201240527 六、發明說明: 【發明所屬之技術領域】 本發明一般而言係關於適於加熱木材之微波加熱系統。 【先前技術】 諸如微波輻射之電磁輻射係用於將能量遞送至一物件之 一習知機制。已證明用以既迅速又有效地穿透及加熱一物 件之電磁輻射能力在諸多化學及工業過程中係有利的。此 外,由於使用微波能作為一熱源通常係非侵害性的,因此 微波加熱特別有利於處理「敏感」電介質材料(諸如,食 物及藥物)且甚至有利於加熱具有一相對不良的導熱性之 材料(諸如,木材)。然而,安全且有效地應用微波能之複 雜性及細微差別(尤其在一商業規模上)已嚴格限制其在數 種類型之工業過程中之應用。 由於其對各種應用之廣泛適用性、其可再生性質及其相 對低成本,因此木材係現有的最廣泛使用之建築材料中之 一者。然而,由於木材係一自然產物,因此其物理及結構 I·生質可實質上不僅在不同物種當中而且在不同樹或甚至同 一木材塊内之不同位置當中有所不同。此外,木材通常係 吸濕的,此影響其尺寸穩定性,且其生化組成使得其易受 昆蟲及真菌侵蝕。因此,已開發數種類型之木材處理過程 以透過其化學、物理及/或結構性質之改質來增加木材穩 定性。處理過程之實例包含浸潰處理、塗佈處理、熱改質 及化學改質。與其他情況相比,後兩種處理過程通常將木 材性質變更至一更劇烈程度,且因此此等類型之過程通常 I60979.doc 201240527 涉及更複雜之方案及系統。舉例而言,諸多化學及熱處理 過程可在真空下及/或在存在一或多種處理化學品之情況 下實施。因此,此等類型之技術之商業化已受限制,且為 使此等過程大規模地工業化仍需克服多個挑戰。 因此’需要適於化學或熱處理木材之一更高效且更成本 有效之商業規模系統。亦需要適於在各種各樣之過程及應 用(包含木材處理)中使用之一高效且成本有效之工業規模 微波加熱系統》 【發明内容】 本發明之一項實施例係關於一種用於生產經化學改質、 乾燥及/或熱改質之木材之系統,該系統包括:至少一個 微波產生器’其用於產生微波能;一微波加熱器,其用於 接納一木材束;及一微波分佈系統,其用於將來自該至少 一個微波產生器之微波能引導至該微波加熱器之内部。該 微波分佈系統包括一第一TMfl6波導、一第二丁]^。6波導以及 耦合至該第一 波導及該第二TMfl6波導且安置於此兩者 之間的一 阻障總成,其中α係0且6係1與5之間的一整 數。該阻障總成包括用於將該第一 TMw波導與該第二 波導彼此流體地隔離同時准許該微波能之至少一部分 自第一 TM&波導通行至第二TMfli波導之至少一個密封窗構 件。 本發明之另一實施例係關於一種用於生產經化學改質、 乾燥及/或熱改質之木材之系統,該系統包括:至少一個 微波產生器’其用於產生微波能;一微波加熱器,其用於 160979.doc 201240527 接納一木材束;及一微波分佈系統,其用於將來自該至少 一個微波產生器之微波能之至少一部分引導至該微波加熱 器之内部。該微波分佈系統包括一第一模式轉換器、一第 二模式轉換器及安置於其間的一 ΤΜα6阻障總成,其中“係〇 且6係1與5之間的一整數。該第一模式轉換器與該第二模 式轉換器之間的總電長度(延伸穿過且包含該TMw阻障總 成之電長度)等於穿過該ΤΜαδ阻障總成之微波能之競爭模 式之非整數個半波長。 本發明之又一實施例係關於一種用於生產經化學改質、 乾燥及/或熱改質之木材之方法,該方法包括:⑷產生微 波能;(b)將該微波能之至少一部分引導至一微波加熱器, 其中該引導包含使呈TMai模式之微波能之至少一部分穿過 一阻障總成同時跨越該阻障總成維持一壓力差,其中“係〇 且6係1與5之間的一整數;及(c)藉助穿過該阻障總成之該 微波能之至少一部分加熱該微波加熱器中之一木材束。 【實施方式】 根據本發明之一項實施例,提供一種加熱系統。根據本 發明之各種實施例組態之加熱系統可包括一熱源、一加熱 容器(例如,一加熱器)及一選用真空系統。通常,根據本 發月之項實知例組態之加熱系統可適於用作獨立加熱單 疋或可作為或連同化學反應器用於各種各樣之過程中。現 將參考各圖在下文中詳細闡述根據本發明之數個實施例組 態之加熱系統。 在一項實施例中,本發明之一加熱系統可用以加熱木質 160979.doc 201240527 纖維素材料。木質纖維素材料可包含包括以下各項之任何 材料.纖維素及木質素以及(視需要)諸如半纖維素等其他 材料:木質纖維素材料之實例可包含(但不限於)木材、、樹 皮、洋麻、大麻、西沙爾麻、黃麻、作物秸稈、堅果殼、 椰子殼、稻草與榖物殼及莖、玉米稍样、薦渣、針葉樹及 =葉樹材樹皮、玉米穗轴及其他作物殘餘物以及其任一組 j一項實施例中’木質纖維素材料可係木材。該木材可 針葉樹材或一闊葉樹材。適合的木材物種之實例可包 =不限於)松樹、冷杉、雲杉、楊樹、橡樹、楓樹及山 H項實施例中,木材可包括紅橡、 毛捧或太平洋白楓。在另—實施例中,山 物種,其包含(舉例而言)輕射松、歐洲赤松、火炬於、 長葉松、短葉松或濕地松,其中後四種可統稱為「南方尤 :二藉由根一據本發明之一項實施例之加熱系統處理之: 可勺冑合形式。木材之適合形式之非限制性實例 了包3(但不限於)碎木、木纖維、木粉、木片 ^花、木條及木絲。在-項實施例中,在本發明之^ 樹技'板,厚板、*板、樑、斷::材;=樹幹或 之木料。 方材或任何其他型材 :二兩個或,上尺寸來界定。 文中所使用’術語「標稱尺寸」係指使用木材之大小名稱 I60979.doc 201240527 所寸。標稱大小可大於所量測尺寸 一乾燥「2x4」可具有丨.5英吋χ3 5 使用「2x4」之標稱尺寸。'二:實際尺寸’但仍 ,^ 解’除非另有說明,否則 本文中所提及之尺寸通常係標稱尺寸。 在一項實施例中,木材可具有= σ二 & 個尺寸:一長度或最長 尺寸;一寬度或第二長尺寸;及— 厗度或最紐尺寸。該等 尺寸中之每一者可實質上相同’或 4等尺寸中之一或多者 可不同於其他尺寸中之一或多者。 有根據一項實施例,木材 之長度可係至少6英吋、至少E , 乂 1夬尺、至少3英尺、至少4英 尺、至少6英尺或至少1〇英尺。纟另—實施例中,木材之 寬度可係至少0.5英叶、至少i英时、至少2英时、至少作201240527 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates generally to microwave heating systems suitable for heating wood. [Prior Art] Electromagnetic radiation, such as microwave radiation, is a conventional mechanism for delivering energy to an object. The ability to electromagnetically penetrate and heat an object both quickly and efficiently has proven to be advantageous in a variety of chemical and industrial processes. In addition, since the use of microwave energy as a heat source is generally non-invasive, microwave heating is particularly advantageous for processing "sensitive" dielectric materials (such as foods and drugs) and even for heating materials having a relatively poor thermal conductivity ( Such as wood). However, the safe and efficient application of microwave energy complexity and nuances (especially on a commercial scale) has severely limited its use in several types of industrial processes. Wood is one of the most widely used building materials available due to its wide applicability to a variety of applications, its recyclability and its relatively low cost. However, since wood is a natural product, its physics and structure I. Biomass can differ substantially not only in different species but also in different locations within different trees or even in the same wood block. In addition, wood is generally hygroscopic, which affects its dimensional stability and its biochemical composition makes it susceptible to attack by insects and fungi. Accordingly, several types of wood treatment processes have been developed to enhance wood stability through modification of its chemical, physical and/or structural properties. Examples of the processing include impregnation treatment, coating treatment, thermal modification, and chemical modification. The latter two processes typically change the properties of the wood to a more severe level than in other cases, and therefore these types of processes typically involve more complex solutions and systems in I60979.doc 201240527. For example, many chemical and thermal processing processes can be carried out under vacuum and/or in the presence of one or more processing chemicals. As a result, the commercialization of these types of technologies has been limited and many challenges have to be overcome in order to modernize such processes. Therefore, there is a need for a commercial scale system that is more efficient and more cost effective for one of chemical or heat treated wood. There is also a need for an industrial scale microwave heating system that is suitable for use in a wide variety of processes and applications, including wood processing, and is cost effective. [SUMMARY OF THE INVENTION One embodiment of the present invention relates to a process for producing a system for chemically modifying, drying, and/or thermally modifying wood, the system comprising: at least one microwave generator for generating microwave energy; a microwave heater for receiving a bundle of wood; and a microwave distribution A system for directing microwave energy from the at least one microwave generator to the interior of the microwave heater. The microwave distribution system includes a first TMfl6 waveguide and a second. a waveguide and a barrier assembly coupled between the first waveguide and the second TMfl6 waveguide and disposed between the two, wherein the alpha system 0 and the 6 series are an integer between 1 and 5. The barrier assembly includes at least one sealing window member for isolating the first TMw waveguide from the second waveguide from one another while permitting at least a portion of the microwave energy to pass from the first TM & waveguide to the second TMfli waveguide. Another embodiment of the invention relates to a system for producing chemically modified, dried and/or thermally modified wood, the system comprising: at least one microwave generator 'for generating microwave energy; a microwave heating And for receiving a wood bundle; and a microwave distribution system for directing at least a portion of the microwave energy from the at least one microwave generator to the interior of the microwave heater. The microwave distribution system includes a first mode converter, a second mode converter, and a ΤΜα6 barrier assembly disposed therebetween, wherein "the system is an integer between the hexadecimal and 6 series 1 and 5. The first mode The total electrical length between the converter and the second mode converter (extending through and including the electrical length of the TMw barrier assembly) is equal to a non-integer number of competing modes of microwave energy passing through the ΤΜαδ barrier assembly A half wavelength. A further embodiment of the invention relates to a method for producing a chemically modified, dried and/or thermally modified wood, the method comprising: (4) generating microwave energy; (b) applying the microwave energy At least a portion is directed to a microwave heater, wherein the directing comprises passing at least a portion of the microwave energy in the TMai mode through a barrier assembly while maintaining a pressure differential across the barrier assembly, wherein the system is "6" And an integer that is between 5 and (c) heating one of the microwave heaters by at least a portion of the microwave energy passing through the barrier assembly. Embodiments According to an embodiment of the present invention, a heating system is provided. A heating system configured in accordance with various embodiments of the present invention can include a heat source, a heating vessel (e.g., a heater), and an optional vacuum system. In general, a heating system configured according to the examples of this month may be suitable for use as an independent heating unit or may be used in conjunction with or in conjunction with a chemical reactor for a wide variety of processes. A heating system configured in accordance with several embodiments of the present invention will now be described in detail below with reference to the drawings. In one embodiment, a heating system of the present invention can be used to heat wood 160979.doc 201240527 cellulosic material. The lignocellulosic material may comprise any of the materials including cellulose and lignin and, if desired, other materials such as hemicellulose: examples of lignocellulosic materials may include, but are not limited to, wood, bark, Hemp, marijuana, sisal, jute, crop stalks, nut shells, coconut shells, straw and stalk shells and stems, corn slightly, slag, conifers and = leaf bark, corn cobs and other crop residues And in any of the sets of embodiments, the 'lignocellulosic material can be wood. The wood can be conifer or a broadleaf tree. Examples of suitable wood species may include, without limitation, pine, fir, spruce, poplar, oak, maple, and mountain. In embodiments, the wood may include red oak, wool, or Pacific white maple. In another embodiment, a mountain species comprising, for example, light pine, European red pine, Torch, Long pine, Short pine or Pinus elliottii, wherein the latter four may be collectively referred to as "Southern: 2. Processed by a heating system according to an embodiment of the invention: a spoonable combination. Non-limiting examples of suitable forms of wood include, but are not limited to, shredded wood, wood fiber, wood flour , wood chips, flowers, wood and wood. In the embodiment, in the invention, the technology of the board, thick plate, * plate, beam, broken: material; = trunk or wood. Any other profile: two or two, defined by the upper dimensions. The term 'nominal size' as used herein refers to the size of the wood using the name I60979.doc 201240527. The nominal size can be larger than the measured size. A dry "2x4" can have a 丨.5 inch 吋χ 3 5 using a nominal size of "2x4". 'II: Actual size' but still, ^解' Unless otherwise stated, the dimensions mentioned herein are usually nominal. In one embodiment, the wood may have = σ 2 & dimensions: a length or longest dimension; a width or a second long dimension; and - a twist or a maximum size. Each of the dimensions may be substantially the same or one or more of the 4 dimensions may differ from one or more of the other dimensions. According to one embodiment, the length of the wood can be at least 6 inches, at least E, 乂 1 foot, at least 3 feet, at least 4 feet, at least 6 feet, or at least 1 foot. In other embodiments, the width of the wood may be at least 0.5 inches, at least i inches, at least 2 inches, at least
:、至少8英口才、至少12英〇才或至少24英时及/或不大於W 英尺、不大於8英尺、不大於6英尺、不大於4英尺不大 於3英尺、不大於2英尺、不大於丨英尺或不大於6英吋。在 又一實施例中,木材之厚度可係至少〇25英吋、至少〇5英 吋、至少0.75英吋、至少i英尺、至少h5英尺或至少2英尺 及/或不大於4英尺、不大於3英尺、不大於2英尺、不大於 1夬尺及/或不大於6英对。 根據一項實施例’木材可包括一或多個實木塊、工程實 木塊或其一組合。如本文中所使用,術語「實木」係指在 至少一個尺寸上量測至少10釐米但在其他方面具有任一尺 寸之木材(例如,具有如先前所闡述之尺寸之木料)。如本 文中所使用,術語「工程實木」係指具有實木之最小尺寸 (例如’至少一個尺寸為至少10 cm)但由若干個較小木材本 160979.doc 201240527 體形成且至少為一個之一木製本體。工程實木中之該等較 小木材本體可具有或不具有先前相對於實木所闡述之尺寸 中之一或多者。工程實木之非限制性實例可包含木材層壓 板、纖維板、定向刨花板、膠合板、華夫板(wafer board)、粒片板及經層壓單板木料。 在項實施例中’木材可按束編組。如本文中所使用, 術s吾「束」係指以任一適合方式堆疊、放置及/或緊固在 一起之兩個或兩個以上木材塊。根據一項實施例,一束可 包括經堆疊並經由一皮帶、條帶或其他適合裝置彼此耦合 之複數個板。在一項實施例中,該兩個或兩個以上木材塊 可係直接接觸,或在另一實施例中,該等木材塊可係使用 安置於其間的至少一個間隔件或「黏附物(sticker)」而至 少部分地隔開。 在一項實施例中’該束可具有任何適合尺寸及/或形 狀。在一項實施例中,該束可具有至少2英尺、至少4英 尺、至少8英尺、至少10英尺、至少12英尺、至少16英尺 或至少20英尺及/或不大於6〇英尺、不大於40英尺或不大 於25英尺之一總長度或最長尺寸。該束可具有至少^英 尺、至少2英尺、至少4英尺、至少6英尺、至少8英尺及/ 或不大於16英尺、不大於12英尺、不大於1〇英尺、不大於 8英尺、不大於6英尺或不大於4英尺之一高度或第二長尺 寸。在一項實施例中,該束可具有至少1英尺、至少2英 尺、至少4英尺、至少6英尺及/或不大於2〇英尺、不大於 16英尺、不大於12英尺、不大於1〇英尺、不大於8英尺或 160979.doc 201240527 不大於6英尺之一寬度或最短尺寸。該束之包含該等板之 間的空間(若存在)之總體積可係至少5〇立方英尺、至少1〇〇 立方英尺、至少250立方英尺、至少375立方英尺、或至少 500立方英尺。根據一項實施例,引入至本發明之一或多 個加熱系統之反應器及/或加熱器中(例如,在加熱或處理 之前)之木材束之重量(或欲處理之一或多個物件、物品或 負載之累積重量)可係至少100磅、至少5〇〇磅、至少1,〇〇〇 磅或至少5,000磅。在一項實施例中,該束可在形狀上係 立方體或立方形的。 在另一實施例中’本發明之一或多個加熱系統可用以化 學改質、乾燥及/或熱改質木材’藉此生產經化學改質、 乾燥及/或熱改質之木材。已被乾燥及/或熱改質之木材可 稱為經熱處理」木材,以使得術語「經熱處理木材」係 指已被加熱、乾燥及/或熱改質之木材。如本文中所使 用’術語「熱改質」意指在無一外源處理劑之情況下至少 4分地改質一或多個木材塊之至少一部分之化學結構。在 項實施例中,一加熱系統(稍後將詳細闡述其特定組態) 可用以在一熱改質過程中加熱及/或乾燥木材以藉此提供 一經熱改質木材束。根據一項實施例,熱改質可與一木材 加熱器及/或乾燥器中之木材加熱及/或乾燥同時發生,而 在另一實施例中’可在一木材加熱器或乾燥器中加熱及/ 或乾燥木材而不對其進行熱改質。如本文中所使用,術語 乾燥」意指經由熱量添加或其他適合能量形式而致使或 加速一或多種液體之至少一部分或另外可熱移除組分之汽 160979.doc •9- 201240527 化或以其他方式自木材移除—或多種液體之至少—部分或 另外可熱移除組分。熱改質過程可包含使木材與—或多種 熱傳送劑(諸如’舉例而言水汽、 一、 ^/lj經加熱之惰性蒸汽(如氮 氣或空氣)或甚至液體執傳送拔 …、1寻廷蜾體(诸如,經加熱之油))接 觸之-步驟。在另一實施例中’可在熱改質期間使用一輻 射熱源。經熱改質之木材可具有實質上低於未經處理之木 材之一濕度含量且可具有強化的物理及/或機械性質,諸 如(舉例而言)增加之撓性、對腐朽及生物侵襲之較高抵抗 力及增加之尺寸穩定性。 在又一實施例中,根據本發明之各種實施例組態之加熱 系統可用以化學改質木材。如本文中所使用,術語「化學 改質」意指在存在一或多種外源處理劑之情況下至少部分 地改質一或多個木材塊之至少一部分之化學結構。化學改 質過程之特定類型可包含(但不限於)乙醯化及其他類型之 酯化、環氧化、醚化、糠基化、甲基化及/或三聚氰胺處 理。適合處理劑之非限制性實例可包含酸酐(例如,乙酸 針、酿酸野、號珀酸針、馬來酸針、丙酸針或丁酸酐); 醢氯’·乙烯酮;羧酸;異氰酸鹽;醛(例如,甲醛、乙醛 或二官能團醛);氣醛;硫酸二甲酯;烷基氣化物;β_丙内 酯;丙烯腈;環氧化物(例如,環氧乙烷、環氧丙烷或環 氧丁烷);二官能團環氧化物;硼酸鹽;丙烯酸鹽;矽酸 鹽,及其組合。 用於化學改質木材之過程可包含一化學改質步驟,隨後 係一加熱步驟。在可於一化學改質反應器中實施之化學改 160979.doc -10- 201240527 質或反應步驟期間,木材可曝露至先前所闡述之外源處理 劑中之一或多者,該一或多個外源處理劑可與未經處理之 木材之官能團(例如,羥基)之至少一部分反應以藉此提供 經化學改質之木材。在該化學改f步義間,可發生一或 多個熱起始之化學反應,此可係或並非由一外部能量(例 如,熱能或電磁能,包含(舉例而言)微波能)源起始。化學 改質過程之特定細節在諸多類型之化學改質當中有所不 同,但與未經處理之木材相比,大部分經化學改質之木材 可具有強化的結構、化學及/或機械性質,包含較低的吸 濕性、較高的尺寸穩定性、更耐生物危害及耐蟲性、增加 之抗腐朽性及/或較高的耐氣候性。 在一項實施例中,可使木材在一木材乙醯化反應器中乙 醯化。乙醯化可包含用乙醯基替換表面或近表面之羥基。 在一項實施例中,在乙醯化期間所利用之處理劑可包括濃 度為至少50 wt%、至少60 wt%、至少70 wt%、至少8〇 wt%、至少90 wt%、至少98〜%或1〇〇之乙酸酐而 剩餘部分(若存在)包括乙酸及/或一或多種稀釋劑或選用乙 醯化催化劑。在一項實施例中,用於乙醯化之處理劑可包 括乙酸與乙酸酐之混合物,其具有至少8〇:2〇、至少 85:15、至少90:10、或至少95:5之一酸酐對酸重量比。 在乙醯化之前,可使用窯乾法、真空除氣法或其他適合 方法使木材乾燥以將其濕度(例如,水)含量減小至不大於 25 wt%、不大於20 wt。/。、不大於15 wt% '不大於12 wt%、不大於9 Wt%或不大於6 wt%。在乙醯化期間可經 160979.doc -11 - 201240527 由任一適合方法使木材與處理劑接觸。適合接觸方法之實 例可包含(但不限於)蒸汽接觸、噴射、液體浸泡或其組 合。在一項實施例中,在木材與處理劑接觸之時間期間, 處理容器之溫度可係不大於5(rc、不大於4(rc或不大於 30 C,而氣壓可係至少25 psig、至少5〇 psig、至少75 psig 及/或不大於500 psig、不大於25〇 psig或不大於15〇 psig。 一旦接觸步驟完成,即可視需要自反應器中排出液體處 理劑(若存在)之至少一部分且可添加熱量以起始及/或催化 反應。在一項實施例中,可將微波能、熱能或其組合引入 至該容器中以將木材之溫度增加至至少5〇。〇、至少65°c、 至少80°C及/或至不大於175。(:、不大於150。(:或不大於 120 C ’同時將反應器中之一壓力維持為至少75〇托、至少 1,000托、至少1,200托或至少2,000托及/或不大於7,700 托、不大於5,000托、不大於3,500托或不大於2,500托。根 據一項實施例,添加至反應器之熱量之至少一部分可自一 非微波源傳送至該木材,諸如(舉例而言)包'括至少5 〇 wt%、至少75 wt%、至少90 wt%或至少95 wt%之乙酸之一 熱蒸汽流,而剩餘部分包括乙酸酐及/或稀釋劑。在一項 實施例中,可將熱蒸汽(其一部分可凝結於正處理之木材 束之至少一部分上)引入至反應容器中達至少20分鐘、至 少35分鐘或至少45分鐘及/或不大於180分鐘、不大於150 分鐘或不大於120分鐘。 在反應步驟之後,「化學潤濕」之經化學改質木材可包 括能夠藉由熱量及/或汽化移除之至少一個化學組分。如 I60979.doc -12· 201240527 貫穿本申請案所使用,術語「化學潤濕(cheinically-wet)」 或「化學潤濕(chemical-wet)」係指含有作為一化學處理或 改質之一結果而至少部分地以一液相存在之一或多種化學 品之木材。一「化學潤濕」木材束可係指其至少一部分係 至少部分地化學潤濕之一木材束。該一或多種化學品之某 些實例可包含反應物、浸潰物、反應產物或諸如此類。舉 例而言,當使木材乙醢化時,可藉由汽化移除殘餘乙酸及/ 或酸肝之至少一部分。如本文中所使用,術語「酸潤濕」 係指含有殘餘乙酸及/或酸酐之木材。一「酸潤濕」木材 束係指其至少一部分係至少部分地酸潤濕之一木材束。根 據本發明之一項實施例,化學潤濕或酸潤濕木材可包括至 少20 wt%、至少30 wt%、至少4〇 wt%或至少45以%及/或 不大於75 wt%、不大於60 wt%或不大於5〇 wt%之一或多種 熱可移除或可汽化化學品,諸如(舉例而言)乙酸及/或酸 酐。如本文中所使用,術語「熱可移除」或「可汽化」化 學組分係指可藉由熱量及/或汽化移除之一組分。在一項 實施例中,可汽化或熱可移除組分或化學品可包括乙酸。 接著,可經由驟汽化自化學潤濕木材移除一或多種熱可 移除化學品之至少一部分。在一項實施例中,可藉由將反 應器中之壓力自至少1,〇〇〇托、至少^00托、至少18〇〇托 或至少2,000托及/或不大於7,700托、不大於5〇〇〇托不大 於3,500托、不大於2,500托或不大於2,〇〇〇托之一壓力減小 至大氣壓來達成驟汽化步驟。在另一實施例中,可藉由將 反應器之壓力自一升高之壓力(如上文所閣述)或大氣壓減 160979.doc 201240527 小至不大於1〇〇托、不大於75托、不大於5〇托或不大於h 托之一壓力來達成驟汽化步驟。根據一項實施例,在驟汽 化步驟之後剩餘在化學潤濕木材中之__或多種熱可夢除化 學組分之量(例如,化學含量)可係至少6 wt%、至少8 wt〇/。、至少10 wt%、至少12 wt%或至少15及/或不大 於60 Wt%、不大於40 wt%、不大於儿wt%、不大於乃 wt0/〇、不大於20 wt%或不大於15 wt〇/。。 根據一項實施例,可在化學改質步驟之後實施—加熱步 驟以進一步加熱及/或乾燥經化學改質(或化學潤濕)木材以 藉此提供一經加熱及/或乾燥之經化學改質木材束。如本 文中所使用,僅出於便利而將一束或其他物品或材料稱為 「經加熱」以指示該束之至少一部分之一溫度已升高至環 境溫度以上。類似地,如貫穿本申請案所使用,僅出於便 利而將一束或其他物品或材料稱為「經乾燥」以指示已藉 由(在某些實施例中)加熱而自該束之至少一部分移除至少 某些熱可移除化學品。在一項實施例中,該加熱步驟可操 作以進一步減少存在於木材中之一或多種熱可移除化學組 分之含量。在加熱步驟期間所利用之能源可係適於加熱及/ 或乾燥木材之任一輻射、傳導及/或對流能源。在一項實 施例中,加熱器可係採用一微波能之一微波加熱器。在另 一實施例中’可利用另一熱源來直接或間接(經由(舉例而 言)一熱氣體注入、一夾套式或熱追蹤式容器或其他手段) 加熱容器之至少一部分,諸如(舉例而言)一或多個側壁。 在此實施例中’可將側壁加熱至至少45。〇、至少55°C或至 160979.doc •14- 201240527 少65°C及/或不大於115°C、不大於105°C或不大於95°C之 一溫度。該加熱步驟可在任何適合條件下實施,包含高 於、處於或接近大氣壓之壓力》稍後將詳細論述適於在生 產經化學改質及/或經熱改質之木材中使用之各種加熱系 統之特定貫施例。 加熱步驟可經實施以使得移除剩餘在化學潤濕木材中之 一或多種熱可移除化學組分之總量之至少5〇%、至少 65〇/。、至少75%或至少95%。在一項實施例中,此可對應 於移除總液體之至少100磅、至少250磅、至少500碎或至 少1,000磅。作為加熱步驟之一結果,在一項實施例中, 基於該束之初始(預加熱之)重量,經加熱或乾燥之化學改 質木材可包括不大於5 wt%、不大於4 wt%、不大於3 不大於2 wt%或不大於1%之該一或多種熱可移除化 學品(例如,乙酸)。另外,基於該木材之初始(預加熱之) 重量’經加熱或乾燥之化學改質木材可具有不大於6 wt%、不大於5 wt%、不大於3 wt%、不大於2 wt%或不大 於1 wt%或不大於0.5 wt°/。之一水含量。在一項實施例中, 在和熱步驟之後,該木材可具有大致0%之一水含量。 在一項實施例中,化學改質步驟及加熱步驟可發生於一 單個容器中。在另一實施例中,化學改質步驟及加熱步驟 可在單獨容器中實施,以使得化學改質反應器及加熱器之 内部體積在位置上相異。如本文中所使用,一容器之「内 部體積J係指由該容器囊括之空間整體,包含由該容器之 (一或多個)門在關閉時所界定或在門内之任何體積。如本 160979.doc •15· 201240527 文中所使用,術語「在位置上相異」意指内部體積係不重 疊的°當化學改質反應器及加熱器包括單獨容器時,可利 用各種類型之木材輸送系統以在兩個容器之間輸送木材。 在一項實施例中,該輸送系統可包括軌條(如圖1中所圖解 說明)、軌道、皮帶、鉤子、滾輪(如圖3中所圖解說明)、 條帶、搬運車、電動化車輛、堆高車、滑輪、轉臺(如圖2 中所圖解說明)及其任一組合。現將關於圖1至3詳細論述 能夠生產經化學改質及/或經熱改質之木材之木材處理設 施之各種實施例。 現參考圖1,一木材處理設施1〇之一項實施例圖解說明 為包括一化學改質系統20、一加熱系統30、一輸送系統40 以及原料儲存區域6〇a及成品材料儲存區域6〇b。化學改質 系統20包括一化學改質反應器22、一反應器加熱系統以及 選用反應器加壓/減壓系統26。加熱系統3〇包括一加熱 窃32、一能源34及一選用加熱器加壓/減壓系統36。輸送 系統40包括用於在儲存區域60a、6〇b、反應器以與加熱器 32之間輸送木材之複數個輸送段42a至42e ,如下文詳細闡 述。 在操作中,可經由輸送段42a自原料儲存區域6〇a移除一 或多個木材束。儘管圖丨中圖解說明為包括軌道或軌條, 但應理解,輸送段42&可包括適於在儲存區域6〇a與反應器 22之間移動木材之任一類型之輸送機構。如圖i中所展 示,接著,可經由一開放反應器入口門28將木材引入或裝 載至反應器22中。此後,可關閉第一反應器入口門28以允 160979.doc 201240527 許根據上文所闡述之一或多個過程使安置於反應器22内之 木材化學改質。 一旦反應完成’即可自反應器22抽出化學潤濕木材並將 其輸送至加熱器32。根據一項實施例,化學潤濕木材可經 由反應器入口門28自反應器22移除並經由輸送段42b輸送 至加熱器32»在另一實施例中,該木材可經由一選用反應 器出口門29移除並經由輸送段42c輸送至加熱器32,如圖1 中所展示》接著,可經由一開放加熱器入口門38將化學潤 濕木材引入或裝載至加熱器32中,接著可將開放加熱器入 口門3 8關閉以藉此在起始木材之加熱之前在加熱器入口門 38與加熱器32之本體之間形成一流體密封。當存在選用反 應器出口門29及選用加熱器出口門39時,出口門29、39可 位於反應器22及加熱器32之除各別反應器入口門28及加熱 器入口門3 8以外之大體相對端上。 在各種實施例中,在於加熱器32内加熱木材期間,加壓 系統36可用以將加熱器32内之一壓力維持為不大於550 托、不大於450托、不大於350托、不大於25〇托、不大於 200托、不大於15〇托、不大於1〇〇托或不大於乃托。在一 項貫施例中’該真空系統可操作以將加熱器3 2中之壓力減 小至不大於10毫托(10-3托)、不大於5毫托、不大於2毫 托、不大於1毫托、不大於〇.5毫托或不大於〇1毫托。另 外,當加熱器32包括一微波加熱器時,可使用稍後詳細闡 述之一或多個特徵(包含(舉例而言)一選用微波阻流器、一 或多個微波發射器及諸如此類)以將能量引入至加熱器32 160979.doc •17· 201240527 之内部中’藉此加熱及/或乾燥其中含有之木材束之至少 一部分。 根據一項實施例’木材處理設施1 〇可包括多個反應器及/ 或加熱器。可採用任意數目個反應器及/或加熱器,且該 等反應器及/或加熱器可配置成任一適合組態。舉例而 言’木材處理設施10可利用至少1個、至少2個、至少3 個、至少5個及/或不大於1〇個、不大於8個或不大於6個反 應器及/或加熱器。當採用多個反應器及/或加熱器時,可 以任一適合組合或比率使該等容器配對。舉例而言,反應 器對加熱器的比率可係1:1、1:2、2:1、1:3、3:1、2:3、 3:2、1:4、4:1、4:2、2:4、3:4、4:3 或任一可行組合。根 據一項實施例,反應器及/或加熱器中之一或多者可包括 單獨入口及出口門,而在另一實施例中,反應器及/加熱 器中之一或多者可包括用於裝載及卸載木材之一單個門。 在一項實施例中,經加熱及/或乾燥之木材可經由加熱器 入口門38自加熱器34移除並經由輸送段42d輸送至儲存區 域60b ^另一選擇係,該木材可經由一選用加熱器出口門 39(若存在)抽出並經由段42e輸送至儲存區域6〇b,如圖i中 所圖解說明。將關於圓2及3簡單地闡述採用根據本發明之 數個實施例組態之多個反應器及加熱器之木材處理設施之 各種組態。 現翻至圖2,圖解說明根據本發明之一項實施例組態之 一木材處理設施110。木#處理設施11〇包括才复數個反應器 (圖解說明為122a' 122b、122η)及複數個加熱器(圖解說明 160979.doc •18- 201240527 為132a、132b、132η)。根據一項實施例’反應器122a、 122b、122η中之每一者及加熱器132a、132b、132n中之每 一者包括用於選擇性地准許進出每一容器之木材之通行之 一單個門 128a、128b、128n、138a、138b、138η。另外, 木材處理設施110可包括一可旋轉平臺(圖解說明為一轉臺 140),該可旋轉平臺可操作以定位一木材束1〇2以使得可 沿各種方向(大體由箭頭19〇a至190c指示)在反應器122a、 122b、122η、加熱器132、132b、132η與一儲存區域160之 間輸送該木材束。 現參考圖3,一木材處理設施21 〇之另一實施例展示為包 括複數個化學改質反應器(圖解說明為222a、222η)及複數 個加熱器(圖解說明為232a、232b、232η)。如圖3中所展 示,反應器中之每一者包括一各別反應器入口門228a、 228η及一選用反應器出口門229a、229η。類似地,加熱器 232a、232b、232η中之每一者包括一加熱器入口門23 8a、 238b、238η及一選用加熱器出口門239a、239b、239η。圖 3中所展示之輸送系統240包括複數個段242a至242j及244a 至244e,其可操作以將木材輸送至反應器222a、222η及加 熱器232a、232b、232η、自該等反應器及該等加熱器輸送 木材及在該等反應器與該等加熱器之間輸送木材。儘管圖 解說明為包括連續傳動帶段,但輸送系統240可包括一或 多個段,其包括任一適合輸送機構,如先前詳細論述。 根據一項實施例,在操作中,可透過反應器入口門228a 引入經由輸送段242a裝載至第一反應器222a中之木材。一 160979.doc •19· 201240527 旦化學改質過程完成,即可經由反應器入口門228a自反應 is 222a移除化學濁濕木材並可隨後經由各別輸送段242e、 242f、242g將其輸送至加熱器232a、232b或232η中之一 者。在一替代實施例中,自反應器222a移除之木材可在被 輸送至加熱器232a、232b或232η之前經由輸送段244a透過 反應器出口門229a移除,如先前所闡述。另外,在反應器 222η中處理之木材可以如先前所闡述之一類似方式裝載、 化學改質及輸送至加熱器232a、232b、232η中之一者。 此後,可根據本文中所闡述之一或多個方法加熱及/或 乾燥輸送至加熱器232a、232b及23 2η之一或多個化學潤滿 木材束。在一項實施例中,加熱器232a、232b及232η中之 至少一者可包括一微波加熱器。一旦完成加熱步驟,經加 熱及/或乾燥之束即可經由各別入口門238a、238b、238η 或視需要經由各別出口門239a、239b、239η(當存在時)自 加熱器232a、232b及232η抽出。隨後,端視經改質之束係 自加熱器入口門238a、238b、238η還是加熱器出口門 239a、239b、239η移除,可經由輸送段 242h、242i、242j 或244c、244d、244e將該等束輸送至後續處理及/或儲存。 可按任一適合規模實施先前所論述之化學改質過程。舉 例而言’上文所闡述之木材處理設施可包括實驗室規模、 試驗工場規模或商業規模之木材處理設施。在一項實施例 中’用以生產經化學改質及/或熱改質之木材之木材處理 設施可係具有至少5〇〇,〇〇〇板英尺、至少i百萬板英尺、至 少2.5百萬板英尺或至少5百萬板英尺之一年產量之一商業 160979.doc -20- 201240527 規模設施。如本文中所使用,術語「板英尺」係指以量測 144立方英吋為單位表達之一木材體積。舉例而言,具有2 英吋Μ英吋x36英吋之欠寸之一板具有288立方英吋或2板 英尺之一總體積。在各種貫施例一單個化學改質反應 器之内部體積(亦即,「内部反應器體積」)及/或一單個加 熱器之内部體積(亦即,「内部加熱器體積」)可係至少1〇〇 立方英尺、至少500立方英尺、至少^⑼立方英尺、至少 2,500立方英尺、至少5,〇〇〇立方英尺或至少1〇 〇〇〇立方英 尺以容納商業規模操作。 即使當按一商業規模實施時,如本文中所闡述之化學及/ 或熱改質過程亦可以相對短的總循環時間實施。舉例而 言,根據一項實施例,使用本發明之一或多個系統實施之 化學及/或熱改質過程之總循環時間(自起始改質步驟之時 間量測至完成加熱步驟之時間)可係不大於48小時、不大 於3 6小時、不大於24小時或不大於12小時、不大於1 〇小 時、不大於8小時或不大於6小時。此與可具有持續數天或 甚至數周之總循環時間之諸多習用木材處理過程形成對 比。 根據本發明之一項實施例,本發明之木材處理設施可包 括一或多個蒸汽容納室及/或通氣結構,其用於在木材之 輸送期間實質上隔離外部環境(亦即,緊接化學改質反應 器及加熱器外側之環境)與化學潤濕之經化學改質之木 材。蒸 容納室及/或通氣結構可連接至一通氣系統該 通氣系統自容納/通氣區域中移除氣體環境之至少一部 160979.doc • 21· 201240527 分,藉此最小化一或多種非期望蒸汽狀態化學品洩漏至外 部環境中。現將關於圖4a至4d更詳細地闡述採用蒸汽容納 室及/或通氣結構之一木材處理設施之額外細節及一項實 施例。 圖4a係麵合至一化學改質反應器322及一加熱器332之一 蒸汽容納室360之一俯視圖。蒸汽容納室36〇可操作以在經 由位於反應器322與加熱器332之間的一傳送區361將木材 自化學改質反應器322輪送至加熱器332時部分地或幾乎完 全地隔離外部環境與一經化學改質之木材束。如本文中所 使用’術語「隔離」係指一或多個區域、地帶或區之間的 流體傳遞之抑制。根據一項實施例,蒸汽容納室36〇可耦 合至一通氣系統(圖4a中未展示),其可操作以自蒸汽容納 至360之内部移除蒸汽及氣體之至少一部分,藉此減小、 最小化或防止反應器322之内部内、加熱器332之内部内所 含有及/或自經化學改質之木材束至外部環境之一或多種 熱可移除化學組分之洩漏。 在一項實施例中,化學改質反應器322可包括用於自一 外部環境接納一木材束之一反應器入口門328及用於在化 學改質之後自化學改質反應器322排出該木材束之一反應 器出口門329。另外,加熱器332可包括用於接納自化學改 質反應器322排出之經化學改質、化學潤濕木材束之一加 熱器入口門328。根據一項實施例,加熱器332亦可包含用 於自加熱器332排出一木材束之與加熱器入口門338分離之 一加熱器出口門339。在一項實施例中,各別反應器入口 160979.doc •22- 201240527 門328及加熱器入口門338以及反應器出口門329或加熱器 出口門339(當存在時)可定位於反應器322或加熱器332之— 大體相對端上以使得反應器322及加熱器332之各別中心伸 長軸(在圖4b中表示為轴370a、370b)可延伸穿過各別入口 328、338及出口 329、339門。在一項實施例中,反應器 322及加熱器332彼此軸向對準以使得圖仆中之中心伸長轴 370a、370b彼此實質上對準’而在其他一項實施例中,轴 3 70a、370b可彼此平行。如本文中所使用,術語「實質上 對準」係指兩個或兩個以上容器經組態以使得在其各別中 心伸長轴之交叉之間形成之最大銳角係不大於2〇。。在某 些實施例中’實質上對準之容器之兩個伸長軸之交叉之間 的最大銳角可係不大於1〇。、不大於5。、不大於2。或不大 於1。。在某些實施例中,反應器322及加熱器332可配置成 一並排組態(未展示)。 根據圖4a中所展示之一項實施例,蒸汽容納室36〇可密 封地耦合至反應器322及加熱器332以使得在將木材束自反 應器322輸送至加熱器332期間外部環境實質上與傳送區 361隔離。如本文中所使用,術語「密封地耦合」係指兩 個或兩個以上物件經附接、緊固或以其他方式相關聯以使 得自此等物件之接面實質上減小或幾乎避免流體洩漏。在 一項實施例中,反應器入口門328及/或加熱器出口門 (¾存在時)可對外部環境開放,而反應器出口門329及/ 或加熱器入口門338可對蒸汽容納室360之内部開放,藉此 在經由傳送區361在反應器322與加熱器332之間輸送期間 160979.doc •23- 201240527 隔離外部環境與來自化學反應器322、加熱器332及/或化 學潤濕木材束之蒸汽或氣體。 蒸汽容納室360可以任一適合方式組態。在圖4a及4b中 所繪示之一項實施例中,蒸汽容納室360包括耦合至一天 花板結構344及一地板(未展示)之四個大體直立壁342a至 342d。儘管在圖钻及朴中圖解說明為大體附接至天花板結 構344,但用於自蒸汽容納室360之内部移除蒸汽及氣體之 一蒸汽出口管道349可替代地附接至壁342a至342d中之一 者或至該地板。稍後將更詳細地闡述關於自蒸汽容納室 360移除蒸汽及氣體之額外細節。 在本發明之一項實施例中,壁342a至342d中之至少一者 可包括用於在蒸汽容納室360内之一爆炸或迅速加壓情形 下控制一壓力釋放之方向之至少一個鼓風板或鼓風壁 343。在一項實施例中,鼓風板343可附接至蒸汽容納室 360之天花板344及/或地板(未展示)。鼓風板或壁343可较 接、拴係或以其他方式緊固至蒸汽容納室36〇之另一結構 以避免或減少鼓風板或壁343將由於一爆炸而向離開蒸汽 容納室360之方向以一非期望速度隨意地凸出之可能性。 鼓風板或壁343可具有一實質上固體表面(如圖4b中所展示) 或可包括複數個板條或槽(未展示卜通常,壁Μ。至“Μ U非鼓風板/壁343之區段係由高強度材料(諸如(舉例而 吕)預製混凝土板、混凝土塊或鋼板)構成之建構。儘管本 文中圖解說明為具有四個壁,但應理解,亦可採用具有各 種其他形狀之蒸汽容納室。 160979.doc •24· 201240527 如圖4c中所繪示,蒸汽容納室360可裝備有用於選擇性 地准許流體自外部環境流動至蒸汽容納室36〇之内部中之 或多個通氣孔370a、370b。在一項實施例中’通氣孔 370a、370b係單向通氣孔,其准許流體自外部環境流動至 蒸汽容納室360中(如在圖4c由箭頭380a、380b所指示),但 減小、抑制或實質上防止流體自蒸汽容納室36〇之内部流 出至外部環境中。可經由通氣孔370a、370b流動至蒸汽容 納室360中之外部流體之實例包含環境空氣或一或多種惰 性氣體(諸如,氮氣)。 在一項實施例中,通氣孔370a、370b可經組態以維持蒸 >飞谷納室360之内部與外部環境之間的一預定壓力差。藉 由維持蒸汽容納室360之内部與外部環境之間的一預定壓 力差,通氣孔370a ' 370b可控制將來自外部環境之一流體 抽取至蒸汽容納室360中之速率。為維持蒸汽容納室36〇之 内部與外部環境之間的一相對恆定壓力差,通氣孔37〇a、 370b可裝備有用於基於跨越通氣孔37〇a、37〇b之壓力差來 改變通氣孔370a、370b之開放程度之一控制機構(例如, 一電子致動器、一液壓致動器、一氣動致動器或一機械彈 箸)。當外部環境與蒸汽容納室3 6 0之内部之間的壓力差過 高時,通氣孔370a、370b開放得較寬,且類似地,當該壓 力差過低時,通氣孔370a、370b朝向一關閉位置移動。在 一項實施例中,通氣孔370a、370b可裝載有彈簧且朝向關 閉位置偏移,以使得當蒸汽容納室36〇與外部環境之間的 壓力差低於一臨限值時,關閉通氣孔37〇a、37〇b,但當蒸 160979.doc -25- 201240527 汽容納室360中之壓力比外部環境低超過臨限壓力差值之 一量時,通氣孔遍、3·開放以允許將-外部流體抽取 至蒸汽容納室360中。 此外’當通氣孔370a、37Qb裝載有彈簧時,該等通氣孔 藉由在壓力差高時自動開放得較寬而在壓力差低時自動朝 向關閉位置移動來幫助維持蒸汽容納室36〇之内部與外部 環境之間的-實質上恆定壓力差。在一項實施例中,蒸汽 容納室在輸送期間維持處於一低氣壓且可維持處於至 少〇.〇5水柱英#、至少0#柱英作或至纽Η水柱英 忖數及/或不大於1〇水柱英时數、不大於^水柱英忖數或不 大於0.5水柱英吋數之一直办 * 具工在一項實施例中,通氣孔 3施、370b經組態以准許以致使每小時至少2次交換、至 少4次交換或至少5次交換地自蒸汽容納室則抽取出之一 速率將流體自外部環境(例如,環境空氣)抽取至蒸汽容納 室360中,其中一次交換等於蒸汽容納室360之-個體積。 如本文中所使用,術語「每小時交換次數」係指每小時該 系統中之流體之總體積被替換之總次數,其係藉由使自系 統移除之蒸汽之體積流率除以總系統體積來計算。 在項實施例中,蒸汽容納室36〇之大小可使得反應器 322及加熱器332(例如,定位反應器及加熱器之内部體積) 彼=相隔至少2央尺、至少4英尺或至少6英尺及/或不大於 50央尺、不大於3〇英尺或不大於2〇英尺之一距離。在一項 實施例中》^納室之長度可與反應器W與加熱器W 之間的距離相同或實質上相同。根據-項實施例,蒸汽容 160979.doc -26 · 201240527 納室360之長度對反應器322之總長度及/或加熱器332之總 長度之比率可係至少〇.1:1、至少0.2:1、或至少0.3:1及/或 不大於1:1、不大於0.6:1或不大於0.5:1。當反應器322與加 熱器332之間的間隔減至最小時,反應器出口門329及加熱 器入口門338可能夠在打開期間彼此接觸《在此一實施例 中’反應器出口門329及加熱器入口門338可經組態以在其 兩者皆完全打開時彼此嵌套/重疊(但彼此不接觸)。 圖4d係包括一反應器322、一加熱器332及安置於其間的 蒸 >飞容納室360之一木材處理設施416之一侧視圖。圖4d 另外繪示採用位於加熱器332之出口門339附近之一產品蒸 汽移除系統或結構4〇〇之一實施例。產品蒸汽移除系統4〇〇 可經組態以自加熱器332之出口門339輸送出蒸汽且使其遠 離出口門3 3 9附近之區域(例如,恢復室)。此組態可實質上 減小且在某些實施例中可幾乎防止來自退出加熱器332之 經化學處理之木材束之蒸汽及/或來自退出反應器及/或 加熱器332之蒸汽逸出至外部環境β如圖4d中所展示,蒸 汽容納室360及產品蒸汽移除系統4〇〇可連接或以其他方式 可操作地耦合至一常見通氣系統4〇2。通氣系統4〇2用以自 蒸汽容納室360抽取出蒸汽及氣體及/或使其通過產品蒸汽 移除系統400。儘管圖4d圖解說明一個常見通氣系統4〇2用 於蒸A*谷納室360及產品蒸汽移除系統4〇〇兩者,但亦可針 對木材處理設施之每一容納/通氣區域使用個別通氣系 統0 在圖4d中所纟之實施财,產品u移㈣統獅包 160979.doc -27- 201240527 括一通氣罩404及安置於通氣罩404與加熱器332之間的— 通氣室406。通氣罩404及通氣室406可連接至通氣系統 402,通氣系統402自通氣罩404及/或通氣室406抽取出蒸 汽。通氣室406可經組態以透過加熱器出口門339(其開放 至通氣室406中)接納一經化學改質之木材束。 通氣室406可裝備有一通氣室出口 4〇8,經化學改質之木 材通過通氣室出口 408通行至通氣罩404下面之一冷卻位 置。在一項實施例中’通氣室出口 408可裝備有一門4〇9 , 門409在關閉時實質上隔離外部環境與通氣室4〇6之内部。 當通氣室裝備有此一門時,通氣室亦可裝備有類似於先前 參考圖4c所闡述之蒸汽容納室36〇之通氣孔37〇a、37扑之 通氣孔(未展示)。然而,在另一實施例中,通氣室出口 4〇8 經組態以不斷地准許流體自外部環境通行至通氣室4〇6之 内部中。在此一實施例中,通氣室出口 4〇8可完全開放以 便准許穿過其之流體之自由流動。另一選擇係,通氣室出 口 408可部分地覆蓋有一撓性材料(例如,一懸掛 VISQUEEN薄片或VISQUEEN條帶),其准許穿過其之經化 學處理之木材束之通行,但至少部分地抑制穿過其之流體 之自由流動。在本發明之-項實施财,可完全消除通氣 室406且通氣罩404可定位於毗鄰加熱器332之出口門339 處。 如圖4d中所展示,通氣系統4〇2可包含一或多個真空產 生器4丨0、-處理裝置412、—引流器414及複數個蒸汽出 口管道349a至349c。真空產生器41〇可操作以分別經由出 160979.doc • 28 · 201240527 口管道349a、349b、349c自蒸汽容納室360、通氣罩404及/ 或通氣室406抽取出蒸汽。處理裝置412可操作以移除或改 變來自經由真空產生器410自蒸汽容納室360、通氣罩404 及/或通氣室406中抽取出之蒸汽之一或多種組分之至少一 部分之組成。適合處理裝置之實例可包含(但不限於)滌氣 器、熱氧化器、催化氧化器或其他催化過程及/或沈澱 器0 根據一項實施例,引流器414可操作以藉由(舉例而言) 引導蒸汽出口管道349a、349b、349c當中之蒸汽流藉此在 蒸/飞各納室360與產品蒸汽移除結構(例如,通氣罩及/ 或通氣室406)之間分佈通氣系統4〇2之總通氣容量來調整 真空產生器410之總通氣容量。如本文中所使用術語 「總通氣容量」係指可經由一真空產生器或其他源自系統 移除之最大蒸汽體積,其表達為一基於時間之速率。舉例 而言,蒸汽容納室360、通氣罩404及/或通氣室4〇6當中之 總通氣容量之分佈可有利於容納一化學改質處理之各種步 驟。在-項實施例中’引流器414可操作以均勾分佈總通 氣容量(一般表示為「Xj),以使得將〗/^提供至蒸汽容納 室360、將Va提供至通氣罩4〇4且將ΐΛχ提供至通氣室 406。在另一例示性實施例中,引流器414可將更多通氣容 量分配至該三個區域中之一者(諸如(舉例而言)暴 36〇),以使得將V3X提供至蒸汽容納室⑽、將&提供= 通氣罩404且將VeX提供至通氣室4〇6。 現將關於圖4d詳細闡述木材處理設施416之 、心項 160979.doc •29- 201240527 實施例》可經由反應器入口門328將一第一木材束(本文中 由予母「c」表不)裝載至化學改質反應器322中並對其進 行化學處理。同時,可經由加熱器入口門338將一第二木 材束(此處由子母B」表示)引入至加熱器332中並對其進 仃加熱及/或乾燥《當束C&B分別在化學改質反應器322及 加熱器332中進行化學改質及力。熱/乾燥時,可自通氣室 406移除-第三木材束(本文中用字母「a」表示)並將其定 位於通氣罩404下方,如圖4d中大體展示。 一旦束A已被充分乾燥,即可將其自通氣罩4〇4移除並輸 送至一儲存區域(未展示接著可使用引流器々Μ調整通 氣系統402之總通氣容量之分配以使得增加分配至蒸汽容 納至360之通氣容量之量,而減少分配至通氣罩彻之通氣 容量之量。接下來’在完成束「B」之加熱之後,加熱器 入口門338及加熱器出σ門339可連續開放且存在於加熱器 332之内料之任何殘餘蒸汽或氣體可被移除並在進入通 氣系統之前穿過蒸汽容納室360。在-項實施例中,加 熱器332之此排空亦可包括透過通氣罩404及通氣室406(當 存在時)將-外部流體(例如,環境空氣或其他惰性氣體)抽 取至該系統中。該外部流體可接著經由加熱器出口門339 進入加熱器332且在經由加熱器入口門338退出加熱器332 並通订至蒸汽容納室36〇中之前穿過加熱器332之内部。一 旦處於蒸汽容納室36G中,該外部流體連同自加執器332之 内部移除之任何殘餘蒸汽或氣體即可藉助通氣系統4〇2以 每小時至少2次交換、每小時至少4次交換或每小時至少6 160979.doc 201240527 次交換之一速率自蒸汽容納室360抽出。舉例而言,若該 通氣系統具有1 00立方米之一總體積且蒸汽移除之速率係 200立方米/小時,則每小時交換次數將係(2〇〇立方米/小 時)/(100立方米)或每小時2次交換。 一旦已自蒸汽容納室360移除外部流體及殘餘蒸汽/氣 體’束B即可經由加熱器出口門339自加熱器332移除、穿 過通氣室406(若存在)並定位於通氣罩404下方以冷卻及/或 進一步乾燥束B ’如先前詳細論述。可接著在順序地打開 反應器出口門329及反應器入口門328之前關閉加熱器出口 門339。此後’可使用通氣系統402以自化學改質反應器 322之内部排空殘餘蒸汽或氣體。在一項實施例中,一外 部流體(例如,環境空氣或其他惰性氣體)可經由反應器入 口門328抽取至反應器322中且在經由反應器出口門329退 出至蒸汽容納室360中之前穿過反應器322之内部。如上文 所闡述’該外部流體及任何殘餘蒸汽或氣體可接著經由蒸 >飞出口管道349a以每小時至少2次交換、每小時至少4次交 換或每小時至少6次交換之一速率自蒸汽容納室360抽出。 此後’束C可經由反應器出口門329自化學改質反應器 322移除並沿一輸送路徑399穿過蒸汽容納室36〇 ^在一項 實施例中’產品通氣系統4〇2可用以在於反應器322與加熱 器332之間輸送該束期間自蒸汽容納室36〇抽取氣體及蒸 汽。可接著在起始束C之加熱之前經由加熱器入口門338將 化學潤濕束C引入至加熱器332之内部中。接下來,可在依 序關閉反應器入口門328、反應器出口門329及加熱器入口 160979.doc -31 · 201240527 門338之前將-第四束(未展示)裝載至化學改質反應器 之内邛中。可減少至蒸汽容納室36〇之總通氣容量之分 配’同時增加至通氣罩4〇4之分酉己,以藉此冷卻及/或進一 步乾燥束B。在重複上文所提及之步驟以處理一新木材束 序歹i之前在一裝載區域(未展示)中或在反應器入口門328附 近裝配一第五束(未展示)。 應理解,在上文所闡述之操作順序中,某些步驟可較佳 以所闡述之次序實施,而某些步驟可同時實施及/或可切 換某些步驟之次序。僅為闡述操作木材處理系統416之一 個例示性方法而包含以上步驟序列。 微波加熱系統 根據一項實施例,上文所闡述之加熱系統中之一或多者 可包括利用微波能來加熱一或多個物件或物項之微波加熱 系統。除上文所闡述之木材處理設施之一項實施例以外, 根據本發明之一項實施例組態之微波加熱系統亦可廣泛適 用於各種各樣之其他過程。應理解,雖然本文中主要關於 用於加熱「木材」或一「木材束」之過程進行闡述,但本 文中所闡述之過程及系統可等效地適用於其中加熱一或多 個物!m、物件或負載之應用。可利用如本文中所闡述之微 波加熱系統之其他類型之應用之實例可包含(但不限於)各 種材料之尚溫真空陶瓷及金屬燒結、熔融、硬銲及熱處 理在一項實施例中,該微波加熱系統可包含一真空系統 (例如’一微波真空加熱器)且可用於諸如礦物及半導體等 材料之真空乾燥、諸如水果及蔬菜等食品之真空乾燥、陶 J60979.doc •32- 201240527 瓷及纖維模具之真空乾燥以及化學溶液之真空乾燥。 現翻至圖5,根據本發明之一項實施例組態之一微波加 熱系統420圖解說明為包括至少一個微波產生器422、一微 波加熱器430、一微波分佈系統440及一選用真空系統 450。由微波產生器422生產之微波能可經由微波分佈系統 440之一或多個組件引導至微波加熱器43〇。稍後將詳細論 述關於微波分佈系統440之組件及操作之額外細節。當存 在時’真空系統450可操作以將微波加熱器43〇中之壓力減 小至不大於550托、不大於450托、不大於350托、不大於 250托、不大於200托、不大於15〇托、不大於1〇〇托或不大 於75托。在一項實施例中,該真空系統可操作以將微波加 熱器430中之壓力減小至不大於1〇毫托(1〇·3托)、不大於5 毫托、不大於2毫托、不大於丨毫托、不大於〇5毫托或不 大於〇.1毫托。現將在τ文中詳細論述微波加熱系統42〇之 組件中之每一者。 微波產生器422可係能夠生產或產生微波能之任—裝 置。如本文中所使用,術語「微波能」係指具有在_ MHz與30 GHz之間的一頻率之電磁能。如本文中所使用, 在一範圍中使用之術語「在···之^意欲包含所列舉之端 點。舉例而言,—數字「在·之間」可係x、y或自中 之間的任一值。在一項實施例令,微波加熱系統420之各 種組態可利用具有915 MHz之—頻率或2 45邮之一頻率 之職’此兩個頻率通常已指定為工業微波頻率 產生β之適合類哎】音也丨γ ^ 社之實例可包含(但不限於)磁控管、速調 160979.doc •33- 201240527 管、行波管及回旋管。在各種實施例中,一或多個微波產 生器422可能夠遞送(例如,具有以下項之一最大輸出)至少 5 kW、至少30 kW、至少50 kW、至少60 kW、至少65 kW '至少75 kW、至少100 kW、至少150 kW、至少200 kW、至少250 kW、至少350 kW、至少400 kW、至少500 kW、至少600 kW、至少75 0 kW或至少1,000 kW及/或不大 於2,500 kW、不大於1,500 kW或不大於1,000 kW。儘管圖 解說明為包括一個微波產生器422,但微波加熱系統420可 包括經組態以按一類似方式操作之兩個或兩個以上微波產 生器。 微波加熱器430可係能夠接納並使用微波能加熱一或多 個物品(包含(舉例而言)木材束或木料束)之任一裝置。在 一項實施例中’由微波加熱器430提供之熱量或能量之至 少75°/〇、至少85%、至少95。/。或實質上全部可由微波能提 供。微波加熱器430亦可用作一微波乾燥器,其可進一步 操作以使用如本文中所闡述之微波能來乾燥安置於其中之 一或多個物項。 現翻至圖6,一微波加熱器530之一項實施例圖解說明為 包括今器本體532及用於選擇性地准許及阻擋進出微波 加熱器530之内部536之一或多個物件之存取或通行之一門 534在項實施例中,微波加熱器530之容器本體532可 沿-中心伸長轴535伸|,該轴可沿一實質上水平方向定 向,如®6中所圖解說明。容器本體如可具有任一適合形 狀或大小之-剖面。在-項實施例中,容器…之剖面實 160979.doc •34· 201240527 質上可係圓形或修圓的,而在另一實施例中,該剖面可係 橢圓形的。根據一項實施例,容器本體532之剖面之大小 及/或形狀可A伸長方向改變’而在另一實施例中,其剖 面之形狀及/或大小可保持實質上相同。在圖6中所繪示之 實施例中,微波加熱器530之容器本體532包括具有一圓形 剖面之一水平伸長、圓柱形容器本體。 U波加熱器53 0可具有一總的最大内部尺寸或長度L及一 最大内徑D,如圖6中所展示。在一項實施例中,l可係至 少8英尺、至少1〇英尺、至少16英尺、至少2〇英尺至少 30英尺、至少50英尺、至少75英尺、至少1〇〇英尺及/或不 大於500英尺、不大於35〇英尺、不大於25〇英尺。在另一 實施例中,D可係至少3英尺、至少5英尺、至少1〇英尺、 至少12央尺、至少18英尺、至少2〇英尺至少乃英尺或至 少30英尺及/或不大於25英尺、不大於2〇英尺或不大於15 英尺。在一項實施例中,微波加熱器53〇之長度對其内徑 (L:D)之比率(l:d)可係至少1:1、至少2:1、至少3:1、至少 4.1至夕6.1、至少8:1、至少1〇:1及/或不大於5〇丨不大 於4〇:1或不大於25:1。 微^加熱|§ 530可由任一適合材枓建構。在一項實施例 中微波加熱器530可包括至少一種導電及/或高反射材 料。適合材料之實例可包含(但不限於)選定碳鋼、不銹 鋼鎳0金、鋁合金及銅合金。微波加熱器53〇可幾乎完 :由單種材料建構’或可使用多種材料來建構微波加熱 器之各種部分。舉例而言,在一項實施例中,微波加 160979.doc 05- 201240527 熱器530可由一第一材料建構且可接著在其内部及/或外部 表面之至少一部分上塗佈或分層一第二材料。在一項實施 例中,該塗層或層可包括上文所列舉之金屬或合金中之一 或多者’而在另一實施例中’該塗層或層可包括玻璃、聚 合物或其他電介質材料。 微波加熱器530可界定適於接納一負載之一或多個空 間°舉例而言’在一項實施例中’微波加熱器530可界定 經組態以接納及固持一或多個木材束(圖ό中未展示)之一束 接納空間。該負載(例如,木材)可以一靜態或動態方式定 位於微波加熱器530之内部536内。舉例而言,在其中該負 載靜態定位於微波加熱器53〇中之一項實施例中,該負載 可在加熱期間相對不運動且可使用靜態定位裝置(未展 示)(諸如,舉例而言一架子、一平臺、一停放之的搬運 車、一停止的傳動帶或諸如此類)保持於適當位置。在其 中該負載動態定位於微波加熱器530内之另—實施例中, 該負載可在加熱期間在使用一或多個動態定位裝置(未展 不)進行加熱之至少一部分期間處於運動中。動態定位裝 置之實例可包含(但不限於)連續移動傳動帶、滾輪、水平 及/或垂直振盪平臺以及旋轉平臺❶在一項實施例中,一 或多個動態定位裝置可用於一大體連續過程中,而一或多 個靜態定位裝置可用於一分批或半分批過程中。 根據本發明之一項實施例,微波加熱器53〇亦可包括一 或多個密封機構以減小、抑制、最小化或實質上防止在處 理期間進出容器内部536之流體及/或微波能之洩漏。如圖 160979.doc -36 - 201240527 6中所圖解說明’容器本體532及門534可各自具有各別本 體側密封表面5 3 1及門側密封表面5 3 3。在一項實施例中, 本體側密封表面531及門側密封表面533可在關閉門534時 在門534與容器本體532之間直接或間接形成一流體密封。 可在本體側密封表面53 1及門側密封表面533之至少一部分 實現彼此直接實體接觸時形成一直接密封。可在於門534 密封時抵靠門側密封表面533及本體側密封表面53丨至少部 分地壓縮用於流體地隔離微波加熱器530之内部與一外部 環境(圖6中未展示)之一或多個彈性密封構件時在門534與 容器本體532之間形成一間接密封。彈性密封構件之實例 可包含(但不限於)〇型環、螺旋纏繞式塾片、片狀塾片及諸 如此類。根據一項實施例,當經受使用一 Varian型號第 93 8-41號债測器根據在Alcatel Vacuum Technology發佈之 標題為「Helium Leak Detection Techniques」之文件中闊 述之標題為「Spraying Testing」之程序B1進行之一氣茂漏 測試時,在容器本體532與門534之間形成之直接或間接密 封可使得微波加熱器530可在本體532與門534之接面處或 接近該接面具有不大於1〇_2托.升/秒、不大於1〇-4托·升/秒 或不大於10托升/秒之一流體茂漏率。在一項實施例中, 流體密封可在微波加熱器530内側之環境包括一低氣壓且 以其他方式具有挑戰性之處理環境時特別有利。 根據本發明之一項實施例組態之微波加熱器亦可包括一 微波阻流器,其用於在關閉門534時抑制或實質上防止微 波加熱器530之門534與容器本體532之間的能量洩漏(例 160979.doc •37- 201240527 如’在門534與容器本體532之接面處或接近該接面)^如 本文中所使用’術語「阻流器」係指一微波容器之可操作 以在施加微波能期間減小自該容器或逸出該容器之能量茂 漏之量之任一裝置或組件。在一項實施例中,阻流器可係 可操作以在與不採用一阻流器時相比將自該容器之微波线 漏之量減小至少25%、至少50°/。、至少75%或至少90%之任 一裝置。在本發明之一項實施例中,微波阻流器可操作以 在藉助一 Narda Microline型號8300之寬頻帶各向同性輻射 監視器(300 MHz至18 GHz)自容器量測5 cm時允許不大於 5〇毫瓦/平方麓来(mW/cm2)、不大於25 mW/cm2、不大於 10 mW/cm2、不大於5 mW/cm2或不大於2 mW/cm2之微波能 透過阻流器自加熱器洩漏。 進一步地,與習用微波阻流器(其通常在經受低氣壓時 出故障)相比’根據本發明之一項實施例組態之微波阻流 器可操作以甚至在全真空條件下實質上抑制微波能洩漏。 舉例而言,在一項實施例中,如本文中所闡述之一微波阻 流器可抑制微波能自加熱器洩漏至上文所闡述之在微波加 熱器中之壓力係不大於550技' 不大於450托、不大於350 托' 不大於250托、不大於200托、不大於1〇〇托或不大於 75托時之程度。在一項實施例中’如本文中所闡述之一微 波阻流器可抑制微波能自加熱器洩漏至如上文所闡述之在 微波加熱器中之壓力係不大於10毫托(1〇·3托)、不大於5毫 托、不大於2毫托、不大於1毫托、不大於〇5毫托或不大 於0.1毫托時之程度。進一步地,根據本發明之一項實施 160979.doc -38- 201240527 例之一微波阻流器可在大型單元上維持其茂漏防止位準, 諸如(舉例而言)具有至少5 kw、至少3〇kw、至少5〇kw、 至少60kW、至少65kW、至少75kw、至少1〇〇kw、至少 150 kW、至少 200 kW、至少 250 kw、至少35〇 kw,、至少 400 kW、至少500 kW、至少600 kW、至少750 k\V或至少 1,000 kW及/或不大於2,500 kW、不大於ι,500让…或不大於 1,000 kW之一微波能輸入率之微波加熱器。 在一項實施例中,在甚至以上文所闡述之微波能及真空 壓力之位準將微波能引入至容器中時(例如,在加熱步驟 期間),實質上不在接近阻流器650處發生發弧。如本文中 所使用,術§吾「發弧」係指至少部分地藉由一周圍流體之 離子化所致之非期望、不受控制之放電。發弧(其可損壞 設備及材料且引起一實質上起火或爆炸危險)在較低壓力 (尤其低氣壓(例如,真空)壓力)下具有一較低臨限值。通 常’習用系統限制能量輸入之速率以最小化或避免發弧。 然而’與習用系統相比,根據本發明之實施例組態之微波 加熱器可操作以在壓力係不大於550托、不大於450托、不 大於350托、不大於250托、不大於200托、不大於100托、 不大於75托、不大於1〇毫托(1〇-3托)、不大於5毫托、不大 於2毫托、不大於1毫托、不大於〇·5毫托或不大於〇1毫托 及/或至少50托或至少75托時,以至少5 kW、至少30 kW、 至少50 kW、至少60 kW、至少65 kW、至少75 kW、至少 100 kW、至少150 kW、至少200 kW、至少250 kW、至少 3 50 kW、至少400 kW、至少500 kW、至少6〇〇 kW、至少 160979.doc -39- 201240527 750 kW或至少l,〇〇〇 kW及/或不大於25〇〇 kw、不大於 1,500 kW或不大於l’OOO kW之一速率接納微波能並可將其 引入至一微波加熱器(視需要稱為一真空微波加熱器或一 真空微波乾燥器)中而在阻流器處或接近阻流器處實質上 無發弧* 現參考圖7a ’提供用於在關閉門634時實質上抑制一微 波加熱器之一門634與一容器本體632之間的微波能洩漏之 一微波阻流器650之一項實施例之一剖面段。如圖7a中所 展示,當關閉門634且各別門側633及本體侧63丨密封表面 彼此直接或間接接觸時,微波阻流器650之至少一部分協 作地界定或形成於門634與容器本體632之間。在一項實施 例令,亦可存在一選用流體密封構件66〇以抑制、最小化 或實質上防止進出微波加熱器之流體之洩漏,如先前所論 述。流體密封構件660(當存在時)可耦合至容器本體632或 (如圖7a中所展示)耦合至門。 根據圖7a中所展示之一項實施例中,微波阻流器65〇界 定一第一徑向延伸阻流器腔652、一第二徑向延伸阻流器 腔6 5 4及在關閉微波加熱器之門6 3 4時至少部分地安置於第 一阻流器腔652與第二阻流器腔654之間的一徑向延伸阻流 器導流壁656。在圖7a中所圖解說明之一項實施例中,當 關閉門634時第一阻流器腔652界定於容器本體632與阻流 器導流壁656之間,而第二阻流器腔654至少部分地安置於 .門634與阻流器導流壁656之間,以使得阻流器導流壁656 實質上耦合至門634。第一阻流器腔652可對微波加熱器之 I60979.doc -40· 201240527 内。p開放且可徑向定位於微波加熱器之内部與 件啊當存在時)形成之流體密封之間。在本發明之 施例(圖7a中未展示)中,第二阻流 器腔654可至少部八地由 容器本〜體632界定’以使得當關閉門咖時第二阻流器腔 654可定位於容器本體632與阻流器導流壁656之間,以使 得阻流器導流壁656實質上耦合至容器本體632。 在一項實施例中,當關閉門634時第二阻流器腔之至 少-部分可靠攏著第一阻流器腔652之至少一部分延伸。 在-項實施例中’當關閉門634時第二阻流器腔…之總長 度之至少40%、至少60%、至少8〇%或至少9〇%可靠攏著第 一阻流器腔654延伸。第一阻流器腔652及/或第二阻流器 = 654之總、長度(在圖〜中用字母「L」#定)可係微波加熱 器内邠之微波能之主要波長長度之至少1/;16倍、至少"8 倍、至少1/4倍及/或不大於丨倍、不大於3/4倍或不大於ι/2 倍。第一阻流器腔652及/或第二阻流器腔654長 至少1英尺、至少丨.5英尺、至少2英尺或至少2.5英度尺及: 不大於8英尺、不大於6英尺或不大於5英尺。 如圖7b中所圖解說明,一相對延伸角①可界定於第一阻 流器腔652之延伸方向(由線690指定)與第二阻流器腔之 延伸方向(由線692指定)之間。在各種實施例中,相對延伸 角Φ可係不大於60。、不大於45。、不大於30。或不大於 15在某些實施例中,第一阻流器腔6 5 4之延伸方向可實 質上平行於第一阻流器腔652之延伸方向,如圖7a中所繪 示〇 160979.doc 201240527 現參考圖7c,提供一微波阻流器之一局部等軸剖面部 分。如圖7c中所展示,阻流器導流壁656可整體地形成至 門634中。根據一項實施例,導流壁656可包括沿導流壁 656圓周地安置之複數個經隔開之開端式間隙67〇。在一項 實施例中,該等間隙中之每一者之中心線之間的間隔可係 至少0.5英吋、至少丨英吋、至少2英吋或至少25英吋及/或 不大於8英吋、不大於6英吋或不大於5英吋。 根據本發明之另一實施例,阻流器650之至少一部分可 包括可移除地柄合至容器本體632或門634之一可移除部分 651。在一項實施例中,可移除部分651可係可移除地耦合 至門634。如本文中所使用,術語「可移除地耦合」意指 以使得可在實質上不損壞或破壞容器本體、阻流器及/或 門之情況下移除阻流器之一部分之一方式附接。在一項實 施例中’可移除阻流器部分651可包括導流壁656之至少一 部分或全部。圖7d圖解說明具有至少一個可移除部分651 之一微波阻流器。在圖7 d中所繪示之一項實施例中,導流 壁656可麵合至可移除阻流器部分hi。可移除阻流器部分 651可包括各自可移除地耦合至門634或容器本體632(實施 例未展示)之複數個可移除阻流器段653a至653e »在一項 實施例中,可移除阻流器部分651可包括至少2個、至少3 個、至少4個 '至少6個、至少8個及/或不大於16個、不大 於12個、不大於1 〇個或不大於8個可移除阻流器段653。根 據其中可移除阻流器部分65 1具有一大體環形直徑之一項 實施例’可個別移除阻流器段653a至653e可具有一大體弧 160979.doc •42· 201240527 形形狀,如圖7d中所展示。 可移除阻流器部分651可根據任一習知方法(包含(舉例 而言)螺栓、螺釘或任一其他類型之適合可移除緊固裝置) 緊固至門634或容器本體632。在一項實施例中,可移除阻 流器部分651可磁性地緊固至門634或容器本體632。部分 地端視期望之緊固方法,可移除阻流器部分651可具有各 種各樣之剖面形狀。舉例而言,如圖7e至7h中所圖解說 明,可移除阻流器部分651可界定大體G形(如圖7e中所展 示)' 大體J形或U形(如圖7f中所展示)、大體[形(如圖化中 所展示)或大體1形(如圖7h中所展示)之一剖面。 在操作中’可在不移除容器本體632及/或門634之部分 或實質上再機械加工容器本體632及/或門634之情況下附 接、移除及/或隨後替換可移除阻流器部分651以恢復微波 加熱器之正常操作。舉例而言,在一項實施例中,複數個 可個別移除阻流器段653a至653e可單獨地且個別地附接至 門634及/或容器本體632。隨後,當微波阻流器之一或多 個部分變得受損或以其他方式需要替換時,一或多個可個 別移除阻流器段653及/或整個可移除阻流器部分65丨可單 獨地且個別地自容器本體632或門634拆卸或移除並用一或 多個新(例如,替換)可移除阻流器段653及/或一新可移除 阻流器部分651替換。在一項實施例中,可自容器本體632 或門034拆卸且接著再附接至容器本體632或門634(例如, 自其移除且替換至其上)之可移除阻流器段653a、653b、 653c、653d及/或653e之數目可至多或不大於係可移除部分 160979.doc •43- 201240527 651之阻流器段653a至653e之總數目。 微波加熱器53 0(在圖6中一般性地表示)可端視其中之微 波能表現如何而分類為一單模式腔、一多模式腔或一準光 學腔。如本文中所使用,術語「單模式腔」係指經設計及 操作以將其中之微波能維持為一單個、特定模式型樣之一 腔。經常地,一單模式腔之設計及性質可限制容器之大小 及/或一負載可如何定位於該室内。因此,在一項實施例 中,微波加熱器530可包括一多模式或一準光學模式腔。 如本文中所使用,術語「多模式腔」係指其中以一半隨機 或未經引導方式將微波能激發成複數個駐波型樣之一腔或 室。如本文中所使用,術語「準光學模式腔」係指其中以 一爻控方式朝向一特定區域引導大部分但並非全部能量之 一腔或室。在一項實施例中,一多模式腔在接近容器之中 心處具有比一準光學腔高之一能量密度,而準光學腔可利 用微波能之準光學性質以更緊密地控制及引導至腔内部中 之能量之發射。 翻回至圖5中所圖解說明之微波加熱系統42〇,微波分佈 系統440可操作以將由微波產生器422生產之微波能之至少 一部分傳輸或引導至微波加熱器430中,如上文簡單地論 述。如圖5中示意性地展示,微波分佈系統44〇可包含可操 作地搞合至一或多個微波發射器(圖解說明為發射器444a 至444c)之至少一個波導442。視需要,微波分佈系統44〇 可包括用於改變穿過其之微波能之模式之一或多個微波模 式轉換器446及/或用於將微波能選擇性地路由至微波發射 160979.doc •44- 201240527 器444a至444c中之一或多者之一或多個微波切換器(未展 示)。現將在下文中詳細論述關於微波分佈系統440之特定 組件及各種實施例之額外細節。 波導442可操作以將微波能自微波產生器422輸送至微波 發射器444a至444c中之一或多者。如本文中所使用,術語 「波導」係指能夠將電磁能自一個位置引導至另一位置之 任一裝置或材料。適合波導之實例可包含(但不限於)同軸 電纜、包覆光纖、填充電介質之波導或任一其他類型之傳 輸線。在一項實施例中,波導442可包括用於將微波能自 微波產生器422輸送至發射器444a至444c中之一或多者之 一或多個填充電介質之波導段。 波導442可經設計及建構以按一特定主要模式傳播微波 能。如本文中所使用,術語「模式」係指微波能之一大體 固疋剖面場型樣。在本發明之一項實施例中,波導442可 經組態以按一 TE叮模式傳播微波能,其中$係自1至5之範 圍中之一整數且;;係0。在本發明之另一實施例中,波導 442可經組態以按一丁河^模式傳播微波能,其中&係〇且b係 自1至5之範圍中之一整數。應理解,如本文中所使用,在 用以闡述微波傳播之—模式時之^小χ及少值之上文所界 定範圍貫穿此說明適用。進-步地,在某些實施例中,當 一系統之兩個或兩個以上組件闡述為「TMa6」或「ΤΕ”」 組件時’對於每一組件,β6 '文及/或^之值可係相同或不 同。在一項實施例中,對於-既定系統之每-組件,α、 办、Λ:及/或;;之值係相同。 160979.doc •45- 201240527 波導442之形狀及尺寸可至少部分地取決於將穿過其之 微波能之期望模式。舉例而言,在一項實施例中,波導 442之至少一部分可包括具有一大體矩形剖面之TE"波 導,而在另一實施例中,波導442之至少一部分可包括具 有大體圓形剖面之TMai>波導。根據本發明之一項實施例, 圓形剖面波導可具有至少8英对、至少丨〇英吋、至少丨2英 吋、至少24英吋、至少36英吋或至少4〇英吋之一直徑。在 另一實施例中,矩形剖面波導可具有至少丨英吋、至少2英 吋、至少3英吋及/或不大於6英吋、不大於5英吋或不大於 4英吋之一短尺寸,而長尺寸可係至少6英吋、至少丨❶英 吋、至少12英吋、至少18英吋及/或不大於5〇英吋、不大 於35央忖或不大於24英忖。 如圖5中示意性地圖解說明,微波分佈系統44〇可包括可 細作以改變穿過其之微波能之模式之一或多個模式轉換段 446。舉例而言,模式轉換器446可包括用於將微波能之至 少一部分之模式自一 TMai模式改變至一 ΙΕ"模式之一 ΤΜ& 至ΤΕ〇模式轉換器。在另一實施例中,模式轉換段446可 包括用於接收TMw模式能量並將呈一 ΤΕ^模式之微波能轉 換及排放之一 ΤΕ”至TMai模式轉換器。α、6、工及^之值可 在先前所闡述之範圍内。微波分佈系統44〇可包括任意數 目個模式轉換器446,且在一項實施例中可包含定位於微 波分佈系統440内之各種位置處之至少i個、至少2個、至 少3個或至少4個模式轉換器。 再次翻至圖5,微波分佈系統440可包括用於經由波導 160979.doc -46· 201240527 442自產生器422接收微波能並將該微波能之至少一部分發 射或排放至微波加熱器430之内部中之一或多個微波發射 器444。如本文中所使用’術語「微波發射器」或「發射 器」係指能夠將微波能發射至一微波加熱器之内部中之任 一裝置。根據本發明之各種實施例之微波分佈系統可採用 至>> 1個、至少2個、至少3個、至少4個、至少5個、至少ό 個、至少8個、至少10個及/或不大於1〇〇個、不大於5〇個 或不大於25個微波發射器。微波發射器可係任一適合形狀 及/或大小且可由任何材料建構,包含(舉例而言)選定碳 鋼、不銹鋼、鎳合金、鋁合金及銅合金。在其中微波分佈 系統440包括兩個或兩個以上微波發射器之一項實施例 中,每一發射器可由相同材料製成,而在另一實施例中, 兩個或兩個以上發射器可由不同材料製成。 在操作中,由一或多個微波產生器422產生之微波能可 視需要經由波導442路由或引導至一或多個模式轉換器446 (右存在)。此後,波導442中之微波能可在被引導至一或多 個微波發射器(在圖5中圖解說明為4443至444c)之前視需要 地分裂成兩個或兩個以上單獨微波部分(例如,如圖5中所 展示之至少三個部分)。微波發射器444a至444c可部分地 或整體地安置於微波加熱器43〇内且可操作以經由一或多 個經隔開之發射位置將通行至其之微波能之至少一部分引 入或發射至加熱器430之内部中,藉此加熱及/或乾燥安置 於其中之物件、物品或負載,包含(舉例而言)—或多個木 材束。現將在下文中詳細論述關於微波加熱系統之各種實 160979.doc •47- 201240527 施例之特定組態及細節。 現翻至圖8至10,提供根據本發明組態之微波加熱系統 之數個實施例。儘管闡述為經組態以接納及加熱一木材 束,但應理解,下文所闡述之微波加熱系統可適於在先前 所闡述之其他過程及系統中之任一者中以及其中使用微波 加熱之任一系統或過程中使用。進一步地,應理解,儘管 參考一特定圖或實施例闡述,但下文所闡述之所有元件及 組件可適於在根據本發明之一或多個實施例組態之任一微 波加熱系統中使用。 現翻至圖8a及8b,一微波加熱系統72〇之一項實施例係 圖解說明為包括一微波加熱器73〇及用於將微波能自一微 波產生器(未展示)遞送至加熱器73〇之一微波分佈系統 740。在各種實施例中,一選用真空系統(未展示)可操作以 將微波加熱器730之内部中之壓力減小至(舉例而言)不大於 550托、不大於450托、不大於35〇托、不大於3〇〇托不大 於250托、不大於200托、不大於15〇托、不大於1〇〇托不 大於75托及/或不大於1〇毫托(1〇.3托)、不大於5毫托、不大 於2毫托、不大於1毫托、不大於〇5毫托或不大於〇」毫 托。下文將詳細論述微波加熱系統72〇之一或多個實施例 之數個特徵。 現翻至圖8a,微波分佈系統74〇係圖解說明為包括一經 伸長之波導發射器760,其至少部分地且可整體地安置於 微波加熱器730之内部内。如圖8a中所展示,經伸長之波 導發射器760可實質上水平地延伸於微波加熱器73〇之内部 160979.doc -48- 201240527 内。如本文中所使用,術語「實質上水平地」意指在水平 面之10。内。在一項實施例中,經伸長之波導發射器76〇之 長度對微波加熱器730之内部空間之總長度之比率可係(舉 例而言)至少0.3:1、至少〇·5:1、至少〇 75:1或至少〇9〇:ι。 在項實施例中,貫質上水平地延伸之經伸長之波導發射 器760可位於朝向微波加熱器73〇之内部體積之上半部或下 半部處且可至少部分地或整體地垂直安置於加熱器入口門 738及一選用加熱器出口門(未展示)上面,該選用加熱器出 口門(若存在)安置於微波加熱器73〇之一大體相對端上。如 本文中所使用’術語「上部」及「下部」冑積係指位於容 器之内部體積之上部垂直或下部垂直部分中之區。在一項 實施例中’經伸長之波導發射器76〇可(舉例而言)整體地安 置於微波加熱器730之内部體積之最上部三分之一、四分 之一或五分之一内,而在另一實施例中,經伸長之波導發 射器760可(舉例而言)安置於微波加熱器730之總内部體積 之最下部三分之一、四分之一或五分之一内。為量測上文 所闡述之總内部體積之「最上部」或「最下部」分率部 分,自容器之各別最上部或最下部壁朝向剖面之期望部分 (例如,三分之一、四分之一或五分之一)之中心伸長轴延 伸之容器剖面之部分可沿中心伸長轴延伸以藉此界定内部 容器空間之「最上部」或「最下部」分率體積。 如圖8a中所展示,可經組態以接納及加熱一木材束之微 波加熱器730包括一加熱器入口門738,其可視需要包括經 組態以允許將一木材束7〇2引入至一束接納空間739中之一 160979.doc -49- 201240527 阻流器(未展示)。儘管圖解說明為直接接觸,但應理解, 束702亦可包括安置於板之間的一或多個間隔件或「黏附 物」。在一項實施例(未展示)中,微波加熱器73〇亦可包括 疋位於微波加熱器730之與加熱器入口門738相對之端上之 -選用加#器出口門739。當微波加熱器73〇包括一單獨加 熱器出口門739時,束702可視需要經由入口門738裝載、 穿過微波加熱器730並經由出口門739卸載,而非透過加熱 器入口門738裝載及卸載。在此實施例中提及「入口」及 「出口」門並非限制性的,且束7〇2可視需要經由門739裝 載、穿過微波加熱器730並經由門738卸載。此外,在另一 實施例中* (舉例而言)不存在選用出口門739時,束702 可既自入口門738裝載(插入)又自入口門738卸載(移除)。 在項貫施例中,經伸長之波導發射器760可定位於微波 加熱器730中實質上在束7〇2下面(未展示)或上面以使得當 束702通行至加熱器73〇之内部+、自加熱器別之内部通 行出及/或穿過加熱器73〇之内 部時’不必移動、移除、撤 回或以其他方式重新定位經伸長之發射器。 現參考圖8b,提供經伸長之波導發射器之—局部詳 等軸視圖|一項實施例中,經伸長之波導發射器· 了係實質上中空的且包括一或多個側壁。該一或多個側壁 °、各種各樣之方式組態以使得經伸長之波導發射器 °八有各種各樣之剖面形狀。舉例而言,在—項實施例 中’經伸長之波導發射器可具有界卜實質上圓形或 橢圓形剖面形狀之—單個側壁。在另—實施例中,如圖此 160979.doc 201240527 中所展示,經伸長之波導發射器760可包括四個實質上平 面之側壁764a至764d,其經配置以將一大體矩形橫向(或 在另一實施例中,正方形)剖面組態賦予發射器76〇。經伸 長之波導發射器760可經組態以按任一適合模式(包含te^ 及/或ΤΜβέ模式)傳播及/或發射微波能,如先前詳細論述。 根據一項實施例,經伸長之波導發射器76〇可包括一經伸 長之TExy發射器,且在一項實施例中,可實施有市售之矩 形波導大小,諸如WR284、WR43〇4 WR34(^經伸長之波 導發射器760之特定尺寸可係任何適合尺寸,且在一項實 施例中,可係定製製作的。 如圖8b中所圖解說明,經伸長之波導發射器76〇之一或 多個側壁可界定用於將微波能排放或發射至微波加熱器 730之内部中之複數個發射開口。儘管在圖扑中繪示為界 定具有帶有修圓端部之一大體矩形形狀之複數個經伸長之 槽767a至767e,但發射開口 767&至767e可具有任一適合形 狀。經伸長之槽767a至767e中之每一者可界定一長度(在 圖8b中指定為「L」)及一寬度(在圖肋中指定為「w」)。 在一項實施例中,經伸長之槽767&至7676之長度對寬度 (L:W)比率可係(舉例而言)至少2:1、至少3:1、至少七丨或至 少乂1。另外,如圖8b中所展示’經伸長之槽^〜至%〜可 相對於水平面以各種角度定向。在一項實施例中,經伸長 之槽767a至767e可相對於水平面以(舉例而言)至少1〇。、至 少20。、至少30。及/或(舉例而言)不大於8〇。、不大於7〇。或 不大於60。之一角度延伸。在一項實施例中,經伸長之槽 160979.doc -51 - 201240527 767a至767e中之每一者可具有相同形狀、大小及/或定向。 在一項實施例中’個別經伸長之槽7673至7676之形狀 '大 小及/或定向可不同。經伸長之槽767&至7676之形狀、大小 及/或定向之改變可影響自經伸長之波導發射器76〇發射之 能量之分佈。儘管在圖8b中所圖解說明之實施例中展示為 未經覆蓋’但一或多個發射開口 767可實質上由毗鄰於發 射開口之一或多個覆蓋結構(未展示)覆蓋,該一或多個覆 蓋結構可操作以防止進出開口 767之流體之流動但允許自 其排放微波能》 如圖8b中所展示,發射開口 767&至767e可係至少部分地 或整體地由經伸長之波導發射器76〇之一或多個側壁76钧 至764d界定。在一項實施例中,發射開口冗”至%〜之厚 度之至少50%、至少75。/。、至少85%或至少9〇%(舉例而言) 可由一或多個側壁764a至764d界定。根據圖8b中所圖解說 明之實施例,發射開口 76乃至76化可至少部分地或整體地 由兩個實質上直立側壁764a、764c界定。如本文中所使 用,術语「實質上直立」意指在垂直面之3〇。内。在一項 實施例中,經伸長之發射器76〇之側壁764&至764(1可係相 對厚,而在其他一項實施例中,側壁76軺至764(1可係相對 薄舉例而5,側壁764a至764d之平均厚度(在圖8b中指 定為X)可係'至少1/32(0.03125)英„才、至少1/8(〇 125)英吋、 至夕3/16(0.1875)英吁及/或(舉例而言)不大於1/2(〇 5)英 对、不大於1/4(G.25)英忖、不大於3/16(() 1875)英叶或不大 於1/8(〇·125)英时。根據其中經伸長之波導發射器760之一 160979.doc •52· 201240527 或多個側壁係相對薄之一項實施例,經伸長之波導發射器 760可以至少50%、至少75%、至少85%、至少90%或至少 95%之一微波發射效率將微波能發射至微波加熱器73〇之 内部中。如本文中所使用,術語「微波發射效率」可藉由 將以下方程式之結果轉換成一百分比來界定:(引入至發 射器中之總能量-自發射器之所有開口中排放之總能 量)+(引入至發射器中之總能量)。 發射開口 767a至767e可係根據任一適合組態或配置沿經 伸長之波導發射器760配置。在圖8b中所圖解說明之一項 實施例中,發射開口 76 7a至76 7e可包含安置於發射器760 之一個側上之一第一發射開口(例如,發射開口 767a、 767b)組及安置於經伸長之波導發射器76〇之另一大體相對 側上之一第一發射開口(例如,發射開口 767(:至7676)組。 根據一項實施例,第一發射開口組及第二發射開口組可彼 此軸向交錯,以使得對應開口(例如,展示為發射對或開 口對780a之開口 767a、767c及展示為發射對或開口對78〇b 之開口 767b、767d)並非彼此轴向對準。儘管在圖8b中圖 解說明為僅具有兩個發射開口對780a、78〇b,但應理解, 可利用任意期望數目個發射開口對。 根據一項實施例,每一發射對780a、780b包含安置於經 伸長之波導發射器760之一個側上之一個發射開口(例如, 兩者皆安置於側壁764a上之對780a之開口 767a及對780b之 開口 767b)及安置於發射器760之相對側上之另一發射開口 (例如,在圖8b中兩者皆安置於側壁764c上之對78〇a之開 160979.doc -53- 201240527 口 767c及對780b之開口 767d)。在一項實施例中,安置於 經伸長之波導發射器760之相對側上之開口 767a、767c及 開口 767b、767d可軸向對準,而在另一實施例中,相對隔 開之開口 767a、767c及開口 767b、767d可形成複數個「接 近相鄰者」對(例如,發射對780a、780b分別包括「接近 相鄰者」開口 767a、767c及開口 767b、767d)。在一項實 施例中,舉例而言,當使用偶數個發射開口時,一或多個 單端發射開口可係獨立的而不與任一其他開口形成一對。 在一項實施例中,獨立開口可係一端部開口,諸如圖8b中 所展示之端部開口 7 6 7 e。 根據其中對780a、780b包括接近相鄰者開口對之一項實 施例,發射開口對780a、780b之發射開口 767a至767d中之 至少一者可經組態以抵消如由接近相鄰者對780a、780b之 其他發射開口 767a至767d中之一或多者產生之反射回至波 導760之内部空間中之微波能之至少一部分。舉例而言, 由對780a之開口 767a所致之微波能反射可至少部分地、實 質上或幾乎整體地藉由對780a之另一開口 767b之組態而抵 消。以一類似方式,由對780b之開口 767c所致之微波能反 射可至少部分地、實質上或幾乎整體地藉由對780b之另一 開口 767d之組態而抵消。 此外,在一項實施例中,當發射開口 767a至767d配置成 接近相鄰者對時,自開口對780a、780b之發射開口 767a至 767d中之每一者傳送至微波加熱器730之内部中之能量之 總量可等於引入至發射器760中之微波能之總量之一分 160979.doc • 54- 201240527 率。舉例而言,在其中發射器包括N對發射開口及一單端 開之項霄施例中,自每一發射開口對(及/或未配對開 口或單端開口)發射之微波能之分率可由以下公式表達: 1 /(N+1)。因此,根據圖8b中所圖解說明之一項實施例(其 中N-2) ’由對780a、78〇b中之每一者發射之能量之總量可 等於引入至經伸長之波導發射器760中之總能量之1/(2 + 1) 或1/3。類似地,在此實施例中,自一未配對發射開口(例 如圖8b中之單端開口 767e)發射之能量可由公式"(N+o 表達。因此,在圖8b中所展示之實施例中,發射開口 76乃 亦可發射引入至經伸長之波導發射器76〇中之總能量之大 致 1/3。 在圖9a至9h中提供一微波加熱系統82〇之另一實施例。 如圖9a中所展示,微波加熱系統820包括一微波加熱器82〇 及可操作以將微波能自一微波產生器(未展示)輸送至加熱 器820之一微波分佈系統84〇。在一項實施例中,微波加熱 系統820亦可包括用於將微波加熱器83〇中之壓力減小至低 於大軋壓之一真空系統(未展示如圖知中所展示,微波 加熱器830可包含用於將一木材束(或其他負載)引入至加熱 器830之内部中之一加熱器入口門838。視需要,微波加熱 器830可包括安置於加熱器830之與加熱器入口門838大體 相對之端上之一加熱器出口門(圖9a中未展示)。另外,微 波加熱器830可包括位於沿微波加熱器830之一或多個外部 側壁831之各種位置處之複數個經隔開之發射開口(諸如, 在圖9a中圖解說明為841a、841b之彼等發射開口)。發射 160979.doc -55- 201240527 開口 841a、841b可操作以容納微波分佈系統840之一或多 個組件’藉此促進至微波加熱器830中之微波能之傳輸。 現將關於圖9b至9h更詳細地論述關於微波分佈系統840之 額外細節。 翻至圖9b’提供微波加熱器830之一俯視局部剖視圖, 其特定而言圖解說明直接或間接麵合至微波加熱器83〇之 相對侧壁831a、83 lb之複數個微波發射器844a至844d。如 本文中所使用’術語「間接耦合」係指用以將一或多個發 射器至少部分地連接至容器之一或多個中間設備件。發射 器844a至844d可操作以經由一或多個開放出口 8453至845d 將微波能發射至微波加熱器830之内部中,如圖9b中所展 示。儘管在圖9b中圖解說明為包括四個發射器844a至 844d ’但應理解,微波加熱器830可包括任意期望數目個 發射器。在一項實施例(未展示)中,微波加熱器830可包括 軸向定位至圖9b中之發射器844a、844b左側及/或定位至 發射器844c、844d右側之兩個額外發射器。該等額外發射 器(未展示)可面向相同方向及/或不同方向。舉例而言,在 圖9b中所展示之一項實施例中,發射器844&至844d係展示 為面向相反方向》此外,在一項實施例(未展示)中,微波 加熱器830可包括以與圖9b中所圖解說明之發射器844&至 844d類似之一方式配置之四個額外發射器,如下文進一步 闡述。 微波發射器844可係根據任一適合組態沿微波加熱器 830、在微波加熱器830内或接近微波加熱器83〇定位。在 160979.doc -56- 201240527 一項實施例中,微波發射器844可經組態以包括兩個發射 器對。該對内之個別發射器可位於微波加熱器830之大體 相同側上(例如,該對包括發射器844a及844d且另一對包 括發射器844b及844c)或位於微波加熱器830之大體相對側 上(例如’該對包括微波發射器844a及844b且另一對包括 844c及 844d)。 如本文中所使用,術語「大體相對側」或「相對側」係 指兩個發射器經定位以使得其間所界定之徑向對準角介於 自至少90。至180。之範圍中。「徑向對準角(β)」係界定為在 自每一發射器之中心至容器之中心伸長軸所繪製之兩個直 線之間形成之角。舉例而言,圖9(;展示其間界定一徑向對 準角例示性發射器845及846a。定位於一容器之大體 相對側上之兩個發射器之間的徑向對準角可係至少丨2〇。、 至少150。、至少165。及/或不大於18〇。或大致丨⑽。。在一項 實施例中,兩個發射器可定位於大體相對側壁上,如圖外 中大體繪示,而在另一實施例中,兩個相對安置之發射器 可定位於加熱器(未展示)之垂直頂部或底部處或在其附 近。 在其中-或多個發射器對包含位於一微波加熱器之大體 相對側上之個別發射器(例如,圖9b中之發射器84仆及 844a或發射器84乜及844d)之一項實施例中,該等對内之 個別發射器亦可彼此軸向對準。如本文中所使用,術語 「軸向對準」係指兩個發射器在其間界定介於自〇。至Μ。 之範圍中之一軸向對準角。如本文中所使用,「轴向對準 160979.doc •57· 201240527 角」可係由在於每一發射器之中心之間繪製之最短直線 (其亦與容器之伸長軸交又)與垂直於伸長軸繪製之一線之 間形成之角界定。在圖9d中’軸向對準角α係在於例示性 發射器845與846之中心之間繪製之線85〇與垂直於伸長軸 835a之線852之間形成。在一項實施例中,軸向對準之發 射器可界定至少0°及/或(舉例而言)不大於3〇。或不大於15〇 之一軸向對準角。 在另一實施例中’一對内之個別發射器可位於一微波加 熱器之大體相同側上。如本文中所使用,術語「大體相同 側」或「相同側」係指兩個發射器具有介於自至少或等於 0至90之範圍中之一徑向對準角β。圖%中之例示性發射 器845及846b位於微波加熱器之大體相同側上,此乃因其 間所界定之徑向對準角(例如,βζ)係不大於9〇。。在一項實 施例中,安置於一微波加熱器之相同側上之兩個發射器可 界疋至少0及/或不大於60。、不大於3〇。及不大於15。或大 致0°之一徑向對準角。 在其中一或多個發射器對包含位於一微波加熱器之大體 相同側上之個別發射器(例如,圖外中之發射器844a及 844d或發射器844b及844c)之一項實施例中,該等對内之 個別發射器亦可彼此軸向她鄰。如本文中所使用,術語 「軸向毗鄰」係指兩個或兩個以上發射器定位於一微波加 熱器之相同側上以使得彼側上無其他發射器安置於軸向毗 鄰發射器之間。根據其中一微波分佈系统包括兩個或兩個 以上相對定位之微波發射器對之一項實施例,來自第一對 160979.doc -58· 201240527 之一個發射器係安置於與來自第二對之一個發射器大體相 同之側上’藉此形成一軸向她鄰發射器對。 如圖9b中所圖解說明,微波發射器844&至844£1中之每一 者可界定用於將微波能發射至微波加熱器830之内部中之 一各別開放出口 845a至845d。開放出口可經定位以按任一 適合型樣或沿任一適合方向將能量發射至微波加熱器8 3 〇 之内部中。舉例而言,在圖9b中所展示之一項實施例中, 轴向她鄰發射器之開放出口(例如,發射器844a、844d之 出口 845a、845d及發射器 844b、844c之出口 845b、845(〇可 經定向以沿實質上平行於該等發射器耦合至之外部側壁 (例如,發射器844a、844d之側壁83 la及發射器844b、844c 之側壁83 lb)之一方向面向彼此,藉此沿彼大體方向排放 微波能。如本文中所使用,術語「實質上平行」意指在平 行面之ίο。内。在一項實施例中,開放出口 845&至845d中 之至少一者可經定向以實質上平行於微波加熱器83〇之伸 長軸(在圖9b中指定為線835)來排放能量。根據一項實施 例’開放出口 845a至845d中之至少一者可經定向而朝向加 熱器830之一軸向中點。如本文中所使用,一容器之「軸 向中點」係由正交於伸長軸835且與伸長軸835之中點839 父叉之一平面界定,如圖9b中所展示。在一項實施例中, 開放出口 845a至845d中之每一者經定向而朝向加熱器83〇 之轴向中點以使得前侧發射器844a、844b之開放出口 845a、845b實質上面向背側發射器844c、844d之開放出口 845c、845d ’如圖9b中所繪示。 160979.doc -59- 201240527 根據一項實施例’在操作中,由一或多個微波產生器 (未展示)生產之微波能可經由波導842a至842d輸送至發射 器844a至844d ,發射器844a至844d將能量發射至微波加熱 器830之内部中。儘管圖9b中未圖解說明,但可使用任意 數目或組態之微波產生器以生產供用於微波加熱系統82〇 中之微波能。在一項實碓例中,可使用一單個產生器以經 由波導842a至842d及發射器844將能量供應至加熱器830, 而在另一實施例中,加熱系統82〇可包含兩個或兩個以上 產生器。根據另一實施例’可利用一或多個微波產生器之 一網路以使得實質上同時自微波發射器844&至84牝中之至 少一者、至少兩者、至少三者或全部四者發射微波能。在 一項實施例中,一或多個發射器844a至844d可耦合至一單 個產生器且可使用一或多個微波切換器在該等發射器當中 分配來自該產生器之能量。在另一實施例中,發射器844a 至844d中之一或多者可具有一單獨專用產生器,以使得將 由彼產生器生產之微波能之至少75%、至少9〇%或實質上 全部路由至一單個發射器。稍後關於圖丨丨a及丨丨b提供關於 微波產生器、波導及發射器以及其操作之特定實施例之額 外細節。 由波導段842a至842d傳播之微波能可呈任一適合模式, 包含(舉例而言)一 T1VU模式及/或一 TEj^模式,其中β、办、 x及少具有如先前所界定之值。在一項實施例中,波導段 842a至842d各自包括ΤΕ叮波導段,其中段842&及842(1經組 態以穿透側壁83 1 a且段842b及842c經組態以穿透側壁83 lb 160979.doc •60· 201240527 並朝向伸長軸835徑向延伸至微波加熱器830之内部中,如 圖9b中所展示。 根據本發明之一項實施例,傳播通過波導段842a至842d 之微波能之模式可在被發射至微波加熱器830之内部中之 刖(或與其同時)改變。舉例而言,在一項實施例中,由微 波產生器(圖9b中未展示)生產之TEj〇;模式能量可在穿過一 或多個模式轉換段(在圖9b中表示為模式轉換器85〇a至 85 0d)之後被發射至微波能中作為模式能量。模式轉 換器可具有任一適合大小及形狀且可在微波分佈系統840 中使用任意適合數目個模式轉換器。在一項實施例中,一 或多個模式轉換器850a至850d可安置於微波加熱器“ο之 内部空間(體積)外側,而在另一實施例中,模式轉換器 85 0a至850d可部分地或整體地安置於微波加熱器83〇之内 部内。模式轉換器850a至850d可位於側壁831a、831b中或 附近,或(如圖9b中所圖解說明)可與微波加熱器830之外部 側壁83 la、83 lb隔開。 根據其中模式轉換器850&至850d部分地或整體地安置於 加熱器830内之一項實施例,微波能可最初以一 TE叮模式 進入微波加熱器,且隨後該能量之至少—部分可經轉換以 使得自發射器844a至844d發射至微波加熱器“ο之内部中 之能量之至少一部分可呈一TM&模式。在一項實施例中, 波導段842a至842d可包括可操作以按—TE^模式將微波能 自產生器傳輸至加熱器83〇之TExy波導段。在一項實施例 中,TE,y波導段842a至842d之至少一部分可整合至發射器 160979.doc -61- 201240527 844a至844d中,如圖9b中所繪示。當能量自波導段842a至 842d穿過模式轉換器850a至850d時,能量被轉換成一 模式。隨後,退出模式轉換器850a至850d之丁]^。6模式能量 可接著在經由TM&開放出口 845a至845d排放至加熱器83〇 中之前穿過一各別TMa<)波導段843a至843d,在9b中圖解說 明為整體地安置於微波加熱器830之内部内且與其側壁833 隔開。 根據圖9e中所繪示之另一實施例,微波加熱系統820可 包括一或多個反射器890a至890d,其定位於開放出口 845a 至845d附近且可操作以反射或散射自發射器料钧至以牝發 射至微波加熱器830中之微波能。在一項實施例中,該等 反射器可係固定或靜止反射器,以使得在反射器之位置不 改變時反射或散射能量。在圖9e中所圖解說明之另一實施 例中,反射器890中之一或多者可係一可移動反射器,其 可操作以改變位置以將微波能反射或散射至微波加熱器 830中。圖9e中之每一可移動反射器89〇&至89〇(1具有一各 別反射表面891a至891d用於反射或散射自微波發射器84牦 至844d發射之能量。如圖%中所展示,每一反射表面可與 外部側壁831a、83 lb隔開且可經定位以使得發射器84乜至 844d之各別發射開口 84^至845d中之一或多者面向其各別 反射表面89la至89Id,反射表面891 &至891(1又經定位以接 觸、引導或反射來自發射開口 845&至845d之微波能之至少 一部分。在一項實施例中,自微波發射器84牦至84牝發射 之微波能之至少一部分或實質上全部可至少部分地接觸各 160979.doc -62 - 201240527 別反射器表面891 a至891d且可至少部分地由其反射或散 射。在一項實施例中,反射表面89 la至89 Id中之一或多者 可經定向以面向實質上平行於外部側壁831a、83 lb之伸長 方向之一方向。 在一項實施例中,反射器表面8913至891d可係實質上平 面的,而在其他實施例中,一或多個反射器表面至 89Id可係非平面的。舉例而言,在一項實施例中,一或多 個非平面反射器表面89^至891d可界定如由圖%中所繪示 之實施例所圖解說明之一曲率。反射器表面891&至891<1可 係平滑的或可具有一或多個凸狀體。如本文中所使用術 語「凸狀體」係指一反射器之一區,其係可操作以自其散 射而非反射能量之表面。在一項實施例中,一凸狀體可具 有一大體凸面形狀,如藉由圖町及9g中所展示之凸狀體 893a、893b之實例所圖解說明。在另一實施例中,一凸狀 體可具有一大體凹面形狀,諸如(舉例而言)一凹坑或其他 類似凹痕。 根據本發明之一項實施例,一或多個反射器的“至的⑽ 可係可移動反射器。可移動反射器可係可操作以改變位置 之任何反射器。在一項實施例中,可移動反射器的“至 890b可係能夠以一指定型樣(諸如(舉例而言)一大體上下型 樣或圍繞一轴旋轉之一型樣)移動之振盪反射器。在一項 實施例中’可移動反射ϋ可係可操作以按各種各樣之隨機 及/或無計劃移動中之任一者移動之可隨機移動反射器。 可移動反射器890a至890(1可根據任一適合方法可移動地 160979.doc -63 - 201240527 搞合至微波加熱器830。舉例而言,在圖9i中所圖解說明 之一項實施例中,微波加熱器830可包括在加熱器830之内 部空間内之用於可移動反射器890之一反射器驅動器系統 (或致動器)899。如圖9i中所展示,反射器驅動器系統899 可包括一或多個支撐臂892 ’其將反射器890可緊固地耗合 至一振盪轉軸893。為致使轉轴893旋轉且藉此以一進出型 樣移動反射器890(如由箭頭880大體指示),一馬達898可使 一輪896(—線性轉轴895可以一大體偏離中心之方式耗合 至其)轉動。如由箭頭881所指示,轉轴895可在輪896轉動 時以一大體上下方式移動’藉此致使一槓桿臂894繞樞軸 897旋轉轉軸893,如由箭頭882大體指示。因此,反射器 890可如由箭頭880大體指示來移動且可操作以按至少部分 地藉由反射器890之移動而判定之一型樣來反射或散射自 微波反射器844之排放開口 845發射之微波能之至少一部 分。 在圖10a至l〇f中展示一微波加熱系統920之又一實施 例。如在圖l〇a之一項實施例中所圖解說明,一微波加熱 器930包括用於將一木材束9.02裝載至加熱器930之内部中 之一加熱器入口門938及用於自微波加熱器930移除束902 之一加熱器出口門93 9。儘管在圖10a中圊解說明為包含單 獨之入口門938及出口門939,但應理解’在另一實施例中 微波加熱器930可僅包含用於自微波加熱器930之内部裝載 木材束902及卸載木材束902兩者之一單個門。在圖1〇&中 所展示之實施例中,加熱器入口門93 8及加熱器出口門939 160979.doc • 64 - 201240527 可位於微波加熱器93Ό之大體相對侧上以使得束902可經由 一輸送機構(諸如(舉例而言)一搬運車(未展示))大體穿過加 熱器930。另外’微波加熱系統92〇可包括用於控制加熱器 930中之壓力之一選用真空系統(未展示)。 如圖10a中所展示’微波加熱系統920可包含一微波分佈 系統940,該微波分佈系統包括界定於微波加熱器93〇之一 外部側壁93 1中之複數個經隔開之發射開口 94丨a至94丨d。 每一發射開口 941可操作以接納用於將能量發射至微波加 熱器930之内部中之一微波發射器(未展示微波發射器可 至少部分地或整體地安置於微波加熱器93〇之内部内。稍 後將更詳細地論述一或多個類型之微波發射器之特定實施 例。 根據一項實施例’由一微波產生器(未展示)生產之微波 能可在穿過外部TE叮至ΤΜαί)模式轉換器950a至950d(其將 穿過其之能量轉換成一 ΤΜβί)模式)之前以一 ΤΕ^模式傳輸 通過波導段942a至942d。所得TMai)模式微波能可接著經由 各別波導段942e至942h退出模式轉換器950a至950d,如圖 l〇a中所圖解說明。此後,TMfl6波導段9426至942}1中之微 波能之至少一部分可在經由波導段942i至9421進入微 波加熱器930之前穿過各別阻障總成97〇&至97〇d。如本文 中所使用,術語「阻障總成」可係指可操作以流體地隔離 微波加熱器與一外部環境而仍准許微波能穿過其之任一裝 置。舉例而言,在圖1 〇a中所展示之一項實施例中,各別 阻障總成970a至970d可各自包括至少一個密封窗構件972& 160979.doc •65· 201240527 至72d其可係微波能可透過的,但提供每一上游942e至 942h TMai波導段與下游942i至9421 ΤΜ“波導段中之每一 者之間的—期望程度流體隔離。如本文中所使用,術語 「密封窗構件」係指以如下之一方式組態之一窗構件:其 將提供®構件之任一側上之兩個空間之間的充分流體隔離 以允許跨越此窗構件維持一壓力差。現將關於圖l〇b論述 關於阻障總成97〇&至97〇(1之特定實施例之額外細節。 根據本發明之一項實施例組態之阻障總成甚至在高能量 通量及/或低操作壓力下亦最小化或消除發弧。根據本發 明之一項實施例,每一阻障總成97〇a至97〇d可准許能量以 至少5 kW、至少3〇 kW、至少50 kW、至少00 kW、至少65 kW、至少75 kW、至少1〇〇 kW、至少150 kW、至少200 kW、至少250 kW、至少350 kW、至少400 kW、至少500 kW、至少600 kW、至少750 kW或至少1,〇〇〇 kW及/或不大 於2,500 kW、不大於uoo kw或不大於1〇〇〇 kw之一速率 穿過其各別窗構件972a至972d,而微波加熱器930中之壓 力可係不大於550托、不大於450托、不大於350托、不大 於250托、不大於2〇〇托、不大於15〇托、不大於1〇〇托或不 大於75托。在一項實施例中,微波加熱器中之壓力可係不 大於10毫托、不大於5毫托、不大於2毫托、不大 托、不大於0.5毫托或不大於〇1毫牦。在一項實施例中, 穿過阻障總成970a至970d之微波能可經引入以使得磁場維 持低於發弧之臨限值以藉此防止或最小化阻障總成97〇&至 970d中之發弧。 160979.doc -66 - 201240527 現翻至圖l〇b,提供一阻障總成97〇之一軸向剖面圖。阻 障總成970包括安置於一阻障殼體973内之一第一密封窗構 件972a及一選用第二密封窗構件972b。當存在時,第二密 封窗構件972b可操作以與第一密封窗構件972a協作以提供 上游(例如·’入口)TMai)波導段975a與下游(例如,出 口)TM&波導段975b之間的一期望位準之流體隔離同時准 許微波能之至少一部分自第一 波導段975a通行至第二 TMfli波導段975b。根據一項實施例,第一ΤΜ“波導段975& 及第二ΤΜα6波導段975b可具有圓形圓柱形剖面。在一項實 施例中,波導段975a、975b可係其中可安置有阻障總成 970之一單個連續波導之兩個端,而在另一實施例中,波 導段可係適合地緊固或耦合至阻障總成970之任一側之兩 個單獨波導部分或組件。 如圖l〇b中所展示’阻障殼體973可包括一第一或入口區 段973a、一選用第二或中間區段973b及第三或出口區段 973c ’其中第一密封窗構件972a安置於第一區段973a與第 二區段937b之間且第二密封窗構件972b安置於第二區段 973b與第三區段937c之間。根據一項實施例,第一段 973 a、第二段93 7b及第三段93 7c中之每一者之壓力可係不 同的。舉例而言,在一項實施例中,第一段973a之壓力可 大於第一知· 973b之壓力,第二段973b之壓力可大於第三段 973c之壓力。阻障殼體973之第一段973a、第二段937]3及 第三段937 c中之每一者可藉由諸如(舉例而言)螺釘、螺栓 及諸如此類之任一適合緊固裝置(未展示)固持在一起。此 160979.doc •67* 201240527 外’阻障總成970a至970d亦可包括變更微波輻射之阻抗之 一或多個阻抗變換器。一實例圖解說明為在圖1〇b中所展 示之實施例中之阻抗變換直徑臺階式改變974a、947b,其 用於最大化自微波產生器(未展示)至微波加熱器(未展示) 中之負載之能量傳送。在一項實施例中,阻抗變換直徑臺 階式改變974a、974b可位於密封窗構件972a、972b中之至 少一者附近’而在另一實施例中,臺階式改變974a、974b 可位於入口 波導975a及/或出口 ΤΜα6波導975b附近或 至少部分地由入口 TMa6波導975a及/或出口 TMei)波導975b 界定β 如圖10a及10b中所圖解說明,密封窗構件972a、972b可 包括一或多個盤。每一盤可由具有一適合程度之耐蝕性、 強度、流體不透過性及微波能透過性之任何材料建構。適 合材料之實例可包含(但不限於)氧化鋁、氧化鎂、二氧化 石夕、氧化鈹、氮化硼、富鋁紅柱石及/或聚合物(諸如,鐵 氟龍(TEFLON))。根據一項實施例,盤之損耗正切可係不 大於2X10·4、不大於lxl〇-4、不大於7 5χ10·5或不大於5xl〇-S。 該等盤可具有任一適合剖面。在一項實施例中,盤可具 有與鄰接波導975a、975b之剖面相容之一剖面。在一項實 施例中,§玄專盤可具有一實質上圓形剖面且可具有等於穿 過阻障總成970之微波能之主要波長之長度之至少1/8、至 少1/4、至少1/2及/或不大於1、不大於3/4或不大於ι/2之一 厚度(在圖10b中才曰疋為「X」)。該等盤之直徑可係一或多 個鄰接波導975a、975b之直徑之至少5〇%、至少6〇%、至 160979.doc •68- 201240527 少75%、至少90%及/或不大於95%、不大於85%、不大於 70%或不大於60%。 密封窗構件972a至972d之每一盤可以任一適合方式可操 作地耦合至各別阻障總成970a至970d。在一項實施例中, 密封窗構件972a至972d中之每一者可包括撓性地耦合至阻 障殼體973及/或密封窗構件972a、972b之一或多個密封裝 置。如本文t所使用,術語「撓性地耦合」意指經緊固、 附接或以其他方式配置以使得該等構件在不直接接觸一或 多個剛性結構之情況下固持在適當位置。舉例而言,在圖 1 Ob中所展示之一項實施例中,阻障總成970可包括複數個 彈性環982a、982b及984a、984b,其壓縮在阻障殼體973 之各種段973a至973c之間且可操作以將密封窗構件972a、 972b撓性地耦合至阻障殼體973中。 根據一項實施例,每一各別上游彈性環982a、982b及下 游彈性環984a、984b可操作以充分地防止或限制阻障總成 970之第一區段973a與第二區段973b及/或第二區段973b與 第三區段973c之間的流體流動。舉例而言,當經受根據使 用一 Varian型號第938-41號债測器之由Alcatel Vacuum Technology 發佈之標題為「Helium Leak Detection Techniques」之文件中闡述之標題為「Spraying Testing」 之程序B1之一氦洩漏測試時,密封窗構件972a至972d及/ 或阻障總成970a至970d之流體洩漏率可係不大於10_2托·升/ 秒、不大於10_4托·升/秒或不大於10_8托·升/秒。另外,密 封窗構件972a、972b中之每一者可個別地可操作以維持或 160979.doc •69· 201240527 承受跨越密封窗構件972a、972b及/或阻障總成970之一壓 力差而不破裂、裂開、毀壞或以其他方式出故障,該壓力 差在數量上係諸如至少0.25 atm、至少0.5 atm、至少〇_75 atm、至少0.90 atm、至少1 atm或至少1.5 atm等。 現翻至圖10c ’提供一剖面微波加熱系統920。圖i〇c中 所繪示之微波加熱系統包含一微波分佈系統940,其包括 安置於一微波加熱器930之大體相對側上之至少一個微波 發射器對(例如,發射器944a及944h)。儘管在圖i〇c中展示 為包含一單個發射器對’但應理解,微波分佈系統940可 進一步包括一或多個額外的經類似(或稍微不同)組態之微 波發射器對’其在某些實施例中使一個發射器來自安置於 微波加熱器93 0之大體相對側上之每一對。進一步地,在 另一實施例(圖10c中未展示)中,微波分佈系統940可包括 定位於微波加熱器93 0之大體相同側上之兩個或兩個以上 垂直隔開微波發射器列》在一項實施例中,微波加熱器 930之每一側可包含兩個或兩個以上垂直隔開發射器列, 以使得來自每一相對安置對之一個發射器可位於比來自另 一相對安置對之一個發射器高之一垂直高度處。舉例而 言’在一項實施例中,發射器944a及/或944h可定位於比 圖10c中所繪示稍微高之一垂直高度處,且另一發射器對 可經定位以使得兩個發射器中之一者將定位於微波加熱器 930之相同側上但在比發射器944a大體較低之一垂直高度 處,且另一發射器將定位於微波加熱器93〇之相同側上但 在比發射器944h大體較低之一垂直高度處。此外,儘管展 160979.doc -70, 201240527 示為分裂發射器944a、944h,但在一項實施例中,該等垂 直隔開之發射器可係本文中所闡述之任一類型(或任一類 型組合)之微波發射器。 如圖10c中所展示’微波分佈系統940包括耦合至至少一 個微波發射器944a、944h對之複數個波導段942。舉例而 言,如圖10c中之實施例中所展示,發射器944a可耦合至 波導段942a、SM2e及942i ’而發射器944h可耦合至波導段 942x、942y及942z ’其可操作以將微波能自一或多個微波 產生器(圖10c中未展示)遞送至微波加熱器930之内部。在 一項實施例中,微波分佈系統940可包含耦合至波導段942 中之一或多者之一或多個模式轉換器947a至947d,如圖 1 〇c中所展示。根據一項實施例,模式轉換器947a至947d 可操作以將穿過其之微波能之傳輸模式自一 TE;^模式改變 成一 TMa6模式(亦即’一 ΤΕ^至TMai)模式轉換器)或自一 T1VU模式改變成一Τυ莫式(亦即,一至ΤΕΧ>)模式轉 換器)。舉例而言’如圖l〇c中所展示,模式轉換器947a及 947c可各自可操作以在傳輸通過波導942a及942χ之微波能 通行至波導942e及942y中時將該微波能自一 τελ>)模式轉換 成一 ΤΜα&模式。如先前所論述,〇、厶、尤及少之值可相同或 不同且可具有上文所提供之值。視需要,模式轉換器947b 及947d可操作以將傳輸通過波導942e及942i之微波能以及 傳輸通過942y及942z之能量自一 TMa6模式轉換成一 TE;〇;模 式。 進一步地,在圖10c中所圖解說明之一項實施例中,模 160979.doc -71 - 201240527 式轉換器947a至947d中之至少一者可包括一模式轉換器分 裂器,其可操作以既改變穿過其之微波能之模式又將其分 裂成兩個或兩個以上單獨微波能流以供排放至微波加熱器 之内部空間中。根據一項實施例,第二模式轉換器947b及 947d可各自包括至少部分地安置於微波加熱器93〇之内部 内之模式轉換分裂器。在另一實施例中’第二模式轉換分 裂器947b及947d可整體地安置於微波加熱器930之内部内 且可各自分別係一分裂發射器944a及944h之一部分,如圖 1 〇c中所圖解說明。稍後將論述關於分裂發射器944a、 944h之額外細節。 根據本發明之其中微波分佈系統940在一或多個波導段 中包括兩個或兩個以上模式轉換器之一項實施例,第一模 式轉換器與第二模式轉換器之間的總電長度(延伸穿過且 包含任一阻障總成(若存在)之電長度)可等於係穿過其之微 波能之競爭模式之非整數個半波長之一值。如本文中所使 用,術語「電長度」係指微波能之電傳輸路徑,表達為沿 一既定路徑傳播所需要之微波能之波長之數目。在其中實 體傳輸路徑包含一或多個不同類型之傳輸媒體(其具有兩 個或兩個以上不同介電常數)之一項實施例中,傳輸路徑 之實體長度可短於電長度。因此’電長度取決於若干個因 素,包含(舉例而言)微波能之特定波長、一或多個傳輸媒 體之厚度及類型(例如,介電常數)。 根據一項實施例,第一模式轉換器947a、947c與第二模 式轉換器947b、947d之間的總電長度(延伸穿過且包含 160979.doc •72· 201240527 ΤΜαέ)阻障總成970a、970h之總電長度)可等於微波能之競 爭模式之非整數個半波長。如本文中所使用,術語「非整 數j係指並非一整數之任一數目。接著,一非整數半波長 可對應於《乘λ/2之一距離,其中《係任一非整數。舉例而 吕’數字「2」係一整數,而數字「2.05」係一非整數。 因此’對應於2.05之一電長度乘以微波能之競爭模式之半 波長將係彼競爭模式之非整數個半波長。 如本文中所使用,術語「微波能之競爭模式」係指除打 算用於沿一既定路徑傳播之微波能之期望或目標模式以外 之沿彼路徑傳播之微波能之任一模式。競爭模式可包含一 單個最流行模式(亦即,主要競爭模式)或複數個不同的不 流行競爭模式。當存在多個競爭模式時,第一模式轉換器 與第二模式轉換器之間的總電長度(延伸穿過且包含任一 阻障總成(若存在)之電長度)可等於係該多個競爭模式中之 至少一者之非整數個半波長之一值,且在一項實施例中可 等於係主要競爭模式之非整數個半波長之一值。 舉例而言,在圖l〇c中所繪示之一項實施例中第一模 式轉換器947a、947c包括頂心模式轉換器,其可操作以將 各別波導段942a及942d中之微波能之至少一部分自一te” 模式轉換成波導段942b及942e中而,^ 際上’該微波能之至少-部分可轉換成除所期望模式以外 之-模式。除期望模式以外之任—模式通常在本文中稱為 微波能之「競爭模式」。在本發明之其中微波能之期望模 式係-TM』式之-項實施例中,微波能之競爭模式可係 160979.doc •73- 201240527 一 TEW/I模式,其中《係1且m係在1與5之間的一整數。因 此,在一項實施例中,第一模式轉換器947a與第二模式轉 換器947b之間的波導942e及942i之總電長度(延伸穿 過且包含阻障總成970a之電長度)可等於TEm”模式之非整 數個半波長’其中《係1且;《係在1與5之間的一整數。在另 一實施例中,m可係2或3。 在一項實施例中’選擇波導段942、模式轉換器9473至 947d及/或阻障總成970a、970h之實體長度及性質可最小 化阻障總成970a、970h内之能量聚集。舉例而言,根據一 項實施例,當至少5 kW、至少30 kW、至少50 kW、至少 60 kW、至少65 kW、至少75 kW、至少1〇〇 kW、至少150 kW、至少 200 kW、至少 250 kW、至少 350 lcW、至少 400 kW、至少500 kW '至少600 kW、至少750 kW或至少1,〇〇〇 kW及/或不大於2,500 kW、不大於i,5〇〇 kW或不大於1,〇〇〇 kW之能量可穿過阻障總成970a、970h時,阻障總成 970a、970h内之至少一個密封窗構件(圖10c中未展示)之至 少一部分之溫度可改變不大於1〇。(:、不大於5〇c、不大於 2°C或不大於1°C。在另一實施例中,如上文所闡述,跨越 該至少一個密封窗構件之壓力差及/或微波加熱器930内之 壓力可維持有類似結果。 根據圖10c中所圖解說明之一項實施例,位於微波加熱 器930之大體相對側上且至少部分地安置於微波加熱器930 之内部内之個別微波發射器944a、944h中之至少一者可包 括一分裂反射器’其界定用於將微波能發射至微波加熱器 160979.doc •74· 201240527 930之内部中之至少兩個排放開口。儘管在圖1〇c中圖解說 為包括—單個發射器對(例如,一第一分裂發射器944a及 一第二分裂發射器944h),但离理解,微波加熱器93〇可包 括任意適合數目個發射器或發射器對,如本文中所闡述。 圖i〇d中繪示一分裂發射器944之一項實施例。分裂發射 器944可包括用於接收微波能之一單個入口或開口 951,及 用於自其發射微波能之一單個(未展示)或兩個或兩個以上 排放開口或出口 945a、945b。在一項實施例中,一單個分 裂發射器之微波能入口對排放出口之比率可係丨:1、至少 1:2、至少1:3或至少1:4。根據一項實施例,引入至入口 95 1中之微波能之模式可與經由排放開口 945a、發射 之微波能之模式相同,而在另一實施例中,該等模式可係 不同的。舉例而言,在其中分裂發射器944包括一模式轉 換分裂器949之一項實施例中,引入至一微波加熱器之一 第一側壁之一單個入口中之微波能可經歷一模式轉換並被 劃分成至少兩個單獨微波能部分,其可隨後視需要以一不 同模式發射至加熱器之内部令。舉例而言,在圖l〇d中所 展不之一項實施例中,分裂發射器944可包括一 TM&波導 段942、一個或兩個或兩個以上波導段943a、943b及 安置於其間的一 TMafc至模式轉換分裂器949。在操作 中’經由波導段942引入之呈一 ΤΜαί)模式之微波能在以一 個或兩個或兩個以上單獨微波能分率自波導943a、943b之 各別出口 945a、945b以一 TE,y模式同時或幾乎同時排放之 月'J穿過模式轉換分裂器949。 160979.doc -75- 201240527 當發射器944包括一單個排放開口時,模式轉換分裂器 949可僅係用於改變穿過其之微波能之模式之一模式轉換 器949(並非一分裂器)。舉例而言,在其中發射器944包括 一單個排放開口(圖1 〇d中未展示)之一項實施例中,發射器 944可包括一單個ΤΜα6波導段、一單個TE叮波導段及安置 於其間的一 ΤΜα6至TE;^模式轉換器949。該模式轉換器可 位於微波加熱器外侧、部分地位於微波加熱器之内側或完 全地位於微波加熱器之内側。在操作中,經由入口波導段 引入之呈一 模式之微波能可在以一 模式排放之前 穿過模式轉換器949。單個開口發射器之排放開口可以相 對於水平面之任一適合角度定向或可實質上平行於水平 面。在一項實施例中,自單個開口發射器排放之能量可經 定向而與水平面成至少20。、至少30。、至少45。或至少60。 及/或不大於100。、不大於90。或不大於80。之一角。 當存在多個排放開口時,分裂發射器944之排放開口 945a、945b中之每一者可經彼此定向以使得自其排放之微 波旎之路徑界定一相對排放角@ ’如圖丨〇d中所展示。在一 項貫施例中,微波能排放開口 945a、945b之路徑之間的相 對排放角可係至少5。、至少15。'至少30。、至少45。、至少 6〇°、至少90。、至少115。、至少135。、至少14〇。及/或不大 於180。、不大於17〇。、不大於165。、不大於16〇。、不大於 140°、不大於120。、不大於1〇〇。或不大於9〇<^在一項實施 例中,排放開口 945a、945b之定向亦可相對於自其排放之 微波能之路徑相對於波導段942之延伸軸948之定向來 160979.doc •76· 201240527 闡述。在一項實施例中,排放開口 945a、945b中之每一者 可經組態以與TM&波導段942之延伸軸948成各別第一及第 二排放角(9〗及φ2)地排放微波能。在一項實施例中,91及 q>2可係大致相等,如圖l〇d中大體繪示,或在另一實施例 中’該兩個角中之一者可大於另一者。在各種實施例中, φι及/或φ2可係至少5。、至少10。、至少15。、至少30。、至 少3 5°、至少55。、至少65。、至少70。及/或不大於110。、不 大於100°、不大於95°、不大於80°、不大於70。、不大於 60°或不大於40°。 在一項實施例中,分裂發射器944可係一垂直定向之分 裂發射器’此發射器944包括經組態以與水平面成一向上 角地發射微波能之至少一個向上定向之排放開口(例如, 945a)及經組態以與水平面成一向下角地發射微波能之至 少一個向下疋向之排放開口(例如,945b)。儘管在圖1 〇c中 繪不為包括經組態而以相對於水平面之角度排放能量之垂 直定向分裂發射器944a、944h,但在另一實施例中,微波 加熱器930之分裂發射器944a、944h中之一或多者可係水 平定向,以使得已使如上文所闡述之分裂發射器旋轉 9〇。。在另一實施財,可使一或多個㈣發射器944&、 9她旋轉〇。與9〇。之間的-角度。在-項實施例(未展示) 中’-微波加熱器可包含位於加熱器之一個侧上之兩個或 兩個以上垂直隔開之水平定向分裂發射器列及在同-加熱 器之另A體相對側上之兩個或兩個以上垂直隔開之水平 定向分裂發射器列。根據此實施例,垂直隔開之發射器列 160979.doc •77· 201240527 可包括單個開口發射器、水平定向分裂發射器、垂直定向 分裂發射器或其任一組合。 在圖10c中所展示之一項實施例中,微波加熱器930可包 括一或多個(或至少兩個)可移動反射器99〇3至99〇d,其定 位於微波加熱器930内之各種位置處且經組態以光栅化自 一或多個微波發射器944a、944h之一或多個排放開口 945a 至945d發射至微波加熱器930之内部中之微波能。反射器 990a至990d可具有任一適合組態,諸如(舉例而言)包含先 前關於圖9f至9h所闡述之特徵中之一或多者之組態。進一 步地’儘管大體圖解說明為包括四個可移動反射器99〇£1至 990d ’但應理解’微波加熱器930可包括任意適合數目個 可移動反射器。在一項實施例中’包括„個分裂發射器之 一微波加熱器可包括至少2«個可移動反射器。在另一實施 例中,一微波加熱器可採用總共四個可移動反射器,其各 自界定實質上沿微波加熱器930之長度延伸之一反射器表 面,以使得兩個或兩個以上軸向毗鄰發射器「共用」一或 多個反射器或反射表面。 不管所採用之反射器之具體數目如何,每一反射器99〇a 至990d皆可操作以光柵化經由排放開口 945a至945d退出發 射器944a、944h至微波加熱器930中之微波能之至少一部 分,以藉此加熱及/或乾燥束或其他物件、物品或負載之 至少一部分。如本文中所使用,術語「光柵化」意指將能 量引導、投射或聚集於某一區域上。與習用反射或散射能 量相比’光柵化能量涉及一較大程度之有意引導或聚集, 160979.doc -78· 201240527 此可藉由利用微波能之準光學性質來達成。與習用手段相 比,光栅化不包含靜止反射表面或習用模式搜摔裝置(諸 如,風扇)之使用。在-項實施例中,微波加熱器可包括 複數個分裂發射器對(例如,兩個或兩個以上發射器對), 其中每-對包括具有實質上類似組態之兩個發射器(如上 文所闡述)。在一項#施例中,#一對之_個發射器可定 位於微波加熱器之大體相對側上或相同側上,如先前關於 圖9c及9d詳細論述。根據一項實施例,一或多個可移動反 射器990a至990d可定位於(及/或經定位以面向)微波發射器 944中之每一者之一或多個排放開口附近。在其中第一發 射器944a及第二發射器94411各自包括界定各別向上定向之 排放開口 945a及945c以及各別向下定向之排放開口 945b及 945d之分裂微波發射器之一項實施例中,至少一個可移動 反射器可定位於排放開口 945a至945d中之一或多者附近以 光柵化自分裂發射器944a、944h排放至微波加熱器930之 内部中之微波能之至少一部分(例如,兩個或兩個以上單 獨TE”模式微波部分)。在圖i〇c中所圖解說明之一項實施 例中,微波加熱器93 0可包括至少四個可移動反射器,其 各自界定一各別反射表面且定位於分裂發射器944a、944h 之各別排放開口 945 a至945 d附近。如圖l〇c中所圖解說 明’可移動反射器990a至990d可位於微波加熱器930之底 部左象限(例如,反射器990a)、頂部左象限(例如,反射器 990b)、頂部右象限(例如,反射器99〇c)及底部右象限(例 如,反射器990d)中。當發射器944a、944h係水平定向之 160979.doc -79- 201240527 分裂發射器或單個開口發射器時,亦可存在反射器990a至 990d中之兩者或兩者以上,如先前詳細闡述。 可移動反射器990a至990d可組態成兩個垂直隔開之對 (例如,反射器990a與反射器990b配對且反射器990c與反 射器990d配對)及/或組態成兩個水平隔開之對(例如,反射 器990b與反射器990c成對且反射器990a與反射器990d成 對)。如圖1 〇c中所圖解說明,垂直隔開之反射器對(例如, 反射器對990a、990b以及990c、990d)可定位於分裂發射 器944a、944h附近以使得一個可移動反射器定位於發射器 944a、944h之排放開口 945a至945d中之每一者附近(例 如,排放開口 945a至945d面向各別可移動反射器990a至 990d)。如圖10c中所繪示,可移動反射器990b及990c可定 位於比各別可移動反射器990a及990d高之一垂直高度處, 以使得分裂發射器944a、944h可垂直定位於垂直隔開之反 射器對之間(例如,發射器944a垂直定位於垂直隔開之反 射器990a、990b對之間且發射器944h垂直定位於垂直隔開 之反射器990c、990d對之間)。在一項實施例中,可移動 反射器990經定位以使得反射器表面991面向其對應微波發 射器(未展示)之一開放出口。在另一實施例中,一或多個 可移動反射器990a至990d可經定位而與微波加熱器930之 中心伸長軸對準或經定位以面向微波加熱器930之中心伸 長軸(圖10c中未展示)。 可移動反射器990a至990d可直接或間接耦合至一微波加 熱器之一或多個側壁且可以任一適合方式移動或致動。反 160979.doc -80 - 201240527 射器990a至990d中之一或多者可沿一經預程式化(經計劃) 之路徑移動,或可致使一或多者以一隨機或不重複型樣移 動。當存在多個反射器990a至990d時,在一項實施例中, 兩個或兩個以上反射器990a至990d可具有相同或類似移動 型樣’而在相同或另一實施例中,兩個或兩個以上反射器 990a至990d可具有不同移動型樣。根據一項實施例,反射 器990a至990d中之至少一者可以一大體弧形路徑移動且可 以某一速度及/或滞留時間穿過總路徑之各種段或「區」。 區之大小及數目以及反射器移動通過每一區之速度或每一 區中之反射器滯留時間取決於各種各樣之因素,諸如(舉 例而言)束之大小及類型、木材之類型以及初始及最後一 束之初步及期望特性。 在一項實施例中’可根據本文中所闡述之一或多個實施 例個別地驅動或致動反射器990a至990d中之每一者,而在 另一實施例中’兩個或兩個以上反射器可連接至一共同驅 動機構(例如,欲同時致動之旋轉轉軸)。圖1〇e中展示用於 使用一致動器960移動一反射器990之一驅動機構之一個實 例。致動器960可係一線性致動器,其具有耦合至微波加 熱器之一側壁933之一固定部分961及連接至一可移動反射 器990之一可延伸部分963。根據圖i〇e中所圖解說明之一 項實施例’固定部分961之至少一部分可延伸通過外部側 壁933並到達一伸縮囊結構964中,藉此將致動器960密封 地耦合至側壁933。在一項實施例中,伸縮囊結構964可操 作以減小、最小化或幾乎防止進出其中致動器96〇延伸通 160979.doc -S1 · 201240527 過側壁933之位置之流體流動。如圖〗〇e中所展示,可移動 反射器990進-步包括以樞轴方式轉合至微波加熱器之側 壁933之一支撐臂980。如本文中所使用,術語「以樞軸方 式耦合」係指兩個或兩個以上物件經附接、緊固或以其他 方式相關聯以使得該等物件中之至少一者可大體圍繞一固 定點移動或樞轉。在操作中,一驅動器97〇使線性致動器 960之可延伸部分963以一進出類型運動移動如由箭頭 971所指示。線性致動器96〇之可延伸部分963允許可移動 反射器990以一大體弧形型樣移動,如由箭頭973所指示。 可以任一適合方式控制驅動器970,包含(舉例而言)使用一 或多個可程式化自動控制系統(未展示)。 根據本發明之一項實施例,最小化界定於一微波加熱器 之内部内之未佔用、無阻礙或開放體積之量可係有優勢 的。如本文中所使用,術語「總開放體積」係指當未將一 木材束安置於容器中時不被實體阻礙物佔用之在容器内部 内之空間之總體積。在本發明之一項實施例中,木材束之 總體積(包含個別木材件之間的空間)對微波加熱器之總開 放體積之比率可係至少〇.20、至少〇 25、至少〇 3〇、至少 〇·35。在上述實施例中之某些實施例中,該比率亦係不大 於0.75、不大於〇·7〇或不大於〇65。 在一項實施例中,微波加熱器可界定用於接納一木材束 之一無阻礙束接納空間。該無阻礙束接納空間亦可經組態 以接收經發射以加熱及/或乾燥其中之一或多個物件(或束) 之微波能之至少一部分。微波加熱器93〇之無阻礙束接納 I60979.doc •82· 201240527 空間在圖10c中指示為951。如本文中所使用,術語「無阻 礙束接納空間」係指界定於一微波加熱器之内部内之能夠 接納及固持-木材束之一空間。在一項實施例令,該無阻 礙束接納空間可界定具有一類似形狀且在由能夠在微波加 熱器930内裝載及/或處理之最大大小木材束所佔用體積之 1:0/。内之一體積。舉例而言,若能夠由微波加熱器容納之 最大束大小係1,〇〇〇立方英尺,則該未佔用束接納空間將 具有1’_立方英尺(在—項實施例中)之—體積及與在加熱 器930内處理之束類似之一形狀(例如,立方形卜 該束接納空間可係「無阻礙」,乃因其可不包含永久性 地安置於其中之任何實體阻礙物(例如,波導、發射器、 反射器等)。在本發明之一項實施例中,微波加熱器可包 括一圓形剖面形狀,而無阻礙束接納空間951可界定一立 方形體積及/或經組態以接納具有一立方形形狀之一木材 束在項貫施例中,微波加熱器930之總開放體積對無 阻礙束接納空間之體積之比率可係至少G.2G、至少0.25、 至夕0’30、至少0 35。在上述實施例中之某些實施例中, 該比率亦係不大於〇.75、不大於〇 7〇或不大於〇 “。 根據一項實施例,無阻礙束接納空間951之至少一部分 :界定於兩個或兩個以上「阻礙物」之間,包含(舉例而 。)位於微波加熱器93〇之相同或大體相對側上之兩個或兩 個以上發射器、反射器、波導或其他物件,其佔據該加熱 器之内體積内之實體空間。在其中微波加熱器_包括 兩個相對女置之門(例如,安置於微波加熱器州之大體相 160979.doc -83- 201240527 對端上之一入口門928及一出口門)之一項實施例中,無阻 礙束接納空間95 1之至少一部分可界定於該兩個相對安置 之門之間。在圖10c中所圖解說明之一項實施例中,發射 器944a、944h或可移動反射器990a至990d(其係阻礙物之 實例)中之任一者皆不安置於無阻礙束空間95 1内。在其中 無阻礙束接納空間之至少一部分界定於兩個或兩個以上阻 礙物(例如,波導、發射器、反射器等)之間的一項實施例 中’一或多個阻礙物之最外面邊緣與無阻礙束接納空間 (及/或束(當存在時))之間的最小餘隙可係至少〇 5英叫·、至 少1英吋、至少2英吋、至少6英吋、至少8英吋及/或不大 於1 8英吋、不大於1 〇英吋或不大於8英吋。在一項實施例 t ’該等阻礙物中之一者在束被裝載至加熱器93〇中時不 與其實體接觸。 現將大體參考用於加熱一木材束之一過程闡述根據本發 明之一微波加熱系統之操作之一或多個實施例。然而,應 理解’本文中所闡述之加熱過程之一或多個元件亦可適於 在用於加熱其他物項之過程(如(舉例而言)先前所闡述之彼 等過程)中使用。此外,應理解,可使用下文詳細闡述之 操作步驟、方法及/或過程中之至少某些或全部來操作微 波加熱系統之上文所闡述實施例中之一或多者,包含關於 圖8至1 〇所論述之彼等實施例及其變化形式。 為起始一木材束之加熱,可首先將木材裝載至可根據先 前所闡述之本發明之一或多個實施例組態之一微波加熱器 中°在一項實施例中’該束可在加熱及/或乾燥之前具有 160979.doc -84- 201240527 至少100磅、至少250磅、至少375磅或至少500磅之一總初 始重量(例如,在加熱之前)。一旦裝載,即可接著使用真 空系統(若存在)來將加熱器之壓力減小至不大於550托、不 大於450托、不大於350托、不大於300托、不大於250托、 不大於200托、不大於150托、不大於ι〇〇托或不大於75 托。 在維持微波加熱器中之低氣壓之同時,可接著操作一或 多個微波產生器以開始將微波能引入至容器内部中以藉此 加熱及/或乾燥該束之至少一部分。在將微波能引入至微 波加熱器之内部中期間’容器内之壓力可高於、幾乎處於 或低於大氣壓。根據一項實施例,在加熱步驟期間,微波 加熱器之内部之壓力可係至少350托、至少450托、至少 650托、至少750托、至少9〇〇托或至少ι,2〇〇托,而在另一 實施例中,微波加熱器中之壓力可係不大於35〇托、不大 於250托、不大於2〇〇托、不大於150托、不大於1〇〇托或不 大於75把。在木材之加熱及/或乾燥期間引入至微波加熱 器之内部中之總產生器容量或能量速率可係至少5 kw、至 少30 kW、至少50 kW、至少60 kW、至少65 kW、至少75 kw、至少100 kw、至少150 kw、至少2〇〇 kw、至少25〇 kW、至少350 kW、至少400 kW、至少500 kW、至少000 kW、至少750 kw或至少i,〇〇〇 kW及/或不大於2,500 kW、 不大於1,500 kW或不大於1,〇〇〇 kW。 根據一項實施例,加熱一木材束之過程可包括複數個個 別順序加熱循環。總加熱過程可包括至少2個、至少3個、 160979.doc -85 - 201240527 至少4個、至少5個、至少6個及/或不大於20個、不大於15 個、不大於12個或不大於1 〇個個別順序加熱循環。每一加 熱循環可包含(視需要在低氣壓下)引入微波能。在一項實 施例中’可在不大於350托之一壓力下將微波能引入至微 波加熱器中,而在其他一項實施例中,微波加熱器中之壓 力可係至少350托。 根據一項實施例,該一或多個個別加熱循環中之每一者 可實施達(例如,具有一持續時間為)至少2分鐘、至少5分 鐘、至少10分鐘、至少2〇分鐘、至少3〇分鐘及/或不大於 180分鐘 '不大於120分鐘或不大於9〇分鐘。總而言之加 熱過程之整個長度(例如,總循環時間)可係至少〇5小時、 至少2小時、至少5小時或至少8小時及/或不大於刊小時、 不大於30小時、不大於24小時、不大於18小時、不大於“ 小時、不大於12小時、不大於1〇小時、不大於8小時或不 大於6小時。 在其中總加熱過程包括兩個或兩^以上個別加熱循環 -項實施例中’-或多個後續個別加熱循環可以與前一 環不同之一微波能輸入速率及/或與前一循環不同之一 力實施舉例而s,在一項實施例中,後續個別加熱猶 可以比刖循環低之一微波能輸入速率及/或比前一循 低之-I力實施。在另—實施例中…或多個後續個別 ,”、循環可以比前-循環高之—微波能輸人速率及/或比 /一循環高之-Μ力實施。在又-實施例中,—或多個後; 循環可以比-或多個先前個別加熱循環低之—微波能輪 160979.doc -86 * 201240527 速率及比一或多個先前個別加熱循環高之一壓力實施,或 以比一或多個先前個別加熱循環高之一微波能輸入速率及 比一或多個先前個別加熱循環低之一壓力實施。當總加熱 過程包含兩個或兩個以上個別加熱循環時,根據某些實施 例,可如上文所闡述實施第二(或稍後)循環中之一或多 者。在其他實施例中,可以相同或幾乎相同壓力及/或微 波能輸入速率實施兩個或兩個以上循環。 根據一項實施例’總加熱過程可包含一第一順序加熱循 環,後跟有一第二加熱循環,其中該第二加熱循環係以比 該第一加熱循環低之一微波能輸入速率、比該第一加熱循 環低之一壓力或既比該第一加熱循環低之一微波能輸入速 率亦比該第一加熱循環低之一壓力實施。進一步地,在當 總循環包括三個或三個以上加熱循環時之一項實施例中, 每一後續循環(除第一循環以外)之微波能輸入速率及/或壓 力可低於前一循環之微波能輸入速率及/或壓力。舉例而 言’在一項實施例中,第„個別加熱循環可以比第&_"個 別加熱循環低之一微波能輸入速率、比第個別加熱循 環低之一壓力或既比第個別加熱循環低之一微波能輸 入速率亦比第個別加熱循環低之一壓力實施。 在第一個別加熱循環期間,可將一第一最大微波能輸入 速率引入至微波加熱器中。如本文中所使用’術語「最大 微波能輸入速率」係指在一加熱循環期間將微波能引入至 加熱器中之最高速率。在各種實施例中,在第一個別加熱 循環期間引入之最大微波能輸入速率(例如,第一最大微 160979.doc -87- 201240527 波能輸入速率)可係(舉例而言)至少5 k\V、至少30 kW、至 少50 kW、至少60 kW、至少65 kW、至少75 kw、至少1〇〇 kW、至少150 kW、至少2〇〇 kw、至少25〇 kw、至少35〇 kW、至少400 kW、至少500 kW、至少60〇 kW、至少75〇 kW或至少i,〇〇〇 kW及/或(舉例而言)不大於25〇〇 kw、不 大於l,50〇kW、不大於i,〇〇〇kW或不大於5〇〇1^。 隨後,可實施一第二個別加熱循環以使得在第二個別加 熱循環期間將微波能引入至微波加熱器中之第二最大輸入 速率(例如,第二最大微波能輸入速率)可在某些實施例中 係(舉例而言)在第一加熱循環期間達成之最大輸入速率之 至少25%、至少50%、至少7〇%及/或(舉例而言)不大於 98%、不大於94%或不大於90%〇類似地,當加熱過程包 括二個或三個以上個別加熱循環時,第w個別加熱循環(例 如,第三或第四循環)之最大微波能輸入速率可在一項實 施例中係(舉例而言)在第(例如,前一)個別加熱循環 期間的最大輸入速率之至少25%、至少5〇%、至少7〇%及/ 或(舉例而言)不大於98%、不大於94%、不大於90%或不大 於 850/〇。 在一項實施例中,第二(或後續)個別加熱循環可以比第 一(或前一)個別加熱循環低之一壓力實施。舉例而言,在 其中於加熱循環期間利用低氣壓或真空壓力之一項實施例 中,在第一加熱循環期間達到之最低壓力可係至少25〇 托。隨後,可實施一第二個別加熱循環以使得在第二循環 期間達到之最低壓力(例如,所達成之最高真空壓力位準) 160979.doc •88 201240527 可在一項實施例中係(舉例而言)在第一加熱循環期間達到 之最低壓力之至少25%、至少50%、至少70%、至少75%、 至少80°/。及/或在一項實施例中係(舉例而言)不大於98%、 不大於94%或不大於90%。類似地,當加熱過程包括三個 或三個以上個別加熱循環時,第《個別加熱循環之壓力在 一項實施例中(舉例而言)可係在第個別加熱循環期間 達到之最低壓力之至少25%、至少50%、至少70%、至少 75%、至少80°/。及/或不大於98%、不大於94%、不大於90% 或所達到之最低壓力之不大於85%。 下文之表1根據本發明之一項實施例概述微波能速率之 寬、中間及窄範圍(表達為最大產生器輸出之一百分率)以 及連續第一、第二、第三及第《個別加熱循環之壓力(以托 表達)。如本文中所使用,術語「最大產生器輸出」係指 由一加熱系統内之所有微波產生器累積產生之在整個陣列 上組合之最大值。在一項實施例中,一或多個加熱循環之 最大微波能輸入速率亦可表達為最大產生器輸出之一百分 比,如表1中所展示。 表1:個別加熱循環之微波能速率及壓力 個別循 微波能速率(最大值之。/〇) 壓力(托) 環編號 寬 中間 窄 寬 中間 窄 1 60-100% 70-100% 80-100% <250 <200 20-100 2 40-100% 50-95% 60-90% <250 <200 20-100 3 20-80% 25-75% 30-70% <250 <150 20-100 η 5-60% 10-50% 15-40% <150 <100 10-75 160979.doc -89- 201240527 每:本發明之一項實施例’-或多個個別加熱循環中之 熱週期”其中將微波能引入至加執器 第-:第”加 週期(例如…第-'第1第/中,及—選用休眠 第一次第《休眠週期),其中將一 微波能或實質上無微波能弓丨入至加熱器中。舉例而 二在加熱週期期間,微波能可以足以加熱及/或至少部 刀地乾無潤濕或化學潤濕木材束之至少一部分之 率引入至微波加熱器中,而在休眠週期期間2 & 能輸人速率可在-項實施例中係在加熱週 期期間引入之最大微波能輸入速率之不大於25%、不大於 二不大於5%或不大於I在其中採用多個個別加執 Γ二項實施例中,每一循環可包含一或多個加熱週期 =或多個休眠週期。舉例而言,當利用兩個個別順序加 加熱循環可包含至少一第-加熱週期 目週期,而第一個別加熱循環可包含至少一第 二加熱週期及一第二休眠週期β另_選擇係1 敎 週期可跟隨該第一加熱週期,其中無暫時休眠週期。… 在一項實施例中’該等加熱週期中之每—者可具有(舉 例而言)至少5分鐘、至少1〇分鐘、至少15分鐘至少⑽分 鐘及/或(舉例而言)不大於崎鐘、不大㈣分鐘不大二 3〇分鐘或不大於2〇分鐘之_持續時間。在—項實施例中, 該休眠週期可具有(舉例而言)至少5分鐘、至少Μ分鐘或至 少20分鐘及/或(舉例而言)不大於9〇分鐘不大於6〇分鐘或 不大於40分鐘之一持續時間。在一項實施例中,一個別加 160979.doc -90- 201240527 熱«之加熱週期長度對休眠週期長度之比率可係(舉例 而。)至J 0.5:1、至少1:1、至少i 25:1或至少以及/或(舉 例而言)不大於5:1、不大於3:1、不大於Π!或不大於 1.5:1 〇 °在加.、.、週期中之每__者期間則壬__適合方式將微波能 引入至微波加熱器中。舉例而言,在一項實施例中,可貫 穿加熱週期之整個持續時間以一實質上連續方式自一或多 個發射器發射微波能。在一項實施例中,可一次自一單個 發射器發射能量,而在另一實施例中,可同時自兩個或兩 個以上發射器發射能量。可使用一自動控制系統來控制自 發射器中之每-者排放之微波能之量、時序、持續時間、 協調及同步化。當將能量排放至微波加熱器中包含在兩個 或兩個以上發射器之間切換時,亦可由控制系統來控制該 切換’如稍後詳細論述。 根據一項實施例’可將能量引人至微波加熱器中以使得 每-加熱週期可包含兩個或兩個以上不同加熱模式(亦稱 作排放模式、排放階段或加熱階段卜在一項實施例中, 可在每一加熱階段期間自一或多個發射器發射不同微波能 速率。舉例而言’在一項實施例中,在一第一加熱階段期 間了以比自一第一發射器發射之一速率高之一速率自一 第一發射器發射能f,而在一第二加熱階段期間,可以比 自該第一發射器之-速率高之-速率自該第二發射器發射 能量。根據-項實施例,-或多個發射器可將微波能發射 至微波加熱器中,而一或多個發射器可實質上不將能量發 160979.doc -91· 201240527 射至微波加熱器中,藉此使能量集中至木材束(或其他物 件)之不同位置上。每一單獨加熱階段可實施達(亦即,具 有持續時間為)(舉例而言)至少2分鐘、至少5分鐘、至少 12刀鐘至少丨5分鐘及/或(舉例而言)不大於9〇分鐘、不大 於60刀鐘、不大於45分鐘或不大於3〇分鐘之一週期。一個 或兩個單獨加熱階段可後跟有至少2分鐘、至少4分鐘或至 少6分鐘及/或不大於15分鐘、不大於12分鐘或不大於丨^分 鐘之一選用休眠週期。 當微波加熱器包括四個或四個以上發射器時,微波分佈 系統可經組態以使得每一發射器取決於一或多個微波切換 器之位置而在單獨加熱或排放階段中將微波能發射至微 波加熱器+。舉例而言,在其中微波加熱器包括一第一、 第一、第三及第四微波發射器之一項實施例中,兩個或兩 個以上微波切換器(勿如,一第一及一第二微波切換器)可 經組態以使得可在-各別第―、第二、第三及第四加熱階 段中主要自每一發射器發射微波能。在一項實施例中,兩 個或兩個以上排放階段可實質上同時實施,而可防止兩個 或兩個以上排放階段實質上同時實施。現將參考圖iu及 lib在下文巾詳細論述關於㈣包含交替排放階段之加熱 週期之微波加熱器之操作之額外細節。 現翻至圖lla及llb,提供根據本發明之—項實施例組態 之一微波加熱系統102G之示意性俯視圖。微波加熱系統 1020係圖解說明為包括用於生產微波能之至少四個微波產 生器1022a至1022d及用於將該微波能之至少一部分引導至 160979.doc •92· 201240527 一微波加熱器1030中之一微波分佈系統1〇4〇。微波分佈系 統1 040亦包括可操作以將微波能之至少一部分發射至微波 加熱器1040之内部中之複數個隔開之微波發射器i〇44a至 1044h(其在一項實施例中可包括一或多個分裂發射器)。微 波發射器1044a至l〇44h中之每一者可係可操作地耦合至複 數個(在此圖中’ 一第一至第四)微波切換器1〇46&至l〇46d 中之一或多者,如圖11a及11b中所展示。微波切換器 1 046a至l〇46d可操作以按任一適合模式將微波能路由至發 射器1044a至1044h中之一或多者,包含(舉例而言) 模式及/或一 ΤΕ”模式,如先前詳細論述。在一項實施例 中,傳播通過微波分佈系統1〇4〇之能量可在排放至微波加 熱器1030中之前改變模式至少一次。現將參考圖Ua及ub 在下文中詳細闞述根據本發明之一或多個實施例操作微波 加熱系統1020之各種組態及方法。 微波切換器1046ai 1046d中之每一者可操作以將微波能 之机動引導、控制或分配至定位於微波加熱器丨〇3〇之大體 相同側或大體相對側上之兩個或兩個以上微波發射器 1044a至l〇44h中之每—者。舉例而言,在圖Ua中所繪示 之一項實施例中,微波切換器1046a至l〇46d中之每一者可 耦合至一轴向毗鄰微波發射器對(例如,發射器1044a及 1044b #射n 1Q44e及1()44d、發射器1㈣e及1Q44f以及 發射器1044g及i〇44h),表示為發射器對i請&至1〇5〇d。 在圖lib中所圖解說明之另一實施例中,微波切換器 〇46d中之每—者可耦合至—軸向對準之微波發射器對 160979.doc -93- 201240527 (例如’發射器1044a及1044h、發射器1044b及l〇44g、發 射器1044c及l〇44f以及發射器l〇44d及1044e),展示為發射 器對 1050e至 1050h。 微波切換1 〇 4 6 a至10 4 6 d可係任' 適合類型之微波切換 器且在一項實施例中可係一旋轉微波切換器。一旋轉微波 切換器可包含一外殼體、安置於其中之一内部路由元件及 用於使該内部路由元件在該殼體内移動之一致動器。在一 項貫施例中’該内部路由元件可係可旋轉地輕合至該外殼 體且該致動器可操作以相對於該外殼體選擇性地旋轉該内 部路由元件以藉此切換或引導穿過其之微波能之流動方 向。亦可採用其他類型之適合微波切換器。在一項實施例 切換器,而在另: at least 8 inches, at least 12 inches or at least 24 inches and/or no more than W feet, no more than 8 feet, no more than 6 feet, no more than 4 feet no more than 3 feet, no more than 2 feet, no More than 丨 feet or no more than 6 inches. In still another embodiment, the thickness of the wood may be at least 吋25 inches, at least 英5 inches, at least 0. 75 inches, at least i feet, at least h5 feet or at least 2 feet and/or no more than 4 feet, no more than 3 feet, no more than 2 feet, no more than 1 foot, and/or no more than 6 inches. According to one embodiment, the wood may comprise one or more solid wood blocks, engineered solid blocks, or a combination thereof. As used herein, the term "solid wood" means wood that is at least 10 cm in size but otherwise has any size (e.g., wood having dimensions as previously described). As used herein, the term "engineered solid wood" means the smallest dimension of solid wood (eg, at least one dimension is at least 10 cm) but consists of several smaller woods 160979. Doc 201240527 The body is formed and is at least one of the wooden bodies. The smaller wood bodies in the engineered wood may or may not have one or more of the dimensions previously described with respect to the wood. Non-limiting examples of engineered wood may include wood laminates, fiberboard, oriented strand board, plywood, wafer board, pellet board, and laminated veneer lumber. In the examples, the wood can be grouped in bundles. As used herein, " bundle" refers to two or more pieces of wood that are stacked, placed, and/or fastened together in any suitable manner. According to one embodiment, a bundle can include a plurality of panels that are stacked and coupled to one another via a belt, strip or other suitable device. In one embodiment, the two or more pieces of wood may be in direct contact, or in another embodiment, the pieces of wood may use at least one spacer or "sticker" disposed therebetween. And at least partially separated. In one embodiment, the bundle can have any suitable size and/or shape. In one embodiment, the bundle may have at least 2 feet, at least 4 feet, at least 8 feet, at least 10 feet, at least 12 feet, at least 16 feet, or at least 20 feet and/or no more than 6 feet, no more than 40. Feet or a total length or longest dimension of no more than 25 feet. The bundle may have at least ^ feet, at least 2 feet, at least 4 feet, at least 6 feet, at least 8 feet and/or no more than 16 feet, no more than 12 feet, no more than 1 foot, no more than 8 feet, no more than 6 Feet or no more than one foot height of 4 feet or a second long size. In one embodiment, the bundle may have at least 1 foot, at least 2 feet, at least 4 feet, at least 6 feet, and/or no more than 2 feet, no more than 16 feet, no more than 12 feet, no more than 1 foot. No more than 8 feet or 160,979. Doc 201240527 No more than 6 feet in width or shortest size. The total volume of the bundle containing the space between the plates, if any, may be at least 5 cubic feet, at least 1 cubic foot, at least 250 cubic feet, at least 375 cubic feet, or at least 500 cubic feet. According to one embodiment, the weight of the wood bundle introduced into the reactor and/or heater of one or more of the heating systems (eg, prior to heating or processing) (or one or more items to be processed) The cumulative weight of the article or load may be at least 100 pounds, at least 5 pounds, at least 1, pounds or at least 5,000 pounds. In one embodiment, the bundle can be cubic or cuboid in shape. In another embodiment, one or more of the heating systems of the present invention may be used to chemically modify, dry, and/or thermally reform the wood' to produce chemically modified, dried, and/or thermally upgraded wood. Wood that has been dried and/or thermally modified may be referred to as heat treated "wood" such that the term "heat treated wood" refers to wood that has been heated, dried, and/or thermally modified. As used herein, the term "thermically modified" means to modify the chemical structure of at least a portion of one or more wood blocks at least 4 points without an exogenous treatment agent. In an embodiment, a heating system (which will be described in detail later) may be used to heat and/or dry the wood during a thermal upgrading process to thereby provide a thermally modified wood bundle. According to one embodiment, the thermal modification may occur simultaneously with heating and/or drying of the wood in a wood heater and/or dryer, while in another embodiment 'can be heated in a wood heater or dryer And / or dry the wood without thermal modification. As used herein, the term "dry" means to cause or accelerate at least a portion of one or more liquids or otherwise thermally removable components via heat addition or other suitable form of energy. Doc •9- 201240527 Chemically or otherwise removed from wood—or at least—partially or additionally heat-removable components of multiple liquids. The thermal upgrading process may involve the transfer of wood with - or a plurality of heat transfer agents (such as 'for example, water vapor, one, ^/lj heated inert steam (such as nitrogen or air) or even liquid transfer... The step of contacting the carcass (such as a heated oil)). In another embodiment, a radiation heat source can be used during thermal upgrading. The thermally modified wood may have a moisture content substantially lower than one of the untreated wood and may have enhanced physical and/or mechanical properties such as, for example, increased flexibility, resistance to decay and biological attack. Higher resistance and increased dimensional stability. In yet another embodiment, a heating system configured in accordance with various embodiments of the present invention can be used to chemically modify wood. As used herein, the term "chemically modified" means the chemical structure that at least partially upgrades at least a portion of one or more wood blocks in the presence of one or more exogenous treating agents. Specific types of chemical upgrading processes can include, but are not limited to, acetylation and other types of esterification, epoxidation, etherification, guanidation, methylation, and/or melamine treatment. Non-limiting examples of suitable treating agents may include anhydrides (eg, acetic acid needles, stearic acid, crotonic acid needles, maleic acid needles, propionic acid needles or butyric anhydride); hydrazine chloro- ketone; carboxylic acid; Cyanate; aldehyde (eg, formaldehyde, acetaldehyde or difunctional aldehyde); gas aldehyde; dimethyl sulfate; alkyl vapor; β-propiolactone; acrylonitrile; epoxide (eg, ethylene oxide) , propylene oxide or butylene oxide); difunctional epoxide; borate; acrylate; citrate, and combinations thereof. The process for chemically modifying the wood may include a chemical upgrading step followed by a heating step. Chemical modification can be carried out in a chemical upgrading reactor. Doc -10- 201240527 During the quality or reaction step, the wood may be exposed to one or more of the source treatment agents previously described, the one or more exogenous treatment agents being compatible with the functional groups of the untreated wood (eg At least a portion of the hydroxy group reacts to thereby provide a chemically modified wood. Between the chemical steps, one or more thermally initiated chemical reactions may occur, which may or may not be derived from an external energy (eg, thermal or electromagnetic energy, including, for example, microwave energy). beginning. The specific details of the chemical upgrading process vary among many types of chemical modifications, but most chemically modified woods may have enhanced structural, chemical and/or mechanical properties compared to untreated wood. Contains low hygroscopicity, high dimensional stability, biohazard and insect resistance, increased resistance to decay and/or high weatherability. In one embodiment, the wood can be euthanized in a wood acetylation reactor. Ethylation can include replacing the hydroxyl groups on the surface or near the surface with an acetamidine group. In one embodiment, the treatment agent utilized during the acetylation may include a concentration of at least 50 wt%, at least 60 wt%, at least 70 wt%, at least 8% by weight, at least 90 wt%, at least 98 〜 The % or 1 乙 acetic anhydride and the remainder, if any, include acetic acid and/or one or more diluents or an acetonitrile catalyst. In one embodiment, the treatment agent for acetamylation may comprise a mixture of acetic acid and acetic anhydride having at least 8 〇: 2 〇, at least 85: 15, at least 90: 10, or at least 95: 5 Anhydride to acid weight ratio. Prior to acetylation, the wood may be dried using a kiln drying process, a vacuum degassing process, or other suitable means to reduce its moisture (e.g., water) content to no more than 25 wt% and no more than 20 wt. /. , not more than 15 wt% 'not more than 12 wt%, not more than 9 Wt% or not more than 6 wt%. During the acetylation period, it can pass 160979. Doc -11 - 201240527 The wood is contacted with the treatment by any suitable method. Examples of suitable contact methods can include, but are not limited to, steam contact, spraying, liquid soaking, or combinations thereof. In one embodiment, the temperature of the processing vessel may be no greater than 5 (rc, no greater than 4 (rc or no greater than 30 C, and at least 25 psig, at least 5) during the time the wood is in contact with the treating agent. 〇 psig, at least 75 psig and/or no greater than 500 psig, no greater than 25 psig or no greater than 15 psig. Once the contacting step is completed, at least a portion of the liquid treatment (if present) may be discharged from the reactor as needed and Heat may be added to initiate and/or catalyze the reaction. In one embodiment, microwave energy, thermal energy, or a combination thereof may be introduced into the vessel to increase the temperature of the wood to at least 5 Torr. 至少, at least 65 ° C , at least 80 ° C and / or to not more than 175. (:, not more than 150. (: or not more than 120 C ' while maintaining one of the pressure in the reactor is at least 75 Torr, at least 1,000 Torr, at least 1,200 Torr or at least 2,000 Torr and/or no greater than 7,700 Torr, no greater than 5,000 Torr, no greater than 3,500 Torr or no greater than 2,500 Torr. According to one embodiment, at least a portion of the heat added to the reactor may be from a non- a microwave source is delivered to the wood, such as The package 'comprises at least 5 〇 wt%, at least 75 wt%, at least 90 wt% or at least 95 wt% of one of the acetic acid heat vapor streams, while the remainder comprises acetic anhydride and/or diluent. In an embodiment, hot steam (a portion of which may be condensed on at least a portion of the bundle of wood being treated) may be introduced into the reaction vessel for at least 20 minutes, at least 35 minutes, or at least 45 minutes, and/or no more than 180 minutes, no greater than 150 minutes or no more than 120 minutes. After the reaction step, the "chemically wetted" chemically modified wood may comprise at least one chemical component that can be removed by heat and/or vaporization, such as I60979. Doc -12· 201240527 As used throughout this application, the term "cheinically-wet" or "chemical-wet" means at least partially as a result of a chemical treatment or modification. A wood in which one or more chemicals are present in a liquid phase. A "chemically wetted" bundle of wood means that at least a portion thereof is at least partially chemically wetted by one of the bundles of wood. Some examples of the one or more chemicals may comprise reactants, impregnations, reaction products, or the like. For example, when the wood is deuterated, at least a portion of the residual acetic acid and/or sour liver can be removed by vaporization. As used herein, the term "acid wet" refers to wood containing residual acetic acid and/or anhydride. An "acid wet" wood bundle is one in which at least a portion of the wood bundle is at least partially acid wetted. According to an embodiment of the invention, the chemically wet or acid wet wood may comprise at least 20 wt%, at least 30 wt%, at least 4 wt% or at least 45 in % and/or no more than 75 wt%, no more than One or more heat removable or vaporizable chemicals, such as, for example, acetic acid and/or anhydride, of 60 wt% or no more than 5 wt%. As used herein, the term "thermally removable" or "vaporizable" chemical component means that one component can be removed by heat and/or vaporization. In one embodiment, the vaporizable or thermally removable component or chemical can include acetic acid. Next, at least a portion of the one or more thermally removable chemicals can be removed from the chemically wetted wood via flash vaporization. In one embodiment, the pressure in the reactor can be from at least 1, 〇〇〇, at least 00 Torr, at least 18 Torr or at least 2,000 Torr and/or no greater than 7,700 Torr, no greater than 5 The crucible is not more than 3,500 Torr, not more than 2,500 Torr or not more than 2, and one of the pressures of the chin rest is reduced to atmospheric pressure to achieve a flashing step. In another embodiment, the pressure of the reactor can be reduced by a pressure from an elevated pressure (as described above) or atmospheric pressure by 160,979. Doc 201240527 A pressure of less than 1 Torr, no more than 75 Torr, no more than 5 Torr, or no more than one Torr to achieve a steaming step. According to one embodiment, the amount (eg, chemical content) of the __ or plurality of thermotropic chemical components remaining in the chemically wet wood after the flashing step may be at least 6 wt%, at least 8 wt 〇 / . At least 10 wt%, at least 12 wt% or at least 15 and/or not more than 60 Wt%, not more than 40 wt%, not more than the child wt%, not more than wt0/〇, not more than 20 wt% or not more than 15 Wt〇/. . According to an embodiment, the step of heating may be carried out after the chemical upgrading step to further heat and/or dry the chemically modified (or chemically wetted) wood to thereby provide a chemically modified, heated and/or dried Wood bundle. As used herein, a bundle or other item or material is referred to as "heated" for convenience only to indicate that the temperature of at least a portion of the bundle has risen above the ambient temperature. Similarly, as used throughout this application, a bundle or other item or material is referred to as "dried" for convenience only to indicate that at least the bundle has been heated by (in some embodiments) heating. A portion of at least some of the thermally removable chemicals are removed. In one embodiment, the heating step is operable to further reduce the amount of one or more thermally removable chemical components present in the wood. The energy utilized during the heating step may be suitable for heating, and/or drying any of the radiation, conduction and/or convection energy of the wood. In one embodiment, the heater can be a microwave heater. In another embodiment, another source of heat may be utilized to directly or indirectly (via, for example, a hot gas injection, a jacketed or heat traceable container or other means) to heat at least a portion of the container, such as (for example In terms of) one or more side walls. In this embodiment, the sidewalls can be heated to at least 45. 〇, at least 55 ° C or to 160,979. Doc •14- 201240527 Less than 65°C and/or no more than 115°C, no more than 105°C or no more than 95°C. The heating step can be carried out under any suitable conditions, including pressures above, at or near atmospheric pressure. Various heating systems suitable for use in the production of chemically modified and/or thermally modified wood will be discussed in detail later. Specific implementation examples. The heating step can be practiced such that at least 5%, at least 65 Å, of the total amount of one or more of the thermally removable chemical components remaining in the chemically wet wood is removed. At least 75% or at least 95%. In one embodiment, this may correspond to removing at least 100 pounds, at least 250 pounds, at least 500 or at least 1,000 pounds of total liquid. As a result of one of the heating steps, in one embodiment, the heated or dried chemically modified wood may comprise no more than 5 wt%, no more than 4 wt%, based on the initial (preheated) weight of the bundle. More than 3 no more than 2 wt% or no more than 1% of the one or more thermally removable chemicals (eg, acetic acid). In addition, the chemically modified wood that is heated or dried based on the initial (preheated) weight of the wood may have no more than 6 wt%, no more than 5 wt%, no more than 3 wt%, no more than 2 wt% or no More than 1 wt% or no more than 0. 5 wt°/. One of the water content. In one embodiment, the wood may have a water content of approximately 0% after the thermal step. In one embodiment, the chemical upgrading step and the heating step can occur in a single container. In another embodiment, the chemical upgrading step and the heating step can be carried out in separate vessels such that the internal volume of the chemical upgrading reactor and the heater are different in position. As used herein, the "internal volume J" of a container refers to the space encompassed by the container as a whole, including any volume defined by the container's (or one or more) doors when closed or within the door. . Doc •15· 201240527 As used herein, the term “different in position” means that the internal volume does not overlap. When the chemical upgrading reactor and heater comprise separate vessels, various types of wood conveying systems can be utilized to The wood is transported between the two containers. In one embodiment, the delivery system can include rails (as illustrated in Figure 1), rails, belts, hooks, rollers (as illustrated in Figure 3), strips, trucks, motorized vehicles , stacker, pulley, turntable (as illustrated in Figure 2) and any combination thereof. Various embodiments of wood treatment facilities capable of producing chemically modified and/or thermally modified wood will now be discussed in detail with respect to Figures 1 through 3. Referring now to Figure 1, an embodiment of a wood processing facility is illustrated as including a chemical upgrading system 20, a heating system 30, a delivery system 40, and a stock storage area 6A and a finished material storage area 6 b. The chemical upgrading system 20 includes a chemical upgrading reactor 22, a reactor heating system, and a reactor pressurization/depressurization system 26. The heating system 3 includes a heat shield 32, an energy source 34, and a selective heater pressurization/decompression system 36. The conveyor system 40 includes a plurality of conveyor sections 42a through 42e for transporting wood between the storage areas 60a, 6'b, the reactor to and the heater 32, as explained in detail below. In operation, one or more bundles of wood may be removed from the stock storage area 6A via the transfer section 42a. Although illustrated in the figures as including rails or rails, it should be understood that the conveyor sections 42& can include any type of conveyor mechanism suitable for moving wood between the storage zone 6A and the reactor 22. As shown in Figure i, wood can then be introduced or loaded into reactor 22 via an open reactor inlet door 28. Thereafter, the first reactor inlet door 28 can be closed to allow 160979. Doc 201240527 The wood disposed in reactor 22 is chemically modified according to one or more of the processes set forth above. Once the reaction is complete, the chemically wet wood can be withdrawn from the reactor 22 and sent to the heater 32. According to one embodiment, the chemically wet wood can be removed from the reactor 22 via the reactor inlet door 28 and delivered to the heater 32 via the transfer section 42b. In another embodiment, the wood can be exited via a selective reactor The door 29 is removed and delivered to the heater 32 via the delivery section 42c, as shown in FIG. 1 . Next, the chemically wetted wood can be introduced or loaded into the heater 32 via an open heater inlet door 38, which can then The open heater inlet door 38 is closed to thereby form a fluid seal between the heater inlet door 38 and the body of the heater 32 prior to heating of the starting wood. When the reactor outlet door 29 is selected and the heater outlet door 39 is selected, the outlet doors 29, 39 can be located generally other than the respective reactor inlet door 28 and heater inlet door 38 of the reactor 22 and the heater 32. On the opposite end. In various embodiments, during heating of the wood within the heater 32, the pressurization system 36 can be used to maintain a pressure within the heater 32 to no greater than 550 Torr, no greater than 450 Torr, no greater than 350 Torr, and no greater than 25 Torr. Support, no more than 200 Torr, no more than 15 Torr, no more than 1 〇〇 or no more than 托托. In one embodiment, the vacuum system is operable to reduce the pressure in the heater 32 to no more than 10 mTorr (10-3 Torr), no more than 5 mTorr, no more than 2 mTorr, no More than 1 mTorr, no more than 〇. 5 mTorr or no more than 毫1 mTorr. Additionally, when the heater 32 includes a microwave heater, one or more of the features (including, for example, a microwave choke, one or more microwave emitters, and the like) may be used in detail later. Introduce energy to the heater 32 160979. Doc •17·201240527 in the interior of 'heating and/or drying at least a portion of the wood bundle contained therein. According to one embodiment, the wood treatment facility 1 can include a plurality of reactors and/or heaters. Any number of reactors and/or heaters can be employed and the reactors and/or heaters can be configured to any suitable configuration. For example, the wood treatment facility 10 can utilize at least one, at least two, at least three, at least five, and/or no more than one, no more than eight, or no more than six reactors and/or heaters. . When multiple reactors and/or heaters are employed, the containers can be paired in any suitable combination or ratio. For example, the ratio of reactor to heater can be 1:1, 1:2, 2:1, 1:3, 3:1, 2:3, 3:2, 1:4, 4:1, 4 : 2, 2: 4, 3: 4, 4: 3 or any feasible combination. According to an embodiment, one or more of the reactors and/or heaters may include separate inlet and outlet doors, while in another embodiment, one or more of the reactors and/or heaters may include A single door for loading and unloading timber. In one embodiment, the heated and/or dried wood may be removed from the heater 34 via the heater inlet door 38 and transported via the delivery section 42d to the storage area 60b. Another selection system, the wood may be selected via an option The heater exit door 39 (if present) is withdrawn and delivered via section 42e to the storage area 6〇b, as illustrated in FIG. Various configurations of wood processing facilities employing multiple reactors and heaters configured in accordance with several embodiments of the present invention will be briefly described with respect to circles 2 and 3. Turning now to Figure 2, a wood processing facility 110 configured in accordance with an embodiment of the present invention is illustrated. The wood treatment facility 11 includes only a plurality of reactors (illustrated as 122a' 122b, 122η) and a plurality of heaters (illustration 160979. Doc •18- 201240527 is 132a, 132b, 132η). Each of the reactors 122a, 122b, 122n and each of the heaters 132a, 132b, 132n, according to one embodiment, includes a single door for selectively permitting access to the wood of each container. 128a, 128b, 128n, 138a, 138b, 138n. Additionally, the wood treatment facility 110 can include a rotatable platform (illustrated as a turntable 140) that is operable to position a bundle of wood 1〇2 such that it can be in various directions (generally from arrow 19〇a to 190c indicates) transporting the bundle of wood between reactors 122a, 122b, 122n, heaters 132, 132b, 132n and a storage area 160. Referring now to Figure 3, another embodiment of a wood processing facility 21 is shown to include a plurality of chemical upgrading reactors (illustrated as 222a, 222n) and a plurality of heaters (illustrated as 232a, 232b, 232n). As shown in Figure 3, each of the reactors includes a respective reactor inlet gate 228a, 228n and a selective reactor outlet gate 229a, 229n. Similarly, each of the heaters 232a, 232b, 232n includes a heater inlet door 23 8a, 238b, 238n and a selected heater outlet door 239a, 239b, 239n. The delivery system 240 shown in Figure 3 includes a plurality of segments 242a through 242j and 244a through 244e operable to transport wood to the reactors 222a, 222n and heaters 232a, 232b, 232n, from the reactors and The heater transports the wood and transports the wood between the reactors and the heaters. Although illustrated as including a continuous belt segment, the conveyor system 240 can include one or more segments that include any suitable transport mechanism, as discussed in detail above. According to one embodiment, in operation, wood loaded into the first reactor 222a via the delivery section 242a can be introduced through the reactor inlet door 228a. One 160,979. Doc •19·201240527 Once the chemical upgrading process is complete, the chemically wet wood can be removed from the reaction is 222a via the reactor inlet door 228a and can then be transported to the heater 232a via the respective transport sections 242e, 242f, 242g. One of 232b or 232n. In an alternate embodiment, the wood removed from reactor 222a can be removed through reactor outlet port 229a via delivery section 244a prior to being conveyed to heater 232a, 232b or 232n, as previously described. Alternatively, the wood treated in reactor 222n can be loaded, chemically modified, and delivered to one of heaters 232a, 232b, 232n in a similar manner as previously described. Thereafter, one or more chemically flooded wood bundles may be heated and/or dried for delivery to one or more of the heaters 232a, 232b, and 23 2n in accordance with one or more of the methods set forth herein. In one embodiment, at least one of the heaters 232a, 232b, and 232n can include a microwave heater. Once the heating step is completed, the heated and/or dried bundles can be passed from the respective inlet gates 238a, 238b, 238n or via respective outlet gates 239a, 239b, 239n (when present) from the heaters 232a, 232b and 232η is extracted. Subsequently, the end-view modified beam is removed from the heater inlet doors 238a, 238b, 238n or the heater exit doors 239a, 239b, 239n, which may be via the transport segments 242h, 242i, 242j or 244c, 244d, 244e The beam is delivered to subsequent processing and/or storage. The chemical upgrading process previously discussed can be carried out at any suitable scale. For example, the wood treatment facility described above may include a laboratory scale, a pilot plant scale, or a commercial scale wood treatment facility. In one embodiment, the wood treatment facility used to produce the chemically modified and/or thermally upgraded wood may have at least 5 feet, a slab foot, at least i million board feet, and at least 2. One of the annual production of 5 million board feet or at least 5 million board feet. 160979. Doc -20- 201240527 Scale facilities. As used herein, the term "plate foot" means a volume of wood expressed in units of 144 cubic feet. For example, a board with 2 inches of inches x 36 inches has a total volume of 288 cubic feet or 2 feet. The internal volume (i.e., "internal reactor volume") of a single chemical upgrading reactor and/or the internal volume of a single heater (i.e., "internal heater volume") may be at least 1 〇〇 cubic feet, at least 500 cubic feet, at least ^(9) cubic feet, at least 2,500 cubic feet, at least 5, 〇〇〇 cubic feet, or at least 1 〇〇〇〇 cubic feet to accommodate commercial scale operations. Even when implemented on a commercial scale, chemical and/or thermal upgrading processes as set forth herein can be performed with relatively short total cycle times. For example, according to one embodiment, the total cycle time of the chemical and/or thermal upgrading process performed using one or more systems of the present invention (from the time of the initial upgrading step to the time the heating step is completed) It can be no more than 48 hours, no more than 36 hours, no more than 24 hours or no more than 12 hours, no more than 1 hour, no more than 8 hours or no more than 6 hours. This is in contrast to many conventional wood treatment processes that can have a total cycle time that lasts for days or even weeks. According to an embodiment of the invention, the wood treatment facility of the invention may comprise one or more steam containment chambers and/or aeration structures for substantially isolating the external environment during transport of the wood (ie, immediately following the chemistry) Chemically modified wood that is chemically wetted with the environment of the reforming reactor and the heater. The vaporization chamber and/or the venting structure can be coupled to a venting system that removes at least one of the gaseous environments from the containment/venting region. Doc • 21·201240527, thereby minimizing the leakage of one or more undesired vapor-state chemicals into the external environment. Additional details and an embodiment of a wood treatment facility employing a vapor containment chamber and/or a venting structure will now be described in more detail with respect to Figures 4a through 4d. Figure 4a is a plan view of one of the vaporization chambers 360 of a chemical upgrading reactor 322 and a heater 332. The vapor containing chamber 36 is operable to partially or nearly completely isolate the external environment when the wood is transferred from the chemical upgrading reactor 322 to the heater 332 via a transfer zone 361 located between the reactor 322 and the heater 332. With a chemically modified wood bundle. As used herein, the term "isolation" refers to the inhibition of fluid transfer between one or more regions, zones or zones. According to an embodiment, the vapor containment chamber 36A can be coupled to a venting system (not shown in Figure 4a) that is operable to remove at least a portion of the steam and gas from the interior of the steam to 360, thereby reducing, Leakage of one or more of the thermally removable chemical components contained within the interior of the reactor 322, within the interior of the heater 332, and/or from the chemically modified wood bundle to the external environment is minimized or prevented. In one embodiment, the chemical upgrading reactor 322 can include a reactor inlet gate 328 for receiving a wood bundle from an external environment and for discharging the wood from the chemical upgrading reactor 322 after chemical upgrading. One of the bundles exits the door 329. Additionally, heater 332 can include a heater inlet gate 328 for receiving a chemically modified, chemically wetted wood bundle exiting from chemical reforming reactor 322. According to one embodiment, heater 332 may also include a heater outlet gate 339 for separating a bundle of wood from heater 332 from heater inlet door 338. In one embodiment, the individual reactor inlets 160979. Doc • 22- 201240527 Door 328 and heater inlet door 338 and reactor outlet door 329 or heater outlet door 339 (when present) may be positioned on substantially opposite ends of reactor 322 or heater 332 to allow reactor The respective central elongated shafts 322 and heaters 332 (shown as shafts 370a, 370b in Figure 4b) can extend through respective inlets 328, 338 and outlets 329, 339. In one embodiment, the reactor 322 and the heater 332 are axially aligned with each other such that the central elongated shafts 370a, 370b of the figure are substantially aligned with each other' while in another embodiment, the shaft 3 70a, 370b can be parallel to each other. As used herein, the term "substantially aligned" means that two or more containers are configured such that the maximum acute angle formed between the intersections of their respective central axes of elongation is no more than 2 inches. . In some embodiments, the maximum acute angle between the intersections of the two elongated axes of the substantially aligned containers may be no more than one turn. No more than 5. No more than 2. Or no more than 1. . In certain embodiments, reactor 322 and heater 332 can be configured in a side-by-side configuration (not shown). According to an embodiment shown in Figure 4a, the vapor containing chamber 36 is sealingly coupled to the reactor 322 and the heater 332 such that during transport of the wood bundle from the reactor 322 to the heater 332 the external environment is substantially The transfer zone 361 is isolated. As used herein, the term "sealedly coupled" means that two or more items are attached, fastened, or otherwise associated such that the junctions from such items substantially reduce or substantially avoid fluids leakage. In one embodiment, the reactor inlet door 328 and/or the heater outlet door (when present) may be open to the external environment, while the reactor outlet door 329 and/or the heater inlet door 338 may be directed to the steam containment chamber 360. The interior is open thereby being transported between reactor 322 and heater 332 via transfer zone 361 160979. Doc •23- 201240527 Isolation of the external environment from steam or gas from chemical reactor 322, heater 332 and/or chemically wetted wood beams. The vapor containment chamber 360 can be configured in any suitable manner. In one embodiment illustrated in Figures 4a and 4b, the vapor containment chamber 360 includes four generally upstanding walls 342a through 342d coupled to the day sheet structure 344 and a floor (not shown). Although illustrated in the drawings and in the case of being generally attached to the ceiling structure 344, one of the steam outlet conduits 349 for removing steam and gas from the interior of the steam containing chamber 360 may alternatively be attached to the walls 342a through 342d. One or to the floor. Additional details regarding the removal of steam and gas from the vapor containment chamber 360 will be explained in more detail later. In one embodiment of the invention, at least one of the walls 342a-342d can include at least one blast plate for controlling a direction of pressure release in the event of an explosion or rapid pressurization within the vapor containing chamber 360. Or blast wall 343. In one embodiment, the blast plate 343 can be attached to the ceiling 344 and/or floor (not shown) of the steam containment chamber 360. The blast plate or wall 343 can be spliced, tethered or otherwise fastened to another structure of the steam accommodating chamber 36〇 to avoid or reduce that the blast plate or wall 343 will exit the steam accommodating chamber 360 due to an explosion. The possibility that the direction arbitrarily bulges at an undesired speed. The blast plate or wall 343 can have a substantially solid surface (as shown in Figure 4b) or can include a plurality of slats or grooves (not shown, generally Μ. to "Μ U non-blast plate / wall 343 The section is constructed of a high strength material such as, for example, precast concrete slabs, concrete blocks or steel plates. Although illustrated herein as having four walls, it should be understood that various other shapes may be employed. Steam storage room. 160979. Doc • 24· 201240527 As illustrated in Figure 4c, the vapor containment chamber 360 can be equipped with a plurality of vents 370a, 370b for selectively permitting fluid to flow from the external environment into the interior of the vapor containing chamber 36. In one embodiment, the vents 370a, 370b are one-way vents that permit fluid to flow from the external environment into the vapor containing chamber 360 (as indicated by arrows 380a, 380b in Figure 4c), but reduce, inhibit Or substantially preventing fluid from flowing out of the interior of the vapor containing chamber 36 to the external environment. Examples of external fluids that may flow into the venting chamber 360 via vents 370a, 370b include ambient air or one or more inert gases such as nitrogen. In one embodiment, the vents 370a, 370b can be configured to maintain a predetermined pressure differential between the interior of the steaming chamber 360 and the external environment. The vent 370a' 370b can control the rate at which fluid from one of the external environments is drawn into the vapor containing chamber 360 by maintaining a predetermined pressure differential between the interior and exterior environment of the vapor containing chamber 360. To maintain a relatively constant pressure differential between the interior and exterior environment of the vapor containing chamber 36, the vents 37a, 370b may be equipped with means for varying the vent based on the pressure differential across the vents 37a, 37b. One of the degrees of openness of 370a, 370b is a control mechanism (eg, an electronic actuator, a hydraulic actuator, a pneumatic actuator, or a mechanical magazine). When the pressure difference between the external environment and the interior of the steam containing chamber 360 is too high, the vents 370a, 370b are wide open, and similarly, when the pressure difference is too low, the vents 370a, 370b are oriented toward one Turn off location movement. In an embodiment, the vents 370a, 370b may be loaded with a spring and offset toward the closed position such that when the pressure difference between the vapor containing chamber 36 and the external environment is below a threshold, the vent is closed 37〇a, 37〇b, but when steaming 160979. Doc -25- 201240527 When the pressure in the vapor storage chamber 360 is lower than the external environment by more than the threshold pressure difference, the vents are open, to allow the external fluid to be drawn into the steam storage chamber 360. Further, when the vent holes 370a, 37Qb are loaded with springs, the vent holes help to maintain the interior of the steam accommodating chamber 36 by automatically opening wider when the pressure difference is high and automatically moving toward the closed position when the pressure difference is low. - A substantially constant pressure difference from the external environment. In one embodiment, the vapor storage chamber is maintained at a low pressure during delivery and can be maintained at least 〇. 〇5水柱英#, at least 0#柱英作或至纽Η水柱英 忖 and/or no more than 1 〇 water column English time, no more than ^ water column inch number or not greater than 0. 5 water column miles always do * work in one embodiment, vent 3, 370b is configured to permit at least 2 exchanges per hour, at least 4 exchanges, or at least 5 exchanges from steam The accommodating chamber then extracts a rate to draw fluid from the external environment (e.g., ambient air) into the steam accommodating chamber 360, wherein one exchange is equal to one volume of the steam accommodating chamber 360. As used herein, the term "number of exchanges per hour" refers to the total number of times the total volume of fluid in the system is replaced per hour, which is obtained by dividing the volumetric flow rate of steam removed from the system by the total system. Volume to calculate. In an embodiment, the vapor containing chamber 36 is sized such that the reactor 322 and the heater 332 (eg, the internal volume of the positioning reactor and the heater) are at least 2 feet apart, at least 4 feet, or at least 6 feet apart. And/or no more than 50 degrees, no more than 3 feet or no more than 2 feet. In one embodiment, the length of the chamber can be the same or substantially the same as the distance between the reactor W and the heater W. According to the embodiment, the steam capacity is 160,979. Doc -26 · 201240527 The ratio of the length of the chamber 360 to the total length of the reactor 322 and/or the total length of the heater 332 may be at least 〇. 1:1, at least 0. 2:1, or at least 0. 3:1 and / or no more than 1:1, no more than 0. 6:1 or no more than 0. 5:1. When the spacing between the reactor 322 and the heater 332 is minimized, the reactor outlet door 329 and the heater inlet door 338 may be capable of contacting each other during the opening process, "in this embodiment, the reactor outlet door 329 and heating. The inlet door 338 can be configured to nest/overlap each other (but not in contact with each other) when both are fully open. Figure 4d is a side elevational view of a wood processing facility 416 including a reactor 322, a heater 332, and a vaporization > fly containment chamber 360 disposed therebetween. Figure 4d additionally illustrates an embodiment of a product vapor removal system or structure 4 employed adjacent the exit gate 339 of the heater 332. The product vapor removal system 4A can be configured to deliver steam from the outlet gate 339 of the heater 332 and away from the area near the exit gate 3339 (e.g., recovery chamber). This configuration can be substantially reduced and in some embodiments can substantially prevent vapor from the chemically treated wood bundle exiting the heater 332 and/or vapor exiting the reactor and/or heater 332 from escaping to External Environment β As shown in Figure 4d, the vapor containment chamber 360 and the product vapor removal system 4 can be coupled or otherwise operatively coupled to a common venting system 4〇2. The venting system 4〇2 is used to extract steam and gas from the vapor containing chamber 360 and/or to pass it through the product vapor removal system 400. Although Figure 4d illustrates a common venting system 4 〇 2 for both the A* 谷纳室 360 and the product vapor removal system 4 个别, individual ventilation may also be used for each containment/venting area of the wood treatment facility. System 0 is implemented in Figure 4d, product u moved (four) Tongshi package 160979. Doc -27-201240527 includes a venting hood 404 and a venting chamber 406 disposed between the venting hood 404 and the heater 332. Vent hood 404 and plenum 406 can be coupled to venting system 402, and venting system 402 draws steam from hood 404 and/or plenum 406. The plenum 406 can be configured to receive a chemically modified bundle of wood through the heater outlet door 339 (which opens into the plenum 406). The venting chamber 406 can be equipped with a venting chamber outlet 4〇8 through which the chemically modified wood material passes to a cooling position below the venting hood 404. In one embodiment, the venting chamber outlet 408 can be equipped with a door 4 〇 9 that substantially isolates the exterior environment from the interior of the plenum chamber 4 when closed. When the venting chamber is equipped with such a door, the venting chamber may also be equipped with venting holes (not shown) similar to the venting holes 37A, 37 of the steam accommodating chamber 36 先前 previously described with reference to Figure 4c. However, in another embodiment, the plenum outlet 4〇8 is configured to continually permit fluid to pass from the external environment into the interior of the plenum chamber 4〇6. In this embodiment, the plenum outlet 4〇8 is fully open to permit free flow of fluid therethrough. Alternatively, the plenum outlet 408 may be partially covered with a flexible material (eg, a suspended VISQUEEN sheet or a VISQUEEN strip) that permits passage of chemically treated wood bundles therethrough, but at least partially inhibits The free flow of fluid through it. In the practice of the present invention, the plenum 406 can be completely eliminated and the venting shroud 404 can be positioned adjacent the exit gate 339 of the heater 332. As shown in Figure 4d, the venting system 4〇2 can include one or more vacuum generators 4丨0, a processing device 412, a drain 414, and a plurality of steam outlet conduits 349a through 349c. The vacuum generator 41 is operable to pass through 160979. Doc • 28 · 201240527 The mouth ducts 349a, 349b, 349c draw steam from the steam holding chamber 360, the venting hood 404 and/or the venting chamber 406. The processing device 412 is operable to remove or change the composition of at least a portion of one or more components of vapor extracted from the vapor containing chamber 360, the venting shroud 404, and/or the plenum 406 via the vacuum generator 410. Examples of suitable processing devices may include, but are not limited to, scrubbers, thermal oxidizers, catalytic oxidizers or other catalytic processes and/or precipitators. According to one embodiment, the flow director 414 is operable to The steam flow in the steam outlet conduits 349a, 349b, 349c is directed to distribute the venting system between the steam/flying chamber 360 and the product vapor removal structure (eg, the hood and/or the plenum 406). The total venting capacity of 2 is used to adjust the total venting capacity of vacuum generator 410. The term "total venting capacity" as used herein refers to the maximum vapor volume that can be removed via a vacuum generator or other source system, expressed as a time based rate. For example, the distribution of the total venting capacity among the vapor containing chamber 360, the venting shroud 404, and/or the plenum chamber 〇6 can be advantageous for accommodating various steps of a chemical upgrading process. In the embodiment, the 'drain 414 is operable to evenly distribute the total venting capacity (generally denoted as "Xj") such that 〗 〖 is provided to the vapor containing chamber 360, Va is provided to the venting cover 4〇4 and The helium is provided to the plenum 406. In another exemplary embodiment, the diverter 414 can distribute more venting capacity to one of the three regions (such as, for example, 36 暴), such that The V3X is supplied to the steam containing chamber (10), the & provides = venting hood 404 and the VeX is provided to the venting chamber 4 〇 6. The wood processing facility 416, heart item 160979 will now be described in detail with respect to Figure 4d. Doc • 29-201240527 EXAMPLES A first wood bundle (herein represented by the parent "c") can be loaded into the chemical upgrading reactor 322 via a reactor inlet gate 328 and chemically treated. At the same time, a second wood bundle (here represented by the mother B) can be introduced into the heater 332 via the heater inlet door 338 and heated and/or dried. "When the bundle C&B is chemically modified respectively Chemical modification and force are performed in the mass reactor 322 and the heater 332. When hot/dry, the third wood bundle (indicated by the letter "a" herein) can be removed from the venting chamber 406 and positioned below the vent 404, as generally shown in Figure 4d. Once the bundle A has been sufficiently dried, it can be removed from the venting cover 4〇4 and transported to a storage area (not shown, then the drainer can be used to adjust the distribution of the total venting capacity of the venting system 402 to increase the dispensing. The amount of ventilation capacity to the steam is accommodated to 360, and the amount of ventilation capacity allocated to the ventilation hood is reduced. Next, after the heating of the bundle "B" is completed, the heater inlet door 338 and the heater exit σ gate 339 can be Any residual vapor or gas that is continuously open and present in the heater 332 can be removed and passed through the vapor containing chamber 360 prior to entering the venting system. In the embodiment, the heater 332 can be emptied. This includes extracting an external fluid (eg, ambient air or other inert gas) into the system through the vent hood 404 and the plenum 406 (when present). The external fluid can then enter the heater 332 via the heater exit gate 339 and Passing through the interior of the heater 332 before exiting the heater 332 via the heater inlet door 338 and being bound into the vapor containing chamber 36. Once in the vapor containing chamber 36G, the external fluid is Remove any residual vapor or gas of the interior of the can 332 plus Executive 4〇2 exchanging at least 2 times per hour, at least four times per hour, or at least 6,160,979 per hour switching means vent system. Doc 201240527 One exchange rate is drawn from the steam holding chamber 360. For example, if the venting system has a total volume of 100 cubic meters and the rate of steam removal is 200 cubic meters per hour, then the number of exchanges per hour will be (2 〇〇 cubic meters / hour) / (100 cubic meters) m) or exchange 2 times per hour. Once the external fluid and residual vapor/gas 'bundle B have been removed from the vapor containment chamber 360, it can be removed from the heater 332 via the heater exit gate 339, through the plenum 406 (if present), and positioned below the vent 404 Cooling and/or further drying of the bundle B' is as previously discussed in detail. The heater outlet gate 339 can then be closed prior to sequentially opening the reactor outlet gate 329 and the reactor inlet gate 328. Thereafter, a venting system 402 can be used to evacuate residual vapor or gas from the interior of the chemical upgrading reactor 322. In one embodiment, an external fluid (eg, ambient air or other inert gas) may be drawn into the reactor 322 via the reactor inlet gate 328 and worn before exiting into the vapor containing chamber 360 via the reactor outlet gate 329. Passing through the interior of reactor 322. As explained above, the external fluid and any residual steam or gas may then be exchanged at a rate of at least 2 exchanges per hour, at least 4 exchanges per hour, or at least 6 exchanges per hour via steaming outlets 349a. The accommodating chamber 360 is withdrawn. Thereafter, the bundle C can be removed from the chemical upgrading reactor 322 via the reactor outlet gate 329 and passed through the vapor containing chamber 36 along a delivery path 399. In one embodiment, the 'product venting system 4〇2 can be used to Gas and steam are withdrawn from the vapor containing chamber 36〇 during the transfer of the bundle between the reactor 322 and the heater 332. The chemical wetting bundle C can then be introduced into the interior of the heater 332 via heater inlet gate 338 prior to heating of the starting bundle C. Next, the reactor inlet gate 328, the reactor outlet gate 329, and the heater inlet 160979 can be closed in sequence. Doc -31 · 201240527 Before the door 338, the fourth bundle (not shown) was loaded into the inner crucible of the chemical upgrading reactor. The distribution of the total venting capacity to the steam accommodating chamber 36 ’ can be reduced to simultaneously increase to the venting hood 4 〇 4 to thereby cool and/or further dry the bundle B. A fifth bundle (not shown) is assembled in a loading zone (not shown) or near the reactor inlet door 328 prior to repeating the steps mentioned above to process a new wood beam 歹i. It will be understood that in the sequence of operations set forth above, some of the steps may be carried out in the order illustrated, and some steps may be performed simultaneously and/or the order of the steps may be interchanged. The above sequence of steps is included merely to illustrate one exemplary method of operating wood processing system 416. Microwave Heating System According to one embodiment, one or more of the heating systems set forth above may include a microwave heating system that utilizes microwave energy to heat one or more items or items. In addition to an embodiment of the wood processing facility set forth above, a microwave heating system configured in accordance with an embodiment of the present invention is also widely applicable to a wide variety of other processes. It should be understood that although the process herein is primarily directed to heating "wood" or "wood bundle", the processes and systems described herein are equally applicable to heating one or more of them! m, object or load application. Examples of other types of applications that may utilize microwave heating systems as set forth herein may include, but are not limited to, ambient temperature vacuum ceramics and metal sintering, melting, brazing, and heat treatment of various materials, in one embodiment, The microwave heating system can include a vacuum system (eg, a microwave vacuum heater) and can be used for vacuum drying of materials such as minerals and semiconductors, vacuum drying of foods such as fruits and vegetables, and ceramic J60979. Doc •32- 201240527 Vacuum drying of porcelain and fiber molds and vacuum drying of chemical solutions. Turning now to FIG. 5, a microwave heating system 420 is configured to include at least one microwave generator 422, a microwave heater 430, a microwave distribution system 440, and an optional vacuum system 450, in accordance with an embodiment of the present invention. . The microwave energy produced by the microwave generator 422 can be directed to the microwave heater 43A via one or more components of the microwave distribution system 440. Additional details regarding the components and operation of the microwave distribution system 440 will be discussed in detail later. When present, the vacuum system 450 is operable to reduce the pressure in the microwave heater 43 to no more than 550 Torr, no more than 450 Torr, no more than 350 Torr, no more than 250 Torr, no more than 200 Torr, no greater than 15 〇, no more than 1 〇〇 or no more than 75 托. In one embodiment, the vacuum system is operable to reduce the pressure in the microwave heater 430 to no more than 1 〇 milliTorr (1 〇 3 Torr), no more than 5 mA, no more than 2 mTorr, Not more than 丨 milliTorr, no more than 毫 5 milliTorr or no more than 〇. 1 mTorr. Each of the components of the microwave heating system 42A will now be discussed in detail in τ. Microwave generator 422 can be any device capable of producing or generating microwave energy. As used herein, the term "microwave energy" refers to electromagnetic energy having a frequency between _MHz and 30 GHz. As used herein, the term "in" is intended to include the recited endpoints. For example, the number "between" may be between x, y or Any value. In one embodiment, the various configurations of the microwave heating system 420 can utilize a frequency of 915 MHz - a frequency or a frequency of 2 45. 'The two frequencies are generally designated as suitable for the industrial microwave frequency to produce β. 】 音 丨 γ ^ The example of the company can include (but not limited to) magnetron, speed adjustment 160979. Doc •33- 201240527 Pipes, traveling wave tubes and gyrotrons. In various embodiments, one or more microwave generators 422 can be capable of delivering (eg, having one of the following maximum outputs) at least 5 kW, at least 30 kW, at least 50 kW, at least 60 kW, at least 65 kW 'at least 75 kW, at least 100 kW, at least 150 kW, at least 200 kW, at least 250 kW, at least 350 kW, at least 400 kW, at least 500 kW, at least 600 kW, at least 75 0 kW or at least 1,000 kW and/or no more than 2,500 kW, no more than 1,500 kW or no more than 1,000 kW. Although illustrated as including a microwave generator 422, the microwave heating system 420 can include two or more microwave generators configured to operate in a similar manner. Microwave heater 430 can be any device capable of receiving and using microwave energy to heat one or more items, including, for example, wood bundles or wood bundles. In one embodiment, the amount of heat or energy provided by the microwave heater 430 is at least 75°/〇, at least 85%, at least 95. /. Or substantially all of it can be provided by microwave energy. Microwave heater 430 can also be used as a microwave dryer that can be further operative to dry one or more items disposed therein using microwave energy as set forth herein. Turning now to Figure 6, an embodiment of a microwave heater 530 is illustrated as including an present body 532 and access for selectively permitting and blocking access to one or more objects of the interior 536 of the microwave heater 530. Or pass one of the doors 534. In the embodiment, the container body 532 of the microwave heater 530 can extend along the -center extension axis 535, which can be oriented in a substantially horizontal direction, as illustrated in the ®6. The container body can have any cross-section of any suitable shape or size. In the embodiment, the cross section of the container is 160979. Doc • 34· 201240527 may be rounded or rounded, while in another embodiment, the section may be elliptical. According to one embodiment, the cross-sectional shape and/or shape of the container body 532 can be changed by the direction of elongation A. In another embodiment, the shape and/or size of the cross-section can remain substantially the same. In the embodiment illustrated in Figure 6, the container body 532 of the microwave heater 530 includes a horizontally elongated, cylindrical container body having a circular cross-section. U-wave heater 53 0 can have a total maximum internal dimension or length L and a maximum inner diameter D, as shown in FIG. In one embodiment, l may be at least 8 feet, at least 1 foot, at least 16 feet, at least 2 feet, at least 30 feet, at least 50 feet, at least 75 feet, at least 1 foot, and/or no more than 500. Feet, no more than 35 feet, no more than 25 feet. In another embodiment, D can be at least 3 feet, at least 5 feet, at least 1 foot, at least 12 feet, at least 18 feet, at least 2 feet, at least feet or at least 30 feet, and/or no more than 25 feet. No more than 2 feet or no more than 15 feet. In one embodiment, the ratio of the length (l:d) of the length of the microwave heater 53 to its inner diameter (L:D) may be at least 1:1, at least 2:1, at least 3:1, at least 4. 1 to eve 6. 1. At least 8:1, at least 1〇:1 and/or no more than 5〇丨 is not greater than 4〇:1 or no more than 25:1. Micro heating = § 530 can be constructed from any suitable material. In one embodiment the microwave heater 530 can include at least one electrically conductive and/or highly reflective material. Examples of suitable materials may include, but are not limited to, selected carbon steel, stainless steel nickel 0 gold, aluminum alloys, and copper alloys. The microwave heater 53 can be nearly finished: constructed from a single material' or a variety of materials can be used to construct various portions of the microwave heater. For example, in one embodiment, the microwave plus 160979. Doc 05-201240527 Heater 530 can be constructed from a first material and can then be coated or layered with a second material on at least a portion of its interior and/or exterior surface. In one embodiment, the coating or layer may comprise one or more of the metals or alloys listed above. In another embodiment, the coating or layer may comprise glass, polymer or other. Dielectric material. The microwave heater 530 can define one or more spaces suitable for receiving a load. For example, 'in one embodiment, the microwave heater 530 can be configured to receive and hold one or more wood bundles (Figure One of the reception spaces is not shown in the middle. The load (e.g., wood) can be positioned within the interior 536 of the microwave heater 530 in a static or dynamic manner. For example, in one embodiment in which the load is statically positioned in the microwave heater 53A, the load can be relatively inactive during heating and a static positioning device (not shown) can be used (such as, for example, a A shelf, a platform, a parked van, a stopped drive belt or the like is held in place. In another embodiment in which the load is dynamically positioned within the microwave heater 530, the load can be in motion during heating for at least a portion of the heating using one or more dynamic positioning devices (not shown). Examples of dynamic positioning devices may include, but are not limited to, continuous moving belts, rollers, horizontal and/or vertical oscillating platforms, and rotating platforms. In one embodiment, one or more dynamic positioning devices may be used in a substantially continuous process And one or more static positioning devices can be used in a batch or semi-batch process. In accordance with an embodiment of the present invention, the microwave heater 53A may also include one or more sealing mechanisms to reduce, inhibit, minimize, or substantially prevent fluid and/or microwave energy entering and exiting the interior 536 of the container during processing. leakage. Figure 160979. Doc-36 - 201240527 6 Illustrated that the container body 532 and the door 534 may each have a respective body side sealing surface 531 and a door side sealing surface 533. In one embodiment, the body side sealing surface 531 and the door side sealing surface 533 may form a fluid seal directly or indirectly between the door 534 and the container body 532 when the door 534 is closed. A direct seal can be formed when at least a portion of the body side sealing surface 53 1 and the door side sealing surface 533 are in direct physical contact with each other. The door 534 may be at least partially compressed against the door side sealing surface 533 and the body side sealing surface 53 at least partially compressed for fluidly isolating the interior of the microwave heater 530 from one or more of an external environment (not shown in FIG. 6). An elastic sealing member forms an indirect seal between the door 534 and the container body 532. Examples of the elastic sealing member may include, but are not limited to, a 〇-shaped ring, a spiral wound cymbal, a flaky cymbal, and the like. According to one embodiment, the procedure entitled "Spraying Testing", which is described in the document entitled "Helium Leak Detection Techniques" published under the title of "Helium Leak Detection Techniques" issued by Alcatel Vacuum Technology, is subjected to the use of a Varian model No. 93 8-41. When one of the air leak tests is performed by B1, the direct or indirect sealing formed between the container body 532 and the door 534 may allow the microwave heater 530 to have no more than 1 at or near the junction of the body 532 and the door 534. 〇_2托. L / s, no more than 1 〇 -4 Torr / sec or no more than 10 Torr / sec. In one embodiment, the fluid seal may be particularly advantageous when the environment inside the microwave heater 530 includes a low pressure and otherwise challenging processing environment. The microwave heater configured in accordance with an embodiment of the present invention may also include a microwave choke for suppressing or substantially preventing the gate 534 of the microwave heater 530 from the container body 532 when the door 534 is closed. Energy leakage (example 160979. Doc • 37- 201240527 such as 'at or near the junction of the door 534 and the container body 532'. As used herein, the term 'barrier' means that a microwave container is operable to apply microwave energy. Any device or component that reduces the amount of energy leaking from the container or escaping the container during the period. In one embodiment, the choke can be operable to reduce the amount of microwave leakage from the container by at least 25%, at least 50°/when compared to when a choke is not employed. At least 75% or at least 90% of any device. In one embodiment of the invention, the microwave choke is operable to allow no greater than 5 cm from a container with a wideband isotropic radiation monitor (300 MHz to 18 GHz) of a Narda Microline Model 8300 5 〇mW/cm2 (mW/cm2), no more than 25 mW/cm2, no more than 10 mW/cm2, no more than 5 mW/cm2 or no more than 2 mW/cm2, microwave energy can be self-heated through the choke The device leaked. Further, the microwave choke configured in accordance with an embodiment of the present invention is operable to substantially inhibit even under full vacuum conditions as compared to conventional microwave chokes, which typically fail when subjected to low air pressure. Microwave energy leaks. For example, in one embodiment, a microwave choke as described herein can inhibit leakage of microwave energy from the heater to a pressure in the microwave heater as set forth above. 450 Torr, no more than 350 Torr' no more than 250 Torr, no more than 200 Torr, no more than 1 Torr or no more than 75 Torr. In one embodiment, a microwave choke as described herein can inhibit leakage of microwave energy from the heater to a pressure of no more than 10 mTorr in the microwave heater as set forth above (1〇3)托), no more than 5 mTorr, no more than 2 mTorr, no more than 1 mTorr, no more than 〇5 mTorr or no more than 0. The degree of 1 mTorr. Further, according to an implementation of the present invention 160979. Doc -38 - 201240527 One example of a microwave choke can maintain its leak prevention level on a large unit, such as, for example, having at least 5 kw, at least 3 〇 kw, at least 5 〇 kw, at least 60 kW, at least 65kW, at least 75kw, at least 1〇〇kw, at least 150 kW, at least 200 kW, at least 250 kw, at least 35〇kw, at least 400 kW, at least 500 kW, at least 600 kW, at least 750 k\V or at least 1, Microwave heaters with a microwave energy input rate of 000 kW and/or no more than 2,500 kW, no more than ι,500 let... or no more than 1,000 kW. In one embodiment, when microwave energy is introduced into the container even at the level of microwave energy and vacuum pressure as set forth above (eg, during the heating step), arcing does not occur substantially near the choke 650. . As used herein, "arc" refers to an undesired, uncontrolled discharge resulting at least in part by ionization of a surrounding fluid. Arcing (which can damage equipment and materials and cause a substantial fire or explosion hazard) has a lower threshold at lower pressures (especially low pressure (e.g., vacuum) pressure). Conventional systems often limit the rate of energy input to minimize or avoid arcing. However, the microwave heater configured according to an embodiment of the present invention can be operated at a pressure system of no more than 550 Torr, no more than 450 Torr, no more than 350 Torr, no more than 250 Torr, and no more than 200 Torr. , not more than 100 Torr, not more than 75 Torr, not more than 1 〇 milliTorr (1 〇 -3 Torr), not more than 5 mTorr, not more than 2 mTorr, not more than 1 mTorr, not more than 〇·5 mTorr Or not greater than 〇1 mTorr and/or at least 50 Torr or at least 75 Torr, at least 5 kW, at least 30 kW, at least 50 kW, at least 60 kW, at least 65 kW, at least 75 kW, at least 100 kW, at least 150 kW, at least 200 kW, at least 250 kW, at least 3 50 kW, at least 400 kW, at least 500 kW, at least 6 kW, at least 160,979. Doc -39- 201240527 750 kW or at least l, 〇〇〇 kW and / or no more than 25 〇〇 kw, no more than 1,500 kW or no more than l 'OOO kW to receive microwave energy and can be introduced to A microwave heater (referred to as a vacuum microwave heater or a vacuum microwave dryer as desired) and substantially no arcing at or near the choke * is now provided for closure in Figure 7a The gate 634 substantially inhibits a section of one of the embodiments of the microwave choke 650 that is a leakage of microwave energy between a gate 634 of a microwave heater and a vessel body 632. As shown in Figure 7a, when the door 634 is closed and the respective door side 633 and body side 63 丨 sealing surfaces are in direct or indirect contact with each other, at least a portion of the microwave damper 650 cooperatively defines or is formed in the door 634 and the container body. Between 632. In an embodiment, there may be a fluid sealing member 66 selected to inhibit, minimize or substantially prevent leakage of fluid entering and exiting the microwave heater, as previously discussed. Fluid seal member 660 (when present) can be coupled to container body 632 or (as shown in Figure 7a) coupled to the door. According to an embodiment shown in Figure 7a, the microwave choke 65 defines a first radially extending baffle cavity 652, a second radially extending baffle cavity 654 and a microwave heating shutdown The door of the door is at least partially disposed at a radially extending baffle diversion wall 656 between the first choke chamber 652 and the second choke chamber 654. In one embodiment illustrated in Figure 7a, the first choke chamber 652 is defined between the container body 632 and the choke deflector wall 656 when the door 634 is closed, while the second choke chamber 654 At least partially placed in . The gate 634 is interposed between the baffle diversion wall 656 such that the baffle diversion wall 656 is substantially coupled to the door 634. The first choke chamber 652 can be used for the microwave heater I60979. Doc -40· 201240527. p is open and can be positioned radially between the interior of the microwave heater and the fluid seal formed when the component is present. In a preferred embodiment of the invention (not shown in Figure 7a), the second choke chamber 654 can be at least partially defined by the container body 632 so that the second choke chamber 654 can be closed when the door is closed Positioned between the container body 632 and the baffle diversion wall 656 such that the baffle diversion wall 656 is substantially coupled to the container body 632. In one embodiment, at least a portion of the second choke chamber 305 is reliably extended when the door 634 is closed. In the embodiment, 'at least 40%, at least 60%, at least 8% or at least 9% of the total length of the second choke chamber... when the door 634 is closed, reliably closes the first choke chamber 654. extend. The total length of the first choke chamber 652 and/or the second choke = 654 (defined in the letter "L" in Figure 〜) may be at least the main wavelength length of the microwave energy in the microwave heater 1/; 16 times, at least "8 times, at least 1/4 times and/or no more than 丨 times, no more than 3/4 times or no more than ι/2 times. The first choke chamber 652 and/or the second choke chamber 654 are at least 1 foot long, at least 丨. 5 feet, at least 2 feet or at least 2. 5 feet and: no more than 8 feet, no more than 6 feet or no more than 5 feet. As illustrated in Figure 7b, a relative extension angle 1 can be defined between the direction of extension of the first choke chamber 652 (specified by line 690) and the direction of extension of the second choke chamber (designated by line 692). . In various embodiments, the relative extension angle Φ can be no greater than 60. No more than 45. No more than 30. Or not greater than 15 In some embodiments, the direction of extension of the first choke chamber 654 may be substantially parallel to the direction of extension of the first choke chamber 652, as depicted in Figure 7a. Doc 201240527 Referring now to Figure 7c, a partial isometric section of a microwave choke is provided. As shown in Figure 7c, the baffle diversion wall 656 can be integrally formed into the door 634. According to an embodiment, the flow guiding wall 656 can include a plurality of spaced apart open ends 67〇 circumferentially disposed along the flow guiding wall 656. In one embodiment, the spacing between the centerlines of each of the gaps may be at least zero. 5 inches, at least 2 inches, at least 2 inches or at least 25 inches and/or no more than 8 inches, no more than 6 inches or no more than 5 inches. In accordance with another embodiment of the present invention, at least a portion of the flow blocker 650 can include a removable portion 651 that is removably spliced to the container body 632 or door 634. In one embodiment, the removable portion 651 can be removably coupled to the door 634. As used herein, the term "removably coupled" means to attach one of the portions of the choke that can be removed without substantially damaging or destroying the container body, the flow blocker and/or the door. Pick up. In one embodiment, the 'removable spoiler portion 651 can include at least a portion or all of the flow guiding wall 656. Figure 7d illustrates a microwave choke having at least one removable portion 651. In one embodiment illustrated in Figure 7d, the flow guiding wall 656 can be brought into contact with the removable choke portion hi. Removable spoiler portion 651 can include a plurality of removable spoiler segments 653a-653e that are each removably coupled to door 634 or container body 632 (not shown) (in an embodiment, The removable baffle portion 651 can include at least 2, at least 3, at least 4 'at least 6, at least 8 and/or no more than 16, no more than 12, no more than 1 〇 or no more than 8 removable choke segments 653. According to an embodiment in which the removable choke portion 65 1 has a large annular diameter, the embodiment can be individually removed. The spoiler segments 653a to 653e can have a large arc 160979. Doc •42· 201240527 Shape, as shown in Figure 7d. The removable baffle portion 651 can be secured to the door 634 or container body 632 according to any conventional method, including, for example, bolts, screws, or any other type of suitable removable fastening device. In one embodiment, the removable baffle portion 651 can be magnetically fastened to the door 634 or the container body 632. Partially depending on the desired fastening method, the removable baffle portion 651 can have a wide variety of cross-sectional shapes. For example, as illustrated in Figures 7e-7h, the removable baffle portion 651 can define a generally G-shape (as shown in Figure 7e) 'generally J-shaped or U-shaped (as shown in Figure 7f) A section of a general [shape (shown in the figure) or a general 1 shape (shown in Figure 7h). In operation, the removable resistor can be attached, removed, and/or subsequently replaced without removing the portion of the container body 632 and/or the door 634 or substantially machining the container body 632 and/or the door 634. The streamer portion 651 is to resume normal operation of the microwave heater. For example, in one embodiment, a plurality of individually removable spoiler segments 653a through 653e can be individually and individually attached to door 634 and/or container body 632. Subsequently, one or more of the reversible block segments 653 and/or the entire removable baffle portion 65 may be individually removed when one or more portions of the microwave choke become damaged or otherwise require replacement. The crucible can be detached or removed from the container body 632 or the door 634 individually and individually and with one or more new (eg, replacement) removable spoiler segments 653 and/or a new removable spoiler portion 651. replace. In one embodiment, the removable spoiler segment 653a can be detached from the container body 632 or door 034 and then reattached to the container body 632 or door 634 (eg, removed therefrom and replaced) The number of 653b, 653c, 653d, and/or 653e may be at most or not greater than the removable portion 160979. Doc • 43- 201240527 651 The total number of spoiler segments 653a to 653e. Microwave heaters 53 0 (generally shown in Figure 6) can be classified as a single mode cavity, a multimode cavity, or a quasi-optical cavity, depending on how the microwave energy is represented. As used herein, the term "single mode cavity" refers to a cavity that is designed and operated to maintain the microwave energy therein as a single, specific mode pattern. Frequently, the design and nature of a single mode cavity can limit the size of the container and/or how a load can be positioned within the chamber. Thus, in one embodiment, microwave heater 530 can include a multi-mode or quasi-optical mode cavity. As used herein, the term "multi-mode cavity" refers to a cavity or chamber in which microwave energy is excited into a plurality of standing wave patterns in a half random or unguided manner. As used herein, the term "quasi-optical mode cavity" refers to a cavity or chamber in which most, but not all, of the energy is directed toward a particular area in a controlled manner. In one embodiment, a multi-mode cavity has an energy density higher than a quasi-optical cavity near the center of the container, and the quasi-optical cavity can utilize the quasi-optical properties of microwave energy to more closely control and direct to the cavity The emission of energy in the interior. Turning back to the microwave heating system 42A illustrated in Figure 5, the microwave distribution system 440 is operable to transfer or direct at least a portion of the microwave energy produced by the microwave generator 422 into the microwave heater 430, as discussed briefly above. . As schematically shown in Fig. 5, the microwave distribution system 44A can include at least one waveguide 442 operatively coupled to one or more microwave emitters (illustrated as emitters 444a through 444c). The microwave distribution system 44A may include one or more microwave mode converters 446 for varying the microwave energy passing therethrough and/or for selectively routing microwave energy to the microwave emission 160979, as desired. Doc • 44- 201240527 One or more of the 444a to 444c or multiple microwave switches (not shown). Additional details regarding the particular components and various embodiments of the microwave distribution system 440 will now be discussed in detail below. Waveguide 442 is operable to deliver microwave energy from microwave generator 422 to one or more of microwave emitters 444a through 444c. As used herein, the term "waveguide" refers to any device or material that is capable of directing electromagnetic energy from one location to another. Examples of suitable waveguides can include, but are not limited to, coaxial cables, coated fibers, dielectric filled waveguides, or any other type of transmission line. In one embodiment, waveguide 442 can include a waveguide section for transporting microwave energy from microwave generator 422 to one or more of the ones of emitters 444a through 444c. Waveguide 442 can be designed and constructed to propagate microwave energy in a particular primary mode. As used herein, the term "mode" refers to a pattern of generally solid-state profile fields of microwave energy. In one embodiment of the invention, waveguide 442 can be configured to propagate microwave energy in a TE叮 mode, where $ is an integer from one of the ranges of 1 to 5; In another embodiment of the invention, waveguide 442 can be configured to propagate microwave energy in a chirp mode, where & 〇 and b is an integer from one of the ranges of 1 to 5. It will be understood that as used herein, the above defined ranges are used throughout the description to illustrate the mode of microwave propagation. Further, in some embodiments, when two or more components of a system are described as "TMa6" or "ΤΕ" components, 'for each component, the value of β6' and/or ^ Can be the same or different. In one embodiment, the values of alpha, Λ, Λ: and/or; are the same for each component of a given system. 160979. Doc •45- 201240527 The shape and size of the waveguide 442 can depend, at least in part, on the desired mode of microwave energy that will pass through it. For example, in one embodiment, at least a portion of the waveguide 442 can include a TE"waveguide having a generally rectangular cross-section, while in another embodiment, at least a portion of the waveguide 442 can include a TMai> having a generally circular cross-section. ;waveguide. According to an embodiment of the invention, the circular section waveguide may have a diameter of at least 8 inches, at least 丨〇 吋, at least 吋 2 inches, at least 24 inches, at least 36 inches, or at least 4 inches. . In another embodiment, the rectangular section waveguide may have a short dimension of at least 丨 吋, at least 2 inches, at least 3 inches, and/or no more than 6 inches, no more than 5 inches, or no more than 4 inches. And the long dimension may be at least 6 inches, at least 丨❶ 吋, at least 12 inches, at least 18 inches and/or no more than 5 inches, no more than 35 inches, or no more than 24 inches. As schematically illustrated in Figure 5, the microwave distribution system 44A can include one or more mode transition segments 446 that can be tailored to change the mode of microwave energy passing therethrough. For example, mode converter 446 can include a mode for changing at least a portion of the microwave energy from a TMai mode to a mode & mode to mode converter. In another embodiment, the mode switching section 446 can include one of the microwave energy conversion and emissions for receiving the TMW mode energy and in a mode to the TMai mode converter. α, 6, work, and The values may be within the ranges set forth above. The microwave distribution system 44A may include any number of mode converters 446, and in one embodiment may include at least i of various locations located within the microwave distribution system 440, At least 2, at least 3 or at least 4 mode converters. Turning again to Figure 5, the microwave distribution system 440 can be included for use via the waveguide 160979. Doc-46·201240527 442 receives microwave energy from generator 422 and emits or discharges at least a portion of the microwave energy to one or more microwave emitters 444 in the interior of microwave heater 430. The term "microwave emitter" or "emitter" as used herein refers to any device capable of emitting microwave energy into the interior of a microwave heater. The microwave distribution system according to various embodiments of the present invention may employ >>, at least 2, at least 3, at least 4, at least 5, at least ό, at least 8, at least 10, and/ Or no more than 1 、, no more than 5 〇 or no more than 25 microwave emitters. The microwave emitters can be of any suitable shape and/or size and can be constructed of any material, including, for example, selected carbon steels, stainless steels, nickel alloys, aluminum alloys, and copper alloys. In one embodiment in which the microwave distribution system 440 includes two or more microwave emitters, each emitter can be made of the same material, while in another embodiment, two or more emitters can be Made of different materials. In operation, microwave energy generated by one or more microwave generators 422 can be routed or directed via waveguide 442 to one or more mode converters 446 (right present). Thereafter, the microwave energy in the waveguide 442 can be split into two or more separate microwave portions as desired before being directed to one or more microwave emitters (illustrated as 4443 to 444c in FIG. 5) (eg, At least three parts as shown in Figure 5). Microwave emitters 444a through 444c may be partially or integrally disposed within microwave heater 43A and operable to introduce or emit at least a portion of the microwave energy passing therethrough via one or more spaced apart emission locations to the heating In the interior of the vessel 430, thereby heating and/or drying the articles, articles or loads disposed therein, including, for example, or a plurality of bundles of wood. The various aspects of the microwave heating system will now be discussed in detail below. Doc •47- 201240527 Specific configuration and details of the example. Turning now to Figures 8 through 10, several embodiments of a microwave heating system configured in accordance with the present invention are provided. Although illustrated as being configured to receive and heat a bundle of wood, it should be understood that the microwave heating system set forth below may be adapted to be used in any of the other processes and systems previously described and in which microwave heating is used. Used in a system or process. Further, it should be understood that all of the elements and components set forth below may be adapted for use in any of the microwave heating systems configured in accordance with one or more embodiments of the present invention, although described with reference to a particular figure or embodiment. Turning now to Figures 8a and 8b, an embodiment of a microwave heating system 72 is illustrated as including a microwave heater 73A and for delivering microwave energy from a microwave generator (not shown) to the heater 73. One of the microwave distribution systems 740. In various embodiments, a vacuum system (not shown) is operable to reduce the pressure in the interior of the microwave heater 730 to, for example, no greater than 550 Torr, no greater than 450 Torr, and no greater than 35 Torr. No more than 3 〇〇 不 no more than 250 Torr, no more than 200 Torr, no more than 15 Torr, no more than 1 〇〇 不 no more than 75 Torr and / or no more than 1 〇 milliTorr (1 〇. 3 Torr), no more than 5 mTorr, no more than 2 mTorr, no more than 1 mTorr, no more than 〇5 mTorr or no more than 〇". Several features of one or more embodiments of the microwave heating system 72A are discussed in detail below. Turning now to Figure 8a, the microwave distribution system 74 is illustrated as including an elongated waveguide emitter 760 that is at least partially and integrally disposed within the interior of the microwave heater 730. As shown in Figure 8a, the elongated waveguide emitter 760 can extend substantially horizontally within the interior of the microwave heater 73. Doc -48- 201240527. As used herein, the term "substantially horizontal" means 10 in the horizontal plane. Inside. In one embodiment, the ratio of the length of the elongated waveguide emitter 76 to the total length of the interior space of the microwave heater 730 can be, for example, at least zero. 3:1, at least 〇·5:1, at least 〇75:1 or at least 〇9〇:ι. In an embodiment, the elongated waveguide emitter 760 extending horizontally horizontally may be located at an upper or lower half of the interior volume toward the microwave heater 73A and may be disposed at least partially or integrally vertically. Above the heater inlet door 738 and a selected heater outlet door (not shown), the optional heater outlet door (if present) is disposed on one of the substantially opposite ends of the microwave heater 73. As used herein, the terms "upper" and "lower" hoarding refer to the area in the vertical or lower vertical portion above the internal volume of the container. In one embodiment, the elongated waveguide emitter 76 can be, for example, integrally disposed within the upper third, quarter, or fifth of the internal volume of the microwave heater 730. In yet another embodiment, the elongated waveguide emitter 760 can be disposed, for example, within the lower third, quarter, or fifth of the total internal volume of the microwave heater 730. . To measure the "top" or "lowest" fraction of the total internal volume described above, from the uppermost or lowermost wall of the container to the desired portion of the profile (for example, one-third, four A portion of the cross-section of the container from which one or one-fifth of the central elongate shaft extends may extend along the central elongate axis to thereby define the "topmost" or "lowest" fractional volume of the inner container space. As shown in Figure 8a, the microwave heater 730, which can be configured to receive and heat a bundle of wood, includes a heater inlet door 738 that can optionally be configured to allow a bundle of wood bundles 7〇2 to be introduced into a One of the bundle receiving spaces 739 160979. Doc -49- 201240527 Restrictor (not shown). Although illustrated as being in direct contact, it should be understood that the bundle 702 can also include one or more spacers or "adhesives" disposed between the panels. In an embodiment (not shown), the microwave heater 73A may also include a cymbal located at the end of the microwave heater 730 opposite the heater inlet door 738. When the microwave heater 73A includes a separate heater exit gate 739, the bundle 702 can optionally be loaded via the inlet gate 738, passed through the microwave heater 730 and unloaded via the outlet gate 739, rather than being loaded and unloaded through the heater inlet door 738. . Reference to "inlet" and "outlet" doors in this embodiment is not limiting, and bundle 7〇2 may optionally be loaded via door 739, passed through microwave heater 730, and unloaded via door 738. Moreover, in another embodiment * (for example) where no exit door 739 is selected, the bundle 702 can be loaded (inserted) from the entry door 738 and unloaded (removed) from the entry door 738. In an embodiment, the elongated waveguide emitter 760 can be positioned in the microwave heater 730 substantially below or below the beam 7〇2 (not shown) such that when the beam 702 passes to the interior of the heater 73〇+ When it is inside the heater and/or through the interior of the heater 73, it is not necessary to move, remove, withdraw or otherwise reposition the elongated emitter. Referring now to Figure 8b, a partially detailed isometric view of an elongated waveguide emitter is provided. In one embodiment, the elongated waveguide emitter is substantially hollow and includes one or more side walls. The one or more side walls are configured in a variety of ways such that the elongated waveguide emitter has a variety of cross-sectional shapes. For example, in an embodiment, the elongated waveguide emitter can have a single sidewall that is substantially circular or elliptical in cross-sectional shape. In another embodiment, as shown here, 160979. As shown in doc 201240527, the elongated waveguide emitter 760 can include four substantially planar sidewalls 764a through 764d that are configured to impart a generally rectangular lateral (or in another embodiment, square) profile configuration. Transmitter 76〇. The extended waveguide transmitter 760 can be configured to propagate and/or transmit microwave energy in any suitable mode, including te^ and/or ΤΜβέ modes, as discussed in detail above. According to one embodiment, the elongated waveguide emitter 76 can include an elongated TExy emitter, and in one embodiment, can be implemented with commercially available rectangular waveguide sizes, such as WR284, WR43〇4 WR34 (^ The particular dimensions of the elongated waveguide emitter 760 can be any suitable size, and in one embodiment, can be custom made. As illustrated in Figure 8b, one of the elongated waveguide emitters 76 or The plurality of sidewalls may define a plurality of emission openings for discharging or emitting microwave energy into the interior of the microwave heater 730. Although illustrated in the figure, defining a plurality of generally rectangular shapes with rounded ends Elongated grooves 767a through 767e, but the emission openings 767 & to 767e can have any suitable shape. Each of the elongated grooves 767a through 767e can define a length (designated "L" in Figure 8b) And a width (designated as "w" in the ribs). In one embodiment, the length to width (L:W) ratio of the elongated grooves 767 & to 7676 can be, for example, at least 2: 1. At least 3:1, at least seven or at least 乂1. Additionally, the elongated grooves ^~ to %~ can be oriented at various angles relative to the horizontal plane as shown in Figure 8b. In one embodiment, the elongated grooves 767a through 767e can be relative to the horizontal (for example) At least 1 〇, at least 20, at least 30, and/or, for example, no greater than 8 〇, no greater than 7 〇, or no greater than 60. An angular extension. In one embodiment, Elongation groove 160979. Doc -51 - 201240527 Each of 767a through 767e can have the same shape, size, and/or orientation. The shape 'small size and/or orientation' of the individual elongated grooves 7673 to 7676 may be different in one embodiment. The change in shape, size and/or orientation of the elongated grooves 767 & to 7676 can affect the distribution of energy emitted from the elongated waveguide emitter 76. Although shown as uncovered in the embodiment illustrated in Figure 8b, one or more of the transmit openings 767 may be substantially covered by one or more overlay structures (not shown) adjacent to the launch opening, the one or The plurality of cover structures are operable to prevent flow of fluid into and out of opening 767 but allow microwave energy to be discharged therefrom. As shown in Figure 8b, emission openings 767 & 767e may be at least partially or integrally emitted from the elongated waveguide One or more of the side walls 76A to 764d are defined by one or more of the sides 76. In one embodiment, at least 50%, at least 75, or at least 85% or at least 9% of the thickness of the emission opening to the %~ can be defined by one or more sidewalls 764a through 764d, for example. According to the embodiment illustrated in Figure 8b, the emission opening 76 or 76 can be defined, at least in part or in whole, by two substantially upstanding sidewalls 764a, 764c. As used herein, the term "substantially upright" is used. Means 3 垂直 in the vertical plane. Inside. In one embodiment, the elongated emitter 76's sidewalls 764 & to 764 (1 may be relatively thick, while in other embodiments, the sidewalls 76 轺 to 764 (1 may be relatively thin for example 5 The average thickness of the sidewalls 764a to 764d (designated as X in Figure 8b) may be 'at least 1/32 (0. 03125) English „才, at least 1/8 (〇 125) miles, until the evening 3/16 (0. 1875) Ying Yu and / or (for example) no more than 1/2 (〇 5) English, no more than 1/4 (G. 25) Miles, no more than 3/16 (() 1875) English leaves or no more than 1/8 (〇·125) British time. According to one of the elongated waveguide emitters 760 160979. Doc • 52·201240527 or an embodiment in which a plurality of sidewalls are relatively thin, the elongated waveguide emitter 760 can have a microwave emission efficiency of at least 50%, at least 75%, at least 85%, at least 90%, or at least 95%. The microwave energy is emitted into the interior of the microwave heater 73. As used herein, the term "microwave emission efficiency" can be defined by converting the result of the following equation to a percentage: (total energy introduced into the emitter - total energy emitted from all openings in the emitter) + ( The total energy introduced into the emitter). The transmit openings 767a through 767e can be configured along the elongated waveguide emitter 760 in accordance with any suitable configuration or configuration. In an embodiment illustrated in Figure 8b, the emission openings 76 7a through 76 7e can include a set of first emission openings (e.g., emission openings 767a, 767b) disposed on one side of the emitter 760 and disposed a first emission opening (eg, a pair of emission openings 767 (: to 7676) on another substantially opposite side of the elongated waveguide emitter 76. According to an embodiment, the first emission opening group and the second emission The sets of openings may be axially staggered from each other such that corresponding openings (e.g., openings 767a, 767c shown as pairs of pairs or openings 780a and openings 767b, 767d shown as pairs of pairs or openings 78b) are not axially aligned with each other Although illustrated in Figure 8b as having only two pairs of emitter openings 780a, 78〇b, it should be understood that any desired number of pairs of emitter openings may be utilized. According to one embodiment, each pair of emitters 780a, 780b A firing opening disposed on one side of the elongated waveguide emitter 760 (eg, both the opening 767a of the pair 780a and the opening 767b of the pair 780b disposed on the sidewall 764a) and disposed at the emitter 760 Another launch opening on the opposite side (e.g., in Figure 8b, both are placed on side wall 764c and open to 78 〇a. Doc -53- 201240527 mouth 767c and the opening of 780b 767d). In one embodiment, the openings 767a, 767c and the openings 767b, 767d disposed on opposite sides of the elongated waveguide emitter 760 are axially aligned, while in another embodiment, the oppositely spaced openings 767a 767c and openings 767b, 767d may form a plurality of "near neighbors" pairs (eg, launch pairs 780a, 780b include "near neighbors" openings 767a, 767c and openings 767b, 767d, respectively). In one embodiment, for example, when an even number of firing openings are used, one or more of the single-ended emitting openings can be independent without forming a pair with any of the other openings. In one embodiment, the separate opening may be open at one end, such as the end opening 7 6 7 e shown in Figure 8b. According to an embodiment in which pairs 780a, 780b include pairs of adjacent open pairs, at least one of the transmit openings 767a through 767d of the transmit opening pair 780a, 780b can be configured to cancel as close to the neighbor pair 780a One or more of the other emission openings 767a through 767d of 780b are reflected back to at least a portion of the microwave energy in the interior space of the waveguide 760. For example, the microwave energy reflection caused by opening 767a of 780a can be at least partially, substantially, or substantially entirely offset by the configuration of another opening 767b of 780a. In a similar manner, the microwave energy reflection caused by opening 767c of 780b can be offset, at least in part, substantially or nearly entirely, by the configuration of another opening 767d of 780b. Moreover, in one embodiment, each of the emission openings 767a through 767d of the pair of openings 780a, 780b is transferred into the interior of the microwave heater 730 when the emission openings 767a through 767d are disposed proximate to the adjacent pair. The total amount of energy may be equal to one of the total amount of microwave energy introduced into the emitter 760 of 160,979. Doc • 54- 201240527 rate. For example, in a case where the emitter includes N pairs of emission openings and a single-ended opening, the fraction of microwave energy emitted from each pair of emission openings (and/or unpaired openings or single-ended openings) It can be expressed by the following formula: 1 / (N+1). Thus, the total amount of energy emitted by each of pairs 780a, 78〇b may be equal to the introduction to elongated waveguide emitter 760 according to an embodiment illustrated in FIG. 8b (where N-2). 1/(2 + 1) or 1/3 of the total energy in the middle. Similarly, in this embodiment, the energy emitted from an unpaired emission opening (e.g., single-ended opening 767e in Figure 8b) can be expressed by the formula " (N+o. Thus, the embodiment shown in Figure 8b) The emission opening 76 can also emit approximately 1/3 of the total energy introduced into the elongated waveguide emitter 76. Another embodiment of a microwave heating system 82 is provided in Figures 9a through 9h. As shown in Figure 9a, the microwave heating system 820 includes a microwave heater 82 and a microwave distribution system 84 that is operable to deliver microwave energy from a microwave generator (not shown) to the heater 820. In one embodiment The microwave heating system 820 can also include a vacuum system for reducing the pressure in the microwave heater 83 to less than a large rolling pressure (not shown in the figures, the microwave heater 830 can be included for A bundle of wood (or other load) is introduced into one of the heater inlet doors 838. The microwave heater 830 can include a heater heater 830 disposed generally opposite the heater inlet door 838. One of the heaters A door (not shown in Figure 9a). Additionally, the microwave heater 830 can include a plurality of spaced apart emission openings located at various locations along one or more of the outer sidewalls 831 of the microwave heater 830 (such as in Figure 9a) The illustrations show the emission openings of 841a, 841b.) The emission is 160979. Doc-55-201240527 Openings 841a, 841b are operable to accommodate one or more components of microwave distribution system 840' thereby facilitating transmission of microwave energy into microwave heater 830. Additional details regarding the microwave distribution system 840 will now be discussed in more detail with respect to Figures 9b through 9h. Turning to Figure 9b' provides a top cross-sectional view of one of the microwave heaters 830, specifically illustrating a plurality of microwave emitters 844a through 844d that directly or indirectly face the opposing sidewalls 831a, 83b of the microwave heater 83A. . The term "indirect coupling" as used herein refers to one or more intermediate devices used to at least partially connect one or more emitters to a container. Transmitters 844a through 844d are operable to transmit microwave energy into the interior of microwave heater 830 via one or more open outlets 8453 through 845d, as shown in Figure 9b. Although illustrated in Figure 9b as including four emitters 844a through 844d', it should be understood that microwave heater 830 can include any desired number of emitters. In an embodiment (not shown), the microwave heater 830 can include two additional emitters that are axially positioned to the left of the emitters 844a, 844b of Figure 9b and/or to the right of the emitters 844c, 844d. These additional transmitters (not shown) may face in the same direction and/or in different directions. For example, in one embodiment shown in Figure 9b, the transmitters 844 & 844d are shown facing in opposite directions. Further, in an embodiment (not shown), the microwave heater 830 can include Four additional transmitters configured in a manner similar to the transmitters 844 & 844d illustrated in Figure 9b, as further explained below. Microwave transmitter 844 can be positioned along microwave heater 830, within microwave heater 830, or near microwave heater 83, according to any suitable configuration. At 160979. Doc - 56 - 201240527 In one embodiment, the microwave transmitter 844 can be configured to include two transmitter pairs. Individual emitters within the pair may be located on substantially the same side of microwave heater 830 (e.g., the pair includes emitters 844a and 844d and the other pair includes emitters 844b and 844c) or on substantially opposite sides of microwave heater 830 Up (eg 'the pair includes microwave emitters 844a and 844b and the other pair includes 844c and 844d). As used herein, the term "substantially opposite side" or "opposite side" means that two emitters are positioned such that the radial alignment angle defined therebetween is between at least 90. To 180. In the scope. The "radial alignment angle (β)" is defined as the angle formed between the two straight lines drawn from the center of each emitter to the center axis of the container. For example, Figure 9 (shows an exemplary emitters 845 and 846a defining a radial alignment angle therebetween. The radial alignment angle between two emitters positioned on substantially opposite sides of a container can be at least丨2〇, at least 150, at least 165, and/or no more than 18 〇 or substantially 丨 (10). In one embodiment, the two emitters can be positioned on generally opposite side walls, as shown in the middle and the outer Illustrated, while in another embodiment, two oppositely disposed emitters can be positioned at or near the vertical top or bottom of the heater (not shown). In which - or more emitter pairs are located in one In an embodiment of the individual emitters on the generally opposite sides of the microwave heater (eg, emitter 84 of FIG. 9b and 844a or emitters 84 and 844d), the individual emitters within the pair may also Axially aligned with each other. As used herein, the term "axial alignment" refers to an axial alignment angle in which two emitters define a range from 〇 to 。. Used, "axial alignment 160979. Doc •57· 201240527 角” can be defined by the angle formed between the shortest line drawn between the centers of each emitter (which also intersects the elongated axis of the container) and one line drawn perpendicular to the axis of elongation. In Fig. 9d, the 'axial alignment angle α is formed between the line 85〇 drawn between the centers of the exemplary emitters 845 and 846 and the line 852 perpendicular to the elongated axis 835a. In one embodiment, the axially aligned emitters can define at least 0° and/or, for example, no more than 3 inches. Or an axial alignment angle of no more than 15〇. In another embodiment, the individual emitters within a pair may be located on substantially the same side of a microwave heater. As used herein, the term "substantially the same side" or "the same side" means that the two emitters have a radial alignment angle β that is in a range from at least or equal to 0 to 90. The exemplary emitters 845 and 846b in Figure % are located on substantially the same side of the microwave heater because the radial alignment angle (e.g., βζ) defined therebetween is no greater than 9 〇. . In one embodiment, the two emitters disposed on the same side of a microwave heater are at least 0 and/or no greater than 60. No more than 3 inches. And no more than 15. Or a radial alignment angle of approximately 0°. In one embodiment in which one or more transmitter pairs comprise individual transmitters (eg, transmitters 844a and 844d or transmitters 844b and 844c in the outside) on substantially the same side of a microwave heater, The individual emitters within the pair may also be axially adjacent to each other. As used herein, the term "axially adjacent" means that two or more emitters are positioned on the same side of a microwave heater such that no other emitters on the other side are disposed between the axially adjacent emitters. . According to one embodiment of a microwave distribution system comprising two or more relatively positioned microwave emitter pairs, from the first pair 160979. A transmitter of doc-58.201240527 is disposed on substantially the same side as one of the emitters of the second pair, thereby forming an axial pair of adjacent emitter pairs. As illustrated in Figure 9b, each of the microwave emitters 844 & to 844 £ can define a respective open outlet 845a to 845d for transmitting microwave energy to the interior of the microwave heater 830. The open outlet can be positioned to emit energy into the interior of the microwave heater 8 3 按 in any suitable pattern or in any suitable orientation. For example, in one embodiment shown in Figure 9b, the open exit of the axially adjacent emitter (e.g., the outlets 845a, 845d of the emitters 844a, 844d and the outlets 845b, 845 of the emitters 844b, 844c) (〇 may be oriented to face each other in a direction substantially parallel to one of the outer sidewalls to which the emitters are coupled (eg, sidewalls 83 la of emitters 844a, 844d and sidewalls 83 lb of emitters 844b, 844c) This discharges microwave energy in a general direction. As used herein, the term "substantially parallel" means within a parallel plane. In one embodiment, at least one of the open outlets 845 & to 845d may The energy is directed to discharge energy substantially parallel to the axis of elongation of the microwave heater 83 (designated as line 835 in Figure 9b). According to one embodiment, at least one of the open outlets 845a through 845d can be oriented One of the heaters 830 has an axial midpoint. As used herein, the "axial midpoint" of a container is defined by a plane orthogonal to the elongated axis 835 and to the point 839 of the elongated axis 835, such as the parent fork, such as Shown in Figure 9b. In an implementation Wherein each of the open outlets 845a through 845d is oriented toward the axial midpoint of the heater 83A such that the open outlets 845a, 845b of the front side emitters 844a, 844b substantially face the backside emitters 844c, 844d Open outlets 845c, 845d' are depicted in Figure 9b. Doc-59-201240527 According to an embodiment 'in operation, microwave energy produced by one or more microwave generators (not shown) may be delivered to transmitters 844a through 844d via transmitters 842a through 842d, transmitters 844a through 844d Energy is emitted into the interior of the microwave heater 830. Although not illustrated in Figure 9b, any number or configuration of microwave generators can be used to produce microwave energy for use in the microwave heating system 82A. In one embodiment, a single generator can be used to supply energy to the heater 830 via the waveguides 842a through 842d and the transmitter 844, while in another embodiment, the heating system 82 can include two or two More than one generator. According to another embodiment, one of the one or more microwave generators may be utilized to network substantially simultaneously from at least one, at least two, at least three or all four of the microwave emitters 844 & to 84 Launch microwave energy. In one embodiment, one or more of the transmitters 844a through 844d can be coupled to a single generator and energy from the generator can be distributed among the transmitters using one or more microwave switches. In another embodiment, one or more of the transmitters 844a through 844d may have a separate dedicated generator such that at least 75%, at least 9%, or substantially all of the microwave energy produced by the generator is routed To a single transmitter. Additional details regarding specific embodiments of microwave generators, waveguides and transmitters, and their operation are provided later in relation to Figures a and 丨丨b. The microwave energy propagating from the waveguide segments 842a through 842d can be in any suitable mode, including, for example, a T1VU mode and/or a TEj^ mode, where β, x, x, and less have values as previously defined. In one embodiment, waveguide segments 842a through 842d each include a meandering waveguide segment, wherein segments 842 & and 842 (1 are configured to penetrate sidewall 83 1 a and segments 842b and 842c are configured to penetrate sidewall 83 Lb 160979. Doc • 60·201240527 and extends radially toward the interior of the microwave heater 830 toward the elongated shaft 835, as shown in Figure 9b. In accordance with an embodiment of the present invention, the mode of microwave energy propagating through the waveguide segments 842a through 842d can be varied (or simultaneously) within the interior of the microwave heater 830. For example, in one embodiment, TEj〇 produced by a microwave generator (not shown in Figure 9b); mode energy may pass through one or more mode transition segments (represented as a mode converter in Figure 9b) 85〇a to 85 0d) are then emitted into the microwave energy as mode energy. The mode converter can have any suitable size and shape and any suitable number of mode converters can be used in the microwave distribution system 840. In one embodiment, one or more of the mode converters 850a through 850d may be disposed outside of the interior space (volume) of the microwave heater, while in another embodiment, the mode converters 85a through 850d may be partially Placed internally or integrally within the interior of the microwave heater 83. The mode converters 850a through 850d can be located in or near the side walls 831a, 831b, or (as illustrated in Figure 9b) can be external to the side walls of the microwave heater 830 83 la, 83 lb apart. According to an embodiment in which the mode converters 850 & 850d are partially or integrally disposed within the heater 830, the microwave energy can initially enter the microwave heater in a TE叮 mode, and subsequently At least a portion of the energy may be converted such that at least a portion of the energy emitted from the emitters 844a through 844d into the interior of the microwave heater "o" may be in a TM& mode. In one embodiment, waveguide segments 842a through 842d can include TExy waveguide segments that are operable to transfer microwave energy from the generator to heater 83A in a -TE^ mode. In one embodiment, at least a portion of the TE, y waveguide segments 842a through 842d can be integrated into the transmitter 160979. Doc-61-201240527 844a to 844d, as shown in Figure 9b. When energy passes through the mode converters 850a through 850d from the waveguide sections 842a through 842d, the energy is converted into a mode. Subsequently, the mode converters 850a to 850d are exited. The 6 mode energy can then pass through a respective TMa before being discharged into the heater 83A via the TM&open outlets 845a through 845d. <) Waveguide sections 843a to 843d, illustrated in Fig. 9b, are integrally disposed within the interior of the microwave heater 830 and spaced apart from the sidewall 833 thereof. According to another embodiment illustrated in Figure 9e, the microwave heating system 820 can include one or more reflectors 890a through 890d positioned adjacent the open outlets 845a through 845d and operable to reflect or scatter from the emitter stack. The microwave energy that is emitted into the microwave heater 830 by 牝. In one embodiment, the reflectors can be fixed or stationary reflectors to reflect or scatter energy when the position of the reflector does not change. In another embodiment illustrated in Figure 9e, one or more of the reflectors 890 can be a movable reflector operable to change position to reflect or scatter microwave energy into the microwave heater 830 . Each movable reflector 89 〇 & to 89 〇 in Figure 9e has a respective reflective surface 891a to 891d for reflecting or scattering the energy emitted from the microwave emitters 84A to 844d. It is shown that each reflective surface can be spaced apart from the outer sidewalls 831a, 83 lb and can be positioned such that one or more of the respective emitter openings 84^ to 845d of the emitters 84A to 844d face their respective reflective surfaces 89la To 89Id, reflective surfaces 891 & to 891 (1 are again positioned to contact, direct or reflect at least a portion of the microwave energy from emission openings 845 & 845d. In one embodiment, from microwave emitters 84 to 84 At least a portion or substantially all of the microwave energy emitted by the chirp may at least partially contact each of the 160979.doc-62 - 201240527 reflector surfaces 891a through 891d and may be at least partially reflected or scattered therefrom. In one embodiment One or more of the reflective surfaces 89 la to 89 Id may be oriented to face one direction substantially parallel to the direction of elongation of the outer sidewalls 831a, 83 lb. In one embodiment, the reflector surfaces 8913 to 891d may be Systematic, In other embodiments, one or more of the reflector surfaces to 89Id may be non-planar. For example, in one embodiment, one or more of the non-planar reflector surfaces 89^ to 891d may be defined as One of the curvatures illustrated in the embodiment illustrated in Figure %. Reflector surface 891 & to 891 <1 may be smooth or may have one or more convex bodies. As used herein, the term "convex" refers to a region of a reflector that is operable to scatter surface from which it is not reflected. In one embodiment, a convex body may have a generally convex shape as illustrated by the example of the convex bodies 893a, 893b shown in the drawings and 9g. In another embodiment, a convex body can have a generally concave shape such as, for example, a dimple or other similar indentation. According to an embodiment of the invention, the "to (10) of one or more reflectors may be a movable reflector. The movable reflector may be any reflector operable to change position. In an embodiment, The "to 890b" of the movable reflector can be an oscillating reflector that can be moved in a specified pattern, such as, for example, a substantially downward pattern or a pattern that rotates about an axis. In one embodiment, the 'removable reflector' can be a randomly moveable reflector that is operable to move in any of a wide variety of random and/or unplanned movements. The movable reflectors 890a to 890 (1 can be movably coupled to the microwave heater 830 according to any suitable method. For example, in an embodiment illustrated in Figure 9i The microwave heater 830 can include a reflector driver system (or actuator) 899 for the movable reflector 890 within the interior space of the heater 830. As shown in Figure 9i, the reflector driver system 899 can One or more support arms 892' are included that securely occlude the reflector 890 to an oscillating shaft 893. To cause the shaft 893 to rotate and thereby move the reflector 890 in an ingress and egress pattern (as generally indicated by arrow 880) Indicating that a motor 898 can rotate a wheel 896 (the linear shaft 895 can be largely offset from the center). As indicated by arrow 881, the shaft 895 can be rotated substantially as the wheel 896 rotates. Mode movement ' thereby causing a lever arm 894 to rotate about the pivot 893 about the pivot 897, as generally indicated by arrow 882. Thus, the reflector 890 can be moved as generally indicated by arrow 880 and operable to at least partially reflect Movement of 890 One of the patterns is determined to reflect or scatter at least a portion of the microwave energy emitted from the discharge opening 845 of the microwave reflector 844. A further embodiment of a microwave heating system 920 is shown in Figures 10a through 10f. As illustrated in an embodiment of 〇a, a microwave heater 930 includes a heater inlet door 938 for loading a wood bundle 9.02 into the interior of the heater 930 and for removal from the microwave heater 930. One of the bundles 902 is a heater exit door 93 9. Although illustrated in Figure 10a as including a separate inlet door 938 and outlet door 939, it should be understood that in another embodiment the microwave heater 930 may only be used for A single door is loaded from both the interior of the microwave heater 930 and the unloaded wood bundle 902. In the embodiment shown in Figures 1 &, the heater inlet door 938 and the heater outlet door 939 160979 .doc • 64 - 201240527 may be located on generally opposite sides of the microwave heater 93Ό such that the beam 902 may generally pass through the heater 930 via a transport mechanism such as, for example, a truck (not shown). Microwave heating system The system 92 can include a vacuum system (not shown) for controlling one of the pressures in the heater 930. As shown in Figure 10a, the microwave heating system 920 can include a microwave distribution system 940, the microwave distribution system including A plurality of spaced apart emission openings 94A through 94"d in one of the outer sidewalls 93 1 of the microwave heater 93. Each of the firing openings 941 is operable to receive energy for emitting energy to the interior of the microwave heater 930 One of the microwave emitters (not shown) may be disposed at least partially or integrally within the interior of the microwave heater 93. Particular embodiments of one or more types of microwave emitters will be discussed in more detail later. According to one embodiment, the microwave energy produced by a microwave generator (not shown) may pass through the external TE叮 to ΤΜαί) mode converters 950a through 950d (which convert the energy passing therethrough into a ΤΜβί) mode) Transmission through the waveguide segments 942a through 942d is performed in a ΤΕ^ mode. The resulting TMai) mode microwave energy can then exit mode converters 950a through 950d via respective waveguide segments 942e through 942h, as illustrated in Figure 1a. Thereafter, at least a portion of the microwave energy in the TMfl6 waveguide sections 9426 to 942} can pass through the respective barrier assemblies 97〇& to 97〇d before entering the microwave heater 930 via the waveguide segments 942i through 9141. As used herein, the term "barrier assembly" may refer to any device that is operable to fluidly isolate a microwave heater from an external environment while still permitting microwave energy to pass therethrough. For example, in one embodiment shown in FIG. 1A, the respective barrier assemblies 970a through 970d may each include at least one sealing window member 972 & 160979.doc • 65· 201240527 to 72d which may be Microwave energy permeable, but providing a desired degree of fluid isolation between each upstream 942e to 942h TMai waveguide section and downstream 942i to 9421" each of the waveguide sections. As used herein, the term "sealing window" "Member" means a window member configured in one of the following ways: it will provide sufficient fluid isolation between the two spaces on either side of the member to allow a pressure differential to be maintained across the window member. Additional details regarding a particular embodiment of the barrier assembly 97〇& to 97〇 will now be discussed with respect to FIG. 1A. The barrier assembly configured in accordance with an embodiment of the present invention is even at high energy throughput. Arcing is also minimized or eliminated at low and/or low operating pressures. According to one embodiment of the invention, each barrier assembly 97〇a to 97〇d may permit energy of at least 5 kW, at least 3 kW. At least 50 kW, at least 00 kW, at least 65 kW, at least 75 kW, at least 1 kW, at least 150 kW, at least 200 kW, at least 250 kW, at least 350 kW, at least 400 kW, at least 500 kW, at least 600 kW , at least 750 kW or at least 1, 〇〇〇 kW and / or no more than 2,500 kW, no more than uoo kw or no more than 1 〇〇〇 kw rate through its respective window members 972a to 972d, and microwave heater The pressure in 930 may be no more than 550 Torr, no more than 450 Torr, no more than 350 Torr, no more than 250 Torr, no more than 2 Torr, no more than 15 Torr, no more than 1 Torr or no more than 75 Torr. In one embodiment, the pressure in the microwave heater can be no more than 10 mTorr, no more than 5 mTorr, and no more than 2 mTorr. Not too large, no more than 0.5 mTorr or no more than 牦1 m. In one embodiment, microwave energy passing through the barrier assemblies 970a to 970d may be introduced to maintain the magnetic field below the threshold of arcing The value is thereby used to prevent or minimize the arcing of the barrier assembly 97〇& to 970d. 160979.doc -66 - 201240527 Now turn to Figure l〇b to provide one of the barrier assemblies 97〇 axial The barrier assembly 970 includes a first sealing window member 972a disposed in a barrier housing 973 and a second sealing window member 972b. When present, the second sealing window member 972b is operable to The first sealing window member 972a cooperates to provide a desired level of fluid isolation between the upstream (eg, 'inlet" TMai) waveguide section 975a and the downstream (eg, outlet) TM& waveguide section 975b while permitting at least a portion of the microwave energy. From the first waveguide segment 975a to the second TMfli waveguide segment 975b. According to an embodiment, the first ΤΜ "waveguide section 975 & and the second ΤΜ a6 waveguide section 975b may have a circular cylindrical cross section. In one embodiment, the waveguide sections 975a, 975b may be in which a total barrier can be placed In one embodiment, the waveguide segments can be suitably fastened or coupled to two separate waveguide portions or components on either side of the barrier assembly 970. The barrier housing 973 shown in FIG. 10B may include a first or inlet section 973a, an optional second or intermediate section 973b, and a third or outlet section 973c' wherein the first sealing window member 972a is disposed Between the first section 973a and the second section 937b and the second sealing window member 972b is disposed between the second section 973b and the third section 937c. According to an embodiment, the first section 973a, The pressure of each of the second segment 93 7b and the third segment 93 7c may be different. For example, in one embodiment, the pressure of the first segment 973a may be greater than the pressure of the first know 973b, The pressure of the second stage 973b may be greater than the pressure of the third stage 973c. The first section 973a of the barrier housing 973, Each of the second segment 937] 3 and the third segment 937 c can be held together by any suitable fastening means (not shown) such as, for example, screws, bolts, and the like. This 160979.doc • 67* 201240527 The outer 'barrier assemblies 970a through 970d may also include one or more impedance transformers that alter the impedance of the microwave radiation. An example is illustrated as the impedance transformation diameter in the embodiment shown in FIG. Stepped changes 974a, 947b for maximizing energy transfer from a microwave generator (not shown) to a load in a microwave heater (not shown). In one embodiment, the impedance transformation diameter stepwise change 974a, 974b may be located adjacent at least one of the sealing window members 972a, 972b'. In another embodiment, the stepped changes 974a, 974b may be located near the inlet waveguide 975a and/or the outlet ΤΜα6 waveguide 975b or at least partially by the inlet TMa6 Waveguide 975a and/or outlet TMei) waveguide 975b defines β. As illustrated in Figures 10a and 10b, the sealing window members 972a, 972b can include one or more disks. Each disk can have a suitable degree of corrosion resistance. Any material construction of strength, fluid impermeability and microwave energy permeability. Examples of suitable materials may include, but are not limited to, alumina, magnesia, silica dioxide, cerium oxide, boron nitride, mullite And/or a polymer (such as Teflon). According to an embodiment, the loss tangent of the disk may be no more than 2×10·4, no more than lxl〇-4, no more than 7 5χ10·5 or no more than 5xl〇-S. These discs can have any suitable profile. In one embodiment, the disk may have a profile that is compatible with the profile of adjacent waveguides 975a, 975b. In one embodiment, the sinusoidal disc may have a substantially circular cross section and may have at least 1/8, at least 1/4, at least the length of the dominant wavelength of microwave energy passing through the barrier assembly 970. 1/2 and/or no more than 1, no more than 3/4 or no more than ι/2 thickness ("X" in Figure 10b). The diameter of the disks may be at least 5%, at least 6〇%, to 160979.doc •68-201240527 of one or more adjacent waveguides 975a, 975b, 75% less, at least 90%, and/or no more than 95 %, no more than 85%, no more than 70% or no more than 60%. Each of the sealing window members 972a through 972d can be operatively coupled to the respective barrier assemblies 970a through 970d in any suitable manner. In one embodiment, each of the sealing window members 972a through 972d can include one or more sealing devices that are flexibly coupled to the barrier housing 973 and/or the sealing window members 972a, 972b. As used herein, the term "flexibly coupled" means secured, attached, or otherwise configured such that the members are held in place without direct contact with one or more rigid structures. For example, in one embodiment shown in FIG. 1 Ob, the barrier assembly 970 can include a plurality of elastomeric rings 982a, 982b and 984a, 984b that are compressed in various segments 973a of the barrier housing 973. Between 973c and operable to flexibly couple the sealing window members 972a, 972b into the barrier housing 973. According to one embodiment, each respective upstream resilient ring 982a, 982b and downstream resilient ring 984a, 984b are operable to substantially prevent or limit the first section 973a and the second section 973b of the barrier assembly 970 and/or Or fluid flow between the second section 973b and the third section 973c. For example, one of the procedures B1 entitled "Spraying Testing" as described in the document entitled "Helium Leak Detection Techniques" issued by Alcatel Vacuum Technology under the use of a Varian model No. 938-41. In the helium leak test, the fluid leakage rate of the sealing window members 972a to 972d and/or the barrier assemblies 970a to 970d may be no more than 10_2 Torr·sec/sec, no more than 10_4 Torr·L/sec or no more than 10_8 Torr. l / sec. Additionally, each of the sealing window members 972a, 972b can be individually operable to maintain or 160979.doc • 69·201240527 to withstand a pressure differential across the sealing window members 972a, 972b and/or the barrier assembly 970 without Breaking, cracking, destroying, or otherwise failing, the pressure difference is such as at least 0.25 atm, at least 0.5 atm, at least 〇75 atm, at least 0.90 atm, at least 1 atm, or at least 1.5 atm, and the like. Turning now to Figure 10c' provides a cross-sectional microwave heating system 920. The microwave heating system illustrated in Figures iC includes a microwave distribution system 940 including at least one pair of microwave emitters (e.g., emitters 944a and 944h) disposed on generally opposite sides of a microwave heater 930. Although shown in Figure i〇c as including a single transmitter pair, it should be understood that the microwave distribution system 940 may further include one or more additional similar (or slightly different) configurations of microwave transmitter pairs. In some embodiments, one emitter is from each pair disposed on substantially opposite sides of the microwave heater 93 0 . Further, in another embodiment (not shown in Figure 10c), the microwave distribution system 940 can include two or more vertically spaced microwave emitter columns positioned on substantially the same side of the microwave heater 93 0 In one embodiment, each side of the microwave heater 930 can include two or more vertically spaced emitter columns such that one emitter from each opposing placement pair can be positioned opposite from the other. One of the heights of one of the emitters is at a vertical height. For example, 'in one embodiment, the emitters 944a and/or 944h can be positioned at a height that is slightly higher than that depicted in Figure 10c, and another pair of emitters can be positioned such that two emitters One of the devices will be positioned on the same side of the microwave heater 930 but at a substantially lower vertical height than the emitter 944a, and the other emitter will be positioned on the same side of the microwave heater 93〇 but in One of the lower vertical heights than the emitter 944h. Moreover, although exhibits 160979.doc-70, 201240527 are shown as split emitters 944a, 944h, in one embodiment, the vertically spaced emitters can be of any of the types (or any of Type combination) microwave transmitter. The microwave distribution system 940, as shown in Figure 10c, includes a plurality of waveguide segments 942 coupled to at least one pair of microwave emitters 944a, 944h. For example, as shown in the embodiment of Figure 10c, the emitter 944a can be coupled to the waveguide segments 942a, SM2e, and 942i' and the emitter 944h can be coupled to the waveguide segments 942x, 942y, and 942z 'which are operable to microwave It can be delivered to the interior of the microwave heater 930 from one or more microwave generators (not shown in Figure 10c). In one embodiment, microwave distribution system 940 can include one or more of mode converters 947a through 947d coupled to one or more of waveguide segments 942, as shown in FIG. According to an embodiment, the mode converters 947a to 947d are operable to change the transmission mode of the microwave energy passing therethrough from a TE mode to a TMa6 mode (ie, a 'Taiwan to TMai mode converter) or Since a T1VU mode is changed to a mode (ie, one to ΤΕΧ>) mode converter). For example, as shown in FIG. 10C, mode converters 947a and 947c can each be operable to pass the microwave energy from a τελ when the microwave energy transmitted through the waveguides 942a and 942 is passed into the waveguides 942e and 942y. The mode is converted to a ΤΜα& mode. As previously discussed, the values of 〇, 厶, and especially less may be the same or different and may have the values provided above. Mode converters 947b and 947d are operative to convert microwave energy transmitted through waveguides 942e and 942i and energy transmitted through 942y and 942z from a TMa6 mode to a TE; mode; Further, in an embodiment illustrated in Figure 10c, at least one of the modulo 160979.doc -71 - 201240527 type converters 947a through 947d can include a mode converter splitter operative to both Changing the mode of microwave energy passing therethrough splits it into two or more separate microwave energy streams for discharge into the interior space of the microwave heater. According to an embodiment, the second mode converters 947b and 947d may each include a mode switching splitter at least partially disposed within the interior of the microwave heater 93A. In another embodiment, the second mode switching splitters 947b and 947d may be integrally disposed within the interior of the microwave heater 930 and may each be part of a split emitter 944a and 944h, respectively, as shown in FIG. Graphical illustration. Additional details regarding split emitters 944a, 944h will be discussed later. According to an embodiment of the invention in which the microwave distribution system 940 includes two or more mode converters in one or more waveguide segments, the total electrical length between the first mode converter and the second mode converter (Electrical length extending through and including any of the barrier assemblies (if present) may be equal to one of a non-integer half wavelength of the competing mode of microwave energy passing therethrough. As used herein, the term "electrical length" refers to the electrical transmission path of microwave energy expressed as the number of wavelengths of microwave energy required to propagate along a given path. In one embodiment in which the physical transmission path comprises one or more different types of transmission media having two or more different dielectric constants, the physical length of the transmission path can be shorter than the electrical length. Thus, the electrical length depends on a number of factors including, for example, the particular wavelength of microwave energy, the thickness and type of one or more transmission media (e.g., dielectric constant). According to an embodiment, the total electrical length between the first mode converters 947a, 947c and the second mode converters 947b, 947d (extending through and including 160979.doc • 72·201240527 ΤΜαέ) barrier assembly 970a, The total electrical length of 970h can be equal to the non-integer half-wavelength of the competition mode of microwave energy. As used herein, the term "non-integer j" refers to any number that is not an integer. Next, a non-integer half-wavelength may correspond to "multiply by λ/2, where "any non-integer." Lu's number "2" is an integer, and the number "2.05" is a non-integer. Thus, the half wavelength corresponding to one of the electrical lengths of 2.05 multiplied by the competition mode of the microwave energy will be a non-integer half wavelength of the competition mode. As used herein, the term "competitive mode of microwave energy" refers to any mode of microwave energy that propagates along a path other than the desired or target mode of microwave energy for propagation along a given path. The competition mode may include a single most popular mode (i.e., a primary competition mode) or a plurality of different non-popular competition modes. When there are multiple competing modes, the total electrical length between the first mode converter and the second mode converter (the electrical length extending through and including any of the barrier assemblies (if present)) may be equal to One of the non-integer half-wavelength values of at least one of the competing modes, and in one embodiment may be equal to one of the non-integer half-wavelength values of the primary competing mode. For example, in one embodiment illustrated in FIG. 1C, the first mode converters 947a, 947c include a center-to-center mode converter operative to dissipate microwave energy in the respective waveguide segments 942a and 942d. At least a portion of the mode is converted from a te" mode into waveguide segments 942b and 942e, and at least a portion of the microwave energy can be converted to a mode other than the desired mode. In this paper, it is called the "competition mode" of microwave energy. In the embodiment of the present invention in which the desired mode of microwave energy is -TM, the competition mode of the microwave energy may be 160979.doc • 73 - 201240527 a TEW/I mode, wherein "system 1 and m are in An integer between 1 and 5. Thus, in one embodiment, the total electrical length of the waveguides 942e and 942i between the first mode converter 947a and the second mode converter 947b (extending through and including the electrical length of the barrier assembly 970a) may be equal to a non-integer half-wavelength of the TEm" pattern where "lines 1 and; "an integer between 1 and 5. In another embodiment, m may be 2 or 3. In one embodiment, 'option' The physical length and nature of waveguide section 942, mode converters 9473 to 947d, and/or barrier assemblies 970a, 970h may minimize energy accumulation within barrier assemblies 970a, 970h. For example, according to an embodiment, At least 5 kW, at least 30 kW, at least 50 kW, at least 60 kW, at least 65 kW, at least 75 kW, at least 1 kW, at least 150 kW, at least 200 kW, at least 250 kW, at least 350 lcW, at least 400 kW , at least 500 kW 'at least 600 kW, at least 750 kW or at least 1, 〇〇〇 kW and / or no more than 2,500 kW, no more than i, 5 〇〇 kW or not more than 1, 〇〇〇 kW of energy can pass through At least one sealing window member in the barrier assembly 970a, 970h when the barrier assembly is 970a or 970h (not shown in Figure 10c) The temperature of at least a portion of the display may vary by no more than 1 〇. (:, no greater than 5 〇 c, no greater than 2 ° C, or no greater than 1 ° C. In another embodiment, as set forth above, across at least A pressure differential across a sealed window member and/or a pressure within the microwave heater 930 can maintain similar results. According to an embodiment illustrated in Figure 10c, on a generally opposite side of the microwave heater 930 and at least partially At least one of the individual microwave emitters 944a, 944h disposed within the interior of the microwave heater 930 can include a split reflector 'defined to emit microwave energy to the microwave heater 160979.doc • 74· 201240527 930 At least two discharge openings in the interior. Although illustrated in Figure 1a, including a single emitter pair (e.g., a first split emitter 944a and a second split emitter 944h), it is understood that the microwave The heater 93A can include any suitable number of transmitters or transmitter pairs, as set forth herein. One embodiment of a split transmitter 944 is illustrated in Figure i.d. The split transmitter 944 can include for receiving micro- A single inlet or opening 951, and a single (not shown) or two or more discharge openings or outlets 945a, 945b for emitting microwave energy therefrom. In one embodiment, a single split launch The ratio of the microwave energy inlet to the discharge outlet may be: 1. at least 1:2, at least 1:3 or at least 1:4. According to one embodiment, the mode of microwave energy introduced into the inlet 95 1 may be The modes of the microwave energy emitted via the discharge opening 945a are the same, while in another embodiment, the modes may be different. For example, in one embodiment in which split transmitter 944 includes a mode switching splitter 949, microwave energy introduced into a single inlet of one of the first sidewalls of a microwave heater can undergo a mode transition and Divided into at least two separate microwave energy portions, which can then be emitted to the internal command of the heater in a different mode as needed. For example, in one embodiment of FIG. 10D, the split emitter 944 can include a TM& waveguide section 942, one or two or more waveguide sections 943a, 943b, and disposed therebetween. A TMafc to mode conversion splitter 949. In operation, the microwave energy introduced in the "via" mode via the waveguide section 942 is at a TE, y from the respective outlets 945a, 945b of the waveguides 943a, 943b at one or two or more separate microwave energy fractions. The mode passes through the mode conversion splitter 949 at the same time or almost simultaneously. 160979.doc -75- 201240527 When the transmitter 944 includes a single discharge opening, the mode switching splitter 949 can be used only for mode converter 949 (not a splitter) that is used to change the mode of microwave energy passing therethrough. For example, in one embodiment in which the emitter 944 includes a single discharge opening (not shown in FIG. 1D), the emitter 944 can include a single ΤΜα6 waveguide section, a single TE 叮 waveguide section, and A ΤΜα6 to TE;^ mode converter 949 in between. The mode converter can be located outside of the microwave heater, partially inside the microwave heater or entirely inside the microwave heater. In operation, the microwave energy introduced in a mode via the inlet waveguide section can pass through the mode converter 949 before being discharged in a mode. The discharge opening of a single open emitter may be oriented at any suitable angle relative to the horizontal plane or may be substantially parallel to the horizontal plane. In one embodiment, the energy discharged from a single open emitter can be oriented at least 20 from the horizontal. At least 30. At least 45. Or at least 60. And / or no more than 100. No more than 90. Or no more than 80. One corner. When there are multiple discharge openings, each of the discharge openings 945a, 945b of the split emitter 944 can be oriented relative to one another such that the path of the microwave exit therefrom is defined by a relative discharge angle @' Shown. In one embodiment, the relative discharge angle between the paths of the microwave energy discharge openings 945a, 945b may be at least five. At least 15. 'At least 30. At least 45. At least 6〇°, at least 90. At least 115. At least 135. At least 14 miles. And/or no more than 180. No more than 17 inches. No more than 165. No more than 16 inches. No more than 140° and no more than 120. No more than 1〇〇. Or no more than 9〇 <^ In one embodiment, the orientation of the discharge openings 945a, 945b may also be relative to the orientation of the path of the microwave energy discharged therefrom relative to the axis of extension 948 of the waveguide segment 942. 160979.doc • 76· 201240527. In one embodiment, each of the discharge openings 945a, 945b can be configured to discharge with the first and second discharge angles (9 and φ2) of the extension axis 948 of the TM& waveguide section 942. Microwave energy. In one embodiment, 91 and q>2 may be substantially equal, as generally illustrated in Figure 3d, or in another embodiment 'one of the two corners may be larger than the other. In various embodiments, φι and/or φ2 may be at least 5. At least 10. At least 15. At least 30. At least 3 5°, at least 55. At least 65. At least 70. And / or no more than 110. , not more than 100 °, not more than 95 °, not more than 80 °, not more than 70. No more than 60° or no more than 40°. In one embodiment, the split emitter 944 can be a vertically oriented split emitter. The emitter 944 includes at least one upwardly directed discharge opening configured to emit microwave energy at an upward angle to the horizontal plane (eg, 945a) And at least one downwardly directed discharge opening (e.g., 945b) configured to emit microwave energy at a downward angle to the horizontal. Although not depicted in FIG. 1C, including vertically oriented splitting emitters 944a, 944h configured to discharge energy at an angle relative to a horizontal plane, in another embodiment, splitting emitter 944a of microwave heater 930 One or more of 944h may be oriented horizontally such that the split emitter as described above has been rotated 9 turns. . In another implementation, one or more (four) transmitters 944 & With 9 〇. Between - angle. In the embodiment (not shown), the microwave heater may comprise two or more vertically spaced horizontally oriented split emitter columns on one side of the heater and another A in the same heater. Two or more vertically spaced horizontally oriented split emitter columns on opposite sides of the body. According to this embodiment, the vertically spaced emitter columns 160979.doc • 77· 201240527 may comprise a single open emitter, a horizontally oriented split emitter, a vertically oriented split emitter, or any combination thereof. In an embodiment shown in FIG. 10c, the microwave heater 930 can include one or more (or at least two) movable reflectors 99〇3 to 99〇d positioned within the microwave heater 930. The microwave energy is transmitted to the interior of the microwave heater 930 at various locations and configured to rasterize from one or more of the one or more microwave emitters 944a, 944h or the plurality of discharge openings 945a through 945d. The reflectors 990a through 990d can have any suitable configuration, such as, for example, a configuration that includes one or more of the features previously described with respect to Figures 9f through 9h. Further, although generally illustrated as including four movable reflectors 99〇1 to 990d', it should be understood that the microwave heater 930 can include any suitable number of movable reflectors. In one embodiment 'a microwave heater comprising one of the split emitters may comprise at least 2 « movable reflectors. In another embodiment, a microwave heater may employ a total of four movable reflectors, Each defines a reflector surface extending substantially along the length of the microwave heater 930 such that two or more axially adjacent emitters "share" one or more reflectors or reflective surfaces. Regardless of the particular number of reflectors employed, each of the reflectors 99A through 990d is operable to raster at least a portion of the microwave energy exiting the emitters 944a, 944h into the microwave heater 930 via the discharge openings 945a through 945d. Thereby heating and/or drying at least a portion of the bundle or other article, article or load. As used herein, the term "rasterizing" means directing, projecting or aggregating energy onto an area. Rasterization energy involves a large degree of intentional guidance or aggregation compared to conventional reflection or scattering energy, 160979.doc -78·201240527 This can be achieved by utilizing the quasi-optical properties of microwave energy. Rasterization does not involve the use of a stationary reflective surface or a conventional mode search device (e.g., a fan) as compared to conventional means. In an embodiment, the microwave heater may comprise a plurality of split emitter pairs (eg, two or more transmitter pairs), wherein each pair includes two emitters having substantially similar configurations (eg, The article explains). In one embodiment, the #one emitters may be positioned on substantially opposite sides or on the same side of the microwave heater as previously discussed in detail with respect to Figures 9c and 9d. According to one embodiment, one or more movable reflectors 990a through 990d may be positioned (and/or positioned to face) one or more of the discharge openings of each of the microwave emitters 944. In one embodiment in which the first emitter 944a and the second emitter 94411 each comprise a split microwave emitter defining respective upwardly oriented discharge openings 945a and 945c and respective downwardly oriented discharge openings 945b and 945d, At least one movable reflector can be positioned adjacent one or more of the discharge openings 945a-945d to rasterize at least a portion of the microwave energy discharged from the split emitters 944a, 944h into the interior of the microwave heater 930 (eg, two One or more separate TE" mode microwave sections. In one embodiment illustrated in Figure i〇c, the microwave heater 93 0 may include at least four movable reflectors, each defining a respective one The reflective surface is positioned adjacent the respective discharge openings 945a through 945d of the split emitters 944a, 944h. As illustrated in Figure 1-3c, the movable reflectors 990a through 990d can be located at the bottom left quadrant of the microwave heater 930. (eg, reflector 990a), top left quadrant (eg, reflector 990b), top right quadrant (eg, reflector 99〇c), and bottom right quadrant (eg, reflector 990d). When the emitters 944a, 944h are horizontally oriented 160979.doc -79 - 201240527 split emitters or single open emitters, there may also be two or more of the reflectors 990a through 990d, as previously detailed. The reflectors 990a through 990d can be configured in two vertically spaced pairs (e.g., reflector 990a is paired with reflector 990b and reflector 990c is paired with reflector 990d) and/or configured as two horizontally spaced pairs (For example, reflector 990b is paired with reflector 990c and reflector 990a is paired with reflector 990d.) As illustrated in Figure 〇c, vertically spaced reflector pairs (e.g., reflector pairs 990a, 990b) And 990c, 990d) can be positioned adjacent the split emitters 944a, 944h such that a movable reflector is positioned adjacent each of the discharge openings 945a through 945d of the emitters 944a, 944h (eg, the discharge openings 945a through 945d face) Individual movable reflectors 990a through 990d). As illustrated in Figure 10c, movable reflectors 990b and 990c can be positioned at a height that is one higher than the respective movable reflectors 990a and 990d to enable split transmission 944a 944h may be positioned vertically between vertically spaced pairs of reflectors (eg, emitter 944a is positioned vertically between pairs of vertically spaced reflectors 990a, 990b and emitter 944h is positioned vertically with vertically spaced reflectors 990c, Between the 990d pairs. In one embodiment, the movable reflector 990 is positioned such that the reflector surface 991 opens toward one of its corresponding microwave emitters (not shown). In another embodiment, one or more of the movable reflectors 990a through 990d can be positioned to align with the central elongated axis of the microwave heater 930 or positioned to face the central elongated axis of the microwave heater 930 (FIG. 10c Not shown). The movable reflectors 990a through 990d can be coupled, directly or indirectly, to one or more of the side walls of a microwave heater and can be moved or actuated in any suitable manner. One or more of the emitters 990a through 990d may be moved along a pre-programmed (planned) path or may cause one or more to move in a random or non-repeating pattern. When multiple reflectors 990a through 990d are present, in one embodiment, two or more reflectors 990a through 990d may have the same or similar moving pattern' and in the same or another embodiment, two Or more than two reflectors 990a through 990d may have different movement patterns. According to one embodiment, at least one of the reflectors 990a through 990d can move over a generally curved path and can pass through various segments or "zones" of the total path at a certain speed and/or residence time. The size and number of zones and the speed at which the reflector moves through each zone or the residence time of the reflector in each zone depends on a variety of factors such as, for example, the size and type of the bundle, the type of wood, and the initial And the preliminary and expected characteristics of the last bundle. In one embodiment, each of the reflectors 990a through 990d may be individually driven or actuated according to one or more embodiments set forth herein, while in another embodiment 'two or two The above reflectors can be coupled to a common drive mechanism (eg, a rotating shaft to be actuated simultaneously). An example of a drive mechanism for moving a reflector 990 using an actuator 960 is shown in Figure 1A. Actuator 960 can be a linear actuator having a fixed portion 961 coupled to one of side walls 933 of the microwave heater and an extendable portion 963 coupled to a movable reflector 990. At least a portion of the fixed portion 961 can extend through the outer side wall 933 and into a bellows structure 964, thereby sealingly coupling the actuator 960 to the side wall 933, according to one of the embodiments illustrated in Figure i. In one embodiment, the bellows structure 964 is operable to reduce, minimize, or nearly prevent fluid flow in and out of the actuator 96(R) extending through the wall 933. As shown in Fig. e, the movable reflector 990 further includes a support arm 980 pivotally coupled to one of the side walls 933 of the microwave heater. As used herein, the term "pivotally coupled" means that two or more items are attached, fastened, or otherwise associated such that at least one of the items can be generally wrapped around a Move or pivot. In operation, a drive 97 causes the extendable portion 963 of the linear actuator 960 to move in an incoming and outgoing type as indicated by arrow 971. The extendable portion 963 of the linear actuator 96 allows the movable reflector 990 to move in a generally arcuate pattern, as indicated by arrow 973. Driver 970 can be controlled in any suitable manner, including, for example, using one or more programmable automatic control systems (not shown). According to one embodiment of the invention, it may be advantageous to minimize the amount of unoccupied, unobstructed or open volume defined within the interior of a microwave heater. As used herein, the term "total open volume" refers to the total volume of space within the interior of the container that is not occupied by the physical barrier when a bundle of wood is not placed in the container. In one embodiment of the invention, the ratio of the total volume of the bundle of wood (including the space between the individual pieces of wood) to the total open volume of the microwave heater may be at least 2020, at least 〇25, at least 〇3〇. At least 〇·35. In some of the above embodiments, the ratio is also no greater than 0.75, no greater than 〇7〇 or no greater than 〇65. In one embodiment, the microwave heater can define an unobstructed bundle receiving space for receiving a bundle of wood. The unobstructed beam receiving space can also be configured to receive at least a portion of the microwave energy emitted to heat and/or dry one or more of the articles (or bundles). The unobstructed beam reception of the microwave heater 93 I60979.doc • 82· 201240527 The space is indicated as 951 in Figure 10c. As used herein, the term "non-blocking beam receiving space" means a space that is capable of receiving and holding a wood bundle defined within the interior of a microwave heater. In one embodiment, the unobstructed beam receiving space can define a 1:0/ volume having a similar shape and being occupied by a bundle of largest sized wood bundles that can be loaded and/or processed within the microwave heater 930. One volume inside. For example, if the maximum beam size that can be accommodated by the microwave heater is 1 〇〇〇 cubic feet, then the unoccupied beam receiving space will have 1'_cubic feet (in the embodiment) volume and One shape similar to the bundle processed within the heater 930 (e.g., the cube receiving space may be "unobstructed" because it may not include any physical obstructions permanently placed therein (eg, waveguide , a transmitter, a reflector, etc.) In one embodiment of the invention, the microwave heater may comprise a circular cross-sectional shape, and the unobstructed beam receiving space 951 may define a cuboidal volume and/or be configured to Receiving a bundle of wood having a cuboid shape, the ratio of the total open volume of the microwave heater 930 to the volume of the unobstructed bundle receiving space may be at least G.2G, at least 0.25, and at least 0'30 At least 0. 35. In some of the above embodiments, the ratio is also no greater than 75.75, no greater than 〇7〇, or no greater than 〇". According to one embodiment, the unobstructed beam receiving space 951 At least part of : defined between two or more "obstructions", including, for example, two or more emitters, reflectors, waveguides or on the same or generally opposite sides of the microwave heater 93〇 Other objects occupying a physical space within the volume of the heater. The microwave heater _ includes two opposing female doors (for example, a general phase disposed in the state of the microwave heater 160979.doc -83 - 201240527 In one embodiment of one of the inlet doors 928 and one of the outlet doors, at least a portion of the unobstructed beam receiving space 95 1 can be defined between the two oppositely disposed doors. As illustrated in Figure 10c In one embodiment, either of the emitters 944a, 944h or the movable reflectors 990a through 990d, which are examples of obstructions, are not disposed within the unobstructed beam space 951. At least a portion of the space is defined in one embodiment between two or more obstructions (eg, waveguides, emitters, reflectors, etc.) in which the outermost edge of one or more obstructions is received and unobstructed Space (and / or The minimum clearance between (when present) can be at least 5 inches, at least 1 inch, at least 2 inches, at least 6 inches, at least 8 inches, and/or no more than 18 inches, Not more than 1 inch or less than 8 inches. In one embodiment t' one of the obstructions is not in contact with the body when the bundle is loaded into the heater 93. The general reference is now used. One of the operations of heating a wood beam illustrates one or more embodiments of the operation of a microwave heating system in accordance with the present invention. However, it should be understood that one or more of the elements of the heating process described herein may also be suitable for use. Used in the process of heating other items, such as, for example, those processes previously described. In addition, it is to be understood that at least some of the steps, methods and/or processes detailed below may be used or One or more of the above-described embodiments, all of which operate the microwave heating system, include the embodiments discussed with respect to Figures 8 through 1 and variations thereof. To initiate heating of a bundle of wood, the wood may first be loaded into a microwave heater that may be configured in accordance with one or more embodiments of the invention as set forth above. In one embodiment, the bundle may be Prior to heating and/or drying, there is 160979.doc -84 - 201240527 at least 100 pounds, at least 250 pounds, at least 375 pounds, or at least 500 pounds of total initial weight (eg, prior to heating). Once loaded, the vacuum system (if present) can then be used to reduce the pressure of the heater to no more than 550 Torr, no more than 450 Torr, no more than 350 Torr, no more than 300 Torr, no more than 250 Torr, no more than 200 Support, no more than 150 Torr, no more than ι 〇〇 or no more than 75 Torr. While maintaining the low pressure in the microwave heater, one or more microwave generators can then be operated to initiate introduction of microwave energy into the interior of the vessel to thereby heat and/or dry at least a portion of the bundle. During introduction of microwave energy into the interior of the microwave heater, the pressure within the vessel can be above, almost at or below atmospheric pressure. According to an embodiment, during the heating step, the pressure inside the microwave heater may be at least 350 Torr, at least 450 Torr, at least 650 Torr, at least 750 Torr, at least 9 Torr, or at least ι, 2 Torr. In another embodiment, the pressure in the microwave heater may be no more than 35 Torr, no more than 250 Torr, no more than 2 Torr, no more than 150 Torr, no more than 1 Torr or no more than 75 . The total generator capacity or energy rate introduced into the interior of the microwave heater during heating and/or drying of the wood may be at least 5 kw, at least 30 kW, at least 50 kW, at least 60 kW, at least 65 kW, at least 75 kw At least 100 kw, at least 150 kw, at least 2 〇〇kw, at least 25 kW, at least 350 kW, at least 400 kW, at least 500 kW, at least 000 kW, at least 750 kw or at least i, 〇〇〇 kW and/or Not more than 2,500 kW, no more than 1,500 kW or no more than 1, 〇〇〇 kW. According to one embodiment, the process of heating a bundle of wood may include a plurality of individual sequential heating cycles. The total heating process may include at least 2, at least 3, 160979.doc -85 - 201240527 of at least 4, at least 5, at least 6 and/or no more than 20, no more than 15, no more than 12 or no More than 1 individual sequential heating cycles. Each heating cycle can include (as needed at low pressure) the introduction of microwave energy. In one embodiment, microwave energy can be introduced into the microwave heater at a pressure of no more than 350 Torr, while in other embodiments, the pressure in the microwave heater can be at least 350 Torr. According to an embodiment, each of the one or more individual heating cycles may be implemented (eg, having a duration of at least 2 minutes, at least 5 minutes, at least 10 minutes, at least 2 minutes, at least 3) 〇 minutes and / or no more than 180 minutes ' no more than 120 minutes or no more than 9 minutes. In general, the entire length of the heating process (eg, total cycle time) can be at least 小时5 hours, at least 2 hours, at least 5 hours, or at least 8 hours and/or no more than an hour, no more than 30 hours, no more than 24 hours, no More than 18 hours, no more than "hours, no more than 12 hours, no more than 1 hour, no more than 8 hours or no more than 6 hours. In the embodiment where the total heating process includes two or more individual heating cycles - in the embodiment '- or a plurality of subsequent individual heating cycles may differ from the previous ring by one of the microwave energy input rates and/or one of the different forces from the previous cycle. In one embodiment, subsequent individual heating may be compared. One of the cycle low microwave energy input rates and / or lower than the previous one -I force implementation. In another embodiment ... or multiple subsequent individual,", the cycle can be higher than the front - cycle - microwave energy input Rate and / or ratio / one cycle high - force implementation. In a further embodiment, - or a plurality of cycles; the cycle may be lower than - or a plurality of previous individual heating cycles - the microwave energy wheel 160979.doc -86 * 201240527 rate and higher than one or more previous individual heating cycles A pressure is applied, or at a microwave energy input rate that is higher than one or more previous individual heating cycles and one pressure lower than one or more previous individual heating cycles. When the total heating process comprises two or more individual heating cycles, according to certain embodiments, one or more of the second (or later) cycles may be implemented as set forth above. In other embodiments, two or more cycles may be performed at the same or nearly the same pressure and/or microwave energy input rate. According to an embodiment, the total heating process may comprise a first sequential heating cycle followed by a second heating cycle, wherein the second heating cycle is at a lower microwave energy input rate than the first heating cycle, The first heating cycle is lower than one of the pressures or one of the lower ones of the first heating cycle and the microwave energy input rate is also lower than the first heating cycle. Further, in an embodiment when the total cycle includes three or more heating cycles, the microwave energy input rate and/or pressure of each subsequent cycle (other than the first cycle) may be lower than the previous cycle. The microwave energy input rate and / or pressure. For example, in one embodiment, the „individual heating cycle may be lower than the first &_" individual heating cycle, one of the microwave energy input rate, one lower than the first individual heating cycle, or both than the first individual heating cycle One of the lower microwave energy input rates is also performed at a lower pressure than the first individual heating cycle. During the first individual heating cycle, a first maximum microwave energy input rate can be introduced into the microwave heater. As used herein. The term "maximum microwave energy input rate" refers to the highest rate at which microwave energy can be introduced into a heater during a heating cycle. In various embodiments, the maximum microwave energy input rate introduced during the first individual heating cycle (eg, the first maximum micro 160979.doc -87 - 201240527 wave energy input rate) may be, for example, at least 5 k\ V, at least 30 kW, at least 50 kW, at least 60 kW, at least 65 kW, at least 75 kw, at least 1 kW, at least 150 kW, at least 2 〇〇 kw, at least 25 〇 kw, at least 35 kW, at least 400 kW, at least 500 kW, at least 60 kW, at least 75 kW or at least i, 〇〇〇 kW and/or, for example, no greater than 25 〇〇 kw, no greater than 1,50 kW, no greater than i, 〇〇〇kW or no more than 5〇〇1^. Subsequently, a second individual heating cycle can be implemented such that introducing a second maximum input rate (eg, a second maximum microwave energy input rate) of microwave energy into the microwave heater during the second individual heating cycle can be performed in some implementations In an example, for example, at least 25%, at least 50%, at least 7%, and/or, for example, no greater than 98%, no greater than 94%, or at least a maximum input rate achieved during the first heating cycle. No more than 90% 〇 Similarly, when the heating process includes two or more individual heating cycles, the maximum microwave energy input rate of the wth individual heating cycle (eg, the third or fourth cycle) may be in one embodiment. Medium, for example, at least 25%, at least 5%, at least 7%, and/or, for example, no greater than 98% of the maximum input rate during the (eg, previous) individual heating cycle, Not more than 94%, not more than 90% or not more than 850/〇. In one embodiment, the second (or subsequent) individual heating cycle can be performed at a lower pressure than the first (or previous) individual heating cycle. For example, in one embodiment where low pressure or vacuum pressure is utilized during the heating cycle, the minimum pressure reached during the first heating cycle can be at least 25 Torr. Subsequently, a second individual heating cycle can be implemented such that the lowest pressure reached during the second cycle (eg, the highest vacuum pressure level achieved) is 160979.doc • 88 201240527 can be in one embodiment (for example At least 25%, at least 50%, at least 70%, at least 75%, at least 80°/min of the minimum pressure reached during the first heating cycle. And/or in one embodiment, for example, no greater than 98%, no greater than 94%, or no greater than 90%. Similarly, when the heating process includes three or more individual heating cycles, the pressure of the individual heating cycles may, in one embodiment, for example, be at least the minimum pressure reached during the individual heating cycle. 25%, at least 50%, at least 70%, at least 75%, at least 80°/. And/or no more than 98%, no more than 94%, no more than 90% or no more than 85% of the lowest pressure achieved. Table 1 below summarizes the broad, intermediate, and narrow ranges of microwave energy rates (expressed as a percentage of the maximum generator output) and successive first, second, third, and "individual heating cycles" in accordance with an embodiment of the present invention. The pressure (to express). As used herein, the term "maximum generator output" refers to the maximum value of the combination on the entire array resulting from the accumulation of all microwave generators in a heating system. In one embodiment, the maximum microwave energy input rate for one or more heating cycles can also be expressed as a percentage of the maximum generator output, as shown in Table 1. Table 1: Microwave energy rate and pressure for individual heating cycles Individually followed by microwave energy rate (maximum value / 〇) Pressure (tread) Ring number width Middle narrow width Middle narrow 1 60-100% 70-100% 80-100% <250 <200 20-100 2 40-100% 50-95% 60-90% <250 <200 20-100 3 20-80% 25-75% 30-70% <250 <150 20-100 η 5-60% 10-50% 15-40% <150 <100 10-75 160979.doc -89- 201240527 each: an embodiment of the invention '- or a plurality of individual heating cycles in a thermal cycle" wherein microwave energy is introduced to the adder -: "plus" The period (for example, the first - '1st / middle, and - the first sleep "sleep period" is selected, wherein a microwave energy or substantially no microwave energy is drawn into the heater. For example, during the heating cycle, the microwave energy may be introduced into the microwave heater at a rate sufficient to heat and/or at least partially dry and chemically wet the wood bundle, while during the sleep cycle 2 & The rate of input can be in the embodiment, wherein the maximum microwave energy input rate introduced during the heating cycle is no more than 25%, no more than two, no more than 5%, or no more than I. In an embodiment, each cycle may include one or more heating cycles = or multiple sleep cycles. For example, when two individual sequential heating cycles are utilized, at least one first heating cycle cycle may be included, and the first individual heating cycle may include at least one second heating cycle and a second sleep cycle β. The chirp period may follow the first heating period with no temporary sleep period. ... in one embodiment 'each of the heating cycles may have, for example, at least 5 minutes, at least 1 minute, at least 15 minutes, at least (10) minutes, and/or (for example) no greater than Clock, not big (four) minutes not more than 2 minutes or less than 2 minutes of _ duration. In an embodiment, the dormant period can have, for example, at least 5 minutes, at least Μ minutes or at least 20 minutes, and/or, for example, no greater than 9 〇 minutes no greater than 6 〇 minutes or no greater than 40 One of the minutes duration. In one embodiment, the ratio of the length of the heating cycle to the length of the sleep cycle may be (for example.) to J 0.5:1, at least 1:1, at least i 25 :1 or at least and/or (for example) no more than 5:1, no more than 3:1, no more than Π! or no more than 1.5:1 〇° during each period of __ in plus ., . Then 壬__ suitable way to introduce microwave energy into the microwave heater. For example, in one embodiment, microwave energy can be emitted from one or more emitters in a substantially continuous manner throughout the duration of the heating cycle. In one embodiment, energy may be emitted from a single transmitter at a time, while in another embodiment, energy may be emitted from two or more transmitters simultaneously. An automatic control system can be used to control the amount, timing, duration, coordination, and synchronization of microwave energy emitted by each of the emitters. This switching can also be controlled by the control system when discharging energy into the microwave heater including switching between two or more transmitters' as discussed in detail later. According to one embodiment, energy can be introduced into the microwave heater such that each-heating cycle can include two or more different heating modes (also known as an exhaust mode, an exhaust phase, or a heating phase). In an example, different microwave energy rates may be emitted from one or more emitters during each heating phase. For example, 'in one embodiment, during a first heating phase is compared to a first emitter One of the rates of transmission is higher than a first emitter transmitting energy f, and during a second heating phase, energy can be emitted from the second emitter at a rate higher than the rate from the first emitter According to the embodiment, - or a plurality of transmitters may emit microwave energy into the microwave heater, and one or more of the emitters may not substantially emit energy to the microwave heater 160969.doc -91·201240527 Thereby, the energy is concentrated to different positions of the bundle of wood (or other items). Each individual heating stage can be implemented (i.e., has a duration of), for example, at least 2 minutes, at least 5 minutes, At least 12 The clock is at least 5 minutes and/or (for example) no more than 9 minutes, no more than 60 knives, no more than 45 minutes or no more than 3 minutes of one cycle. One or two separate heating stages may be followed by The sleep period is selected for at least 2 minutes, at least 4 minutes, or at least 6 minutes and/or no more than 15 minutes, no more than 12 minutes, or no more than 丨 ^ minutes. When the microwave heater includes four or more emitters, The microwave distribution system can be configured such that each emitter emits microwave energy to the microwave heater + in a separate heating or discharging phase depending on the position of the one or more microwave switches. For example, in which microwave heating In one embodiment of the first, first, third, and fourth microwave transmitters, two or more microwave switches (such as a first and a second microwave switch) can pass through Configuring so that microwave energy can be emitted primarily from each emitter in the respective -, second, third and fourth heating stages. In one embodiment, two or more emission stages may be substantial Simultaneously implemented while preventing Two or more discharge stages are carried out substantially simultaneously. Additional details regarding the operation of the (4) microwave heater comprising the heating cycle of the alternate discharge stage will now be discussed in detail below with reference to Figures iu and lib. Turning now to Figure 11a and 11b provides a schematic top view of a microwave heating system 102G configured in accordance with an embodiment of the present invention. The microwave heating system 1020 is illustrated as including at least four microwave generators 1022a through 1022d for producing microwave energy and Directing at least a portion of the microwave energy to 160979.doc • 92·201240527 A microwave distribution system 1 〇 4 微波 in the microwave heater 1030. The microwave distribution system 1 040 also includes an operative to emit at least a portion of the microwave energy A plurality of spaced apart microwave emitters i 〇 44a through 1044h (which in one embodiment may include one or more split emitters) into the interior of the microwave heater 1040. Each of the microwave emitters 1044a through 104h may be operatively coupled to one of a plurality of (one first to fourth) microwave switches 1 〇 46 & to 〇 46d in this figure or Many, as shown in Figures 11a and 11b. Microwave switchers 1 046a through 104d are operable to route microwave energy to one or more of transmitters 1044a through 1044h in any suitable mode, including, for example, mode and/or a mode, such as As discussed in detail above, in one embodiment, the energy propagating through the microwave distribution system can be changed at least once prior to discharge into the microwave heater 1030. Reference will now be made in detail to Figures Ua and ub, One or more embodiments of the present invention operate various configurations and methods of microwave heating system 1020. Each of microwave switchers 1046ai 1046d is operable to direct, control, or distribute the power of microwave energy to a microwave heater. One or more of two or more microwave emitters 1044a through 104h on substantially the same side or generally opposite sides. For example, an embodiment illustrated in Figure Ua Each of the microwave switches 1046a through 104d can be coupled to an axially adjacent pair of microwave transmitters (eg, transmitters 1044a and 1044b #1n1st 44e and 1() 44d, transmitters 1(4)e and 1Q44f, and Transmitter 1044 g and i〇44h), denoted as transmitter pair i & to 1〇5〇d. In another embodiment illustrated in Figure lib, each of the microwave switchers 46d may be coupled to - axially aligned microwave transmitter pair 160979.doc -93- 201240527 (eg 'transmitters 1044a and 1044h, transmitters 1044b and l 44g, transmitters 1044c and l 44f and transmitters l 44d and 1044e) , shown as a transmitter pair 1050e to 1050h. Microwave switching 1 〇 4 6 a to 10 4 6 d can be used as a suitable type of microwave switcher and in one embodiment can be a rotating microwave switcher. The switch can include an outer casing, an inner routing element disposed therein, and an actuator for moving the inner routing element within the housing. In one embodiment, the internal routing component can be Rotatingly coupling to the outer casing and the actuator is operable to selectively rotate the inner routing element relative to the outer casing to thereby switch or direct the direction of flow of microwave energy therethrough. Other types may also be employed Suitable for microwave switchers. In an embodiment switcher, And in another
中,微波切換器1046a至l〇46d可包括TE 一實施例中,微波切換器1046&至1046d可包括ΤΜ&切換 器。任何額外適合組件(諸如,一或多個模式轉換器、阻 障總成或在本中請案中別處論述但未展示於圖iia及ub中 之組件)可位於微波切換器1046&至1〇4以上游或下游。The microwave switchers 1046a through 104d may include a TE. The microwave switchers 1046 & to 1046d may include a ΤΜ & switcher. Any additional suitable components (such as one or more mode converters, barrier assemblies or components discussed elsewhere in this application but not shown in Figures iia and ub) may be located at the microwave switcher 1046 & 4 to the upstream or downstream.
射器發射或排放較少能量β 在一項實施例中,在第— 加熱階段期間,微波切換器 160979.doc •94- 201240527 1046a至1046d中之每一者可經組態以將微波能主要路由至 一第一微波發射器組(在圖11a及llb中標示為ΓΑ」發射器 組)内之一或多個發射器而不主要路由至一第二微波發射 器組(在圖11 a及lib中標示為一「B」發射器組)之—或多 個發射器。在第二排放階段期間,在圖Ua及llb中之各別 發射器對1050a至1050d及l〇5〇e至1050h中之每一者中,微 波切換器1046a至l〇46d中之每一者可經組態以將微波能主 要路由至該第二組(例如,「B」發射器)之一或多個發射器 而不主要路由至該第一組(例如,「A」發射器)之一或多個 發射器。如本文中所使用,提及將微波能「主要」路由至 發射器X而「不主要」路由至發射器γ意指將由一切換器 接收之微波能之至少50%路由至發射器X,而將由該切換 器接收之微波能之不大於5〇%路由至發射器γ。在一項實 %例中,可將能量之(舉例而言)至少75%、至少%%、至 :>' 95 /。、實質上全部主要路由至發射器X,而可將能量之 (舉例而§ )不大於25%、不大於丨〇%、不大於5%或實質上 無能量路由至發射器γ。 在一項貫施例中,微波加熱系統〗〇3 〇可進一步包括用於 控制微波切換器10術至i G46d之動作及組態之-控制系統 1060。在一項實施例中,控制系統1〇6〇可操作以將切換器 1046a至l〇46d中之每-者組態為處於第一排放階段中,以 使得所有「A」發射器(例如,發射器1〇44a、1〇44c、 l〇44e、l〇44g)皆將微波能發射至微波加熱器1〇3〇中,而 所有B」發射器(例如,發射器1〇44b、1〇44d、、 160979.doc -95- 201240527 1044h)皆將一較小量或實質上無微波能發射至微波加熱器 1030之内部中,如在圖Ua及Ub中由微波加熱器1〇3〇之各 別陰影及無陰影區所圖解說明。隨後,控制系統1〇6〇接著 可操作以將切換器l〇46a至i〇46d中之每一者組態為處於第 二排放階段中,以使得所有rA」發射器(例如,發射器 1044a、1044c' 1〇4钧、1〇44g)皆將一較小量或實質上無微 波旎發射至微波加熱器i 〇3〇之内部中,而所有「B」發射 器(例如,發射器1044b、l〇44d、1044f、l〇44h)皆將微波 能發射至微波加熱器1030(圖11&及111:)中未表示)之内部 中。 根據一項實施例,控制系統1〇6〇亦可操作以基於一預定 參數組(包含(舉例而言)循環時間、所排放之總能量及諸如 此類)來控制微波切換器l〇46a至l〇46d在第一排放階段與 第一排放階段之間的切換。舉例而言,在一項實施例中, 控制系統1060可操作以實質上同時將微波切換器i〇46a至 l〇46d中之每一者組態至第一排放階段中,以使得可同時 自 A」發射器1044a、l〇44c、1044e、l〇44g中之每一者 發射微波能達一時間週期。在另一實施例中,控制系統 1060可操作以在將一或多個切換器i〇46a至1〇46{1組態至第 一排放階段中之間包含一時間延遲或滯後。因此,自一或 多個「A」或「B」發射器發射之微波能可相對於自一或 多個其他「A」或「B」發射器排放能量而延遲或交錯。 在一項實施例中’控制系統1060可經組態以允許一或多個 切換器1046a至l〇46d處於第一排放階段中,而一或多個其 160979.doc -96- 201240527 他切換器l〇46a至l(H6d處於第二排放階段中,以使得可同 時自一或多個「A」發射器及一或多個「B」發射器發射 微波能。在本發明之一項實施例中,控制系統1〇6〇亦可操 作以至少部分地防止來自直接相對之發射器對(例如,對 1044a 及 l〇44h、對 1044b 及 l〇44g、對 l〇44c 及 1044f、對 l〇44d及l〇44e)及/或軸向毗鄰對(例如,對1〇4物及1〇441)、 對 1044c及 l〇44d、對 1044e及 l〇44f、對 l〇44g及 l〇44h)之同 時能量排放。 根據本發明之一項實施例組態及/或操作之加熱系統可 操作以比習用加熱系統更有效地加熱一物件或負載。特定 而5 ’根據本發明之各種實施例組態之加熱系統可操作以 處理大的商業規模負載。在一項實施例中,如本文中所闡 述之加熱系統可加熱具有至少100磅、至少500碎、至少 1,〇〇〇磅、至少5,000磅或至少ι〇,〇〇〇磅之一累積、預加熱 (或預處理)重量之一木材束或其他負載。在各種實施例 中,一木材束可經加熱及/或乾燥以使得木材之總體積之 不大於(舉例而言)20%、不大於1〇。/❶、不大於5%及不大於 2°/〇可達到不超過一上臨限溫度之一溫度。在相同或其他 實施例中,木材之總體積之至少80%、至少90%、至少 95%及至少98°/。(舉例而言)可達到不超過一下臨限溫度之 一溫度。下臨限溫度及上臨限溫度可係彼此相對接近且可 (舉例而言)係在彼此之11〇。〇内、1〇5。〇内、1〇〇。〇内' 9〇〇c 内、75°C内或5(TC内。在各種實施例中’上臨限溫度可係 至少190°C、至少20(TC或至少220°C及/或不大於275°C、 160979.doc -97· 201240527 不大於260°C、不大於250°C或不大於225°C。在另一實施 例中,下臨限溫度可係至少115°C、至少120°C、至少 125°C、至少13〇°C及/或不大於150°C、不大於145°C或不 大於135°C。 根據一項實施例,木材之總體積之至少80%、至少 90%、至少95%及至少98°/。可達到至少i3〇ec 、至少 145°C、至少150°C或至少16(TC及/或不大於250°C、不大 於240C、不大於225C、不大於210°C或不大於2〇〇β〇之一 最大溫度。因此’具有至少100磅、至少500碎、至少 1,000磅或至少5,000磅之一初始(例如’預加熱或預處理) 重量之一木材束(視需要,一化學潤濕之木材束)可以不大 於48小時、不大於36小時、不大於24小時、不大於18小 時、不大於16小時、不大於12小時、不大於1〇小時、不大 於8小時或不大於6小時加熱。 藉由以下實例進一步圖解說明及闡述本發明之各種態 樣。然而,應理解,除非另有特定指示,否則包含此等實 例僅係出於圖解說明之目的而並非意欲限制本發明之範 疇。 實例 實例1 . 一ΤΕ1()與一TMC1阻障總成之電場強度之比較 此實例提供經進行以判定一 TEiq阻障總成與一 ΤΜμ阻障 總成之電場強度及能量密度之間的差異之一模擬之結果。 每一總成係使用hfsstm軟體(可自賓夕法尼亞州卡農斯堡 的Ansys構得)來模型及m呈現模擬結果之示意 160979.doc -98- 201240527 性繪示’其特定而言圖解說明在圖l2a中之比較性丁£1〇總 成及圖12b中之發明性丁]^01總成内之電場之強度。 如圖12a及12b中所展示,發明性TM01阻障總成在75 kW 處之峰值電場強度(〇·9 kV/cm)係在75 kW處量測之比較性 TE1()阻障總成之峰值電場強度(3 kv/cm)之大致三分之一。 因此’ TMQ1阻障總成之峰值能量密度係tEiq阻障總成之峰 值能量密度之約九分之一。 實例2 : TE1()及一 TM01阻障總成中可獲得之崩潰壓力及最 大能量位準之判定 此實例比較一 TE! 〇及一 TM〇 !阻障總成兩者在不同微波能 位準下可達成之崩潰壓力。如本文中所展示,與TE10阻障 總成相比,TMtn阻障總成能夠在一既定能量位準處在較低 真空位準處操作及/或在一既定真空位準處准許較高微波 能位準穿過。 在一測試設施中建構用於測試在各種壓力及能量位準下 在一阻障總成内之崩潰壓力(亦即,在一既定能量位準處 首次發生發弧之壓力)之一定製設備。該設備包含耦合至 可操作以在其間接納及固持一可移除阻障總成之一 te】〇波 導組之一微波產生器。該設備包含用於在測試之前將不同 氣體在各種溫度下引入至阻障總成中之一氣體系統及用於 在測試期間控制總成内之壓力之一真空系統。該設備亦包 含用於在總成内感測到發弧時停止微波產生器之一自動電 弧偵測及切斷系統。進行各種測試運行(運行人至⑴以在各 種能量位準處量測一 TEl()及一 障總成之崩潰壓力。 160979.doc -99- 201240527 下文之表2概述運行八至1^中之每一者之條件,而圖i3提供 針對運行八至1!中之每一者(依據能量位準)量測之崩潰壓力 之一圖形表示。 表2:用以判定崩潰壓力之測試運行之概述 運行 阻障總成(模式) 氣體類型 氣體溫度,°c A ΤΕ10 空氣 99 B ΤΕ,ο 空氣 22 C ΤΕ10 氮氣 100 D ΤΕ,〇 氮氣 22 E ΤΕ,〇 乙酸 95 F ΤΜ〇, 氮氣 90 G TM〇j 氮氣 25 Η ΤΜ〇ι 乙酸 90 如圖13中所展示,對於一既定能量位準,在發生發弧之 前,tmg1阻障總成係在比ΤΕι〇阻障總成低之一壓力(亦 即,一較尚真空位準)下操作。舉例而言,如藉由比較運 行E與Η(其兩者皆包含將阻障總成曝露至9〇t>c至95。〇下之 乙酸)所圖解說明,對於20 kW之一能量位準,在無發弧之 情況下TE〗〇阻障總成可達成之最小操作壓力係30托,而 TMgi阻障總成能夠在發生發弧之前在15托或甚至稍微低於 15托處操作。因此,如本文中所圓解說明,對於相同條件 及能量位準,與相比,在無發弧之情況下ΤΜ〇ι阻障總成可 曝露至比TE! 〇阻障總成低之壓力。 另一選擇係’亦如圖13中所展示,在相同壓力下且在類 160979.doc •100· 201240527 似條件下,tmq1阻障總成能夠在比TElG總成高之一能量位 準下操作。舉例而言,如藉由比較運行入與F(其兩者皆利 用在9(TC至99°C之一溫度下之氮氣)所證實,在4〇托之一 壓力處’ ΤΜ(π阻障總成可已在7〇 kW之預測能量位準處操 作而無發弧,而TE i 〇總成可在發生發浓之前不曝露至大於 15 kW之能量。此外,如由TEl〇總成所產生之崩潰壓力對 能量位準曲線(如圖13中所展示)之較陡斜率所展示,亦可 推斷針對額外能量增加之真空損耗(或損失)對於TEiq阻障 總成而言比對於TM〇!總成而言更大。因此,用於增加通過 TM〇!阻障總成之能量之邊限壓力損失比對於一類似操作 之TE丨〇阻障總成而言實質上更低。 實例3:利用不同微波能位準之順序加熱循環之使用 此貫例圖解說明將熱量施加至一木材束之方法如何影 響經加熱木材之溫度分佈。進行包含具有各種持續時間、 壓力及/或能量位準之一或多個個別加熱循環之數個測驗 以在加熱循環期間判定對該束之溫度之影響以及燒焦之木 材之量。 建構類似於圖9a、9b及9e中所圖解說明之系統之一微波 加熱系統且其包含經由一系列丁£10波導耦合至一真空微波 加熱器之一FERRITE 75 kW、915 MHz微波產生器(可自新 罕布什爾州納舒厄的Ferrite Microwave Technologies,Inc. 購得)。三個旋轉微波切換器經組態以將微波能自產生器 選擇性地路由至位於微波加熱器之内部中之四個微波發射 器中之一者。每一發射器經設計以按一 TE丨◦模式接收能 160979.doc • 101 · 201240527 量,但包含安置於容器内部内之用於在能量發射至加熱器 中之前將其轉換成一 ΤΜ01模式之一模式轉換器。真空加熱 器(其具有6.5英尺之一直徑及8英尺之一總長度)在一個端 上包含用於裝載及卸載木材之—單個門。該系統亦包含用 於在加熱步驟期間按需要控制加熱器内之壓力之一機械、 乾燥(例如,非油密封)真空泵(可自馬薩諸塞州吐克斯伯利 (Tewksbury,ΜΑ)的 Edwards Limited購得)〇 對於測驗運行八至11中之每—者,具有i英吋χ6英吋“英 尺之標稱尺寸之六個經乙醯化輻射松厚板裝備有放置至在 每一板之中心點處鑽出之孔中之纖維光學溫度感測器。該 等裝備有感測器之板放置成包含配置於26個層中之總共 156個經乙醯化輻射松板之一經黏附束之列13。接著將該 束緊固在一起且裝載至該真空加熱器中。在每一運行Α至 Η期間,將該束曝露至不同加熱及/或壓力曲線。對於每一 運行,針對每一循環量測在加熱之前及之後的束之峰值平 均及峰值最大纖維光學溫度及重量(以計算蒸發損耗)以及 總能量輸入。下文在表3a&3b中概述每一束之關鍵特性及 每一加熱曲線之詳情。 I60979.doc 201240527 璲电漩4i_sr學el;±i<ww 叫 ¥^辦: 4 棼 黎 s _ 〇 〇 r-H d p—4 o δ r-H d r—H o in ir> 〇 c> 0.0125 | oo o o d |s 黎 CN o o CN 卜 o o CO 〇 〇4 m rn r-H 〇 m o m o m ο m m o o 另 〇 o l〇 m ,ιι| m m in m m oo oo Cs| ir> o oo ο (N ON 心 O ko in O m 00 < 如 % m (N ΊΜ 00 〇 ο 卜 CN irj CN > CN in O) 運行 < QQ u Q m Uh 〇 Ϊ (憋)诸电癍矣菡學'^鉍ii'^wwWHv^掛: 獎 癍 0 昧 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 Ο CN m 1 1 1 1 1 1 1 CN r—Η Hi 昧 1 1 1 1 1 1 1 君 1 1 m oo (N CN <N 1 CS <N 1 <N <N 'O 獎 癍 Ί 昧 1 寸 1 Ch 1 00 CN o 1 宕 o 宕 〇 o Μ 1 (N CN CN (N CN CS 00 00 写 1 昧 |搞 1 癸 沄 沄 <〇 m m ο o in in o § o Ο O Μ in CN <n CN in (N in CN CN CN 00 in CN < PQ ϋ Q W ffl 160979.doc 103- 201240527 在完成每一運行時,移除該束且在視覺上檢查該等板中 之每一者以作燒焦記號,此界定為四分之一大小或更大變 黑或焦化標記。藉由比較在加熱之前及之後之束之重量 (與每一板之已知乾燥重量)來計算蒸發(濕度)損耗。基於 總能量輸入及木材之初始重量與濕度含量計算能量密度 (每磅之乾燥木材)。下文之表4概述運行A至Η之結果,其 包含在加熱期間達成之平均及最大峰值溫度以及燒焦之板 之數目。 表4 :運行Α至Η之結果之概述 結果 運行 能量密度 平均峰值 最大峰值 燒焦之 (kW/lb乾燥木材) 溫度(V) 溫度(。〇 硝 A 0.0094 116 159 0 B 0.0107 119 161 0 C 0.0107 139 184 7 D 0.0109 116 179 0 E 0.0148 136 154 19 F 0.0155 123 137 0 G 0.0125 113 193 0 Η 0.0168 142 192 10 如表4中所展示,對於類似能量密度(例如,運行C及Da 及運行E及F),採用在較低能量位準下及/或在較短持續時 間内進行之更多個別循環之運行(例如,運行D及F)比採用 在較高能量位準下及/或在較長持續内進行之較少個別循 160979.doc •104· 201240527 環之運行(例如,運行C及E)更可能避免燒焦。此外,如由 運行Η所圖解說明,在一高能量位準下及/或在一長持續時 間内進行初始循環之能量及/或持續時間之情形下,甚至 藉助具有降低之能量位準之多個循環進行之運行亦可導致 燒焦。因此,可推斷一總加熱循環内之個別循環之數目及 持續時間以及該等個別循環中之每一者之能量及/或壓力 之位準對木材之平均及最大峰值溫度以及在加熱循環期間 燒焦之板之數目具有一影響。 實例4: 一束内之能量分佈曲線之判定 此實例提供自用以加熱及/或乾燥一經乙醯化木材束之 一試驗規模微波加熱器獲得之實際資料。熱影像係用以建 構一能量分佈曲線’其將接著在預示性實例5中相關以預 測在一商業規模上加熱之木材之化學濕度曲線。 類似於圖10a、10c、10d及10e中所圖解說明之加熱器之 一水平伸長之微波加熱器建構有12英尺之一外徑及16英尺 之一總長度。該加熱器包含用於自容器裝載及卸載該束之 一入口門。類似於圖10c及10d中所圖解說明之分裂微波發 射器之四個分裂微波發射器配置成兩個相對安置之對且經 由ΤΕιο波導之一系統連接至一 FERRITE 75 kW 915 MHz微 波產生器(可自新罕布什爾州納舒厄(Nashua, NH)之Ferrite Microwave Technologies,Inc.購得)。三個微波切換器經組 態以將能量自產生器路由至每一對之兩個發射器中之一 者,如下文詳細闡述。 該微波加熱器亦包含類似於圖10c中所圖解說明之可移 160979.doc -105- 201240527 動反射器之四個可移動反射器。每一反射器界定實質上沿 加熱器之長度延伸之一連續反射表面。四個分裂發射器中 之每一者垂直定位於一可移動反射器對之間以使得藉由安 置於加熱器之内部體積之四個象限中之每一者中之反射表 面將自每一分裂發射器之各別向上及向下定向之排放開口 發射之能量光柵化至微波加熱器之内部中。經由利用一外 部驅動器之一轉轴使每一反射表面沿一大體弧形旋轉。稍 後將詳細闡述關於可移動反射器之運動之細節。 允許大致15,000磅之經乙醯化之輻射松在環境大氣中漏 度平衡以使得木材之平均水含量係2 wt%至3 wt%。接著將 木材捆綁成包括四個經個別扣緊之堆疊(例如,圖l4a中所 展示之堆疊A至D)之一合成束。該合成束(在圖14中表示為 束1304)具有4英尺寬x8英尺高xl6英尺長之標稱尺寸。堆 疊A至C中之每一者具有6英吋之一寬度,而堆疊D具有厶5 英尺之一寬度。將合成束13〇4引入至微波加熱器中且在起 始加熱循環之前將門關閉及扣緊。 首先,微波切換器經組態以使得來自產生器之能量將同 時路由至兩個對角相對(例如,相對安置、轴向交錯)之發 射器’而剩餘兩個對角相對之發射器保持空閒。接著,產 生器經啟動及設定以按類似於先前關於圖丨“及丨丨匕之發射 器組「A」論述之方式之一方式將75 kw遞送至第一對角 相對之發射器對。接下來,在10分鐘之後,停止產生器且 微波切換器經重新組態以在第二加熱模式期間將能量自第 一作用對角相對發射器組路由至空閒對角相對發射器組。 160979.doc •106· 201240527 接著以75 kW重新啟動產生器並再次將微波能排放至加熱 器中。在另一 10分鐘之後,停止產生器以使得該等切換器 可返回至原始組態,藉此將能量重新路由回至第一對角相 對發射器對。替代地自軸向交錯之發射器對排放能量之此 序列以10分鐘增量繼續達總共80分鐘(例如,1〇〇 kW-hr)。 在每一加熱模式期間,藉由控制可移動反射器中之每一 者之運動及位置來將自微波發射器中之每一者排放之能量 光柵化至微波加熱器之内部中。一可程式化邏輯控制器 (PLC)經設定以使用一伺服馬達使每一反射器以各種速度 旋轉通過其總弧形路徑之各種部分(或區)。頂部及底部反 射器對經程式化以按相同速度移動’但每一對之一個反射 器之移動係在另一者之前起始,藉此避免該對之兩個反射 器同步協力地移動。下文之表5概述運動之八個區中之每 一者之邊界(例如,開始及結束位置)及總長度以及頂部及 底部反射器對中之每一者之反射器速度及在每一區中所花 費之時間(例如’滯留時間),表達為總反射器循環時間之 百刀比/主意表5僅概述每一反射器之曲線之一半;一 旦每一反射器對移動通過如下文所闡述之區1至8,每一反 射器即接著以一反向型樣行進,以區8開始且移動回至區 160979.doc •107· 201240527 璲电wa®恭^葙飨b :s< 底部反射器 滯留時間 (循環之%) 〇 CO cn cn oi in Os 59.0 速度 m 0.05 0.05 1.82 1.82 1.82 1.82 0.26 0.04 頂部反射器 滯留時間 (循環之%) Ο) 〇 23.3 o T-H o o o <N 48.0 速度 (°/s) 0.07 0.10 1.82 CN 00 t-H 1.82 1.82 0.25 0.04 路徑之 長度(%) 0.31% 12.19% 12.50% 12.50% 12.50% 25.00% 12.50% 12.50% 路徑之 長度(°) r—Η rn o 寸 o — o — o 00 o o — 結束 位置(°) ο — o od 12.0 16.0 24.0 28.0 32.0 開始 位置(°) ρ ο μ o τι- 〇 00 12.0 16.0 24.0 28.0 越) <N m 寸 in v〇 卜 00 • 108 - 160979.doc 201240527 一旦整個加熱循環完成,即關斷產生器並將經加熱之合 成束輸送至一固持地帶,其中具有一寬角鏡頭之一 MIKRON 7500型號相機定位於距經加熱之束之伸長側中之 一者大致10英尺處。自該合成束移除堆疊A(圖14中所展示 之最外面板堆疊)以藉此曝露堆疊B之一内部表面(在圖14 中指定為B’)。該相機以每5秒1個影像之一速率記錄表面B, 之熱影像,且在20秒之後,自該合成束移除堆疊B ^該相 機接著開始記錄堆疊C之一内部表面(在圖14中指定為表面 C’)之熱影像。在20秒之後,自該束移除堆疊c,藉此曝露 堆疊D之内部表面(在圖14中指定為表面D,)。該相機記錄 表面D'之熱影像達20秒且接著被停止。 為刀析貫穿該束之體積之合成溫度分佈,使用 Mikr〇SpecTM專業熱成像軟體(版本4〇.5,可自英國伯克郡 (Berkshire,UK)之Metrum購得)將在表面B,至D,中之每一者 之一所關注代表性區内獲得之逐像素溫度資料導入至一試 算表中。圖15中展示併入有自合成束之所有内部表面B,至 D'獲得之熱資料之一累積頻率直方圖。 如圖15中所展示,該束之體積之小於2〇%具有低於42亡 或咼於52 C之一溫度》當與一乾燥、經乙醯化之木材束相 關時,此類型之能量分佈導致所預測之化學濕度含量曲 線’如預示性實例5中所闡述。 實例5(預示性):一經乙醯化之束内之化學濕度含量曲線 之計算 此預示性實例使用在實例4中獲得之實驗性能量分佈資 160979.doc •109- 201240527 料來預測在與先前在實例4中闡述之系統類似地組態之一 商業規模微波加熱系統中加熱及/或乾燥之經乙醯化木材 之化學濕度曲線(例如,總體積内之一或多種熱可移除化 學品之量及分佈)。 將具有大致101英吋高x52英吋寬xl6英尺長之尺寸之一 經乙醯化木材束裝載至具有u英尺7英吋之一内部直徑及 17英尺之一凸緣間長度之一微波加熱器中。可加壓加熱器 包含一相對安置之進入及退出開口,每一者可用一全直徑 碟形門密封。加熱器之總内部體積係2605立方英尺,且木 材束之總體積對微波加熱器中之總開放(例如,未佔用)體 積之比率係0.29:1。在於微波加熱器中加熱之前,該束具 有大致10 wt%至15 wt%之一「化學濕度含量」(亦即,包 含(舉例而言)乙酸、乙酸酐及其組合之一或多種熱可汽化 化學品之一量)。 在該束之加熱期間,以如先前在實例4中所闡述之一類 似方式將微波能引入至微波加熱器中。另外,使用一真空 系統將加熱器之内部壓力維持處於6〇托。在8〇分鐘之後, 關斷微波產生器,移除該束並以先前在實例4中所闡述之 方式拍攝該束之内部表面之熱影像。圖16中提供由累積熱 資料產生之預測溫度分佈。 如圖16令所展示,經乙醯化之木材束之預計溫度分佈具 有165°C之一平均峰值溫度且該束之總體積之小於〇3%具 有低於115 C或南於235°C之一溫度。根據使木材溫度與化 學品濕度含量相關之先前獲得之經驗資料,圖丨6中之溫度 160979.doc •110. 201240527 分佈針對如上文所闡述來處理之一經乾燥經乙醯化木材束 預測如表6中所概述之一化學濕度含量曲線。 表6:經乾燥經乙醯化木材之預計化學濕度含量曲線 溫度 木材束之百分率 預測濕度含量 T<115°C 0.3% 〜2 wt%濕度 115〇C<T<135〇C 2.2% 〜1 wt%濕度 T>235〇C 0.3% 燒焦 115〇C<T<235〇C 99.4% 乾燥 135〇C<T<235〇C 97.2% 乾燥 加熱及/或乾燥經乙醯化木材之總體目標係移除殘餘乙 醯化化學品(例如,藉由最小化經乾燥束之化學濕度含量) 而不過度乾燥或燒焦所處理之木材。如表6中所展示,經 乙醯化束之總體積之小於0.3%係乾燥不足的(例如,具有2 wt%或2 wt%以上之一濕度含量)或經受燒焦(例如,具有大 於235°C之一平均溫度)、另外,該束之總體積之小於2.2% 具有1%或1%以上之一濕度含量。因此,將經乙醯化束之 總體積之至少97.2%(且最高99.4%)加熱或乾燥至小於1 wt%至2 wt%之一化學濕度含量,而同時最小化燒焦木材 之量。 上文所闡述之本發明之較佳形式欲僅用作圖解說明,且 不應以一限制意義用於解釋本發明之範疇。熟習此項技術 者可在不背離本發明之精神之情況下容易地對上文所述之 例示性實施例作出顯而易見之修改。 160979.doc 111 201240527 本發明人藉此陳述其意欲依靠等效原則來判定且估計本 發明關於任何設備之相當合理範嘴而實質上不背離在以 申請專利範圍中所述之本發明字面範疇或在本發明字面範 疇之外。 【圖式簡單說明】 圖1係根據本發明之一項實施例組態之—木材處理系統 之一俯視圖,其特定而言圖解說明用於輸送往來於一化學 改質反應器及一木材加熱器之木材束之一軌條系統; 圖2係根據本發明之一替代實施例組態之—木材處理系 統之一俯視圖,其特定而言圖解說明用於輸送往來於複數 個化學改質反應器及複數個木材加熱器之木材束之一轉臺 系統; 圖3係根據本發明之一替代實施例組態之一木材處理系 統之一俯視圖,其特定而言圖解說明用於輸送往來於複數 個化學改質反應器及複數個木材加熱器之木材束之一滾輪 系統; 圖4a係適於在生產經化學改質之木材中使用且根據本發 明之一項實施例組態之一穿過式木材處理系統之一俯視 圖,其特定而言圖解說明一化學改質反應器及一木材加熱 器’其包括單獨的軸向對準之雙門容器且包含位於反應器 與加熱器谷器之間的一蒸汽容納室·, 圖4b係圖4a之穿過式木材處理系統之一等軸視圖,其特 定而言圖解說明蒸汽容納室之一例示性鼓風板/壁; 圖4c係在圖4a及4b中繪示之蒸汽容納室之一截面圖,其 160979.doc 112· 201240527 特定而言圖解說明用於允許來自外部環境之流體(例如, 空氣)流動至蒸汽容納室中之一例示性單向通氣孔對; 圖4d係圖4a之穿過式木材處理系統之一侧視圖,但亦圖 解說明用於抽取渴入蒸汽容納室及渴入位於加熱器之出口 處之-產品蒸汽移除結構之蒸汽及氣體之—通氣系統; 圖5係根據本發明之一項實施例組態之一微波加熱系統 之一示意圖’其特定而言®解說明裝備有m统且經 由-微波分佈系統自一微波產生器接收微波能之一微波加 熱器; 圖6係適於用作根據本發明之各種實施例之一化學改質 反應器及/或微波加熱器之一雙門、穿過式容器之一等軸 視圖,其特定而言圖解說明該容器之形狀及尺寸比例; 圖7a係根據本發明之一項實施例组態之一微波加熱器之 一門凸緣與一容器凸緣之接面之一局部截面圖,其特定而 S圖解說明由門及容器凸緣協作地形成且具有彼此平行且 靠攏著延伸之兩個室之一微波阻流器; 圖7b係類似於圖7a中繪示之阻流器之一微波阻流器之一 局部截面圖,但該微波阻流器具有相對於彼此成一銳角延 伸之阻流器腔; 圖7c係裝備有圖7a中繪示之微波阻流器組態之一微波加 熱器之門凸緣之一剖視等軸視圖,其特定而言圖解說明形 成於該阻流器之一導流壁中之複數個圓周地隔開之端部開 口槽或間隙; 圖7d係裝備有具有根據本發明之一項實施例組態之一可 I60979.doc -113- 201240527 移除部分之一微波阻流器《一微波加#器上開放門之 側視圓,其特定而言圖解說明該微波阻流器之可移除部 分包括複數個可個別移除且可替換之阻流器段; 圖7e係先前在圖7d中繪示之一「G」形可移除阻流器部 分之一截面圖; 圖係根據本發明之一第一替代實施例組態之一「了」 或「ϋ」形可移除阻流器部分之一截面圖; 圖7g係根據本發明之一第二替代實施例組態之一「L」 形可移除阻流器部分之一截面圖; 圖係根據本發明之一第三替代實施例組態之一「^」 形可移除阻流器部分之一截面圖; 圖8a係根據本發明之一項實施例組態之一微波加熱器之 一剖視等轴視圖’其特定而言將該加熱器圖解說明為裝備 有一伸長之波導發射器’該伸長之波導發射器在該發射器 之相對側上具有交錯之發射開口; 圖8b係圖8a中繪示之波導發射器之一放大局部視圖,其 特定而言圖解說明發射開口之組態及界定發射開口之侧壁 之厚度; 圖9a係根據本發明之一項實施例組態之一微波加熱系統 之一側視圖,其特定而言圖解說明用於將微波能遞送至微 波加熱器之一微波分佈系統; 圖9b係圖9a中繪示之微波加熱器之一俯視剖視圖,其特 定而言將微波分佈系統圖解說明為包含在該微波加熱器之 一個側上之一個射器對及在該微波加熱器之相對側 160979.doc -114- 201240527 上之一第二ΤΜαί>發射器對; 圖9c係圖解說明由術語「相對側」及「相關」所意指 之内容之一圖示; 圖9d係圖解說明由術語「轴向對準」所意指之内容之一 圖示; 圖9e係根據本發明之—項實施顯g之—微波發射及反 射或散射系統之一局部剖視等軸視圖,其特定而言圖解說 明類似於圖財綠示之發㈣統但亦包含與每—微波發射 器相關聯之一可移動反射器之一發射系統; 圖9f係適於在如本文中所闊述之一微波加熱系統中使用 之一反射器之一項實施例之一等轴視圖,其特定而言將該 反射器圖料明為具有帶有—第一組態之一凹部之一非平 面反射表面; 圖9 g係適於在本文中所闡述之一微波加熱系統中使用之 一反射器之另一實施例之一等軸視圖,其特定而言將該反 射器圖解說明為具有帶有一第二組態之一凹部之一非平面 反射表面; 圖9h係適於在本文中所闡述之一微波加熱系%中使用之 一反射器之一項實施例之一側視正視圖,其特定而言圖解 說明反射器表面之曲率; 圖9ι係先前在圖9e中繪示之一微波發射器與反射器對之 一放大剖視等轴視圖,其特定而言圖解說明用於提供反射 器之振盪移動之一致動器系統; 圖l〇a係根據本發明之一項實施例組態之一微波加熱系 160979.doc -115- 201240527 統之一側視圖,其特定而言圖解說明裝備有複數個τΜμ阻 障總成之一微波分佈系統; α 圖l〇b係圖l〇a中繪示之TMa6阻障總成中之一者之一軸向 截面圖,其特定而言將該阻障總成圖解說明為具有兩個浮 動密封窗及在阻障總成與其間耦合有該阻障總成之波導之 接面附近之阻抗變換直徑臺階式改變; 圖10c係在圖l〇a中繪示之微波加熱系統之一端視圖,其 中一木材束接納於微波加熱器之内部中,該圖特定而言將 該微波加熱器圖解說明為裝備有在該加熱器之相對側上之 分裂微波發射器及用於光柵化自該等分裂發射器發射之微 波能之可移動反射器; 圖l〇d係圖l〇c中繪示之分裂發射器中之一者之一放大側 視圖,其特定而言圖解說明自分裂發射器發射之兩個單獨 微波能分率之發射角; 圖l〇e係用於使一反射器移動之一系統之一項實施例之 一放大視圖,其特定而言圖解說明用以致使該反射器之振 盪之一致動器及用於抑制其中該致動器穿透微波加熱器之 壁之位置處之流體浪漏之一伸縮囊; 圖11 a係根據本發明之一項實施例組態之一微波加熱系 統之一不意性俯視圖,其特定而言將該加熱系統圖解說明 為包含用於以一交替方式將微波能路由至不同微波發射器 之複數個微波切換器; 圖1 lb係根據本發明之一替代實施例組態之一微波加熱 系統之一不意圖’其特定而言將該加熱系統圖解說明為包 160979.doc 201240527 含用於以一交替方式將微波能路由至不同微波發射器之複 數個微波切換器; 圖12a呈現預測一 te1g阻障總成之峰值電場強度之一電 腦模擬之結果; 圖17b呈現預測~ tmg1阻障總成之峰值電場強度之一電 腦模擬之結果; 圖13係依據一TE10及一TM01微波阻障總成兩者内之能量 位準之崩潰壓力之一圖形比較; 圖14係一木材束之一示意性表示,其特定而言圖解說明 在判定如實例4中所闡述之内部表面溫度時利用之组態; 圖15係併入有自圖14中所展示之合成束之表面]8,至〇,獲 得之熱資料之一累積頻率直方圖; 圖16係圖解說明由如實例5中所闡述之一經乙醯化木材 束之推測熱資料產生之一預測溫度分佈之一累積頻率直方 圖0 【主要元件符號說明】 10 木材處理設施 20 化學改質系統 22 化學改質反應器 24 反應器加熱系統 26 選用反應器加壓/減壓系統 28 反應器入口門/第一反應器入口門 29 選用反應器出口門 30 加熱系統 160979.doc •117· 201240527 32 加熱器 34 能源 36 選用加熱器加壓/減壓系統 38 開放加熱器入口門 39 選用加熱器出口門 40 輸送系統 42a 輸送段 42b 輸送段 42c 輸送段 42d 輸送段 42e 輸送段 60a 原始材料儲存區域 60b 成品材料儲存區域 102 木材束 110 木材處理設施 122a 反應器 122b 反應器 122n 反應器 128a 門 128b 門 128n 門 132a 加熱器 132b 加熱器 132n 加熱器 160979.doc -118 - 201240527 138a 門 138b 門 138n 門 140 可旋轉平臺/轉臺 160 儲存區域 210 木材處理設施 222a 化學改質反應器 222n 化學改質反應器 228a 反應器入口門 228n 反應器入口門 229a 選用反應器出 口門 229n 選用反應器出 口門 232a 加熱器 232b 加熱器 232n 加熱器 238a 加熱器入口門 238b 加熱器入口門 238n 加熱器入口門 239a 選用加熱器出 口門 239b 選用加熱器出 口門 239n 選用加熱器出 口門 240 輸送系統 242a 段 242b 段 •119- 160979.doc 201240527 242c 段 242d 段 242e 段 242f 段 242g 段 242h 段 242i 段 242] 段 244a 段 244b 段 244c 段 244d 段 244e 段 322 化學改質反應器 328 反應器入口門 329 反應器出口門 332 加熱器 338 加熱器入口門 339 加熱器出口門 342a 直立壁 342b 直立壁 342c 直立壁 342d 直立壁 344 天花板結構 •120· 160979.doc 201240527 349 蒸汽出口管道 349a 蒸汽出口管道 349b 蒸汽出口管道 349c 蒸汽出口管道 360 蒸汽容納室 361 傳送區 370a 中心伸長抽/通氣孔 370b 中心伸長軸/通氣孔 343 鼓風板或鼓風壁 399 輸送路徑 400 產品蒸汽移除系統或結構 402 通氣糸統 404 通氣罩 406 通氣室 408 通氣室出口 409 門 410 真空產生器 412 處理裝置 414 引流器 416 木材處理設施/木材處理系統 420 微波加熱系統 422 微波產生器 430 微波加熱器 440 微波分佈系統 160979.doc 121 · 201240527 442 波導 444a 微波發射器 444b 微波發射器 444c 微波發射器 446 微波模式轉換器/模式轉換器 450 選用真空系統 530 微波加熱器 531 本體側密封表面 532 容器本體 533 門側密封表面 534 門 535 中心伸長軸 536 微波加熱器之内部 631 本體側密封表面 632 容器本體 633 門側密封表面 634 門 650 微波阻流器 651 可移除部分 652 第一徑向延伸阻流器腔 653a 可移除阻流器段 653b 可移除阻流器段 653c 可移除阻流器段 653d 可移除阻流器段 160979.doc -122- 201240527 653e 可移除阻流器段 654 第二徑向延伸阻流器腔 656 徑向延伸阻流器導流壁 660 選用流體密封構件 670 經隔開之開端式間隙 690 第一阻流器腔之延伸之方向 692 第二阻流器腔之延伸之方向 702 木材束 720 微波加熱系統 730 微波加熱器 738 加熱器入口門 739 束接納空間/選用加熱器出口門 740 微波分佈系統 760 經伸長之波導發射器 764a 實質上平面側壁 764b 實質上平面側壁 764c 實質上平面側壁 764d 實質上平面側壁 767a 經伸長之槽/發射開口 767b 經伸長之槽/發射開口 767c 經伸長之槽/發射開口 767d 經伸長之槽/發射開口 767e 經伸長之槽/發射開口 780a 發射對或開口對 160979.doc -123- 201240527 780b 發射對或開口對 820 微波加熱系統 830 微波加熱器 831 外部側壁 831a 側壁 831b 側壁 835 伸長轴 835a 伸長軸 838 加熱器入口門 839 中點 840 微波分佈系統 841a 經隔開之發射開口 841b 經隔開之發射開口 842a 波導/波導段 842b 波導/波導段 842c 波導/波導段 842d 波導/波導段 843a ΤΜα6波導段 843b TMa6波導段 843c ΤΜαί)波導段 843d TMfl6波導段 844 微波發射器 844a 微波發射器 844b 微波發射器 160979.doc .124- 201240527 844c 微波發射器 844d 微波發射器 845 開放出口 /發射開口 845a 開放出口 /發射開口 845b 開放出口 /發射開口 845c 開放出口 /發射開口 845d 開放出口 /發射開口 846 發射器 846a 發射器 846b 發射器 850a 模式轉換器 850b 模式轉換器 850c 模式轉換器 850d 模式轉換器 890 反射器 890a 可移動反射器 890b 可移動反射器 890c 可移動反射器 890d 可移動反射器 891a 反射表面 891b 反射表面 891c 反射表面 891d 反射表面 892 支撐臂 160979.doc -125 - 201240527 893 振盪轉軸 893a 凸部 893b 凸部 894 槓桿臂 895 線性轉軸 896 輪 897 栖軸 898 馬達 899 反射器驅動器系統/致動器 902 木材束 920 微波加熱系統 928 入口門 930 微波加熱器 931 外部側壁 933 側壁 938 加熱器入口門 939 加熱器出口門 940 微波分佈系統 941a 發射開口 941b 經隔開之發射開口 941c 經隔開之發射開口 941d 經隔開之發射開口 942 波導段 942a 上游ΤΜαΖ>波導段 160979.doc -126- 201240527 942b 上游ΤΜαί)波導段 942c 上游TM&波導段 942d 上游TMa6波導段 942e 上游TMaZ)波導段 942f 上游ΤΜα6波導段 942g 上游TMfl6波導段 942h 上游ΤΜα6波導段 942i 下游ΤΜαΖ>波導段 942j 下游TMfl6波導段 942k 下游ΤΜαδ波導段 9421 下游ΤΜαδ波導段 942x 波導段 942y 波導段 942z 波導段 943a TEy波導段 943b TE,y波導段 944 分裂發射器 944a 第一分裂發射器 944h 第二分裂發射器 945a 排放開口 945b 排放開口 945c 排放開口 945d 排放開口 947a 模式轉換器 160979.doc -127· 201240527 947b 模式轉換器 947c 模式轉換器 947d 模式轉換器 948 延伸軸 949 TMfl6至ΤΕ„模式轉換分裂器 950a 外部TE^至TMa6模式轉換器 950b 外部TE^至模式轉換器 950c 外部TE^至ΤΜα6模式轉換器 950d 外部ΤΕ”至TMfl6模式轉換器 951 入口或開口 /無阻礙束接納空間 960 致動器 961 固定部分 963 可延伸部分 964 伸縮囊結構 970 阻障總成 970a 阻障總成 970b 阻障總成 970c 阻障總成 970d 阻障總成 970h 阻障總成 972a 密封窗構件 972b 密封窗構件 972c 密封窗構件 972d 密封窗構件 160979.doc -128- 201240527 973 973a 973b 973c 974a 974b 975a 975b 980 982a 982b 984a 984b 990 990a 990b 990c 990d 991 1020 1022a 1022b 1022c 1022d 阻障殼體 第一或入口區段 選用第二或中間區段 第三或出口區段 阻抗變換直徑臺階式改變 阻抗變換直徑臺階式改變 第一 TMfl6波導段 第二TMat波導段 支撐臂 彈性環 彈性環 彈性環 彈性環 可移動反射器 可移動反射器 可移動反射器 可移動反射器 可移動反射器 反射器表面 微波加熱系統 微波產生器 微波產生器 微波產生器 微波產生益 160979.doc -129- 201240527 1030 微波加熱器 1040 微波分佈系統 1044a 微波發射器 1044b 微波發射器 1044c 微波發射器 1044d 微波發射器 1044e 微波發射器 1044f 微波發射器 1044g 微波發射器 1044h 微波發射器 1046a 微波切換器 1046b 微波切換器 1046c 微波切換器 1046d 微波切換器 1050a 發射器對 1050b 發射器對 1050c 發射器對 1050d 發射器對 1050e 發射器對 1050f 發射器對 1050g 發射器對 1050h 發射器對 1060 控制系統 1304 合成束 160979.doc -130 201240527 A 第一微波發射器組/堆疊 B 第二微波發射器組/堆疊 B' 内部表面 C 堆疊 C· • 内部表面 D 堆疊 D' 内部表面 160979.doc -131 -The emitter emits or emits less energy β. In one embodiment, during the first heating phase, each of the microwave switches 160979.doc •94-201240527 1046a to 1046d can be configured to direct microwave energy primarily. Routing to one or more transmitters in a first microwave transmitter group (labeled as "ΓΑ" transmitter group in Figures 11a and 11b) without being primarily routed to a second microwave transmitter group (in Figure 11a) - lib is labeled as a "B" transmitter group) - or multiple transmitters. During each of the respective emitter pairs 1050a through 1050d and l〇5〇e through 1050h in Figures Ua and 11b, each of the microwave switches 1046a through 104b is shown during the second discharge phase. The microwave energy can be configured to be primarily routed to one or more of the second group (eg, "B" transmitters) without being primarily routed to the first group (eg, "A" transmitter) One or more transmitters. As used herein, reference to "major" routing microwave energy to transmitter X and "not primarily" routing to transmitter gamma means routing at least 50% of the microwave energy received by a switch to transmitter X, No more than 〇% of the microwave energy received by the switch is routed to the transmitter γ. In a real example, energy can be, for example, at least 75%, at least %%, to: > '95 /. Essentially all are routed primarily to the transmitter X, and energy (for example §) may be no more than 25%, no more than 丨〇%, no more than 5%, or substantially no energy routed to the transmitter γ. In one embodiment, the microwave heating system 〇3 〇 may further include a control system 1060 for controlling the operation and configuration of the microwave switch 10 to the i G46d. In one embodiment, the control system 〇6〇 is operable to configure each of the switches 1046a through 〇46d to be in the first emission phase such that all "A" emitters (eg, The transmitters 1〇44a, 1〇44c, l〇44e, l〇44g) emit microwave energy into the microwave heater 1〇3〇, and all B” emitters (for example, the transmitter 1〇44b, 1〇) 44d, 160979.doc -95-201240527 1044h) all emit a small amount or substantially no microwave energy into the interior of the microwave heater 1030, as shown in Figures Ua and Ub by the microwave heater 1 Individual shades and unshaded areas are illustrated. Subsequently, the control system 1〇6〇 is then operable to configure each of the switches 104a to 46d to be in the second emission phase such that all rA" transmitters (eg, transmitter 1044a) , 1044c' 1〇4钧, 1〇44g) all emit a small amount or substantially no microwave 旎 into the interior of the microwave heater i 〇3〇, and all "B" emitters (for example, the transmitter 1044b) , l〇44d, 1044f, l〇44h) all emit microwave energy into the interior of the microwave heater 1030 (not shown in Figures 11 & and 111:). According to an embodiment, the control system 1〇6〇 is also operative to control the microwave switchers 〇46a to 〇 based on a predetermined set of parameters including, for example, cycle time, total energy discharged, and the like. 46d is switching between the first emission phase and the first emission phase. For example, in one embodiment, the control system 1060 is operable to configure each of the microwave switches i 〇 46a through 〇 46d into the first emission phase substantially simultaneously such that simultaneously Each of the A" transmitters 1044a, 104C, 1044e, 104g emits microwave energy for a period of time. In another embodiment, control system 1060 is operative to include a time delay or hysteresis between configuring one or more switches i〇46a to 1〇46{1 to the first discharge phase. Thus, microwave energy emitted from one or more "A" or "B" transmitters may be delayed or staggered relative to emissions from one or more other "A" or "B" transmitters. In one embodiment, 'control system 1060 can be configured to allow one or more switches 1046a through 104d to be in a first emission phase, and one or more of its 160979.doc -96-201240527 other switches L 〇 46a to 1 (H6d is in the second emission stage such that microwave energy can be simultaneously emitted from one or more "A" emitters and one or more "B" emitters. In one embodiment of the invention The control system 1〇6〇 is also operable to at least partially prevent pairs of emitters from direct relatives (eg, pairs 1044a and l〇44h, pairs 1044b and l〇44g, pairs l〇44c and 1044f, pair l〇) 44d and l〇44e) and/or axially adjacent pairs (for example, for 1〇4 and 1〇441), for 1044c and l〇44d, for 1044e and l〇44f, for l〇44g and l〇44h) At the same time energy emissions. A heating system configured and/or operated in accordance with an embodiment of the present invention is operable to heat an item or load more efficiently than conventional heating systems. The heating system configured in accordance with various embodiments of the present invention is operable to handle large commercial scale loads. In one embodiment, the heating system as set forth herein can be heated to have at least 100 pounds, at least 500 shards, at least 1, pounds, at least 5,000 pounds, or at least ι, one of the pounds, Preheat (or pre-treat) one of the weight of the wood bundle or other load. In various embodiments, a bundle of wood can be heated and/or dried such that the total volume of the wood is no greater than, for example, 20%, no greater than 1 Torr. /❶, no more than 5% and no more than 2°/〇 can reach a temperature not exceeding one of the upper limit temperatures. In the same or other embodiments, at least 80%, at least 90%, at least 95%, and at least 98°/ of the total volume of the wood. (For example) a temperature that does not exceed a threshold temperature. The lower threshold temperature and the upper threshold temperature may be relatively close to each other and may, for example, be 11 彼此 each other. Inside, 1〇5. 〇, 1〇〇. Within 9 〇〇c, within 75 ° C or within 5 (TC. In various embodiments, the upper threshold temperature may be at least 190 ° C, at least 20 (TC or at least 220 ° C and / or no greater than 275 ° C, 160979.doc -97· 201240527 no more than 260 ° C, no more than 250 ° C or no more than 225 ° C. In another embodiment, the lower threshold temperature can be at least 115 ° C, at least 120 ° C, at least 125 ° C, at least 13 ° C and / or no more than 150 ° C, no more than 145 ° C or no more than 135 ° C. According to an embodiment, at least 80% of the total volume of wood, at least 90 %, at least 95% and at least 98°/. at least i3〇ec, at least 145°C, at least 150°C or at least 16 (TC and/or no more than 250°C, no more than 240C, no more than 225C, no Greater than 210 ° C or not greater than one of the maximum temperatures of 2 〇〇 β 。. Thus 'having at least 100 pounds, at least 500 shards, at least 1,000 lbs, or at least 5,000 lbs of one initial (eg 'preheated or pretreated) weight One of the wood bundles (as needed, a chemically wetted wood bundle) may be no more than 48 hours, no more than 36 hours, no more than 24 hours, no more than 18 hours, no more than 16 hours, not much Heating for 12 hours, no more than 1 hour, no more than 8 hours, or no more than 6 hours. Various aspects of the invention are further illustrated and illustrated by the following examples. However, it should be understood that unless otherwise specifically indicated, The examples are for illustrative purposes only and are not intended to limit the scope of the invention.Example Example 1. Comparison of electric field strength of a ΤΕ1() with a TMC1 barrier assembly This example provides for determining a TEiq barrier The result of the simulation of the difference between the electric field strength and the energy density of the assembly and the ΤΜμ barrier assembly. Each assembly uses the hfsstm software (which can be constructed from Ansys of Cannonsburg, PA) to model and m A schematic representation of the simulation results 160979.doc -98-201240527 shows that it specifically illustrates the comparative singularity in Figure 12a and the inventive singularity in Figure 12b. The strength of the electric field. As shown in Figures 12a and 12b, the peak electric field strength (〇·9 kV/cm) of the inventive TM01 barrier assembly at 75 kW is a comparative TE1() resistance measured at 75 kW. The peak electric field of the barrier assembly (3 kv/cm) is roughly one-third. Therefore, the peak energy density of the TMQ1 barrier assembly is about one-ninth of the peak energy density of the tEiq barrier assembly. Example 2: TE1() and a TM01 The determination of the collapse pressure and the maximum energy level available in the barrier assembly. This example compares the collapse pressure that can be achieved with a TE! 〇 and a TM 〇 barrier assembly at different microwave energy levels. As shown herein, the TMtn barrier assembly can operate at a lower energy level at a given energy level and/or permit higher microwaves at a given vacuum level than a TE10 barrier assembly. Can pass through. A custom equipment is constructed in a test facility for testing the collapse pressure within a barrier assembly (i.e., the pressure at which a first arc occurs at a given energy level) at various pressure and energy levels. The apparatus includes a microwave generator coupled to one of a plurality of removable barrier assemblies operable to receive and hold a removable barrier assembly therebetween. The apparatus includes a vacuum system for introducing different gases at various temperatures into the barrier assembly prior to testing and for controlling the pressure within the assembly during testing. The device also includes an automatic arc detection and shutoff system for stopping the microwave generator when an arc is sensed within the assembly. Perform various test runs (runner to (1) to measure the breakdown pressure of a TEL() and a barrier assembly at various energy levels. 160979.doc -99- 201240527 Table 2 below provides an overview of operations 8 to 1^ The condition of each, and Figure i3 provides a graphical representation of one of the collapse pressures measured for each of the eight to one! (depending on the energy level). Table 2: Overview of the test run used to determine the collapse pressure Operating barrier assembly (mode) Gas type gas temperature, °c A ΤΕ10 Air 99 B ΤΕ, ο Air 22 C ΤΕ10 Nitrogen 100 D ΤΕ, 〇 Nitrogen 22 E ΤΕ, 〇 acetic acid 95 F ΤΜ〇, Nitrogen 90 G TM〇 j Nitrogen 25 Η ΤΜ〇ι Acetic acid 90 As shown in Figure 13, for a given energy level, the tmg1 barrier assembly is at a lower pressure than the 〇ι〇 barrier assembly (ie, before the arcing occurs) For example, by comparing E and Η (both of which include exposing the barrier assembly to 9〇t>c to 95. acetic acid under the arm) Illustration, for one of the 20 kW energy levels, TE without arcing The minimum operating pressure that can be achieved with the barrier assembly is 30 Torr, and the TMgi barrier assembly can operate at 15 Torr or even slightly below 15 Torr before arcing occurs. Therefore, as explained in this article For the same conditions and energy levels, the 阻1 barrier assembly can be exposed to a lower pressure than the TE! 〇 barrier assembly without arcing. Another option is also shown in Figure As shown in Figure 13, under the same pressure and under the condition 160969.doc •100· 201240527, the tmq1 barrier assembly can operate at one energy level higher than the TElG assembly. For example, by The comparison runs into and F (both of which are utilized at 9 (nitrogen at one of TC to 99 °C), at one of the pressures of 4 Torr' ΤΜ (the π barrier assembly can already be 7 〇) The predicted energy level of kW operates without arcing, while the TE i 〇 assembly can not be exposed to more than 15 kW of energy before it is concentrated. In addition, the collapse pressure versus energy level generated by the TE1〇 assembly The steep slope of the quasi-curve (shown in Figure 13) is also shown to be true for additional energy gains. The air loss (or loss) is greater for the TEiq barrier assembly than for the TM〇! assembly. Therefore, the marginal pressure loss ratio for increasing the energy through the TM〇! barrier assembly is similar to The operating TE丨〇 barrier assembly is substantially lower. Example 3: Use of sequential heating cycles with different microwave energy levels This example illustrates how the method of applying heat to a wood beam affects heated wood. Temperature distribution. Performs several tests including one or more individual heating cycles of various durations, pressures, and/or energy levels to determine the effect on the temperature of the beam during the heating cycle and the amount of charred wood . Constructing a microwave heating system similar to the one illustrated in Figures 9a, 9b and 9e and comprising a FERRITE 75 kW, 915 MHz microwave generator coupled via a series of 10 10 waveguides to a vacuum microwave heater Available from Ferrite Microwave Technologies, Inc., Nashua, New Hampshire. The three rotating microwave switches are configured to selectively route microwave energy from the generator to one of four microwave emitters located within the interior of the microwave heater. Each transmitter is designed to receive 160979.doc • 101 · 201240527 quantities in a TE丨◦ mode, but contains one of the modes placed in the interior of the container for converting energy into a ΤΜ01 mode before it is emitted into the heater. Mode converter. The vacuum heater (which has a diameter of one of 6.5 feet and a total length of 8 feet) contains a single door for loading and unloading wood on one end. The system also includes a mechanical, dry (eg, non-oil sealed) vacuum pump for controlling the pressure within the heater as needed during the heating step (available from Edwards Limited of Tewksbury, MA). 〇) For each of the test runs 8 to 11, six acetylated radiative slabs with a nominal size of 6 inches of feet are placed to the center of each plate. a fiber optic temperature sensor in the hole drilled. The plate equipped with the sensor is placed to include one of a total of 156 acetylated radiata pine sheets disposed in 26 layers. The bundles are then fastened together and loaded into the vacuum heater. The bundles are exposed to different heating and/or pressure curves during each run to 。. For each run, for each cycle The peak average and peak maximum fiber optical temperature and weight (to calculate evaporation loss) and total energy input before and after heating are measured. The key characteristics and each heating curve of each beam are summarized in Tables 3a & 3b below. Details I60979.doc 201240527 pendant girdle-ornament electrically swirling 4i_sr Science el; ± i <ww Call ¥^办: 4 棼 s _ 〇〇rH dp—4 o δ rH dr—H o in ir> 〇c> 0.0125 | oo ood |s 黎 CN oo CN oo CO 〇〇4 m rn rH 〇momom ο mmoo 〇ol〇m , ιι| mm in mm oo oo Cs| ir> o oo ο (N ON heart O ko in O m 00 < as % m (N ΊΜ 00 〇 ο 卜 CN irj CN > CN in O) < QQ u Q m Uh 〇Ϊ (憋) 诸癍矣菡学'^铋ii'^wwWHv^ 挂: Award 癍0 昧1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 Ο CN m 1 1 1 1 1 1 1 CN r—Η Hi 昧1 1 1 1 1 1 1 Jun 1 1 m oo (N CN <N 1 CS <N 1 <N <N 'O Award 癍 Ί 昧 1 inch 1 Ch 1 00 CN o 1 宕 o 宕 〇 o Μ 1 (N CN CN (N CN CS 00 00 write 1 昧 | engage 1 癸 沄 沄 <〇 m m ο o in in o § o Ο O Μ in CN <n CN in (N in CN CN CN 00 in CN < PQ ϋ QW ffl 160979.doc 103- 201240527 Upon completion of each run, the bundle is removed and each of the panels is visually inspected for scorch marking, which is defined as a quarter size Or larger black or coking mark. The evaporation (humidity) loss was calculated by comparing the weight of the bundle before and after heating (with the known dry weight of each panel). The energy density (dry wood per pound) is calculated based on the total energy input and the initial weight and moisture content of the wood. Table 4 below summarizes the results of Run A to Η, which includes the average and maximum peak temperatures achieved during heating and the number of burnt plates. Table 4: Summary of Results from Operation Α to 结果 Results Operating Energy Density Average Peak Maximum Peak Scorch (kW/lb Dry Wood) Temperature (V) Temperature (. 〇Non A 0.0094 116 159 0 B 0.0107 119 161 0 C 0.0107 139 184 7 D 0.0109 116 179 0 E 0.0148 136 154 19 F 0.0155 123 137 0 G 0.0125 113 193 0 Η 0.0168 142 192 10 As shown in Table 4, for similar energy densities (for example, running C and Da and running E and F), using more individual cycles of operation at lower energy levels and/or for shorter durations (eg, running D and F) than at higher energy levels and/or It is more likely that the operation of the cycle (eg, operation C and E) is more likely to avoid charring. In addition, as illustrated by the operation, at a high energy level And/or in the case of performing the energy and/or duration of the initial cycle for a long duration, even operation by means of a plurality of cycles with reduced energy levels can also result in charring. Therefore, a total can be inferred. Individual within the heating cycle The number and duration of the rings and the level of energy and/or pressure of each of the individual cycles have an effect on the average and maximum peak temperatures of the wood and the number of plates burned during the heating cycle. : Determination of the energy distribution curve within a bundle This example provides actual data obtained from a pilot-scale microwave heater used to heat and/or dry an acetonitrile bundle. The thermal image is used to construct an energy distribution curve. It will then be correlated in Prophetic Example 5 to predict the chemical humidity profile of the wood heated on a commercial scale. Similar to the microwave heater construction of one of the heaters illustrated in Figures 10a, 10c, 10d and 10e There is an outer diameter of one of 12 feet and a total length of one of 16 feet. The heater contains one of the inlet doors for loading and unloading the bundle from the container. Similar to the split microwave emitter of Figure 4c and 10d Split RF transmitters are configured in two opposite pairs and connected to a FERRITE 75 kW 915 MHz microwave generator via one of the ΤΕιο waveguide systems (renewable Purchased by Ferrite Microwave Technologies, Inc., Nashua, NH. Three microwave switches are configured to route energy from the generator to one of two pairs of each pair. As explained in more detail below, the microwave heater also includes four movable reflectors similar to the movable 160979.doc-105-201240527 moving reflector illustrated in Figure 10c. Each reflector defines a continuous reflective surface that extends substantially along the length of the heater. Each of the four split emitters is vertically positioned between a pair of movable reflectors such that the reflective surface by each of the four quadrants disposed within the interior volume of the heater will split from each The energy emitted by the respective upward and downwardly directed discharge openings of the emitter is rasterized into the interior of the microwave heater. Each reflective surface is rotated in a generally arcuate shape by utilizing a shaft of an external drive. Details of the motion of the movable reflector will be elaborated later. Allow approximately 15,000 pounds of acetylated radiata pine to balance the leakage in the ambient atmosphere such that the average water content of the wood is between 2 wt% and 3 wt%. The wood is then bundled into a composite bundle comprising one of four individually fastened stacks (e.g., stacks A through D shown in Figure 14a). The composite bundle (shown as bundle 1304 in Figure 14) has a nominal size of 4 feet wide by 8 feet high by x16 feet long. Each of stacks A through C has a width of 6 inches and stack D has a width of one foot of 5 feet. The composite bundle 13〇4 is introduced into the microwave heater and the door is closed and fastened prior to the start of the heating cycle. First, the microwave switcher is configured such that energy from the generator will be routed simultaneously to two diagonally opposite (eg, relatively placed, axially staggered) emitters while the remaining two diagonally opposite emitters remain idle . Next, the generator is activated and set to deliver 75 kw to the first diagonally opposite pair of emitters in a manner similar to that previously discussed with respect to Figure 丨 "and 发射 transmitter group "A". Next, after 10 minutes, the generator is stopped and the microwave switcher is reconfigured to route energy from the first active diagonal to the emitter group to the idle diagonal relative emitter group during the second heating mode. 160979.doc •106· 201240527 The generator is then restarted at 75 kW and the microwave energy is again discharged into the heater. After another 10 minutes, the generators are stopped so that the switches can be returned to the original configuration, thereby rerouting the energy back to the first diagonally opposite pair of transmitters. This sequence of discharge energy instead of axially staggered emitters continues in a 10 minute increment for a total of 80 minutes (e.g., 1 〇〇 kW-hr). During each heating mode, the energy emitted from each of the microwave emitters is rasterized into the interior of the microwave heater by controlling the motion and position of each of the movable reflectors. A programmable logic controller (PLC) is configured to use a servo motor to rotate each reflector through various portions (or zones) of its total arcuate path at various speeds. The top and bottom reflector pairs are programmed to move at the same speed' but the movement of one of each pair begins before the other, thereby preventing the two pairs of reflectors from moving synchronously. Table 5 below summarizes the boundaries of each of the eight zones of motion (eg, start and end positions) and the total length and reflector speed of each of the top and bottom reflector pairs and in each zone The time spent (eg 'stagnation time'), expressed as a hundred percent of the total reflector cycle time / idea table 5 only outlines one half of the curve of each reflector; once each reflector pair moves through the following Zones 1 to 8, each reflector then proceeds in a reverse pattern, starting with zone 8 and moving back to zone 160979.doc •107·201240527 璲电wa®恭^葙飨b :s < bottom reflector residence time (% of cycle) 〇 CO cn cn oi in Os 59.0 speed m 0.05 0.05 1.82 1.82 1.82 1.82 0.26 0.04 top reflector residence time (% of cycle) Ο) 〇 23.3 o T-H o o o <N 48.0 Speed (°/s) 0.07 0.10 1.82 CN 00 tH 1.82 1.82 0.25 0.04 Path length (%) 0.31% 12.19% 12.50% 12.50% 12.50% 25.00% 12.50% 12.50% Path length (°) r— Η rn o inch o — o — o 00 oo — end position (°) ο — o od 12.0 16.0 24.0 28.0 32.0 starting position (°) ρ ο μ o τι- 〇00 12.0 16.0 24.0 28.0 <N m inch in v〇 00 • 108 - 160979.doc 201240527 Once the entire heating cycle is completed, the generator is turned off and the heated composite beam is transported to a holding zone, which has one of the wide-angle lenses MIKRON The Model 7500 model is positioned approximately 10 feet from one of the elongated sides of the heated bundle. Stack A (the outermost panel stack shown in Figure 14) is removed from the composite beam to thereby expose one of the internal surfaces of stack B (designated B' in Figure 14). The camera records the thermal image of surface B at a rate of one image every 5 seconds, and after 20 seconds, removes the stack B from the composite beam. The camera then begins recording the inner surface of one of the stacks C (in Figure 14). The thermal image specified as surface C'). After 20 seconds, the stack c was removed from the bundle, thereby exposing the inner surface of the stack D (designated as surface D in Fig. 14). The camera records the thermal image of surface D' for 20 seconds and is then stopped. To analyze the resultant temperature profile across the volume of the bundle, use Mikr〇SpecTM Professional Thermal Imaging Software (version 4〇.5, available from Metrum, Berkshire, UK) on Surface B, to The pixel-by-pixel temperature data obtained in the representative area of one of D, each of which is imported into a trial balance. A cumulative frequency histogram of the thermal data obtained from all internal surfaces B of the self-synthesizing beam, up to D', is shown in FIG. As shown in Figure 15, less than 2% by volume of the bundle has a temperature below 42 or a temperature of 52 C. This type of energy distribution is associated with a dry, acetified wood bundle. Resulting in the predicted chemical moisture content curve' as set forth in Prophetic Example 5. Example 5 (predictive): Calculation of the chemical moisture content curve in an acetonitrile bundle This predictive example uses the experimental energy distribution obtained in Example 4 160979.doc • 109-201240527 to predict the previous and previous The system set forth in Example 4 similarly configures the chemical humidity profile of the acetylated wood heated and/or dried in a commercial scale microwave heating system (eg, one or more thermally removable chemicals in the total volume) Quantity and distribution). One of the dimensions of approximately 101 inches high x 52 inches wide x 16 feet long is loaded with a bundle of acetylated wood into a microwave heater having an internal diameter of one foot u feet of 7 inches and a length between one flange of 17 feet . The pressurizable heater includes an oppositely disposed entry and exit opening, each of which may be sealed by a full diameter disc door. The total internal volume of the heater is 2,605 cubic feet and the ratio of the total volume of the wood bundle to the total open (e.g., unoccupied) volume in the microwave heater is 0.29:1. The bundle has a "chemical moisture content" of about 10 wt% to 15 wt% (i.e., containing, for example, one or more of the acetic acid, acetic anhydride, and combinations thereof) before being heated in the microwave heater. One of the chemicals). During the heating of the bundle, microwave energy was introduced into the microwave heater in a similar manner as previously described in Example 4. In addition, a vacuum system was used to maintain the internal pressure of the heater at 6 Torr. After 8 minutes, the microwave generator was turned off, the beam was removed and the thermal image of the interior surface of the beam was taken in the manner previously described in Example 4. The predicted temperature distribution resulting from the accumulated thermal data is provided in FIG. As shown in Figure 16, the predicted temperature distribution of the acetylated wood bundle has an average peak temperature of 165 ° C and the total volume of the bundle is less than 〇 3% having a value lower than 115 C or south 235 ° C. a temperature. Based on previously obtained empirical data relating the wood temperature to the moisture content of the chemical, the temperature in Figure 6 is 160979.doc • 110. 201240527 The distribution is for the drying of the acetylated wood bundle as described above. One of the chemical moisture content curves outlined in 6. Table 6: Estimated chemical moisture content curves for dried acetalized wood Temperature Percentage of wood bundles Predicted moisture content T <115 ° C 0.3% 〜 2 wt% humidity 115 〇 C <T <135〇C 2.2% 〜1 wt% humidity T>235〇C 0.3% charred 115〇C <T <235〇C 99.4% Drying 135〇C <T <235〇C 97.2% The overall goal of drying heated and/or dried acetalized wood is to remove residual acetylated chemicals (for example, by minimizing the chemical moisture content of the dried bundle) without excessive drying or Charred wood treated. As shown in Table 6, less than 0.3% of the total volume of the acetonitrile bundle is insufficiently dry (eg, having a moisture content of 2 wt% or more) or subjected to scorching (eg, having greater than 235) An average temperature of °C), in addition, less than 2.2% of the total volume of the bundle has a humidity content of 1% or more. Thus, at least 97.2% (and up to 99.4%) of the total volume of the acetonitrile bundle is heated or dried to a chemical moisture content of less than 1 wt% to 2 wt% while minimizing the amount of charred wood. The preferred form of the invention as set forth above is intended to be illustrative only and not to be construed as limiting the scope of the invention. Obvious modifications to the illustrative embodiments described above can be readily made by those skilled in the art without departing from the scope of the invention. The present inventors hereby state that it is intended to rely on the principle of equivalence to determine and estimate the invention as to the Beyond the literal scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a top plan view of a wood treatment system configured in accordance with an embodiment of the present invention, specifically illustrating the transport of a chemical upgrading reactor and a wood heater. a rail system of a wood bundle; FIG. 2 is a top plan view of a wood treatment system configured in accordance with an alternative embodiment of the present invention, specifically illustrating the transport of a plurality of chemical upgrading reactors and A turntable system of wood bundles of a plurality of wood heaters; FIG. 3 is a top plan view of one of the wood treatment systems configured in accordance with an alternative embodiment of the present invention, specifically illustrating the transport of a plurality of chemistries Roller system of one of a wood bundle of a reforming reactor and a plurality of wood heaters; Figure 4a is suitable for use in the production of chemically modified wood and configured to pass through a wood according to an embodiment of the present invention A top view of a processing system, in particular, illustrating a chemical upgrading reactor and a wood heater that includes separate axially aligned double door containers and is contained in the opposite Figure 4b is an isometric view of one of the through-wood processing systems of Figure 4a, specifically illustrating one exemplary blasting plate of the steam holding chamber / Figure 4c is a cross-sectional view of one of the vapor containment chambers illustrated in Figures 4a and 4b, which is specifically illustrated for allowing fluid (e.g., air) from the external environment to flow to the steam, 160979.doc 112·201240527 An exemplary one-way vent pair in the containment chamber; Figure 4d is a side view of the through-wood treatment system of Figure 4a, but also illustrates the extraction of the thirst into the steam containment chamber and the thirst at the exit of the heater Figure 5 is a schematic diagram of one of the microwave heating systems configured in accordance with an embodiment of the present invention. And receiving one of microwave energy microwave heaters from a microwave generator via a microwave distribution system; FIG. 6 is suitable for use as one of a chemical upgrading reactor and/or a microwave heater according to various embodiments of the present invention. Door, through An isometric view of one of the containers, which specifically illustrates the shape and size ratio of the container; Figure 7a is a configuration of one of the door flanges of a microwave heater and a container flange in accordance with an embodiment of the present invention; A partial cross-sectional view of a face, which is specific and S illustrates a microwave choke that is cooperatively formed by a door and a container flange and has two chambers that are parallel to each other and that are extended together; FIG. 7b is similar to that depicted in FIG. 7a A partial cross-sectional view of one of the microwave chokes of the illustrated baffle, but the microwave choke has a choke chamber extending at an acute angle relative to each other; Figure 7c is equipped with the microwave choke shown in Figure 7a One of the door flanges of the microwave heater is a cross-sectional isometric view, specifically illustrating a plurality of circumferentially spaced end opening slots formed in a flow guiding wall of the choke Or a gap; Figure 7d is equipped with a configuration of one of the embodiments according to the present invention. I60979.doc -113 - 201240527 removes one of the microwave chokes "a microwave plus # on the side of the open door Circular, which specifically illustrates the microwave choke The removable portion of the device includes a plurality of individually removable and replaceable flow block segments; Figure 7e is a cross-sectional view of a portion of the "G" shaped removable flow block previously illustrated in Figure 7d; BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a cross-sectional view of one of the "removed" or "ϋ" shaped removable spoiler portions in accordance with a first alternative embodiment of the present invention; Figure 7g is a second alternative embodiment of the present invention A cross-sectional view of one of the "L"-shaped removable spoiler portions; a cross-sectional view of one of the "^"-shaped removable spoiler portions configured in accordance with a third alternative embodiment of the present invention Figure 8a is a cross-sectional isometric view of one of the microwave heaters configured in accordance with an embodiment of the present invention. In particular, the heater is illustrated as being equipped with an elongated waveguide emitter. The transmitter has staggered emission openings on opposite sides of the emitter; Figure 8b is an enlarged partial view of one of the waveguide emitters illustrated in Figure 8a, specifically illustrating the configuration of the emission opening and defining the emission opening Thickness of the side wall; Figure 9a is an embodiment of the present invention Configuring a side view of one of the microwave heating systems, in particular illustrating a microwave distribution system for delivering microwave energy to a microwave heater; Figure 9b is a top cross-sectional view of one of the microwave heaters illustrated in Figure 9a Specifically, the microwave distribution system is illustrated as a pair of emitters included on one side of the microwave heater and one of the opposite sides of the microwave heater 160979.doc-114-201240527 second ΤΜαί> Figure 9c illustrates one of the contents indicated by the terms "opposite side" and "related"; Figure 9d illustrates one of the contents indicated by the term "axial alignment". Figure 9e is a partial cross-sectional isometric view of a microwave emission and reflection or scattering system in accordance with the present invention, which is specifically illustrated similar to the image of the green (4) One of the embodiments of a movable reflector comprising one of the movable reflectors associated with each of the microwave emitters; FIG. 9f is one of one embodiment of a reflector suitable for use in one of the microwave heating systems as broadly described herein Isometric view Figure, in particular, the reflector pattern is shown to have a non-planar reflective surface with one of the recesses of the first configuration; Figure 9 g is suitable for use in one of the microwave heating systems described herein An isometric view of another embodiment of one of the reflectors, in particular the reflector is illustrated as having a non-planar reflective surface with one of the recesses of a second configuration; Figure 9h is suitable for use herein One side elevational view of one of the embodiments of the reflector used in one of the microwave heating systems, which specifically illustrates the curvature of the reflector surface; Figure 9 is previously illustrated in Figure 9e. An enlarged isometric isometric view of one of a pair of microwave emitters and reflectors, in particular illustrating an actuator system for providing oscillatory movement of the reflector; FIG. 1A is an embodiment of the invention One side view of one of the microwave heating systems 160979.doc-115-201240527, which specifically illustrates a microwave distribution system equipped with a plurality of τΜμ barrier assemblies; α Figure l〇b is a diagram In the TMa6 barrier assembly shown in a One of the axial cross-sectional views, in particular, the barrier assembly is illustrated as having two floating sealing windows and adjacent the junction of the barrier assembly and the waveguide to which the barrier assembly is coupled The impedance transformation has a stepped change in diameter; Figure 10c is an end view of the microwave heating system illustrated in Figure 10a, wherein a bundle of wood is received in the interior of the microwave heater, the figure specifically illustrating the microwave heater Illustrated as a split-wave transmitter equipped on opposite sides of the heater and a movable reflector for rasterizing the microwave energy emitted from the split emitters; Figure 1〇d is illustrated in Figure l〇c One of the split emitters has an enlarged side view that specifically illustrates the emission angle of two separate microwave energy fractions emitted from the split emitter; Figure l〇e is used to move a reflector An enlarged view of an embodiment of a system, in particular, illustrating an actuator for causing oscillation of the reflector and for suppressing a position at which the actuator penetrates the wall of the microwave heater One of the fluid leaks Figure 11a is a schematic top view of one of the microwave heating systems configured in accordance with an embodiment of the present invention, specifically illustrating the heating system to include for routing microwave energy in an alternating manner A plurality of microwave switches to different microwave emitters; Figure 1 lb is one of the microwave heating systems configured in accordance with an alternative embodiment of the present invention. It is not intended to specifically illustrate the heating system as package 160979. Doc 201240527 contains a plurality of microwave switches for routing microwave energy to different microwave emitters in an alternating manner; Figure 12a presents the results of a computer simulation of predicting the peak electric field strength of a te1g barrier assembly; Figure 17b presents a prediction ~ tmg1 barrier assembly one of the peak electric field strength computer simulation results; Figure 13 is based on a TE10 and a TM01 microwave barrier assembly in the energy level of one of the collapse pressure graphical comparison; Figure 14 is a One of the wood bundles is a schematic representation that specifically illustrates the configuration utilized in determining the internal surface temperature as set forth in Example 4; Figure 15 is incorporated in Figure 14 The surface of the composite bundle is shown]8, to 〇, one of the obtained heat data, the cumulative frequency histogram; FIG. 16 is a diagram illustrating one of the predicted thermal data generation by the acetylated wood bundle as illustrated in Example 5. Temperature distribution one of the cumulative frequency histograms 0 [Main component symbol description] 10 Wood treatment facility 20 Chemical upgrading system 22 Chemical upgrading reactor 24 Reactor heating system 26 Reactor pressure/decompression system selected 28 Reactor inlet door /First reactor inlet door 29 Select reactor outlet door 30 Heating system 160979.doc •117· 201240527 32 Heater 34 Energy 36 Select heater pressure/decompression system 38 Open heater inlet door 39 Select heater outlet door 40 Conveying system 42a Conveying section 42b Conveying section 42c Conveying section 42d Conveying section 42e Conveying section 60a Raw material storage area 60b Finished material storage area 102 Timber bundle 110 Wood treatment facility 122a Reactor 122b Reactor 122n Reactor 128a Door 128b Door 128n Door 132a heater 132b heater 132n heater 160979.doc -118 - 201240527 138a 138b Door 138n Door 140 Rotatable platform/turret 160 Storage area 210 Wood treatment facility 222a Chemical upgrading reactor 222n Chemical upgrading reactor 228a Reactor inlet door 228n Reactor inlet door 229a Reactor outlet door 229n Selected reactor Outlet door 232a Heater 232b Heater 232n Heater 238a Heater inlet door 238b Heater inlet door 238n Heater inlet door 239a Select heater outlet door 239b Select heater outlet door 239n Select heater outlet door 240 Transport system 242a Section 242b Paragraphs 119-160979.doc 201240527 242c Section 242d Section 242e Section 242f Section 242g Section 242h Section 242i Section 242] Section 244a Section 244b Section 244c Section 244d Section 244e Section 322 Chemical Modification Reactor 328 Reactor Inlet Gate 329 Reactor Outlet Door 332 Heater 338 Heater inlet door 339 Heater exit door 342a Upright wall 342b Upright wall 342c Upright wall 342d Upright wall 344 Ceiling structure • 120· 160979.doc 201240527 349 Steam outlet pipe 349a Steam outlet pipe 349b Steam outlet conduit 349c steam outlet conduit 360 steam containment chamber 361 transfer zone 370a center extension draw/vent 370b center extension shaft/vent 343 blower or blast wall 399 transport path 400 product vapor removal system or structure 402 venting 糸System 404 vent 406 Vent chamber 408 Vent chamber outlet 409 Door 410 Vacuum generator 412 Processing unit 414 Drain 416 Wood treatment facility / Wood treatment system 420 Microwave heating system 422 Microwave generator 430 Microwave heater 440 Microwave distribution system 160979.doc 121 · 201240527 442 Waveguide 444a Microwave Transmitter 444b Microwave Transmitter 444c Microwave Transmitter 446 Microwave Mode Converter / Mode Converter 450 Vacuum System 530 Microwave Heater 531 Body Side Sealing Surface 532 Container Body 533 Door Side Sealing Surface 534 Door 535 Center extension shaft 536 Microwave heater interior 631 Body side sealing surface 632 Container body 633 Door side sealing surface 634 Door 650 Microwave spoiler 651 Removable portion 652 First radially extending choke chamber 653a Removable choke Segment 653b Removable spoiler section 653c Removable spoiler section 653d Removable spoiler section 160979.doc -122 - 201240527 653e Removable spoiler section 654 Second radially extending choke chamber 656 The radially extending choke deflector wall 660 is selected from the fluid sealing member 670. The spaced apart opening gap 690 is the direction in which the first choke chamber extends. The direction in which the second choke chamber extends is 702. Wood bundle 720 Microwave heating System 730 Microwave Heater 738 Heater Entry Door 739 Beam Receiving Space/Selector Heater Exit Door 740 Microwave Distribution System 760 Elongated Waveguide Emitter 764a Substantial Planar Sidewall 764b Substantial Planar Sidewall 764c Substantial Planar Sidewall 764d Substantially Plane Side wall 767a elongated slot/emitter opening 767b elongated slot/emitter opening 767c elongated slot/emitter opening 767d elongated slot/emitter opening 767e elongated slot/emitter opening 780a launching pair or opening pair 160979.doc -123- 201240527 780b Transmitting pair or opening pair 820 Microwave heating system 830 Microwave heater 831 External side wall 831a Side wall 831b side Wall 835 Elongation Shaft 835a Elongation Shaft 838 Heater Entrance Door 839 Midpoint 840 Microwave Distribution System 841a Separated Emission Opening 841b Separated Emission Opening 842a Waveguide / Waveguide Segment 842b Waveguide / Waveguide Segment 842c Waveguide / Waveguide Segment 842d Waveguide /Wave section 843a ΤΜα6 waveguide section 843b TMa6 waveguide section 843c ΤΜαί)Wave section 843d TMfl6 waveguide section 844 Microwave transmitter 844a Microwave transmitter 844b Microwave transmitter 160979.doc .124- 201240527 844c Microwave transmitter 844d Microwave transmitter 845 Open exit / launch opening 845a open exit / launch opening 845b open exit / launch opening 845c open exit / launch opening 845d open exit / launch opening 846 transmitter 846a transmitter 846b transmitter 850a mode converter 850b mode converter 850c mode converter 850d mode Converter 890 reflector 890a movable reflector 890b movable reflector 890c movable reflector 890d movable reflector 891a reflective surface 891b reflective surface 891c reflective surface 891d reflective surface 892 support arm 160979.doc -125 - 201 240527 893 Oscillating shaft 893a Projection 893b Protrusion 894 Lever arm 895 Linear shaft 896 Wheel 897 Perch 898 Motor 899 Reflector drive system / Actuator 902 Wood beam 920 Microwave heating system 928 Entrance door 930 Microwave heater 931 External side wall 933 Side wall 938 heater inlet door 939 heater outlet door 940 microwave distribution system 941a emission opening 941b spaced apart emission opening 941c spaced apart emission opening 941d spaced apart emission opening 942 waveguide section 942a upstream ΤΜαΖ> waveguide section 160979. Doc -126- 201240527 942b upstream ΤΜαί) waveguide section 942c upstream TM& waveguide section 942d upstream TMa6 waveguide section 942e upstream TMaZ) waveguide section 942f upstream ΤΜα6 waveguide section 942g upstream TMfl6 waveguide section 942h upstream ΤΜα6 waveguide section 942i downstream ΤΜαΖ> waveguide section 942j Downstream TMfl6 waveguide section 942k downstream ΤΜαδ waveguide section 9421 downstream ΤΜαδ waveguide section 942x waveguide section 942y waveguide section 942z waveguide section 943a TEy waveguide section 943b TE,y waveguide section 944 split emitter 944a first split emitter 944h second split launch 945a discharge opening 945b discharge opening 945c discharge opening 945d discharge opening 947a mode converter 160979.doc -127· 201240527 947b mode converter 947c mode converter 947d mode converter 948 extension axis 949 TMfl6 to ΤΕ mode switching splitter 950a external TE^ to TMa6 mode converter 950b External TE^ to mode converter 950c External TE^ to ΤΜα6 mode converter 950d External ΤΕ" to TMfl6 mode converter 951 Entrance or opening/unobstructed beam receiving space 960 Actuator 961 Fixed part 963 extendable portion 964 bellows structure 970 barrier assembly 970a barrier assembly 970b barrier assembly 970c barrier assembly 970d barrier assembly 970h barrier assembly 972a sealing window member 972b sealing window member 972c sealing window member 972d sealing window member 160979.doc -128-201240527 973 973a 973b 973c 974a 974b 975a 975b 980 982a 982b 984a 984b 990 990a 990b 990c 990d 991 1020 1022a 1022b 1022c 1022d barrier housing first or inlet section selected second or middle Segment third or outlet section impedance transformation diameter stepwise change Anti-transformation diameter step-type change first TMfl6 waveguide section second TMat waveguide section support arm elastic ring elastic ring elastic ring elastic ring movable reflector movable reflector movable reflector movable reflector movable reflector reflector surface microwave Heating system microwave generator microwave generator microwave generator microwave generation benefit 160979.doc -129- 201240527 1030 microwave heater 1040 microwave distribution system 1044a microwave transmitter 1044b microwave transmitter 1044c microwave transmitter 1044d microwave transmitter 1044e microwave transmitter 1044f Microwave Transmitter 1044g Microwave Transmitter 1044h Microwave Transmitter 1046a Microwave Switcher 1046b Microwave Switcher 1046c Microwave Switcher 1046d Microwave Switcher 1050a Transmitter Pair 1050b Transmitter Pair 1050c Transmitter Pair 1050d Transmitter Pair 1050e Transmitter Pair 1050f Transmitter Pair 1050g Transmitter Pair 1050h Transmitter Pair 1060 Control System 1304 Synthetic Beam 160979.doc -130 201240527 A First Microwave Transmitter Set / Stack B Second Microwave Transmitter Set / Stack B' Internal Surface C Stack C · • Internal Surface D Stack D' Internal Surface 160979.doc -131 -