。如本文中所使用,「軸向對準 角」可係由在於每一發射器之中心之間繪製之最短直線 (其亦與谷器之伸長軸交叉)與垂直於伸長轴繪製之一線之 160981.doc -58- 201236751 間形成之角界定。在圖9d中’軸向對準角α係在於例示性 發射器845與846之中心之間繪製之線850與垂直於伸長軸 83 5a之線852之間形成。在一項實施例中,轴向對準之發 射器可界定至少0°及/或(舉例而言)不大於3〇。或不大於15。 之一軸向對準角。 在另一實施例中’一對内之個別發射器可位於一微波加 熱器之大體相同側上。如本文中所使用,術語「大體相同 側」或「相同側」係指兩個發射器具有介於自至少或等於 0°至90°之範圍中之一徑向對準角ββ圖如中之例示性發射 器845及846b位於微波加熱器之大體相同側上,此乃因其 間所界定之徑向對準角(例如,βΟ係不大於9〇。。在一項實 施例中’安置於一微波加熱器之相同側上之兩個發射器可 界定至少0。及/或不大於60。、不大於3〇。及不大於15。或大 致0°之一徑向對準角。 在其中一或多個發射器對包含位於一微波加熱器之大體 相同側上之個別發射器(例如,圊9b中之發射器844a及 844d或發射器844b及84乜)之一項實施例中,該等對内之 個別發射器亦可彼此軸向B比鄰。如本文中所使用,術語 「軸向晚鄰」係指兩個或兩個以上發射器定位於一微波加 熱器之相同側上以使得彼側上無其他發射器安置於軸向毗 鄰發射器之間。根據其中一微波分佈系統包括兩個或兩個 以上相對定位之微波發射器對之一項實施例,來自第一對 之一個發射器係安置於與來自第二對之一個發射器大體相 同之侧上’藉此形成一軸向她鄰發射器對。 160981.doc -59- 201236751 如圖9b中所圖解說明,微波發射器844a至844d中之每一 者可界定用於將微波能發射至微波加熱器830之内部中之 一各別開放出口 845a至845d。開放出口可經定位以按任一 適合型樣或沿任一適合方向將能量發射至微波加熱器830 之内部中。舉例而言,在圖9b中所展示之一項實施例中, 軸向毗鄰發射器之開放出口(例如,發射器844a、844d之 出口 845a、845d及發射器 844b、844c之出口 845b、845c)可 經定向以沿實質上平行於該等發射器耦合至之外部側壁 (例如,發射器844a、844d之側壁83 la及發射器844b、844c 之側壁83 lb)之一方向面向彼此,藉此沿彼大體方向排放 微波能。如本文中所使用,術語「實質上平行」意指在平 行面之10°内。在一項實施例中,開放出口 845a至845d中 之至少一者可經定向以實質上平行於微波加熱器830之伸 長軸(在圖9b中指定為線835)來排放能量。根據一項實施 例,開放出口 845a至845d中之至少一者可經定向而朝向加 熱器830之一轴向中點。如本文中所使用,一容器之「軸 向中點」係由正交於伸長軸835且與伸長軸835之中點839 交叉之一平面界定,如圖9b中所展示。在一項實施例中, 開放出口 845a至845d中之每一者經定向而朝向加熱器830 之軸向中點以使得前側發射器844a、844b之開放出口 845a、845b實質上面向背側發射器844c、844d之開放出口 845c、845(1,如圖9b中戶斤繪示。 根據一項實施例,在操作中,由一或多個微波產生器 (未展示)生產之微波能可經由波導842a至842d輸送至發射 160981.doc •60· 201236751 口器844&至844d ’發射器㈣至购將能量發射至微波加熱 器830之内邛中。儘管圖9b中未圖解說明,但可使用任意 數目或組態之微波產生器以生產供用於微波加熱系統8 2 〇 中之微波能。在-項實施例中,可使用—單個產生器以經 由波導842a至842d及發射器844將能量供應至加熱器83〇, 而在另一實施例中,加熱系統82〇可包含兩個或兩個以上 產生器。根據另一實施例,可利用一或多個微波產生器之 一網路以使得實質上同時自微波發射器料乜至料牝中之至 少一者、至少兩者、至少三者或全部四者發射微波能。在 一項實施例中,一或多個發射器844&至844d可耦合至一單 個產生器且可使用一或多個微波切換器在該等發射器當中 分配來自該產生器之能量。在另一實施例中,發射器84乜 至844d中之一或多者可具有一單獨專用產生器,以使得將 由彼產生器生產之微波能之至少75%、至少9〇%或實質上 全部路由至一單個發射器。稍後關於圖lla及Ub提供關於 微波產生器、波導及發射器以及其操作之特定實施例之額 外細節。 由波導段842a至842d傳播之微波能可呈任一適合模式, 包含(舉例而言)一 ΤΜαί)模式及/或一 TE々模式,其中α、ό、 χ及少具有如先前所界定之值。在一項實施例中,波導段 842a至842d各自包括ΤΕ^波導段,其中段842a& 842d經組 態以穿透側壁83 la且段842b及842c經組態以穿透側壁831b 並朝向伸長軸835徑向延伸至微波加熱器830之内部中,如 圖9b中所展示。 160981.doc -61 · 201236751 根據本發明之一項實施例,傳播通過波導段842&至842(1 之微波能之模式可在被發射至微波加熱器830之内部中之 前(或與其同時)改變。舉例而言,在一項實施例中,由微 波產生器(圖9b中未展示)生產之ΤΕλ;);模式能量可在穿過一 或多個模式轉換段(在圖9b中表示為模式轉換器85〇a至 8 50d)之後被發射至微波能中作為模式能量。模式轉 換器可具有任一適合大小及形狀且可在微波分佈系統84〇 中使用任意適合數目個模式轉換器。在一項實施例中,一 或多個模式轉換器850a至850d可安置於微波加熱器830之 内部空間(體積)外侧’而在另一實施例中,模式轉換器 850a至850d可部分地或整體地安置於微波加熱器83〇之内 部内。模式轉換器850a至850d可位於側壁831a、831b中或 附近,或(如圖9b中所圖解說明)可與微波加熱器83〇之外部 侧壁831a、83 lb隔開。 根據其中模式轉換器850a至850d部分地或整體地安置於 加熱器830内之一項實施例,微波能可最初以一 τυ莫式 進入微波加熱器,且隨後該能量之至少一部分可經轉換以 使得自發射器844a至844d發射至微波加熱器83〇之内部中 之能量之至少一部分可呈一 ΤΜ“模式。在—項實施例中, 波導段842a至842d可包括可操作以按— '模式將微波能 自產生器傳輸至加熱器83〇之TE"波導段。在—項實施例 中,TE”波導段8仏至842(1之至少_部分可整合至發射器 844a至844d中,如圖9bt所繪示。當能量自波導段心至 剛穿過模式轉換_85Ga至圖時,能量被轉換成一 ^ 160981.doc -62· 201236751 模式。隨後,退出模式轉換器850a至85 0d之丁河心模式能量 可接著在經由ΤΜαί)開放出口 845a至845d排放至加熱器830 中之前穿過一各別TM&波導段843a至843d,在9b中圖解說 明為整體地安置於微波加熱器830之内部内且與其側壁833 隔開。 根據圖9e中所繪示之另一實施例,微波加熱系統82〇可 包括一或多個反射器890a至890d,其定位於開放出口 845a 至845d附近且可操作以反射或散射自發射器84牦至844(1發 射至微波加熱器830中之微波能。在一項實施例中,該等 反射器可係固定或靜止反射器,以使得在反射器之位置不 改變時反射或散射能量。在圖9e中所圖解說明之另一實施 例中,反射器890中之一或多者可係一可移動反射器,其 可操作以改變位置以將微波能反射或散射至微波加熱器 830中。圖9e中之每一可移動反射器89〇&至890d具有一各 別反射表面89 la至89 Id用於反射或散射自微波發射器844a 至844d發射之能量。如圖9e中所展示,每一反射表面可與 外部側壁831a、831b隔開且可經定位以使得發射器844a至 844(1之各別發射開口 845&至845(1中之一或多者面向其各別 反射表面891 a至89Id,反射表面89la至89Id又經定位以接 觸、引導或反射來自發射開口 845 a至845d之微波能之至少 一部分。在一項實施例中,自微波發射器844&至844d發射 之微波能之至少一部分或實質上全部可至少部分地接觸各 別反射器表面89 la至89 Id且可至少部分地由其反射或散 射。在一項實施例中,反射表面89 la至89 Id中之一或多者 160981.doc -63- 201236751 可,..至疋向以面向實質上平行於外部側壁Μ 1 a、Μ 1 b之伸長 方向之一方向。 在項實施例中,反射器表面891a至891d可係實質上平 面的,而在其他實施例中,—或多個反射器表面891汪至 _可係非平面的。舉例而言,在_項實施例中,一或多 個非平面反射器表面8913至891(1可界定如由圖9h中所繪示 之實施例所圖解說明之—曲率。反射器表面_至咖可 係平滑的或可具有—或多個凸狀體。如本文中所使用,術 。。凸狀體」係指-反射器之一區,其係可操作以自其散 射而非反射能量之表面。在—項實施例中,—凸狀體可具 有大體凸面形狀,如藉由圖9f及9g中所展示之凸狀體 893a、893b之實例所圖解說明。在另一實施例中一凸狀 體可具有一大體凹面形狀,諸如(舉例而言)-凹坑或其他 類似凹痕。 根據本發明之一項實施例,一或多個反射器⑽至觀 可係可移動反射器。可移動反射器可係可操作以改變位置 之任何反射器。在一項實施例中,可移動反射器隱至 89〇b可係能夠以一指定型樣(諸如(舉例而言)一大體上下型 樣或圍繞一軸旋轉之一型樣)移動之振盪反射器。在一項 實施例巾,可移動反射器可係可操作以按各種各樣之隨機 及/或無計劃移動中之任一者移動之可隨機移動反射器。 可移動反射器890a至890d可根據任一適合方法可移動地 耦合至微波加熱器830。舉例而言,在圖9i中所圖解說明 之一項實施例中,微波加熱器830可包括在加熱器83〇之内 16098 丨.doc -64 - 201236751 部空間内之用於可移動反射器890之一反射器驅動器系統 (或致動器)899。如圖9i中所展示’反射器驅動器系統899 可包括一或多個支撐臂892,其將反射器890可緊固地輕合 至一振盪轉軸893。為致使轉軸893旋轉且藉此以一進出型 樣移動反射器890(如由箭頭880大體指示),—馬達898可使 一輪896( —線性轉軸895可以一大體偏離中心之方式辆合 至其)轉動。如由箭頭881所指示,轉軸895可在輪896轉動 時以一大體上下方式移動,藉此致使一槓桿臂894繞樞軸 897方疋轉轉軸893 ’如由箭頭882大體指示。因此,反射器 890可如由箭頭880大體指示來移動且可操作以按至少部分 地藉由反射器890之移動而判定之一型樣來反射或散射自 被波反射器844之排放開口 845發射之微波能之至少一部 分。 在圖10a至l〇f中展示一微波加熱系統920之又一實施 例。如在圖l〇a之一項實施例中所圖解說明,一微波加熱 器930包括用於將一木材束9〇2裝載至加熱器93〇之内部中 之一加熱器入口門938及用於自微波加熱器930移除束9〇2 之一加熱器出口門939。儘管在圖i〇a中圖解說明為包含單 獨之入口門93 8及出口門939,但應理解,在另一實施例中 微波加熱器930可僅包含用於自微波加熱器93〇之内部裝栽 木材束902及卸載木材束9〇2兩者之一單個門。在圖1〇a中 所展不之實施例中,加熱器入口門938及加熱器出口門 可位於微波加熱器930之大體相對侧上以使得束902可經由 一輸送機構(諸如(舉例而言)一搬運車(未展示))大體穿過加 160981.doc •65- 201236751 熱器930。另外,微波加熱系統92〇可包括用於控制加熱器 930中之壓力之一選用真空系統(未展示)。 如圖10a中所展示,微波加熱系統92〇可包含一微波分佈 系統940,該微波分佈系統包括界定於微波加熱器93〇之一 外部侧壁931中之複數個經隔開之發射開口 941&至941(1。 每一發射開口 941可操作以接納用於將能量發射至微波加 熱器930之内部中之一微波發射器(未展示)。微波發射器可 至少部分地或整體地安置於微波加熱器930之内部内。猶 後將更詳細地論述一或多個類型之微波發射器之特定實施 例。 根據一項實施例,由一微波產生器(未展示)生產之微波 能可在穿過外部TE^至ΤΜα6模式轉換器950a至950d(其將 穿過其之能量轉換成一 ΤΜαδ模式)之前以一 ΤΕ〇模式傳輸 通過波導段942a至942d。所得丁]\^6模式微波能可接著經由 各別波導段942e至942h退出模式轉換器950a至950d,如圖 10a中所圖解說明。此後,TM&波導段942e至942h中之微 波能之至少一部分可在經由ΤΜαέ波導段942i至9421進入微 波加熱器930之前穿過各別阻障總成97〇3至97(M。如本文 中所使用’術語「阻障總成」可係指可操作以流體地隔離 微波加熱器與一外部環境而仍准許微波能穿過其之任一裝 置。舉例而言,在圖1 〇a中所展示之一項實施例中,各別 阻障總成970a至970d可各自包括至少一個密封窗構件972a 至972d,其可係微波能可透過的,但提供每一上游942e至 942h ΤΜαΖ)波導段與下游942i至9421 TM&波導段中之每一 160981.doc -66· 201236751 者之間的一期望程度流體隔離。如本文中所使用,術語 「畨封窗構件」係指以如下之一方式組態之一窗構件:其 將提供窗構件之任一側上之兩個空間之間的充分流體隔離 以允許跨越此窗構件維持一壓力差。現將關於圖10b論述 關於阻障總成970a至970d之特定實施例之額外細節。 根據本發明之一項實施例組態之阻障總成甚至在高能量 通量及/或低操作壓力下亦最小化或消除發弧。根據本發 明之一項實施例,每一阻障總成97〇a至97〇d可准許能量以 至少5 kW、至少30 kW、至少50 kW、至少60 kW、至少65 kW、至少75 kW、至少1〇〇 kW、至少150 kW、至少200 kW、至少250 kW、至少350 kW、至少400 kW、至少500 kW、至少600 kW、至少750 kW或至少1,000 kW及/或不大 於2,500 kW、不大於i,500 kW或不大於1,000 kW之一速率 穿過其各別窗構件972a至972d,而微波加熱器930中之壓 力可係不大於550托、不大於450托、不大於350托、不大 於250托、不大於200托、不大於15〇托、不大於100托或不 大於75托。在一項實施例中,微波加熱器中之壓力可係不 大於10毫托、不大於5亳托、不大於2毫托、不大於1毫 托、不大於0.5毫托或不大於〇·ι毫托。在一項實施例中, 穿過阻障總成970a至970d之微波能可經引入以使得磁場維 持低於發弧之臨限值以藉此防止或最小化阻障總成97〇a至 970d中之發弧。 現翻至圖1 Ob,提供一阻障總成970之一軸向剖面圖。阻 障總成970包括安置於一阻障般體973内之一第一密封窗構 160981.doc •67· 201236751 件972a及一選用第二密封窗構件972b。當存在時,第二密 封窗構件972b可操作以與第一密封窗構件972a協作以提供 上游(例如,入口)ΤΜαέ波導段975a與下游(例如,出 口)ΤΜαέ波導段975b之間的一期望位準之流體隔離同時准 許微波能之至少一部分自第一ΤΜαΖ)波導段975a通行至第二 ΤΜαό波導段975b。根據一項實施例,第一ΤΜαδ波導段975a 及第二ΤΜαΖ)波導段975b可具有圓形圓柱形剖面。在一項實 施例中,波導段975a、975b可係其中可安置有阻障總成 970之一單個連續波導之兩個端,而在另一實施例中,波 導段可係適合地緊固或耦合至阻障總成970之任一側之兩 個單獨波導部分或組件。 如圖10b中所展示,阻障殼體973可包括一第一或入口區 段973a、一選用第二或中間區段973b及第三或出口區段 973c,其中第一密封窗構件972a安置於第一區段973a與第 二區段937b之間且第二密封窗構件972b安置於第二區段 973b與第三區段937c之間。根據一項實施例,第一段 973a、第二段937b及第三段937c中之每一者之壓力可係不 同的。舉例而言,在一項實施例中,第一段973a之壓力可 大於第二段973b之壓力,第二段973b之壓力可大於第三段 973c之壓力。阻障殼體973之第一段973a、第二段937b及 第三段937c中之每一者可藉由諸如(舉例而言)螺釘、螺栓 及諸如此類之任一適合緊固裝置(未展示)固持在一起。此 外,阻障總成970a至970d亦可包括變更微波輻射之阻抗之 一或多個阻抗變換器。一實例圖解說明為在圖1 Ob中所展 160981.doc -68- 201236751 示之實施例中之阻抗變換直徑臺階式改變974a、947b,其 用於最大化自微波產生器(未展示)至微波加熱器(未展示) 中之負載之能量傳送。在一項實施例中,阻抗變換直徑臺 階式改變974a、947b可位於密封窗構件972a、972b中之至 少一者附近,而在另一實施例中,臺階式改變974a、947b 可位於入口 ΤΜαδ波導97Sa及/或出口 TM以波導97^附近或 至少部分地由入口 TMa6波導975a及/或出口 ΤΜβ6波導975b 界定。 如圖10a及10b中所圖解說明,密封窗構件972a、972b 可包括一或多個盤。每一盤可由具有一適合程度之耐蝕 性、強度、流體不透過性及微波能透過性之任何材料建 構。適合材料之實例可包含(但不限於)氧化鋁、氧化 鎂、二氧化石夕、氧化皱、氮化硼、富鋁紅柱石及/或聚合 物(諸如,鐵氟龍(TEFLON))。根據一項實施例,盤之損 耗正切可係不大於2ΧΗΓ4、不大於lxl〇-4、不大於7 5χ1〇-5 或不大於5xl(T5。 該等盤可具有任一適合剖面。在一項實施例中,盤可具 有與鄰接波導975a ' 975b之剖面相容之一剖面。在一項實 施例中,該等盤可具有一實質上圓形剖面且可具有等於穿 過阻障總成97 0之微波能之主要波長之長度之至少1 /8、至 少1/4、至少1/2及/或不大於丨、不大於3/4或不大於i/2之一 厚度(在圖l〇b中指定為「Xj )。該等盤之直徑可係一或多 個鄰接波導975a、97%之直徑之至少5〇%、至少6〇%、至 少75%、至少90°/。及/或不大於95%、不大於85%、不大於 160981.doc -69- 201236751 70%或不大於60%。 密封窗構件972a至972d之每一盤可以任一適合方式可操 作地耦合至各別阻障總成970a至970d。在一項實施例中, 密封窗構件972a至972d中之每一者可包括撓性地耦合至阻 障殼體973及/或密封窗構件972a、972b之一或多個密封裝 置。如本文中所使用,術語「撓性地耦合」意指經緊固、 附接或以其他方式配置以使得該等構件在不直接接觸一或 多個剛性結構之情況下固持在適當位置。舉例而言,在圖 10b中所展示之一項實施例中,阻障總成970可包括複數個 彈性環982a、982b及984a、984b,其壓縮在阻障殼體973 之各種段973a至973c之間且可操作以將密封窗構件972a、 972b撓性地耦合至阻障殼體973中。 根據一項實施例,每一各別上游彈性環982a、982b及下 游彈性環984a、984b可操作以充分地防止或限制阻障總成 970之第一區段973a與第二區段973b及/或第二區段973b與 第三區段973c之間的流體流動。舉例而言,當經受根據使 用一 Varian型號第938-41號债測器之由Alcatel Vacuum Technology 發佈之標題為「Helium Leak Detection Techniques」之文件中闡述之標題為「Spraying Testing」 之程序B1之一氦洩漏測試時,密封窗構件972a至972d及/ 或阻障總成970a至970d之流體洩漏率可係不大於10_2托·升/ 秒、不大於1〇_4托·升/秒或不大於1〇_8托.升/秒。另外,密 封窗構件972a、972b中之每一者可個別地可操作以維持或 承受跨越密封窗構件972a、972b及/或阻障總成970之一壓 160981.doc -70- 201236751 力差而不破裂、裂開、毀壞或以其他方式出故障,該壓力 差在數量上係諸如至少0.25 atm、至少〇 5 atm、至少〇 atm、至少〇·9〇 atm '至少1 atm或至少1.5 atm等。 現翻至圖10c,提供一剖面微波加熱系統920。圖1〇c中 所繪示之微波加熱系統包含一微波分佈系統94〇,其包括 安置於一微波加熱器930之大體相對側上之至少—個微波 發射器對(例如,發射器944a及944h)。儘管在圖1〇c中展示 為包含一單個發射器對,但應理解,微波分佈系統94〇可 進一步包括一或多個額外的經類似(或稍微不同)組態之微 波發射器對,其在某些實施例中使一個發射器來自安置於 微波加熱器930之大體相對側上之每一對。進一步地,在 另一實施例(圊l〇e中未展示)中,微波分佈系統94〇可包括 定位於微波加熱器930之大體相同側上之兩個或兩個以上 垂直隔開微波發射器列。在一項實施例中,微波加熱器 930之每一侧可包含兩個或兩個以上垂直隔開發射器列, 以使得來自每一相對安置對之一個發射器可位於比來自另 一相對安置對之一個發射器高之一垂直高度處。舉例而 言,在一項實施例中,發射器944&及/或944h可定位於比 圖10c中所緣示稱微高之一垂直高度處’且另一發射器對 可經定位以使得兩個發射器中之一者將定位於微波加熱器 930之相同側上但在比發射器944a大體較低之一垂直高度 處’且另一發射器將定位於微波加熱器930之相同側上但 在比發射器944h大體較低之一垂直高度處。此外,儘管展 示為分裂發射器944a、944h,但在一項實施例中,該等垂 160981.doc -71 - 201236751 直隔開之發射器可係本文中所闡述之任一類型(或任一類 型組合)之微波發射器。 如圖10c中所展示,微波分佈系統940包括耦合至至少一 個微波發射器944a、944h對之複數個波導段942。舉例而 言,如圖10c中之實施例中所展示,發射器944a可耦合至 波導段942a、942e及942i,而發射器944h可耦合至波導段 942x、942y及942z,其可操作以將微波能自一或多個微波 產生器(圖l〇c中未展示)遞送至微波加熱器930之内部。在 一項實施例中,微波分佈系統940可包含耦合至波導段942 中之一或多者之一或多個模式轉換器947a至947d,如圖 10c中所展示。根據一項實施例,模式轉換器947a至947d 可操作以將穿過其之微波能之傳輸模式自一 TE^模式改變 成一 TMw模式(亦即,一 TE〇至TM&模式轉換器)或自一 TMai模式改變成一 TE”模式(亦即,一 TM&至TE”模式轉 換器)。舉例而言,如圖l〇c中所展示,模式轉換器947a及 947c可各自可操作以在傳輸通過波導942a及942x之微波能 通行至波導942e及942y中時將該微波能自一TEy模式轉換 成一 ΤΜαί)模式。如先前所論述,α、6、:<:及;/之值可相同或 不同且可具有上文所提供之值。視需要,模式轉換器947b 及947d可操作以將傳輸通過波導942e及942i之微波能以及 傳輸通過942y及942z之能量自一 ΤΜαδ模式轉換成一 TE^模 式。 進一步地,在圖1 0c中所圖解說明之一項實施例中,模 式轉換器947a至947d中之至少一者可包括一模式轉換器分 160981.doc -72- 201236751 裂器,其可操作以既改變穿過其之微波能之模式又將其分 裂成兩個或兩個以上單獨微波能流以供排放至微波加熱器 之内部空間中。根據一項實施例,第二模式轉換器947b及 947d可各自包括至少部分地安置於微波加熱器之内部 内之模式轉換分裂器。在另一實施例中,第二模式轉換分 裂器947b及947d可整體地安置於微波加熱器93〇之内部内 且可各自分別係一分裂發射器944a及944h之一部分,如圖 l〇c中所圖解說明。稍後將論述關於分裂發射器94私、 944h之額外細節。 根據本發明之其中微波分佈系統940在一或多個波導段 中包括兩個或兩個以上模式轉換器之一項實施例,第一模 式轉換器與第二模式轉換器之間的總電長度(延伸穿過且 包含任一阻障總成(若存在)之電長度)可等於係穿過其之微 波能之競爭模式之非整數個半波長之一值。如本文中所使 用,術語「電長度」係指微波能之電傳輸路#,表達為沿 一既定路徑傳播所需要之微波能之波長之數目。在其中實 體傳輸路徑包含-或多個不同類型之傳輸媒體(其具有兩 個或兩個以上不同介電常數)之一項實施例中,傳輸路徑 之實體長度可短於電長度。因此,電長度取決於若干個因 素,包含(舉例而言)微波能之特定波長、一或多個傳輸媒 體之厚度及類型(例如,介電常數)。 根據一項貧施例,第一模式轉換器94乃、947c與第二模 式轉換器947b、947(1之間的總電長度(延伸穿過且包含 TMfli阻障總成97〇a、970h之總電長度)可等於微波能之競 160981.doc -73- 201236751 ¥'模式之非整數個半波長。如本文中所使用,術語「非整 數」係指並非一整數之任一數目。接著,一非整數半波長 可對應於π乘λ/2之一距離,其中„係任一非整數。舉例而 吕,數字「2」係一整數,而數字「2〇5」係一非整數。 因此,對應於2·05之一電長度乘以微波能之競爭模式之半 波長將係彼競爭模式之非整數個半波長。 如本文中所使用,術語「微波能之競爭模式」係指除打 算用於沿一既定路徑傳播之微波能之期望或目標模式以外 ^沿彼路徑傳播之微波能之任—模式。競爭模式可包含— 早個最流行模式(亦即’主要競爭模式)或複數個不同的不 流行競爭n t存在乡個解m帛-模式轉換器 與第二模式轉換器 < 間的總電長度(延伸穿過且包含任— 阻障總成(若存在)之電長度)可等於係該多個競爭模式中之 至少了者之非整數個半波長之—值,且在_項實施例中可 等於係主要競爭模式之非整數個半波長之一值。 舉例而言,在圖10c中所繪示之一項實施例中, 式轉換器947a、947c包括ΤΜ抬》v ία· 己括模式轉換器,其可操作以將 各別波導段9仏及购中之微波能之至少—部分 、 模式轉換成波導段942b及942e中之—% ^ 際上:該微波能之至少-部分可轉換成除所期望二! 之核式。除期望模式以外之任—模式通常在本文中 :波:之,競爭模式」。在本發明之其中微波能之期望模 項貫施例中,微波能之競爭模式可传 u式,其中讀、1且⑺係在…之間的—整數。 160981.doc •74· 201236751 此’在一項實施例中’第一模式轉換器947a與第二模式轉 換器947b之間的TMai)波導942e及942i之總電長度(延伸穿 過且包含阻障總成970a之電長度)可等於TEW„模式之非整 數個半波長’其中《係1且历係在1與5之間的一整數。在另 一實施例中,m可係2或3。 在一項實施例中,選擇波導段942、模式轉換器947a至 947d及/或阻障總成970a、970h之實體長度及性質可最小 化阻障總成970a、970h内之能量聚集。舉例而言,根據一 項實施例’當至少5 kW、至少30 kW、至少50 kW、至少 60 kW、至少65 kW、至少75 kW、至少100 kW、至少150 kW、至少200 kW、至少250 kW、至少350 kW、至少400 kW、至少500 kW、至少600 kW、至少750 kW或至少1,〇〇〇 kW及/或不大於2,500 kW、不大於1,500 kW或不大於1,〇〇〇 kW之能量可穿過阻障總成97〇a、97〇h時,阻障總成 970a、970h内之至少一個密封窗構件(圖1〇(;中未展示)之至 少一部分之溫度可改變不大於1(TC、不大於5。〇、不大於 2°C或不大於1°C。在另一實施例中,如上文所闡述,跨越 該至少一個密封窗構件之壓力差及/或微波加熱器930内之 壓力可維持有類似結果。 根據圖10c中所圖解說明之一項實施例,位於微波加熱 器930之大體相對側上且至少部分地安置於微波加熱器93〇 之内部内之個別微波發射器944a、944h中之至少一者可包 括一分裂反射器,其界定用於將微波能發射至微波加熱器 930之内部中之至少兩個排放開口。儘管在圖i〇c中圖解說 160981.doc -75- 201236751 為c括單個發射器對(例如,—第一分裂發射器944a及 第一刀裂發射器944h) ’但應理解,微波加熱器93〇可包 括任意適合數目個發射器或發射器對,如本文中所闡述。 。圖i〇d中繪不—分裂發射器944之一項實施例。分裂發射 器944可包括用於接收微波能之一單個入口或開口 951,及 用於自其發射微波能之一單個(未展示)或兩個或兩個以上 排放開口或出口 945a、945b。在—項實施例中,一單個分 裂發射器之彳政波能入口對排放出口之比率可係1:1、至少 至;1.3或至少1:4。根據一項實施例引入至入口 951中之微波能之模式可與經由排放開口料h、945b發射 之微波忐之模式相同,而在另一實施例中,該等模式可係 不同的。舉例而言,在其中分裂發射器944包括一模式轉 換分裂器949之-項實施例中,引入至-微波加熱器之-第一側壁之一單個入口中之微波能可經歷一模式轉換並被 劃为成至少兩個單獨微波能部分,其可隨後視需要以一不 同模式發射至加熱器之内部中。舉例而言,在圖1〇d中所 展示之一項貫施例中’分裂發射器944可包括一 ΤΜα6波導 段942、一個或兩個或兩個以上TE,y波導段943a、943b及 女置於其間的一 ΤΜαί)至TE”模式轉換分裂器949。在操作 中,經由波導段942引入之呈一 ΤΜαδ模式之微波能在以一 個或兩個或兩個以上單獨微波能分率自波導943a、94儿之 各別出口 945a、945b以一 ΤΕχν模式同時或幾乎同時排放之 前穿過模式轉換分裂器949。 當發射器944包括一單個排放開口時,模式轉換分裂器 160981.doc •76- 201236751 949可僅係用於改變穿過其之微波能之模式之一模式轉換 器949(並非一分裂器)。舉例而言,在其中發射器944包括 —單個排放開口(圖10d中未展示)之一項實施例中,發射器 944可包括一單個TMfl0波導段、一單個TE^波導段:安置 於其間的一 TMw至模式轉換器949。該模式轉換器可 位於微波加熱器外侧、部分地位於微波加熱器之内側或完 全地位於微波加熱器之内侧。在操作中,經由入口波導段 引入之呈一 TMafc模式之微波能可在以_ΤΕ叮模式排放之前 穿過模式轉換器9 4 9。單個開口發射器之排放開口可以相 對於水平面之任一適合角度定向或可實質上平行於水平 面。在一項實施例中,自單個開口發射器排放之能量可經 定向而與水平面成至少20。、至少30。、至少45。或至少6〇。 及/或不大於100。、不大於90。或不大於8〇。之一角。 當存在多個排放開口時,分裂發射器944之排放開口 945a、945b中之每一者可經彼此定向以使得自其排放之微 波能之路徑界定一相對排放角〇,如圖1〇d中所展示。在一 項貫施例中’微波能排放開口 945a、945b之路徑之間的相 對排放角可係至少5。、至少15。、至少30。、至少45。、至少 60°、至少90。、至少115。、至少135。、至少14〇。及/或不大 於180°、不大於170。、不大於165。、不大於16〇。、不大於 140°、不大於120。、不大於100。或不大於9〇。。在一項實施 例中,排放開口 945a、945b之定向亦可相對於自其排放之 微波能之路徑相對於TMa0波導段942之延伸軸94 8之定向來 闡述。在一項實施例中,排放開口 945a、945b中之每一者 160981.doc •77· 201236751 可經組態以與TMa6波導段942之延伸軸948成各別第一及第 二排放角(φ 1及Φ2)地排放微波能。在一項實施例中,φ!及 φ2可係大致相等’如圖1 0d中大體繪示,或在另一實施例 中,該兩個角中之一者可大於另一者。在各種實施例中, φι及/或φ2可係至少5°、至少10。、至少15。、至少3 0。、至 少35。、至少55°、至少65。、至少70。及/或不大於110。、不 大於100°、不大於95。、不大於8〇。、不大於70。、不大於 60°或不大於40。。 在一項實施例中’分裂發射器944可係一垂直定向之分 裂發射器’此發射器944包括經組態以與水平面成一向上 角地發射微波能之至少一個向上定向之排放開口(例如, 945a)及經組態以與水平面成一向下角地發射微波能之至 少一個向下定向之排放開口(例如,945b)。儘管在圖i〇c* 繪示為包括經組態而以相對於水平面之角度排放能量之垂 直定向分裂發射器944a、944h,但在另一實施例中,微波 加熱器930之分裂發射器944a、944h中之一或多者可係水 平定向,以使得已使如上文所闡述之分裂發射器旋轉 90°。在另一實施例中,可使一或多個分裂發射器94乜、 944h旋轉〇。與90。之間的一角度。在一項實施例(未展示) 中,一微波加熱器可包含位於加熱器之一個側上之兩個或 兩個以上垂直隔開之水平定向分裂發射器列及在同一加熱 器之另一大體相對側上之兩個或兩個以上垂直隔開之水平 疋向y刀裂發射益列。根據此實施例,垂直隔開之發射器列 可包括單個開口發射器、水平定向分裂發射器、垂直定向 160981.doc •78· 201236751 分裂發射器或其任一組合。. 在圖1〇C中所展示之一項實施例中,微波加熱器930可包 括一或多個(或至少兩個)可移動反射器99〇&至99〇d,其定 位於微波加熱器930内之各種位置處且經組態以光栅化自 一或多個微波發射器944a、944h之一或多個排放開口 945a 至945d發射至微波加熱器93〇之内部中之微波能。反射器 990a至990d可具有任一適合組態,諸如(舉例而言)包含先 前關於圖9f至9h所闡述之特徵中之一或多者之組態。進一 步地’儘官大體圖解說明為包括四個可移動反射器99〇&至 990d,但應理解,微波加熱器93〇可包括任意適合數目個 可移動反射器。在一項實施例中,包括”個分裂發射器之 一微波加熱器可包括至少2„個可移動反射器。在另一實施 例中,一微波加熱器可採用總共四個可移動反射器,其各 自界疋貫質上沿微波加熱器930之長度延伸之一反射器表 面’以使得兩個或兩個以上軸向毗鄰發射器「共用」一或 多個反射器或反射表面。 不管所採用之反射器之具體數目如何,每一反射器99 〇a 至990d皆可操作以光柵化經由排放開口 945a至945d退出發 射器944a、944h至微波加熱器930中之微波能之至少一部 分’以藉此加熱及/或乾燥束或其他物件、物品或負載之 至少一部分。如本文中所使用,術語「光柵化」意指將能 篁引導、投射或聚集於某一區域上。與習用反射或散射能 I相比,光柵化能量涉及一較大程度之有意引導或聚集, 此可藉由利用微波能之準光學性質來達成。與習用手段相 160981.doc •79- 201236751 比’光柵化不包含靜止反射表面或習用模式攪拌裝置(諸 如,風扇)之使用。在一項實施例中,微波加熱器可包括 複數個分裂發射器對(例如,兩個或兩個以上發射器對), 其中每冑包括具有實質上類似組態之兩個發射器(如上 文所闡述)。在-項實施例中,每一對之一個發射器可定 位於微波加熱器之大體相對側上或相同側上,如先前關於 圖9c及9d詳細論述。根據一項實施例’一或多個可移動反 射器990a至侧可定位於(及/或經定位以面向)微波發射器 944中之每一者之一或多個排放開口附近。在其中第一發 射器944a及第二發射器944h各自包括界定各別向上定向之 排放開口 945a及945c以及各別向下定向之排放開口 945b及 945d之分裂微波發射器之一項實施例中,至少一個可移動 反射器可定位於排放開口 9453至945(1中之一或多者附近以 光柵化自分裂發射器944a、944h排放至微波加熱器93〇之 内部中之微波能之至少一部分(例如,兩個或兩個以上單 獨τελ>)模式微波部分)。在圖10c中所圖解說明之一項實施 例中,微波加熱器930可包括至少四個可移動反射器,其 各自界定一各別反射表面且定位於分裂發射器944a、94扑 之各別排放開口 945a至945d附近。如圖i〇c中所圖解說 明,可移動反射器990a至990d可位於微波加熱器93〇之底 部左象限(例如,反射器990a)、頂部左象限(例如,反射器 990b)、頂部右象限(例如,反射器99〇c)及底部右象限(例 如’反射器990d)中。當發射器944a、944h係水平定向之 刀裂發射器或單個開口發射器時,亦可存在反射器99〇3至 160981.doc •80· 201236751 990d中之兩者或兩者以上’如先前詳細闡述。 可移動反射器990a至990d可組態成兩個垂直隔開之對 (例如,反射器990a與反射器990b配對且反射器990c與反 射器990d配對)及/或組態成兩個水平隔開之對(例如,反射 器990b與反射器990c成對且反射器990a與反射器990d成 對)。如圖10c中所圖解說明’垂直隔開之反射器對(例如, 反射器對990a、990b以及990c、990d)可定位於分裂發射 器944a、944h附近以使得一個可移動反射器定位於發射器 944a、944h之排放開口 945a至945d中之每一者附近(例 如,排放開口 945a至945d面向各別可移動反射器990a至 990d)。如圖l〇c中所繪示,可移動反射器99〇1?及99〇c可定 位於比各別可移動反射器990a及990d高之一垂直高度處, 以使得分裂發射器944a、944h可垂直定位於垂直隔開之反 射器對之間(例如,發射器944a垂直定位於垂直隔開之反 射器990a、990b對之間且發射器944h垂直定位於垂直隔開 之反射器990c、990d對之間)。在一項實施例中,可移動 反射器990經定位以使得反射器表面991面向其對應微波發 射器(未展示)之一開放出口。在另一實施例中,一或多個 可移動反射器990a至990d可經定位而與微波加熱器930之 中心伸長軸對準或經定位以面向微波加熱器930之中心伸 長轴(圖10c中未展示)。 可移動反射器990a至990d可直接或間接耦合至一微波加 熱器之一或多個側壁且可以任一適合方式移動或致動。反 射器990a至990d中之一或多者可沿一經預程式化(經計劃) 160981.doc • 81 · 201236751 之路徑移動,或可致使一或多者以一隨機或不重複型樣移 動。當存在多個反射器990a至990d時,在一項實施例中, 兩個或兩個以上反射器990a至990d可具有相同或類似移動 型樣,而在相同或另一實施例中,兩個或兩個以上反射器 990a至990d可具有不同移動型樣。根據一項實施例,反射 器990a至990d中之至少一者可以一大體弧形路徑移動且可 以某一速度及/或滯留時間穿過總路徑之各種段或「區」。 區之大小及數目以及反射器移動通過每一區之速度或每一 區中之反射器滯留時間取決於各種各樣之因素,諸如(舉 例而言)束之大小及類型、木材之類型以及初始及最後一 束之初步及期望特性。 在一項實施例中,可根據本文中所闡述之一或多個實施 例個別地驅動或致動反射器990a至990d中之每一者,而在 另一實施例中,兩個或兩個以上反射器可連接至一共同驅 動機構(例如,欲同時致動之旋轉轉軸)。圖1〇e中展示用於 使用一致動器960移動一反射器99〇之一驅動機構之一個實 例。致動器960可係一線性致動器’其具有耦合至微波加 熱器之一側壁933之一固定部分961及連接至一可移動反射 器990之一可延伸部分963。根據圖1〇e中 項實施例,㈣部分961之至少—部分可延伸通過^部側 壁933並到達-伸縮囊結構964中,藉此將致動器_密封 地耦合至側壁933。在一項實施例中’伸縮囊結構964可操 作以減小、最小化或幾乎防止進出其中致動器_延伸通 過側土 933之位置之流體流動。如圖!⑼_所展示,可移動 16098】.doc -82- 201236751The shape, size, and/or orientation of the grooves 767a to 767e of the heart elongation can be changed by the distribution of the energy emitted by the waveguide emitter 760. The answer sheet A 〇 1 丄 is shown in the embodiment illustrated in Figure 8b as uncovered, but one or the guest gamma & 4 multiple launch openings 767 may be substantially adjacent to the launch opening or Covered by a cover structure (not shown), the - or a plurality of overlays, σ, can be known to prevent the flow of fluid into and out of the opening 767 but allow microwave energy to be discharged therefrom. 0 as shown in Figure 8b. The emission openings 767 767a to 767e may be at least partially or wholly bounded by one or more of the elongated waveguide emitters 76 侧壁 76 or 764d. In one embodiment, the thickness of the emission openings 767a to 767e Up to 50%, at least 75%, at least 85%, or at least 9% (for example) may be defined by one or more of the side walls 764 & 764d. According to the embodiment illustrated in Figure 发射 'emitter opening 767 & to 7676 may be at least partially or wholly defined by two substantially upstanding sidewalls 764a, 764c. As used herein, the technique ecr is substantially erected" means 30 in the vertical plane. Inside. In one embodiment, the sidewalls 764a through 764d of the elongated emitter 760 can be relatively thick. In other embodiments, the sidewalls 76 乜 to 764 £1 can be relatively thin. For example, the average thickness of the sidewalls 764a to 764d (designated as λ: in Fig. 8b) may be at least ι/32 (〇. 〇3 125) inches, at least 1/8 (0. 125) miles, at least 3/16 (0'1875) miles and/or (for example) no more than 1/2 (0. 5) English leaves, no more than 1/4 (0. 25) Miles, no more than 3/16 (0. 1875) English 11 inches or no more than 1/8 (0. 125) Miles. According to an embodiment in which one or more sidewalls of the elongated waveguide emitter 760 are relatively thin, the elongated waveguide emitter 760 can be at least 50%, at least 75%, at least 85%, at least 90%, or at least 160981. . Doc -53· 201236751 One of the 95% microwave emission efficiencies transmits microwave energy into the interior of the microwave heater 730. As used herein, the term "microwave emission efficiency" can be defined by converting the result of the following equation into a percentage: (total energy introduced into the emitter - total energy emitted from all openings in the emitter Μ introduced to The total energy in the transmitter). The transmit openings 767a through 767e can be configured along the elongated waveguide emitter 760 in accordance with any suitable configuration or configuration. In an embodiment illustrated in Figure 8b, the emission openings 767a through 767e can include a set of first emission openings (e.g., emission openings 767a, 767b) disposed on one side of the emitter 760 and disposed in the One of the second emission openings (e.g., emission openings 767c to 767e) on the other substantially opposite side of the elongated waveguide emitter 760. According to an embodiment, the first set of emission openings and the second set of emission openings may be axially staggered with each other such that corresponding openings (eg, openings 767a, 767c shown as pairs of emitters or pairs 780a and shown as emitting pairs or openings) The openings 767b, 767d) of the pair 780b are not axially aligned with each other. Although illustrated in Figure 8b as having only two pairs of emitter openings 780a, 780b, it should be understood that any desired number of pairs of emitter openings can be utilized. According to one embodiment, each of the pairs 780a, 780b includes an emission opening disposed on one side of the elongated waveguide emitter 760 (eg, both openings 767a of the pair 780a disposed on the side wall 764a) And an opening 767b of the pair 780b and another emitting opening disposed on the opposite side of the emitter 760 (eg, the opening 767c of the pair 780a and the opening 767d of the pair 780b both disposed on the side wall 764c in FIG. 8b) . In one embodiment, openings 767a, 767c and 160981 are disposed on opposite sides of the elongated waveguide emitter 760. Doc - 54 - 201236751 The openings 767b, 767d may be axially aligned, while in another embodiment, the relatively spaced apart openings 767a, 767c and the openings 767b, 767d may form a plurality of "near neighbor" pairs (eg, The pairs 780a, 780b include "near neighbors" openings 767a, 767e and openings 767b, 767d), respectively. By way of example, in one embodiment, when an even number of firing openings are used, one or more of the single-ended emitting openings can be independent without forming a pair with any of the other openings. In an embodiment, the separate opening may be open at one end, such as the end opening 767e shown in Figure 8b. According to an embodiment in which the pair of emitter openings 767a to 767d of the pair of emitters 780a, 780b of the embodiment 780a, 780b includes a pair of adjacent pairs of openings may be configured to offset as close to the neighbor pair 780a, At least a portion of the other transmit openings 767ap67d of 780b are reflected back to at least a portion of the microwave energy in the space within the waveguide 760. For example, the microwave energy reflection caused by opening 767a of 780a can be at least partially, solidly, or substantially offset by the configuration of another opening MU of 78〇&. The microwave energy reflection caused by the opening 767 in a similar manner can be offset by v-grounding, substantially or almost entirely by the configuration of the other opening 767d. Further, in the embodiment, when the emission openings 767 & 767d are disposed close to the adjacent pair, the self-opening σ pair 78() a, the emission opening of the 鸠 to the 767d is transmitted to the microwave heater 73 〇 The total amount of energy in (4) may be equal to a fraction of the total amount of microwave energy introduced into the emitter 76, and the emitter includes an N-pair emission opening and a single-ended opening. In the 'from each launch opening pair (and, or not paired open 16098 丨. The distribution of microwave energy emitted by doc -55- 201236751 mouth or single-ended opening can be expressed by the following formula: 1/(N+1). Thus, the total amount of energy emitted by each of the pairs 78〇a, 780b may be equal to the introduction to the elongated waveguide emitter 760, according to an embodiment illustrated in FIG. 8b (where N=2). 1/(2+1) or 1/3 of the total energy in the middle. Similarly, in this embodiment, the energy emitted from an unpaired emission opening (e.g., single-ended opening 767e in Figure 8b) can be expressed by the formula 1/(N+1). Thus, in the embodiment shown in Figure 8b, the emission opening 767e can also emit approximately 1/3 of the total energy introduced into the elongated waveguide emitter 760. Another embodiment of a microwave heating system 820 is provided in Figures 9a through 9h. The microwave heating system 82A shown in Fig. 9a includes a microwave heater 82A and a microwave distribution system 84 that is operable to deliver microwave energy from a microwave generator (not shown) to the heater 820. In one embodiment, the microwave heating system 820 can also include a vacuum system (not shown) for reducing the pressure in the microwave heater 83 to a pressure below atmospheric. As shown in Figures 9 &, the microwave heater 830 can include a heater inlet door 838 for introducing a bundle of wood (or other load) into the interior of the heater 83 0 . The microwave heater 830 can include a heater outlet door (not shown in Figure 9a) disposed on the end of the heater 830 that is generally opposite the heater inlet door 838, as desired. Additionally, the microwave heater 830 can include a plurality of spaced apart emission openings located at various locations along one or more of the outer sidewalls 83 1 of the microwave heater 83 (such as 84 la illustrated in Figure 9a, 84 lb of their launch openings). The emission openings 841a, 84 lb are operable to house one or more components of the microwave distribution system 84, thereby facilitating transmission of microwave energy into the microwave heater 83. 160981. Doc-56-201236751 Additional details regarding the microwave distribution system 84A will now be discussed in more detail with respect to Figures 9b through 9h. Turning to Fig. 9b' provides a top cross-sectional view of one of the microwave heaters 830, specifically illustrating a plurality of microwave emitters that are directly or indirectly coupled to opposite sidewalls 831a' 831b of the microwave heater 83A. As used herein, the term "indirect coupling" refers to one or more intermediate devices used to at least partially connect one or more transmitters to a container. Transmitters 844a through 844d are operable to transmit microwave energy into the interior of microwave heater 830 via one or more open outlets "to 845d, as shown in the figures. Although illustrated in Figure 9b to include four Transmitter 844 & to 844d, but it should be understood that microwave heater 83A can include any desired number of emitters. In one embodiment (not shown), microwave heater 83A can include axial positioning to Figure 9b. The transmitters 844a, 84 flutter to the left and/or to the two additional transmitters on the right side of the transmitters 844c, 844d. The additional transmitters (not shown) may face the same direction and/or different directions. For example, In one embodiment, shown in Figure 9b, the emitters are shown in the opposite direction. Moreover, in one embodiment (not shown) the microwave heater 830 can include four additional transmitters configured in a manner similar to the transmitters 84A through 844d illustrated in the figures, as explained further below. Microwave transmitter 844 can be positioned along microwave heater 830, within microwave heater 830, or near microwave heater 83, according to any suitable configuration. In an embodiment, the microwave transmitter 844 can be configured to include two transmitter pairs. The individual emitters in the pair can be located generally 160981 of the microwave heater 83. Doc • 57· 201236751 on the same side (eg 'the pair includes transmitters 844a and 844d and the other pair includes transmitters 844b and 844c) or on the generally opposite side of the microwave heater 83〇 (eg, the pair includes microwave emissions) The other pairs 844a and 844b include 844c and 844d). As used herein, the terms "substantially opposite side" or "opposite side" are used to position two emitters such that the radial alignment angle defined therebetween is between at least 90. To 180. In the scope. The "radial alignment angle (β)" is defined as the angle formed between the two straight lines drawn from the center of each emitter to the center axis of the container. For example, 'FIG. 9 (showing exemplary emitters 845 and 846a defining a radial alignment angle B1 therebetween. The radial alignment angle between two emitters positioned on substantially opposite sides of a container may be At least 120., 150, at least 165, and/or no greater than 180. or approximately 180. In one embodiment, 'two emitters can be positioned on substantially opposite sidewalls, as shown in Figure 9b. In another embodiment, two oppositely disposed emitters may be located at or near a vertical top or bottom of a heater (not shown). One or more pairs of emitters are included in a microwave In an embodiment of the individual emitters on substantially opposite sides of the heater (eg, emitters 844b and 844a or emitters 844 (: and 844d) in Figure 9b, the individual emitters within the pair are also Axial alignment. As used herein, the term axial alignment refers to an axial alignment angle in which two emitters define a range from 〇 to 45. As used herein. "Axial alignment angle" can be between the centers of each emitter The shortest straight line system (which is also the elongate axis of the intersecting valleys) of 160,981 to draw the line perpendicular to the elongate shaft. The definition of the angle between the formation of doc -58- 201236751. In Fig. 9d, the 'axial alignment angle α is formed between the line 850 drawn between the centers of the exemplary emitters 845 and 846 and the line 852 perpendicular to the elongated axis 83 5a. In one embodiment, the axially aligned emitters can define at least 0° and/or, for example, no more than 3 inches. Or no more than 15. One of the axial alignment angles. In another embodiment, the individual emitters within a pair may be located on substantially the same side of a microwave heater. As used herein, the term "substantially the same side" or "the same side" means that two emitters have a radial alignment angle ββ in a range from at least or equal to 0° to 90°. The exemplary emitters 845 and 846b are located on substantially the same side of the microwave heater because of the radial alignment angle defined therebetween (eg, the beta system is no greater than 9 inches. In one embodiment, 'is placed in one The two emitters on the same side of the microwave heater may define at least 0. and/or no greater than 60., no greater than 3 〇, and no greater than 15. or one of the radial alignment angles of approximately 0°. Or an embodiment in which a plurality of transmitter pairs comprise individual transmitters (e.g., transmitters 844a and 844d or transmitters 844b and 84A in 圊9b) on substantially the same side of a microwave heater, such The individual emitters within the pair may also be adjacent to each other in axial B. As used herein, the term "axially adjacent" means that two or more emitters are positioned on the same side of a microwave heater to cause No other emitters on the side are placed between the axially adjacent emitters. According to one embodiment of a microwave distribution system comprising two or more relatively positioned microwave emitter pairs, one of the emitters from the first pair is disposed on substantially the same side as the emitter from the second pair On the 'by forming an axial her neighbor transmitter pair. 160981. Doc-59-201236751 As illustrated in Figure 9b, each of the microwave emitters 844a through 844d can define a respective open outlet 845a through 845d for emitting microwave energy into the interior of the microwave heater 830. The open outlet can be positioned to emit energy into the interior of the microwave heater 830 in any suitable pattern or in any suitable orientation. For example, in one embodiment shown in Figure 9b, the open exit is axially adjacent to the emitter (e.g., the outlets 845a, 845d of the emitters 844a, 844d and the outlets 845b, 845c of the emitters 844b, 844c) Oriented to face each other in a direction substantially parallel to an outer sidewall to which the emitters are coupled (eg, sidewall 83 la of emitters 844a, 844d and sidewalls 83 lb of emitters 844b, 844c) He discharges microwave energy in the general direction. As used herein, the term "substantially parallel" means within 10 degrees of the parallel plane. In one embodiment, at least one of the open outlets 845a through 845d can be oriented to discharge energy substantially parallel to the extended axis of the microwave heater 830 (designated as line 835 in Figure 9b). According to one embodiment, at least one of the open outlets 845a through 845d can be oriented toward an axial midpoint of one of the heaters 830. As used herein, the "axial midpoint" of a container is defined by a plane that is orthogonal to the elongated axis 835 and intersects the point 839 of the elongated shaft 835, as shown in Figure 9b. In one embodiment, each of the open outlets 845a through 845d is oriented toward an axial midpoint of the heater 830 such that the open outlets 845a, 845b of the front side emitters 844a, 844b substantially face the back side emitter 844c 844d open outlets 845c, 845 (1, as depicted in Figure 9b. According to one embodiment, in operation, microwave energy produced by one or more microwave generators (not shown) may be via waveguide 842a Delivered to launch at 160981. Doc • 60· 201236751 The mouthpiece 844 & 844d 'transmitter (4) to the purchase of energy into the inner cavity of the microwave heater 830. Although not illustrated in Figure 9b, any number or configuration of microwave generators can be used to produce microwave energy for use in the microwave heating system 8 2 . In an embodiment, a single generator can be used to supply energy to the heater 83A via the waveguides 842a through 842d and the transmitter 844, while in another embodiment, the heating system 82 can include two or two More than one generator. According to another embodiment, one or more microwave generators may be utilized to network such that at least one, at least two, at least three, or all four of the microwave emitter stacks are substantially simultaneously Launch microwave energy. In one embodiment, one or more of the transmitters 844 & 844d can be coupled to a single generator and the energy from the generator can be distributed among the transmitters using one or more microwave switches. In another embodiment, one or more of the transmitters 84A through 844d may have a separate dedicated generator such that at least 75%, at least 9%, or substantially all of the microwave energy to be produced by the generator Route to a single transmitter. Additional details regarding specific embodiments of microwave generators, waveguides and transmitters, and their operation are provided later with respect to Figures 11a and Ub. The microwave energy propagating from the waveguide segments 842a through 842d can be in any suitable mode, including, for example, a ΤΜαί) mode and/or a TE々 mode, where α, ό, χ, and less have values as previously defined. . In one embodiment, waveguide segments 842a through 842d each include a waveguide segment, wherein segments 842a & 842d are configured to penetrate sidewall 83 la and segments 842b and 842c are configured to penetrate sidewall 831b and toward the elongated axis 835 extends radially into the interior of the microwave heater 830, as shown in Figure 9b. 160981. Doc -61 · 201236751 According to an embodiment of the invention, the mode of propagation of microwave energy through waveguide segments 842 & to 842 (1 may be changed before (or at the same time as) being emitted into the interior of microwave heater 830. In one embodiment, ΤΕλ;) produced by a microwave generator (not shown in Figure 9b); mode energy can pass through one or more mode transition segments (represented as a mode converter in Figure 9b) 85〇a to 8 50d) are then emitted into the microwave energy as mode energy. The mode converter can have any suitable size and shape and any suitable number of mode converters can be used in the microwave distribution system 84A. In one embodiment, one or more mode converters 850a through 850d may be disposed outside the interior space (volume) of the microwave heater 830. In another embodiment, the mode converters 850a through 850d may be partially or It is integrally placed inside the microwave heater 83. Mode converters 850a through 850d may be located in or adjacent to side walls 831a, 831b, or (as illustrated in Figure 9b) may be spaced apart from outer sidewalls 831a, 83b of microwave heater 83'. According to an embodiment in which the mode converters 850a through 850d are partially or integrally disposed within the heater 830, the microwave energy can initially enter the microwave heater in a τ υ mode, and then at least a portion of the energy can be converted At least a portion of the energy emitted from the emitters 844a through 844d into the interior of the microwave heater 83A can be in a "mode. In an embodiment, the waveguide segments 842a through 842d can include an operable to press - 'mode The microwave energy is transmitted from the generator to the TE" waveguide section of the heater 83. In the embodiment, the TE" waveguide sections 8A to 842 (at least the portion of 1 can be integrated into the emitters 844a to 844d, such as Figure 9bt shows that when the energy is converted from the waveguide segment to the pattern just after the mode transition _85Ga to the graph, the energy is converted into a ^ 160981. Doc -62· 201236751 mode. Subsequently, the Dinghe mode energy exiting the mode converters 850a through 850d can then pass through a respective TM& waveguide segment 843a through 843d, in 9b, before being discharged into the heater 830 via the 出口αί) open outlets 845a through 845d. The illustration is shown as being integrally disposed within the interior of the microwave heater 830 and spaced from its sidewall 833. According to another embodiment illustrated in Figure 9e, the microwave heating system 82A can include one or more reflectors 890a through 890d positioned adjacent the open outlets 845a through 845d and operable to reflect or scatter from the emitter 84. The microwave energy is transmitted to the microwave heater 830. In one embodiment, the reflectors may be fixed or stationary reflectors such that energy is reflected or scattered when the position of the reflector does not change. In another embodiment illustrated in Figure 9e, one or more of the reflectors 890 can be a movable reflector operable to change position to reflect or scatter microwave energy into the microwave heater 830 Each of the movable reflectors 89A & 890d of Figure 9e has a respective reflective surface 89la to 89 Id for reflecting or scattering the energy emitted from the microwave emitters 844a through 844d. As shown in Figure 9e Each reflective surface may be spaced apart from the outer sidewalls 831a, 831b and may be positioned such that the emitters 844a-844 (1 of each of the emitter openings 845 & 845 (one or more of the 1 facing its respective reflective surface) 891 a to 89 Id, reflective surface 89la to 89Id Also positioned to contact, direct or reflect at least a portion of the microwave energy from the emission openings 845a through 845d. In one embodiment, at least a portion or substantially all of the microwave energy emitted from the microwave emitters 844 & At least partially contacting the respective reflector surfaces 89 la to 89 Id and at least partially reflecting or scattering therefrom. In one embodiment, one or more of the reflective surfaces 89 la to 89 Id 160981. Doc -63- 201236751 Yes,. . The direction of the yaw is in a direction substantially parallel to the direction of elongation of the outer side walls Μ 1 a, Μ 1 b . In an embodiment, the reflector surfaces 891a through 891d may be substantially planar, while in other embodiments, - or the plurality of reflector surfaces 891 may be non-planar. For example, in an embodiment, one or more non-planar reflector surfaces 8913 to 891 (1 may define a curvature as illustrated by the embodiment illustrated in Figure 9h. Reflector surface_to The coffee may be smooth or may have - or a plurality of convex bodies. As used herein, "protrusion" refers to a region of a reflector that is operable to scatter from it rather than reflect energy. In the embodiment, the convex body may have a generally convex shape as illustrated by the examples of the convex bodies 893a, 893b shown in Figures 9f and 9g. In another embodiment The convex body can have a generally concave shape such as, for example, a dimple or other similar indentation. According to one embodiment of the invention, one or more reflectors (10) to a movable reflector can be viewed. The movable reflector can be any reflector that is operable to change position. In one embodiment, the movable reflector is hidden to 89〇b can be in a specified pattern (such as, for example, a substantially lower Oscillating reflection of a pattern or a pattern of rotation around an axis In one embodiment, the movable reflector can be a randomly movable reflector that is operable to move in any of a wide variety of random and/or unplanned movements. The movable reflectors 890a through 890d can be The microwave heater 830 is movably coupled according to any suitable method. For example, in one embodiment illustrated in Figure 9i, the microwave heater 830 can be included within the heater 83 16 16098 丨. Doc -64 - 201236751 A reflector drive system (or actuator) 899 for one of the movable reflectors 890. As shown in Figure 9i, the reflector driver system 899 can include one or more support arms 892 that can securely couple the reflector 890 to an oscillating shaft 893. To cause the spindle 893 to rotate and thereby move the reflector 890 in an incoming and outgoing pattern (as generally indicated by arrow 880), the motor 898 can cause a wheel 896 (the linear shaft 895 can be pivoted to the center in a manner that is substantially off-center) Turn. As indicated by arrow 881, the shaft 895 can be moved in a generally lower manner as the wheel 896 rotates, thereby causing a lever arm 894 to pivot about the pivot 897 as indicated generally by arrow 882. Accordingly, reflector 890 can be moved as generally indicated by arrow 880 and is operable to be reflected or scattered from emission opening 845 of wave reflector 844 by at least partially determining a pattern by movement of reflector 890. At least a portion of the microwave energy. Yet another embodiment of a microwave heating system 920 is shown in Figures 10a through 10F. As illustrated in an embodiment of FIG. 1A, a microwave heater 930 includes a heater inlet door 938 for loading a wood bundle 9〇2 into the interior of the heater 93〇 and for One of the bundles 9〇2 heater exit gate 939 is removed from the microwave heater 930. Although illustrated in FIG. 1A as including a separate inlet door 938 and outlet door 939, it should be understood that in another embodiment the microwave heater 930 may only include internal packaging for use from the microwave heater 93. Plant a bundle of wood 902 and unload the bundle of wood 9 〇 2 single door. In the embodiment shown in FIG. 1A, heater inlet door 938 and heater outlet door may be located on generally opposite sides of microwave heater 930 such that bundle 902 may be via a transport mechanism (such as, for example, ) A van (not shown) generally passes through 160981. Doc •65- 201236751 Heater 930. Additionally, the microwave heating system 92A can include a vacuum system (not shown) for controlling one of the pressures in the heater 930. As shown in Figure 10a, the microwave heating system 92A can include a microwave distribution system 940 that includes a plurality of spaced apart emission openings 941 & defined in one of the outer sidewalls 931 of the microwave heater 93A. To 941 (1. Each of the firing openings 941 is operable to receive a microwave emitter (not shown) for emitting energy into the interior of the microwave heater 930. The microwave emitters may be at least partially or integrally disposed in the microwave A particular embodiment of one or more types of microwave emitters will be discussed in more detail later. According to one embodiment, microwave energy produced by a microwave generator (not shown) can be worn. The external TE^ to ΤΜα6 mode converters 950a through 950d (which convert the energy passing therethrough into a ΤΜαδ mode) are transmitted through the waveguide segments 942a through 942d in a ΤΕ〇 mode. The resulting mode microwave energy can be followed by Mode converters 950a through 950d are exited via respective waveguide segments 942e through 942h, as illustrated in Figure 10a. Thereafter, at least a portion of the microwave energy in TM& waveguide segments 942e through 942h may be Passing through the respective barrier assemblies 97〇3 to 97 (M. The term "barrier assembly" as used herein may refer to being operable to fluidly) before the έαέ waveguide segments 942i through 9421 enter the microwave heater 930. Isolating the microwave heater from an external environment while still permitting microwave energy to pass through any of the devices. For example, in one embodiment shown in FIG. 1a, the respective barrier assemblies 970a through 970d may Each includes at least one sealing window member 972a to 972d that is microwave permeable, but provides each upstream 942e to 942h 波导αΖ) waveguide segment and downstream 942i to 9421 TM& waveguide segment each 160981. Doc -66· 201236751 A desired degree of fluid isolation between the two. As used herein, the term "seal window member" means a window member configured in one of the following ways: it will provide sufficient fluid isolation between the two spaces on either side of the window member to allow for spanning This window member maintains a pressure differential. Additional details regarding the particular embodiment of the barrier assemblies 970a through 970d will now be discussed with respect to Figure 10b. A barrier assembly configured in accordance with an embodiment of the present invention minimizes or eliminates arcing even at high energy fluxes and/or low operating pressures. According to an embodiment of the invention, each of the barrier assemblies 97〇a to 97〇d may permit energy of at least 5 kW, at least 30 kW, at least 50 kW, at least 60 kW, at least 65 kW, at least 75 kW, At least 1 kW, at least 150 kW, at least 200 kW, at least 250 kW, at least 350 kW, at least 400 kW, at least 500 kW, at least 600 kW, at least 750 kW or at least 1,000 kW and/or no more than 2,500 kW a rate of no more than i, 500 kW or no more than 1,000 kW passes through its respective window members 972a to 972d, and the pressure in the microwave heater 930 may be no more than 550 Torr, no more than 450 Torr, and no more than 350 Torr. No more than 250 Torr, no more than 200 Torr, no more than 15 Torr, no more than 100 Torr or no more than 75 Torr. In one embodiment, the pressure in the microwave heater may be no greater than 10 mTorr, no greater than 5 Torr, no greater than 2 mTorr, no greater than 1 mTorr, and no greater than zero. 5 mTorr or no more than 〇·ι. In one embodiment, microwave energy passing through the barrier assemblies 970a through 970d can be introduced to maintain the magnetic field below a threshold of arcing to thereby prevent or minimize the barrier assembly 97A to 970d. The arc in the middle. Turning now to Figure 1 Ob, an axial cross-sectional view of a barrier assembly 970 is provided. The barrier assembly 970 includes a first sealing window structure disposed in a barrier-like body 973. Doc • 67· 201236751 piece 972a and a second sealing window member 972b. When present, the second sealing window member 972b is operable to cooperate with the first sealing window member 972a to provide a desired position between the upstream (eg, inlet) ΤΜαέ waveguide segment 975a and the downstream (eg, outlet) ΤΜαέ waveguide segment 975b The quasi-fluid isolation also permits at least a portion of the microwave energy to pass from the first ΤΜαΖ) waveguide segment 975a to the second ΤΜαό waveguide segment 975b. According to an embodiment, the first ΤΜαδ waveguide section 975a and the second ΤΜαΖ) waveguide section 975b may have a circular cylindrical cross section. In one embodiment, the waveguide segments 975a, 975b may be in which two ends of a single continuous waveguide of the barrier assembly 970 may be disposed, while in another embodiment, the waveguide segments may be suitably fastened or Two separate waveguide portions or components coupled to either side of the barrier assembly 970. As shown in Figure 10b, the barrier housing 973 can include a first or inlet section 973a, an optional second or intermediate section 973b, and a third or outlet section 973c, wherein the first sealing window member 972a is disposed A first sealing window member 972b is disposed between the first section 973a and the second section 937b and is disposed between the second section 973b and the third section 937c. According to an embodiment, the pressure of each of the first segment 973a, the second segment 937b, and the third segment 937c may be different. For example, in one embodiment, the pressure of the first section 973a may be greater than the pressure of the second section 973b, and the pressure of the second section 973b may be greater than the pressure of the third section 973c. Each of the first segment 973a, the second segment 937b, and the third segment 937c of the barrier housing 973 can be by any suitable fastening device such as, for example, a screw, a bolt, and the like (not shown) Hold together. In addition, barrier assemblies 970a through 970d may also include one or more impedance transformers that alter the impedance of the microwave radiation. An example illustration is shown in Figure 1 Ob. Doc-68-201236751 The impedance transformation diameter stepwise change 974a, 947b in the illustrated embodiment is used to maximize energy transfer from a microwave generator (not shown) to a load in a microwave heater (not shown). In one embodiment, the impedance transformation diameter stepwise changes 974a, 947b may be located adjacent at least one of the sealing window members 972a, 972b, while in another embodiment, the stepwise changes 974a, 947b may be located at the inlet ΤΜαδ waveguide The 97Sa and/or exit TM is defined adjacent to the waveguide 97^ or at least partially by the inlet TMa6 waveguide 975a and/or the outlet ΤΜβ6 waveguide 975b. As illustrated in Figures 10a and 10b, the sealing window members 972a, 972b can include one or more disks. Each disk can be constructed of any material having a suitable degree of corrosion resistance, strength, fluid impermeability, and microwave energy permeability. Examples of suitable materials may include, but are not limited to, alumina, magnesia, silica dioxide, oxidized wrinkles, boron nitride, mullite, and/or polymers such as Teflon. According to an embodiment, the loss tangent of the disk may be no more than 2ΧΗΓ4, no more than lxl〇-4, no more than 7 5χ1〇-5 or no more than 5xl (T5. The disks may have any suitable profile. In an embodiment, the disk may have a cross section that is compatible with the profile of the adjacent waveguides 975a' 975b. In one embodiment, the disks may have a substantially circular cross section and may have an equal passage through the barrier assembly 97. 0 The wavelength of the main wavelength of the microwave energy is at least 1 / 8, at least 1/4, at least 1/2 and / or not greater than 丨, not greater than 3 / 4 or not greater than one thickness of i / 2 (in Figure l〇 Designated as "Xj" in b. The diameter of the disks may be at least 5%, at least 6%, at least 75%, at least 90°, and/or one or more adjacent waveguides 975a, 97% of the diameter. Not more than 95%, not more than 85%, not more than 160,981. Doc -69- 201236751 70% or no more than 60%. Each of the sealing window members 972a through 972d can be operatively coupled to the respective barrier assemblies 970a through 970d in any suitable manner. In one embodiment, each of the sealing window members 972a through 972d can include one or more sealing devices that are flexibly coupled to the barrier housing 973 and/or the sealing window members 972a, 972b. As used herein, the term "flexibly coupled" means secured, attached or otherwise configured such that the members are held in place without direct contact with one or more rigid structures. For example, in one embodiment shown in FIG. 10b, the barrier assembly 970 can include a plurality of elastic rings 982a, 982b and 984a, 984b that are compressed in various segments 973a through 973c of the barrier housing 973. There is and is operable to flexibly couple the sealing window members 972a, 972b into the barrier housing 973. According to one embodiment, each respective upstream resilient ring 982a, 982b and downstream resilient ring 984a, 984b are operable to substantially prevent or limit the first section 973a and the second section 973b of the barrier assembly 970 and/or Or fluid flow between the second section 973b and the third section 973c. For example, one of the procedures B1 entitled "Spraying Testing" as described in the document entitled "Helium Leak Detection Techniques" issued by Alcatel Vacuum Technology under the use of a Varian model No. 938-41. In the helium leak test, the fluid leakage rate of the sealing window members 972a to 972d and/or the barrier assemblies 970a to 970d may be no more than 10_2 Torr·sec/sec, no more than 1〇_4 Torr·L/sec or no greater than 1〇_8托. l / sec. Additionally, each of the sealing window members 972a, 972b can be individually operable to maintain or withstand a pressure across the sealing window members 972a, 972b and/or the barrier assembly 970. Doc -70- 201236751 Force difference without breaking, cracking, destroying or otherwise failing, the pressure difference is in quantity such as at least 0. 25 atm, at least at 5 atm, at least 〇 atm, at least 〇·9〇 atm ' at least 1 atm or at least 1. 5 atm and so on. Turning now to Figure 10c, a cross-sectional microwave heating system 920 is provided. The microwave heating system illustrated in FIG. 1C includes a microwave distribution system 94A including at least one pair of microwave emitters disposed on substantially opposite sides of a microwave heater 930 (eg, emitters 944a and 944h) ). Although shown in FIG. 1C as including a single emitter pair, it should be understood that the microwave distribution system 94A may further include one or more additional similar (or slightly different) configurations of microwave emitter pairs, In some embodiments, one emitter is from each pair disposed on substantially opposite sides of the microwave heater 930. Further, in another embodiment (not shown), the microwave distribution system 94A can include two or more vertically spaced microwave emitters positioned on substantially the same side of the microwave heater 930. Column. In one embodiment, each side of the microwave heater 930 can include two or more vertically spaced emitter columns such that one emitter from each opposing placement pair can be positioned opposite from the other. One of the heights of one of the emitters is at a vertical height. For example, in one embodiment, the emitters 944& and/or 944h can be positioned at a vertical height that is one of the heights shown in Figure 10c and the other emitter pair can be positioned such that two One of the emitters will be positioned on the same side of the microwave heater 930 but at a substantially lower vertical height than the emitter 944a' and the other emitter will be positioned on the same side of the microwave heater 930 but At a substantially lower vertical height than the emitter 944h. Moreover, although shown as split emitters 944a, 944h, in one embodiment, the contours are 160981. Doc -71 - 201236751 Directly spaced emitters can be any type (or combination of types) of microwave emitters as described herein. As shown in Figure 10c, microwave distribution system 940 includes a plurality of waveguide segments 942 coupled to at least one pair of microwave emitters 944a, 944h. For example, as shown in the embodiment of Figure 10c, the emitter 944a can be coupled to the waveguide segments 942a, 942e, and 942i, and the emitter 944h can be coupled to the waveguide segments 942x, 942y, and 942z, which are operable to microwave It can be delivered to the interior of the microwave heater 930 from one or more microwave generators (not shown in Figure 10c). In one embodiment, microwave distribution system 940 can include one or more of mode converters 947a through 947d coupled to one or more of waveguide segments 942, as shown in Figure 10c. According to an embodiment, the mode converters 947a to 947d are operable to change the transmission mode of the microwave energy passing therethrough from a TE^ mode to a TMw mode (ie, a TE〇 to TM& mode converter) or A TMai mode is changed to a TE" mode (ie, a TM& to TE mode converter). For example, as shown in FIG. 10C, mode converters 947a and 947c can each be operable to self-use the microwave energy from a TEY mode as it passes through the waveguides 942a and 942x. Convert to a ΤΜαί) mode. As previously discussed, α, 6, and: The values of <: and ;/ may be the same or different and may have the values provided above. Mode converters 947b and 947d are operable to convert the microwave energy transmitted through waveguides 942e and 942i and the energy transmitted through 942y and 942z from a ΤΜαδ mode to a TE^ mode, as desired. Further, in an embodiment illustrated in FIG. 10c, at least one of the mode converters 947a to 947d may include a mode converter sub-160981.doc-72-201236751 splitter operable The mode of microwave energy passing therethrough is changed and split into two or more separate microwave energy streams for discharge into the interior space of the microwave heater. According to an embodiment, the second mode converters 947b and 947d may each comprise a mode switching splitter at least partially disposed within the interior of the microwave heater. In another embodiment, the second mode switching splitters 947b and 947d may be integrally disposed within the interior of the microwave heater 93A and may each be part of a split emitter 944a and 944h, respectively, as shown in FIG. Illustrated. Additional details regarding split transmitter 94 private, 944h will be discussed later. According to an embodiment of the invention in which the microwave distribution system 940 includes two or more mode converters in one or more waveguide segments, the total electrical length between the first mode converter and the second mode converter (Electrical length extending through and including any of the barrier assemblies (if present) may be equal to one of a non-integer half wavelength of the competing mode of microwave energy passing therethrough. As used herein, the term "electrical length" refers to the electrical transmission path of microwave energy, expressed as the number of wavelengths of microwave energy required to propagate along a given path. In one embodiment where the physical transmission path comprises - or a plurality of different types of transmission media having two or more different dielectric constants, the physical length of the transmission path can be shorter than the electrical length. Thus, the electrical length depends on a number of factors including, for example, the particular wavelength of microwave energy, the thickness and type of one or more transmission media (e.g., dielectric constant). According to a lean embodiment, the total mode length between the first mode converter 94, 947c and the second mode converter 947b, 947 (1 extends (and extends through and includes the TMfli barrier assembly 97A, 970h) The total electrical length can be equal to the competition of microwave energy 160981.doc -73- 201236751 ¥'s non-integer half-wavelength of the pattern. As used herein, the term "non-integer" means any number that is not an integer. A non-integer half-wavelength may correspond to a distance of π times λ/2, where „ is any non-integer. For example, the number “2” is an integer, and the number “2〇5” is a non-integer. The half-wavelength corresponding to the electrical length of 2.05 multiplied by the competition mode of microwave energy will be a non-integer half-wavelength of the competition mode. As used herein, the term "competition mode of microwave energy" means The mode of microwave energy used to propagate along a path other than the expected or target mode of microwave energy propagating along a given path. The competition mode may include - the earlier most popular mode (ie, 'primary competition mode') or plural Different non-popular competitions exist in the township m silk - a mode converter and the second mode converter < the total electrical length (extending through and including any of the electrical lengths of the barrier assembly (if present)) may be equal to a value of a non-integer half wavelength of at least one of the plurality of competing modes, And in the embodiment, it may be equal to one of the non-integer half-wavelength values of the main competition mode. For example, in one embodiment illustrated in Figure 10c, the converters 947a, 947c include a swell-up mode, which is operable to purchase individual waveguide segments 9 At least part of the microwave energy, the mode is converted into the waveguide segments 942b and 942e - % ^: at least - part of the microwave energy can be converted into the desired two! The nuclear type. In addition to the desired mode - the mode is usually in this article: wave: it, the competition mode. In the preferred embodiment of the microwave energy of the present invention, the competing mode of microwave energy can be passed through, where read, 1 and (7) are - integers between. 160981.doc •74· 201236751 The total electrical length of the 'TMai) waveguides 942e and 942i between the 'first mode converter 947a and the second mode converter 947b' in one embodiment (extending through and including the barrier) The electrical length of the assembly 970a may be equal to a non-integer half-wavelength of the TEW mode, where "system 1 and the calendar is an integer between 1 and 5. In another embodiment, m may be 2 or 3. In one embodiment, the physical length and properties of the selected waveguide segment 942, mode converters 947a through 947d, and/or barrier assemblies 970a, 970h may minimize energy accumulation within the barrier assemblies 970a, 970h. In accordance with an embodiment 'at least 5 kW, at least 30 kW, at least 50 kW, at least 60 kW, at least 65 kW, at least 75 kW, at least 100 kW, at least 150 kW, at least 200 kW, at least 250 kW, at least 350 kW, at least 400 kW, at least 500 kW, at least 600 kW, at least 750 kW or at least 1, 〇〇〇kW and / or no more than 2,500 kW, no more than 1,500 kW or no more than 1, 〇〇〇kW At least one sealing window structure in the barrier assembly 970a, 970h when the energy can pass through the barrier assembly 97〇a, 97〇h The temperature of at least a portion of the component (not shown in Figure 1) may vary by no more than 1 (TC, no greater than 5. 〇, no greater than 2 ° C or no greater than 1 ° C. In another embodiment, as above It is stated that the pressure differential across the at least one sealing window member and/or the pressure within the microwave heater 930 can maintain similar results. According to one embodiment illustrated in Figure 10c, the microwave heater 930 is generally At least one of the individual microwave emitters 944a, 944h on the opposite side and at least partially disposed within the interior of the microwave heater 93A can include a split reflector defined to emit microwave energy to the microwave heater 930 At least two discharge openings in the interior. Although illustrated in Figure i〇c, 160981.doc -75 - 201236751 includes a single emitter pair (eg, first split emitter 944a and first split emitter) 944h) 'But it should be understood that the microwave heater 93A can include any suitable number of emitters or emitter pairs, as set forth herein. One embodiment of the non-split emitter 944 is depicted in Figure i. Split transmitter 944 can include Receiving a single inlet or opening 951 of microwave energy, and for single (not shown) or two or more discharge openings or outlets 945a, 945b for emitting microwave energy therefrom. In an embodiment, one The ratio of the enthalpy wave energy inlet to the discharge outlet of a single split emitter may be 1:1, at least to 1.3, or at least 1:4. The mode of microwave energy introduced into the inlet 951 according to one embodiment may be The modes of the microwaves emitted by the openings h, 945b are the same, while in another embodiment, the modes may be different. For example, in an embodiment in which the split emitter 944 includes a mode switching splitter 949, the microwave energy introduced into the single inlet of one of the first sidewalls of the microwave heater may undergo a mode conversion and be Divided into at least two separate microwave energy portions, which can then be launched into the interior of the heater in a different mode as desired. For example, in one embodiment shown in FIG. 1D, the 'split emitter 944 can include a ΤΜα6 waveguide segment 942, one or two or more TE, y waveguide segments 943a, 943b, and a female A ΤΜαί) to TE" mode switching splitter 949 interposed therebetween. In operation, microwave energy introduced in a ΤΜαδ mode via waveguide section 942 is self-guided at one or two or more separate microwave energy fractions The respective outlets 945a, 945b of 943a, 94 pass through the mode switching splitter 949 before or at the same time in a ΤΕχν mode. When the transmitter 944 includes a single discharge opening, the mode switching splitter 160981.doc • 76- 201236751 949 may be only one mode converter 949 (not a splitter) for changing the mode of microwave energy passing therethrough. For example, where emitter 944 includes - a single discharge opening (not shown in Figure 10d) In one embodiment, the transmitter 944 can include a single TMfl0 waveguide section, a single TE^ waveguide section: a TMw-to-mode converter 949 disposed therebetween. The mode converter can be located outside the microwave heater, The ground is located inside the microwave heater or completely inside the microwave heater. In operation, the microwave energy introduced in the TMafc mode via the inlet waveguide section can pass through the mode converter 9 before being discharged in the _ΤΕ叮 mode. 4. The discharge opening of a single open emitter may be oriented at any suitable angle relative to the horizontal plane or may be substantially parallel to the horizontal plane. In one embodiment, the energy emitted from a single open emitter may be oriented to the horizontal plane. At least 20, at least 30, at least 45, or at least 6 〇 and/or no greater than 100, no greater than 90, or no greater than 8 〇. One corner. When there are multiple discharge openings, the split emitter 944 Each of the discharge openings 945a, 945b can be oriented relative to one another such that the path of microwave energy discharged therefrom defines a relative discharge angle, as shown in Figure 〇d. In one embodiment, 'microwave energy' The relative discharge angle between the paths of the discharge openings 945a, 945b may be at least 5., at least 15, at least 30, at least 45, at least 60, at least 90, at least 115, at least 135, at least 14 〇 and/or no more than 180°, no more than 170, no more than 165, no more than 16〇, no more than 140°, no more than 120, no more than 100, or no more than 9〇. In an embodiment, the orientation of the discharge openings 945a, 945b may also be illustrated relative to the orientation of the path of microwave energy discharged therefrom relative to the axis of extension 94 8 of the TMa0 waveguide section 942. In one embodiment, the discharge opening 945a, Each of the 945bs 160981.doc • 77· 201236751 can be configured to discharge microwave energy at respective first and second discharge angles (φ 1 and Φ 2 ) with the extension axis 948 of the TMa6 waveguide section 942. In one embodiment, φ! and φ2 may be substantially equal' as generally illustrated in Figure 10d, or in another embodiment, one of the two angles may be larger than the other. In various embodiments, φι and/or φ2 may be at least 5°, at least 10. At least 15. At least 30. At least 35. At least 55°, at least 65. At least 70. And / or no more than 110. No more than 100° and no more than 95. No more than 8 inches. No more than 70. No more than 60° or no more than 40. . In one embodiment, 'split emitter 944 can be a vertically oriented split emitter'. This emitter 944 includes at least one upwardly directed discharge opening configured to emit microwave energy at an upward angle to the horizontal plane (eg, 945a) And at least one downwardly directed discharge opening (e.g., 945b) configured to emit microwave energy at a downward angle to the horizontal. Although shown in Figures i〇c* as including vertically oriented splitting emitters 944a, 944h configured to discharge energy at an angle relative to a horizontal plane, in another embodiment, splitting emitter 944a of microwave heater 930 One or more of 944h may be oriented horizontally such that the split emitter as set forth above has been rotated 90°. In another embodiment, one or more split emitters 94, 944h may be rotated. With 90. An angle between. In one embodiment (not shown), a microwave heater can include two or more vertically spaced horizontally oriented split emitter rows on one side of the heater and another general body in the same heater Two or more vertically spaced horizontal turns on opposite sides transmit the benefit to the y-crack. According to this embodiment, the vertically spaced emitter columns may comprise a single open emitter, a horizontally oriented split emitter, a vertical orientation 160981.doc • 78· 201236751 split emitter or any combination thereof. In an embodiment shown in FIG. 1C, the microwave heater 930 can include one or more (or at least two) movable reflectors 99〇& to 99〇d, which are positioned for microwave heating. Various locations within the 930 are configured and rasterized to radiate microwave energy from the one or more of the one or more microwave emitters 944a, 944h or the plurality of discharge openings 945a through 945d into the interior of the microwave heater 93A. The reflectors 990a through 990d can have any suitable configuration, such as, for example, a configuration that includes one or more of the features previously described with respect to Figures 9f through 9h. Further illustratively, four movable reflectors 99A & 990d are included, but it should be understood that the microwave heater 93A can include any suitable number of movable reflectors. In one embodiment, a microwave heater comprising "split emitters" can include at least 2 movable reflectors. In another embodiment, a microwave heater can employ a total of four movable reflectors, each of which extends across the length of the microwave heater 930 by one of the reflector surfaces to enable two or more An axially adjacent emitter "shares" one or more reflectors or reflective surfaces. Regardless of the particular number of reflectors employed, each of the reflectors 99a through 990d is operable to raster at least a portion of the microwave energy exiting the emitters 944a, 944h into the microwave heater 930 via the discharge openings 945a through 945d. 'To thereby heat and/or dry at least a portion of the bundle or other article, article or load. As used herein, the term "rasterizing" means capable of guiding, projecting, or focusing on an area. Rasterization energy involves a large degree of intentional guidance or aggregation compared to conventional reflection or scattering energy I, which can be achieved by utilizing the quasi-optical properties of microwave energy. Compared with conventional means 160981.doc •79- 201236751 than 'rasterization' does not include the use of stationary reflective surfaces or conventional mode agitation devices (such as fans). In an embodiment, the microwave heater may comprise a plurality of split emitter pairs (eg, two or more transmitter pairs), wherein each turn includes two emitters having substantially similar configurations (eg, Explained). In the embodiment, one of each pair of emitters can be positioned on substantially the opposite side of the microwave heater or on the same side as previously discussed in detail with respect to Figures 9c and 9d. One or more movable reflectors 990a to the side may be positioned (and/or positioned to face) one or more of the discharge openings of each of the microwave emitters 944, in accordance with an embodiment. In one embodiment in which the first emitter 944a and the second emitter 944h each comprise a split microwave emitter defining respective upwardly directed discharge openings 945a and 945c and respective downwardly oriented discharge openings 945b and 945d, At least one movable reflector can be positioned adjacent one or more of the discharge openings 9453 to 945 (1) to rasterize at least a portion of the microwave energy discharged from the split emitters 944a, 944h into the interior of the microwave heater 93() For example, two or more separate τελ>) mode microwave portions). In an embodiment illustrated in Figure 10c, the microwave heater 930 can include at least four movable reflectors each defining a respective reflective surface and positioned for split emitters 944a, 94 to emit respective emissions Near the openings 945a to 945d. As illustrated in Figure i c, the movable reflectors 990a through 990d can be located at the bottom left quadrant of the microwave heater 93A (e.g., reflector 990a), the top left quadrant (e.g., reflector 990b), the top right quadrant (eg, reflector 99〇c) and bottom right quadrant (eg 'reflector 990d'). When the emitters 944a, 944h are horizontally oriented slitting emitters or a single open emitter, there may also be two or more of the reflectors 99〇3 to 160981.doc •80· 201236751 990d' as previously detailed set forth. The movable reflectors 990a through 990d can be configured in two vertically spaced pairs (eg, reflector 990a is paired with reflector 990b and reflector 990c is paired with reflector 990d) and/or configured to be separated by two levels Pairs (e.g., reflector 990b is paired with reflector 990c and reflector 990a is paired with reflector 990d). As illustrated in Figure 10c, 'vertically spaced reflector pairs (e.g., reflector pairs 990a, 990b and 990c, 990d) can be positioned near split emitters 944a, 944h to position a movable reflector at the emitter Near each of the discharge openings 945a through 945d of 944a, 944h (e.g., discharge openings 945a through 945d face respective movable reflectors 990a through 990d). As illustrated in FIG. 10C, the movable reflectors 99〇1 and 99〇c can be positioned at a height higher than the respective movable reflectors 990a and 990d such that the split emitters 944a, 944h Vertically positionable between vertically spaced pairs of reflectors (e.g., emitter 944a is vertically positioned between pairs of vertically spaced reflectors 990a, 990b and emitter 944h is positioned vertically perpendicular to vertically spaced reflectors 990c, 990d) Between the two). In one embodiment, the movable reflector 990 is positioned such that the reflector surface 991 opens toward one of its corresponding microwave emitters (not shown). In another embodiment, one or more of the movable reflectors 990a through 990d can be positioned to align with the central elongated axis of the microwave heater 930 or positioned to face the central elongated axis of the microwave heater 930 (FIG. 10c Not shown). The movable reflectors 990a through 990d can be coupled, directly or indirectly, to one or more of the side walls of a microwave heater and can be moved or actuated in any suitable manner. One or more of the reflectors 990a through 990d may move along a path that is pre-programmed (planned) 160981.doc • 81 · 201236751, or may cause one or more to move in a random or non-repeating pattern. When multiple reflectors 990a through 990d are present, in one embodiment, two or more reflectors 990a through 990d may have the same or similar moving pattern, while in the same or another embodiment, two Or more than two reflectors 990a through 990d may have different movement patterns. According to one embodiment, at least one of the reflectors 990a through 990d can move over a generally curved path and can pass through various segments or "zones" of the total path at a certain speed and/or residence time. The size and number of zones and the speed at which the reflector moves through each zone or the residence time of the reflector in each zone depends on a variety of factors such as, for example, the size and type of the bundle, the type of wood, and the initial And the preliminary and expected characteristics of the last bundle. In one embodiment, each of the reflectors 990a through 990d may be individually driven or actuated according to one or more embodiments set forth herein, while in another embodiment, two or two The above reflectors can be coupled to a common drive mechanism (eg, a rotating shaft to be actuated simultaneously). An example of a drive mechanism for moving a reflector 99 使用 using the actuator 960 is shown in Figure 1A. Actuator 960 can be a linear actuator having a fixed portion 961 coupled to one of side walls 933 of the microwave heater and an extendable portion 963 coupled to a movable reflector 990. According to the embodiment of Fig. 1(e), at least a portion of the (iv) portion 961 can extend through the side wall 933 and into the bellows structure 964, thereby sealingly coupling the actuator_ to the side wall 933. In one embodiment, the bellows structure 964 is operable to reduce, minimize, or nearly prevent fluid flow into and out of the actuator_extending through the lateral soil 933. As shown! (9) _ shown, removable 16098].doc -82- 201236751

反射器990進-步包括以框軸方式輕合至微波加熱器之侧 壁933之-支撑臂98〇。如本文中所制,術語「以框轴方 式搞合」係#兩個$兩個以上物件經附接 '緊目或以其他 方式相關聯以使得該等物件中之至少一者可大體圍繞二固 定點移動或樞轉。在操作中,一驅動器97〇使線性致動哭 婚之可延伸部分963以—進出類型運動移動,如由箭頭 Μ所指示 '線性致動器_之可延伸部分963允許可移動 反射器_以一大體弧形型樣移動,如由箭頭973所指示。 可以任-適合方式控制驅動器97〇,包含(舉例而言)使用— 或多個可程式化自動控制系統(未展示)。 根據本發明之一項實施例’最小化界定於一微波加熱器 之内部内之未佔用、無阻礙或開放體積之量可係有優勢 的。如本文中所使用,術語「總開放體積」係指當未將一 木材束安置於容器中時不被實體阻礙物佔用之在容器内部 内之空間之總體積。在本發明之一項實施例中,木材束之 總體積(包含個別木材件之間的空間)對微波加熱器之總開 放體積之比率可係至少0.20、至少〇 25、至少〇 3〇、至少 0.35在上述實施例中之某些實施例中,該比率亦係不大 於0.75、不大於〇.7〇或不大於〇 65。 在項貫細*例中,微波加熱器可界定用於接納一木材束 之無阻礙束接納空間。該無阻礙束接納空間亦可經組態 以接收經發射以加熱及/或乾燥其令之一或多個物件(或束) 之微波肖b之至少一部分。微波加熱器93〇之無阻礙束接納 工間在圖10c中指示為951 〇如本文中所使用,術語「無阻 16098I.doc -83- 201236751 礙束接納空間」係指界定於一微波加熱器之内部内之能夠 接納及口持纟材束之一空間。在一項實施例中,該無阻 礙束接納空間可界定具有一類似形狀且在由能夠在微波加 熱器930内裝載及/或處理之最大大小木材束所佔用體積之 π %内之體積。舉例而言,若能夠由微波加熱器容納之 最大束大小係!,_立方英尺,則該未伯用束接納空間將 具有U00立方英尺(在一項實施例中)之—體積及與在加熱 器930内處理之束類似之一形狀(例如,立方形)。 Γ! 該束接納空間可係「無阻礙」,乃因其可不包含永久性 地安置於其中之任何實體阻礙物(例如,波導、發射器、 射器等)*本發明之一項實施例中,微波加熱器可包 括一圓形剖面形狀,而無阻礙束接納空間951可界定一立 方形體積及/或經組態以接納具有一立方形形狀之一木材 束在項實施例中,微波加熱器930之總開放體積對無 阻礙束接納空間之體積之比率可係至少Q 2G、至少⑽、The step 990 of the reflector 190 includes a frame-axis coupling to the support arm 98A of the side wall 933 of the microwave heater. As coined herein, the term "in a frame-axis manner" means that two or more than two items are attached 'tightly or otherwise associated such that at least one of the items can generally surround two Fixed point movement or pivoting. In operation, a driver 97 causes the linearly actuated crying extended portion 963 to move in an ingress and egress type motion, as indicated by the arrow ' 'linear actuator _ the extendable portion 963 allows the movable reflector _ A generally curved pattern moves as indicated by arrow 973. The drive 97 can be controlled in any suitable manner, including, for example, using - or a plurality of programmable automatic control systems (not shown). It may be advantageous to minimize the amount of unoccupied, unobstructed or open volume defined within the interior of a microwave heater in accordance with an embodiment of the present invention. As used herein, the term "total open volume" refers to the total volume of space within the interior of the container that is not occupied by the physical barrier when a bundle of wood is not placed in the container. In one embodiment of the invention, the ratio of the total volume of the wood bundle (including the space between the individual wood pieces) to the total open volume of the microwave heater may be at least 0.20, at least 〇25, at least 〇3〇, at least 0.35 In some of the above embodiments, the ratio is also no greater than 0.75, no greater than 〇.7〇 or no greater than 〇65. In the example, the microwave heater can define an unobstructed beam receiving space for receiving a bundle of wood. The unobstructed beam receiving space can also be configured to receive at least a portion of the microwave ray b that is emitted to heat and/or dry one or more of the articles (or bundles). The unobstructed beam receiving station of the microwave heater 93 is indicated as 951 in Figure 10c. As used herein, the term "unshielded 16098I.doc -83 - 201236751 impeding the receiving space" means defined in a microwave heater. The interior is capable of receiving and holding a space in the coffin bundle. In one embodiment, the unobstructed beam receiving space can define a volume having a similar shape and within π% of the volume occupied by the largest size wood bundle that can be loaded and/or processed within the microwave heater 930. For example, if the maximum beam size can be accommodated by the microwave heater! , _ cubic feet, then the unarmed beam receiving space will have a U00 cubic foot (in one embodiment) volume and one shape (e.g., cuboid) similar to the bundle processed in heater 930.束! The bundle receiving space may be "unobstructed" because it may not contain any physical obstructions (eg, waveguides, emitters, emitters, etc.) that are permanently disposed therein * in one embodiment of the invention The microwave heater may comprise a circular cross-sectional shape, and the unobstructed beam receiving space 951 may define a cuboidal volume and/or be configured to receive a bundle of wood having a cuboid shape, in an embodiment, microwave heating The ratio of the total open volume of the vessel 930 to the volume of the unobstructed bundle receiving space may be at least Q 2G, at least (10),

至v 0.30 '至少〇·35。在上述實施例中之某些實施例中, β亥比率亦係不大於〇.75、不大於^,或不大於。 根據項實施例,無阻礙束接納空間95 1之至少一部分 :界定於兩個或兩個以上「阻礙物」t間,包含(舉例而 吕)位於微波加熱器930之相同或大體相對側上之兩個或兩 個以上發射器、反射器、波導或其他物件,其佔據該加熱 器之内。卩體積内之貫體空間。在其中微波加熱器93〇包括 兩個相對安置之門(例如,安置於微波加熱器93〇之大體相 對端上之一入口門928及一出口門)之一項實施例中,無阻 160981.doc * 84 - 201236751 礙束接納空間951之至少一部分可界定於該兩個相對安置 之門之間。在圖i〇c中所圖解說明之—項實施例中,發射 器944a、94411或可移動反射器99〇&至99〇d(其係阻礙物之 實例)中之任一者皆不安置於無阻礙束空間951内。在其中 無阻礙束接納空間之至少一部分界定於兩個或兩個以上阻 礙物(例如,波導、發射器、反射器等)之間的一項實施例 中,一或多個阻礙物之最外面邊緣與無阻礙束接納空間 ❹ (及7或束(當存在時))之間的最小餘隙可係至少〇.5英吋、至 少1英吋、至少2英吋、至少6英吋、至少8英吋及/或不大 於18英时、不大於10英吋或不大於8英吋。在一項實施例 中’該等阻礙物中之一者在束被裝載至加熱器93〇中時不 與其實體接觸。 現將大體參考用於加熱一木材束之一過程闡述根據本發 明之一微波加熱系統之操作之一或多個實施例。然而,應 理解本文_所闡述之加熱過程之一或多個元件亦可適於 Q 在用於加熱其他物項之過程(如(舉例而言)先前所闡述之彼 等過程)中使用。此外,應理解,可使用下文詳細闡述之 操作步驟、方法及/或過程中之至少某些或全部來操作微 波加熱系統之上文所闡述實施例中之一或多者,包含關於 圖8至1〇所論述之彼等實施例及其變化形式。 為起始一木材束之加熱,可首先將木材裝載至可根據先 前所闡述之本發明之一或多個實施例組態之一微波加熱器 中。在一項實施例中,該束可在加熱及/或乾燥之前具有 至少100镑、至少250碎、至少375碎或至少500碎之一總初 160981.doc -85· 201236751 始重量(例如,在加熱之前)。一旦裝載,即可接著使用真 空系統(若存在)來將加熱器之壓力減小至不大於550托、不 大於450托、不大於350托、不大於300托、不大於250托、 不大於200托、不大於150托、不大於100托或不大於75 托。 在維持微波加熱器中之低氣壓之同時,可接著操作一或 多個微波產生器以開始將微波能引入至容器内部中以藉此 加熱及/或乾燥該束之至少一部分。在將微波能引入至微 波加熱器之内部中期間,容器内之壓力可高於、幾乎處於 或低於大氣壓。根據一項實施例,在加熱步驟期間,微波 加熱器之内部之壓力可係至少350托、至少450托、至少 650托、至少75〇托、至少9〇〇托或至少12〇〇托,而在另一 實施例中’微波加熱器中之壓力可係不大於35〇托、不大 於250托、不大於2〇〇托、不大於15〇托、不大於1〇〇托或不 大於75托。在木材之加熱及/或乾燥期間引入至微波加熱 器之内部中之總產生器容量或能量速率可係至少5 kw、至 少30 kW、至少50 kW、至少60 kW、至少65 kW、至少75 kW、至少100 kw、至少150 kW、至少200 kW、至少250 kW、至少35〇 kW、至少400 kW、至少500 kW、至少600 kW、至少750 kW或至少1,000 kW及/或不大於2,500 kW、 不大於1,500 kW或不大於1,000 kW。 根據一項實施例,加熱一木材束之過程可包括複數個個 別順序加熱循環。總加熱過程可包括至少2個、至少3個、 至少4個、至少5個、至少6個及/或不大於20個、不大於15 160981.doc -86- 201236751 個、不大於12個或不大於10個個別順序加熱循環。每一加 ,"、#裒可包含(視需要在低氣壓下)引入微波能。在一項實 施例中,可在不大於350托之一壓力下將微波能引入至微 波加熱器中,而在其他一項實施例中,微波加熱器中之壓 . 力可係至少350托。 根據一項實施例,該一或多個個別加熱循環中之每一者 可實施達(例如,具有一持續時間為)至少2分鐘、至少5分 〇 鐘、至少10分鐘、至少分鐘、至少30分鐘及/或不大於 180分鐘、不大於12〇分鐘或不大於9〇分鐘。總而言之加 熱過程之整個長度(例如,總循環時間)可係至少〇 5小時、 至少2小時、至少5小時或至少8小時及/或不大於%小時、 不大於30小時、不大於24小時、不大於18小時、不大於16 小時、不大於12小時、不大於丨0小時、不大於8小時或不 大於6小時。 在其中總加熱過程包括兩個或兩個以上個別加熱循環之 〇 一項實施例中,一或多個後續個別加熱循環可以與前—循 環不同之一微波能輸入速率及/或與前一循環不同之—壓 力實施。舉例而言,在一項實施例中,後續個別加熱循環 可以比前一循環低之一微波能輸入速率及/或比前一循環 低之一壓力實施。在另一實施例中,一或多個後續個別加 熱循環可以比前一循環高之一微波能輸入速率及/或比前 一循環高之一壓力實施。在又一實施例中,一或多個後續 循環可以比一或多個先前個別加熱循環低之一微波能輪入 速率及比一或多個先前個別加熱循環高之一壓力實施,戈 160981.doc •87- 201236751 以比一或多個先前個別加熱循環高之一微波能輪入速率及 比一或多個先前個別加熱循環低之一壓力 、 - 生刀貫細。當總加熱 過程包含兩個或兩個以上個別加熱循環時, 似像系些實施 例,可如上文所閱述實施第二(或稍後)循環中之一或多 者:在其他實施例中…相同或幾乎相同屋力及‘: 波月b輸入速率實施兩個或兩個以上循環。 /據-項實施例’總加熱過程可包含—第—順序加熱循 %,後跟有-第二加熱循環,其t該第二加熱循環係以比 該第一加熱循環低之一微波能輸入速率、比該第—加熱循 環低之-壓力或既比該第—加熱循環低之—微波能輸入速 率亦比該第一加熱循環低之一壓力實施。進—步地,在當 總循環包括三個或三個以上加熱循環時之—項實施例中, 每一後續循環(除第一循環以外)之微波能輸入速率及/或壓 力可低於前一循環之微波能輸入速率及/或壓力。舉例而 言,在一項實施例中,第”個別加熱循環可以比第化_"個 二加熱循環低之-微波能輸人速率、比第個別加熱循 裒低之一壓力或既比第"個別加熱循環低之一微波能輸 入速率亦比第"個別加熱循環低之一壓力實施。 在第一個別加熱循環期間,可將一第一最大微波能輸入 速率引入至微波加熱器中。如本文中所使用,術語「最大 微波旎輸入速率」係指在一加熱循環期間將微波能引入至 加熱器中之最高速率。在各種實施例中,在第一個別加熱 循環期間引入之最大微波能輸入速率(例如,第一最大微 波能輸入速率)可係(舉例而言)至少5 kw、至少3〇 kW、至 160981 .doc -88- 201236751 少50 kW、至少60 kW、至少65 kW、至少75 kW、至少100 kW、至少150 kW、至少200 kW、至少250 kW、至少350 kW、至少400 kW、至少500 kW、至少600 kw、至少75〇 kW或至少丨’000 kw及/或(舉例而言)不大於25〇〇 kw、不 • 大於!,5〇〇 kW、不大於1,〇〇〇 kW或不大於500 kw。 隨後,可實施一第二個別加熱循環以使得在第二個別加 熱循環期間將微波能引入至微波加熱器中之第二最大輸入 ^ 速率(例如,第二最大微波能輸入速率)可在某些實施例中 係(舉例而言)在第一加熱循環期間達成之最大輸入速率之 至少25%、至少50%、至少7〇%及/或(舉例而言)不大於 98%、不大於94°/〇或不大於90%。類似地,當加熱過程包 括三個或三個以上個別加熱循環時,第„個別加熱循環(例 如’第三或第四循環)之最大微波能輸入速率可在一項實 施例中係(舉例而言)在第(例如,前一)個別加熱循環 期間的最大輸入速率之至少25%、至少5〇%、至少7〇%及/ ❹ 或(舉例而言)不大於98%、不大於94%、不大於9〇%或不大 於 850/〇 〇 • 在項實施例中’第二(或後續)個別加熱循環可以比第 • 一(或前一)個別加熱循環低之一壓力實施。舉例而言,在 其中於加熱循環期間利用低氣壓或真空壓力之一項實施例 中,在第一加熱循環期間達到之最低壓力可係至少25〇 托。隨後,可實施一第二個別加熱循環以使得在第二循環 /月間達到之最低壓力(例如,所達成之最高真空壓力位To v 0.30 'at least 〇·35. In some of the above embodiments, the β-Hail ratio is also no greater than 75.75, no greater than ^, or no greater than. According to an embodiment, at least a portion of the unobstructed beam receiving space 95 1 is defined between two or more "obstructions" t, including, for example, on the same or generally opposite sides of the microwave heater 930. Two or more emitters, reflectors, waveguides, or other items that occupy the heater. The volume of space within the volume. In one embodiment in which the microwave heater 93A includes two oppositely disposed doors (eg, one of the inlet doors 928 and one of the outlet doors disposed on substantially opposite ends of the microwave heater 93A), the unobstructed 160981.doc * 84 - 201236751 At least a portion of the barrier receiving space 951 can be defined between the two oppositely disposed doors. In the embodiment illustrated in Figure i〇c, either of the emitters 944a, 94411 or the movable reflectors 99〇& to 99〇d (which are examples of obstructions) are not placed Within the unobstructed beam space 951. In an embodiment wherein at least a portion of the unobstructed beam receiving space is defined between two or more obstructions (eg, waveguides, emitters, reflectors, etc.), the outermost of the one or more obstructions The minimum clearance between the edge and the unobstructed beam receiving space ❹ (and 7 or bundle (when present)) may be at least 55 ft, at least 1 inch, at least 2 inches, at least 6 inches, at least 8 inches and / or no more than 18 inches, no more than 10 inches or no more than 8 inches. In one embodiment, one of the obstructions does not come into contact with the entity when the bundle is loaded into the heater 93. One or more embodiments of the operation of a microwave heating system in accordance with the present invention will now be described in general reference to the process of heating a bundle of wood. However, it should be understood that one or more of the heating processes set forth herein may also be suitable for use in the process of heating other items, such as, for example, those previously described. In addition, it is to be understood that one or more of the above-described embodiments of the microwave heating system can be operated using at least some or all of the operational steps, methods and/or processes detailed below, including with respect to FIG. 1 and their embodiments and variations thereof. To initiate heating of a bundle of wood, the wood may first be loaded into a microwave heater that can be configured in accordance with one or more embodiments of the invention as set forth above. In one embodiment, the bundle may have a basis weight of at least 100 pounds, at least 250 shards, at least 375 shards, or at least 500 shards prior to heating and/or drying (eg, at Before heating). Once loaded, the vacuum system (if present) can then be used to reduce the pressure of the heater to no more than 550 Torr, no more than 450 Torr, no more than 350 Torr, no more than 300 Torr, no more than 250 Torr, no more than 200 Support, no more than 150 Torr, no more than 100 Torr or no more than 75 Torr. While maintaining the low pressure in the microwave heater, one or more microwave generators can then be operated to initiate introduction of microwave energy into the interior of the vessel to thereby heat and/or dry at least a portion of the bundle. During introduction of microwave energy into the interior of the microwave heater, the pressure within the vessel can be above, almost at or below atmospheric pressure. According to an embodiment, during the heating step, the pressure inside the microwave heater may be at least 350 Torr, at least 450 Torr, at least 650 Torr, at least 75 Torr, at least 9 Torr, or at least 12 Torr. In another embodiment, the pressure in the microwave heater may be no more than 35 Torr, no more than 250 Torr, no more than 2 Torr, no more than 15 Torr, no more than 1 Torr or no more than 75 Torr. . The total generator capacity or energy rate introduced into the interior of the microwave heater during heating and/or drying of the wood may be at least 5 kw, at least 30 kW, at least 50 kW, at least 60 kW, at least 65 kW, at least 75 kW At least 100 kw, at least 150 kW, at least 200 kW, at least 250 kW, at least 35 kW, at least 400 kW, at least 500 kW, at least 600 kW, at least 750 kW or at least 1,000 kW and/or no more than 2,500 kW, not More than 1,500 kW or no more than 1,000 kW. According to one embodiment, the process of heating a bundle of wood may include a plurality of individual sequential heating cycles. The total heating process may include at least 2, at least 3, at least 4, at least 5, at least 6 and/or no more than 20, no more than 15 160981.doc -86 - 201236751, no more than 12 or no More than 10 individual sequential heating cycles. Each plus, ",#裒 can contain (as needed, at low pressure) the introduction of microwave energy. In one embodiment, microwave energy can be introduced into the microwave heater at a pressure of no more than 350 Torr, while in other embodiments, the pressure in the microwave heater can be at least 350 Torr. According to an embodiment, each of the one or more individual heating cycles may be implemented (eg, having a duration of at least 2 minutes), at least 5 minutes, at least 10 minutes, at least minutes, at least 30 Minutes and / or no more than 180 minutes, no more than 12 minutes or no more than 9 minutes. In general, the entire length of the heating process (eg, total cycle time) can be at least 小时5 hours, at least 2 hours, at least 5 hours, or at least 8 hours and/or no more than % hours, no more than 30 hours, no more than 24 hours, no More than 18 hours, no more than 16 hours, no more than 12 hours, no more than 丨0 hours, no more than 8 hours or no more than 6 hours. In an embodiment wherein the total heating process comprises two or more individual heating cycles, one or more subsequent individual heating cycles may differ from the pre-cycle by one of the microwave energy input rates and/or with the previous cycle Different - pressure implementation. For example, in one embodiment, subsequent individual heating cycles may be performed at a lower microwave energy input rate than the previous cycle and/or one pressure lower than the previous cycle. In another embodiment, one or more subsequent individual heating cycles may be performed at a higher microwave energy input rate than the previous cycle and/or one pressure higher than the previous cycle. In yet another embodiment, one or more subsequent cycles may be performed at one of a lower microwave energy entrainment rate than one or more previous individual heating cycles and one pressure higher than one or more previous individual heating cycles, Ge 160981. Doc •87- 201236751 A microwave energy entrainment rate that is higher than one or more previous individual heating cycles and one pressure lower than one or more previous individual heating cycles. When the total heating process comprises two or more individual heating cycles, like some embodiments, one or more of the second (or later) cycles may be implemented as described above: in other embodiments ...the same or almost the same house and ': wave month b input rate is implemented for two or more cycles. / The embodiment - the total heating process may comprise - a - sequential heating cycle % followed by a second heating cycle, t the second heating cycle is one of the microwave energy inputs lower than the first heating cycle The rate, which is lower than the first heating cycle, or lower than the first heating cycle, is also performed at a lower rate than the first heating cycle. Further, in the embodiment where the total cycle includes three or more heating cycles, the microwave energy input rate and/or pressure of each subsequent cycle (other than the first cycle) may be lower than before A cycle of microwave energy input rate and / or pressure. For example, in one embodiment, the "individual heating cycle may be lower than the first _" two heating cycles - the microwave energy input rate, one pressure lower than the first heating cycle, or both " One of the lower individual heating cycles, the microwave energy input rate is also implemented at a lower pressure than the individual heating cycle. During the first individual heating cycle, a first maximum microwave energy input rate can be introduced into the microwave heater. As used herein, the term "maximum microwave chirp input rate" refers to the highest rate at which microwave energy can be introduced into a heater during a heating cycle. In various embodiments, the maximum microwave energy input rate (eg, the first maximum microwave energy input rate) introduced during the first individual heating cycle may be, for example, at least 5 kw, at least 3 kW, to 160,981. Doc -88- 201236751 50 kW less, at least 60 kW, at least 65 kW, at least 75 kW, at least 100 kW, at least 150 kW, at least 200 kW, at least 250 kW, at least 350 kW, at least 400 kW, at least 500 kW, at least 600 kw, at least 75 kW or at least 丨 '000 kw and / or (for example) no more than 25 〇〇 kw, no • greater than! , 5 〇〇 kW, no more than 1, 〇〇〇 kW or no more than 500 kw. Subsequently, a second individual heating cycle can be implemented such that the second maximum input rate (eg, the second maximum microwave energy input rate) that introduces microwave energy into the microwave heater during the second individual heating cycle can be In an embodiment, for example, at least 25%, at least 50%, at least 7%, and/or, for example, no greater than 98%, no greater than 94° of the maximum input rate achieved during the first heating cycle. /〇 or no more than 90%. Similarly, when the heating process includes three or more individual heating cycles, the maximum microwave energy input rate of the first individual heating cycle (eg, 'third or fourth cycle') may be in one embodiment (for example ??? at least 25%, at least 5%, at least 7%, and/or, or, for example, no greater than 98%, no greater than 94% of the maximum input rate during the (eg, previous) individual heating cycle. , no greater than 9〇% or no greater than 850/〇〇• In the embodiment, the second (or subsequent) individual heating cycle may be performed at a lower pressure than the first (or previous) individual heating cycle. In one embodiment wherein low pressure or vacuum pressure is utilized during the heating cycle, the lowest pressure reached during the first heating cycle may be at least 25 Torr. Subsequently, a second individual heating cycle may be implemented to The lowest pressure reached during the second cycle/month (for example, the highest vacuum pressure achieved)

可方一 平J 實施例中係(舉例而言)在第一加熱循環期間達到 160981.doc -89- 201236751 之最低壓力之至少25%、至少50%、至少70%、至少75%、 至少80%及/或在一項實施例中係(舉例而言)不大於98%、 不大於94%或不大於90%。類似地,當加熱過程包括三個 或三個以上個別加熱循環時,第π個別加熱循環之壓力在 一項實施例中(舉例而言)可係在第個別加熱循環期間 達到之最低壓力之至少25%、至少50%、至少70%、至少 75%、至少80°/。及/或不大於98%、不大於94%、不大於90% 或所達到之最低壓力之不大於85%。 下文之表1根據本發明之一項實施例概述微波能速率之 寬、中間及窄範圍(表達為最大產生器輸出之一百分率)以 及連續第一、第二、第三及第《個別加熱循環之壓力(以托 表達)。如本文中所使用,術語「最大產生器輸出」係指 由一加熱系統内之所有微波產生器累積產生之在整個陣列 上組合之最大值。在一項實施例中,一或多個加熱循環之 最大微波能輸入速率亦可表達為最大產生器輸出之一百分 比,如表1中所展示。 表1 :個別加熱循環之微波能速率及壓力 個別循 微波能速率(最大值之%) 壓力(托) 環編號 寬 中間 窄 寬 中間 窄 1 60-100% 70-100% 80-100% <250 <200 20-100 2 40-100% 50-95% 60-90% <250 <200 20-100 3 20-80% 25-75% 30-70% <250 <150 20-100 η 5-60% 10-50% 15-40% <150 <100 10-75 根據本發明之一項實施例,一或多個個別加熱循環中之 每一者可包括:一加熱週期(例如,一第一、第二或第π加 160981.doc -90- 201236751 Ο Ο 熱週期其中將微波能引入至加熱器中;及一選用休眠 週期(例如,-第一、第二或第„休眠週期),其中將—減小 量之微波能或實質上無微波能引入至加熱器中。舉例而 言,在加熱週期期間,微波能可以足以加熱及/或至少部 刀地乾燥潤濕或化學潤濕木材束之至少一部分之一輸入速 率引入至微波加熱器中,而在休眠週期期間,引入至微波 加熱器中之微波能輸入速率可在一項實施例中係在加故週 期期間引入之最大微波能輸入速率之不大於25%、不大於 100/0、不大於5%或不大於1%。在其中採用多個個別減 循環之-項實施例中,每一循環可包含一或多個加熱週期 及一或多個休眠週期。舉例而言,當利用兩個個別順序加 熱循環時,第一個別加熱循環可包含至少一第一加熱週期 及一第-休眠週期,而第二個別加熱循環可包含至少 二加熱週期及一第二休眠週期。另一選擇係,該第二加敎 週期可跟隨該第一加熱週期,其中無暫時休眠週期。 在-項實施例中’該等加熱週期中之每—者可 例而言)至少5分鐘、至少10分鐘、至少15分鐘、至少30八 鐘及/或(舉例而言)不大於6G分鐘、不大於40分鐘、不大二 分鐘或不大㈣分鐘之-持續時間。在—項實施; 該休眠週期可具有(舉例而言)至少5分鐘、至少Μ分鐘或至 少2:分鐘及/或(舉例而言)不大於9〇分鐘、不大 不大於4〇分鐘之-持續時間。在-項實施例中,_個別; 熱㈣之加熱週期長度對休眠週期長度之 而言)至少〇.5:1、至少1:1、至w 手了係(舉例 八25」或至少2:1及/或(舉 160981.doc -91 - 201236751 不大於2.5:1或不大於 例而言)不大於5:i、不大於3:1 1.5:1 。 可在加熱週期中之每—者期間以任—適合方式將微波能 引入至微波加熱器中。舉例而言,在一項實施例中,可貫 穿加熱週期之整個持續時間以一實質上連續方式自-或多 個發射器發射微波能。在一項實施例中,可一次自一單個 發射器發射能量,而在另一實施例中,可同時自兩個或兩 個以上發射器發射能量。可使用-自動控制系統來控制自 X射态中之每-者排放之微波能之量、時序、持續時間、 協調及同步化。當將能量排放至微波加熱器中包含在兩個 或兩個以上發射器之間切換時亦可由控制系統來控制該 切換,如稍後詳細論述。 據-項實施例,可將能量引入至微波加熱器中以使得 :排Si期可包含兩個或兩個以上不同加熱模式(亦稱 果式、排放階段或加熱階段)^在一項實施例中, =每二_段期間自一或多個發射器發射不同微波能 門了 HI ’在—項實施例中,在-第-加熱階段期 自—第:發射器發射之—速率高之—速率自一 自”::射“,而在—第二加熱階段期間,可以比 能:第::射器之一逮率高之—速率自該第二發射器發射 二 項貫施例,一或多個發射器可將微波能發射 至微波加熱器中,而—或多個發射器可實 二, 射至微波加熱器中,藉此使 ^讀 件)之不同位置上。每—單獨W中至木材束(或其他物 母早獨加熱階段可實施達(亦即,1 160981.doc -92- 201236751 有一持續時間為)(舉例而言)至少2分鐘、至少5分鐘、至少 12分鐘、至少15分鐘及/或(舉例而言)不大於9〇分鐘、不大 於60分鐘、不大於45分鐘或不大於3〇分鐘之一週期。一個 或兩個單獨加熱階段可後跟有至少2分鐘、至少4分鐘或至 少ό分鐘及/或不大於15分鐘、不大於12分鐘或不大於1〇分 鐘之一選用休眠週期。 當微波加熱器包括四個或四個以上發射器時,微波分佈 系統可經組態以使得每一發射器取決於一或多個微波切換 器之位置而在一單獨加熱或排放階段中將微波能發射至微 波加熱器中。舉例而言,在其中微波加熱器包括一第一、 第二、第三及第四微波發射器之一項實施例中,兩個或兩 個以上微波切換器(♦/如,一第一及一第二微波切換器)可 經組態以使得可在一各別第一、第二、第三及第四加熱階 段中主要自每一發射器發射微波能。在一項實施例中,兩 個或兩個以上排放階段可實質上同時實施,而可防止兩個 或兩個以上排放階段實質上同時實施。現將參考圖11&及 1 lb在下文中詳細論述關於利用包含交替排放階段之加熱 週期之微波加熱器之操作之額外細節。 現翻至圖11 a及11 b ’提供根據本發明之一項實施例組態 之一微波加熱系統1020之示意性俯視圖。微波加熱系統 1020係圖解說明為包括用於生產微波能之至少四個微波產 生器1022a至1022d及用於將該微波能之至少一部分引導至 一微波加熱器1030中之一微波分佈系統丨〇4〇。微波分佈系 統1040亦包括可操作以將微波能之至少一部分發射至微波 160981.doc •93- 201236751 加熱器1040之内部中之複數個隔開之微波發射器1〇4牦至 l〇44h(其在一項實施例中可包括一或多個分裂發射器)。微 波發射器1044a至1044h中之每一者可係可操作地耦合至複 數個(在此圖中’ 一第一至第四)微波切換器l〇46a至l〇46d 中之一或多者’如圖113及111?中所展示。微波切換器 1046a至1 〇46d可操作以按任一適合模式將微波能路由至發 射器1044a至1044h中之一或多者,包含(舉例而言)一 TM& 模式及/或一 TExy模式,如先前詳細論述。在一項實施例 中’傳播通過微波分佈系統1 〇4〇之能量可在排放至微波加 熱器1030中之前改變模式至少一次。現將參考圖Ua及Ub 在下文中詳細闡述根據本發明之一或多個實施例操作微波 加熱系統1020之各種組態及方法。 微波切換器1046a至1 〇46d _之每一者可操作以將微波能 之流動引導、控制或分配至定位於微波加熱器丨〇3〇之大體 相同側或大體相對側上之兩個或兩個以上微波發射器 1044a至l〇44h中之每一者。舉例而言,在圖1 ia中所繪示 之一項實施例中’微波切換器1046a至1046d中之每一者可 麵合至一軸向毗鄰微波發射器對(例如,發射器1〇44&及 1044b、發射器l〇44c及1044d、發射器1044e及1044f以及 發射器1044g及l〇44h),表示為發射器對1050a至1050d。 在圖1 lb中所圖解說明之另一實施例中,微波切換器i〇46a 至1046d中之每一者可耦合至一軸向對準之微波發射器對 (例如,發射器1044a及1044h、發射器1044b及l〇44g、發 射器1044c及l〇44f以及發射器1044d及1044e),展示為發射 160981 .doc -94- 201236751 器對 1050e至 l〇50h。 微波切換器1046a至1 〇46d可係任一適合類型之微波切換 器且在一項實施例中可係一旋轉微波切換器。一旋轉微波 切換器可包含一外殼體、安置於其中之一内部路由元件及 用於使該内部路由元件在該殼體内移動之一致動器。在一 項實施例中,該内部路由元件可係可旋轉地耦合至該外殼 體且該致動器可操作以相對於該外殼體選擇性地旋轉該内 部路由元件以藉此切換或引導穿過其之微波能之流動方 向。亦可採用其他類型之適合微波切換器。在一項實施例 中,微波切換器1046a至l〇46d可包括TE"切換器,而在另 一實施例中,微波切換器l〇46a至l〇46d可包括ΤΜαί)切換 器。任何額外適合組件(諸如,一或多個模式轉換器、阻 障總成或在本申請案中別處論述但未展示於圖1^及llb中 之組件)可位於微波切換器1 〇46a至1 〇46d上游或下游。 在操作中’微波切換器l〇46a至1〇464可在一第一加熱 (或排放)階段與一第二加熱(或排放)階段之間選擇性地切 換。在第一加熱階段期間’可自一或多個微波發射器發射 或排放較多能量’而自一或多個其他微波發射器發射較少 能量。類似地,在第二加熱階段期間,可自一或多個其他 微波發射器發射或排放較多能量,而可自一或多個微波發 射器發射或排放較少能量。 在一項實施例中’在第一加熱階段期間,微波切換器 1046a至1046d中之每—者可經組態以將微波能主要路由至 一第一微波發射器組(在圖lla及llb中標示為「A」發射器 160981.doc •95· 201236751 組)内之一或多個發射器而不主要路由至一第二微波發射 器組(在圖lla及lib中標示為一 rB」發射器組)之—或多 個發射器。在第二排放階段期間,在圖na及nb中之各別 發射器對1050a至1050d及l〇5〇e至i〇50h中之每一者中,微 波切換态1 046a至1 〇46d中之每一者可經組態以將微波能^ 要路由至該第二組(例如,「B」發射器)之一或多個發射器 而不主要路由至該第一組(例如,「A」發射器)之—或多個 發射器。如本文中所使用,提及將微波能「主要」路由至 發射器X而「不主要」路由至發射器γ意指將由一切換器 接收之微波能之至少50%路由至發射器χ,而將由該切換 器接收之微波能之不大於5 〇 %路由至發射器γ。在一項實 施例中,可將能量之(舉例而言)至少75%、至少9〇%、至 >'95/。、貫質上全部主要路由至發射器X,而可將能量之 (舉例而5 )不大於25%、不大於1 〇%、不大於5 %或實質上 無能量路由至發射器γ。 在一項實施例中,微波加熱系統1〇3〇可進一步包括用於 控制微波切換器l〇46a至1046d之動作及組態之一控制系統 1060在項貫細例中,控制系統1060可操作以將切換器 1046a至l〇46d中之每一者組態為處於第一排放階段中以 使得所有「A」發射器(例如,發射器1〇44a、1〇4乜、 1044e、l〇44g)皆將微波能發射至微波加熱器1〇3〇中,而 所有「B」發射器(例如’發射器1〇4仆、i〇44d、i〇44f、 1 044h)皆將一較小量或實質上無微波能發射至微波加熱器 1030之内部中,如在圖lla及Ub中由微波加熱器之各 160981.doc -96- 201236751 別陰衫及無陰龍所圖解說明。隨後,控制^统ι_接著 可操作以將切換器104“至10偏中之每一者組態為處於第 二排放階段中’以使得所有「A」發射器(例如,發射器 1044a、i〇44c、難e、1〇44g)皆將一較小量或實質上無微 波能發射至微波加熱器1〇3〇之内部中,而所有「B」發射 器(例如,發射器104仆、l(M4d、Hmf、⑽处)皆將微波 能發射至微波加熱器1〇3〇(圖Ua及Ub中未表示)之 中。 根據一項實施例,控制系統1060亦可操作以基於一預定 參數組(包含(舉例而言)循環時間、所排放之總能量及諸如 此類)來控制微波切換器1〇46&至l〇46d在第一排放階段與 第二排放階段之間的切換。舉例而言,在一項實施例中, 控制系統1060可操作以實質上同時將微波切換器1〇46&至 1046d中之每一者組態至第一排放階段中,以使得可同時 自「A」發射器i〇44a、1〇44c、1044e、l〇44g中之每—者 發射微波能達一時間週期。在另一實施例中,控制系統 1060可操作以在將一或多個切換器1〇46&至i〇46d組態至第 一排放階段中之間包含一時間延遲或滯後。因此,自一或 多個「A」或「B」發射器發射之微波能可相對於自—或 多個其他「A」或「B」發射器排放能量而延遲或交錯。 在一項實施例中,控制系統1060可經組態以允許一或多個 切換器1046a至l〇46d處於第一排放階段中,而一或多個其 他切換器1046a至l〇46d處於第二排放階段中,以使得可同 時自一或多個「A」發射器及一或多個「B」發射器發射 160981.doc -97- 201236751 微波能。在本發明之一項實施例中,控制系統丨060亦可操 作以至少部分地防止來自直接相對之發射器對(例如,對 1044a及 l〇44h、對 1044b 及 1044g、對 i〇44c 及 1044f、對 1044d及l〇44e)及/或軸向Bit鄰對(例如,對i〇44a及1044b、 對 1044c及 l〇44d、對 1044e及 1044f、對 i〇44g及 l〇44h)之同 時能量排放。 根據本發明之一項實施例組態及/或操作之加熱系統可 才呆作以比習用加熱系統更有效地加熱一物件或負載。特定 而言’根據本發明之各種實施例組態之加熱系統可操作以 處理大的商業規模負載。在一項實施例中,如本文中所闡 述之加熱系統可加熱具有至少100碎、至少500碎、至少 1,000磅、至少5,000磅或至少10,000磅之一累積、預加熱 (或預處理)重量之一木材束或其他負載。在各種實施例 中’ 一木材束可經加熱及/或乾燥以使得木材之總體積之 不大於(舉例而言)2〇%、不大於1〇%、不大於5%及不大於 2°/〇可達到不超過一上臨限溫度之一溫度。在相同或其他 實施例中,木材之總體積之至少80%、至少90%、至少 95。/。及至少98%(舉例而言)可達到不超過一下臨限溫度之 —溫度。下臨限溫度及上臨限溫度可係彼此相對接近且可 (舉例而言)係在彼此之110。〇内、1〇5。匚内、l〇〇〇c内、9(rc 内、75°C内或50°C内。在各種實施例中,上臨限溫度可係 至少190°C、至少20(TC或至少22CTC及/或不大於275。(:、 不大於260。(:、不大於250。(:或不大於225°C。在另一實施 例中’下臨限溫度可係至少115 °c、至少12 〇 t、至少 16098l.doc -98- 201236751 125°C、至少130°C及/或不大於150°C、不大於145°C或不 大於135°C。 根據一項實施例,木材之總體積之至少80%、至少 90%、至少95%及至少98%可達到至少130°C、至少 145°C、至少150°C或至少160。(:及/或不大於250。(:、不大 於240°C、不大於225°C、不大於21(TC或不大於200°C之一 最大溫度。因此’具有至少1〇〇碎、至少5〇〇時、至少 1,000磅或至少5,000磅之一初始(例如,預加熱或預處理) Ο 重量之一木材束(視需要,一化學潤濕之木材束)可以不大 於48小時、不大於36小時、不大於24小時、不大於1 8小 時、不大於16小時、不大於12小時、不大於10小時 '不大 於8小時或不大於6小時加熱。 藉由以下實例進一步圖解說明及闡述本發明之各種態 樣。然而,應理解,除非另有特定指示,否則包含此等實 例僅係出於圖解說明之目的而並非意欲限制本發明之範 〇 層。 實例 實例1:在一雙容器系統令之木材之乙醢化 此實例闡述其中在一雙容器系統中乙醯化及加熱木材之 一試驗規模實驗。如本文中所展示,針對乙醯化步驟及加 熱步驟使用單獨容器允許在一短時間週期内生產經乾燥、 經乙醯化之木材。 建構具有10英吋之一直徑及9英尺之一長度之—試驗規 模乙醯化反應器。將窯乾至在6 w t %與8 w t %之間的一濕度 160981.doc -99· 201236751 含篁之數個南方黃松板裝載至該乙醯化反應器中並關閉及 密封反應器門。使用一真空系統將該乙醯化反應器中之壓 力減小至40托與70托之間並維持該真空達2〇分鐘至45分鐘 以自木材移除殘餘空氣及/或水。在固持週期之後,使反 應器之内部體積充滿室溫下之乙酸酐並將反應器中之壓力 增加至80 psig與90 psig之間以藉此最大化乙酸酐對木材之 浸潰。 在40分鐘之後,自反應器汲取流體並藉助溫熱之氮氣將 壓力增加至1,500托。同時,使用反應器汽套將溫度增加 至140°C,且一旦自反應器汲取所有流體,即將熱乙酸蒸 /iw主入至容器中以接觸木材’藉此催化反應。在6〇分鐘之 後,停止熱蒸汽注入並允許在增加之反應器壓力下發生乙 醢化達1.5小時與3小時之間的一週期。此後,減小反應器 中之壓力以驟汽化殘餘乙酸及/或酸酐,藉此至少部分地 乾燥經乙醯化之木材。接著將反應器中之壓力進一步減小 至60托至80托,藉此將板乾燥至在1〇 wt%與20 wt%之間的 一化學濕度含量。注入氮氣以降低反應器中之溫度。 一旦冷卻’經乙醯化之板即被移除,以塑膠捲繞以最小 化至外部環境之療汽發射’並輸送至一罩,在該罩中該等 板在引入至一微波加熱器中之前切割成16至18英叫·之長 度。具有19英吋之一直徑及43英吋之一長度之微波加熱器 係利用一 3.5 kW、2450 MHz微波產生器之一型號為 pWAVEVAC0350之真空微波乾燥器(可自德國施瓦訥韋德 (Schwanewede, Germany)的 Piieschner Microwave Power 160981.doc -100- 201236751In the embodiment of the method, for example, at least 25%, at least 50%, at least 70%, at least 75%, at least 80% of the minimum pressure of 160981.doc -89 - 201236751 during the first heating cycle is reached. And/or in one embodiment, for example, no greater than 98%, no greater than 94%, or no greater than 90%. Similarly, when the heating process includes three or more individual heating cycles, the pressure of the π individual heating cycle may, in one embodiment, for example, be at least the minimum pressure reached during the individual heating cycle. 25%, at least 50%, at least 70%, at least 75%, at least 80°/. And/or no more than 98%, no more than 94%, no more than 90% or no more than 85% of the lowest pressure achieved. Table 1 below summarizes the broad, intermediate, and narrow ranges of microwave energy rates (expressed as a percentage of the maximum generator output) and successive first, second, third, and "individual heating cycles" in accordance with an embodiment of the present invention. The pressure (to express). As used herein, the term "maximum generator output" refers to the maximum value of the combination on the entire array resulting from the accumulation of all microwave generators in a heating system. In one embodiment, the maximum microwave energy input rate for one or more heating cycles can also be expressed as a percentage of the maximum generator output, as shown in Table 1. Table 1: Microwave energy rate and pressure for individual heating cycles Individual microwave energy rate (% of maximum value) Pressure (Torr) Ring number width Middle narrow width Middle narrow 1 60-100% 70-100% 80-100% < 250 <200 20-100 2 40-100% 50-95% 60-90% <250 <200 20-100 3 20-80% 25-75% 30-70% <250 <150 20- 100 η 5-60% 10-50% 15-40% < 150 < 100 10-75 According to an embodiment of the invention, each of the one or more individual heating cycles may comprise: a heating cycle (eg, a first, second or π plus 160981.doc -90 - 201236751 Ο Ο thermal cycle in which microwave energy is introduced into the heater; and a selectable sleep cycle (eg, - first, second or a "sleep cycle" in which a reduced amount of microwave energy or substantially no microwave energy is introduced into the heater. For example, during the heating cycle, the microwave energy may be sufficient to heat and/or at least partially dry and wet. Or an input rate of at least a portion of the chemically wetted wood bundle is introduced into the microwave heater, and the microwave energy introduced into the microwave heater during the sleep cycle The rate may, in one embodiment, be no more than 25%, no more than 100/0, no more than 5%, or no more than 1% of the maximum microwave energy input rate introduced during the add-on period. In a cycle-term embodiment, each cycle may include one or more heating cycles and one or more sleep cycles. For example, when two separate sequential heating cycles are utilized, the first individual heating cycle may include at least one a first heating cycle and a first-sleep cycle, and the second individual heating cycle may include at least two heating cycles and a second sleep cycle. Alternatively, the second twisting cycle may follow the first heating cycle, wherein There is no temporary sleep cycle. In each of the 'heating cycles, in the embodiment, at least 5 minutes, at least 10 minutes, at least 15 minutes, at least 30 hours, and/or (for example) No more than 6G minutes, no more than 40 minutes, no more than two minutes, or no (four) minutes - duration. In the implementation - the sleep cycle may have, for example, at least 5 minutes, at least Μ minutes or at least 2: Minutes and / or (lift For example, no more than 9 〇 minutes, no more than 4 〇 minutes - duration. In the - item embodiment, _ individual; heat (four) heating cycle length for the length of the sleep cycle) at least 〇.5: 1, at least 1:1, to w hands (example eight 25) or at least 2:1 and / or (160981.doc -91 - 201236751 no more than 2.5:1 or not greater than the case) no more than 5: i, no more than 3:1 1.5:1. Microwave energy can be introduced into the microwave heater in any suitable manner during each of the heating cycles. For example, in one embodiment, microwave energy can be emitted from one or more emitters in a substantially continuous manner throughout the duration of the heating cycle. In one embodiment, energy may be emitted from a single transmitter at a time, while in another embodiment, energy may be emitted from two or more transmitters simultaneously. An automatic control system can be used to control the amount, timing, duration, coordination, and synchronization of microwave energy emitted from each of the X-states. This switching can also be controlled by the control system when discharging energy into the microwave heater to include switching between two or more transmitters, as discussed in detail later. According to the embodiment, energy can be introduced into the microwave heater such that the Si phase can comprise two or more different heating modes (also known as fruit, discharge or heating). Medium, = different microwave energy gates are emitted from one or more transmitters during every two-segment period. In the -th embodiment, during the -first heating phase, the -the transmitter emits a high rate - The rate is from "::shoot", and during the second heating phase, the ratio can be: the first: the rate of one of the emitters is high - the rate is emitted from the second emitter, one Or a plurality of emitters can emit microwave energy into the microwave heater, and - or a plurality of emitters can be operatively placed into the microwave heater, thereby causing the reader to be in different positions. Each - separate W to the wood bundle (or other precursors can be implemented in the early heating stage (ie, 1 160981.doc -92 - 201236751 has a duration of time) (for example) at least 2 minutes, at least 5 minutes, At least 12 minutes, at least 15 minutes, and/or (for example) no more than 9 minutes, no more than 60 minutes, no more than 45 minutes, or no more than one cycle of one minute. One or two separate heating stages may be followed by The sleep period is selected for at least 2 minutes, at least 4 minutes, or at least ό minutes and/or no more than 15 minutes, no more than 12 minutes, or no more than 1 〇 minutes. When the microwave heater includes four or more emitters The microwave distribution system can be configured such that each emitter emits microwave energy into the microwave heater in a separate heating or discharging phase depending on the position of the one or more microwave switches. For example, in which The microwave heater includes one or two or more microwave switchers in one embodiment of the first, second, third, and fourth microwave emitters (♦, eg, a first and a second microwave switcher) ) can be configured to Thereby enabling microwave energy to be emitted primarily from each emitter in a respective first, second, third and fourth heating stages. In one embodiment, two or more emission stages can be implemented substantially simultaneously It is possible to prevent two or more discharge stages from being carried out substantially simultaneously. Additional details regarding the operation of a microwave heater utilizing a heating cycle comprising alternating discharge stages will now be discussed in detail below with reference to Figures 11 & and 1 lb. Turning to Figures 11a and 11b' provides a schematic top view of one of the microwave heating systems 1020 configured in accordance with an embodiment of the present invention. The microwave heating system 1020 is illustrated as including at least four microwaves for producing microwave energy. Generators 1022a through 1022d and for directing at least a portion of the microwave energy to one of microwave heaters 1030. Microwave distribution system 1040 also includes operable to emit at least a portion of the microwave energy to Microwave 160981.doc • 93- 201236751 A plurality of spaced apart microwave emitters in the interior of heater 1040 from 1〇4牦 to 104h (which may be packaged in one embodiment) One or more split transmitters. Each of the microwave transmitters 1044a through 1044h can be operatively coupled to a plurality of (first to fourth) microwave switchers 〇46a through l in this figure One or more of 〇46d are shown in Figures 113 and 111. Microwave switchers 1046a through 〇46d are operable to route microwave energy to one or more of transmitters 1044a through 1044h in any suitable mode. Including, for example, a TM& mode and/or a TExy mode, as discussed in detail above. In one embodiment, the energy propagating through the microwave distribution system 1 can be discharged to the microwave heater 1030. Change the mode at least once before. Various configurations and methods of operating the microwave heating system 1020 in accordance with one or more embodiments of the present invention will now be described in detail below with reference to Figures Ua and Ub. Each of the microwave switches 1046a through 1 〇 46d_ is operable to direct, control or distribute the flow of microwave energy to two or two positioned on substantially the same side or substantially opposite sides of the microwave heater 丨〇3〇 Each of the plurality of microwave emitters 1044a through 104h. For example, in one embodiment illustrated in FIG. 1 ia, each of the 'microwave switchers 1046a through 1046d can face an axially adjacent pair of microwave emitters (eg, transmitter 1〇44& And 1044b, transmitters l〇44c and 1044d, transmitters 1044e and 1044f, and transmitters 1044g and 104h), denoted as transmitter pairs 1050a through 1050d. In another embodiment illustrated in FIG. 1b, each of the microwave switches i〇46a through 1046d can be coupled to an axially aligned pair of microwave emitters (eg, transmitters 1044a and 1044h, Transmitter 1044b and 104g, transmitters 1044c and 1044f, and transmitters 1044d and 1044e) are shown as transmitting 160981 .doc -94 - 201236751 pairs 1050e to 1050h. The microwave switchers 1046a through 〇46d can be any suitable type of microwave switcher and in one embodiment can be a rotary microwave switcher. A rotary microwave switch can include an outer casing, an inner routing element disposed therein, and an actuator for moving the inner routing element within the housing. In an embodiment, the internal routing element can be rotatably coupled to the outer casing and the actuator is operable to selectively rotate the internal routing element relative to the outer casing to thereby switch or guide through Its direction of flow of microwave energy. Other types of suitable microwave switchers are also available. In one embodiment, the microwave switchers 1046a through 104d may include TE" switches, while in another embodiment, the microwave switchers 46a through 46d may include ΤΜ?ί) switches. Any additional suitable components (such as one or more mode converters, barrier assemblies or components discussed elsewhere in this application but not shown in Figures 1 and 11b) may be located in the microwave switcher 1 〇 46a to 1 〇46d upstream or downstream. In operation, the microwave switchers 46a through 464 can be selectively switched between a first heating (or discharging) phase and a second heating (or discharging) phase. Less energy can be emitted or emitted from one or more microwave emitters during the first heating phase and less energy is emitted from one or more other microwave emitters. Similarly, during the second heating phase, more energy may be emitted or emitted from one or more other microwave emitters, while less energy may be emitted or emitted from one or more of the microwave emitters. In one embodiment 'during the first heating phase, each of the microwave switches 1046a through 1046d may be configured to primarily route microwave energy to a first microwave emitter group (in Figures 11a and 11b) One or more transmitters labeled "A" Transmitter 160981.doc • 95· 201236751) are not primarily routed to a second microwave transmitter group (labeled as an rB in Figures 11a and lib) Group) - or multiple transmitters. During the second emission phase, in each of the respective emitter pairs 1050a to 1050d and l〇5〇e to i〇50h in FIGS. na and nb, the microwave switching states 1 046a to 1 〇 46d Each can be configured to route microwave energy to one or more of the second group (eg, "B" transmitters) without being primarily routed to the first group (eg, "A" Transmitter) - or multiple transmitters. As used herein, reference to "major" routing microwave energy to transmitter X and "not primarily" routing to transmitter gamma means routing at least 50% of the microwave energy received by a switch to the transmitter. No more than 5% of the microwave energy received by the switch is routed to the transmitter γ. In one embodiment, energy can be, for example, at least 75%, at least 9%, to > '95/. All of the primary routes are routed to the transmitter X, and the energy (for example, 5) is no more than 25%, no more than 1%, no more than 5%, or substantially no energy is routed to the transmitter γ. In one embodiment, the microwave heating system 1 〇 3 〇 may further include a control system 1060 for controlling the operation and configuration of the microwave switchers 16a to 1046d. The control system 1060 is operable. To configure each of the switches 1046a through 104d to be in the first emission phase such that all "A" transmitters (eg, transmitters 1〇44a, 1〇4乜, 1044e, l〇44g) ) The microwave energy is emitted into the microwave heater 1〇3〇, and all the “B” emitters (such as 'transmitter 1〇4 servant, i〇44d, i〇44f, 1 044h) will have a smaller amount. Or substantially no microwave energy can be emitted into the interior of the microwave heater 1030, as illustrated in Figures 11a and Ub by the microwave heaters 160981.doc -96 - 201236751. Subsequently, the control system is then operable to configure each of the switchers 104 "to 10 offsets to be in the second emission phase" such that all "A" transmitters (eg, transmitters 1044a, i) 〇44c, difficult e, 1〇44g) all emit a small amount or substantially no microwave energy into the interior of the microwave heater 1〇3〇, and all “B” emitters (for example, the transmitter 104 servant, l (M4d, Hmf, (10)) emits microwave energy into the microwave heater 1〇3〇 (not shown in Ua and Ub). According to an embodiment, the control system 1060 is also operable to be based on a predetermined schedule. A set of parameters (including, for example, cycle time, total energy discharged, and the like) to control switching of the microwave switchers 1〇46& to 104d between the first discharge phase and the second discharge phase. In one embodiment, the control system 1060 is operable to configure each of the microwave switches 1〇46& to 1046d to the first emission phase substantially simultaneously such that it can simultaneously be "A" Each of the emitters i〇44a, 1〇44c, 1044e, l〇44g emits microwaves Up to a time period. In another embodiment, the control system 1060 is operable to include a time delay or lag between configuring one or more of the switches 1〇46& to i〇46d to the first emission phase Therefore, the microwave energy emitted from one or more "A" or "B" transmitters may be delayed or staggered relative to the emission energy from one or more other "A" or "B" emitters. In an example, the control system 1060 can be configured to allow one or more of the switches 1046a through 104d to be in a first discharge phase, and one or more other switches 1046a through 104d are in a second discharge phase, So that 160981.doc -97-201236751 microwave energy can be simultaneously transmitted from one or more "A" transmitters and one or more "B" transmitters. In one embodiment of the invention, the control system 丨060 is also Operates to at least partially prevent pairs of emitters from direct relative (eg, pairs 1044a and 104h, pairs 1044b and 1044g, pairs i〇44c and 1044f, pairs 1044d, and 104e) and/or axial bit neighbors Yes (for example, for i〇44a and 1044b, for 1044c and l〇44d, for 1044e) Simultaneous energy discharge of 1044f, i〇44g and 104h). A heating system configured and/or operated in accordance with an embodiment of the present invention can be used to heat an object or load more efficiently than conventional heating systems. In particular, the heating system configured in accordance with various embodiments of the present invention is operable to handle large commercial scale loads. In one embodiment, the heating system as described herein can be heated to have at least 100 pieces, at least One or more loads of 500 pieces, at least 1,000 pounds, at least 5,000 pounds, or at least 10,000 pounds of accumulated, preheated (or pretreated) weight. In various embodiments, a wood bundle may be heated and/or dried such that the total volume of the wood is no greater than, for example, 2%, no more than 1%, no more than 5%, and no more than 2 degrees/ 〇 can reach a temperature not exceeding one of the upper limit temperatures. In the same or other embodiments, at least 80%, at least 90%, at least 95% of the total volume of the wood. /. And at least 98% (for example) can reach a temperature not exceeding the threshold temperature. The lower threshold temperature and the upper threshold temperature may be relatively close to each other and may, for example, be at 110 of each other. Inside, 1〇5. Within 匚, 〇〇〇c, 9 (within rc, within 75 ° C or within 50 ° C. In various embodiments, the upper threshold temperature may be at least 190 ° C, at least 20 (TC or at least 22 CTC and / or not greater than 275. (:, not greater than 260. (:, not greater than 250. (: or not greater than 225 ° C. In another embodiment, the lower temperature can be at least 115 ° C, at least 12 〇 t, at least 16098 l.doc -98 - 201236751 125 ° C, at least 130 ° C and / or no more than 150 ° C, no more than 145 ° C or no more than 135 ° C. According to one embodiment, the total volume of wood At least 80%, at least 90%, at least 95%, and at least 98% may be at least 130 ° C, at least 145 ° C, at least 150 ° C, or at least 160. (: and / or no greater than 250. (:, no greater than 240 °C, no more than 225 ° C, no more than 21 (TC or not more than 200 ° C maximum temperature. Therefore 'has at least 1 mash, at least 5 、, at least 1,000 lbs or at least 5,000 lbs An initial (for example, preheating or pretreatment) 之一 weight of the wood bundle (if desired, a chemically wetted wood bundle) may be no more than 48 hours, no more than 36 hours, no more than 24 hours, no more than 1 8 Heating, no more than 16 hours, no more than 12 hours, no more than 10 hours 'no more than 8 hours or no more than 6 hours. Various aspects of the invention are further illustrated and illustrated by the following examples. However, it should be understood that unless There are other specific instructions, which are included for illustrative purposes only and are not intended to limit the scope of the invention. Example Example 1: Deconstruction of wood in a double container system This example illustrates A pilot scale experiment of acetylated and heated wood in a dual vessel system. As shown herein, the use of separate vessels for the acetylation step and the heating step allows for the production of dried, acetonitrile in a short period of time. Wood. Construct a test scale acetonitrile reactor with a diameter of 10 inches and a length of 9 feet. Dry the kiln to a humidity between 6 wt% and 8 wt% 160981.doc -99· 201236751 Several southern yellow pine boards containing strontium are loaded into the acetylation reactor and the reactor door is closed and sealed. The pressure in the acetonitrile reactor is reduced to 40 Torr and 7 using a vacuum system. The vacuum is maintained between 0 torr for 2 to 45 minutes to remove residual air and/or water from the wood. After the holding cycle, the internal volume of the reactor is filled with acetic anhydride at room temperature and in the reactor. The pressure is increased between 80 psig and 90 psig to thereby maximize the impregnation of the acetic anhydride against the wood. After 40 minutes, the fluid is drawn from the reactor and the pressure is increased to 1,500 Torr by means of warm nitrogen. The reactor steam jacket was used to increase the temperature to 140 ° C, and once all the fluid was drawn from the reactor, the hot acetic acid was steamed / iw into the vessel to contact the wood 'to thereby catalyze the reaction. After 6 minutes, the hot steam injection was stopped and allowed to occur at an increased reactor pressure for a period of between 1.5 hours and 3 hours. Thereafter, the pressure in the reactor is reduced to flash vaporize residual acetic acid and/or anhydride thereby at least partially drying the acetified wood. The pressure in the reactor was then further reduced to 60 Torr to 80 Torr, whereby the panels were dried to a chemical moisture content between 1 〇 wt% and 20 wt%. Nitrogen is injected to lower the temperature in the reactor. Once cooled, the 'acetified plate is removed, wrapped in plastic to minimize the therapeutic vapor emission to the external environment' and delivered to a hood where the plates are introduced into a microwave heater It was previously cut to a length of 16 to 18 inches. A microwave heater with a diameter of 19 inches and a length of 43 inches utilizes a 3.5 kW, 2450 MHz microwave generator model pWAVEVAC0350 vacuum microwave dryer (available from Schwanewede, Germany) , Germany) Piieschner Microwave Power 160981.doc -100- 201236751

Systems講得)。電溫暖該加熱器之外部壁以防止乙酸及/或 乙酸酐在加熱/乾燥循環期間凝結。 在裝載至微波加熱器之前,在經乙醯化板中之每一者之 中心附近鑽出一孔並將一 NEoPTIχ纖維光學溫度感測器插 • 入至該孔中以在加熱期間監視溫度。接著將該等板放置於 位於微波加熱器之中心處之一轉臺上,該微波加熱器亦包 含用於在加熱期間監視重量資料之一系統。關閉及密封加 熱器上之門並用氮氣淨化該室。接通定位於該室之上部壁 〇 上之一模式攪拌器並使用一真空泵將加熱器之内部内之壓 力減小至20托與60托之間。該微波產生器接著被接通及設 定以將400 W之能量發射至加熱器中。在數分鐘内,該等 板之溫度增加至17〇與190°C之間。 在加熱過程之持續時間期間’監視重量及溫度資料並使 用一可程式化邏輯控制器(PLC)來使產生器循環接通及關 斷直至達到目標板溫度為止。使該等板維持處於目標溫度 〇 達30分鐘與90分鐘之間,且在完成加熱循環之後’ ριχ使 真空泵停止並使室返回至大氣壓。接著使微波加熱器之門 開放並移除經乾燥之板。該等經乾燥、經乙醯化板之平均 最後化學濕度含量小於5 wt%。 實例2: —束内之能量分佈曲線之判定 此實例提供自用以加熱及/或乾燥一經乙醯化木材束之 一試驗規模微波加熱器獲得之實際資料。熱影像係用以建 構犯量分佈曲線,其將接著在預示性實例3中相關以預 測在一商業規模上加熱之木材之化學濕度曲線。 I60981.doc -101 - 201236751 類似於圖l〇a、l〇c、10d及l〇e中所圖解說明之加熱器之 一水平伸長之微波加熱器建構有12英尺之一外徑及16英尺 之一總長度。該加熱器包含用於自容器裝載及卸載該束之 一入口門。類似於圖l〇c及10d中所圖解說明之分裂微波發 射器之四個分裂微波發射器配置成兩個相對安置之對且經 由ΤΕιο波導之一系統連接至一 FERRITE 75 kW 9 1 5 MHz微 波產生器(可自新罕布什爾州納舒厄(Nashua, NH)之Ferrite Microwave Technologies,lnc.購得)。三個微波切換器經組 態以將能量自產生器路由至每一對之兩個發射器中之一 者,如下文詳細闡述。 該微波加熱器亦包含類似於圖1 〇c中所圖解說明之可移 動反射器之四個可移動反射器。每一反射器界定實質上沿 加熱器之長度延伸之一連續反射表面。四個分裂發射器中 之每一者垂直定位於一可移動反射器對之間以使得藉由安 置於加熱器之内部體積之四個象限中之每一者中之反射表 面將自每一分裂發射器之各別向上及向下定向之排放開口 發射之能量光栅化至微波加熱器之内部中。經由利用一外 部驅動器之一轉軸使每一反射表面沿一大體弧形旋轉。稍 後將詳細闡述關於可移動反射器之運動之細節。 允許大致1 5,000磅之經乙醯化之輻射松在環境大氣中濕 度平衡以使得木材之平均水含量係2 wt%至3 wt°/。。接著將 木材捆綁成包括四個經個別扣緊之堆疊(例如,圖12中所 展示之堆疊A至D)之一合成束。該合成束(在圖I)中表示為 束1304)具有4英尺寬x8英尺高χ16英尺長之標稱尺寸。堆 I60981.doc -102- 201236751 疊A至C中之每一者具有6英吋之一寬度,而堆疊〇具有2·5 英尺之一寬度。將合成束1304引入至微波加熱器中且在起 始加熱循環之前將門關閉及扣緊。 首先,微波切換器經組態以使得來自產生器之能量將同 時路由至兩個對角相對(例如,相對安置、軸向交錯)之發 射器,而剩餘兩個對角相對之發射器保持空閒。接著,產 生器經啟動及設定以按類似於先前關於圖lu及ub之發射 器組「A」論述之方式之一方式將75 1^|遞送至第一對角 ° 相對之發射器對。接下來,在10分鐘之後,停止產生器且 微波切換器經重新組態以在第二加熱模式期間將能量自第 一作用對角相對發射器組路由至空閒對角相對發射器組。 接著以75 kW重新啟動產生器並再次將微波能排放至加熱 器中。在另一 10分鐘之後,停止產生器以使得該等切換器 可返回至原始組態,藉此將能量重新路由回至第一對角相 對發射器對。替代地自軸向交錯之發射器對排放能量之此 ^ 序列以10分鐘增量繼續達總共8〇分鐘(例如,1〇〇kwhr)e 在每一加熱模式期間,藉由控制可移動反射器中之每一 者之運動及位置來將自微波發射器中之每一者排放之能量 光柵化至微波加熱器之内部中。一可程式化邏輯控制器 (PLC)經設定以使用一伺服馬達使每一反射器以各種速度 鉍轉通過其總弧形路徑之各種部分(或區)。頂部及底部反 射器對經程式化以按相同速度移動,但每一對之一個反射 器之移動係在另一者之前起始,藉此避免該對之兩個反射 器同步協力地移動。下文之表2概述運動之八個區中之每 160981.doc 201236751 者之邊界(例如’開始及結束位置)及總長度以及頂部及 -P反射器對中之每一者之反射器速度及在每一區中所花 ^之時間⑽如’滞留時間)’表達為總反射器循環時間之 百刀比。注意表2僅概述每一反射器之曲線之一半丨— 旦每一反射器對移動通過如下文所闡述之區丨至8,每二: 射器即接著以-反向型樣行進,_開始且 1 „ W主區 160981.doc -104 - 201236751 ο ο 璲电w n某β礙飨b:κ 底部反射器 5? ? 餘g 〇 rn cn cn ri in 〇\ ο ^Ti 速度 (〇/s) 〇 c> <N 00 H <N oq <N oq r*H <N oo T-H (N o Ο 頂部反射器 S: ^ SB ^ 〇\ 〇 m CN o o o o (N Ο 速度 (°/s) 〇 〇 o <N 00 r*H (N 00 t—H (N 00 i—H (N OO t—4 >r> (N o ο 路徑之 長度(%) 0.31% 12.19% 12.50% 12.50% 12.50% 25.00% 12.50% 12.50% 路徑之 長度(°) 1—Η ON rn o 〇 q o 00 o ¥ Ο 寸· 結束位 置(。) O o 00 0 01 H o H o o oo <N Ο CN m 開始 位置(°) ο ο t—H q o oo o (N H o 'O o ο oo <N tel) Η (N 寸 in 卜 00 160981.doc -105- 201236751 一旦整個加熱循環完成’即關斷產生器並將經加熱之合 成束輸送至一固持地帶,其中具有一寬角鏡頭之一 MIKRON 7500型號相機定位於距經加熱之束之伸長側中之 一者大致10英尺處。自該合成束移除堆疊A(圖12中所展示 之最外面板堆疊;)以藉此曝露堆疊B之一内部表面(在圖12 中指定為B’)。該相機以每5秒丨個影像之一速率記錄表面β| 之熱影像,且在20秒之後,自該合成束移除堆疊Β。該相 機接著開始記錄堆疊C之一内部表面(在圖12中指定為表面 C’)之熱影像。在20秒之後,自該束移除堆疊c,藉此曝露 堆疊D之内部表面(在圖12中指定為表面D,)。該相機記錄 表面D’之熱影像達2〇秒且接著被停止。 為分析貫牙該束之體積之合成溫度分佈,使用 MikroSpec™專業熱成像軟體(版本4〇5,可自英國伯克郡 (Berkshire,UK)之Metrum購得)將在表面以至D,中之每一者 之一所關注代表性區内獲得之逐像素溫度資料導入至一試 算表中。圖"中展示併入有自合成束之所有内部表面B,至 D1獲得之熱資料之一累積頻率直方圖。 該束之體積之小於2〇%具有低於42〇c 如圖13中所展示 或高於521之-溫度。當與—乾燥、經乙醯化之木材束相 關時’此類型之能量分佈導致所預測之化學濕度含量曲 線’如預示性實例3中所闡述。 實例3(預示性) 之計算 經G醞化之束内之化學濕度含量曲金 此預示性實例使用在實例2中 獲得之實驗性能量分佈資 160981.doc * 106 - 201236751 統類似地組態之一 燥之經乙醯化木材 或多種熱可移除化 料來預測在與先前在實例2中闡述之系 商業規模微波加熱系統中加熱及/或乾 之化學濕度曲線(例如,總體積内之一 學品之$及分佈)。 將具有大致101英吋高X52英吋寬x16英尺長之尺寸之一 經乙醯化木材束裝載至具有u英尺7英吋之一内部直徑及 17英尺之一凸緣間長度之一微波加熱器中。可加壓加熱器 包含一相對安置之進入及退出開口 每一者可用一全直徑Systems speaks). The outer wall of the heater is electrically warmed to prevent condensation of acetic acid and/or acetic anhydride during the heating/drying cycle. Prior to loading into the microwave heater, a hole was drilled near the center of each of the acetonitrile plates and a NEoPTI(R) fiber optical temperature sensor was inserted into the hole to monitor the temperature during heating. The plates are then placed on a turntable located at the center of the microwave heater, which also contains a system for monitoring weight data during heating. Close and seal the door on the heater and purify the chamber with nitrogen. A mode agitator positioned on the upper wall 〇 of the chamber is turned on and a vacuum pump is used to reduce the pressure in the interior of the heater to between 20 Torr and 60 Torr. The microwave generator is then turned "on" and set to emit 400 W of energy into the heater. Within a few minutes, the temperature of the plates increased between 17 〇 and 190 °C. The weight and temperature data are monitored during the duration of the heating process and a programmable logic controller (PLC) is used to cycle the generator on and off until the target panel temperature is reached. The plates are maintained at the target temperature for between 30 minutes and 90 minutes, and after the heating cycle is completed, the vacuum pump is stopped and the chamber is returned to atmospheric pressure. The door of the microwave heater is then opened and the dried plate is removed. The average final chemical moisture content of the dried, acetated plates is less than 5 wt%. Example 2: - Determination of the energy distribution curve within the beam This example provides actual data obtained from a pilot scale microwave heater used to heat and/or dry an acetonitrile bundle. The thermal image is used to construct a gravity distribution curve which will then be correlated in Prophetic Example 3 to predict the chemical humidity profile of the wood heated on a commercial scale. I60981.doc -101 - 201236751 A microwave heater similar in height to one of the heaters illustrated in Figures l〇a, l〇c, 10d and l〇e is constructed with an outer diameter of 12 feet and a diameter of 16 feet. A total length. The heater includes an inlet door for loading and unloading the bundle from the container. Four split microwave emitters similar to the split microwave emitters illustrated in Figures 10c and 10d are configured in two oppositely disposed pairs and connected to a FERRITE 75 kW 9 1 5 MHz microwave via one of the οιο waveguide systems Generator (available from Ferrite Microwave Technologies, lnc., Nashua, NH). The three microwave switches are configured to route energy from the generator to one of two pairs of each pair, as explained in detail below. The microwave heater also includes four movable reflectors similar to the movable reflector illustrated in Figure 1 〇c. Each reflector defines a continuous reflective surface that extends substantially along the length of the heater. Each of the four split emitters is vertically positioned between a pair of movable reflectors such that the reflective surface by each of the four quadrants disposed within the interior volume of the heater will split from each The energy emitted by the respective upward and downwardly directed discharge openings of the emitter is rasterized into the interior of the microwave heater. Each reflective surface is rotated in a generally arcuate shape by utilizing a shaft of an external drive. Details of the motion of the movable reflector will be elaborated later. Allow approximately 1 5,000 pounds of acetylated radiata pine to equilibrate in the ambient atmosphere so that the average water content of the wood is 2 wt% to 3 wt ° /. . The wood is then bundled into a composite bundle comprising one of four individually fastened stacks (e.g., stacks A through D shown in Figure 12). The composite bundle (shown in Figure I) is represented as bundle 1304) having a nominal size of 4 feet wide by 8 feet high and 16 feet long. Stack I60981.doc -102- 201236751 Each of stacks A through C has a width of 6 inches, and stacked stacks have a width of one second of 2.5 feet. The composite bundle 1304 is introduced into the microwave heater and the door is closed and fastened prior to the initial heating cycle. First, the microwave switcher is configured such that energy from the generator will be routed simultaneously to two diagonally opposite (eg, relatively placed, axially staggered) emitters, while the remaining two diagonally opposite emitters remain idle. . Next, the generator is activated and set to deliver 75 1^| to the first diagonal relative transmitter pair in a manner similar to that discussed previously with respect to transmitter group "A" of Figures lu and ub. Next, after 10 minutes, the generator is stopped and the microwave switcher is reconfigured to route energy from the first active diagonal to the emitter group to the idle diagonal relative emitter group during the second heating mode. The generator is then restarted at 75 kW and the microwave energy is again discharged into the heater. After another 10 minutes, the generators are stopped so that the switches can be returned to the original configuration, thereby rerouting the energy back to the first diagonally opposite pair of transmitters. Alternatively, the sequence of emission energy from the axially staggered emitter continues in a 10 minute increment for a total of 8 minutes (eg, 1 〇〇 kwhr) e during each heating mode by controlling the movable reflector The motion and position of each of the fibers radiates energy discharged from each of the microwave emitters into the interior of the microwave heater. A programmable logic controller (PLC) is configured to use a servo motor to rotate each reflector through various portions (or zones) of its total arcuate path at various speeds. The top and bottom reflector pairs are programmed to move at the same speed, but the movement of one of each pair begins before the other, thereby preventing the two reflectors from moving synchronously. Table 2 below summarizes the boundaries of each of the eight zones of the movement, such as the 'start and end positions' and the total length and the reflector speed of each of the top and -P reflector pairs. The time spent in each zone (10) such as 'residence time' is expressed as the ratio of the total reflector cycle time. Note that Table 2 only outlines one of the curves of each reflector—each reflector pair moves through a zone as described below to 8, and every two: the emitter then proceeds in the -reverse mode, _ begins And 1 „ W main area 160981.doc -104 - 201236751 ο ο 璲 wn some β 飨 b: κ bottom reflector 5? ? 余 g 〇rn cn cn ri in 〇 \ ο ^Ti speed (〇 / s) 〇c><N 00 H <N oq <N oq r*H <N oo TH (N o 顶部 Top reflector S: ^ SB ^ 〇\ 〇m CN oooo (N Ο speed (°/s ) &o <N 00 r*H (N 00 t-H (N 00 i-H (N OO t—4 >r> (N o ο path length (%) 0.31% 12.19% 12.50% 12.50 % 12.50% 25.00% 12.50% 12.50% Path length (°) 1—Η ON rn o 〇qo 00 o ¥ Ο inch · End position (.) O o 00 0 01 H o H oo oo <N Ο CN m Starting position (°) ο ο t—H qo oo o (NH o 'O o ο oo <N tel) Η (N inch in 00 160981.doc -105- 201236751 Once the entire heating cycle is completed, the shutdown is generated And transporting the heated composite bundle to a holding zone having a wide angle mirror One MIKRON 7500 model camera is positioned approximately 10 feet from one of the elongated sides of the heated bundle. Stack A (the outermost panel stack shown in Figure 12; is removed from the composite bundle) to thereby expose One of the internal surfaces of stack B (designated B' in Figure 12). The camera records the thermal image of surface β| at a rate of one image every 5 seconds, and after 20 seconds, removes the stack from the composite bundle The camera then begins recording a thermal image of the inner surface of one of the stacks C (designated as surface C' in Figure 12.) After 20 seconds, the stack c is removed from the bundle, thereby exposing the interior surface of stack D ( Designated as surface D, in Figure 12. The camera records the thermal image of surface D' for 2 seconds and then stops. To analyze the resultant temperature distribution of the volume of the bundle, use the MikroSpecTM professional thermal imaging software ( Version 4〇5, available from Metrum, Berkshire, UK), introduces pixel-by-pixel temperature data obtained from representative areas of each of the surface and D, to a trial In the table. The graph " shows a cumulative frequency histogram incorporating one of the internal surfaces B of the self-synthesizing beam to the thermal data obtained by D1. Less than 2% by volume of the bundle has a temperature below 42 〇c as shown in Figure 13 or above 521. This type of energy distribution results in a predicted chemical moisture content curve as described in the predictive example 3 when associated with a dry, acetified wood bundle. Example 3 (predictive) Calculation of Chemical Humidity Content in the G-Trained Beam This predictive example is similarly configured using the experimental energy distribution obtained in Example 2, 160981.doc * 106 - 201236751 A dry acetalized wood or a plurality of thermally removable materials to predict the chemical and humidity curves for heating and/or drying in a commercial scale microwave heating system as previously described in Example 2 (eg, within the total volume) $ and distribution of a school). One of the dimensions of approximately 101 inches high X52 inches wide by 16 feet long is loaded with a bundle of acetylated wood into a microwave heater having an internal diameter of one foot u feet of 7 inches and a length between one flange of 17 feet . The pressurizable heater includes a relatively disposed inlet and outlet opening. Each can be used with a full diameter.

碟形門密封。加熱器之總内部體積係26〇5立方英尺,且木 材束之總體積對微波加熱器中之總開放(例如,未佔用)體 積之比率係0·29:1。在於微波加熱器中加熱之前,該束具 有大致10 wt%至15 wt%之一「化學濕度含量」(亦即,包 含(舉例而言)乙酸、乙酸酐及其組合之一或多種熱可汽化 化學品之一量)。 在該束之加熱期間,以如先前在實例2中所闡述之一類 似方式將微波能引入至微波加熱器中。另外,使用一真空 系統將加熱器之内部壓力維持處於6〇托。在8〇分鐘之後, 關斷微波產生器’移除該束並以先前在實例2中所閣述之 方式拍攝該束之内部表面之熱影像。圖14中提供由累積熱 資料產生之預測溫度分佈。 如圖14中所展示,經乙醯化之木材束之預計溫度分佈具 有165°C之一平均峰值溫度且該束之總體積之小於〇.3%具 有低於11 5 C或w於235。(:之-溫度。根據使木材溫度與化 學品濕度含量相關之先前獲得之經驗資料,圖14中之溫度 160981.doc -107- 201236751 分佈針對如上文所闡述來處理之一經乾燥經乙醯化木材束 預測如表3中所概述之一化學濕度含量曲線。 表3:經乾燥經乙醯化木材之預計化學濕度含量曲線 溫度 木材束之百分率 預測濕度含量 T<115°C 0.3% 〜2 wt%濕度 115〇C<T<135〇C 2.2% 〜1 wt%濕度 T>235〇C 0.3% 燒焦 115〇C<T<235〇C 99.4% 乾燥 135〇C<T<235〇C 97.2% 乾燥 加熱及/或乾燥經乙醯化木材之總體目標係移除殘餘乙 醯化化學品(例如,藉由最小化經乾燥束之化學濕度含量) 而不過度乾燥或燒焦所處理之木材。如表3中所展示,經 乙醯化束之總體積之小於0.3%係乾燥不足的(例如,具有2 wt%或2 wt%以上之一濕度含量)或經受燒焦(例如,具有大 於235°C之一平均溫度)、另外,該束之總體積之小於2.2% 具有1%或1%以上之一濕度含量。因此,將經乙醯化束之 總體積之至少97.2%(且最高99.4%)加熱或乾燥至小於1 wt%至2 wt°/〇之一化學濕度含量,而同時最小化燒焦木材 之量。 實例4 :利用不同微波能位準之順序加熱循環之使用 此實例圖解說明將熱量施加至一木材束之方法如何影 響經加熱木材之溫度分佈。進行包含具有各種持續時間、 壓力及/或能量位準之一或多個個別加熱循環之數個測驗 以在加熱循環期間判定對該束之溫度之影響以及燒焦之木 材之量。 160981.doc -108- 201236751 建構類似於圖9a、9b及9e中所圖解說明之系統之一微波 加熱系統且其包含經由一系列丁£10波導耦合至一真空微波 加熱器之一 FERRITE 75 kW、915 MHz微波產生器(可自新 罕布什爾州納舒厄的 Ferrite Microwave Technologies,Inc. 購得)。三個旋轉微波切換器經組態以將微波能自產生器 選擇性地路由至位於微波加熱器之内部中之四個微波發射 器中之一者。每一發射器經設計以按一 TE10模式接收能 量’但包含安置於容器内部内之用於在能量發射至加熱器 〇 中之前將其轉換成一 TM01模式之一模式轉換器。真空加熱 器(其具有6.5英尺之一直徑及8英尺之一總長度)在一個端 上包含用於裝載及卸載木材之一單個門。該系統亦包含用 於在加熱步驟期間按需要控制加熱器内之壓力之一機械、 乾燥(例如,非油密封)真空泵(可自馬薩諸塞州吐克斯伯利 (Tewksbury, MA)的 Edwards Limited購得)。 對於測驗運行A至Η中之每一者,具有丄英吋x6英吋“英 尺之標稱尺寸之六個經乙醯化輻射松厚板裝備有放置至在 €) 每一板之中心點處鑽出之孔中之纖維光學溫度感測器。該 等裝備有感測器之板放置成包含配置於2 6個層中之總共 . 15 6個經乙醯化輻射松板之一經黏附束之列13。接著將該 . 束緊固在一起且裝載至該真空加熱器中。在每一運行a至 Η期間,將該束曝露至不同加熱及/或壓力曲線。對於每一 運打,針對每一循環量測在加熱之前及之後的束之峰值平 均及峰值最大纖維光學溫度及重量(以計算蒸發損耗)以及 總能量輸入。下文在表4a及4b中概述每一束之關鍵特性及 每一加熱曲線之詳情。 160981.doc •109- 201236751Disc door seal. The total internal volume of the heater is 26 〇 5 ft., and the ratio of the total volume of the wood bundle to the total open (e.g., unoccupied) volume in the microwave heater is 0·29:1. The bundle has a "chemical moisture content" of about 10 wt% to 15 wt% (i.e., containing, for example, one or more of the acetic acid, acetic anhydride, and combinations thereof) before being heated in the microwave heater. One of the chemicals). During the heating of the bundle, microwave energy was introduced into the microwave heater in a similar manner as previously described in Example 2. In addition, a vacuum system was used to maintain the internal pressure of the heater at 6 Torr. After 8 minutes, the microwave generator was turned off and the beam was removed and the thermal image of the interior surface of the beam was taken in the manner previously described in Example 2. The predicted temperature distribution resulting from the accumulated thermal data is provided in FIG. As shown in Figure 14, the predicted temperature profile of the acetylated wood bundle has an average peak temperature of 165 °C and the total volume of the bundle is less than 3%.3% with less than 11 5 C or w at 235. (:--temperature. According to previously obtained empirical data relating the wood temperature to the chemical moisture content, the temperature in Figure 14 is 160981.doc -107 - 201236751. The distribution is treated as described above. The wood beam is predicted as shown in Table 3. The chemical moisture content curve is shown in Table 3. Table 3: Estimated chemical moisture content of dried acetylated wood The temperature of the wood bundle is predicted by the moisture content T < 115 ° C 0.3% ~ 2 wt % Humidity 115〇C<T<135〇C 2.2% 〜1 wt% Humidity T>235〇C 0.3% Charred 115〇C<T<235〇C 99.4% Dry 135〇C<T<235〇C 97.2% The overall goal of drying the heated and/or dried acetalized wood is to remove residual acetalized chemicals (eg, by minimizing the chemical moisture content of the dried bundle) without excessive drying or charring of the treated wood. As shown in Table 3, less than 0.3% of the total volume of the acetonitrile bundle is insufficiently dry (eg, having a moisture content of 2 wt% or more) or subjected to scorching (eg, having greater than 235) °C average temperature), in addition, the bundle Less than 2.2% of the total volume has a moisture content of 1% or more. Therefore, at least 97.2% (and up to 99.4%) of the total volume of the acetonitrile bundle is heated or dried to less than 1 wt% to 2 wt. °/〇 One of the chemical moisture content while minimizing the amount of charred wood. Example 4: Use of sequential heating cycles with different microwave energy levels This example illustrates how the method of applying heat to a wood bundle affects the Heating the temperature distribution of the wood. Performing several tests comprising one or more individual heating cycles of various durations, pressures and/or energy levels to determine the effect on the temperature of the beam during the heating cycle and the charred wood 160981.doc -108- 201236751 Constructs a microwave heating system similar to the one illustrated in Figures 9a, 9b and 9e and which comprises coupling to a vacuum microwave heater FERRITE via a series of 1010 waveguides 75 kW, 915 MHz microwave generator (available from Ferrite Microwave Technologies, Inc., Nashua, New Hampshire). Three rotating microwave switches are configured to self-generate microwave energy Optionally routed to one of four microwave emitters located in the interior of the microwave heater. Each emitter is designed to receive energy in a TE10 mode 'but contains the interior of the vessel for energy emission Convert it to a TM01 mode one mode converter before it reaches the heater. The vacuum heater (which has a diameter of 6.5 feet and a total length of 8 feet) contains one of the woods for loading and unloading on one end. Single door. The system also includes a mechanical, dry (eg, non-oil sealed) vacuum pump for controlling the pressure within the heater as needed during the heating step (available from Edwards Limited of Tewksbury, MA). Got). For each of the test runs A to ,, six acetylated radiative slabs with a nominal size of 6 吋 6 吋 英尺 英尺 放置 放置 放置 放置 放置 放置 放置 放置 放置 放置 放置 放置 放置 放置a fiber optic temperature sensor in the drilled hole. The plates equipped with the sensor are placed to contain a total of 26 layers. 156 of the acetylated radiata pine plates are adhered to the bundle. Column 13. The bundles are then fastened together and loaded into the vacuum heater. During each run a to Η, the bundle is exposed to different heating and/or pressure curves. For each operation, for each shipment The peak average and peak maximum fiber optical temperature and weight (to calculate evaporation loss) and total energy input before and after heating are measured for each cycle. The key characteristics and each of each bundle are summarized in Tables 4a and 4b below. Details of a heating curve. 160981.doc •109- 201236751

璲电癍ο/nw?厚β鉍^^WK«HV^^: 5 啭 總循環資料 能量密度 (kW/lb乾燥木材) 0.0094 0.0107 0.0107 0.0109 0.0148 0.0155 0.0125 0.0168 總功率輸入 (kW-hr) 26.2 30.7 26.0 30.7 37.0 36.0 32.0 41.3 歷力 (托)—— 350 350 350 350 200 200 300 350 束性質 乾燥重量 (M___ 1553 1833 1528 1800 1630 1592 1566 1836 平均濕度 含量(%) 2.55 2.04 2.18 2.10 2.70 2.45 2.72 1.95 運行 < PQ U Q ω Ρη ο X璲电癍ο/nw?厚β铋^^WK«HV^^: 5 啭 total circulation data energy density (kW/lb dry wood) 0.0094 0.0107 0.0107 0.0109 0.0148 0.0155 0.0125 0.0168 total power input (kW-hr) 26.2 30.7 26.0 30.7 37.0 36.0 32.0 41.3 Force (to) - 350 350 350 350 200 200 300 350 Dry weight of the bundle (M___ 1553 1833 1528 1800 1630 1592 1566 1836 Average moisture content (%) 2.55 2.04 2.18 2.10 2.70 2.45 2.72 1.95 Operation < PQ UQ ω Ρη ο X

(赞)鲮电癍名菡單^l;±i'^wn^v^lF : q 寸< 第四加熱循環 休眠 (分鐘} 1 1 1 1 I I I 時間 (分鐘) 1 1 1 1 I I I %ι| ^ 1 1 1 1 1 1 I (Ν 第三加熱循環 1 1 義 1 1 1 I 時間 (分鐘) <N (N 1 1 Ό m 〇〇 (Ν ^1, 1 (Ν (Ν 1 οα (Ν 第二加熱循環 1 寸 1 〇\ 1 00 <Ν Ο 時間\ (分鐘)\ 1 ο 沄 Ο ο 1 (N (N <Ν (Ν (Ν CN ΟΟ 00 宕 第一加熱循環 休眠 (分鐘) 1 沄 沄 沄 宕 cn 贫:¾ ro 〇 Ο ίη Ο <Ν <Ν ο 00 Ο ο <Ν ^1, CN in (Ν in (Ν (Ν 運行 < 0Q υ Q W |j-t ο W 160981.doc •110 201236751 在完成每一運行時,移除該束且在視覺上檢查該等板中 之每一者以作燒焦記號,此界定為四分之一大小或更大變 黑或焦化標記。藉由比較在加熱之前及之後之束之重量 (與每一板之已知乾燥重量)來計算蒸發(濕度)損耗。基於 總能量輸入及木材之初始重量與濕度含量計算能量密度 (每磅之乾燥木材)。下文之表5概述運行A至Η之結果,其 包含在加熱期間達成之平均及最大峰值溫度以及燒焦之板 之數目。 表5:運行Α至Η之結果之概述 運行 結果 能量密度 (kW/lb乾燥木材) 平均分支溫 度CC) 最大峰值溫 度(V) 燒焦之板 (#) A 0.0094 116 159 0 B 0.0107 119 161 0 C 0.0107 139 184 7 D 0.0109 116 179 0 E 0.0148 136 154 19 F 0.0155 123 137 0 G 0.0125 113 193 0 Η 0.0168 142 192 10 如表5中所展示,對於類似能量密度(例如,運行C及D以 及運行Ε及F ),採用在較低能量位準下及/或在較短持續時 間内進行之更多個別循環之運行(例如,運行D及F)比採用 在較高能量位準下及/或在較長持續時間内進行之較少個 別循環之運行(例如,運行C及Ε)更可能避免燒焦。此外, 如由運行Η所圖解說明,在一高能量位準下及/或在一長持 160981.doc -111 - 201236751 續時間内進行初始循環之能量及/或持續時間之情形下, 甚至藉助具有降低之能量位準之多個循環進行之運行亦可 導致燒,,、、因此τ推斷—總加熱循環内之個別循環之數 目及持續時間以及該等個別循環中之每―者之能量及/或 麼力之位準對木材之平均及最大峰值溫度以及在加熱循環 期間燒焦之板之數目具有一影響。 實例5: &少能量加熱循帛對束溫度分佈之效應 此實例提ί、圖解說明使用兩個或兩個以上個別加熱循環(赞)鲮电癍名菡 single ^l;±i'^wn^v^lF : q inch< fourth heating cycle sleep (minutes) 1 1 1 1 III time (minutes) 1 1 1 1 III %ι | ^ 1 1 1 1 1 1 I (Ν Third heating cycle 1 1 Meaning 1 1 1 I Time (minutes) <N (N 1 1 Ό m 〇〇(Ν ^1, 1 (Ν (Ν 1 οα ( Ν Second heating cycle 1 inch 1 〇 \ 1 00 < Ν Ο time \ (minutes) \ 1 ο 沄Ο ο 1 (N (N < Ν (Ν (Ν CN ΟΟ 00 宕 first heating cycle sleep (minutes 1 沄沄沄宕cn Poverty: 3⁄4 ro 〇Ο ίη Ο <Ν <Ν ο 00 Ο ο <Ν ^1, CN in (Ν in (Ν (ΝRun < 0Q υ QW |jt ο W 160981.doc •110 201236751 Upon completion of each run, the bundle is removed and each of the panels is visually inspected for scorch marking, which is defined as a quarter or larger black or Coking mark. Calculate the evaporation (humidity) loss by comparing the weight of the bundle before and after heating (with the known dry weight of each plate). Calculate the energy density based on the total energy input and the initial weight and moisture content of the wood ( Dry per pound Wood). Table 5 below summarizes the results of Run A to Η, which includes the average and maximum peak temperatures achieved during heating and the number of burnt plates. Table 5: Summary of Results from Operation Α to Η Operation Results Energy Density (kW/lb dry wood) Average branch temperature CC) Maximum peak temperature (V) Burnt plate (#) A 0.0094 116 159 0 B 0.0107 119 161 0 C 0.0107 139 184 7 D 0.0109 116 179 0 E 0.0148 136 154 19 F 0.0155 123 137 0 G 0.0125 113 193 0 Η 0.0168 142 192 10 As shown in Table 5, for similar energy densities (for example, running C and D and running Ε and F), use at lower energy levels and / Or the operation of more individual cycles (eg, running D and F) performed in a shorter duration than using fewer individual cycles at higher energy levels and/or over a longer duration ( For example, running C and Ε) is more likely to avoid scorching. In addition, as illustrated by the operating ,, the initial cycle is performed at a high energy level and/or over a long period of 160981.doc -111 - 201236751. Energy and / or duration In this case, even operation with multiple cycles with reduced energy levels can result in burns, and, therefore, τ inference - the number and duration of individual cycles within the total heating cycle and each of these individual cycles The level of energy and/or force has an effect on the average and maximum peak temperature of the wood and the number of plates burned during the heating cycle. Example 5: & Effect of less energy heating cycle on beam temperature distribution This example illustrates the use of two or more individual heating cycles.

(每-者皆係在-較低微波能位準及/或—較低壓力下實施) 加熱一木材束之影響之模擬結果。(Each - all at - lower microwave energy level and / or - lower pressure) Simulation results of the effect of heating a wood bundle.

使用合成模型化資料來預測曝露至數個不同模擬加熱曲 線之具有52英吋χ101英吋xl29英吋之標稱尺寸之一理論木 材束之溫度曲線。在一 i英吋網格上使用用於預測在每一 加熱曲線下之電磁場分佈之HFSSTM軟體(可自賓夕法尼亞 州卡農斯堡的Ansys購得)及用於預測該束之一中心垂直平 面(例如,「中心截塊」)内之溫度分佈之matlab軟體(可 自馬薩諸塞州納提克(Natik,MA)的Mathworks購得)來進行 五次模擬(例如’模擬A至E)。下文在表6中概述模擬A至E 中之每一者之模擬加熱曲線中之每一者之細節。 160981.doc •112· 201236751 ο οSynthetic modeling data was used to predict the temperature profile of a theoretical wood bundle with a nominal size of 52 inches, 101 inches x 15 inches, exposed to several different simulated heating curves. An HFSSTM software (available from Ansys, Cannonsburg, PA) for predicting the electromagnetic field distribution under each heating curve is used on an i-inch grid and used to predict one of the center vertical planes of the beam (eg The matlab software for the temperature distribution within the "central block" (available from Mathworks, Natik, MA) was used for five simulations (eg 'Simulation A to E'). Details of each of the simulated heating curves for each of the simulations A through E are summarized below in Table 6. 160981.doc •112· 201236751 ο ο

婼电癍矣wqY莉雄·6-3^ν^鹚蛘:9啭 第三加熱循環 1 1 f 1 1 1 結束 結束 B夺間 (分鐘) 1 1 1 1 1 1 m (N o 能量 (kW) 1 1 1 1 1 1 18.75 第二加熱循環 休眠 (^M) 結束 結束 結束 沄 時間 (分鐘) in ΓΟ m 〇 cn (N o 能量 (kW) i〇 56.25 in 卜^ m 第一加熱循環 休眠 (分鐘) Ο 沄 沄 時間 (分鐘) cn m o m <N O 能量 (kW) in in in in 模擬 < n u Q 160981.doc •113 201236751 將模擬溫度資料自MATLAB導入至一試算表中並執行一 統計分析以判定(1)在加熱循環期間的峰值最大溫度及(2) 將燒焦(亦即,將達成高於240°C之一溫度)之中心「截塊」 之總體積之百分率。下文在表7中列出模擬A至E之結果。 表7:針對模擬A至E之峰值溫度及燒焦之束體積 模擬 峰值溫度 (°C) 燒焦之體積 (%) A 289 1.30 B 279 0.92 C 269 0.64 D 270 0.59 E 239 0.00 儘管在每一總加熱循環期間添加之總功率量係相同的 (例如,87.5 kW-hr),但施加至負載之能量之時序、持續 時間及位準影響每一模擬之最大峰值溫度及燒焦位準。舉 例而言,如由模擬A及E之峰值溫度及所燒焦體積所證 實,與不使用休眠週期時相比,允許木材在兩個能量施加 (例如,個別順序加熱循環)之間「休眠」導致一較低總峰 值溫度及較少燒焦。當用於一後續循環中之最大微波能位 準低於前一循環時,所預期之峰值溫度及燒焦量亦較低, 如藉由比較模擬B與C所證實。進一步地,當利用三個(或 三個以上)後續循環時(每一者皆處於比前一者低之一能量 位準),可獲得一甚至更低之峰值溫度及/或燒焦量,如模 擬D中所展示。 上文所闡述之本發明之較佳形式欲僅用作圖解說明,且 160981.doc -114- 201236751 不應以一限制意義用於解釋本發明之範疇。熟習此項技術 者可在不背離本發明之精神之情況下容易地對上文所述之 例示性實施例作出顯而易見之修改。 本發明人藉此陳述其意欲依靠等效原則來判定且估計本 發明關於任何設備之相當合理範疇而實質上不背離在以下 申請專利範圍中所述之本發明字面範疇或在本發明字面範 疇之外。 【圖式簡單說明】 圖1係根據本發明之一項實施例組態之一木材處理系統 之一俯視圖,其特定而言圖解說明用於輸送往來於一化學 改質反應器及一木材加熱器之木材束之一執條系統; 圖2係根據本發明之一替代實施例組態之一木材處理系 統之一俯視圖,其特定而言圖解說明用於輸送往來於複數 個化學改質反應器及複數個木材加熱器之木材束之一轉臺 系統; 圖3係根據本發明之一替代實施例組態之一木材處理系 統之一俯視圖’其特定而言圖解說明用於輸送往來於複數 個化學改質反應器及複數個木材加熱器之木材束之一滾輪 系統; 圖4a係適於在生產經化學改質之木材中使用且根據本發 明之一項實施例組態之一穿過式木材處理系統之一俯視 圖’其特定而言圖解說明一化學改質反應器及一木材加熱 器’其包括單獨的軸向對準之雙門容器且包含位於反應器 與加熱器容器之間的一蒸汽容納室; 160981.doc -115- 201236751 圖4b係圖4a之穿過式木材處理系統之一等軸視圖其特 定而言圖解說明蒸汽容納室之一例示性鼓風板/壁; 圖4C係在圖乜及讣中繪示之蒸汽容納室之-截面圖,其 特定而言圖解說明用於允許來自外部環境之流體(例如, 空氣)流動至蒸汽容納室中之—例示性單向通氣孔對; 圖4d係圖蚊穿過式木材處理系統之—側視圖,但亦圖 解說明用於抽取湧入蒸汽容納室及湧入位於加熱器之出口 處之-產品蒸汽移除結構之蒸汽及氣體之—通氣系統; 圖5係根據本發明之-項實施例組態之—微波加熱系統 之-示意圖,其特定而言圖解說明裝備有—真空系統且經 由一微波分佈系統自一微波產生器接收微波能之一微波加 熱器; 圖6係適於用作根據本發明之各種實施例之一化學改質 反應器及/或微波加熱器之一雙門、穿過式容器之一等軸 視圖,其特定而言圖解說明該容器之形狀及尺寸比例; 圖7a係根據本發明之一項實施例組態之一微波加熱器之 一門凸緣與一容器凸緣之接面之一局部截面圖,其特定而 言圖解說明由門及容器凸緣協作地形成且具有彼此平行且 靠攏著延伸之兩個室之一微波阻流器; 圖7b係類似於圖7a中繪示之阻流器之一微波阻流器之— 局部截面圖,但該微波阻流器具有相對於彼此成一銳角延 伸之阻流器腔; 圖7c係裝備有圖7a中繪示之微波阻流器組態之一微波加 熱器之門凸緣之一剖視等軸視圖,其特定而言圖解說明形 I60981.doc •116· 201236751 成於該阻流器之一導流壁中之複數個圓周地隔開之端部開 口槽或間隙; 圖7d係裝備有具有根據本發明之一項實施例組態之—婼电癍矣wqY Lixiong·6-3^ν^鹚蛘:9啭The third heating cycle 1 1 f 1 1 1 End of the end B Between (minutes) 1 1 1 1 1 1 m (N o Energy (kW ) 1 1 1 1 1 1 18.75 Second heating cycle sleep (^M) End and end time 沄 time (minutes) in ΓΟ m 〇cn (N o Energy (kW) i〇56.25 in 卜 ^ m First heating cycle sleep ( Minutes) Ο 沄沄 time (minutes) cn mom <NO energy (kW) in in in simulation < nu Q 160981.doc •113 201236751 Importing simulated temperature data from MATLAB into a spreadsheet and performing a statistical analysis By determining (1) the maximum peak temperature during the heating cycle and (2) the percentage of the total volume of the "cut" that will be charred (ie, will reach a temperature above 240 °C). The results of simulations A to E are listed in 7. Table 7: Peak temperature and simulated beam volume for simulated A to E Simulated peak temperature (°C) Charred volume (%) A 289 1.30 B 279 0.92 C 269 0.64 D 270 0.59 E 239 0.00 Although the total amount of power added during each total heating cycle is the same (for example, 87.5 kW-h r), but the timing, duration and level of energy applied to the load affect the maximum peak temperature and scorch level for each simulation. For example, by simulating the peak temperatures of A and E and the burnt volume It was confirmed that allowing the wood to "sleep" between two energy applications (eg, individual sequential heating cycles) resulted in a lower total peak temperature and less scorching than when the dormant cycle was not used. When used in a subsequent cycle When the maximum microwave energy level is lower than the previous cycle, the expected peak temperature and charring amount are also lower, as confirmed by comparing simulations B and C. Further, when using three (or more than three) During subsequent cycles (each of which is at a lower energy level than the previous one), an even lower peak temperature and/or charring amount can be obtained, as shown in Simulation D. The preferred forms of the present invention are intended to be illustrative only, and the scope of the present invention is not to be construed as being limited to the scope of the present invention. Easily as described above The exemplified embodiments are intended to be illustrative, and the present invention is intended to be construed as an equivalent of the The literal category is invented or outside the literal scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a top plan view of one of the wood treatment systems configured to deliver a chemical upgrading reactor and a wood heater in accordance with an embodiment of the present invention. One of the wood bundle systems; FIG. 2 is a top plan view of one of the wood treatment systems configured in accordance with an alternate embodiment of the present invention, specifically illustrating the transport of a plurality of chemical upgrading reactors and A turntable system of wood bundles of a plurality of wood heaters; FIG. 3 is a top plan view of one of the wood treatment systems configured in accordance with an alternative embodiment of the present invention, which in particular illustrates the transport of a plurality of chemistries Roller system of one of a wood bundle of a reforming reactor and a plurality of wood heaters; Figure 4a is suitable for use in the production of chemically modified wood and configured to pass through a wood according to an embodiment of the present invention A top view of a processing system 'specifically illustrating a chemical upgrading reactor and a wood heater' that includes a separate axially aligned double door container and is contained in the opposite A steam containing chamber between the heater and the heater vessel; 160981.doc -115- 201236751 Figure 4b is an isometric view of one of the through-wood processing systems of Figure 4a, specifically illustrating one of the steam holding chambers Blowing plate/wall; Figure 4C is a cross-sectional view of the vapor containing chamber illustrated in Figures 讣 and ,, specifically illustrating the flow of fluid (e.g., air) from the external environment to the vapor containing chamber In the present - an exemplary one-way vent pair; Figure 4d is a side view of the mosquito-passing wood treatment system, but also illustrates the extraction into the steam storage chamber and the inflow into the heater outlet - Vapor and gas-gas venting system for product vapor removal structure; Figure 5 is a schematic view of a microwave heating system configured in accordance with an embodiment of the present invention, specifically illustrating that it is equipped with a vacuum system and via a The microwave distribution system receives one of microwave energy microwave heaters from a microwave generator; FIG. 6 is suitable for use as a double door of a chemical upgrading reactor and/or a microwave heater according to various embodiments of the present invention, An isometric view of one of the over-type containers, which in particular illustrates the shape and size ratio of the container; Figure 7a is a configuration of one of the microwave heaters with a container flange and a container flange in accordance with an embodiment of the present invention a partial cross-sectional view of a junction, in particular illustrating a microwave choke that is cooperatively formed by a door and a container flange and having two chambers that are parallel to each other and that are extended together; Figure 7b is similar to Figure 7a A partial cross-sectional view of the microwave choke of one of the chokes shown therein, but the microwave choke has a choke chamber extending at an acute angle relative to each other; Figure 7c is equipped with the microwave illustrated in Figure 7a One of the baffle configurations is a cross-sectional isometric view of one of the door flanges of the microwave heater, which in particular illustrates the shape of the I60981.doc •116·201236751 in the diversion wall of one of the chokes Circumferentially spaced end opening slots or gaps; Figure 7d is equipped with a configuration in accordance with an embodiment of the present invention -

•«I 移除部分之一微波阻流器之一微波加熱器上之一開放門之 一側視圖’其特定而言圖解說明該微波阻流器之可移除部 分包括複數個可個別移除且可替換之阻流器段,· 圖7e係先前在圖7d中繪示之一 rG」形可移除阻流器部 分之一截面圖;• «I removes one of the microwave chokes on one of the microwave heaters. One of the open doors is a side view. It specifically illustrates that the removable portion of the microwave choke includes a plurality of individually removable And an alternative choke section, FIG. 7e is a cross-sectional view of a portion of the rG"-shaped removable choke previously illustrated in FIG. 7d;

圖7 f係根據本發明之一 弟 替代實施例組態之Figure 7 f is a configuration according to an alternative embodiment of the present invention

—I— I—I— I

G 或「U」形可移除阻流器部分之一截面圖; 圖7g係根據本發明之一第二替代實施例組態之一「乙」 形可移除阻流器部分之一截面圖; 」 圖7h係根據本發明之—第三替代實施例組態之一「匕 形可移除阻流器部分之一截面圖; 圖8a係根據本發明之一項實施例組態之一微波加熱器之 剖視等軸視圖,其特定而言將該加熱器圖解說明為裝備 有一伸長之波導發射器,該伸長之波導發射器在該發射器 之相對側上具有交錯之發射開口; 圖8b係圖8a中繪示之波導發射器之一放大局部視圖,其 特疋而。圖解說明發射開口之組態及界定發射開口之 之厚度; 圖〜係根據本發明之-項實施例組態之-微波加熱系統 •i視®纟特定而言圖解說明用於將微波能遞送至微 波加熱器之一微波分佈系統; 16098l.doc •117- 201236751 a圖^係W 9a中、㈣之微波加熱器之-俯視剖視圖,其特 1而言將微波分佈系統圖解說明為包含在該微波加熱器之 们側上之—個τ M“發射器對及在該微波加熱器之相對側 上之一第二TMw發射器對; 圖9C係圖解說明由術語「相對側」&「才目同側」所意指 之内容之一圖示; 圖9d係圖解說明由術語「軸向對準」所意指之内容之一 圖示; 圖9e係根據本發明之—項實施例組態之—微波發射及反 射或散射系統之一局部剖視等軸視圖,其特定而言圖解說 月類似於圖9b中緣示之發射系統但亦包含與每_微波發射 器相關聯之-可移動反射器之—發射系統; 圖9 f係適於在如本文中所閣述之一微波加熱系統中使用 之一反射器之一項實施例之一等軸視圖,其特定而言將該 反射器圖解說明為具有帶有一第一組態之一凹部之一非平 面反射表面; 圖9 g係適於在本文中所闡述之一微波加熱系統中使用之 —反射器之另一實施例之一等軸視圖,其特定而言將該反 射器圖解說明為具有帶有一第二組態之一凹部之一非平面 反射表面; 圖9h係適於在本文中所闡述之一微波加熱系統中使用之 —反射器之一項實施例之一側視正視圖,其特定而言圖解 說明反射器表面之曲率; 圖9ι係先前在圖“中繪示之一微波發射器與反射器對之 160981.doc -118- 201236751 一放大剖視等軸視圖,其特定而言圖解說明用於提供反射 器之振盪移動之一致動器系統; 圖1 〇a係根據本發明之一項實施例組態之一微波加熱系 統之一側視圖,其特定而言圖解說明裝備有複數個τΜβέ阻 障總成之一微波分佈系統; 圖l〇b係圖i〇a中繪示之τΜαδ阻障總成中之一者之一軸向 截面圖,其特定而言將該阻障總成圖解說明為具有兩個浮 動密封窗及在阻障總成與其間耦合有該阻障總成之波導之 ^ 接面附近之阻抗變換直徑臺階式改變; 圖1 〇c係在圖1 〇a中繪示之微波加熱系統之一端視圖,其 中一木材束接納於微波加熱器之内部中,該圖特定而言將 該微波加熱器圖解說明為裝備有在該加熱器之相對側上之 分裂微波發射器及用於光柵化自該等分裂發射器發射之微 波能之可移動反射器; 圖l〇d係圖10c中繪示之分裂發射器中之一者之一放大側 〇 ㈣’其特定而言圖解說明自分裂發射器發射之兩個單獨 微波能分率之發射角; 圖心係用於使—反射器移動之-系統之-項實施例之 放大視圖’其特疋而言圖解說明用以致使該反射器之振 盪之致動盗及用於抑制其中該致動器穿透微波加熱器之 壁之位置處之流體洩漏之一伸縮囊; 圖11 a係根據本發明之— 項貫施例組態之一微波加熱系 統之一示意性俯視圖,复牲仝二__ β '、哥疋而$將該加熱系統圖解說明 為包含用於以一交替方汰蔣测r a从 飞將城波旎路由至不同微波發射器 160981.doc •119· 201236751 之複數個微波切換器; 圖lib係根據本發明之一替代實施例組態之一微波加熱 系統之一不意圖,其特定而言將該加熱系統圖解說明為包 含用於以一交替方式將微波能路由至不同微波發射器之複 數個微波切換器; 圖12係一木材束之一示意性表示,其特定而言圖解說明 在判定如實例2中所闡述之内部表面溫度時利用之組態; 圖13係併入有自圖12中所展示之合成束之表面化至^獲 得之熱資料之一累積頻率直方圖;且 圖14係圖解說明由如實例3中所闡述之一經乙醯化木材 束之推測熱資料產生之一預测溫度分佈之一累積頻率直方 圖。 【主要元件符號說明】 10 20 22 24 26 28 29 30 32 34 36 160981.doc 木材處理設施 化學改質系統 化學改質反應器 反應器加熱系統 選用反應器加壓/減壓系統 反應器入口門/第一反應器入口門 選用反應器出口門 加熱系統 加熱器 能源 選用加熱器加壓/減壓系統 -120- 201236751A cross-sectional view of a G or "U" shaped removable choke portion; Figure 7g is a cross-sectional view of one of the "B" removable spoiler portions configured in accordance with a second alternative embodiment of the present invention Figure 7h is a cross-sectional view of one of the dome-shaped removable spoiler portions configured in accordance with a third alternative embodiment of the present invention; Figure 8a is a configuration of a microwave in accordance with an embodiment of the present invention; A cross-sectional isometric view of the heater, in particular the heater is illustrated as being equipped with an elongated waveguide emitter having staggered emission openings on opposite sides of the emitter; Figure 8b An enlarged partial view of one of the waveguide emitters illustrated in Figure 8a, which illustrates the configuration of the emission opening and the thickness of the emission opening; Figure ~ is configured in accordance with an embodiment of the present invention - Microwave heating system • i 纟 纟 纟 纟 纟 纟 纟 纟 纟 纟 纟 纟 纟 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; - a top-down view, which will be The wave distribution system is illustrated as a τ M "transmitter pair on one side of the microwave heater and a second TMw emitter pair on the opposite side of the microwave heater; Figure 9C is illustrated by The term "opposite side" & "the same side" means one of the contents; Figure 9d is a diagram illustrating one of the contents indicated by the term "axial alignment"; Figure 9e is based on A partial cross-sectional isometric view of a microwave emission and reflection or scattering system configured in accordance with an embodiment of the present invention, which in particular illustrates a month similar to the emission system illustrated in Figure 9b but also includes Microwave emitter associated with a movable reflector-emissive system; Figure 9 f is an isometric view of one embodiment of a reflector suitable for use in a microwave heating system as described herein Specifically, the reflector is illustrated as having a non-planar reflective surface with one of the recesses of a first configuration; FIG. 9 g is suitable for use in one of the microwave heating systems described herein - reflection Isometric view of another embodiment of the device, In particular, the reflector is illustrated as having a non-planar reflective surface with one of the recesses of a second configuration; Figure 9h is suitable for use in a microwave heating system as described herein - a reflector A side elevational view of one embodiment, which specifically illustrates the curvature of the reflector surface; Figure 9 is a prior view of the microwave emitter and reflector pair 160981.doc -118 - 201236751 An enlarged cross-sectional isometric view, in particular illustrating an actuator system for providing oscillating movement of a reflector; FIG. 1 is a configuration of one of the microwave heating systems in accordance with an embodiment of the present invention A side view, in particular, illustrates a microwave distribution system equipped with a plurality of τΜβέ barrier assemblies; FIG. 1〇b is one of one of the τΜαδ barrier assemblies illustrated in FIG. A cross-sectional view, in particular, the barrier assembly is illustrated as having two floating sealing windows and an impedance-converting diameter stepped near the junction of the barrier assembly and the waveguide to which the barrier assembly is coupled Change; Figure 1 〇c An end view of the microwave heating system illustrated in FIG. 1A, wherein a bundle of wood is received in the interior of the microwave heater, the figure specifically illustrating the microwave heater as being equipped with the opposite of the heater a split-wave transmitter on the side and a movable reflector for rasterizing the microwave energy emitted from the split emitters; Figure 1〇d is an amplification side of one of the split emitters illustrated in Figure 10c 〇 (4) 'Specifically illustrates the emission angle of two separate microwave energy fractions emitted from the split emitter; the graph is used to make the - reflector move - the system - the enlarged view of the embodiment In the case of 疋, an actuating thief for causing oscillation of the reflector and a bellows for suppressing fluid leakage at a position where the actuator penetrates the wall of the microwave heater are illustrated; Inventive - One of the schematic top views of a microwave heating system, the same as the second __β', the brother and the $. Ra routes from the flying city to A plurality of microwave switches of the same type as the microwave transmitter 160981.doc • 119·201236751; Figure lib is a schematic diagram of one of the microwave heating systems according to an alternative embodiment of the invention, which in particular illustrates the heating system Illustrated as comprising a plurality of microwave switches for routing microwave energy to different microwave emitters in an alternating manner; Figure 12 is a schematic representation of one of the wood bundles, specifically illustrated in the determination as in Example 2. The configuration utilized for the internal surface temperature is illustrated; Figure 13 is a cumulative frequency histogram incorporating the thermal data from the surface of the composite beam shown in Figure 12; and Figure 14 is illustrated by an example One of the three methods described in Figure 3 produces a cumulative frequency histogram of one of the predicted temperature distributions from the estimated thermal data of the acetylated wood bundle. [Main component symbol description] 10 20 22 24 26 28 29 30 32 34 36 160981.doc Wood treatment facility chemical upgrading system Chemical upgrading reactor Reactor heating system using reactor pressure / pressure reducing system reactor inlet door / The first reactor inlet door is selected as the reactor outlet door heating system heater energy selection heater pressure / decompression system -120- 201236751

38 開放加熱器入口門 39 選用加熱器出口門 40 輸送系統 42a 輸送段 42b 輸送段 42c 輸送段 42d 輸送段 42e 輸送段 60a 原始材料儲存區域 60b 成品材料儲存區域 102 木材束 110 木材處理設施 122a 反應器 122b 反應器 122n 反應器 128a 門 128b 門 128n 門 132a 加熱器 132b 加熱器 132n 加熱器 138a 門 138b 門 138n 門 160981.doc -121 - 201236751 140 可旋轉平臺/轉臺 160 儲存區域 210 木材處理設施 222a 化學改質反應器 222η 化學改質反應器 228a 反應器入口門 228η 反應器入口門 229a 選用反應器出口門 229η 選用反應器出口門 232a 加熱器 232b 加熱器 232n 加熱器 238a 加熱器入口門 238b 加熱器入口門 238n 加熱器入口門 239a 選用加熱器出口門 239b 選用加熱器出口門 239n 選用加熱器出口門 240 輸送系統 242a 段 242b 段 242c 段 242d 段 242e 段 160981.doc -122 - 20123675138 Open heater inlet door 39 Select heater outlet door 40 Conveying system 42a Conveying section 42b Conveying section 42c Conveying section 42d Conveying section 42e Conveying section 60a Raw material storage area 60b Finished material storage area 102 Timber bundle 110 Wood treatment facility 122a Reactor 122b Reactor 122n Reactor 128a Door 128b Door 128n Door 132a Heater 132b Heater 132n Heater 138a Door 138b Door 138n Door 160981.doc -121 - 201236751 140 Rotatable Platform/Rotary Table 160 Storage Area 210 Wood Treatment Facility 222a Chemistry Modification reactor 222n Chemical upgrading reactor 228a Reactor inlet door 228η Reactor inlet door 229a Reactor outlet door 229n Selected reactor outlet door 232a Heater 232b Heater 232n Heater 238a Heater inlet door 238b Heater inlet Door 238n heater inlet door 239a heater outlet door 239b heater outlet door 239n heater outlet door 240 conveyor system 242a section 242b section 242c section 242d section 242e section 160981.doc -122 - 201236751

242f 段 242g 段 242h 段 242i 段 242] 段 244a 段 244b 段 244c 段 244d 段 244e 段 322 化學改質反應器 328 反應器入口門 329 反應器出口門 332 加熱器 338 加熱器入口門 339 加熱器出口門 342a 直立壁 342b 直立壁 342c 直立壁 342d 直立壁 344 天花板結構 349 蒸汽出口管道 349a 蒸汽出口管道 349b 蒸汽出口管道 -123 - 160981.doc 201236751 349c 蒸汽出口管道 360 蒸汽容納室 361 傳送區 370a 中心伸長軸/通氣孔 370b 中心伸長軸/通氣孔 343 鼓風板或鼓風壁 399 輸送路徑 400 產品蒸汽移除系統或結構 402 通氣系統 404 通氣罩 406 通氣室 408 通氣室出口 409 門 410 真空產生器 412 處理裝置 414 引流器 416 木材處理設施/木材處理系統 420 微波加熱系統 422 微波產生器 430 微波加熱器 440 微波分佈系統 442 波導 444a 微波發射器 444b 微波發射器 160981.doc 124· 201236751 444c 微波發射器 446 微波模式轉換器/模式轉換器 450 選用真空系統 530 微波加熱器 531 本體側密封表面 532 容器本體 533 門側密封表面 534 門 G 535 中心伸長軸 536 微波加熱器之内部 631 本體侧密封表面 632 容器本體 633 門側密封表面 634 門 650 微波阻流器 651 〇 可移除部分 652 第一徑向延伸阻流器腔 653a 可移除阻流器段 653b 可移除阻流器段 653c 可移除阻流器段 653d 可移除阻流器段 653e 可移除阻流器段 654 第二徑向延伸阻流器腔 656 徑向延伸阻流器導流壁 160981.doc -125- 201236751 660 選用流體密封構件 670 經隔開之開端式間隙 690 第一阻流器腔之延伸之方向 692 第二阻流器腔之延伸之方向 702 木材束 720 微波加熱系統 730 微波加熱器 738 加熱器入口門 739 束接納空間/選用加熱器出口門 740 微波分佈系統 760 經伸長之波導發射器 764a 實質上平面側壁 764b 實質上平面側壁 764c 實質上平面側壁 764d 實質上平面側壁 767a 經伸長之槽/發射開口 767b 經伸長之槽/發射開口 767c 經伸長之槽/發射開口 767d 經伸長之槽/發射開口 767e 經伸長之槽/發射開口 780a 發射對或開口對 780b 發射對或開口對 820 微波加熱系統 830 微波加熱器 160981.doc -126- 201236751242f Section 242g Section 242h Section 242i Section 242] Section 244a Section 244b Section 244c Section 244d Section 244e Section 322 Chemical Modification Reactor 328 Reactor Inlet Gate 329 Reactor Outlet Gate 332 Heater 338 Heater Entrance Door 339 Heater Exit Door 342a Upright wall 342b Upright wall 342c Upright wall 342d Upright wall 344 Ceiling structure 349 Steam outlet pipe 349a Steam outlet pipe 349b Steam outlet pipe - 123 - 160981.doc 201236751 349c Steam outlet pipe 360 Steam storage chamber 361 Transfer zone 370a Center extension axis / Vent 370b Center Extension Shaft/Ventilation 343 Blast Plate or Blast Wall 399 Transport Path 400 Product Vapor Removal System or Structure 402 Ventilation System 404 Vent Hood 406 Vent Chamber 408 Vent Chamber Exit 409 Door 410 Vacuum Generator 412 Processing Unit 414 Drain 416 Wood Treatment Facility / Wood Treatment System 420 Microwave Heating System 422 Microwave Generator 430 Microwave Heater 440 Microwave Distribution System 442 Waveguide 444a Microwave Transmitter 444b Microwave Transmitter 160981.doc 124· 201236751 444c Microwave Emission 446 Microwave Mode Converter/Mode Converter 450 Vacuum System 530 Microwave Heater 531 Body Side Sealing Surface 532 Container Body 533 Door Side Sealing Surface 534 Door G 535 Center Extending Shaft 536 Microwave Heater Interior 631 Body Side Sealing Surface 632 Container Body 633 Door Side Sealing Surface 634 Door 650 Microwave Rejector 651 〇 Removable Portion 652 First Radially Extended Resistor Chamber 653a Removable Slipper Segment 653b Removable Slipper Segment 653c Removable Resistor Flow section 653d Removable flow block section 653e Removable flow blocker section 654 Second radially extended baffle cavity 656 Radially extended baffle diversion wall 160981.doc -125- 201236751 660 Fluid seal selected The member 670 is separated by an open gap 690. The direction of the extension of the first choke chamber is 692. The direction of extension of the second choke chamber is 702. Wood bundle 720 Microwave heating system 730 Microwave heater 738 Heater inlet door 739 Space/selector heater exit door 740 microwave distribution system 760 elongated waveguide emitter 764a substantially planar sidewall 764b substantially flat Side wall 764c substantially planar side wall 764d substantially planar side wall 767a elongated groove/emission opening 767b elongated groove/emission opening 767c elongated groove/emission opening 767d elongated groove/emission opening 767e elongated groove/ Launch opening 780a launch pair or opening pair 780b launch pair or opening pair 820 microwave heating system 830 microwave heater 160981.doc -126- 201236751

83 1 外部側壁 831a 侧壁 831b 侧壁 835 伸長軸 835a 伸長車由 838 加熱器入口門 839 中點 840 微波分佈系統 841a 經隔開之發射開口 841b 經隔開之發射開口 842a 波導/波導段 842b 波導/波導段 842c 波導/波導段 842d 波導/波導段 843a ΤΜα6波導段 843b ΤΜαδ波導段 843c ΤΜα6波導段 843d ΤΜα6波導段 844 微波發射器 844a 微波發射器 844b 微波發射器 844c 微波發射器 844d 微波發射器 845 開放出口 /發射開口 160981.doc -127- 201236751 845a 開放出口 /發射開口 845b 開放出口 /發射開口 845c 開放出口 /發射開口 845d 開放出口 /發射開口 846 發射器 846a 發射器 846b 發射器 850a 模式轉換器 850b 模式轉換器 850c 模式轉換器 850d 模式轉換器 890 反射器 890a 可移動反射器 890b 可移動反射器 890c 可移動反射器 890d 可移動反射器 891a 反射表面 891b 反射表面 891c 反射表面 891d 反射表面 892 支撐臂 893 振盪轉軸 893a 凸部 893b 凸部 160981.doc -128- 201236751 894 槓桿臂 895 線性轉軸 896 輪 897 樞軸 898 馬達 899 反射器驅動器系統/致動器 902 木材束 920 微波加熱系統 Ο 928 入口門 930 微波加熱器 931 外部側壁 933 侧壁 938 加熱器入口門 939 加熱器出口門 940 微波分佈系統 941a 發射開口 941b 經隔開之發射開口 941c 經隔開之發射開口 941d 經隔開之發射開口 ' 942 波導段 942a 上游ΤΜαδ波導段 942b 上游ΤΜαδ波導段 942c 上游ΤΜαέ波導段 942d 上游ΤΜ&波導段 160981.doc -129- 201236751 942e 上游TM&波導段 942f 上游TMai)波導段 942g 上游波導段 942h 上游ΤΜαδ波導段 942i 下游ΤΜαέ波導段 942j 下游ΤΜαδ波導段 942k 下游ΤΜαέ波導段 9421 下游ΤΜα&波導段 942x 波導段 942y 波導段 942z 波導段 943a TEy波導段 943b TEy波導段 944 分裂發射器 944a 第一分裂發射器 944h 第二分裂發射器 945a 排放開口 945b 排放開口 945c 排放開口 945d 排放開口 947a 模式轉換器 947b 模式轉換器 947c 模式轉換器 947d 模式轉換器 160981.doc -130- 201236751 948 延伸轴 949 ΤΜαί)至TE”模式轉換分裂器 950a 外部至ΤΜαδ模式轉換器 950b 外部ΤΕ”至ΤΜα6模式轉換器 950c 外部TExy至ΤΜα6模式轉換器 950d 外部ΤΕ”至ΤΜα6模式轉換器 951 入口或開口 /無阻礙束接納空間 960 致動器 O 961 固定部分 963 可延伸部分 964 伸縮囊結構 970 阻障總成 970a 阻障總成 970b 阻障總成 970c 阻障總成 970d 〇 阻障總成 970h 阻障總成 972a 密封窗構件 972b 密封窗構件 ' 972c 密封窗構件 972d 密封窗構件 973 阻障殼體 973a 第一或入口區段 973b 選用第二或中間區段 160981.doc -131 - 201236751 973c 第三或出口區段 974a 阻抗變換直徑臺階式改變 974b 阻抗變換直徑臺階式改變 975a 第一 ΤΜαδ波導段 975b 第二ΤΜαδ波導段 980 支撐臂 982a 彈性環 982b 彈性環 984a 彈性環 984b 彈性環 990 可移動反射器 990a 可移動反射器 990b 可移動反射器 990c 可移動反射器 990d 可移動反射器 991 反射器表面 1020 微波加熱系統 1022a 微波產生器 1022b 微波產生器 1022c 微波產生器 1022d 微波產生器 1030 微波加熱器 1040 微波分佈系統 1044a 微波發射器 160981.doc -132- 201236751 1044b 微波發射器 1044c 微波發射器 1044d 微波發射器 1044e 微波發射器 1044f 微波發射器 1044g 微波發射器 1044h 微波發射器 1046a 微波切換器 〇 1046b 微波切換器 1046c 微波切換器 1046d 微波切換器 1050a 發射器對 1050b 發射器對 1050c 發射器對 1050d 發射器對 1050e 發射器對 1050f 發射器對 1050g 發射器對 1050h 發射器對 ' 1060 控制系統 A 第一微波發射器組/堆疊 B 第二微波發射器組/堆疊 C 堆疊 D 堆疊 160981.doc -133- 201236751 1304 合成束 B, 内部表面 C, 内部表面 D' 内部表面 160981.doc •134·83 1 outer side wall 831a side wall 831b side wall 835 extension shaft 835a extension vehicle 838 heater inlet door 839 midpoint 840 microwave distribution system 841a spaced apart emission opening 841b spaced apart emission opening 842a waveguide/waveguide section 842b waveguide /Waveguide section 842c Waveguide / waveguide section 842d Waveguide / waveguide section 843a ΤΜα6 waveguide section 843b ΤΜαδ waveguide section 843c ΤΜα6 waveguide section 843d ΤΜα6 waveguide section 844 Microwave transmitter 844a Microwave transmitter 844b Microwave transmitter 844c Microwave transmitter 844d Microwave transmitter 845 Open outlet/launch opening 160981.doc -127- 201236751 845a open exit/launch opening 845b open exit/launch opening 845c open exit/launch opening 845d open exit/transmit opening 846 transmitter 846a transmitter 846b transmitter 850a mode converter 850b Mode converter 850c mode converter 850d mode converter 890 reflector 890a movable reflector 890b movable reflector 890c movable reflector 890d movable reflector 891a reflective surface 891b reflective surface 891c reflective surface 891d Shooting surface 892 Support arm 893 Oscillation shaft 893a Projection 893b Projection 160981.doc -128- 201236751 894 Lever arm 895 Linear shaft 896 Wheel 897 Pivot 898 Motor 899 Reflector drive system / Actuator 902 Wood beam 920 Microwave heating system 928 928 entrance door 930 microwave heater 931 outer side wall 933 side wall 938 heater inlet door 939 heater outlet door 940 microwave distribution system 941a emission opening 941b separated by a separate opening 941c through a separate opening 941d Emission opening ' 942 waveguide section 942a upstream ΤΜαδ waveguide section 942b upstream ΤΜαδ waveguide section 942c upstream ΤΜαέ waveguide section 942d upstream ΤΜ& waveguide section 160981.doc -129- 201236751 942e upstream TM& waveguide section 942f upstream TMai) waveguide section 942g upstream waveguide section 942h upstream ΤΜαδ waveguide section 942i downstream ΤΜαέ waveguide section 942j downstream ΤΜαδ waveguide section 942k downstream ΤΜαέ waveguide section 9421 downstream ΤΜα& waveguide section 942x waveguide section 942y waveguide section 942z waveguide section 943a TEy waveguide section 943b TEy waveguide section 944 split emitter 944a First split emitter 944h second split emitter 945a discharge opening 945b discharge opening 945c discharge opening 945d discharge opening 947a mode converter 947b mode converter 947c mode converter 947d mode converter 160981.doc -130- 201236751 948 extension axis 949 ΤΜαί) to TE" mode conversion splitter 950a external to ΤΜαδ mode converter 950b external ΤΕ" to ΤΜα6 mode converter 950c external TExy to ΤΜα6 mode converter 950d external ΤΕ" to ΤΜα6 mode converter 951 inlet or opening / unobstructed beam Receiving space 960 Actuator O 961 Fixed portion 963 Extendable portion 964 Telescopic bladder structure 970 Barrier assembly 970a Barrier assembly 970b Barrier assembly 970c Barrier assembly 970d 〇 Barrier assembly 970h Barrier assembly 972a Sealing window member 972b sealing window member '972c sealing window member 972d sealing window member 973 barrier housing 973a first or inlet section 973b using second or intermediate section 160981.doc -131 - 201236751 973c third or outlet section 974a impedance transformation diameter step change 974b impedance transformation straight Step change 975a first ΤΜαδ waveguide section 975b second ΤΜαδ waveguide section 980 support arm 982a elastic ring 982b elastic ring 984a elastic ring 984b elastic ring 990 movable reflector 990a movable reflector 990b movable reflector 990c movable reflector 990d movable reflector 991 reflector surface 1020 microwave heating system 1022a microwave generator 1022b microwave generator 1022c microwave generator 1022d microwave generator 1030 microwave heater 1040 microwave distribution system 1044a microwave transmitter 160981.doc -132- 201236751 1044b microwave Transmitter 1044c Microwave Transmitter 1044d Microwave Transmitter 1044e Microwave Transmitter 1044f Microwave Transmitter 1044g Microwave Transmitter 1044h Microwave Transmitter 1046a Microwave Transducer 〇 1046b Microwave Switcher 1046c Microwave Switcher 1046d Microwave Switcher 1050a Transmitter Pair 1050b Transmitter Pair 1050c Transmitter Pair 1050d Transmitter Pair 1050e Transmitter Pair 1050f Transmitter Pair 1050g Transmitter Pair 1050h Transmitter Pair '1060 Control System A First Microwave Transmitter Set / Stack B Second Group wave transmitter / C stack D stacked stacking 160981.doc -133- 201236751 1304 interior surface of the composite beam B, C an interior surface, an interior surface D '160981.doc • 134 ·

Claims (1)

201236751 七、申請專利範圍: 1. 一種用於生產經化學改質之木材之系統,該系統包括: 一化學改質反應器,其用於生產一化學潤濕木材束, 其中该化學改質反應器包括一第一反應器門且界定至少 100立方英尺之一内部反應器體積;及 一微波加熱器’其用於自該化學潤濕木材束移除一或 多種熱可移除化學品之至少一部分,其中該微波加熱器 包括一第一加熱器門且界定至少1〇〇立方英尺之一内部 〇 加熱器體積, 其中該内部反應器體積與該内部加熱器體積在位置上 相異。 2. —種用於生產經化學改質之木材之系統,該系統包括: 木材乙醯化反應器,其用於生產一經乙醯化之化學 潤濕木材束,其中該乙醯化反應器包括一第一反應器門 且界定至少100立方英尺之—内部反應器體積;及 ❹ 一加熱器,其用於自該經乙醯化之化學潤濕木材束移 承或夕種熱可移除化學品之至少一部分,其中該加熱 益包括一第一加熱器門且界定至少100立方英尺之一内 部加熱器體積, 其中該内部反應器體積與該内部加熱器體積在位置上 相異。 3· 一種用於生產經化學改質之木材之系統,該系統包括: 一化學改質反應器’其包括用於在化學改質之後自該 化學改質反應器排出該木材束之一第一反應器門; 160981.doc 201236751 加熱盗,其包括用於在自該化學改質反應器排出之 後接納該木材束之一第一加熱器門;及 谷納至,其界定該木材束在自該第一反應器門輪送 至該第一加熱器門期間穿過之一傳送區, 其中5亥谷納室耦合至該化學改質反應器及該加熱器且 可操作以在將該木材束自該化學改質反應器輸送至該加 熱器期間實質上隔離一外部環境與該傳送區。 4. 如叫求項2或3之系統,其中該加熱器係一微波加熱器。 5. 如請求項⑴中任一項之系統,其中該反應器及該加熱 器各自界定至少500立方英尺之一内部體積。 6. 如請求項!至3中任—項之系統,其進__步包括可 按至少50 kW之一速率將微波能供應至該加熱器之一或 多個微波產生器及可操作以將該加熱器中之壓力減小至 小於350托之一壓力之一真空系統。 7. 如明求項1或3之系統,其中該化學改質反應器係一乙醯 化反應器。 8. 如請求項3之系統,其中該化學改質反應器界定一内部 反應器體積且該加熱器界定一内部加熱器體積,其中該 内部反應器體積與該内部加熱器體積在位置上相異。 9. 如請求項1、2或8中任一項之系統,其中該内部反應器 體積與該内部加熱器體積彼此隔開至少2英尺且不大於 50英尺。 10·如請求項丨、2或8中任一項之系統,其進一步包括可操 作以按至少150 kW之一速率將微波能供應至該加熱器之 160981.doc 201236751 一或多個微波產生器及可操作以將該加熱器中之該壓力 減小至小於25〇托之一壓力之一真空系統,其中該内部 反應器體積及該内部加熱器體積各自係至少L000立方英 尺,且該内部反應器體積與該内部加熱器體積彼此隔開 至少4英尺且不大於30英尺。 11. 如請求項1、2、3或8中任一項之系統,其中該第一反應 器門係一反應器出口門且該第一加熱器門係一加熱器入 口門,其中該反應器進一步包括一反應器入口門且該加 熱器進一步包括一加熱器出口門,其中該反應器入口門 及该反應器出口門位於該反應器之大體相對側上且該加 熱器入口門及該加熱器出口門位於該加熱器之大體相對 側上’其中該反應器界定延伸穿過該反應器入口門及該 反應器出口門之一中心伸長軸,其中該加熱器界定延伸 穿過該加熱器入口門及該加熱器出口門之一中心伸長 軸’其中該反應器及該加熱器之該等伸長軸實質上平 行。 12. 如請求項1、2、3或8中任一項之系統,其中該第一反應 器門係用於自該反應器裝載及卸載該木材束之唯一門, 且該第一加熱器門係用於自該加熱器裝載及卸載該木材 束之唯一門。 13. 如请求項丨2之系統,其中該反應器及該加熱器定位成一 並排組態。 14. 如請求項i之系統,其進一步包括一容納室,該容納室 界定該化學潤濕木材束在自該第一反應器門輸送至該第 160981.doc 201236751 一加熱器門期間穿過之一傳送區’其中該容納室密封地 耦合至該反應器及該加熱器且可操作以在將該木材束自 該反應器輸送至該加熱器期間實質上隔離該外部環境與 該傳送區。 15.如請求項2之系統,其進一步包括一容納室該容納室 界定該化學潤濕木材束在自該第一反應器門輪送至該第 一加熱器Η期間穿過之-傳送區,其中該容納室密封地 耦合至該反應器及該加熱器且可操作以在將該木材束自 該反應H輸送至該加熱器期时f上隔離該外部環境與 該傳送區。 、 16. 如請求項3、14或15中任一項之系統,其中該容納室包 括用於准許流體自該外部環境流動至該容納室中之一或 夕個通氣孔’其等通氣孔係用於准許流體自該外部 環境流動至該容納室中但抑制流體自該容納室中流出至 該外部環境中之單向通氣孔。 17. :請求:員3、14或15中任—項之系統,其進一步包括轉 〇至該各納室用於自該容納室中抽取氣體及蒸汽之—通 氣系統。 1 8.如吻求項!7之系統,其中該第—加熱器門係、—加熱器入 口門,其中該加熱器包括與該加熱器入口門分離且位於 該:熱器之與該加熱器入口門大體相對之一側上之—加 ’、、…出口門’該系統進一步包括位於接近該加熱器出口 1处之I品瘵汽移除結構纟中該通氣系統包括具有 一總通氣容量之-或多個真空產生器,其中該通氣系統 160981.doc 201236751 於調整該總通氣容量在該容納室與該產 除結構之間的利用之—引流器。 …邝移 19.如請求項17之系統,1 除或改變經由#通氣以^系統進—步包括有效移 塞一由該通耽系統自該容納室移除之該等氣體及 • ”、' /Ίι之或多種組分之一處理裝置。 20. -種用於生產經化學改質之木材之方法,該方法包括. ⑷在-化學改質反應器中化學改質具有至少5〇〇續之一 〇 =重量之-木材束之至少—部分以藉此提供一化 予潤濕木材束’其中該化學潤濕木材束包括由該化 學改質產生之至少一種熱可移除化學組分; (b)將,化學潤濕木材束之至少—部分自該化學改質反 應器中輸送出且輸送至一微波加熱器中;及 (0在該微波加熱器中加熱該化學潤濕木材束之至少一 部分以藉此在該微波加熱器中汽化該至少一種熱可 移除化學組分之至少-部分以乾燥該化學潤濕;^材 ◎ 束,藉此提供一經乾燥的經化學改質之木材束。 21. —種用於生產經化學改質之木材之方法,該方法包括: • (a)在一化學改質反應器中化學改質一木材束之至少一 部分以藉此提供一化學潤濕木材束,其中該化學潤 . 濕木材束包括由該化學改質產生之至少一種熱可移 除化學組分; (b)將該化學潤濕木材束之至少一部分自該化學改質反 應器輸送經過一容納室且輪送至一加熱器中,其中 在該輸送期間該容納室抑制存在於該化學改質反應 160981.doc 201236751 器中之蒸汽、自該化學潤濕木材束發射之蒸汽及/或 存在於該加熱器中之蒸汽排放至在該化學改質反應 器及該加熱器外部之一環境中;及 (C)在該加熱器中加熱該化學潤濕木材束之至少一部分 以汽化該至少一種熱可移除化學組分之至少一部 分’藉此提供一經乾燥的經化學改質之木材束。 22. 如請求項21之方法,其中該加熱器係一微波加熱器且步 驟(c)之該加熱包括微波能之施加。 23. 如請求項20至22中任一項之方法,其中該化學改質反應 器係一乙醯化反應器且該化學改質包括乙醯化。 24·如請求項20至22中任一項之方法,其中步驟(c)之該加熱 係在小於350托之一壓力下實施且包含以至少5〇 kw之一 速率將微波能引入至該加熱器中。 25. 如請求項20至22中任一項之方法,其中使該反應器與該 加熱器彼此隔開至少2英尺且不大於5〇英尺,其中該反 應器及該加熱器中之每一者具有至少5 〇〇立方英尺之一 内部體積。 26. 如請求項20至22中任一項之方法,其中步驟⑷之該化學 改質包括一熱起始之反應,其中不藉由微波加熱來起始 該熱起始之化學反應,其中藉由將熱蒸汽注入至該化學 改質反應器中以藉此加熱該木材束之至少一部分來起始 該熱起始之化學反應,其中注入至該化學改質反應器中 之該等熱蒸汽之至少一部分凝結於該木材束之至少_部 分上。 160981.doc 201236751 27·如請求項20至22中任一項之方法’其中該木材束具有至 少1,000磅之一初始重量且該反應器及該加熱器中之每一 者具有至少1,000立方英尺之一内部體積,其中該化學潤 濕木材束在步驟(b)之前包括該至少一種熱可移除化學組 分之至少8 wt%,其中該經乾燥的經化學改質之木材束 包括該至少一種熱可移除組分之不大於3 wt%,其中該 方法乾燥該化學潤濕木材束以在不大於12小時之一時間 週期中生產該乾燥木材束。 〇 28. 如請求項20之方法,其中在步驟(b)之該輸送期間藉由密 封地搞合至該反應器及該加熱器之一容納室抑制存在於 該化學改質反應器中之蒸汽、自該化學潤濕木材束發射 之蒸汽及/或存在於該微波加熱器中之蒸汽逸出至在該反 應器及該加熱器外部之一環境中。 29. 如請求項21或28之方法,其進一步包括在步驟(b)之該輸 送期間使用一通氣系統自該容納室中抽取氣體及蒸汽, ◎ 其中以每小時至少2次交換之一速率實施該自該容納室 中抽取氣體及蒸汽。 • 3如凊求項29之方法’其進一步包括將該經乾燥的經化學 改質之木材束自該加熱器中輸送出且輸送至一產品蒸汽 移除結構中及/或下方以及使用該通氣系統抽取湧入該產 00蒸Ά移除結構之氣體及蒸汽;該方法進一步包括使用 該通氣系統以在該自該化學改質反應器輸送至該加熱器 期間自該容納室中抽取氣體及蒸汽以及使用一引流器來 調整如何在該容納室與該產品蒸汽移除結構之間分配該 160981.doc 201236751 通氣系統之總通氣容量。 31. 如請求項21或28之方法,其中在步驟(b)之該輸送期間使 該容納室之該壓力維持低於大氣壓。 32. 如請求項21或28之方法,其進一步包括在步驟(a)之該化 學改質之後且在步驟(c)之該加熱之前自該化學改質反應 器中抽取該等蒸汽及氣體且抽取至該容納室中以及與該 自該化學改質反應器中抽取該等蒸汽及氣體同時地將空 氣自外部環境抽取至該化學改質反應器中。 33. 如請求項21或28之方法,其進一步包括在步驟(a)之該化 學改質之後且在步驟(c)之該加熱之前自該加熱器中抽取 該等蒸汽及氣體且抽取至該容納室中以及與該自該加熱 器中抽取該等蒸汽及氣體同時地將空氣自該外部環境抽 取至該加熱器中。 160981.doc201236751 VII. Patent application scope: 1. A system for producing chemically modified wood, the system comprising: a chemical upgrading reactor for producing a chemically wet wood bundle, wherein the chemical upgrading reaction The apparatus includes a first reactor door and defining an internal reactor volume of at least 100 cubic feet; and a microwave heater for removing at least one or more thermally removable chemicals from the chemically wetted wood bundle A portion wherein the microwave heater includes a first heater door and defines an internal helium heater volume of at least 1 cubic foot, wherein the internal reactor volume is positionally distinct from the internal heater volume. 2. A system for producing chemically modified wood, the system comprising: a wood acetylation reactor for producing an acetylated chemically wet wood bundle, wherein the acetylation reactor comprises a first reactor door defining at least 100 cubic feet of internal reactor volume; and a heater for recovering from the acetylated chemically wetted wood beam or cherish heat removable chemistry At least a portion of the article, wherein the heating benefit includes a first heater door and defining an internal heater volume of at least 100 cubic feet, wherein the internal reactor volume is positionally distinct from the internal heater volume. 3. A system for producing chemically modified wood, the system comprising: a chemical upgrading reactor comprising: one for discharging the wood bundle from the chemical upgrading reactor after chemical upgrading Reactor door; 160981.doc 201236751 Heat thief comprising a first heater door for receiving one of the wood bundles after being discharged from the chemical upgrading reactor; and a gluten to define the wood bundle from a first reactor door is passed through the one transfer zone during the first heater door, wherein the 5 Habyna chamber is coupled to the chemical upgrading reactor and the heater and is operable to self-steel the bundle The chemical upgrading reactor substantially isolates an external environment from the transfer zone during delivery to the heater. 4. The system of claim 2 or 3 wherein the heater is a microwave heater. The system of any one of the preceding claims, wherein the reactor and the heater each define an internal volume of at least 500 cubic feet. 6. As requested! The system of any of the preceding claims, wherein the step of providing includes supplying microwave energy to one or more of the microwave generators at a rate of at least 50 kW and operable to apply pressure to the heater Reduce the vacuum system to one of less than 350 Torr. 7. The system of claim 1 or 3, wherein the chemical upgrading reactor is an acetonitrile reactor. 8. The system of claim 3, wherein the chemical upgrading reactor defines an internal reactor volume and the heater defines an internal heater volume, wherein the internal reactor volume is different in position from the internal heater volume . The system of any of claims 1 to 2, wherein the internal reactor volume and the internal heater volume are separated from each other by at least 2 feet and no more than 50 feet. The system of any of claims 2, 8 or 8, further comprising 160981.doc 201236751 one or more microwave generators operable to supply microwave energy to the heater at a rate of at least 150 kW And a vacuum system operable to reduce the pressure in the heater to a pressure less than 25 Torr, wherein the internal reactor volume and the internal heater volume are each at least L000 cubic feet, and the internal reaction The volume of the internal heater is spaced apart from each other by at least 4 feet and no more than 30 feet. 11. The system of any of claims 1, 2, 3 or 8, wherein the first reactor door is a reactor outlet door and the first heater door is a heater inlet door, wherein the reactor Further comprising a reactor inlet door and the heater further comprising a heater outlet door, wherein the reactor inlet door and the reactor outlet door are located on substantially opposite sides of the reactor and the heater inlet door and the heater An outlet door is located on a generally opposite side of the heater 'where the reactor defines a central elongated shaft extending through the reactor inlet door and the reactor outlet door, wherein the heater defines an extension through the heater inlet gate And a central axis of elongation of the heater outlet door 'where the elongated axis of the reactor and the heater are substantially parallel. 12. The system of any one of claims 1, 2, 3 or 8, wherein the first reactor door is for loading and unloading a single door of the wood bundle from the reactor, and the first heater door It is the only door used to load and unload the bundle of wood from the heater. 13. The system of claim 2, wherein the reactor and the heater are positioned in a side-by-side configuration. 14. The system of claim i, further comprising a containment chamber defining the chemically wet wood bundle passing through the first reactor door to the 160981.doc 201236751 a heater door A transfer zone 'where the containment chamber is sealingly coupled to the reactor and the heater and operable to substantially isolate the external environment from the transfer zone during transport of the bundle of wood from the reactor to the heater. 15. The system of claim 2, further comprising a containment chamber defining a transfer zone through which the chemically wetted wood bundle passes during the time from the first reactor door to the first heater. Wherein the containment chamber is sealingly coupled to the reactor and the heater and is operable to isolate the external environment from the transfer zone when the bundle of wood is transported from the reaction H to the heater period. The system of any one of claims 3, 14 or 15, wherein the accommodating chamber includes a venting system for permitting fluid to flow from the external environment to one of the accommodating chambers or a venting hole A one-way vent for permitting fluid to flow from the external environment into the containment chamber but inhibiting fluid from flowing out of the containment chamber into the external environment. 17. The system of claim 3, wherein the transfer to the chambers is for the extraction of gases and vapors from the containment chamber. 1 8. If you want to kiss! The system of claim 7, wherein the first heater door, the heater inlet door, wherein the heater comprises a heater separate from the heater inlet door and located on a side of the heater opposite the heater inlet door - the ',, ... exit door' the system further includes a product in the sputum removal structure 接近 located near the heater outlet 1 , the venting system comprising - a plurality of vacuum generators having a total venting capacity, Wherein the venting system 160981.doc 201236751 adjusts the utilization of the total venting capacity between the accommodating chamber and the sterilizing structure.邝移 19. The system of claim 17, wherein the change or change via the # ventilation system includes an effective transfer of the gas removed from the containment chamber by the overnight system and • "," /Ίι or one of the components of the treatment device. 20. - A method for producing chemically modified wood, the method comprising: (4) chemical modification in the -chemical upgrading reactor has at least 5 continuation One of 〇=weight-at least a portion of the bundle of wood to thereby provide a layer of pre-wetting wood, wherein the chemically wet wood bundle comprises at least one thermally removable chemical component resulting from the chemical modification; (b) transferring at least a portion of the chemically wetted wood bundle from the chemical upgrading reactor to a microwave heater; and (0 heating the chemically wet wood bundle in the microwave heater) At least a portion to thereby vaporize at least a portion of the at least one thermally removable chemical component in the microwave heater to dry the chemical wetting; thereby providing a dried chemically modified wood 21. A kind of used for the production of chemically modified A method of wood, the method comprising: • (a) chemically modifying at least a portion of a bundle of wood in a chemical upgrading reactor to thereby provide a chemically wetted wood bundle, wherein the chemically wetted wet wood bundle comprises The chemically modified at least one thermally removable chemical component; (b) transporting at least a portion of the chemically wetted wood bundle from the chemical upgrading reactor through a containment chamber and rotating to a heater, Wherein the storage chamber suppresses steam present in the chemical modification reaction 160981.doc 201236751, steam emitted from the chemically wet wood bundle, and/or steam present in the heater to be discharged during the conveyance And (C) heating at least a portion of the chemically wet wood bundle to vaporize at least a portion of the at least one thermally removable chemical component in the environment of the chemical upgrading reactor and the exterior of the heater; Thereby providing a dried chemically modified wood bundle. 22. The method of claim 21, wherein the heater is a microwave heater and the heating of step (c) comprises applying microwave energy 23. The method of any one of claims 20 to 22, wherein the chemical upgrading reactor is an acetonitrile reactor and the chemical upgrading comprises acetylation. The method of item, wherein the heating of step (c) is carried out at a pressure of less than 350 Torr and comprises introducing microwave energy into the heater at a rate of at least 5 〇 kw. 25. Claims 20 to 22 The method of any of the preceding, wherein the reactor and the heater are separated from each other by at least 2 feet and no more than 5 feet, wherein each of the reactor and the heater has at least 5 cubic feet The method of any one of claims 20 to 22, wherein the chemical modification of step (4) comprises a thermal initiation reaction, wherein the initiation of the thermal initiation is not initiated by microwave heating a reaction in which the thermal initiation chemical reaction is initiated by injecting hot steam into the chemical upgrading reactor to thereby heat at least a portion of the wood bundle, wherein the chemical reaction is injected into the chemical upgrading reactor At least a portion of the isothermal steam condenses on the wood _ At least a portion of the points. The method of any one of claims 20 to 22 wherein the wood bundle has an initial weight of at least 1,000 pounds and each of the reactor and the heater has at least 1, An internal volume of one thousand cubic feet, wherein the chemically wet wood bundle comprises at least 8 wt% of the at least one thermally removable chemical component prior to step (b), wherein the dried chemically modified wood bundle Included is no more than 3 wt% of the at least one thermally removable component, wherein the method dries the chemically wet wood bundle to produce the dried wood bundle in a time period of no more than 12 hours. The method of claim 20, wherein the vapor present in the chemical upgrading reactor is inhibited by sealingly fitting to the reactor and one of the heater holding chambers during the conveying of the step (b) The vapor emitted from the chemically wet wood beam and/or the steam present in the microwave heater escapes into an environment outside the reactor and the heater. 29. The method of claim 21 or 28, further comprising extracting gas and steam from the holding chamber using the venting system during the transporting of step (b), wherein the rate is performed at a rate of at least 2 exchanges per hour The gas and steam are extracted from the holding chamber. 3. The method of claim 29, further comprising transporting the dried chemically modified wood bundle from the heater and delivering it to and/or under a product vapor removal structure and using the ventilation The system extracts gas and steam that is poured into the 00 retort removal structure; the method further includes using the venting system to extract gas and steam from the accommodating chamber during the transfer from the chemical upgrading reactor to the heater And using a flow diverter to adjust how the total venting capacity of the 160981.doc 201236751 venting system is distributed between the containment chamber and the product vapor removal structure. 31. The method of claim 21 or 28, wherein the pressure of the containment chamber is maintained below atmospheric pressure during the delivering of step (b). 32. The method of claim 21 or 28, further comprising extracting the vapors and gases from the chemical upgrading reactor after the chemical upgrading of step (a) and prior to the heating of step (c) The extraction into the holding chamber and the extraction of the steam and gas from the chemical upgrading reactor simultaneously draws air from the external environment into the chemical upgrading reactor. 33. The method of claim 21 or 28, further comprising extracting the steam and gas from the heater after the chemical modification of step (a) and before the heating of step (c) Air is drawn from the external environment into the heater simultaneously with the extraction of the steam and gas from the heater. 160981.doc
TW100147209A 2010-12-23 2011-12-19 Dual vessel chemical modification and heating of wood with optional vapor containment TW201236751A (en)

Applications Claiming Priority (20)

Application Number Priority Date Filing Date Title
US42707010P 2010-12-23 2010-12-23
US42706410P 2010-12-23 2010-12-23
US42708010P 2010-12-23 2010-12-23
US42707610P 2010-12-23 2010-12-23
US42705610P 2010-12-23 2010-12-23
US42707510P 2010-12-23 2010-12-23
US42706710P 2010-12-23 2010-12-23
US42705310P 2010-12-23 2010-12-23
US42707910P 2010-12-23 2010-12-23
US42704210P 2010-12-23 2010-12-23
US42703010P 2010-12-23 2010-12-23
US42707210P 2010-12-23 2010-12-23
US13/323,133 US20120160835A1 (en) 2010-12-23 2011-12-12 Wood heater with enhanced microwave barrier system
US13/323,239 US20120160838A1 (en) 2010-12-23 2011-12-12 Wood heater with enhanced microwave dispersing and tm-mode microwave launchers
US13/323,164 US20120160839A1 (en) 2010-12-23 2011-12-12 Microwave wood heater with enhanced spatial usage efficiency and uniformity of heat distribution
US13/323,194 US20120160840A1 (en) 2010-12-23 2011-12-12 Wood heater with alternating microwave launch locations and enhanced heating cycles
US13/323,219 US20120160837A1 (en) 2010-12-23 2011-12-12 Wood heater with enhanced microwave launch efficiency
US13/323,184 US9456473B2 (en) 2010-12-23 2011-12-12 Dual vessel chemical modification and heating of wood with optional vapor
US13/323,140 US9282594B2 (en) 2010-12-23 2011-12-12 Wood heater with enhanced microwave launching system
US13/323,104 US20120160841A1 (en) 2010-12-23 2011-12-12 Wood heater with enhanced microwave choke system

Publications (1)

Publication Number Publication Date
TW201236751A true TW201236751A (en) 2012-09-16

Family

ID=47069416

Family Applications (4)

Application Number Title Priority Date Filing Date
TW100147209A TW201236751A (en) 2010-12-23 2011-12-19 Dual vessel chemical modification and heating of wood with optional vapor containment
TW100147206A TW201231885A (en) 2010-12-23 2011-12-19 Wood heater with enhanced microwave choke system
TW100147113A TW201240528A (en) 2010-12-23 2011-12-19 Wood heater with enhanced microwave launching system
TW100147207A TW201240526A (en) 2010-12-23 2011-12-19 Wood heater with enhanced microwave dispersing and TM-mode microwave launchers

Family Applications After (3)

Application Number Title Priority Date Filing Date
TW100147206A TW201231885A (en) 2010-12-23 2011-12-19 Wood heater with enhanced microwave choke system
TW100147113A TW201240528A (en) 2010-12-23 2011-12-19 Wood heater with enhanced microwave launching system
TW100147207A TW201240526A (en) 2010-12-23 2011-12-19 Wood heater with enhanced microwave dispersing and TM-mode microwave launchers

Country Status (1)

Country Link
TW (4) TW201236751A (en)

Also Published As

Publication number Publication date
TW201240526A (en) 2012-10-01
TW201240528A (en) 2012-10-01
TW201231885A (en) 2012-08-01

Similar Documents

Publication Publication Date Title
US9456473B2 (en) Dual vessel chemical modification and heating of wood with optional vapor
AU2017228570B2 (en) Reactor system and process for wood modification
US20130172526A1 (en) Wood treatment method and apparatus employing laterally shiftable transportation segments
US8299408B2 (en) Microwave reactor having a slotted array waveguide coupled to a waveguide bend
US20220281131A1 (en) Systems and methods for drying wood products
TW201236751A (en) Dual vessel chemical modification and heating of wood with optional vapor containment
TW201240527A (en) Wood heater with enhanced microwave barrier system
KR101865909B1 (en) Wood drying divice using very high frequency
JP5283082B2 (en) Wood drying equipment
WO2019216492A1 (en) Device and method for removing lignin and moisture in wood flour for wpc
RU2424479C2 (en) Procedure for shf-drying long-length timber, preferably, logs and cants and device for its implementation
RU2084084C1 (en) Plant for microwave treatment of insulating materials
JPS6338879A (en) Drier