TW201231885A - Wood heater with enhanced microwave choke system - Google Patents

Wood heater with enhanced microwave choke system Download PDF

Info

Publication number
TW201231885A
TW201231885A TW100147206A TW100147206A TW201231885A TW 201231885 A TW201231885 A TW 201231885A TW 100147206 A TW100147206 A TW 100147206A TW 100147206 A TW100147206 A TW 100147206A TW 201231885 A TW201231885 A TW 201231885A
Authority
TW
Taiwan
Prior art keywords
microwave
heater
wood
door
choke
Prior art date
Application number
TW100147206A
Other languages
Chinese (zh)
Inventor
Harold Dail Kimrey Jr
Robert E Jones
David Carl Attride
Mark Robert Shelton
Brad William Overturf
Jarvey Eugene Felty Jr
Jared Moore
Aaron Grills
Original Assignee
Eastman Chem Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/323,133 external-priority patent/US20120160835A1/en
Application filed by Eastman Chem Co filed Critical Eastman Chem Co
Publication of TW201231885A publication Critical patent/TW201231885A/en

Links

Landscapes

  • Chemical And Physical Treatments For Wood And The Like (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

A microwave heater equipped with a microwave choke and suitable for heating wood under vacuum. The microwave choke inhibits leakage of microwave energy between a door of the heater and a main vessel body of the heater without causing arcing at the choke, even at low pressures. In certain situations, the microwave choke can be configured with side-by-side choke cavities. In certain situations, the microwave choke can be removably coupled to the door and/or vessel body for easier fabrication, installation, and/or replacement.

Description

201231885 六、發明說明: 【發明所屬之技術領域】 本發明一般而言係關於適於加熱木材之微波加熱系統。 【先前技術】 諸如微波輻射之電磁輻射係用於將能量遞送至一物件之 一習知機制。已證明用以既迅速又有效地穿透及加熱一物 件之電磁輻射能力在諸多化學及工業過程中係有利的。此 外,由於使用微波能作為一熱源通常係非侵害性的,因此 微波加熱特別有利於處理r敏感」電介質材料(諸如,食 物及藥物)且甚至有利於加熱具有一相對不良的導熱性之 材料(諸如,木材然而,安全且有效地應用微波能之複 雜性及細微差別(尤其在一商業規模上)已嚴格限制其在數 種類型之工業過程中之應用。 由於其對各種應用之廣&適用,&、其可再生性質及其相 對低成本’因此木材係現有的最廣泛使用之建築材料中之 者。然而’由於木材係一自然產物,因此其物理及結構 性質可實質上不僅在不同物種當中而且在不同樹或甚至同 一木材塊内之不同位置當中有所不同。此外,木材通常係 .¾㈣’此料其尺寸射性,且其生她錢得其易受 真菌焱蝕。因此,已開發數種類型之木材處理過程 2透過其化學、物理及/或結構性質之改f來增加木材穩 定性。處理過程之實例包含浸潰處理、塗佈處理、熱改質 及化學改質。與其他情況相比,後兩種處理過程通常將木 材性質變更至-更劇烈程度,且因此此等類型之過程通常 160978.doc 201231885 涉及更複雜之方案及系統。舉例而言,諸多化學及熱處理 過程可在真空下及/或在存在一或多種處理化學品之情況 下實施。因此,此等類型之技術之商業化已受限制,且為 使此等過程大規模地工業化仍需克服多個挑戰。 因此’需要適於化學或熱處理木材之一更高效且更成本 有效之商業規模系統。亦需要適於在各種各樣之過程及應 用(包含木材處理)中使用之一高效且成本有效之工業規模 微波加熱系統。 【發明内容】 本發明之一項實施例係關於一種用於生產經化學改質、 乾燥及/或熱改質之木材之系統,該系統包括一微波加熱 器’該微波加熱器包括一容器本體及用於選擇性地准許及 阻擋一木材束之通行進出該微波加熱器之内部之一門。該 門及該容器本體具有各別門側及本體側密封表面,其在關 閉門時在門與容器本體之間直接或間接形成一流體密封, 其中該門及該容器本體協作地形成一微波阻流器之至少一 部分’其在關閉門時有效抑制微波能在門與容器本體之間 自該微波加熱器中洩漏。該微波阻流器包括一第一徑向延 伸阻流器腔、一第二徑向延伸阻流器腔及在關閉門時至少 部分地安置於該第一阻流器腔與該第二阻流器腔之間的一 徑向延伸阻流器導流壁,其中當關閉門時該第二阻流器腔 之至少一部分靠攏著該第一阻流器腔之至少一部分延伸。 本發明之另一實施例係關於一種用於生產經化學改質、 乾燥及/或熱改質之木材之系統,該系統包括一微波加熱 160978.doc • 4· 201231885 器’該微波加熱器包括一圓柱形容器本體、一門及一微波 阻流器。該微波加熱器經組態以接納且加熱一木材束,其 中該微波阻流器可操作以在關閉門時實質上防止微波能在 門與容器本體之間自該微波加熱器中洩漏。該微波阻流器 包括可移除地轉合至該容器本體或該門之一可移除阻流器 部分。 本發明之又一實施例係關於一種用於生產經化學改質、 乾燥及/或熱改質之木材之方法’該方法包括:(a)透過一 微波加熱器之一開放門將一木材束裝載至該微波加熱器 中;(b)關閉該微波加熱器之該門以藉此在該門與一容器本 體之間形成一流體密封;((〇在該微波加熱器中維持不大於 350托之一壓力;((1)藉助引入至該微波加熱器中之微波能 加熱該木材束同時維持真空;及(e)與步驟(d)同時地,使 用-微波阻流器來防止該微波能之至少一部分在該門與該 容器本體之接面處退出該微波加熱器。 本發月之又-實施例係關於—種用於生產經化學改質、 乾燥及/或熱改質之木材之方法,該方法包括:⑷將一可 移除阻流器部分附接至一微波加熱器之一門或一容 體;⑻藉助引人至該微波加熱器中之微波能加熱一木材 束;及⑷與步驟(b)同時地,使用-微波阻流器來防止該 =之至:一部分在該門與該容器本體之一接面處退出 加熱15 ’其中該微波阻流器包括該可移除阻流 分0 【實施方式】 I60978.doc 201231885 下文參考所附繪圖詳細闡述本發明之各種實施 例0 根據本發明之一項實施例,提供一種加熱系統。根據本 發明之各種實施例組態之加熱系統可包括一熱源、一加熱 容器(例如,一加熱器)及一選用真空系統。通常,根據本 發明之一項實施例組態之加熱系統可適於用作獨立加熱單 兀或可作為或連同化學反應器用於各種各樣之過程中。現 將參考各圖在下文中詳細闡述根據本發明之數個實施例組 態之加熱系統。 在一項實施例中,本發明之一加熱系統可用以加熱木質 纖維素材料。木質纖維素材料可包含包括以下各項之任何 材料.纖維素及木質素以及(視需要)諸如半纖維素等其他 材料。木質纖維素材料之實例可包含(但不限於)木材、樹 皮洋麻、大麻、西沙爾麻、黃麻、作物稍稈、堅果殼、 椰子殼、稻草與榖物殼及莖、玉米秸稈、蔗渣、針葉樹及 闊葉樹材樹皮、玉米穗軸及其他作物殘餘物以及其任一組 合。 在一項實施例中,木質纖維素材料可係木材。該木材可 係一針葉樹材或一闊葉樹材。適合的木材物種之實例可包 含(但不限於)松樹、冷杉、雲杉、揚樹、橡樹、楓樹及山 毛櫸。在-項實施例中,木材可包括紅橡、紅楓、德國山 毛櫸或太平洋白楓。在另一實施例中,該木材可包括一松 樹物種,其包含(舉例而言)輻射松、歐洲赤松、火炬松、A 長葉松、短葉松或满地松,其中後四種可統稱為「南^黃 160978.doc * 6 · 201231885 松」。藉由根據本發明之一項實施例之加熱系統處理之木 材可係n適合形式。木材之適合形式之非限制性實例 可包含(但不限於)碎木、木纖維、木粉、木片、小木塊、 木创花、木條及木絲。在一項實施例中,在本發明之一或 多個加熱系統中處理之木材可包括鋸材、經剝皮之樹幹或 樹枝、板,、薄板、樑、斷面、方材或任何其他型材 之木料。 通常,木材之大小可藉由兩個或兩個以上尺寸來界定。 該等尺寸可係實際「所量測」尺寸或可係標稱尺寸。如本 文中所使用’術語「標稱尺寸」係指使用木材之大小名稱 所計算之尺寸。標稱大小可大於所量測尺寸。舉例而言, 乾燥2χ4」可具有1.5英吋χ35英吋之實際尺寸,但仍 使用「2x4」之標稱尺寸。應理解,除非另有說明,否則 本文中所提及之尺寸通常係標稱尺寸。 在7項實施例中,木材可具有三個尺寸:一長度或最長 尺寸,一寬度或第二長尺寸;及—厚度或最短尺寸。該等 尺寸中之每一者可實質上相同’或該等尺寸中之一或多者 可不同於其他尺寸《^之—或多者。根據―項實施例,木材 之長度可係至少6英叶、至少】英尺、至少3英尺、至少4英 尺、至少6英尺或至少1〇英尺。在另一實施例中木材之 寬度可係至少0.5英吋、至少】英吋、至少2英吋、至少斗英 :至少8英吋、至少12英吋或至少24英吋及/或不大於10 英尺不大於8英尺、不大於6英尺、不大於4英尺、不大 英尺、不大於2英尺不大於1英尺或不大於6英吋。在 160978.doc 201231885 又一實施例中,木材之厚度可係至少〇 25英吋、至少〇 $英 叶 '至少〇·75英吁、至少1英尺、至少1.5英尺或至少2英尺 及/或不大於4英尺、不大於3英尺、不大於2英尺不大於 1英尺及/或不大於6英叫·。 根據-項實施例,木材可包括—或多個實木塊、工程實 木塊或其一組合。如本文中所使用,術語「實木」係指在 至少一個尺寸上量測至少10釐米但在其他方面具有任一尺 寸之木材(例如,具有如先前所闡述之尺寸之木料ρ如本 文中所使用,術語「工程實木」係指具有實木之最小尺寸 (例如,至少一個尺寸為至少1〇叫但由若干個較小木材本 體形成且至少為-個之—木製本體。卫程實木中之該等較 小木材本體可具有或不具有先前相對於實木所闡述之尺寸 中之-或多者。工程實木之非限制性實例可包含木材層壓 板、纖維板' 定向刨花板、膠合板、華夫板㈣如 board)、粒片板及經層壓單板木料。 在-項實施例中’木材可按束編組。如本文中所使用, 術語「束」係指以任一適合方式堆疊、放置及/或緊固在 -起之兩個或兩個以上木材塊。根據—項實施例,一束可 包括紅堆疊並經由一皮帶、條帶或其他適合裝置彼此耦合 之複數個板在一項實施例中,該兩個或兩個以上木材塊 可係直接接觸’或在另-實施财,該等木材塊可係使用 安置於其間的至少一個間隔件或「黏附物㈣圳」而至 少部分地隔開。 在一項實施例中,該束可具有任何適合尺寸及/或形 I60978.doc 201231885 狀。在一項實施例中,該束可具有至少2英尺、至少4英 尺、至少8英尺、至少10英尺、至少12英尺、至少16英尺 或至少20英尺及/或不大於6〇英尺、不大於牝英尺或不大 於25英尺之一總長度或最長尺寸。該束可具有至少1英 尺、至少2英尺、至少4英尺、至少6英尺、至少8英尺及'/ 或,大於16英尺 '不大於12英尺、不大於1〇英尺不大於 8英尺、不大於6英尺或不大於4英尺之一高度或第二長尺 寸。在一項實施例中,該束可具有至少丨英尺、至少2英 尺至乂 4英尺、至少6英尺及/或不大於20英尺、不大於 b英尺、不大於12英尺、不大於1〇英尺、不大於8英尺或 不大於6英尺之-寬度或最短尺寸。該束之包含該等板之 間的空間(若存在)之總體積可係至少5〇立方英尺至少1⑻ 立方英尺、至少250立方英尺、至少375立方英尺或至少 500立方英尺。根據一項實施例,引入至本發明之一或多 個加熱系統之反應器及/或加熱器中(例如,在加熱或處理 *t)之木材束之重量(或欲處理之一或多個物件、物品或 負載之累積重量)可係至少1〇〇崎至少傍、至少1,刚 磅或至乂 5’000磅。在—項實施例中,該束可在形狀上係 立方體或立方形的。 風另:T施例中’本發明之一或多個加熱系統可用以化 質乾燥及/或熱改質木材,藉此生產經化學改質、 乾燥及/或熱改質之木材。已被乾燥及/或熱改質之木材可 ,為、「經熱處理」木材’以使得術語「經熱處理木材」係 U被加熱、乾燥及/或熱改質之木材。如本文中所使 I60978.doc 201231885 用術5吾「熱改質」意指在無一外源處理劑之情況下至少 料地改質一或多個木材塊之至少一部分之化學結構。在 -項實施例中,一加熱系統(稍後將詳細闡述其特定組態) 可用以在-熱改質過程中加熱及/或乾燥木材以藉此提供 一經熱改質木材束。根據一項實施例,#改質可與一木材 加熱器及/或乾燥器中之木材加熱及/或乾燥同時發生而 實化例中,可在一木材加熱器或乾燥器中加熱及/ f乾燥木材而不對其進行熱改f。如本文中所使用,術語 「乾燥」意指經由熱量添加或其他適合能量形式而致使或 加速一或多#液體之至少一部分或另外可熱移除組分之汽 化或以其他方式自木材移除一或多種液體之至少一部分或 另外可熱移除組分。熱改質過程可包含使木材與一或多種 熱傳送劑(諸如,舉例而言水汽、經加熱之惰性蒸汽(如氮 氣或空氣)或甚至液體熱傳送媒體(諸如,經加熱之油))接 觸之步驟。在另_實施例巾可在熱改質期間使用一輻 射熱源。經熱改質之木材可具有實質上低於未經處理之木 材之一濕度含量且可具有強化的物理及/或機械性質,諸 如(舉例而言)增加之撓性、對腐朽及生物侵襲之較高抵抗 力及增加之尺寸穩定性。 在又一實施例十’根據本發明之各種實施例組態之加熱 系統可用以化學改質木材。如本文中所使用,術語「化學 改質」意指在存在—或多種外源處理劑之情況下至少部分 地改質一或多個木材塊之至少一部分之化學結構。化學改 質過程之特定類型可包含(但不限於)乙醯化及其他類型之 160978.doc 201231885 醋化、環氧化、醚化、糠 „ A ., s ... 糠基化、甲基化及/或三聚氰胺處 理適σ處理劑之非限制性實例可包含酸肝(例如,乙酸 酐酿^肝、琥拍酸野、馬來酸針、丙酸肝或丁酸野); 氯乙烯酮,緩酸;異氰酸鹽;路(例如,甲路、乙酿 :二官能團醛);氯醛;硫酸二甲醋;烷基氣化物;卜丙内 s曰’丙烯腈’環氧化物(例如,環氧乙烷、環氧丙烷或環 氧丁烷);二官能團環氧化物;硼酸鹽;丙烯酸鹽;矽酸 鹽;及其組合。 用於化學改質木材之過程可包含—化學改f步驟,隨後 係加熱步驟。在可於一化學改質反應器中實施之化學改 質或反應步驟期間,木材可曝露至先前所闡述之外源處理 劑中之-或多纟,該-或多個外源處理劑可與未經處理之 木材之官能團(例如,經基)之至少-部分反應以藉此提供 經化學改質之木材。在該化學改質步驟期間,可發生一或 多個熱起始之化學反應,此可係或並非由一外部能量(例 如,熱能或電磁能,包含(舉例而言)微波能)源起始。化學 改質過程之特定細節在諸多類型之化學改質當中有所不 同,但與未經處理之木材相比,大部分經化學改質之木材 可具有強化的結構、化學及/或機械性質,包含較低的吸 濕性、較高的尺寸穩定性、更耐生物危害及耐蟲性、增加 之抗腐朽性及/或較高的耐氣候性。 在一項實施例中,可使木材在一木材乙醯化反應器中乙 醯化。乙醯化可包含用乙醯基替換表面或近表面之羥基。 在一項實施例中,在乙醯化期間所利用之處理劑可包括濃 160978.doc 201231885 度為至少50 wt%、至少6〇 _、至少7〇㈣、至少⑽ wt%、至少90 wt%、至少98 wt%或刚心之乙酸針而 剩餘部分(若存在)包括乙酸及/或一或多種稀釋劑或選用乙 酿化催化劑。在一JS Φ- tk J, a, 牡碩貫施例中,用於乙醯化之處理劑可包 括乙酸與乙酸酐之混合物具有至少80:20、至少 85:15、至少9G:l〇、或至少95:5之—酸酐對酸重量比。 在乙酿化之前’可使用熏乾法、真空除氣法或其他適合 方法使木材乾燥以將其濕度(例如,水)含㈣小至不大於 25 wt%、不大於2〇 wt%、不大於15、不大於u wt /〇、不大於9 Wt%或不大於6 wt〇/0。在乙醯化期間,可經 由任一適合方法使木材與處理劑接觸。適合接觸方法之實 例可包含(但不限於)蒸汽接觸、喷射、液體浸泡或其組 合。在一項實施例中,在木材與處理劑接觸之時間期間, 處理容器之溫度可係不大於5(rc、不大於4(rc或不大於 3〇 C,而氣壓可係至少25 psig、至少5〇 psig、至少乃psig 及/或不大於500 psig、不大於250 psig或不大於15〇 psig。 一旦接觸步驟完成,即可視需要自反應器中排出液體處 理劑(若存在)之至少一部分且可添加熱量以起始及/或催化 反應。在一項實施例中,可將微波能、熱能或其組合引入 至该容器中以將木材之溫度增加至至少5〇、至少65它、 至少80°C及/或至不大於175。(:、不大於150°c或不大於 12〇 C,同時將反應器中之一壓力維持為至少750托、至少 1,〇〇〇托、至少1,2〇〇托或至少2,〇〇〇托及/或不大於7,700 托、不大於5,000托、不大於3,500托或不大於2,500托。根 160978.doc •12- 201231885 據一項實施例,添加至反應器之熱量之至少一部分可自一 非微波源傳送至該木材,諸如(舉例而言)包括至少5〇 wt%、至少75 wt%、至少90 wt%或至少95 wt%之乙酸之一 熱蒸汽流,而剩餘部分包括乙酸酐及/或稀釋劑。在一項 實施例中,可將熱蒸汽(其一部分可凝結於正處理之木材 束之至少一部分上)引入至反應容器甲達至少2〇分鐘、至 少35分鐘或至少45分鐘及/或不大於18〇分鐘、不大於15〇 分鐘或不大於120分鐘。 在反應步驟之後,「化學潤濕」之經化學改質木材可包 括能夠藉由熱量及/或汽化移除之至少一個化學組分。如 貫穿本申請案所使用’術語「化學潤濕(chemically_wet)」 或「化學潤濕(chemical-wet)」係指含有作為一化學處理或 改質之一結果而至少部分地以一液相存在之一或多種化學 品之木材。一「化學潤濕」木材束可係指其至少一部分係 至少部分地化學潤濕之一木材束。該一或多種化學品之某 些實例可包含反應物、浸潰物、反應產物或諸如此類。舉 例而言,當使木材乙酿化時,可藉由汽化移除殘餘乙酸及/ 或酸酐之至少一部分。如本文中所使用,術語「酸潤濕」 係指含有殘餘乙酸及/或酸酐之木材◦一「酸潤濕」木材 束係指其至少一部分係至少部分地酸潤濕之一木材束。根 據本發明之一項實施例,化學潤濕或酸潤濕木材可包括至 少20 Wt°/o、至少3〇 Wt%、至少40 wt。/。或至少45 wt%及/或 不大於75 wt%、不大於60 wt%或不大於5〇 wt%之一或多種 熱可移除或可汽化化學品,諸如(舉例而言)乙酸及/或酸 160978.doc •13· 201231885 酐。如本文中所使用,術語「熱可移除」或「可汽化」 化學組分係指可藉由熱量及/或汽化移除之一組分。在一 項實施例中,可汽化或熱可移除組分或化學品可包括乙 酸。 接著,可經由驟汽化自化學潤濕木材移除一或多種熱可 移除化學品之至少一部分。在一項實施例中,可藉由將反 應器中之壓力自至少!,〇〇〇托、至少12〇〇托、至少18〇〇托 或至少2,000托及/或不大於77〇〇托、不大於5〇〇〇托不大 於3,500托、不大於2,5〇〇托或不大於2,000托之一壓力減小 至大氣壓來達成驟汽化步驟。在另一實施例中,可藉由將 反應器之·壓力自一彳高之壓力(如丨文所闡述)或大氣壓減 小至不大於100托' 不大於75托、不大於5〇托或不大於35 托之一壓力來達成驟汽化步驟。根據一項實施例,在驟汽 化步驟之後剩餘在化學潤濕木材中之一或多種熱可移除化 學組分之量(例如,化學含量)可係至少6 wt%、至少8 wt%、至少ίο wt%、至少12 wt%或至少15 wt%及/或不大 於60 wt。/❾、不大於40 wt%、不大於3〇 wt%、不大於25 wt°/。、不大於20 wt°/〇或不大於15 wt0/。。 根據一項實施例,可在化學改質步驟之後實施一加熱步 驟以進一步加熱及/或乾燥經化學改質(或化學潤濕)木材以 藉此提供一經加熱及/或乾燥之經化學改質木材束。如本 文中所使用,僅出於便利而將一束或其他物品或材料稱為 「經加熱」以指示該束之至少一部分之一溫度已升高至環 境溫度以上。類似地,如貫穿本申請案所使用,僅出於便 160978.doc 14 201231885 利而將纟或其他物品或材料「 _ * (力甘&也 敬祀辟」以指不已藉 '、二實施例中)加熱 f此為π 茨采之至少一部分移除至少 某些熱可移除化學品。在一項實 # α 實例中,該加熱步驟可操 作以進一步減少存在於 、 珂甲之或夕種熱可移除化學組 /刀之3量。在加熱步驟期間所㈣之能源可係適於加熱及/ 或乾燥木材之任—輕射、傳導及/或對流能源。在-項實 施例中’加熱器可係採用一微波能之一微波加熱器。在另 :實施例中’可利用另一熱源來直接或間接(經由(舉例而 言)-熱氣體注入、-夾套式或熱追蹤式容器或其他手段) 加熱容器之至少一部分,諸如(舉例而言)一或多個側壁。 在此實施例中,可將側壁加熱至至少45<t、至少55它或至 少65C及/或不大於U5°c、不大於丨“它或不大於95。〇之 一 μ度。該加熱步驟可在任何適合條件下實施,包含高 於、處於或接近大氣壓之壓力。稍後將詳細論述適於在生 產經化學改質及/或經熱改質之木材中使用之各種加熱系 統之特定實施例。 加熱步驟可經實施以使得移除剩餘在化學潤濕木材中之 一或多種熱可移除化學組分之總量之至少50%、至少 65%、至少75%或至少95%。在一項實施例中,此可對應 於移除總液體之至少100磅、至少250碎、至少500磅或至 少1,000碎。作為加熱步驟之一結果,在一項實施例中, 基於該束之初始(預加熱之)重量,經加熱或乾燥之化學改 質木材可包括不大於5 wt%、不大於4 wt%、不大於 3 wt%、不大於2 wt%或不大於1 wt%之該一或多種熱可移 160978.doc 15 201231885 除化學品(例如,乙酸)。另外,基於該木材之初始(預加熱 之)重量,經加熱或乾燥之化學改質木材可具有不大於 0 wt°/。、不大於5 wt%、不大於3 wt%、不大於2 wt%或不 大於1 wt%或不大於〇.5 wt%之一水含量。在一項實施例 中’在加熱步驟之後,該木材可具有大致〇%之一水含量。 在一項實施例中’化學改質步驟及加熱步驟可發生於一 單個容器中。在另一實施例中,化學改質步驟及加熱步驟 可在單獨容器中實施,以使得化學改質反應器及加熱器之 内部體積在位置上相異。如本文中所使用,一容器之「内 體積」係指由該容器囊括之空間整體,包含由該容器之 (一或多個)門在關閉時所界定或在門内之任何體積。如本 文中所使用,術語「在位置上相異」意指内部體積係不重 疊的。當化學改質反應器及加熱器包括單獨容器時,可利 用各種類型之木材輸送系統以在兩個容器之間輸送木材。 在一項實施例中,該輸送系統可包括軌條(如圖丨中所圖解 說明)、轨道、皮帶、鉤子、滾輪(如圖3中所圖解說明)、 條帶、搬運車、電動化車輛 '堆高車、滑輪、轉臺(如圖2 中所圖解說明)及其任一組合。現將關於圖丨至3詳細論述 能夠生產經化學改質及/或經熱改質之木材之木材處理設 施之各種實施例。 現參考圖1 ’ 一木材處理設施1〇之一項實施例圖解說明 為包括-化學改質系統20、一加熱系統3〇、一輸送系統4〇 以及原料儲存區域60a及成品材料儲存區域6〇b。化學改質 系統20包括-化學改質反應器22、—反應器加熱系統“及 160978.doc -16· 201231885 一選用反應器加壓/減壓系統26。加熱系統30包括一加熱 器32、一能源34及一選用加熱器加壓/減壓系統36。輸送 系統40包括用於在儲存區域6〇a、6〇b、反應器22與加熱器 32之間輸送木材之複數個輸送段42a至42e,如下文詳細闡 述。 在操作中’可經由輸送段42a自原料儲存區域60a移除一 或多個木材束。儘管圖丨中圖解說明為包括執道或軌條, 但應理解,輸送段42a可包括適於在儲存區域6〇a與反應器 22之間移動木材之任一類型之輸送機構。如圖1中所展 示,接著,可經由一開放反應器入口門28將木材引入或裝 載至反應器22中。此後,可關閉第一反應器入口門28以允 許根據上文所闞述之一或多個過程使安置於反應器22内之 木材化學改質。 一旦反應完成,即可自反應器22抽出化學潤濕木材並將 其輸送至加熱器32。根據一項實施例,化學潤濕木材可經 由反應器入口門28自反應器22移除並經由輸送段42b輸送 至加熱器32。在另一實施例中’該木材可經由一選用反應 器出口門29移除並經由輸送段42c輸送至加熱器32,如圖1 中所展示。接著,可經由一開放加熱器入口門3 8將化學潤 濕木材引入或裝載至加熱器32中’接著可將開放加熱器入 口門38關閉以藉此在起始木材之加熱之前在加熱器入口門 38與加熱器32之本體之間形成一流體密封。當存在選用反 應器出口門29及選用加熱器出口門39時’出口門29、39可 位於反應器22及加熱器32之除各別反應器入口門28及加熱 160978.doc -17· 201231885 器入口門38以外之大體相對端上。 在各種實施例中’在於加熱器32内加熱木材期間,加壓 系統36可用以將加熱器32内之一壓力維持為不大於55〇 托、不大於450托、+大於350托、不大於25〇托不大於 托' 不大於150托、不大於1〇〇把或不大於以托。在一 項實施例中’該真空系統可操作以將加熱器32中之壓力減 小至不大於1〇毫托(10·3托)、不大於5毫托、不大於2毫 托、不大於1毫托、不大於〇.5毫托或不大於〇1毫托。另 外,當加熱器32包括一微波加熱器時,可使用稍後詳細閣 述之一或多個特徵(包含(舉例而言)一選用微波阻流器、一 或多個微波發射器及諸如此類)以將能量引入至加熱器32 之内部中,藉此加熱及/或乾燥其中含有之木材束之至少 一部分。 根據一項實施例,木材處理設施10可包括多個反應器及/ 或加熱器。可採用任意數目個反應器及/或加熱器,且該 等反應器及/或加熱器可配置成任一適合組態。舉例而 言,木材處理設施10可利用至少1個、至少2個、至少3 個、至少5個及/或不大於10個、不大於8個或不大於6個反 應器及/或加熱器。當採用多個反應器及/或加熱器時,可 以任一適合組合或比率使該等容器配對。舉例而言,反應 器對加熱器的比率可係1:1、1:2、2:1、1:3、3:1、2:3、 3:2、1:4、4:1、4:2、2:4、3:4、4:3或任一可行組合。根據 一項實施例’反應器及/或加熱器中之一或多者可包括單 獨入口及出口門,而在另一實施例中,反應器及/加熱器 160978.doc •18· 201231885 中之一或多者可包括用於裝載及卸載木材之一單個門。在 一項實施例中’經加熱及/或乾燥之木材可經由加熱器入 口門38自加熱器34移除並經由輸送段42d輸送至儲存區域 60b。另一選擇係,該木材可經由一選用加熱器出口門 39(若存在)抽出並經由段42e輸送至儲存區域60b,如圖1中 所圖解說明。將關於圖2及3簡單地闡述採用根據本發明之 數個實施例組態之多個反應器及加熱器之木材處理設施之 各種組態。 現翻至圖2 ’圖解說明根據本發明之一項實施例組態之 一木材處理設施110。木材處理設施11〇包括複數個反應器 (圖解說明為122a、122b、122η)及複數個加熱器(圖解說明 為132a、132b、132η)。根據一項實施例,反應器122a、 122b、122η中之每一者及加熱器132a、132b、132η中之每 一者包括用於選擇性地准許木材通行進出每一容器之一單 個門 128a、128b、128n、138a、138b、138η。另外,木材 處理設施110可包括一可旋轉平臺(圖解說明為一轉臺 140) ’該可旋轉平臺可操作以定位一木材東1〇2以使得可 沿各種方向(大體由箭頭19〇a至190c指示)在反應器122a、 122b、122η、加熱器132、132b、132η與一儲存區域160之 間輸送該木材束。 現參考圖3,一木材處理設施21〇之另一實施例展示為包 括複數個化學改質反應器(圖解說明為222a、222η)及複數 個加熱器(圖解說明為232a、232b、232η)。如圖3中所展 示’反應器中之每一者包括一各別反應器入口門228 a、 160978.doc •19- 201231885 228η及一選用反應器出口門229a、229η。類似地,加熱器 232a、232b、232η中之每一者包括一加熱器入口門238a、 238b、238η及一選用加熱器出口門239a、239b、239η。圖 3中所展示之輸送系統240包括複數個段242a至242j及244a 至244e ’其可操作以將木材輸送至反應器222a、222η及加 熱器232a、232b、232η、自該等反應器及該等加熱器輸送 木材及在該等反應器與該等加熱器之間輸送木材。儘管圖 解說明為包括連續傳動帶段,但輸送系統240可包括一或 多個段’其包括任一適合輸送機構,如先前詳細論述。 根據一項實施例,在操作中,可透過反應器入口門228a 引入經由輸送段242a裝載至第一反應器222a中之木材。一 旦化學改質過程完成’即可經由反應器入口門228a自反應 器222a移除化學潤濕木材並可隨後經由各別輸送段242e、 242f、242g將其輸送至加熱器232a、232b或232n中之一 者。在一替代實施例中’自反應器222a移除之木材可在被 輸送至加熱器232a、232b或232η之前經由輸送段244a透過 反應器出口門229a移除,如先前所闡述。另外,在反應器 222η中處理之木材可以如先前所闡述之一類似方式裝載、 化學改質及輸送至加熱器232a、232b、232η中之一者。 此後’可根據本文中所闡述之一或多個方法加熱及/或 乾燥輸送至加熱器232a、232b及232η之一或多個化學潤濕 木材束。在一項實施例中,加熱器232a、232b&232n中之 至少一者可包括一微波加熱器。一旦完成加熱步驟,經加 熱及/或乾燥之束即可經由各別入口門238a、238b、238η 160978.doc -20- 201231885 或視需要經由各別出口門239a、239b、239n(當存在時)自 加熱器232a、232b及232η抽出。隨後,端視經改質之束係 自加熱器入口門238a、238b、238η還是加熱器出口門 23 9压、2391)、23911移除’可經由輸送段24211、2421、242』· 或244c、244d、244e將該等束輸送至後續處理及/或儲存。 可按任一適合規模實施先前所論述之化學改質過程。舉 例而言,上文所闡述之木材處理設施可包括實驗室規模、 試驗工場規模或商業規模之木材處理設施。在一項實施例 中’用以生產經化學改質及/或熱改質之木材之木材處理 設施可係具有至少500,000板英尺、至少i百萬板英尺、至 少2.5百萬板英尺或至少5百萬板英尺之一年產量之一商業 規模設施。如本文中所使用,術語「板英尺」係指以量測 144立方英吋為單位表達之一木材體積。舉例而言,具有2 英吋x4英吋x36英吋之尺寸之一板具有288立方英吋或2板 英尺之一總體積。在各種實施例中,一單個化學改質反應 器之内部體積(亦即’「内部反應器體積」)及/或一單個加 熱器之内部體積(亦即,「内部加熱器體積」)可係至少 立方英尺、至少500立方英尺、至少1〇〇〇立方英尺至少 ,0立方英尺、至少5,〇〇〇立方英尺或至少10 000立方英 尺以容納商業規模操作。 即使w彳* -商業規模實施時,如本文中所闡述之化學及/ 或.、、、改質過程亦可以相對短的總循環時間實施。舉例而 言’根據-項實施例,使用本發明之一或多個系統實施之 干及/或熱改質過程之總循環時間(自起始改質步驟之時 160978.doc •21- 201231885 間量冽至完成加熱步驟之時間)可係不大於48小時、不大 於36小時、不大於24小時或不大於12小時、不大於1〇小 時不大於8小時或不大於6小時。此與可具有持續數天或 甚至數周之總循環時間之諸多習用木材處理過程形成對 比。 根據本發明之一項實施例,本發明之木材處理設施可包 括一或多個蒸汽容納室及/或通氣結構,其用於在木材之 輸送期間實質上隔離外部環境(亦即,緊接化學改質反應 器及加熱器外側之環境)與化學潤濕之經化學改質之木 材。蒸汽容納室及/或通氣結構可連接至一通氣系統,該 通氣系統自容納/通氣區域中移除氣體環境之至少一部 分,藉此最小化一或多種非期望蒸汽狀態化學品洩漏至外 部環境中。現將關於圖乜至4d更詳細地闡述採用蒸汽容納 室及/或通氣結構之一木材處理設施之額外細節及一項實 施例。 圖4a係耦合至一化學改質反應器322及一加熱器332之一 蒸π谷納室360之一俯視圖。蒸汽容納室36〇可操作以在經 由位於反應器322與加熱器332之間的一傳送區361將木材 自化學改質反應器322輸送至加熱器332時部分地或幾乎完 全地隔離外部環境與一經化學改質之木材束。如本文中所 使用,術語「隔離」係指一或多個區域、地帶或區之間的 流體傳遞之抑制《根據一項實施例,蒸汽容納室36〇可耦 合至一通氣系統(圖4a中未展示),其可操作以自蒸汽容納 室360之内部移除蒸汽及氣體之至少一部分,藉此減小、 160978.doc -22- 201231885 最小化或防止反應器322之内部内、加熱器332之内部内所 含有及/或自經化學改質之木材束至外部環境之一或多種 熱可移除化學組分之沒漏。 在一項實施例中,化學改質反應器322可包括用於自一 外部環境接納一木材束之一反應器入口門328及用於在化 學改質之後自化學改質反應器322排出該木材束之一反應 器出口門329。另外,加熱器332可包括用於接納自化學改 質反應器322排出之經化學改質、化學潤濕木材束之一加 熱器入口門328。根據一項實施例,加熱器332亦可包含用 於自加熱器332排出一木材束之與加熱器入口門338分離之 一加熱器出口門339。在一項實施例中,各別反應器入口 門328及加熱器入口門338以及反應器出口門329或加熱器 出口門339(當存在時)可定位於反應器322或加熱器332之一 大體相對端上以使得反應器322及加熱器332之各別中心伸 長軸(在圖4b中表示為軸370a、370b)可延伸穿過各別入口 328、338及出口 329、339門。在一項實施例中,反應器 322及加熱器332彼此軸向對準以使得圖4b中之中心伸長軸 370a、370b彼此實質上對準,而在其他一項實施例中,軸 370a、370b可彼此平行。如本文中所使用,術語「實質上 對準」係指兩個或兩個以上容器經組態以使得在其各別中 心伸長軸之交叉之間形成之最大銳角係不大於20°。在某 些實施例中,實質上對準之容器之兩個伸長軸之交叉之間 的最大銳角可係不大於10。、不大於5°、不大於2°或不大 於1°。在某些實施例中,反應器322及加熱器332可配置成 160978.doc -23- 201231885 一並排組態(未展示)。 根據圖4a中所展示之一項實施例,蒸汽容納室36〇可密 封地耦合至反應器322及加熱器332以使得在將木材束自反 應器322輸送至加熱器332期間外部環境實質上與傳送區 361隔離。如本文中所使用,術語「密封地耦合」係指兩 個或兩個以上物件經附接、緊固或以其他方式相關聯以使 得自此等物件之接面實質上減小或幾乎避免流體洩漏。在 一項實施例中,反應器入口門328及/或加熱器出口門 339(當存在時)可對外部環境開放,而反應器出口門329及/ 或加熱器入口門338可對蒸汽容納室360之内部開放,藉此 在經由傳送區361在反應器322與加熱器332之間輸送期間 隔離外部環境與來自化學反應器322、加熱器332及/或化 學潤濕木材束之蒸汽或氣體。 蒸 >飞谷納室360可以任一適合方式組態。在圖4a及4b中 所繪示之一項實施例中,蒸汽容納室36〇包括耦合至一天 才匕板結構344及一地板(未展示)之四個大體直立壁342a至 342c^儘管在圖4a及4b中圖解說明為大體附接至天花板結 構344,但用於自蒸汽容納室36〇之内部移除蒸汽及氣體之 一蒸汽出口管道349可替代地附接至壁342a至342d中之一 者或至該地板。梢後將更詳細地闡述關於自蒸汽容納室 3 6 0移除蒸汽及氣體之額外細節。 在本發明之一項實施例中,壁342a至342d中之至少一者 可包括用於在蒸汽容納室360内之一爆炸或迅速加壓情形 下控制一壓力釋放之方向之至少一個鼓風板或鼓風壁 160978.doc -24- 201231885 343。在一項實施例中,鼓風板343可附接至蒸汽容納室 360之天彳b板344及/或地板(未展示)。鼓風板或壁343可鉸 接、拴係或以其他方式緊固至蒸汽容納室36〇之另一結構 以避免或減少鼓風板或壁343將由於一爆炸而向離開蒸汽 容納室360之方向以一非期望速度隨意地凸出之可能性。 鼓風板或壁343可具有一實質上固體表面(如圖扑中所展示) 或可包括複數個板條或槽(未展示)。通常,壁“以至“^ 之並非妓風板/壁343之區段係由高強度材料(諸如(舉例而 言)預製混凝土板、混凝土塊或鋼板)構成之建構。儘管本 文中圖解說明為具有四個壁,但應理解,亦可採用具有各 種其他形狀之蒸汽容納室。 圖4C中所繪示,蒸汽容納室360可裝備有用於選擇性 地准許流體自外部環境流動至蒸汽容納室360之内部中之 -或多個通氣孔370a、37〇b。在一項實施例中,通氣孔 3 70^、37Gb係單向通氣孔,其准許流體自外部環境流動至 蒸π各納室36G中(如在圖4。由箭頭38Qa、3隱所指示卜但 減小、抑制或實質上防止流體自蒸汽容納室36()之内部流 出至外部壤境中。可經由通氣孔37〇a、3雇流動至基汽容 納室編中之外部流體之實例包含環境空氣或—或多種惰 性氣體(諸如,氮氣)。 士 ^ 貫包例中,通氧孔370a、370b可經組態以維持蒸 A至36G之内部與外部環境之間的—預定壓力差。藉 維持蒸汽容納室3 6 Q之内部與外部環境之間的一預定壓 差m37Ga、37Gb可控制將來自外部環境之-流體 160978.doc •25- 201231885 抽取至蒸汽容納室360中之速率。為維持蒸汽容納室36〇之 内部與外部環境之間的一相對恆定壓力差,通氣孔370a、 370b可裝備有用於基於跨越通氣孔37〇a、37〇b之壓力差來 改變通氣孔370a、370b之開放程度之一控制機構(例如, 一電子致動器、一液壓致動器、一氣動致動器或一機械彈 簧)。當外部環境與蒸汽容納室360之内部之間的壓力差過 高時,通氣孔370a、370b開放得較寬’且類似地,當該壓 力差過低時,通氣孔370a、370b朝向一關閉位置移動。在 一項實施例中,通氣孔370a、37〇b可裝載有彈簧且朝向關 閉位置偏移,以使得當蒸汽容納室36〇與外部環境之間的 壓力差低於一臨限值時,關閉通氣孔37〇a、37〇b,但當蒸 汽容納室360中之壓力比外部環境低超過臨限壓力差值之 一量時,通氣孔370a、37013開放以允許將一外部流體抽取 至蒸汽容納室360中。 此外,當通氣孔370a、370b裝載有彈簧時,該等通氣孔 藉由在壓力差高時自動開放得較寬而在壓力差低時自動朝 向關閉位置移動來幫助維持蒸汽容納室36〇之内部與外 在一項實施例中,蒸汽 低氣壓且可維持處於至 環境之間的一實質上恆定壓力差。 容納室360在輸送期間維持處於一 少0.05水柱英讀、至少W水柱英忖數或至少水柱英 时數及/或不大於1〇水柱英对數、不大於丨水柱英对數或不 大於0.5水柱英》寸數之—真空。在―項實施例中,通氣孔 370a、370b經組態以准許以致使每小時至少2次交換、至 少4次交換或至少5次交換地自》汽容、W抽取出之— 160978.doc -26· 201231885 速率將流體自外部環境(你丨如 番 |衣現〔例如’ J哀境空氣)抽取至蒸汽容納 至360中纟申-次交換等於蒸汽容納室360之一個體積。 如本文中所使用,術語「每小時交換次數」係指每小時該 系統中之流體之總體積被替換之總次數,其係藉由使自系 .統移除之蒸汽之體積流率除以總系統體積來計算。 • 纟項實施例中’蒸汽容納室36〇之大小可使得反應器 322及加熱器332(例如,定位反應器及加熱器之内部體積) 彼此相隔至少2英尺、至少4英尺或至少6英尺及/或不大於 50英尺、不大於30英尺或不大於2〇英尺之一距離。在一項 實施例中’蒸A谷納室之長度可與反應器322與加熱器332 之間的距離相同或實質上相同。根據一項實施例,蒸汽容 納室360之長度對反應器322之總長度及/或加熱器332之總 長度之比率可係至少0.1:1、至少0.2:1、或至少0.3:1及/或 不大於1:1、不大於0.6:1或不大於05:1。當反應器322與加 熱器332之間的間隔減至最小時,反應器出口門329及加熱 器入口門3 3 8可能夠在打開期間彼此接觸。在此一實施例 中,反應器出口門329及加熱器入口門338可經組態以在其 兩者皆完全打開時彼此嵌套/重疊(但彼此不接觸)。 圖4d係包括一反應器322、一加熱器332及安置於其間的 一蒸汽容納室360之一木材處理設施416之一側視圖。圖4d 另外繪示採用位於加熱器332之出口門339附近之一產品蒸 汽移除系統或結構400之一實施例。產品蒸汽移除系統400 可經組態以自加熱器332之出口門339輸送出蒸汽且使其遠 離出口門339附近之區域(例如,恢復室)。此組態可實質上 160978.doc -27- 201231885 減小且在某些實施例中可幾乎防止來自退出加熱器332之 經化學處理之木材束之蒸汽及/或來自退出反應器322及/或 加熱器332之蒸汽逸出至外部環境。如圖4d中所展示,蒸 /飞谷納室360及產品蒸汽移除系統4〇〇可連接或以其他方式 可操作地搞合至一常見通氣系統4〇2。通氣系統4〇2用以自 蒸汽容納室360抽取出蒸汽及氣體及/或使其通過產品蒸汽 移除系統400。儘管圖4d圖解說明一個常見通氣系統4〇2用 於蒸a谷納室360及產品蒸汽移除系統4〇〇兩者,但亦可針 對木材處理設施之每一容納/通氣區域使用個別通氣系 統。 在圖4d中所繪示之實施例中,產品蒸汽移除系統4〇〇包 括一通氣罩404及安置於通氣罩4〇4與加熱器332之間的一 通氣室406。通氣罩404及通氣室406可連接至通氣系統 402,通氣系統402自通氣罩4〇4及/或通氣室406抽取出蒸 汽。通氣室406可經組態以透過加熱器出口門339(其開放 至通氣室406中)接納一經化學改質之木材束。 通氣室406可裝備有一通氣室出口 4〇8,經化學改質之木 材通過通氣室出口 408通行至通氣罩4〇4下面之一冷卻位 置。在一項實施例中,通氣室出口 4〇8可裝備有一門4〇9, 門409在關閉時實質上隔離外部環境與通氣室之内部。 當通氣室裝備有此一門時,通氣室亦可裝備有類似於先前 參考圖4c所闡述之蒸汽容納室36〇之通氣孔37〇a、37讥之 通氣孔(未展示)。然而’在另一實施财,通氣室出口 4〇8 經組態以不斷地准許流體自外部環境通行至通氣室之 160978.doc •28· 201231885 内部中。在此一實施例中,通氣室出口 408可完全開放以 便准許穿過其之流體之自由流動。另一選擇係’通氣室出 口 408可部分地覆蓋有一撓性材料(例如’ 一懸掛 VISQUEEN薄片或VISQUEEN條帶),其准許經化學處理之 木材束通行穿過其,但至少部分地抑制穿過其之流體之自 由流動。在本發明之一項實施例中,可完全消除通氣室 406且通氣罩404可定位於毗鄰加熱器332之出口門339處。 如圖4d中所展示,通氣系統40 2可包含一或多個真空產 生器410、一處理裝置412、一引流器414及複數個蒸汽出 口管道349a至349c。真空產生器410可操作以分別經由出 口管道349a、349b、349c自蒸汽容納室360、通氣罩404及/ 或通氣室406抽取出蒸汽。處理裝置412可操作以移除或改 變來自經由真空產生器410自蒸汽容納室360、通氣罩4〇4 及/或通氣室406中抽取出之蒸汽之一或多種組分之至少一 部分之組成。適合處理裝置之實例可包含(但不限於)滌氣 器、熱氧化器、催化氧化器或其他催化過程及/或沈澱201231885 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates generally to microwave heating systems suitable for heating wood. [Prior Art] Electromagnetic radiation, such as microwave radiation, is a conventional mechanism for delivering energy to an object. The ability to electromagnetically penetrate and heat an object both quickly and efficiently has proven to be advantageous in a variety of chemical and industrial processes. In addition, since the use of microwave energy as a heat source is generally non-invasive, microwave heating is particularly advantageous for processing r-sensitive "dielectric materials (such as foods and drugs) and even for heating materials having a relatively poor thermal conductivity ( For example, wood, the complexity and nuances of the safe and efficient application of microwave energy (especially on a commercial scale) have severely limited its use in several types of industrial processes. Due to its wide range of applications & Applicable, &, its renewable nature and its relatively low cost's. Therefore wood is one of the most widely used building materials available. However, since wood is a natural product, its physical and structural properties can be substantially Different species and different locations in different trees or even in the same wood block. In addition, wood is usually .3⁄4 (four) 'this material is scalloped, and it gives her money to be susceptible to fungal erosion. , several types of wood treatment processes have been developed 2 to increase the stability of the wood through its chemical, physical and/or structural properties. Examples of processes include impregnation, coating, thermal modification, and chemical upgrading. The latter two processes typically change the properties of the wood to - more severe than other conditions, and therefore these types The process is generally 160978.doc 201231885 involves more complex solutions and systems. For example, many chemical and thermal processes can be carried out under vacuum and/or in the presence of one or more processing chemicals. The commercialization of technology has been limited, and there are still many challenges to overcome in order to make these processes large-scale industrialization. Therefore, 'a commercial scale system that is more efficient and cost effective for one of chemical or heat treated wood is needed. An efficient and cost effective industrial scale microwave heating system for use in a wide variety of processes and applications, including wood processing. SUMMARY OF THE INVENTION One embodiment of the present invention relates to a process for producing chemically modified a system for drying and/or thermally modifying wood, the system comprising a microwave heater comprising a container body and a door for selectively permitting and blocking the passage of a bundle of wood out of the interior of the microwave heater. The door and the container body have respective door side and body side sealing surfaces on the door and the container body when the door is closed Forming a fluid seal directly or indirectly, wherein the door and the container body cooperatively form at least a portion of a microwave choke that effectively suppresses microwave energy between the door and the container body from the microwave heater when the door is closed The microwave choke includes a first radially extending choke chamber, a second radially extending choke chamber, and at least partially disposed in the first choke chamber when the door is closed a radially extending choke deflector wall between the two choke chambers, wherein at least a portion of the second choke chamber abuts at least a portion of the first choke chamber when the door is closed. Another embodiment relates to a system for producing chemically modified, dried and/or thermally modified wood, the system comprising a microwave heating 160978.doc • 4·201231885 'The microwave heater comprises a circle A cylindrical container body, a door and a microwave choke. The microwave heater is configured to receive and heat a bundle of wood, wherein the microwave choke is operable to substantially prevent microwave energy from leaking from the microwave heater between the door and the container body when the door is closed. The microwave choke includes a portion of the removable flow block that is removably coupled to the container body or the door. Yet another embodiment of the present invention is directed to a method for producing a chemically modified, dried, and/or thermally modified wood. The method includes: (a) loading a bundle of wood through an open door of a microwave heater Up to the microwave heater; (b) closing the door of the microwave heater to thereby form a fluid seal between the door and a container body; ((the 维持 maintains no more than 350 Torr in the microwave heater) a pressure; (1) heating the wood beam by means of microwave energy introduced into the microwave heater while maintaining a vacuum; and (e) simultaneously with step (d), using a microwave choke to prevent the microwave energy At least a portion of the microwave heater is exited at the junction of the door and the container body. The present invention is also directed to a method for producing a chemically modified, dried and/or thermally modified wood. The method comprises: (4) attaching a removable choke portion to a door or a volume of a microwave heater; (8) heating a bundle of wood by means of microwave energy introduced into the microwave heater; and (4) Step (b) simultaneously, using - microwave choke To prevent this from being: a portion exits the heating 15 ' at the junction of the door and the container body. The microwave choke includes the removable blocking component 0. [Embodiment] I60978.doc 201231885 DETAILED DESCRIPTION OF THE INVENTION Various embodiments of the present invention are provided in accordance with an embodiment of the present invention. A heating system configured in accordance with various embodiments of the present invention may include a heat source, a heating vessel (eg, a heating And a vacuum system is selected. Typically, a heating system configured in accordance with an embodiment of the present invention can be adapted for use as an independent heating unit or can be used as or in conjunction with a chemical reactor for a wide variety of processes. A heating system configured in accordance with several embodiments of the present invention is set forth in detail below with reference to the drawings. In one embodiment, a heating system of the present invention can be used to heat a lignocellulosic material. The lignocellulosic material can include the following Any of the materials. Cellulose and lignin and (as needed) other materials such as hemicellulose. Examples of lignocellulosic materials Including (but not limited to) wood, bark kenaf, hemp, sisal, jute, crop stalks, nut shells, coconut shells, straw and stalk shells and stems, corn stover, bagasse, conifers and broadleaf tree bark, Corn cobs and other crop residues, and any combination thereof. In one embodiment, the lignocellulosic material can be wood. The wood can be a conifer or a broad-leaved tree. Examples of suitable wood species can include ( But not limited to) pine, fir, spruce, eucalyptus, oak, maple, and beech. In the embodiment, the wood may include red oak, red maple, German beech or Pacific white maple. In another embodiment The wood may comprise a pine species comprising, for example, radiata pine, European red pine, Pinus taeda, A long-leaf pine, short-leaf pine or cedar pine, wherein the latter four may be collectively referred to as "Nan ^ Huang 160978" .doc * 6 · 201231885 松". Wood treated by a heating system in accordance with an embodiment of the present invention may be in a suitable form. Non-limiting examples of suitable forms of wood may include, but are not limited to, shredded wood, wood fibers, wood flour, wood chips, small wood blocks, wood flowers, wood chips, and wood wool. In one embodiment, the wood treated in one or more of the heating systems of the present invention may comprise sawn timber, peeled trunks or branches, boards, sheets, beams, sections, squares or any other profile. Wood. Generally, the size of the wood can be defined by two or more sizes. These dimensions may be actual "measured" dimensions or may be nominally sized. As used herein, the term "nominal size" refers to the size calculated using the size of the wood. The nominal size can be greater than the measured size. For example, Dry 2"4" can have an actual size of 1.5 inches by 35 inches, but still uses a nominal size of "2x4". It should be understood that the dimensions referred to herein are generally nominal dimensions unless otherwise indicated. In the seven embodiments, the wood may have three dimensions: a length or a longest dimension, a width or a second length; and - a thickness or a shortest dimension. Each of the dimensions may be substantially identical ' or one or more of the dimensions may differ from other dimensions - or more. According to the embodiment, the length of the wood may be at least 6 inches, at least ft, at least 3 feet, at least 4 feet, at least 6 feet, or at least 1 foot. In another embodiment, the width of the wood may be at least 0.5 inches, at least 吋 吋, at least 2 inches, at least 斗英: at least 8 inches, at least 12 inches, or at least 24 inches and/or no more than 10 Feet are no more than 8 feet, no more than 6 feet, no more than 4 feet, no large feet, no more than 2 feet, no more than 1 foot, or no more than 6 inches. In still another embodiment, 160978.doc 201231885, the thickness of the wood may be at least 25 inches, at least 英$英叶' at least 英75 miles, at least 1 foot, at least 1.5 feet, or at least 2 feet and/or no More than 4 feet, no more than 3 feet, no more than 2 feet, no more than 1 foot, and/or no more than 6 inches. According to the embodiment, the wood may comprise - or a plurality of solid wood blocks, engineered solid blocks or a combination thereof. As used herein, the term "solid wood" refers to wood that measures at least 10 centimeters in at least one dimension but otherwise has any dimension (eg, wood having the dimensions as previously described ρ as used herein) The term "engineered solid wood" means the smallest size of solid wood (for example, at least one size is at least 1 但 but consists of several smaller wood bodies and is at least one - a wooden body. The smaller wood body may or may not have - or more of the dimensions previously described with respect to the solid wood. Non-limiting examples of engineered wood may include wood laminates, fiberboard 'directional strand board, plywood, waffle boards (four) such as board ), slabs, and laminated veneer lumber. In the embodiment, 'wood can be grouped in bundles. As used herein, the term "bundle" refers to stacking, placing, and/or tightening in any suitable manner. Two or more pieces of wood that are fixed together. According to an embodiment, a bundle may comprise a plurality of plates that are stacked in red and coupled to each other via a belt, strip or other suitable device. In an embodiment, the two or more pieces of wood may be in direct contact with or in addition to the use of at least one spacer or "adhesive (4)" disposed therebetween. Partially spaced. In one embodiment, the bundle can have any suitable size and/or shape I60978.doc 201231885. In one embodiment, the bundle can have at least 2 feet, at least 4 feet, at least 8 Feet, at least 10 feet, at least 12 feet, at least 16 feet or at least 20 feet and/or no more than 6 feet, no more than one foot or no more than 25 feet in total length or longest dimension. The bundle may have at least 1 foot At least 2 feet, at least 4 feet, at least 6 feet, at least 8 feet and '/ or, more than 16 feet' no more than 12 feet, no more than 1 foot, no more than 8 feet, no more than 6 feet or no more than 4 feet a height or a second long dimension. In one embodiment, the bundle may have at least 丨 feet, at least 2 feet to 乂 4 feet, at least 6 feet and/or no more than 20 feet, no more than b feet, no more than 12 Feet, no more than 1 inch a ruler, no more than 8 feet or no more than 6 feet - the width or the shortest dimension. The total volume of the bundle containing the space between the plates (if present) may be at least 5 cubic feet at least 1 (8) cubic feet, at least 250. Cubic feet, at least 375 cubic feet, or at least 500 cubic feet. According to one embodiment, introduced into a reactor and/or heater of one or more heating systems of the invention (eg, during heating or treatment *t) The weight of the bundle of wood (or the cumulative weight of one or more items, items or loads to be treated) may be at least 1 〇〇, at least 1, just a pound or to 5'000 pounds. The bundle may be cubic or cuboid in shape. Wind Another: In the T example, one or more heating systems of the present invention may be used to chemically dry and/or thermally reform wood, thereby producing chemical Modified, dried and/or thermally modified wood. Wood that has been dried and/or thermally modified may be "heat treated" wood such that the term "heat treated wood" is a wood that has been heated, dried and/or thermally modified. I60978.doc 201231885, as used herein, means "thermally reforming" means modifying at least a portion of the chemical structure of at least a portion of one or more wood blocks without an exogenous treatment agent. In the embodiment, a heating system (which will be described in detail later) may be used to heat and/or dry the wood during the thermal reforming process to thereby provide a thermally modified wood bundle. According to one embodiment, the #-modification can occur simultaneously with heating and/or drying of the wood in a wood heater and/or dryer. In the embodiment, it can be heated in a wood heater or dryer and /f Dry the wood without heat changing it. As used herein, the term "drying" means to cause or accelerate the vaporization or otherwise removal of at least a portion or additional heat-removable components of one or more liquids via heat addition or other suitable energy form. At least a portion or one or more of the one or more liquids may be thermally removable. The thermal upgrading process can include contacting the wood with one or more heat transfer agents such as, for example, water vapor, heated inert steam (such as nitrogen or air) or even a liquid heat transfer medium (such as a heated oil). The steps. In another embodiment, a radiation source can be used during thermal upgrading. The thermally modified wood may have a moisture content substantially lower than one of the untreated wood and may have enhanced physical and/or mechanical properties such as, for example, increased flexibility, resistance to decay and biological attack. Higher resistance and increased dimensional stability. In still another embodiment, a heating system configured in accordance with various embodiments of the present invention may be used to chemically modify wood. As used herein, the term "chemically modified" means the chemical structure that at least partially upgrades at least a portion of one or more wood blocks in the presence or absence of one or more exogenous treating agents. Specific types of chemical upgrading processes may include, but are not limited to, acetylation and other types of 160978.doc 201231885 vinegarization, epoxidation, etherification, 糠 „ A., s ... thiolation, methylation And/or a non-limiting example of a melamine treated sigma treatment may comprise sour liver (eg, acetic anhydride, liver, azalea, maleic acid, propionic acid or butyric acid); Acid; isocyanate; road (for example, road, brew: difunctional aldehyde); chloral aldehyde; dimethyl sulfate; alkyl hydride; , ethylene oxide, propylene oxide or butylene oxide); difunctional epoxide; borate; acrylate; citrate; and combinations thereof. The process for chemically modifying wood may include - chemical modification a step followed by a heating step. During the chemical upgrading or reaction step that can be carried out in a chemical upgrading reactor, the wood can be exposed to - or more than one of the source treatment agents previously described, the - or more An exogenous treatment agent can be combined with a functional group of untreated wood (for example, a base) Less-partial reaction to thereby provide chemically modified wood. During the chemical upgrading step, one or more thermally initiated chemical reactions may occur, either with or without an external energy (eg, thermal energy or Electromagnetic energy, including, for example, microwave energy, starts from the source. The specific details of the chemical modification process vary among many types of chemical modifications, but most of them are chemically modified compared to untreated wood. The wood may have enhanced structural, chemical and/or mechanical properties, including lower hygroscopicity, higher dimensional stability, greater biohazard and insect resistance, increased resistance to decay and/or higher Weatherability. In one embodiment, the wood may be acetylated in a wood acetylation reactor. The acetylation may comprise replacing the hydroxyl groups on the surface or near the surface with an acetamidine group. The treatment agent utilized during the acetonitrileization may include a concentration of 160978.doc 201231885 degrees of at least 50 wt%, at least 6 〇 _, at least 7 〇 (four), at least (10) wt%, at least 90 wt%, at least 98 wt% Or the heart of the acetic acid needle and the rest (if Included in the presence of acetic acid and/or one or more diluents or a brewing catalyst. In a JS Φ-tk J, a, sigma, the treatment agent for acetamylation may include acetic acid and acetic anhydride. The mixture has an anhydride to acid weight ratio of at least 80:20, at least 85:15, at least 9G:1, or at least 95:5. Before the brewing, 'smoke dry method, vacuum degassing method or the like can be used. Suitable methods for drying the wood to contain its humidity (for example, water) as small as not more than 25% by weight, not more than 2% by weight, not more than 15, no more than u wt / 〇, not more than 9 Wt% or not more than 6 wt 〇 / 0. During acetylation, the wood may be contacted with the treatment agent via any suitable method. Examples of suitable contacting methods may include, but are not limited to, steam contact, spraying, liquid immersion, or combinations thereof. In one embodiment, the temperature of the processing vessel may be no greater than 5 (rc, no greater than 4 (rc or no greater than 3 〇C, and at least 25 psig, at least 25 psig, at least 25 psig, at least 25 psig) 5 psig, at least psig and/or no greater than 500 psig, no greater than 250 psig or no greater than 15 psig. Once the contacting step is completed, at least a portion of the liquid treatment (if present) may be discharged from the reactor as needed and Heat may be added to initiate and/or catalyze the reaction. In one embodiment, microwave energy, thermal energy, or a combination thereof may be introduced into the vessel to increase the temperature of the wood to at least 5, at least 65, at least 80. °C and / or to not more than 175. (:, not more than 150 ° c or not more than 12 ° C, while maintaining one of the pressure in the reactor is at least 750 Torr, at least 1, 〇〇〇, at least 1, 2 〇〇 or at least 2, 〇〇〇 and/or no more than 7,700 Torr, no more than 5,000 Torr, no more than 3,500 Torr or no more than 2,500 Torr. Root 160978.doc • 12- 201231885 According to an embodiment, add At least a portion of the heat to the reactor may be from a non-microwave source Served to the wood, such as, for example, comprising at least 5 〇 wt%, at least 75 wt%, at least 90 wt%, or at least 95 wt% of one of the acetic acid heat vapor streams, and the remainder comprising acetic anhydride and/or dilution In one embodiment, hot steam, a portion of which may be condensed on at least a portion of the bundle of wood being treated, may be introduced into the reaction vessel for at least 2 minutes, at least 35 minutes, or at least 45 minutes and/or Not more than 18 〇 minutes, no more than 15 〇 minutes, or no more than 120 minutes. After the reaction step, the "chemically wetted" chemically modified wood may include at least one chemical group that can be removed by heat and/or vaporization. The term 'chemically_wet' or 'chemical-wet' as used throughout this application is meant to contain, at least in part, one liquid as a result of a chemical treatment or modification. A wood in which one or more chemicals are present. A "chemically wetted" bundle of wood means that at least a portion of the wood bundle is at least partially chemically wetted. Some examples of the one or more chemicals may include An article, a dipping, a reaction product, or the like. For example, when the wood is brewed, at least a portion of the residual acetic acid and/or anhydride can be removed by vaporization. As used herein, the term "acid wetting" By means of wood containing residual acetic acid and/or anhydride, an "acid wet" wood bundle means that at least a portion of the wood bundle is at least partially acid wetted. According to one embodiment of the invention, chemical wetting Or the acid-wet wood may comprise at least 20 Wt°/o, at least 3〇Wt%, at least 40 wt%, or at least 45 wt% and/or no more than 75 wt%, no more than 60 wt% or no more than 5〇. One or more heat removable or vaporizable chemicals, such as, for example, acetic acid and/or acid 160978.doc • 13· 201231885 anhydride. As used herein, the term "thermally removable" or "vaporizable" chemical component refers to one component that can be removed by heat and/or vaporization. In one embodiment, the vaporizable or thermally removable component or chemical can include acetic acid. Next, at least a portion of the one or more thermally removable chemicals can be removed from the chemically wetted wood via flash vaporization. In one embodiment, the pressure in the reactor can be at least! , 〇〇〇, at least 12 〇〇, at least 18 〇〇 or at least 2,000 Torr and / or not more than 77 〇〇, no more than 5 〇〇〇 不 no more than 3,500 Torr, no more than 2,5 〇〇 The pressure of one or more than 2,000 Torr is reduced to atmospheric pressure to achieve a flashing step. In another embodiment, the pressure of the reactor can be reduced from a high pressure (as described in the text) or atmospheric pressure to no more than 100 Torr', no more than 75 Torr, no more than 5 Torr or A pressure of no more than 35 Torr is used to achieve the step of vaporization. According to an embodiment, the amount (eg, chemical content) of one or more of the thermally removable chemical components remaining in the chemically wet wood after the flashing step may be at least 6 wt%, at least 8 wt%, at least Οο wt%, at least 12 wt% or at least 15 wt% and/or no more than 60 wt. /❾, no more than 40 wt%, no more than 3〇 wt%, no more than 25 wt ° /. , no more than 20 wt ° / 〇 or no more than 15 wt0 /. . According to one embodiment, a heating step may be performed after the chemical upgrading step to further heat and/or dry the chemically modified (or chemically wetted) wood to thereby provide a chemically modified, heated and/or dried Wood bundle. As used herein, a bundle or other item or material is referred to as "heated" for convenience only to indicate that the temperature of at least a portion of the bundle has risen above the ambient temperature. Similarly, as used throughout this application, only for the benefit of 160978.doc 14 201231885, 纟 or other items or materials " _ * (力甘& also respected) to mean not borrowed, two implementation In the example) heating f this is at least a portion of the π strip to remove at least some of the thermally removable chemicals. In a real #α example, the heating step can be operated to further reduce the amount of heat-removable chemical group/knife present in, the armor or the evening. The energy source of (4) during the heating step may be suitable for heating, and/or drying the wood - light, conductive and/or convective energy sources. In the embodiment, the heater can be a microwave heater. In another embodiment, another source of heat may be utilized to directly or indirectly (via, for example, a hot gas injection, a jacketed or heat traceable container or other means) to heat at least a portion of the container, such as (for example In terms of) one or more side walls. In this embodiment, the sidewall can be heated to at least 45 <t, at least 55 it or at least 65 C and/or no more than U5 ° c, no more than 丨 "It or no more than 95. 〇 one μ degrees. This heating step can be carried out under any suitable conditions, including higher than, Pressure at or near atmospheric pressure. Specific embodiments of various heating systems suitable for use in the production of chemically modified and/or thermally upgraded wood will be discussed in detail later. The heating step can be implemented to remove the remaining At least 50%, at least 65%, at least 75%, or at least 95% of the total amount of one or more thermally removable chemical components in the chemically wet wood. In one embodiment, this may correspond to removal At least 100 pounds, at least 250 shards, at least 500 lbs, or at least 1,000 shards of total liquid. As a result of one of the heating steps, in one embodiment, based on the initial (preheated) weight of the bundle, heated or The dried chemically modified wood may include no more than 5 wt%, no more than 4 wt%, no more than 3 wt%, no more than 2 wt%, or no more than 1 wt% of the one or more heat transferable 160978.doc 15 201231885 In addition to chemicals (eg, acetic acid). In addition, based on the initiality of the wood The preheated weight, heated or dried chemically modified wood may have no more than 0 wt ° /, no more than 5 wt%, no more than 3 wt%, no more than 2 wt% or no more than 1 wt% or not A water content greater than 55 wt%. In one embodiment 'after the heating step, the wood may have a water content of approximately one %. In one embodiment, the 'chemical upgrading step and the heating step may be Occurs in a single container. In another embodiment, the chemical upgrading step and the heating step can be carried out in separate vessels such that the internal volume of the chemical upgrading reactor and the heater are different in position. As used herein, "inner volume" of a container means the entirety of the space enclosed by the container, including any volume defined by the door(s) of the container when closed or within the door. As used herein, the term "different in position" means that the internal volume does not overlap. When the chemical upgrading reactor and heater comprise separate vessels, various types of wood conveying systems can be utilized to transport the wood between the two vessels. In one embodiment, the delivery system can include rails (as illustrated in Figure 、), rails, belts, hooks, rollers (as illustrated in Figure 3), strips, trucks, motorized vehicles 'Stacker, pulley, turntable (as illustrated in Figure 2) and any combination thereof. Various embodiments of wood processing facilities capable of producing chemically modified and/or thermally modified wood will now be discussed in detail with respect to Figures 3 through 3. Referring now to Figure 1 'an embodiment of a wood processing facility 1' is illustrated as including - a chemical upgrading system 20, a heating system 3, a delivery system 4, and a stock storage area 60a and a finished material storage area 6 b. The chemical upgrading system 20 includes a -chemical upgrading reactor 22, a reactor heating system "and 160978.doc -16· 201231885 - a reactor pressurization/reduction system 26 is selected. The heating system 30 includes a heater 32, a Energy source 34 and a heater pressurization/depressurization system 36. Conveying system 40 includes a plurality of transport sections 42a for transporting wood between storage areas 6a, 6b, reactor 22 and heater 32 to 42e, as explained in detail below. In operation, one or more bundles of wood may be removed from the stock storage area 60a via the transport section 42a. Although illustrated in the figures as including a track or rail, it should be understood that the transport section 42a may comprise any type of transport mechanism suitable for moving wood between storage area 6a and reactor 22. As shown in Figure 1, wood may then be introduced or loaded via an open reactor inlet door 28. Into the reactor 22. Thereafter, the first reactor inlet door 28 can be closed to allow chemical modification of the wood disposed within the reactor 22 in accordance with one or more of the processes described above. Once the reaction is complete, the reaction can be self-reactive. 22 extracts chemistry The wet wood is conveyed to a heater 32. According to one embodiment, the chemically wet wood can be removed from the reactor 22 via the reactor inlet door 28 and delivered to the heater 32 via the delivery section 42b. In another embodiment The wood can be removed via a selective reactor outlet door 29 and delivered to the heater 32 via the transfer section 42c, as shown in Figure 1. Next, the chemically wetted wood can be passed through an open heater inlet door 38. Introduced or loaded into the heater 32 'The open heater inlet door 38 can then be closed to thereby form a fluid seal between the heater inlet door 38 and the body of the heater 32 prior to heating of the starting wood. When the reactor outlet door 29 is selected and the heater outlet door 39 is selected, the outlet valves 29, 39 can be located in the reactor 22 and the heater 32 except for the respective reactor inlet door 28 and heating 160978.doc -17· 201231885 inlet door At substantially opposite ends than 38. In various embodiments, during the heating of the wood within the heater 32, the pressurization system 36 can be used to maintain a pressure within the heater 32 of no more than 55 Torr, no more than 450 Torr, +large 350 Torr, no more than 25 Torr is no more than Torr' no more than 150 Torr, no more than 1 Torr or no Torr. In one embodiment 'The vacuum system is operable to reduce the pressure in the heater 32 Small to not more than 1 〇 milliTorr (10·3 Torr), not more than 5 mTorr, not more than 2 mTorr, not more than 1 mTorr, not more than 〇.5 mTorr or not more than 毫1 mTorr. When the heater 32 includes a microwave heater, one or more of the features (including, for example, a microwave choke, one or more microwave emitters, and the like) may be used in detail to Energy is introduced into the interior of the heater 32, thereby heating and/or drying at least a portion of the bundle of wood contained therein. According to one embodiment, the wood treatment facility 10 can include multiple reactors and/or heaters. Any number of reactors and/or heaters can be employed and the reactors and/or heaters can be configured to any suitable configuration. For example, the wood treatment facility 10 can utilize at least 1, at least 2, at least 3, at least 5, and/or no more than 10, no more than 8 or no more than 6 reactors and/or heaters. When multiple reactors and/or heaters are employed, the containers can be paired in any suitable combination or ratio. For example, the ratio of reactor to heater can be 1:1, 1:2, 2:1, 1:3, 3:1, 2:3, 3:2, 1:4, 4:1, 4 : 2, 2: 4, 3: 4, 4: 3 or any feasible combination. According to one embodiment, one or more of the reactors and/or heaters may include separate inlet and outlet doors, while in another embodiment, the reactor and/or heater 160978.doc • 18· 201231885 One or more may include a single door for loading and unloading wood. In one embodiment, the heated and/or dried wood can be removed from the heater 34 via the heater inlet door 38 and transported to the storage area 60b via the delivery section 42d. Alternatively, the wood can be withdrawn via a selective heater exit door 39 (if present) and transported via section 42e to storage area 60b, as illustrated in FIG. Various configurations of wood processing facilities employing multiple reactors and heaters configured in accordance with several embodiments of the present invention will be briefly described with respect to Figures 2 and 3. Turning now to Figure 2'' illustrates a wood treatment facility 110 configured in accordance with an embodiment of the present invention. The wood treatment facility 11A includes a plurality of reactors (illustrated as 122a, 122b, 122n) and a plurality of heaters (illustrated as 132a, 132b, 132n). According to an embodiment, each of the reactors 122a, 122b, 122n and each of the heaters 132a, 132b, 132n includes means for selectively permitting the wood to pass out of a single door 128a of each container, 128b, 128n, 138a, 138b, 138n. Additionally, the wood treatment facility 110 can include a rotatable platform (illustrated as a turntable 140) that is operable to position a timber east 1 2 so that it can be in various directions (generally from arrow 19〇a to 190c indicates) transporting the bundle of wood between reactors 122a, 122b, 122n, heaters 132, 132b, 132n and a storage area 160. Referring now to Figure 3, another embodiment of a wood processing facility 21 is shown to include a plurality of chemical upgrading reactors (illustrated as 222a, 222n) and a plurality of heaters (illustrated as 232a, 232b, 232n). As shown in Figure 3, each of the reactors includes a separate reactor inlet gate 228a, 160978.doc • 19-201231885 228η and a selective reactor outlet gate 229a, 229n. Similarly, each of the heaters 232a, 232b, 232n includes a heater inlet door 238a, 238b, 238n and a selected heater outlet door 239a, 239b, 239n. The delivery system 240 shown in Figure 3 includes a plurality of segments 242a through 242j and 244a through 244e 'which are operable to deliver wood to the reactors 222a, 222n and heaters 232a, 232b, 232n, from the reactors and The heater transports the wood and transports the wood between the reactors and the heaters. Although illustrated as including a continuous belt segment, the conveyor system 240 can include one or more segments' that include any suitable delivery mechanism, as discussed in detail above. According to one embodiment, in operation, wood loaded into the first reactor 222a via the delivery section 242a can be introduced through the reactor inlet door 228a. Once the chemical upgrading process is completed 'the chemically wetted wood can be removed from the reactor 222a via the reactor inlet gate 228a and can then be delivered to the heater 232a, 232b or 232n via the respective delivery sections 242e, 242f, 242g. One of them. In an alternate embodiment, the wood removed from reactor 222a can be removed through reactor outlet port 229a via delivery section 244a prior to being conveyed to heater 232a, 232b or 232n, as previously described. Alternatively, the wood treated in reactor 222n can be loaded, chemically modified, and delivered to one of heaters 232a, 232b, 232n in a similar manner as previously described. Thereafter, one or more of the heaters 232a, 232b, and 232n may be heated and/or dried to deliver one or more chemically wet wood bundles in accordance with one or more of the methods set forth herein. In one embodiment, at least one of the heaters 232a, 232b & 232n can include a microwave heater. Once the heating step is completed, the heated and/or dried bundle can be passed through respective inlet doors 238a, 238b, 238n 160978.doc -20- 201231885 or via respective outlet doors 239a, 239b, 239n (when present) It is extracted from the heaters 232a, 232b, and 232n. Subsequently, the end-view modified beam is removed from the heater inlet doors 238a, 238b, 238n or the heater outlet door 23, 2391, 23911 'can be via the transport segments 24211, 2421, 242' or 244c, 244d, 244e deliver the bundles to subsequent processing and/or storage. The chemical upgrading process previously discussed can be carried out at any suitable scale. For example, the wood treatment facilities described above may include laboratory scale, pilot plant scale or commercial scale wood treatment facilities. In one embodiment, the wood treatment facility used to produce the chemically modified and/or thermally upgraded wood may have at least 500,000 board feet, at least i million board feet, at least 2.5 million board feet, or at least 5 One of a million board feet of annual production capacity for commercial scale facilities. As used herein, the term "plate foot" means a volume of wood expressed in units of 144 cubic feet. For example, a plate having a size of 2 inches x 4 inches x 36 inches has a total volume of 288 cubic feet or 2 boards feet. In various embodiments, the internal volume of a single chemical upgrading reactor (ie, 'internal reactor volume') and/or the internal volume of a single heater (ie, "internal heater volume") may be At least cubic feet, at least 500 cubic feet, at least 1 inch cubic foot, at least 0 cubic feet, at least 5, cubic feet or at least 10 000 cubic feet to accommodate commercial scale operations. Even when the commercial scale is implemented, the chemical and/or ., , and upgrading processes as described herein can be performed with a relatively short total cycle time. By way of example, the total cycle time of the dry and/or thermal upgrading process carried out using one or more of the systems of the invention (from the time of the initial upgrading step 160978.doc • 21 - 201231885) The amount of time until the completion of the heating step can be no more than 48 hours, no more than 36 hours, no more than 24 hours or no more than 12 hours, no more than 1 hour, no more than 8 hours or no more than 6 hours. This is in contrast to many conventional wood treatment processes that can have a total cycle time that lasts for days or even weeks. According to an embodiment of the invention, the wood treatment facility of the invention may comprise one or more steam containment chambers and/or aeration structures for substantially isolating the external environment during transport of the wood (ie, immediately following the chemistry) Chemically modified wood that is chemically wetted with the environment of the reforming reactor and the heater. The vapor containment chamber and/or the venting structure can be coupled to a venting system that removes at least a portion of the gaseous environment from the containment/venting region, thereby minimizing leakage of one or more undesired vapor state chemicals into the external environment . Additional details and an embodiment of a wood treatment facility employing a vapor containment chamber and/or a venting structure will now be described in more detail with respect to Figures 4d. Figure 4a is a top plan view of one of the steam reforming chambers 322 coupled to a chemical upgrading reactor 322 and a heater 332. The vapor containing chamber 36 is operable to partially or nearly completely isolate the external environment from the transfer of wood from the chemical upgrading reactor 322 to the heater 332 via a transfer zone 361 located between the reactor 322 and the heater 332. A chemically modified wood bundle. As used herein, the term "isolation" refers to the inhibition of fluid transfer between one or more zones, zones or zones. According to one embodiment, the vapor containment chamber 36 can be coupled to a venting system (Fig. 4a) Not shown) operable to remove at least a portion of the vapor and gas from the interior of the vapor containing chamber 360, thereby reducing, 160978.doc -22-201231885 minimizing or preventing the interior of the reactor 322, the heater 332 The interior contains and/or leaks from the chemically modified wood bundle to one or more of the externally removable chemical components. In one embodiment, the chemical upgrading reactor 322 can include a reactor inlet gate 328 for receiving a wood bundle from an external environment and for discharging the wood from the chemical upgrading reactor 322 after chemical upgrading. One of the bundles exits the door 329. Additionally, heater 332 can include a heater inlet gate 328 for receiving a chemically modified, chemically wetted wood bundle exiting from chemical reforming reactor 322. According to one embodiment, heater 332 may also include a heater outlet gate 339 for separating a bundle of wood from heater 332 from heater inlet door 338. In one embodiment, the respective reactor inlet gate 328 and heater inlet gate 338 and the reactor outlet gate 329 or heater outlet gate 339 (when present) may be positioned generally at one of the reactor 322 or heater 332. The opposite ends are such that the respective central elongated axes of the reactor 322 and heater 332 (shown as axes 370a, 370b in Figure 4b) can extend through the respective inlets 328, 338 and outlets 329, 339. In one embodiment, reactor 322 and heater 332 are axially aligned with one another such that central elongated shafts 370a, 370b in Figure 4b are substantially aligned with each other, while in another embodiment, shafts 370a, 370b Can be parallel to each other. As used herein, the term "substantially aligned" means that two or more containers are configured such that the maximum acute angle formed between the intersections of their respective central axes of elongation is no greater than 20°. In some embodiments, the maximum acute angle between the intersections of the two elongated axes of the substantially aligned container may be no greater than ten. No more than 5°, no more than 2° or no more than 1°. In certain embodiments, reactor 322 and heater 332 can be configured as a side-by-side configuration (not shown). According to an embodiment shown in Figure 4a, the vapor containing chamber 36 is sealingly coupled to the reactor 322 and the heater 332 such that during transport of the wood bundle from the reactor 322 to the heater 332 the external environment is substantially The transfer zone 361 is isolated. As used herein, the term "sealedly coupled" means that two or more items are attached, fastened, or otherwise associated such that the junctions from such items substantially reduce or substantially avoid fluids leakage. In one embodiment, reactor inlet door 328 and/or heater outlet door 339 (when present) may be open to the external environment, while reactor outlet door 329 and/or heater inlet door 338 may be directed to the vapor storage chamber. The interior of 360 is open thereby isolating the external environment from steam or gas from chemical reactor 322, heater 332, and/or chemically wet wood bundles during transport between reactor 322 and heater 332 via transfer zone 361. Steaming > Fly Valley Lab 360 can be configured in any suitable way. In one embodiment illustrated in Figures 4a and 4b, the vapor containing chamber 36 includes four generally upstanding walls 342a through 342c coupled to the one-day deck structure 344 and a floor (not shown). 4a and 4b are illustrated as being generally attached to the ceiling structure 344, but are used to remove steam and gas from the interior of the steam containment chamber 36. One of the steam outlet conduits 349 may alternatively be attached to one of the walls 342a through 342d Or to the floor. Additional details regarding the removal of steam and gas from the steam containing chamber 360 will be explained in more detail later. In one embodiment of the invention, at least one of the walls 342a-342d can include at least one blast plate for controlling a direction of pressure release in the event of an explosion or rapid pressurization within the vapor containing chamber 360. Or blast wall 160978.doc -24- 201231885 343. In one embodiment, the blast plate 343 can be attached to the slab b 344 and/or floor (not shown) of the steam containment chamber 360. The blast plate or wall 343 can be hinged, tethered, or otherwise fastened to another structure of the vapor containing chamber 36〇 to avoid or reduce the direction in which the blast plate or wall 343 will exit the steam receiving chamber 360 due to an explosion. The possibility of arbitrarily protruding at an undesired rate. The blast plate or wall 343 can have a substantially solid surface (as shown in the flap) or can include a plurality of slats or slots (not shown). Typically, the wall "to" is not a section of the hurricane panel/wall 343 constructed of a high strength material such as, for example, a precast concrete slab, concrete block or steel sheet. Although illustrated herein as having four walls, it should be understood that vapor storage chambers having a variety of other shapes may also be utilized. As depicted in Figure 4C, the vapor containment chamber 360 can be equipped with - or a plurality of vents 370a, 37b for selectively permitting fluid to flow from the external environment into the interior of the vapor containing chamber 360. In one embodiment, the vents 370, 37Gb are unidirectional vents that permit fluid to flow from the external environment into the vapor-distributing chamber 36G (as in Figure 4, indicated by arrows 38Qa, 3) However, the fluid is reduced, inhibited or substantially prevented from flowing out of the interior of the steam containing chamber 36() into the external soil. Examples of external fluids that can be flowed into the base containment chamber via the vents 37a, 3 include Ambient air or - or a plurality of inert gases (such as nitrogen). In the case of the package, the oxygen-passing holes 370a, 370b can be configured to maintain a predetermined pressure difference between the internal and external environments of steaming A to 36G. By extracting a predetermined differential pressure m37Ga, 37Gb between the internal and external environment of the vapor containing chamber 36Q, the rate at which the fluid 160978.doc • 25-201231885 from the external environment is drawn into the vapor containing chamber 360 can be controlled. Maintaining a relatively constant pressure differential between the interior and exterior environment of the vapor containing chamber 36, the vents 370a, 370b can be equipped with means for varying the vents 370a, 370b based on the pressure differential across the vents 37a, 37b One of the openness controls a structure (for example, an electronic actuator, a hydraulic actuator, a pneumatic actuator or a mechanical spring). When the pressure difference between the external environment and the interior of the steam containing chamber 360 is too high, the vent 370a, 370b is wide open' and similarly, when the pressure differential is too low, the vents 370a, 370b are moved toward a closed position. In one embodiment, the vents 370a, 37b can be loaded with springs and facing off. The position is shifted such that when the pressure difference between the steam accommodating chamber 36 〇 and the external environment is below a threshold, the vent holes 37 〇 a, 37 〇 b are closed, but when the pressure in the steam accommodating chamber 360 is higher than the outside When the environment is lower than the threshold pressure difference, the vent holes 370a, 37013 are open to allow an external fluid to be drawn into the steam accommodating chamber 360. Further, when the vent holes 370a, 370b are loaded with springs, the vent holes Helping to maintain the interior and exterior of the vapor containing chamber 36〇 by automatically opening wider when the pressure differential is high and automatically moving toward the closed position when the pressure differential is low, the steam is at a low pressure and can remain at Environment A substantially constant pressure difference. The containment chamber 360 is maintained at a minimum of 0.05 water readings during transport, at least W water plumes or at least water plumes and/or no more than 1 water column logarithm, no greater than 丨The logarithm of the water column is not more than 0.5 water column - vacuum. In the embodiment, the vents 370a, 370b are configured to permit at least 2 exchanges, at least 4 exchanges, or at least 5 per hour. The exchange of electricity from the "steam capacity, W extracted out - 160978.doc -26· 201231885 rate of fluid from the external environment (you are like a fan | clothing [such as 'J mourning air) to the steam to accommodate 360 纟The Shen-Second exchange is equal to one volume of the steam receiving chamber 360. As used herein, the term "number of exchanges per hour" refers to the total number of times the total volume of fluid in the system is replaced per hour, which is obtained by dividing the volumetric flow rate of steam removed from the system. The total system volume is calculated. • The size of the 'steam containment chamber 36' in the embodiment may be such that the reactor 322 and the heater 332 (eg, the internal volume of the positioning reactor and heater) are at least 2 feet apart, at least 4 feet, or at least 6 feet apart from each other. / or no more than 50 feet, no more than 30 feet or no more than 2 feet. In one embodiment, the length of the 'vaporated A-nano chamber may be the same or substantially the same as the distance between reactor 322 and heater 332. According to an embodiment, the ratio of the length of the vapor containing chamber 360 to the total length of the reactor 322 and/or the total length of the heater 332 may be at least 0.1:1, at least 0.2:1, or at least 0.3:1 and/or Not more than 1:1, not more than 0.6:1 or not more than 05:1. When the spacing between reactor 322 and heater 332 is minimized, reactor outlet door 329 and heater inlet door 338 may be capable of contacting each other during opening. In this embodiment, the reactor outlet door 329 and the heater inlet door 338 can be configured to nest/overlap each other (but not in contact with each other) when both are fully open. Figure 4d is a side elevational view of a wood processing facility 416 including a reactor 322, a heater 332, and a vapor containment chamber 360 disposed therebetween. Figure 4d additionally illustrates an embodiment of a product vapor removal system or structure 400 employing one of the outlet doors 339 located adjacent the heater 332. The product vapor removal system 400 can be configured to deliver steam from the outlet gate 339 of the heater 332 and away from an area near the exit gate 339 (e.g., a recovery chamber). This configuration may be substantially reduced by 160978.doc -27-201231885 and in some embodiments may substantially prevent vapor from the chemically treated wood bundle exiting heater 332 and/or from exiting reactor 322 and/or The steam of the heater 332 escapes to the external environment. As shown in Figure 4d, the steam/flying chamber 360 and product vapor removal system 4 can be coupled or otherwise operatively coupled to a common venting system 4〇2. The venting system 4〇2 is used to extract steam and gas from the vapor containing chamber 360 and/or to pass it through the product vapor removal system 400. Although Figure 4d illustrates a common venting system 4〇2 for both steaming a valley chamber 360 and product vapor removal system 4, individual venting systems may also be used for each containment/venting region of the wood treatment facility. . In the embodiment illustrated in Figure 4d, the product vapor removal system 4 includes a venting shroud 404 and a venting chamber 406 disposed between the venting shroud 4〇4 and the heater 332. The venting cap 404 and the venting chamber 406 can be coupled to a venting system 402 that draws steam from the venting shroud 4〇4 and/or the plenum chamber 406. The plenum 406 can be configured to receive a chemically modified bundle of wood through the heater outlet door 339 (which opens into the plenum 406). The venting chamber 406 can be equipped with a venting chamber outlet 4〇8 through which the chemically modified wood material passes to a cooling position below the venting cover 4〇4. In one embodiment, the plenum outlet 4〇8 can be equipped with a door 4〇9 that substantially isolates the exterior environment from the interior of the plenum when closed. When the venting chamber is equipped with such a door, the venting chamber may also be equipped with venting holes (not shown) similar to the venting holes 37A, 37 of the steam accommodating chamber 36 先前 previously described with reference to Figure 4c. However, in another implementation, the vent exit 4〇8 is configured to continually permit fluid to pass from the external environment to the interior of the venting chamber. In this embodiment, the plenum outlet 408 can be fully open to permit free flow of fluid therethrough. Another option is that the venting chamber outlet 408 may be partially covered with a flexible material (eg, a 'suspended VISQUEEN sheet or VISQUEEN strip) that permits chemically treated wood strands to pass therethrough, but at least partially inhibits passage therethrough. The free flow of its fluid. In one embodiment of the invention, the plenum 406 can be completely eliminated and the venting shroud 404 can be positioned adjacent the exit gate 339 of the heater 332. As shown in Figure 4d, the venting system 40 2 can include one or more vacuum generators 410, a processing device 412, a flow finder 414, and a plurality of steam outlet conduits 349a through 349c. The vacuum generator 410 is operable to draw steam from the vapor containing chamber 360, the venting shroud 404, and/or the plenum 406 via outlet conduits 349a, 349b, 349c, respectively. The processing device 412 is operable to remove or change the composition of at least a portion of one or more components of vapor extracted from the vapor containing chamber 360, the venting shroud 4〇4, and/or the plenum chamber 406 via the vacuum generator 410. Examples of suitable processing devices may include, but are not limited to, scrubbers, thermal oxidizers, catalytic oxidizers or other catalytic processes and/or precipitation

蒸Ά容納室360與產品蒸汽移除結構(例如, ’通氣罩404及/The distillate containment chamber 360 and the product vapor removal structure (eg, 'ventilation cover 404 and/or

移除之最大蒸汽體積, 舉例 氣容量。如本文中所使用,術語 經由-真空產生器或其他源自系統 其表達為一基於時間之速率。舉例 160978.doc •29· 201231885The maximum steam volume removed, for example, gas capacity. As used herein, the term is expressed as a time based rate via a vacuum generator or other source system. Example 160978.doc •29· 201231885

域中之一者(諸如(舉例而言)蒸汽容納室 X提供至蒸汽容納室360、將1/6乂提供至 通氣罩404且將】/6;χ提供至通氣室jog。 現將關於圖4d詳細闞述木材處理設施416之操作之一項 實施例。可經由反應器入口門328將一第一木材束(本文中 由字母「c」表示)裝載至化學改質反應器322中並對其進One of the domains (such as, for example, a steam holding chamber X provided to the steam receiving chamber 360, 1/6 inch is provided to the venting shroud 404 and will be) /6; χ is provided to the venting chamber jog. 4d details an embodiment of the operation of the wood processing facility 416. A first wood bundle (indicated by the letter "c" herein) can be loaded into the chemical upgrading reactor 322 via the reactor inlet gate 328 and Its progress

行化學處理。同時, 材束(此處由字母「B 可經由加熱器入口門338將一第二木 」表示)引入至加熱器332中並對其進 行加熱及/或乾燥。當束C及B分別在化學改質反應器322及 加熱器332中進行化學改質及加熱/乾燥時,可自通氣室 406移除一第三木材束(本文中用字母「A」表示)並將其定 位於通氣罩404下方,如圖4d中大體展示。 一旦束A已被充分乾燥,即可將其自通氣罩4〇4移除並輸 送至一儲存區域(未展示)。接著,可使用引流器414調整通 氣系統402之總通氣容量之分配以使得增加分配至蒸汽容 納室360之通氣容量之量,而減少分配至通氣罩4〇4之通氣 容量之量。接下來,在完成束「B」之加熱之後,加熱器 入口門338及加熱器出口門339可連續開放且存在於加熱器 160978.doc •30· 201231885 332之内部中之任何殘餘蒸汽或氣體可被移除並在進入通 氣系統402之前穿過蒸汽容納室36〇。在一項實施例中加 熱Is 332之此排空亦可包括透過通氣罩4〇4及通氣室當 存在時)將一外部流體(例如,環境空氣或其他惰性氣體)抽 取至該系統中。該外部流體可接著經由加熱器出口門 進入加熱器332且在經由加熱器入口門338退出加熱器332 並通行至蒸汽容納室360中之前穿過加熱器332之内部。一 旦處於蒸汽容納室360中,該外部流體連同自加熱器332之 内部移除之任何殘餘蒸汽或氣體即可藉助通氣系統4〇2以 每小時至少2次交換、每小時至少4次交換或每小時至少6 次交換之一速率自蒸汽容納室36〇抽出。舉例而言,若該 通氣系統具有100立方米之一總體積且蒸汽移除之速率係 200立方米/小時,則每小時交換次數將係(2〇〇立方米/小 時)/(100立方米)或每小時2次交換。 一旦已自蒸汽容納室360移除外部流體及殘餘蒸汽/氣 體,束B即可經由加熱器出口門339自加熱器332移除、穿 過通氣室406(若存在)並定位於通氣罩404下方以冷卻及/或 進一步乾燥束B ’如先前詳細論述。可接著在順序地打開 反應器出口門329及反應器入口門328之前關閉加熱器出口 門339。此後,可使用通氣系統402以自化學改質反應器 322之内部排空殘餘蒸汽或氣體。在一項實施例中,一外 部流體(例如’環境空氣或其他惰性氣體)可經由反應器入 口門328抽取至反應器322中且在經由反應器出口門329退 出至蒸汽容納室360中之前穿過反應器322之内部。如上文 160978.doc •31 · 201231885 所闡述’該外部流體及任何殘餘蒸汽或氣體可接著經由蒸 /飞出管道349a以每小時至少2次交換、每小時至少4次交 換或每小時至少6次交換之—速率自蒸汽容納室360抽出。 此後,束c可經由反應器出口門329自化學改質反應器 322移除並沿-輸送路徑399穿過蒸汽容納室鳩。在一項 實施例中,1品通氣系統402可用以在於反應器322與加熱 器332之’送該束期間自蒸汽容納室遍抽取氣體及蒸 /飞可接著在起始束C之加熱之前經由加熱器入口門338將 化學潤濕束C引入至加熱器332之内部中。接下來可在依 序關閉反應器入口門328、反應器出口門329及加熱器入口 門338之前將一第四束(未展示)裝載至化學改質反應器322 之内部中。可減少至蒸汽容納室36〇之總通氣容量之分 配同時增加至通氣罩404之分配,以藉此冷卻及/或進一 步乾燥束Β»在重複上文所提及之步驟以處理一新木材束 序列之前在一裝載區域(未展示)中或在反應器入口門328附 近装配—第五束(未展示)。 應理解,在上文所闡述之操作順序中,某些步驟可較佳 以所闡述之次序實施,而某些步驟可同時實施及/或可切 換某上步驟之次序。僅為闡述操作木材處理系統之一 個例示性方法而包含以上步驟序列。 微波加熱系統 根據一項實施例,上文所闡述之加熱系統中之一或多者 可G括利用微波能來加熱一或多個物件或物項之微波加熱 系統除上文所闡述之木材處理設施之一項實施例以外, 160978.doc -32· 201231885 根據本發明之-項實施難“微波力H㈣可廣泛適 用於各種各樣之其他過程。應理解,_本文中主要關於 用於加熱木材」或—「木材束」之過程進㈣述,但本 文中所闡述之過程及系統可等效地適用於其中加熱一或多 個物品、物件或負載之應用。可利用如本文中所闡述之微 波加熱系統之其他類型之應用之實例可包含(但不限於)各 種材料之高溫真空陶曼及金屬燒結、熔融、硬銲及熱處 理。在一項實施例中,該微波加熱系統可包含一真空系統 (幻如 微波真空加熱器)且可用於諸如礦物及半導體等 材料之真空乾燥、諸如水果及蔬菜等食品之真空乾燥、陶 瓷及纖維模具之真空乾燥以及化學溶液之真空乾燥。 現翻至圖5,根據本發明之一項實施例組態之一微波加 熱系統420圖解說明為包括至少一個微波產生器“之、一微 波加熱器430、一微波分佈系統44〇及一選用真空系統 450。由微波產生器422生產之微波能可經由微波分佈系統 440之一或多個組件引導至微波加熱器43()。稍後將詳細論 述關於微波分佈系統440之組件及操作之額外細節。當存 在時,真空系統450可操作以將微波加熱器43〇中之壓力減 小至不大於550托、不大於450托、不大於350托、不大於 250托、不大於200托、不大於15〇托、不大於1〇〇托或不大 於75托。在一項實施例中,該真空系統可操作以將微波加 熱器430中之壓力減小至不大於1〇毫托(1〇-3托)、不大於5 毫托、不大於2毫托、不大於1毫托、不大於〇.5毫托或不 大於0.1毫托。現將在下文中詳細論述微波加熱系統42〇之 160978.doc •33· 201231885 組件中之每一者。 微波產生器422可係能夠生產或產生微波能之任一裝 置。如本文中所使用’術語「微波能」係指具有在3〇〇 MHz與30 GHz之間的一頻率之電磁能。在—項實施例中, 微波加熱系統420之各種組態可利用具有915 MHz之一頻率 或2_45 GHz之一頻率之微波能,此兩個頻率通常已指定為 工業微波頻率。微波產生器之適合類型之實例可包含(但 不限於)磁控管、速調管、行波管及回旋管。在各種實施 例中,一或多個微波產生器422可能夠遞送(例如,具有以 下項之一最大輸出)至少5 kW、至少30 kW、至少50 kw、 至少60 kW、至少65 kW、至少75 kW、至少1〇〇 kw、至少 150 kW、至少200 kW、至少250 kW、至少350 kW、至少 400 kW、至少500 kW、至少600 kW、至少750 fcW或至少 1,000 kW及/或不大於2,500 kw、不大於15〇〇让貨或不大於 i,ooo kw。儘管圖解說明為包括一個微波產生器422,但 微波加熱系統420可包括經組態以按一類似方式操作之兩 個或兩個以上微波產生器。 微波加熱器430可係能夠接納並使用微波能加熱一或多 個物品(包含(舉例而言)木材束或木料束)之任一裝置。在 一項實施例中,由微波加熱器43〇提供之熱量或能量之至 少75%、至少85%、至少95%或實質上全部可由微波能提 供。微波加熱器430亦可用作一微波乾燥器,其可進一步 操作以使用如本文中所闡述之微波能來乾燥安置於其中之 一或多個物項。 I60978.doc 34· 201231885 現翻至圖6 ’ 一微波加熱器5 3 0之一項實施例圖解說明為 包括一容器本體532及用於選擇性地准許及阻擋進出微波 加熱器530之内部536之一或多個物件之存取或通行之一門 534。在一項實施例中,微波加熱器53〇之容器本體532可 沿一中心伸長軸535伸長’該軸可沿一實質上水平方向定 向’如圖6中所圖解說明。容器本體532可具有任一適合形 狀或大小之一剖面。在一項實施例中,容器532之剖面實 質上可係圓形或修圓的,而在另一實施例中,該剖面可係 橢圓形的。根據一項實施例,容器本體532之剖面之大小 及/或形狀可沿伸長方向改變,而在另一實施例中,其剖 面之形狀及/或大小可保持實質上相同。在圖6中所繪示之 實施例中,微波加熱器530之容器本體532包括具有一圓形 剖面之一水平伸長、圓柱形容器本體。 微波加熱器530可具有一總的最大内部尺寸或長度L及一 最大内徑D,如圖6中所展示。在一項實施例中,l可係至 少8英尺、至少1〇英尺、至少16英尺、至少2〇英尺至少 30英尺、至少50英尺、至少75英尺、至少1〇〇英尺及/或不 大於500英尺、不大於35〇英尺、不大於25〇英尺。在另一 實施例中,D可係至少3英尺、至少5英尺、至少10英尺、 至少12英尺、至少ι8英尺、至少2()英尺、至少辦尺或至 少30英尺及/或不大於25英尺、不大於2〇英尺或不大於15 央尺。在一項實施例中,微波加熱器53〇之長度對其内徑 (L:D)之比率(L:D)可係至少1:1、至少2:1 '至少3:1、至少 4:1、至少6:1、至少8:1、至少1〇:1及/或不大於50:1、不大 160978.doc -35- 201231885 於40:1或不大於25:1。 微波加熱器530可由任一適合材料建構。在一項實施例 中,微波加熱器530可包括至少一種導電及/或高反射材 料。適合材料之實例可包含(但不限於)選定碳鋼、不銹 鋼、鎳合金、鋁合金及銅合金。微波加熱器53〇可幾乎完 全由一單種材料建構,或可使用多種材料來建構微波加熱 器530之各種部分。舉例而言,在一項實施例中,微波加 熱器530可由一第一材料建構且可接著在其内部及/或外部 表面之至少一部分上塗佈或分層一第二材料。在一項實施 例中,該塗層或層可包括上文所列舉之金屬或合金中之一 或多者,而在另一實施例中,該塗層或層可包括玻璃、聚 合物或其他電介質材料。 微波加熱器530可界定適於接納一負載之一或多個空 間。舉例而言,在一項實施例中,微波加熱器53〇可界定 經組態以接納及固持一或多個木材束(圖6中未展示)之一束 接納空間》該負載(例如,木材)可以一靜態或動態方式定 位於微波加熱器530之内部536内。舉例而言,在其中該負 載靜態定位於微波加熱器53〇中之一項實施例中該負載 可在加熱期間相對不運動且可使用靜態定位 示K諸如,舉例而言一架子、一平臺、一停放之 = 車、一停止的傳動帶或諸如此類)保持於適當位置。在其 中該負載動態定位於微波加熱器530内之另—實施例中, 該負載可在加熱期間在使用一或多個動態定位裝置(未展 不)進行加熱之至少一部分期間處於運動中。動態定位裝 160978.doc •36· 201231885 置之實例可包含(但不限於)連續移動傳動帶、滾輪、水平 及/或垂直振盈平臺以及旋轉平臺。纟一項冑施例中,一 或多個動態定位裝置可用於一大體連續過程中,而—或多 個靜態疋位裝置可用於一分批或半分批過程中。 根據本發明之一項實施例,微波加熱器530亦可包括一 或多個密封機構以減小、抑制、最小化或實質上防止在處 理期間進出容器内部536之流體及/或微波能之茂漏。如圖 6中所圖解說明’容器本體532及門534可各自具有各別本 體側密封表面531及Η側密封表面533。在__項實施例中, 本體側密封表面531及門側密封表面533可在關閉門534時 在門534與容器本體532之間直接或間接形成一流體密封。 可在本體側密封表面531及門侧密封表面533之至少一部分 實現彼此直接實體接觸時形成一直接密封。可在於門534 密封時抵靠門側密封表面533及本體側密封表面531至少部 分地壓縮用於流體地隔離微波加熱器530之内部與一外部 環境(圖6中未展示)之一或多個彈性密封構件時在門534與 容器本體532之間形成一間接密封。彈性密封構件之實例 可包含(但不限於)〇型環、螺旋纏繞式墊片、片狀墊片及諸 如此類。根據一項實施例,當經受使用一 Varian型號第 938-41號谓測器根據在Aicatel Vacuum Technology發佈之 標題為「Helium Leak Detection Techniques」之文件中闡 述之標題為「Spraying Testing」之程序B1進行之一氦洩漏 測試時’在容器本體532與門534之間形成之直接或間接密 封可使得微波加熱器530可在本體532與門534之接面處或 J60978.doc •37· 201231885 接近該接面具有不大於10.2托·升/秒、不大於10·4托.升/秒 或不大於1 〇·8托.升/秒之一流體洩漏率。在一項實施例中, 流體密封可在微波加熱器5 3 〇内側之環境包括一低氣壓且 以其他方式具有挑戰性之處理環境時特別有利。 根據本發明之一項實施例組態之微波加熱器亦可包括一 微波阻流器,其用於在關閉門534時抑制或實質上防止微 波加熱器530之門534與容器本體532之間的能量洩漏(例 如,在門534與容器本體532之接面處或接近該接面)。如 本文中所使用,術語「阻流器」係指一微波容器之可操作 以在施加微波能期間減小自該容器或逸出該容器之能量洩 漏之量之任一裝置或組件。在一項實施例中,阻流器可係 可操作以在與不採用一阻流器時相比將自該容器之微波洩 漏之量減小至少25%、至少50%、至少75%或至少9〇%之任 一裝置。在本發明之一項實施例中,微波阻流器可操作以 在藉助一 Narda MiCr〇line型號8300之寬頻帶各向同性輻射 監視器(300 MHz至18 GHz)自容器量測5 時允許不大於 5〇毫瓦/平方楚米(mW/cm2)、不大於25 mw/cm2、不大於 1 〇 m W/cm2、不大於5 m w/cm2或不大於2爪π—2之微波能 透過阻流器自加熱器洩漏。 進步地,與習用微波阻流器(其通常在經受低氣壓時 出故障)相比,根據本發明之一項實施例組態之微波阻流 °操作以甚至在全真空條件下實質上抑制微波能洩漏。 舉例而言,在一項實施例中’如本文中所闡述之一微波阻 流器可抑制微波能自加熱器茂漏至上文所闡述之在微波加 160978.doc -38_ 201231885 熱器中之壓力係不大於550托、不大於450托、不大於350 托、不大於250托、不大於200托、不大於1〇0托或不大於 75托時之程度。在一項實施例中,如本文中所闡述之一微 波阻流器可抑制微波能自加熱器洩漏至如上文所闡述之在 微波加熱器中之壓力係不大於1 〇毫托(丨0_3托)、不大於5毫 托、不大於2毫托、不大於1毫托、不大於〇5毫托或不大 於0.1毫托時之程度。進一步地,根據本發明之一項實施 例之一微波阻流器可在大型單元上維持其洩漏防止位準, 諸如(舉例而言)具有至少5 kW、至少30 kW、至少50 kW、 至少60 kW、至少65 kW、至少75 kW、至少1〇〇 kW、至少 150 kW、至少200 kW、至少250 kW、至少350 kW、至少 400 kW、至少500 kW、至少6〇〇 kw、至少75〇 kw或至少 l’OOO kW及/或不大於2,5〇〇 kW、不大於1500 kW或不大於 l,000 kW之一微波能輸入率之微波加熱器。 在一項實施例十,在甚至以上文所闡述之微波能及真空 壓力之位準將微波能引入至容器中時(例如,在加熱步驟 期間)’實質上不在接近阻流器65〇處發生發弧。如本文中 所使用,術語「發弧」係指至少部分地藉由一周圍流體之 離子化所致之非期望、不受控制之放電。發弧C其可損壞 α備及材料且引起一實質上起火或爆炸危險)在較低壓力 (尤其低氣壓(例如’真空)壓力)下具有—較低臨限值。通 常’習用系統限難量輸人之速率以最小化或避免發弧。 然而’與習用系統相比,根據本發明之實施例組態之微波 加熱器可操作以在壓力係不大於550托、不大於彻把、不 160978.doc •39· 201231885 大於350托、不大於250托、不大於200托、不大於1〇〇托、 不大於75托、不大於10毫托(1〇_3托)、不大於5毫托、不大 於2毫托、不大於1毫托、不大於0.5毫托或不大於〇·ι毫托 及/或至少50托或至少75托時,以至少5 kW、至少30 kW、 至少50 kW、至少60 kW、至少65 k\V、至少75 kw、至少 100 kW、至少150 kW、至少200 kW '至少250 kW、至少 350 kW、至少400 kW、至少500 kW、至少600 kw、至少 750 kW或至少1,000 kW及/或不大於2,5〇〇 kw、不大於 1,500 kW或不大於1,000 kW之一速率接納微波能並可將其 引入至一微波加熱器(視需要稱為一真空微波加熱器或一 真空微波乾燥器)中而在阻流器處或接近阻流器處實質上 無發弧。 現參考圖7a ’提供用於在關閉門634時實質上抑制一微 波加熱器之一門634與一容器本體632之間的微波能洩漏之 一微波阻流器650之一項實施例之一剖面段。如圖化中所 展示,當關閉門634且各別門側633及本體側631密封表面 彼此直接或間接接觸時,微波阻流器65〇之至少一部分協 作地界定或形成於門634與容器本體632之間。在一項實施 例t,亦可存在一選用流體密封構件66〇以抑制、最小化 或實質上防止進出微波加熱器之流體之洩漏,如先前所論 述》流體密封構件660(當存在時)可耗合至容器纟體奶或 (如圖7a中所展示)耦合至門634。 根據圖7a中所展示之一Ji -¾1 λ. 又項實施例中,微波阻流器050界 定-第-徑向延伸阻流器腔652、—第二徑向延伸阻流器 160978.doc •40· 201231885 腔654及在關閉微波加熱器之門634時至少部分地安置於第 一阻流器腔652與第二阻流器腔654之間的一徑向延伸阻流 器導流壁656。在圖7a中所圖解說明之一項實施例中,當 關閉門634時第一阻流器腔652界定於容器本體632與阻流 器導流壁656之間,而第二阻流器腔654至少部分地安置於 門634與阻流器導流壁656之間,以使得阻流器導流壁656 實質上耦合至門634。第一阻流器腔652可對微波加熱器之 内部開放且可徑向定位於微波加熱器之内部與藉由密封構 件660(當存在時)形成之流體密封之間。在本發明之另一實 施例(圖7a中未展示)中,第二阻流器腔654可至少部分地由 容器本體632界定,以使得當關閉門634時第二阻流器腔 654可定位於容器本體632與阻流器導流壁656之間,以使 得阻流器導流壁656實質上耦合至容器本體632。 在一項實施例中,當關閉門634時第二阻流器腔654之至 少一部分可靠攏著第一阻流器腔652之至少一部分延伸。 在一項實施例中,當關閉門634時第二阻流器腔654之總長 度之至少40%、至少60%、至少80%或至少90%可靠攏著第 一阻流器腔654延伸。第一阻流器腔652及/或第二阻流器 腔654之總長度(在圖7a中用字母「L」指定)可係微波加熱 器内部之微波能之主要波長長度之至少1/16倍、至少1/8 倍、至少1/4倍及/或不大於1倍、不大於3/4倍或不大於1/2 倍。第一阻流器腔652及/或第二阻流器腔654之長度L可係 至少1英尺、至少1.5英尺、至少2英尺或至少2.5英尺及/或 不大於8英尺、不大於6英尺或不大於5英尺。 160978.doc -41 - 201231885 如圖7b中所圖解說明,一相對延伸角φ可界定於第一阻 流器腔652之延伸方向(由線690指定)與第二阻流器腔654之 延伸方向(由線692指定)之間。在各種實施例中,相對延伸 角Φ可係不大於60。、不大於45。、不大於30。或不大於 15。。在某些實施例中,第二阻流器腔654之延伸方向可實 質上平行於第一阻流器腔652之延伸方向,如圖7a中所繪 示。 現參考圖7c,提供一微波阻流器之一局部等軸剖面部 分。如圖7c中所展示,阻流器導流壁656可整體地形成至 門634中。根據一項實施例,導流壁656可包括沿導流壁 656圓周地安置之複數個經隔開之開端式間隙67〇。在一項 實施例中,該等間隙中之每一者之中心線之間的間隔可係 至少〇·5英吋、至少1英吋、至少2英吋或至少2·5英吋及/或 不大於8英吋、不大於6英吋或不大於5英吋。 根據本發明之另一實施例,阻流器650之至少一部分可 包括可移除地耦合至容器本體632或門634之一可移除部分 651。在一項實施例中,可移除部分65丨可係可移除地耦合 至門634 »如本文中所使用,術語「可移除地耦合」意指 以使得可在實質上不損壞或破壞容器本體、阻流器及/或 門之情況下移除阻流器之一部分之一方式附接。在一項實 施例中,可移除阻流器部分651可包括導流壁656之至少一 部分或全部。圖7d圖解說明具有至少一個可移除部分65 1 之微波阻流器。在圖7 d中所繪示之一項實施例中,導流 壁656可耦合至可移除阻流器部分651。可移除阻流器部分 160978.doc •42- 201231885 651可包括各自可移除地耦合至門634或容器本體632(實施 例未展示)之複數個可移除阻流器段6533至653e。在一項 實施例中,可移除阻流器部分651可包括至少2個、至少3 個、至少4個、至少6個、至少8個及/或不大於16個、不大 於12個、不大於10個或不大於8個可移除阻流器段653。根 據其中可移除阻流器部分651具有一大體環形直徑之一項 實施例,可個別移除阻流器段653&至6536可具有一大體弧 形形狀’如圖7d中所展示。 可移除阻流器部分651可根據任一習知方法(包含(舉例 而5)螺拴、螺釘或任一其他類型之適合可移除緊固裝置) 緊固至門634或容器本體632。在一項實施例中,可移除阻 流器部分651可磁性地緊固至門634或容器本體632。部分 地端視期望之緊固方法,可移除阻流器部分651可具有各 種各樣之。!面形狀。舉例而言,如圖7e至几中所圖解說 明’可移除阻流器部分651可界定大體〇形(如圖〜中所展 示)、大體J形或U形(如圖7f中所展示)、大體[形(如圖、中 所展示)或大體1形(如圖711中所展示)之一剖面。 术乍中了在不移除容器本體632及/或門634之部分 或實質上再機械加工容器本體632及/或門634之情況下附 接、移除及/或隨後替換可移除阻流器部分651以恢復微波 加熱器之正常操作。舉例而I,在-項實施例中,複數個 可個別移除阻流器段6仏至653e可單獨地且個別地附接至 門634及/或容器本體如。隨後,當微波阻流器之一或多 個。P刀變得文損或以其他方式需要替換時,—或多個可個 160978.doc -43- 201231885 別移除阻流器段653及/或整個可移除阻流器部分651可單 獨地且個別地自容器本體632或門634拆卸或移除並用一或 多個新(例如,替換)可移除阻流器段653及/或一新可移除 阻流器部分651替換。在一項實施例中,可自容器本體632 或門634拆卸且接著再附接至容器本體632或門634(例如, 自其移除且替換至其上)之可移除阻流器段653a、653b、 653c、653d及/或653e之數目可至多或不大於係可移除部分 6 51之阻流器段6 5 3 a至6 5 3 e之總數目。 微波加熱器530(在圖6中一般性地表示)可端視其中之微 波能表現如何而分類為一單模式腔、一多模式腔或一準光 學腔。如本文冲所使用,術語「單模式腔」係指經設計及 操作以將其中之微波能維持為一單個、特定模式型樣之一 腔》經常地,一單模式腔之設計及性質可限制容器之大小 及/或一負載可如何定位於該室内。因此,在一項實施例 中,微波加熱器530可包括一多模式或一準光學模式腔。 如本文中所使用,術語「多模式腔」係指其中以—半隨機 或未經引導方式將微波能激發成複數個駐波型樣之一腔或 室。如本文中所使用,術語「準光學模式腔」係指其中以 一受控方式朝向一特定區域引導大部分但並非全部能量之 一腔或室。在一項實施例中,一多模式腔在接近容器之中 心處具有比一準光學腔高之一能量密度,而準光學腔可利 用微波能之準光學性質以更緊密地控制及引導至腔内部中 之能量之發射》 翻回至圖5中所圖解說明之微波加熱系統42〇,微波分佈 160978.doc 201231885 系統440可操作以將由微波產生器422生產之微波能之至少 一部分傳輸或引導至微波加熱器430中,如上文簡單地論 述。如圖5中示意性地展示’微波分佈系統440可包含可操 作地耦合至一或多個微波發射器(圖解說明為發射器444a 至444c)之至少一個波導442。視需要,微波分佈系統44〇 可包括用於改變穿過其之微波能之模式之一或多個微波模 式轉換器446及/或用於將微波能選擇性地路由至微波發射 器444a至444c中之一或多者之一或多個微波切換器(未展 示)。現將在下文中詳細論述關於微波分佈系統440之特定 組件及各種實施例之額外細節。 波導442可操作以將微波能自微波產生器422輸送至微波 發射器444a至444c中之一或多者。如本文中所使用,術語 「波導」係指能夠將電磁能自一個位置引導至另一位置之 任一裝置或材料。適合波導之實例可包含(但不限於)同軸 電繞包覆光纖、填充電介質之波導或任一其他類型之傳 輸線。在一項實施例中,波導442可包括用於將微波能自 微波產生器422輸送至發射器444a至444c中之一或多者之 一或多個填充電介質之波導段。 波導442可經設計及建構以按一特定主要模式傳播微波 能》如本文中所使用,術語「模式」係指微波能之一大體 固定刮面場型樣。在本發明之一項實施例中,波導442可 經組態以按一 TE〇模式傳播微波能,其中X係自丨至5之範 圍中之-整數以係0。在本發明之另—實施例中,波導 442可經組態以按-TM』式傳播微波能,其中係 160978.doc -45- 201231885 自1至5之範圍中之一整數。應理解,如本文中所使用,在 用以闡述微波傳播之一模式時之α、X及少值之上文所界 疋範圍貫穿此說明適用。進一步地,在某些實施例中,當 一系統之兩個或兩個以上組件闡述為「ΤΜ&」或「ΤΕ^」 組件時,對於每一組件,β、^及/或少之值可係相同或不 同。在一項實施例中,對於一既定系統之每一組件,β、 办、X及/或少之值係相同。 波導442之形狀及尺寸可至少部分地取決於將穿過其之 微波能之期望模式。舉例而言,在一項實施例中,波導 442之至少一部分可包括具有一大體矩形剖面之ΤΕ ”波 導’而在另一實施例中,波導442之至少一部分可包括具 有大體圓形剖面之ΤΜβέ波導。根據本發明之一項實施例, 圓形剖面波導可具有至少8英忖、至少1 〇英叶、至少12英 〇寸、至少24央11寸 '至少36英时或至少4〇英叶之一直徑。在 另一實施例中,矩形剖面波導可具有至少丨英吋、至少2英 叶、至少3奂叶及/或不大於6英叶、不大於5英忖或不大於 4英吋之一短尺寸’而長尺寸可係至少6英对、至少1〇英 吋、至少12英吋、至少18英吋及/或不大於5〇英吋、不大 於35英吋或不大於24英吋。 如圖5中示意性地圖解說明,微波分佈系統44〇可包括可 操作以改變穿過其之微波能之模式之—或多個模式轉換段 446。舉例而言,模式轉換器446可包括用於將微波能之至 少一部分之模式自一 TMafe模式改變至—TE〇模式之一 TMd 至ΤΕ^模式轉換器。在另一實施例中,模式轉換段446可 160978.doc • 46· 201231885 包括用於接收TMaf)模式能量並將呈一 模式之微波能轉 換及排放之一 ΤΕ〇至ΤΜαί>模式轉換器。α、6、文及^之值可 在先則所闡述之範圍内。微波分佈系統44〇可包括任意數 目個模式轉換器446,且在一項實施例中可包含定位於微 波分佈系統440内之各種位置處之至少丄個、至少2個 '至 少3個或至少4個模式轉換器。 再次翻至圖5 ’微波分佈系統440可包括用於經由波導 442自產生器422接收微波能並將該微波能之至少一部分發 射或排放至微波加熱器4 3 0之内部中之一或多個微波發射 器444。如本文中所使用,術語「微波發射器」或「發射 器」係指能夠將微波能發射至一微波加熱器之内部中之任 裝置。根據本發明之各種實施例之微波分佈系統可採用 至少1個 '至少2個、至少3個、至少4個、至少5個、至少6 個至少8個、至少10個及/或不大於1〇〇個、不大於5〇個 或不大於25個微波發射器。微波發射器可係任一適合形狀 及/或大小且可由任何材料建構,包含(舉例而言)選定碳 鋼、不銹鋼' 鎳合金、鋁合金及銅合金。在其中微波分佈 系統440包括兩個或兩個以上微波發射器之一項實施例 中,每一發射器可由相同材料製成,而在另一實施例中, 兩個或兩個以上發射器可由不同材料製成。 在操作中,由一或多個微波產生器422產生之微波能可 視需要經由波導442路由或引導至一或多個模式轉換器 446(若存在)。此後,波導442中之微.波能可在被引導至一 或多個微波發射器(在圖5中圖解說明為44牦至444c)之前視 160978.doc -47· 201231885 需要地分裂成兩個或兩個以上單獨微波部分(例如,如圖5 中所展示之至少三個部分)》微波發射器44牦至444c可部 分地或整體地安置於微波加熱器430内且可操作以經由一 或多個經隔開之發射位置將通行至其之微波能之至少一部 分引入或發射至加熱器43〇之内部中,藉此加熱及/或乾燥 安置於其中之物件、物品或負載,包含(舉例而言)一或多 個木材束。現將在下文中詳細論述關於微波加熱系統之各 種實施例之特定組態及細節。 現翻至圖8至10,提供根據本發明組態之微波加熱系統 之數個實施例。儘管闡述為經組態以接納及加熱一木材 束,但應理解,下文所闡述之微波加熱系統可適於在先前 所闡述之其他過程及系統中之任一者中以及其中使用微波 加熱之任一系統或過程中使用。進一步地,應理解,儘管 參考一特定圖或實施例闡述,但下文所闡述之所有元件及 組件了適於在根據本發明之一或多個實施例組態之任一微 波加熱系統中使用。 現翻至圖8a及8b,一微波加熱系統720之一項實施例係 圖解說明為包括一微波加熱器73〇及用於將微波能自一微 波產生器(未展示)遞送至加熱器73〇之一微波分佈系統 740。在各種實施例中’一選用真空系統(未展示)可操作以 將微波加熱器730之内部中之壓力減小至(舉例而言)不大於 550托、不大於450托、不大於350托、不大於300托、不大 於250托、不大於200托、不大於150托、不大於1〇〇托、不 大於75托及/或不大於1〇毫托(1〇-3托)、不大於5毫托、不大 160978.doc -48- 201231885 於2毫托、不大於1毫托、不大於0.5毫托或不大於0.1毫 托下文將詳細論述微波加熱系統720之一或多個實施例 之數個特徵。 現翻至圖8a,微波分佈系統74〇係圖解說明為包括一經 伸長之波導發射器760,其至少部分地且可整體地安置於 微波加熱器730之内部内。如圖8a中所展示,經伸長之波 導發射器760可實質上水平地延伸於微波加熱器73〇之内部 内。如本文中所使用,術語「實質上水平地」意指在水平 面之10内。在一項實施例中,經伸長之波導發射器760之 長度對微波加熱器730之内部空間之總長度之比率可係(舉 例而言)至少0.3:1、至少〇.5:1、至少〇 75:1或至少〇 9〇:1。 在一項實施例中,實質上水平地延伸之經伸長之波導發射 器760可位於朝向微波加熱器73〇之内部體積之上半部或下 半部處且可至少部分地或整體地垂直安置於加熱器入口門 738及一選用加熱器出口門(未展示)上面,該選用加熱器出 口門(若存在)安置於微波加熱器730之一大體相對端上。如 本文中所使用,術語「上部」及「下部」體積係指位於容 器之内部體積之上部垂直或下部垂直部分中之區。在一項 實施例中’經伸長之波導發射器760可(舉例而言)整體地安 置於微波加熱器730之内部體積之最上部三分之一、四分 之一或五分之一内,而在另一實施例中,經伸長之波導發 射器760可(舉例而言)安置於微波加熱器730之總内部體積 之最下部二分之一、四分之一或五分之一内。為量測上文 所闡述之總内部體積之「最上部」或「最下部」分率部 160978.doc -49· 201231885 分,自容器之各別最上部或最下部壁朝向剖面之期望部分 (例如,三分之一、四分之一或五分之一)之中心伸長軸延 伸之容器剖面之部分可沿中心伸長軸延伸以藉此界定内部 容器空間之「最上部」或「最下部」分率體積。 如圖8a中所展示,可經組態以接納及加熱一木材束之微 波加熱器730包括—加熱器入口門738,其可視需要包括經 組態以允許將一木材束702引入至一束接納空間739中之一 阻流器(未展示)。儘管圖解說明為直接接觸,但應理解, 束702亦可包括安置於板之間的一或多個間隔件或「黏附 物」。在一項實施例(未展示)中,微波加熱器73〇亦可包括 定位於微波加熱器730之與加熱器入口門738相對之端上之 一選用加熱器出口門739。當微波加熱器730包括一單獨加 熱器出口門739時,束702可視需要經由入口門738裝載、 穿過微波加熱器730並經由出口門739卸載,而非透過加熱 器入口門738裝載及卸載。在此實施例中提及「入口」及 「出口」門並非限制性的,且束7〇2可視需要經由門739裝 載、穿過微波加熱器730並經由門738卸載。此外,在另一 實施例中’當(舉例而言)不存在選用出口門739時,束7〇2 可既自入口門738裝載(插入)又自入口門738卸載(移除)。 在一項實施例中,經伸長之波導發射器76〇可定位於微波 加熱器730中實質上在束7〇2下面(未展示)或上面以使得當 束702通行至加熱器730之内部中、自加熱器730之内部通 行出及/或穿過加熱器730之内部時,不必移動、移除、撤 回或以其他方式重新定位經伸長之發射器。 160978.doc -50- 201231885 現參考圖8b,提供經伸長之波導發射器之—局部詳 細等軸視圖。在一項實施例中,經伸長之波導發射器· 可係實質上中空的且包括一或多個侧壁。該一或多個側壁 可以各種各樣之方式組態以使得經伸長之波導發射器· 可具有各種各樣之剖面形狀。舉例而言,在一項實施例 中’經伸長之料發射ϋ76〇可具有界定—實質上圓形或 糖圓形剖面形狀之-單個側壁。在另—實施例中,如圖化 中所展示經伸長之波導發射器760可包括四個實質上平 面之側壁764a至764d,其經配置以將一大體矩形橫向(或 在另一實施例中’正方形)剖面組態賦予發射器76〇。經伸 長之波導發射器760可經組態以按任一適合模式(包含te^ 及/或TMei模式)傳播及/或發射微波能,如先前詳細論述/ 根據一項實施例,經伸長之波導發射器76〇可包括一經伸 長之TExy發射器,且在一項實施例中,可實施有市售之矩 形波導大小,諸如WR284、WR430或WR340。經伸長之波 導發射器760之特定尺寸可係任何適合尺寸,且在一項實 施例中,可係定製製作的。 如圖8b中所圖解說明,經伸長之波導發射器76〇之一或 多個側壁可界定用於將微波能排放或發射至微波加熱器 730之内部中之複數個發射開口。儘管在圖扑中繪示為界 定具有帶有修圓端部之一大體矩形形狀之複數個經伸長之 槽767a至767e,但發射開口 767a至767e可具有任一適合形 狀。經伸長之槽767a至767e中之每一者可界定一長度(在 圖8b中指定為「L」)及一寬度(在圖肋中指定為「w」)。 160978.doc -51 - 201231885 在一項實施例中,經伸長之槽7673至767e之長度對寬度 (L:W)比率可係(舉例而言)至少2:1、至少、至少4丨或至 》5.1。另外,如圖肋中所展示,經伸長之槽767a至””可 相對於水平面以各種角度定向。在一項實施例中,經伸長 之槽767a至767e可相對於水平面以(舉例而言)至少1〇。、至 )20 、至少30。及/或(舉例而言)不大於8〇。、不大於7〇。或 不大於6〇。之一角度延伸。在一項實施例中,經伸長之槽 767a至767e中之每一者可具有相同形狀、大小及/或定向。 在一項實施例中,個別經伸長之槽767&至7676之形狀、大 小及/或定向可不同。經伸長之槽767&至7676之形狀、大小 及/或定向之改變可影響自經伸長之波導發射器76〇發射之 能量之分佈。儘管在圖8b中所圖解說明之實施例中展示為 未經覆蓋’但一或多個發射開口 767可實質上由毗鄰於發 射開口之一或多個覆蓋結構(未展示)覆蓋,該一或多個覆 蓋結構可操作以防止進出開口 767之流體之流動但允許自 其排放微波能。 如圖8b中所展示’發射開口 767a至767e可係至少部分地 或整體地由經伸長之波導發射器76〇之一或多個側壁764a 至764d界定。在—項實施例中,發射開口 767a至767e之厚 度之至少50%、至少75%、至少85%或至少9〇%(舉例而言) 可由一或多個側壁764a至764d界定。根據圖8b中所圖解說 明之實施例’發射開口 767&至7676可至少部分地或整體地 由兩個實質上直立側壁764a、764c界定。如本文中所使 用,術語「實質上直立」意指在垂直面之3〇。内,在一項 160978.doc -52- 201231885 實施例中’經伸長之發射器760之側壁764a至764d可係相 對厚’而在其他一項實施例中,側壁764a至764d可係相對 薄。舉例而言,側壁764a至764d之平均厚度(在圖8b中指 定為X)可係至少1/32(0.03 125)英吋、至少1/8(0.125)英吋、 至少3/16(0.1875)英吋及/或(舉例而言)不大於1/2(〇 5)英 吋、不大於1/4(0.25)英吋、不大於3/16(0.1875)英吋或不大 於1/8(0.125)英吋。根據其中經伸長之波導發射器76〇之一 或多個側壁係相對薄之一項實施例,經伸長之波導發射器 760可以至少50%、至少75%、至少85%、至少90%或至少 95%之一微波發射效率將微波能發射至微波加熱器73〇之 内部中。如本文中所使用’術語「微波發射效率」可藉由 將以下方程式之結果轉換成一百分比來界定:(引入至發 射器中之總能量-自發射器之所有開口中排放之總能 量)+(引入至發射器中之總能量)。 發射開口 767a至767e可係根據任一適合組態或配置沿經 伸長之波導發射器760配置。在圖8b中所圖解說明之一項 實施例中’發射開口 767a至767e可包含安置於發射器760 之一個側上之一第一發射開口(例如,發射開口 767a、 767b)組及安置於經伸長之波導發射器760之另一大體相對 侧上之一第二發射開口(例如,發射開口 767c至767e)組。 根據一項實施例,第一發射開口組及第二發射開口組可彼 此軸向交錯’以使得對應開口(例如,展示為發射對或開 口對780a之開口 767a、767c及展示為發射對或開口對78〇b 之開口 767b、767d)並非彼此軸向對準。儘管在圖8b中圖 160978.doc •53· 201231885 解說明為僅具有兩個發射開口對780a、780b,但應理解, 可利用任意期望數目個發射開口對。 根據一項實施例,每一發射對780a、780b包含安置於經 伸長之波導發射器7 6 0之一個側上之一個發射開口(例如, 兩者皆安置於側壁764a上之對780a之開口 767a及對780b之 開口 767b)及安置於發射器760之相對側上之另一發射開口 (例如,在圖8b中兩者皆安置於側壁764c上之對780a之開 口 767c及對780b之開口 767d)。在一項實施例中,安置於 經伸長之波導發射器760之相對側上之開口 767a、767c及 開口 767b、767d可軸向對準,而在另一實施例中,相對隔 開之開口 767a、767c及開口 767b、767d可形成複數個「接 近相鄰者」對(例如,發射對780a、780b分別包括「接近 相鄰者」開口 767a、767c及開口 767b、767d)。在一項實 施例中,舉例而言,當使用偶數個發射開口時,一或多個 單端發射開口可係獨立的而不與任一其他開口形成一對。 在一項實施例中,獨立開口可係一端部開口,諸如圖8b中 所展示之端部開口 7 6 7 e。 根據其中對780a、780b包括接近相鄰者開口對之一項實 施例,發射開口對780a、780b之發射開口 767a至767d中之 至少一者可經組態以抵消如由接近相鄰者對780a、780b之 其他發射開口 767a至767d中之一或多者產生之反射回至波 導760之内部空間中之微波能之至少一部分。舉例而言, 由對780a之開口 767a所致之微波能反射可至少部分地、實 質上或幾乎整體地藉由對780a之另一開口 767b之組態而抵 160978.doc •54- 201231885 消。以一類似方式,由對780b之開口 767c所致之微波能反 射可至少部分地、實質上或幾乎整體地藉由對78〇b之另一 開口 767d之組態而抵消。 此外’在一項實施例中,當發射開口 767&至767d配置成 接近相鄰者對時,自開口對780a、780b之發射開口 767a至 767d中之每一者傳送至微波加熱器730之内部中之能量之 總量可等於引入至發射器760中之微波能之總量之一分 率。舉例而言’在其中發射器包括N對發射開口及一單端 開口之一項實施例中,自每一發射開口對(及/或未配對開 口或單端開口)發射之微波能之分率可由以下公式表達: 1/(N+1)。因此,根據圖8b中所圖解說明之一項實施例(其 中N=2) ’由對780a、780b中之每一者發射之能量之總量可 等於引入至經伸長之波導發射器76〇中之總能量之1/(2+1) 或1/3。類似地’在此實施例中,自一未配對發射開口(例 如’圖8b中之單端開口 767e)發射之能量可由公式"(n+u 表達°因此’在圖8b中所展示之實施例中,發射開口 767e 亦可發射引入至經伸長之波導發射器76〇中之總能量之大 致 1/3。 在圖9a至9h中提供一微波加熱系統82〇之另一實施例。 如圖9a中所展示’微波加熱系統820包括一微波加熱器820 及可操作以將微波能自一微波產生器(未展示)輸送至加熱 器820之一微波分佈系統84(^在一項實施例中,微波加熱 系統820亦可包括用於將微波加熱器830中之壓力減小至低 於大氣壓之一真空系統(未展示)。如圖9a中所展示,微波 160978.doc -55- 201231885 加熱器830可包含用於將一木材束(或其他負載)引入至加熱 器830之内部十之一加熱器入口門838。視需要微波加熱 器830可包括女置於加熱器830之與加熱器入口門838大體 相對之端上之一加熱器出口門(圖93中未展示)。另外,微 波加熱器830可包括位於沿微波加熱器83〇之一或多個外部 側壁83 1之各種位置處之複數個經隔開之發射開口(諸如, 在圖9a中圖解說明為841a、841b之彼等發射開口)。發射 開口 841a、841b可操作以容納微波分佈系統84〇之一或多 個組件,藉此促進至微波加熱器83〇中之微波能之傳輸。 現將關於圖9b至9h更詳細地論述關於微波分佈系統84〇之 額外細節。 翻至圖9b,提供微波加熱器830之一俯視局部剖視圖, 其特定而言圖解說明直接或間接耦合至微波加熱器830之 相對側壁831a、83lb之複數個微波發射器844a至844d。如 本文中所使用,術語「間接耦合」係指用以將一或多個發 射器至少部分地連接至容器之一或多個中間設備件。發射 器844a至844d可操作以經由一或多個開放出口 845&至845d 將微波能發射至微波加熱器830之内部中,如圖9b中所展 示。儘管在圖9b中圖解說明為包括四個發射器844a至 844d,但應理解’微波加熱器830可包括任意期望數目個 發射器。在一項實施例(未展示)中’微波加熱器8 3 〇可包括 軸向定位至圖9b中之發射器844a、844b左側及/或定位至 發射器844c、844d右側之兩個額外發射器。該等額外發射 器(未展示)可面向相同方向及/或不同方向。舉例而言,在 160978.doc -56- 201231885 圖9b中所展示之一項實施例中,發射器844a至844d係展示 為面向相反方向。此外,在一項實施例(未展示)中,微波 加熱器830可包括以與圖9b中所圖解說明之發射器844a至 844d類似之一方式配置之四個額外發射器,如下文進一步 闡述。 微波發射器844可係根據任一適合組態沿微波加熱器 830、在微波加熱器830内或接近微波加熱器830定位。在 一項實施例令’微波發射器844可經組態以包括兩個發射 器對。該對内之個別發射器可位於微波加熱器83〇之大體 相同側上(例如,該對包括發射器84乜及844d且另一對包 括發射器844b及844c)或位於微波加熱器83〇之大體相對側 上(例如’該對包括微波發射器8443及8441)且另一對包括 844c及844d)。 如本文中所使用,術語「大體相對側」或「相對側」係 指兩個發射器經定位以使得其間所界定之徑向對準角介於 自至少90。至180。之範圍中。「徑向對準角⑻」係界定為在 自每-發射器之中心至容器之中心伸長轴所繪製之兩個直 線之間形成之h舉例而言,E9e展示其間界定—徑向對 準角衫,之例示性發射器845及84以。定位於一容器之大體 相對側上之兩個發射器之間的徑向對準角可係至少12〇。、 至少至少165。及/或不大於18〇。或大致18〇。。在一項 實施例中,兩個發射器可定位於大體相對側壁上,如圖9b 中ί體繪示,而在另一實施例中,兩個相對安置之發射器 可疋位於加熱器(未展示)之垂直頂部或底部處或在其附 160978.doc •57· 201231885 近ο 在其中一或多個發射器對包含位於一微波加熱器之大體 相對側上之個別發射器(例如,圖9b中之發射器844b及 844a或發射器844c& 844d)之一項實施例中,該等對内之 個別發射器亦可彼此軸向對準。如本文中所使用,術語 「轴向對準」係指兩個發射器在其間界定介於自〇。至45。 之範圍中之一軸向對準角。如本文中所使用,「軸向對準 角」可係由在於每一發射器之中心之間繪製之最短直線 (其亦與容器之伸長軸交叉)與垂直於伸長軸繪製之一線之 間形成之角界定。在圖9d中,軸向對準角α係在於例示性 發射器845與846之中心之間繪製之線85〇與垂直於伸長軸 835a之線852之間形成。在一項實施例中,軸向對準之發 射器可界定至少0。及/或(舉例而言)不大於3 〇。或不大於15。 之一軸向對準角。 在另一實施例中,一對内之個別發射器可位於一微波加 熱器之大體相同側上。如本文中所使用,術語「大體相同 側」或「相同側」係指兩個發射器具有介於自至少或等於 0°至90°之範圍中之一徑向對準角β。圖9c中之例示性發射 器845及846b位於微波加熱器之大體相同側上,此乃因其 間所界定之徑向對準角(例如,βζ)係不大於9〇。。在一項實 施例中’安置於一微波加熱器之相同側上之兩個發射器可 界定至少0°及/或不大於60。、不大於30。及不大於15。或大 致0°之一徑向對準角。 在其中一或多個發射器對包含位於一微波加熱器之大體 160978.doc -58- 201231885 相同側上之個別發射器(例如, 844d或發射器844b及844c)之—3Chemical treatment. At the same time, the bundle of materials (here indicated by the letter "B can be represented by a second entry through the heater inlet door 338") is introduced into the heater 332 and heated and/or dried. When bundles C and B are chemically modified and heated/dried in chemical upgrading reactor 322 and heater 332, respectively, a third wood bundle can be removed from venting chamber 406 (indicated by the letter "A" herein) It is positioned below the venting hood 404, as generally shown in Figure 4d. Once the bundle A has been sufficiently dried, it can be removed from the venting cover 4〇4 and transported to a storage area (not shown). Next, the flow divider 414 can be used to adjust the distribution of the total venting capacity of the venting system 402 such that the amount of venting capacity assigned to the steam accommodating chamber 360 is increased, and the amount of venting capacity distributed to the venting hood 4 〇 4 is reduced. Next, after the completion of the heating of the bundle "B", the heater inlet door 338 and the heater outlet door 339 may be continuously opened and present in the heater 160978. Any residual vapor or gas in the interior of the doc•30·201231885 332 can be removed and passed through the steam containing chamber 36〇 before entering the venting system 402. In one embodiment, the evacuation of the heating Is 332 may also include drawing an external fluid (e.g., ambient air or other inert gas) into the system through the venting hood 4 and the venting chamber when present. The external fluid can then enter the heater 332 via the heater outlet door and pass through the interior of the heater 332 before exiting the heater 332 via the heater inlet door 338 and passing into the vapor containing chamber 360. Once in the vapor containing chamber 360, the external fluid, along with any residual vapor or gas removed from the interior of the heater 332, can be exchanged by the venting system 4〇2 at least 2 times per hour, at least 4 times per hour, or every One of the exchanges of at least 6 exchanges per hour is withdrawn from the steam containing chamber 36. For example, if the venting system has a total volume of 100 cubic meters and the rate of steam removal is 200 cubic meters per hour, the number of exchanges per hour will be (2 〇〇 cubic meters per hour) / (100 cubic meters) ) or exchange 2 times per hour. Once the external fluid and residual steam/gas have been removed from the vapor containing chamber 360, the bundle B can be removed from the heater 332 via the heater outlet gate 339, through the plenum 406 (if present), and positioned below the hood 404 Cooling and/or further drying of the bundle B' is as previously discussed in detail. The heater outlet gate 339 can then be closed prior to sequentially opening the reactor outlet gate 329 and the reactor inlet gate 328. Thereafter, aeration system 402 can be used to evacuate residual steam or gas from within the chemical upgrading reactor 322. In one embodiment, an external fluid (eg, 'ambient air or other inert gas') may be drawn into the reactor 322 via the reactor inlet gate 328 and worn before exiting into the vapor containing chamber 360 via the reactor outlet gate 329. Passing through the interior of reactor 322. As above 160978. Doc •31 · 201231885 stated that 'the external fluid and any residual steam or gas may then be exchanged at least 2 times per hour, at least 4 exchanges per hour or at least 6 times per hour via steaming/flying out of line 349a. It is taken out from the steam accommodating chamber 360. Thereafter, bundle c can be removed from chemical upgrading reactor 322 via reactor outlet gate 329 and passed through vapor containing chamber 沿 along a delivery path 399. In one embodiment, the 1st venting system 402 can be used to extract gas from the steam holding chamber during the 'transfer of the reactor 322 and the heater 332 and steam/fly can then be passed before heating of the starting bundle C Heater inlet door 338 introduces chemical wetting bundle C into the interior of heater 332. A fourth bundle (not shown) can then be loaded into the interior of the chemical upgrading reactor 322 prior to sequentially closing the reactor inlet gate 328, the reactor outlet gate 329, and the heater inlet gate 338. The distribution of the total venting capacity to the steam accommodating chamber 36A can be reduced while increasing the distribution to the venting hood 404 to thereby cool and/or further dry the bundle Β» repeating the steps mentioned above to treat a new wood bundle The sequence is assembled in a loading zone (not shown) or near the reactor inlet gate 328 - a fifth bundle (not shown). It will be understood that in the sequence of operations set forth above, some of the steps may be carried out in the order illustrated, and some steps may be performed simultaneously and/or the order of the steps may be reversed. The above sequence of steps is included only to illustrate one exemplary method of operating a wood processing system. Microwave Heating System According to one embodiment, one or more of the heating systems set forth above may include a microwave heating system that utilizes microwave energy to heat one or more items or items in addition to the wood treatments set forth above. In addition to an embodiment of the facility, 160978. Doc -32· 201231885 According to the invention, it is difficult to implement "microwave force H (4) can be widely applied to a variety of other processes. It should be understood that _ this article mainly relates to the process of heating wood" or "wood bundle" (d), but the processes and systems set forth herein are equally applicable to applications in which one or more items, articles or loads are heated. Examples of other types of applications that may utilize a microwave heating system as set forth herein may include, but are not limited to, high temperature vacuum Tauman and metal sintering, melting, brazing, and heat treatment of various materials. In one embodiment, the microwave heating system can include a vacuum system (magic microwave vacuum heater) and can be used for vacuum drying of materials such as minerals and semiconductors, vacuum drying of foods such as fruits and vegetables, ceramics and fibers. Vacuum drying of the mold and vacuum drying of the chemical solution. Turning now to Figure 5, a microwave heating system 420 is configured to include at least one microwave generator ", a microwave heater 430, a microwave distribution system 44", and a vacuum selected in accordance with an embodiment of the present invention. System 450. The microwave energy produced by microwave generator 422 can be directed to microwave heater 43() via one or more components of microwave distribution system 440. Additional details regarding the components and operation of microwave distribution system 440 will be discussed in detail later. When present, the vacuum system 450 is operable to reduce the pressure in the microwave heater 43 to no more than 550 Torr, no more than 450 Torr, no more than 350 Torr, no more than 250 Torr, no more than 200 Torr, no greater than 15 Torr, no more than 1 Torr or no more than 75 Torr. In one embodiment, the vacuum system is operable to reduce the pressure in the microwave heater 430 to no more than 1 Torr (1 〇 - 3 Torr), no more than 5 mTorr, no more than 2 mTorr, no more than 1 mTorr, no more than 〇. 5 mTorr or not greater than 0. 1 mTorr. The microwave heating system 42 will now be discussed in detail below. Doc •33· 201231885 Each of the components. Microwave generator 422 can be any device capable of producing or generating microwave energy. The term "microwave energy" as used herein refers to electromagnetic energy having a frequency between 3 〇〇 MHz and 30 GHz. In an embodiment, the various configurations of the microwave heating system 420 may utilize microwave energy having a frequency of one of 915 MHz or a frequency of 2 to 45 GHz, which are typically designated as industrial microwave frequencies. Examples of suitable types of microwave generators can include, but are not limited to, magnetrons, klystrons, traveling wave tubes, and gyrotrons. In various embodiments, one or more microwave generators 422 can be capable of delivering (eg, having one of the following maximum outputs) at least 5 kW, at least 30 kW, at least 50 kw, at least 60 kW, at least 65 kW, at least 75 kW, at least 1 〇〇kw, at least 150 kW, at least 200 kW, at least 250 kW, at least 350 kW, at least 400 kW, at least 500 kW, at least 600 kW, at least 750 fcW or at least 1,000 kW and/or no greater than 2,500 kw, no more than 15 〇〇 let the goods or no more than i, ooo kw. Although illustrated as including a microwave generator 422, the microwave heating system 420 can include two or more microwave generators configured to operate in a similar manner. Microwave heater 430 can be any device capable of receiving and using microwave energy to heat one or more items, including, for example, wood bundles or wood bundles. In one embodiment, at least 75%, at least 85%, at least 95%, or substantially all of the heat or energy provided by the microwave heater 43 is provided by microwave energy. Microwave heater 430 can also be used as a microwave dryer that can be further operative to dry one or more items disposed therein using microwave energy as set forth herein. I60978. Doc 34· 201231885 Turning now to FIG. 6 'An embodiment of a microwave heater 530 is illustrated as including a container body 532 and one of the interiors 536 for selectively permitting and blocking access to and from the microwave heater 530 or One of the doors 534 is accessed or accessed by a plurality of objects. In one embodiment, the container body 532 of the microwave heater 53 can be elongated along a central elongated axis 535 'the axis can be oriented in a substantially horizontal direction' as illustrated in FIG. The container body 532 can have a profile of any suitable shape or size. In one embodiment, the cross-section of the container 532 may be substantially circular or rounded, while in another embodiment, the cross-section may be elliptical. According to one embodiment, the size and/or shape of the cross-section of the container body 532 can vary along the direction of elongation, while in another embodiment, the shape and/or size of the cross-section can remain substantially the same. In the embodiment illustrated in Figure 6, the container body 532 of the microwave heater 530 includes a horizontally elongated, cylindrical container body having a circular cross-section. Microwave heater 530 can have a total maximum internal dimension or length L and a maximum inner diameter D, as shown in FIG. In one embodiment, l may be at least 8 feet, at least 1 foot, at least 16 feet, at least 2 feet, at least 30 feet, at least 50 feet, at least 75 feet, at least 1 foot, and/or no more than 500. Feet, no more than 35 feet, no more than 25 feet. In another embodiment, D can be at least 3 feet, at least 5 feet, at least 10 feet, at least 12 feet, at least ι 8 feet, at least 2 () feet, at least feet or at least 30 feet, and/or no more than 25 feet. No more than 2 feet or no more than 15 central feet. In one embodiment, the ratio of the length of the microwave heater 53〇 to its inner diameter (L:D) (L:D) may be at least 1:1, at least 2:1 'at least 3:1, at least 4: 1. At least 6:1, at least 8:1, at least 1〇:1 and/or no more than 50:1, not much 160978. Doc -35- 201231885 at 40:1 or no more than 25:1. Microwave heater 530 can be constructed from any suitable material. In one embodiment, microwave heater 530 can include at least one electrically conductive and/or highly reflective material. Examples of suitable materials may include, but are not limited to, selected carbon steels, stainless steels, nickel alloys, aluminum alloys, and copper alloys. The microwave heater 53 can be constructed almost entirely from a single material, or a variety of materials can be used to construct various portions of the microwave heater 530. For example, in one embodiment, microwave heater 530 can be constructed from a first material and can then be coated or layered with a second material on at least a portion of its interior and/or exterior surfaces. In one embodiment, the coating or layer may comprise one or more of the metals or alloys listed above, while in another embodiment, the coating or layer may comprise glass, polymer or other Dielectric material. Microwave heater 530 can define one or more spaces suitable for receiving a load. For example, in one embodiment, the microwave heater 53A can define a load (eg, wood) configured to receive and retain one or more bundles of wood (not shown in FIG. 6). ) can be positioned within the interior 536 of the microwave heater 530 in a static or dynamic manner. For example, in one embodiment in which the load is statically positioned in the microwave heater 53A, the load may be relatively inactive during heating and static positioning may be used such as, for example, a shelf, a platform, A parked = car, a stopped drive belt or the like is held in place. In another embodiment in which the load is dynamically positioned within the microwave heater 530, the load can be in motion during heating for at least a portion of the heating using one or more dynamic positioning devices (not shown). Dynamic positioning equipment 160978. Doc •36· 201231885 Examples can include, but are not limited to, continuous moving belts, rollers, horizontal and/or vertical vibration platforms, and rotating platforms. In one embodiment, one or more dynamic positioning devices can be used in a substantially continuous process, and - or multiple static clamping devices can be used in a batch or semi-batch process. In accordance with an embodiment of the present invention, microwave heater 530 may also include one or more sealing mechanisms to reduce, inhibit, minimize, or substantially prevent fluid and/or microwave energy entering and exiting container interior 536 during processing. leak. As illustrated in Fig. 6, the container body 532 and the door 534 may each have a respective body side sealing surface 531 and a crotch side sealing surface 533. In the embodiment, the body side sealing surface 531 and the door side sealing surface 533 may form a fluid seal directly or indirectly between the door 534 and the container body 532 when the door 534 is closed. A direct seal can be formed when at least a portion of the body side sealing surface 531 and the door side sealing surface 533 are in direct physical contact with each other. One or more of the interior of the microwave heater 530 and an external environment (not shown in FIG. 6) may be at least partially compressed against the door side sealing surface 533 and the body side sealing surface 531 when the door 534 is sealed. An indirect seal is formed between the door 534 and the container body 532 when the resilient sealing member is in place. Examples of resilient sealing members can include, but are not limited to, 〇-shaped rings, spiral wound gaskets, sheet gaskets, and the like. According to one embodiment, when subjected to the use of a Varian model No. 938-41, the program titled "Spraying Testing" is described in the document entitled "Helium Leak Detection Techniques" published by Aicatel Vacuum Technology under the heading "Spraying Testing". One of the direct or indirect seals formed between the container body 532 and the door 534 during a leak test may allow the microwave heater 530 to be at the junction of the body 532 and the door 534 or J60978. Doc •37· 201231885 Close to the junction has no more than 10. 2 Torr · liter / second, no more than 10 · 4 Torr. l / sec or no more than 1 〇 · 8 Torr. One of the fluid leakage rate in liters per second. In one embodiment, the fluid seal may be particularly advantageous when the environment inside the microwave heater 53 includes a low pressure and otherwise challenging processing environment. The microwave heater configured in accordance with an embodiment of the present invention may also include a microwave choke for suppressing or substantially preventing the gate 534 of the microwave heater 530 from the container body 532 when the door 534 is closed. Energy leakage (e.g., at or near the junction of the door 534 and the container body 532). As used herein, the term "flow blocker" refers to any device or component of a microwave container that is operable to reduce the amount of energy leakage from the container or from the container during application of microwave energy. In one embodiment, the choke can be operable to reduce the amount of microwave leakage from the container by at least 25%, at least 50%, at least 75%, or at least as compared to when a choke is not employed. 9% of any device. In one embodiment of the invention, the microwave choke is operable to allow no measurement from a container with a wideband isotropic radiation monitor (300 MHz to 18 GHz) of a Narda MiCr〇line Model 8300. Microwave energy transmission resistance greater than 5 〇 milliwatts/square metre (mW/cm2), no more than 25 mw/cm2, no more than 1 〇m W/cm2, no more than 5 mw/cm2 or no more than 2 claws π-2 The flow device leaks from the heater. Progressively, the microwave choke operation configured in accordance with an embodiment of the present invention substantially inhibits microwaves even under full vacuum conditions, as compared to conventional microwave chokes, which typically fail when subjected to low air pressure. Can leak. For example, in one embodiment, a microwave blocker as described herein can inhibit microwave energy leakage from the heater to the microwave plus 160978 as set forth above. Doc -38_ 201231885 The pressure in the heat exchanger is not more than 550 Torr, no more than 450 Torr, no more than 350 Torr, no more than 250 Torr, no more than 200 Torr, no more than 〇0 Torr or no more than 75 Torr. In one embodiment, a microwave choke as described herein can inhibit leakage of microwave energy from the heater to a pressure system in the microwave heater as set forth above of no more than 1 〇 milliTorr (丨0_3 Torr) ), no more than 5 mTorr, no more than 2 mTorr, no more than 1 mTorr, no more than 〇5 mTorr or no more than 0. The degree of 1 mTorr. Further, a microwave choke can maintain its leakage prevention level on a large unit, such as, for example, having at least 5 kW, at least 30 kW, at least 50 kW, at least 60, in accordance with an embodiment of the present invention. kW, at least 65 kW, at least 75 kW, at least 1 kW, at least 150 kW, at least 200 kW, at least 250 kW, at least 350 kW, at least 400 kW, at least 500 kW, at least 6〇〇kw, at least 75〇kw Or a microwave heater with a microwave energy input rate of at least l'OOO kW and/or no more than 2,5 kW, no more than 1500 kW or no more than 1 000 kW. In an embodiment 10, when microwave energy is introduced into the container even at the level of microwave energy and vacuum pressure as set forth above (eg, during the heating step), the emission does not occur substantially near the choke 65. arc. As used herein, the term "arcing" refers to an undesired, uncontrolled discharge resulting at least in part by ionization of a surrounding fluid. Arcing C can damage the alpha material and material and cause a substantial fire or explosion hazard) with a lower threshold at lower pressures (especially low pressure (e.g., 'vacuum) pressure). Often the 'utility system' limits the rate at which it is difficult to lose to minimize or avoid arcing. However, the microwave heater configured in accordance with an embodiment of the present invention can be operated at a pressure system of no more than 550 Torr, no more than a full stroke, and no more than 160,978. Doc •39· 201231885 More than 350 Torr, no more than 250 Torr, no more than 200 Torr, no more than 1 Torr, no more than 75 Torr, no more than 10 mA (1 〇 _3 Torr), no more than 5 mTorr, Not more than 2 mTorr, not more than 1 mTorr, not more than 0. 5 mTorr or not more than 〇·ι mTorr and/or at least 50 Torr or at least 75 Torr, at least 5 kW, at least 30 kW, at least 50 kW, at least 60 kW, at least 65 k\V, at least 75 kw, At least 100 kW, at least 150 kW, at least 200 kW 'at least 250 kW, at least 350 kW, at least 400 kW, at least 500 kW, at least 600 kw, at least 750 kW or at least 1,000 kW and/or no more than 2,5〇 Receiving microwave energy at a rate of 〇kw, no more than 1,500 kW or no more than 1,000 kW and introducing it into a microwave heater (as needed, referred to as a vacuum microwave heater or a vacuum microwave dryer) There is substantially no arcing at or near the choke. Referring now to Figure 7a, a section of one embodiment of a microwave choke 650 for providing microwave energy leakage between a door 634 of a microwave heater and a container body 632 when the door 634 is closed is provided. . As shown in the figures, when the door 634 is closed and the respective door side 633 and body side 631 sealing surfaces are in direct or indirect contact with each other, at least a portion of the microwave choke 65 is cooperatively defined or formed in the door 634 and the container body. Between 632. In an embodiment t, there may also be a fluid sealing member 66 selected to inhibit, minimize or substantially prevent leakage of fluid entering and exiting the microwave heater, as previously discussed, fluid sealing member 660 (when present) It is coupled to the container body milk or (as shown in Figure 7a) coupled to the door 634. According to one of the figures shown in Figure 7a, Ji -3⁄41 λ.  In still another embodiment, the microwave choke 050 defines a -first-radial extension choke chamber 652, a second radially extending choke 160978. Doc • 40· 201231885 cavity 654 and a radially extending choke deflector wall at least partially disposed between first choke chamber 652 and second choke chamber 654 when gate 634 of microwave heater is closed 656. In one embodiment illustrated in Figure 7a, the first choke chamber 652 is defined between the container body 632 and the choke deflector wall 656 when the door 634 is closed, while the second choke chamber 654 At least partially disposed between the door 634 and the baffle diversion wall 656 such that the baffle diversion wall 656 is substantially coupled to the door 634. The first choke chamber 652 can be open to the interior of the microwave heater and can be positioned radially between the interior of the microwave heater and the fluid seal formed by the sealing member 660 (when present). In another embodiment of the invention (not shown in Figure 7a), the second choke chamber 654 can be at least partially defined by the container body 632 such that the second choke chamber 654 can be positioned when the door 634 is closed Between the container body 632 and the baffle diversion wall 656 such that the baffle diversion wall 656 is substantially coupled to the container body 632. In one embodiment, at least a portion of the second choke chamber 654 reliably extends over at least a portion of the first choke chamber 652 when the door 634 is closed. In one embodiment, at least 40%, at least 60%, at least 80%, or at least 90% of the total length of the second choke chamber 654 when the door 634 is closed is reliably held against the first choke chamber 654. The total length of the first choke chamber 652 and/or the second choke chamber 654 (designated by the letter "L" in Figure 7a) may be at least 1/16 of the dominant wavelength length of the microwave energy inside the microwave heater. Times, at least 1/8 times, at least 1/4 times and/or no more than 1 time, no more than 3/4 times or no more than 1/2 times. The length L of the first choke chamber 652 and/or the second choke chamber 654 can be at least 1 foot, at least 1. 5 feet, at least 2 feet or at least 2. 5 feet and / or no more than 8 feet, no more than 6 feet or no more than 5 feet. 160978. Doc -41 - 201231885 As illustrated in Figure 7b, a relative extension angle φ can be defined in the direction of extension of the first choke chamber 652 (specified by line 690) and the direction of extension of the second choke chamber 654 (by Line 692 is specified between). In various embodiments, the relative extension angle Φ can be no greater than 60. No more than 45. No more than 30. Or no more than 15. . In some embodiments, the second choke chamber 654 extends substantially parallel to the direction of extension of the first choke chamber 652, as depicted in Figure 7a. Referring now to Figure 7c, a partial isometric section of a microwave choke is provided. As shown in Figure 7c, the baffle diversion wall 656 can be integrally formed into the door 634. According to an embodiment, the flow guiding wall 656 can include a plurality of spaced apart open ends 67〇 circumferentially disposed along the flow guiding wall 656. In an embodiment, the spacing between the centerlines of each of the gaps may be at least 5 inches, at least 1 inch, at least 2 inches, or at least 2.5 inches and/or Not more than 8 inches, no more than 6 inches or no more than 5 inches. In accordance with another embodiment of the present invention, at least a portion of the flow blocker 650 can include a removable portion 651 that is removably coupled to the container body 632 or the door 634. In one embodiment, the removable portion 65 can be removably coupled to the door 634. As used herein, the term "removably coupled" means that it can be substantially undamaged or destroyed. The container body, the flow blocker and/or the door are attached in one of the ways to remove one of the chokes. In one embodiment, the removable baffle portion 651 can include at least a portion or all of the flow guiding wall 656. Figure 7d illustrates a microwave choke with at least one removable portion 65 1 . In an embodiment illustrated in Figure 7d, the flow guiding wall 656 can be coupled to the removable baffle portion 651. Removable choke section 160978. Doc 42-201231885 651 can include a plurality of removable flow block segments 6533 to 653e that are each removably coupled to a door 634 or container body 632 (not shown). In an embodiment, the removable baffle portion 651 can include at least 2, at least 3, at least 4, at least 6, at least 8, and/or no more than 16, no more than 12, no More than 10 or no more than 8 removable baffle segments 653. Depending on the embodiment in which the removable baffle portion 651 has a generally annular diameter, the baffle segments 653 & 6536 can be individually removed to have a generally arcuate shape' as shown in Figure 7d. The removable baffle portion 651 can be secured to the door 634 or container body 632 according to any conventional method, including, for example, 5 screws, screws, or any other type of suitable removable fastening device. In one embodiment, the removable baffle portion 651 can be magnetically fastened to the door 634 or the container body 632. Partially depending on the desired fastening method, the removable spoiler portion 651 can have a variety of them. ! Face shape. For example, as illustrated in Figures 7e through several, the 'removable baffle portion 651 can define a generally dome shape (as shown in Figures ~), a generally J shape, or a U shape (as shown in Figure 7f). A section of a general [shape (shown in the figure, shown) or a general 1 shape (shown in Figure 711). Attachment, removal, and/or subsequent replacement of the removable choke without removing the portion of the container body 632 and/or the door 634 or substantially mechanically machining the container body 632 and/or the door 634 The portion 651 recovers the normal operation of the microwave heater. By way of example, in the embodiment, a plurality of individually removable spoiler segments 6A through 653e can be individually and individually attached to the door 634 and/or the container body. Subsequently, one or more of the microwave chokes. When the P-knife becomes damaged or otherwise needs to be replaced, or more than one can be 160978. Doc -43- 201231885 The removal of the choke section 653 and/or the entire removable baffle portion 651 can be detached or removed separately and individually from the container body 632 or the door 634 and used with one or more new (eg, Alternatively, the removable choke section 653 and/or a new removable choke section 651 are replaced. In one embodiment, the removable spoiler segment 653a can be detached from the container body 632 or the door 634 and then reattached to the container body 632 or door 634 (eg, removed therefrom and replaced) The number of 653b, 653c, 653d, and/or 653e may be at most or no greater than the total number of spoiler segments 6 5 3 a through 6 5 3 e of the removable portion 6 51 . Microwave heater 530 (generally shown in Figure 6) can be classified as a single mode cavity, a multimode cavity, or a quasi-optical cavity, depending on how the microwave energy is represented. As used herein, the term "single mode cavity" refers to a cavity that is designed and operated to maintain its microwave energy as a single, specific pattern. Often, the design and nature of a single mode cavity can be limited. The size of the container and/or a load can be located within the chamber. Thus, in one embodiment, microwave heater 530 can include a multi-mode or quasi-optical mode cavity. As used herein, the term "multi-mode cavity" refers to a cavity or chamber in which microwave energy is excited into a plurality of standing wave patterns in a semi-random or unguided manner. As used herein, the term "quasi-optical mode cavity" refers to a cavity or chamber in which most, but not all, of the energy is directed toward a particular area in a controlled manner. In one embodiment, a multi-mode cavity has an energy density higher than a quasi-optical cavity near the center of the container, and the quasi-optical cavity can utilize the quasi-optical properties of microwave energy to more closely control and direct to the cavity The emission of energy in the interior" is turned back to the microwave heating system 42 图解 illustrated in Figure 5, microwave distribution 160978. Doc 201231885 System 440 is operable to transfer or direct at least a portion of the microwave energy produced by microwave generator 422 into microwave heater 430, as briefly discussed above. As shown schematically in Figure 5, the microwave distribution system 440 can include at least one waveguide 442 operatively coupled to one or more microwave emitters (illustrated as emitters 444a through 444c). The microwave distribution system 44A may include one or more microwave mode converters 446 for varying the microwave energy passing therethrough and/or for selectively routing microwave energy to the microwave emitters 444a through 444c, as desired. One or more of one or more microwave switchers (not shown). Additional details regarding the particular components and various embodiments of the microwave distribution system 440 will now be discussed in detail below. Waveguide 442 is operable to deliver microwave energy from microwave generator 422 to one or more of microwave emitters 444a through 444c. As used herein, the term "waveguide" refers to any device or material that is capable of directing electromagnetic energy from one location to another. Examples of suitable waveguides can include, but are not limited to, coaxial wound optical fibers, dielectric filled waveguides, or any other type of transmission line. In one embodiment, waveguide 442 can include a waveguide section for transporting microwave energy from microwave generator 422 to one or more of the ones of emitters 444a through 444c. Waveguide 442 can be designed and constructed to propagate microwave energy in a particular mode. As used herein, the term "mode" refers to one of the microwave energy generally fixed scratch field patterns. In one embodiment of the invention, waveguide 442 can be configured to propagate microwave energy in a TE〇 mode, where X is auto-twisted to - integer in the range of 5 to zero. In another embodiment of the invention, waveguide 442 can be configured to propagate microwave energy in a -TM mode, where is 160978. Doc -45- 201231885 An integer from the range 1 to 5. It will be understood that as used herein, the above-described ranges of alpha, X, and minor values used to illustrate one mode of microwave propagation are applicable throughout this description. Further, in some embodiments, when two or more components of a system are described as "ΤΜ&" or "ΤΕ^" components, β, ^, and/or less values may be used for each component. The same or different. In one embodiment, the values of β, X, and/or are the same for each component of a given system. The shape and size of the waveguide 442 can depend, at least in part, on the desired mode of microwave energy that will pass through it. For example, in one embodiment, at least a portion of the waveguide 442 can include a "waveguide" having a generally rectangular cross-section. In another embodiment, at least a portion of the waveguide 442 can include a 圆形βέ having a generally circular cross-section. Waveguide. According to one embodiment of the invention, the circular section waveguide may have at least 8 inches, at least 1 inch, at least 12 inches, at least 24 inches, 11 inches 'at least 36 inches or at least 4 inches. In one embodiment, the rectangular cross-section waveguide can have at least 丨 吋, at least 2 inches, at least 3 奂 leaves and/or no more than 6 inches, no more than 5 inches, or no more than 4 inches. One of the short sizes' and the long size may be at least 6 inches, at least 1 inch, at least 12 inches, at least 18 inches and/or no more than 5 inches, no more than 35 inches or no more than 24 inches. As illustrated schematically in Figure 5, the microwave distribution system 44A can include a mode or a plurality of mode conversion segments 446 that are operable to change the mode of microwave energy therethrough. For example, the mode converter 446 can Including patterns for at least a portion of the microwave energy A mode change to one -TE〇 TMafe TMd mode to mode converter ΤΕ ^. In another embodiment, mode switching section 446 may 160,978. Doc • 46· 201231885 Includes one of the microwave energy conversion and emissions in one mode for receiving TMaf) mode energy and 呈αί> mode converter. The values of α, 6, and ^ can be within the ranges set forth above. The microwave distribution system 44A can include any number of mode converters 446, and in one embodiment can include at least two, at least two 'at least three, or at least four, located at various locations within the microwave distribution system 440. Mode converters. Turning again to FIG. 5, the microwave distribution system 440 can include one or more of receiving microwave energy from the generator 422 via the waveguide 442 and emitting or discharging at least a portion of the microwave energy into the interior of the microwave heater 430. Microwave transmitter 444. As used herein, the term "microwave emitter" or "transmitter" refers to any device capable of emitting microwave energy into the interior of a microwave heater. The microwave distribution system according to various embodiments of the present invention may employ at least one 'at least 2, at least 3, at least 4, at least 5, at least 6, at least 8, at least 10, and/or no more than 1 〇. One, no more than 5〇 or no more than 25 microwave emitters. The microwave emitter can be of any suitable shape and/or size and can be constructed of any material, including, for example, selected carbon steel, stainless steel 'nickel alloys, aluminum alloys, and copper alloys. In one embodiment in which the microwave distribution system 440 includes two or more microwave emitters, each emitter can be made of the same material, while in another embodiment, two or more emitters can be Made of different materials. In operation, microwave energy generated by one or more microwave generators 422 can be routed or directed via waveguide 442 to one or more mode converters 446, if any. Thereafter, the micro in the waveguide 442. The wave energy can be viewed before it is directed to one or more microwave emitters (illustrated as 44牦 to 444c in Figure 5). Doc -47· 201231885 Deliberately split into two or more separate microwave sections (eg, at least three sections as shown in Figure 5). Microwave emitters 44A through 444c may be partially or integrally placed in the microwave The heater 430 is operatively operable to introduce or emit at least a portion of the microwave energy passing therethrough via one or more spaced apart emission locations into the interior of the heater 43A, whereby the heating and/or drying is disposed The article, article or load therein includes, for example, one or more wood bundles. Specific configurations and details regarding various embodiments of the microwave heating system will now be discussed in detail below. Turning now to Figures 8 through 10, several embodiments of a microwave heating system configured in accordance with the present invention are provided. Although illustrated as being configured to receive and heat a bundle of wood, it should be understood that the microwave heating system set forth below may be adapted to be used in any of the other processes and systems previously described and in which microwave heating is used. Used in a system or process. Further, it should be understood that all of the elements and components set forth below are suitable for use in any of the microwave heating systems configured in accordance with one or more embodiments of the present invention, although described with reference to a particular figure or embodiment. Turning now to Figures 8a and 8b, an embodiment of a microwave heating system 720 is illustrated as including a microwave heater 73A and for delivering microwave energy from a microwave generator (not shown) to the heater 73. One of the microwave distribution systems 740. In various embodiments, a vacuum system (not shown) is operable to reduce the pressure in the interior of the microwave heater 730 to, for example, no greater than 550 Torr, no greater than 450 Torr, no greater than 350 Torr, Not more than 300 Torr, no more than 250 Torr, no more than 200 Torr, no more than 150 Torr, no more than 1 Torr, no more than 75 Torr and/or no more than 1 Torr (1 〇 -3 Torr), not greater than 5 mTorr, not much 160978. Doc -48- 201231885 at 2 mTorr, no more than 1 mTorr, no more than 0. 5 mTorr or not greater than 0. Several features of one or more embodiments of the microwave heating system 720 are discussed in detail below. Turning now to Figure 8a, the microwave distribution system 74 is illustrated as including an elongated waveguide emitter 760 that is at least partially and integrally disposed within the interior of the microwave heater 730. As shown in Figure 8a, the elongated waveguide emitter 760 can extend substantially horizontally within the interior of the microwave heater 73A. As used herein, the term "substantially horizontal" means within 10 of the horizontal plane. In one embodiment, the ratio of the length of the elongated waveguide emitter 760 to the total length of the interior space of the microwave heater 730 can be, for example, at least zero. 3:1, at least 〇. 5:1, at least 〇 75:1 or at least 〇 9〇:1. In one embodiment, the substantially horizontally extending elongated waveguide emitter 760 can be located at an upper or lower half of the interior volume toward the microwave heater 73A and can be disposed at least partially or integrally vertically. Above the heater inlet door 738 and a selected heater outlet door (not shown), the optional heater outlet door (if present) is disposed on one of the substantially opposite ends of the microwave heater 730. As used herein, the terms "upper" and "lower" volume refer to the area in the vertical or lower vertical portion above the internal volume of the container. In one embodiment, the elongated waveguide emitter 760 can be disposed, for example, integrally within the upper third, quarter, or fifth of the interior volume of the microwave heater 730, In yet another embodiment, the elongated waveguide emitter 760 can be disposed, for example, within the lowermost half, one-quarter, or one-fifth of the total internal volume of the microwave heater 730. To measure the "top" or "lowest" fraction of the total internal volume as described above. Doc -49· 201231885 points, from the uppermost or lowermost wall of the container to the desired extension of the section (for example, one-third, one-quarter or one-fifth) of the central extension axis of the container section The portion may extend along the central axis of elongation to thereby define the "topmost" or "lowest" fractional volume of the inner container space. As shown in Figure 8a, a microwave heater 730 that can be configured to receive and heat a bundle of wood includes a heater inlet door 738 that can optionally be configured to allow a bundle of wood 702 to be introduced into a bundle of receptacles. One of the spaces 739 is a flow blocker (not shown). Although illustrated as being in direct contact, it should be understood that the bundle 702 can also include one or more spacers or "adhesives" disposed between the panels. In an embodiment (not shown), the microwave heater 73A may also include a selected heater outlet door 739 positioned opposite the heater heater inlet door 738 at the microwave heater 730. When the microwave heater 730 includes a separate heater outlet door 739, the bundle 702 can optionally be loaded via the inlet gate 738, passed through the microwave heater 730 and unloaded via the outlet gate 739, rather than being loaded and unloaded through the heater inlet door 738. Reference to "inlet" and "outlet" doors in this embodiment is not limiting, and bundle 7〇2 may optionally be loaded via door 739, passed through microwave heater 730, and unloaded via door 738. Moreover, in another embodiment, when, for example, no exit door 739 is selected, the bundle 7〇2 can be loaded (inserted) from the entry gate 738 and unloaded (removed) from the entry gate 738. In one embodiment, the elongated waveguide emitter 76 can be positioned in the microwave heater 730 substantially below or below the beam 7〇2 (not shown) such that when the beam 702 passes into the interior of the heater 730 When passing from inside the heater 730 and/or through the interior of the heater 730, it is not necessary to move, remove, withdraw or otherwise reposition the elongated emitter. 160978. Doc -50- 201231885 Referring now to Figure 8b, a partially detailed isometric view of an elongated waveguide emitter is provided. In one embodiment, the elongated waveguide emitter can be substantially hollow and include one or more side walls. The one or more side walls can be configured in a variety of ways such that the elongated waveguide emitter can have a wide variety of cross-sectional shapes. For example, in one embodiment the 'extended material emission ϋ 76 〇 may have a single sidewall defining a substantially circular or sugar circular cross-sectional shape. In another embodiment, the elongated waveguide emitter 760 as shown in the figures can include four substantially planar sidewalls 764a through 764d that are configured to have a generally rectangular cross-section (or in another embodiment) The 'square' profile configuration is assigned to the emitter 76〇. The elongated waveguide transmitter 760 can be configured to propagate and/or transmit microwave energy in any suitable mode (including te^ and/or TMei mode), as previously discussed in detail/according to an embodiment, an elongated waveguide Transmitter 76A can include an elongated TExy transmitter, and in one embodiment, can be implemented with a commercially available rectangular waveguide size, such as WR284, WR430, or WR340. The particular dimensions of the elongated waveguide emitter 760 can be any suitable size and, in one embodiment, can be custom made. As illustrated in Figure 8b, one or more sidewalls of the elongated waveguide emitter 76 can define a plurality of emission openings for discharging or emitting microwave energy into the interior of the microwave heater 730. Although illustrated in the figure as defining a plurality of elongated slots 767a through 767e having a generally rectangular shape with rounded ends, the firing openings 767a through 767e can have any suitable shape. Each of the elongated slots 767a through 767e can define a length (designated "L" in Figure 8b) and a width (designated "w" in the figure rib). 160978. Doc -51 - 201231885 In one embodiment, the length to width (L:W) ratio of the elongated grooves 7673 to 767e may be, for example, at least 2:1, at least, at least 4 inches or to 5 . 1. Additionally, as shown in the ribs, the elongated slots 767a through "" can be oriented at various angles relative to the horizontal plane. In one embodiment, the elongated slots 767a through 767e can be, for example, at least 1 相对 relative to the horizontal plane. , to ) 20, at least 30. And/or (for example) no more than 8 inches. Not more than 7 inches. Or no more than 6 inches. One angle extends. In one embodiment, each of the elongated slots 767a through 767e can have the same shape, size, and/or orientation. In one embodiment, the shape, size and/or orientation of the individual elongated grooves 767 & to 7676 may vary. The change in shape, size and/or orientation of the elongated grooves 767 & to 7676 can affect the distribution of energy emitted from the elongated waveguide emitter 76. Although shown as uncovered in the embodiment illustrated in Figure 8b, one or more of the transmit openings 767 may be substantially covered by one or more overlay structures (not shown) adjacent to the launch opening, the one or The plurality of cover structures are operable to prevent flow of fluid into and out of the opening 767 but allow microwave energy to be discharged therefrom. The 'emissive openings 767a through 767e' as shown in Figure 8b may be at least partially or integrally defined by one or more of the elongated waveguide emitters 76'' or sidewalls 764a through 764d. In the embodiment, at least 50%, at least 75%, at least 85%, or at least 9% of the thickness of the emission openings 767a through 767e, for example, may be defined by one or more sidewalls 764a through 764d. Embodiments according to the embodiment illustrated in Figure 8b 'emissive openings 767& to 7676 may be at least partially or integrally defined by two substantially upstanding sidewalls 764a, 764c. As used herein, the term "substantially upright" means 3 在 in the vertical plane. Inside, in a 160978. Doc-52-201231885 In the embodiment, the sidewalls 764a-764d of the elongated emitter 760 can be relatively thicker. In other embodiments, the sidewalls 764a-764d can be relatively thin. For example, the average thickness of the sidewalls 764a through 764d (designated as X in Figure 8b) can be at least 1/32 (0. 03 125) Miles, at least 1/8 (0. 125) miles, at least 3/16 (0. 1875) Miles and / or (for example) no more than 1/2 (〇 5) inches, no more than 1/4 (0. 25) Miles, no more than 3/16 (0. 1875) Miles are not greater than 1/8 (0. 125) Miles. The elongated waveguide emitter 760 can be at least 50%, at least 75%, at least 85%, at least 90%, or at least according to an embodiment in which one or more sidewalls of the elongated waveguide emitter 76 are relatively thin. One of the 95% microwave emission efficiencies transmits microwave energy into the interior of the microwave heater 73. As used herein, the term 'microwave emission efficiency' can be defined by converting the result of the following equation to a percentage: (total energy introduced into the emitter - total energy emitted from all openings in the emitter) + ( The total energy introduced into the emitter). The transmit openings 767a through 767e can be configured along the elongated waveguide emitter 760 in accordance with any suitable configuration or configuration. In one embodiment illustrated in Figure 8b, 'emission openings 767a through 767e can include a set of first emission openings (e.g., emission openings 767a, 767b) disposed on one side of emitter 760 and disposed in One of the second emission openings (e.g., emission openings 767c to 767e) on the other substantially opposite side of the elongated waveguide emitter 760. According to an embodiment, the first set of emitter openings and the second set of emitter openings may be axially staggered with each other ' such that corresponding openings (eg, openings 767a, 767c shown as pairs of emitters or pairs 780a and shown as emitting pairs or openings) The openings 767b, 767d) of 78〇b are not axially aligned with each other. Although in Figure 8b, Figure 160978. Doc • 53· 201231885 is illustrated as having only two pairs of emitter openings 780a, 780b, but it should be understood that any desired number of pairs of emitter openings may be utilized. According to one embodiment, each of the pairs 780a, 780b includes an emission opening disposed on one side of the elongated waveguide emitter 760 (eg, both openings 767a of the pair 780a disposed on the side wall 764a) And an opening 767b of the pair 780b and another emitting opening disposed on the opposite side of the emitter 760 (eg, the opening 767c of the pair 780a and the opening 767d of the pair 780b both disposed on the side wall 764c in FIG. 8b) . In one embodiment, the openings 767a, 767c and the openings 767b, 767d disposed on opposite sides of the elongated waveguide emitter 760 are axially aligned, while in another embodiment, the oppositely spaced openings 767a 767c and openings 767b, 767d may form a plurality of "near neighbors" pairs (eg, launch pairs 780a, 780b include "near neighbors" openings 767a, 767c and openings 767b, 767d, respectively). In one embodiment, for example, when an even number of firing openings are used, one or more of the single-ended emitting openings can be independent without forming a pair with any of the other openings. In one embodiment, the separate opening may be open at one end, such as the end opening 7 6 7 e shown in Figure 8b. According to an embodiment in which pairs 780a, 780b include pairs of adjacent open pairs, at least one of the transmit openings 767a through 767d of the transmit opening pair 780a, 780b can be configured to cancel as close to the neighbor pair 780a One or more of the other emission openings 767a through 767d of 780b are reflected back to at least a portion of the microwave energy in the interior space of the waveguide 760. For example, the microwave energy reflection caused by the opening 767a of the 780a may be at least partially, substantially or substantially entirely by the configuration of the other opening 767b of the 780a. Doc •54- 201231885 Elimination. In a similar manner, the microwave energy reflection caused by opening 767c of 780b can be offset, at least in part, substantially or nearly entirely, by the configuration of another opening 767d of 78〇b. Further, in one embodiment, each of the emission openings 767a through 767d of the pair of openings 780a, 780b is transferred to the interior of the microwave heater 730 when the emission openings 767 & 767d are disposed proximate to the adjacent pair. The total amount of energy in the energy may be equal to a fraction of the total amount of microwave energy introduced into the emitter 760. For example, in an embodiment in which the emitter includes N pairs of emission openings and a single-ended opening, the fraction of microwave energy emitted from each pair of emission openings (and/or unpaired openings or single-ended openings) It can be expressed by the following formula: 1/(N+1). Thus, according to an embodiment illustrated in Figure 8b (where N = 2) 'the total amount of energy emitted by each of pairs 780a, 780b may be equal to being introduced into the elongated waveguide emitter 76" 1/(2+1) or 1/3 of the total energy. Similarly, in this embodiment, the energy emitted from an unpaired emission opening (e.g., the single-ended opening 767e in Figure 8b) can be implemented by the formula "(n+u expression ° thus 'implemented in Figure 8b' In an example, the emission opening 767e can also emit approximately 1/3 of the total energy introduced into the elongated waveguide emitter 76. Another embodiment of a microwave heating system 82 is provided in Figures 9a through 9h. The microwave heating system 820 shown in 9a includes a microwave heater 820 and a microwave distribution system 84 operable to deliver microwave energy from a microwave generator (not shown) to the heater 820 (in one embodiment) The microwave heating system 820 can also include a vacuum system (not shown) for reducing the pressure in the microwave heater 830 to below atmospheric pressure. As shown in Figure 9a, the microwave 160978. Doc-55-201231885 The heater 830 can include a heater inlet door 838 for introducing a bundle of wood (or other load) into the interior of the heater 830. The microwave heater 830 can include a heater outlet door (not shown in Figure 93) placed on the opposite end of the heater 830 from the heater inlet door 838, as desired. Additionally, the microwave heater 830 can include a plurality of spaced apart emission openings located at various locations along one or more of the outer sidewalls 83 1 of the microwave heater 83 (such as illustrated as 841a, 841b in Figure 9a) They launch openings). The emission openings 841a, 841b are operable to house one or more components of the microwave distribution system 84, thereby facilitating transmission of microwave energy into the microwave heater 83. Additional details regarding the microwave distribution system 84 will now be discussed in more detail with respect to Figures 9b through 9h. Turning to Figure 9b, a top cross-sectional view of one of the microwave heaters 830 is provided, which in particular illustrates a plurality of microwave emitters 844a through 844d coupled directly or indirectly to opposite sidewalls 831a, 83b of the microwave heater 830. As used herein, the term "indirect coupling" refers to one or more intermediate devices used to at least partially connect one or more transmitters to a container. Transmitters 844a through 844d are operable to transmit microwave energy into the interior of microwave heater 830 via one or more open outlets 845 & 845d, as shown in Figure 9b. Although illustrated in Figure 9b as including four emitters 844a through 844d, it should be understood that microwave heater 830 can include any desired number of emitters. In one embodiment (not shown), the 'microwave heater 8 3 ' may include two additional emitters axially positioned to the left of the emitters 844a, 844b in FIG. 9b and/or to the right of the emitters 844c, 844d. . These additional transmitters (not shown) may face in the same direction and/or in different directions. For example, at 160978. Doc - 56 - 201231885 In one embodiment shown in Figure 9b, the emitters 844a through 844d are shown facing in opposite directions. Moreover, in one embodiment (not shown), the microwave heater 830 can include four additional transmitters configured in a manner similar to the transmitters 844a through 844d illustrated in Figure 9b, as further described below. Microwave transmitter 844 can be positioned along microwave heater 830, within microwave heater 830, or near microwave heater 830, according to any suitable configuration. In one embodiment, the microwave transmitter 844 can be configured to include two transmitter pairs. The individual emitters within the pair may be located on substantially the same side of the microwave heater 83 (eg, the pair includes emitters 84A and 844d and the other pair includes emitters 844b and 844c) or located in the microwave heater 83 On substantially opposite sides (eg, 'the pair includes microwave emitters 8443 and 8441) and the other pair includes 844c and 844d). As used herein, the term "substantially opposite side" or "opposite side" means that two emitters are positioned such that the radial alignment angle defined therebetween is between at least 90. To 180. In the scope. "Radial alignment angle (8)" is defined as the h formed between the two lines drawn from the center of each emitter to the central axis of the container. For example, E9e shows the definition between them - radial alignment angle Shirts, exemplary transmitters 845 and 84. The radial alignment angle between two emitters positioned on substantially opposite sides of a container can be at least 12 inches. At least 165. And / or no more than 18 〇. Or roughly 18 inches. . In one embodiment, the two emitters can be positioned on generally opposite side walls, as shown in FIG. 9b, while in another embodiment, two oppositely disposed emitters can be positioned in the heater (not Display) at the top or bottom of the vertical or in its attached 160978. Doc •57· 201231885 Near ο at one or more of the transmitter pairs comprising individual emitters on substantially opposite sides of a microwave heater (eg, emitters 844b and 844a or emitters 844c & 844d in Figure 9b) In one embodiment, the individual emitters within the pair may also be axially aligned with each other. As used herein, the term "axial alignment" means that two emitters are defined between themselves. To 45. One of the ranges of axial alignment angles. As used herein, "axial alignment angle" may be formed by the shortest line drawn between the centers of each emitter (which also intersects the elongated axis of the container) and one line drawn perpendicular to the axis of elongation. The corner is defined. In Fig. 9d, the axial alignment angle α is formed between the line 85〇 drawn between the centers of the exemplary emitters 845 and 846 and the line 852 perpendicular to the elongated axis 835a. In one embodiment, the axially aligned emitters can define at least zero. And/or (for example) no more than 3 〇. Or no more than 15. One of the axial alignment angles. In another embodiment, individual emitters within a pair may be located on substantially the same side of a microwave heater. As used herein, the term "substantially the same side" or "the same side" means that the two emitters have a radial alignment angle β that is in a range from at least or equal to 0° to 90°. The exemplary emitters 845 and 846b of Figure 9c are located on substantially the same side of the microwave heater because the radial alignment angle (e.g., βζ) defined therebetween is no greater than 9 〇. . In one embodiment, two emitters disposed on the same side of a microwave heater may define at least 0° and/or no greater than 60. No more than 30. And no more than 15. Or a radial alignment angle of approximately 0°. In one or more of the transmitter pairs are contained in a general microwave of 160978. Doc -58- 201231885 Individual transmitters on the same side (for example, 844d or transmitters 844b and 844c) -3

丨如’圖9b中之發射器844a及 匕—項實施例中,該等對内之 七鄰。如本文中所使用,術語 個以上發射器定位於一微波加 上無其他發射器安置於軸向毗 微波分佈系統包括兩個或兩個 對之一項實施例,來自第一對 自第一對之一個發射器大體相 同之側上,藉此形成一軸向毗鄰發射器對。 如圖9b中所圖解說明,微波發射器以仏至中之每一 者可界定用於將撒油能路2S仙i、丄.h ____For example, in the embodiment of the transmitters 844a and 匕 in Fig. 9b, the seven neighbors within the pair. As used herein, the terms more than one transmitter are positioned in a microwave plus no other emitters disposed in an axially adjacent microwave distribution system comprising one or two pairs of embodiments from the first pair from the first pair One of the emitters is generally on the same side thereby forming an axially adjacent emitter pair. As illustrated in Figure 9b, the microwave emitters can be defined for each of the sputum to be used for the oil-splitting circuit 2S, 丄.h ____

部中。舉例而言,在圖9b中所展示之一項實施例中, 軸向毗鄰發射器之開放出口(例如,發射器844a、844d之 出口 845a、845d及發射器 844b、844c之出口 845b、845c)可 經疋向以沿貫質上平行於該等發射器耦合至之外部側壁 (例如,發射器844a、844d之側壁83 la及發射器844b、844c 之側壁831b)之一方向面向彼此,藉此沿彼大體方向排放 微波能。如本文中所使用,術語「實質上平行」意指在平 行面之ίο。内。在一項實施例中,開放出口 845£1至845(1中 之至少一者可經定向以實質上平行於微波加熱器83〇之伸 長軸(在圖9b中指定為線835)來排放能量。根據一項實施 例’開放出口 845a至845d中之至少一者可經定向而朝向加 160978.doc •59- 201231885 熱器830之一軸向中點。如本文中所使用,一容器之「軸 向中點」係由正交於伸長軸835且與伸長轴835之中點839 交叉之一平面界定’如圖9b中所展示。在一項實施例中, 開放出口 845a至845d中之每一者經定向而朝向加熱器830 之軸向中點以使得前側發射器844a、844b之開放出口 845a、845b實質上面向背側發射器844c、844d之開放出口 845c、845d,如圖9b中所續示。 根據一項實施例’在操作中,由一或多個微波產生器 (未展示)生產之微波能可經由波導842a至842d輸送至發射 器844a至844d,發射器844a至844d將能量發射至微波加熱 器830之内部中。儘管圖9b中未圖解說明,但可使用任意 數目或組態之微波產生器以生產供用於微波加熱系統820 中之微波能。在一項實施例中,可使用一單個產生器以經 由波導842a至842d及發射器844將能量供應至加熱器83〇, 而在另一實施例中,加熱系統82〇可包含兩個或兩個以上 產生器。根據另一實施例,可利用一或多個微波產生器之 一網路以使得實質上同時自微波發射器844&至844(1中之至 少一者、至少兩者、至少三者或全部四者發射微波能。在 一項實施例中’一或多個發射器844a至844d可耦合至一單 個產生器且可使用一或多個微波切換器在該等發射器當中 分配來自該產生器之能量。在另一實施例中,發射器84“ 至844d中之一或多者可具有一單獨專用產生器,以使得將 由彼產生器生產之微波能之至少75%、至少9〇%或實質上 全部路由至一單個發射器。稍後關於圖Ua及Ub提供關於 160978.doc •60· 201231885 微波產生器、波導及發射器以及其操作之特定實施例之額 外細節。 由波導段842a至842d傳播之微波能可呈任一適合模式, 包含(舉例而言)一 TMafc模式及/或一 TE〇模式,其中α、6、 工及:^具有如先前所界定之值。在一項實施例中,波導段 842a至842d各自包括ΤΕ„波導段,其中段842^ 842d經組 態以穿透侧壁83 la且段842b及842c經組態以穿透側壁μ ib 並朝向伸長轴835徑向延伸至微波加熱器830之内部中,如 圖9b中所展示。 根據本發明之一項實施例,傳播通過波導段842&至842d 之微波能之模式可在被發射至微波加熱器830之内部中之 前(或與其同時)改變。舉例而言,在一項實施例中,由微 波產生器(圖9b中未展示)生產之TExy模式能量可在穿過一 或多個模式轉換段(在圖9b中表示為模式轉換器85(^至 850d)之後被發射至微波能中作為τΜα6模式能量。模式轉 換器可具有任一適合大小及形狀且可在微波分佈系統Mo 中使用任意適合數目個模式轉換器。在一項實施例中,一 或多個模式轉換器850a至850d可安置於微波加熱器830之 内部空間(體積)外侧,而在另一實施例中,模式轉換器 850a至850d可部分地或整體地安置於微波加熱器830之内 部内。模式轉換器850a至850d可位於側壁831a、83 lb中或 附近’或(如圖9b中所圖解說明)可與微波加熱器830之外部 側壁831a、831b隔開。 根據其中模式轉換器850a至850d部分地或整體地安置於 160978.doc -61 · 201231885 加熱器830内之一項實施例,微波能可最初以一 ΤΕ〇模式 進入微波加熱器,且隨後該能量之至少一部分可經轉換以 使得自發射器844a至844d發射至微波加熱器830之内部中 之能量之至少一部分可呈一 TM&模式。在一項實施例中, 波導段842a至842d可包括可操作以按一 TEy模式將微波能 自產生器傳輸至加熱器830之TE„波導段。在一項實施例 中,TE”波導段842a至842d之至少一部分可整合至發射器 844a至844d中,如圖9b中所繪示。當能量自波導段842a至 842d穿過模式轉換器850a至850d時,能量被轉換成一 ΤΜα6 模式。隨後,退出模式轉換器850a至850d之ΤΜαί)模式能量 可接著在經由ΤΜα6開放出口 845a至845d排放至加熱器830 中之前穿過一各別ΤΜα6波導段843a至843d,在9b中圖解說 明為整體地安置於微波加熱器830之内部内且與其側壁833 隔開。 根據圖9e中所繪示之另一實施例,微波加熱系統820可 包括一或多個反射器890a至890d,其定位於開放出口 845 a 至845d附近且可操作以反射或散射自發射器844a至844d發 射至微波加熱器830中之微波能。在一項實施例中,該等 反射器可係固定或靜止反射器,以使得在反射器之位置不 改變時反射或散射能量。在圖9e中所圖解說明之另一實施 例中,反射器890中之一或多者可係一可移動反射器,其 可操作以改變位置以將微波能反射或散射至微波加熱器 830中。圖9e中之每一可移動反射器890a至890d具有一各 別反射表面89la至89Id用於反射或散射自微波發射器844a 160978.doc •62· 201231885 至844d發射之能量。如圖96中所展示,每一反射表面可與 外部側壁831a、83 lb隔開且可經定位以使得發射器844a至 844<1之各別發射開口 845a至845d中之一或多者面向其各別 反射表面89la至89Id,反射表面89la至89Id又經定位以接 觸、引導或反射來自發射開口 845a至845d之微波能之至少 一部分。在一項實施例中,自微波發射器844&至844(1發射 之微波能之至少一部分或實質上全部可至少部分地接觸各 別反射器表面89la至891d且可至少部分地由其反射或散 射。在一項實施例中,反射表面891&至89 ld中之一或多者 可經定向以面向實質上平行於外部側壁83U、831b之伸長 方向之一方向。 在一項實施例中,反射器表面891&至891(1可係實質上平 面的,而在其他實施例中,一或多個反射器表面89^至 891d可係非平面的。舉例而言,在一項實施例中,一或多 個非平面反射器表面891a至891d可界定如由圖孙中所繪示 之實施例所圖解說明之一曲率。反射器表面8913至891(1可 係平滑的或可具有一或多個凸狀體。如本文中所使用,術 語「凸狀體」係、指-反射器之—區,其係可操作以自其散 射而非反射能量之表面。在―項實施例中,—凸狀體可具 有-大體凸面形狀,如藉由圖似9§中所展示之凸狀體 893a、893b之實例所圖解說明。在另一實施例中,一凸狀 體可具有-大體凹面形狀,諸如(舉例而言)一凹坑或其他 類似凹痕。 根據本發明之一項實施例 一或多個反射器890a至890d 160978.doc -63- 201231885 可係可移動反射器。可移動反射器可係可操作以改變位置 之任何反射器《在一項實施例中,可移動反射器89〇3至 890b可係能夠以一指定型樣(諸如(舉例而言)一大體上下型 樣或圍繞一軸旋轉之一型樣)移動之振盪反射器。在一項 實施例中,可移動反射器可係可操作以按各種各樣之隨機 及/或無計劃移動中之任一者移動之可隨機移動反射器。 可移動反射器890a至8 90d可根據任一適合方法可移動地 耗合至微波加熱器830。舉例而言,在圖9丨中所圖解說明 之一項實施例中’微波加熱器830可包括在加熱器830之内 部空間内之用於可移動反射器89〇之一反射器驅動器系統 (或致動器)8 99。如圖9i中所展示’反射器驅動器系統899 可包括一或多個支撐臂892,其將反射器890可緊固地耦合 至一振盪轉軸893。為致使轉軸893旋轉且藉此以一進出型 樣移動反射器890(如由箭頭880大體指示),一馬達898可使 一輪896(—線性轉軸895可以一大體偏離中心之方式耦合 至其)轉動。如由箭頭881所指示,轉軸895可在輪896轉動 時以一大體上下方式移動’藉此致使一槓桿臂894繞樞軸 897旋轉轉軸893,如由箭頭882大體指示。因此,反射器 890可如由箭頭880大體指示來移動且可操作以按至少部分 地藉由反射器890之移動而判定之一型樣來反射或散射自 微波反射器844之排放開口 845發射之微波能之至少一部 分。 在圖10a至1 Of中展示一微波加熱系統920之又一實施 例。如在圖l〇a之一項實施例中所圖解說明,一微波加熱 160978.doc • 64· 201231885 器930包括用於將一木材束902裝載至加熱器930之内部中 之一加熱器入口門938及用於自微波加熱器930移除束902 之一加熱器出口門939。儘管在圖l〇a中圖解說明為包含單 獨之入口門938及出口門939 ’但應理解,在另一實施例中 微波加熱器930可僅包含用於自微波加熱器930之内部裝載 木材束902及卸載木材束902兩者之一單個門。在圖1〇3中 所展示之實施例中,加熱器入口門938及加熱器出口門939 可位於微波加熱器930之大體相對側上以使得束902可經由 一輸送機構(諸如(舉例而言)一搬運車(未展示))大體穿過加 熱器930。另外,微波加熱系統920可包括用於控制加熱器 930中之壓力之一選用真空系統(未展示)。 如圖10a中所展示,微波加熱系統92〇可包含一微波分佈 系統940 ’該微波分佈系統包括界定於微波加熱器93〇之一 外部侧壁931中之複數個經隔開之發射開口 941&至941d。 每一發射開口 941可操作以接納用於將能量發射至微波加 熱器930之内部中之一微波發射器(未展示)。微波發射器可 至少部分地或整體地安置於微波加熱器93〇之内部内。稍 後將更詳細地論述一或多個類型之微波發射器之特定實施 例。 根據一項實施例,由一微波產生器(未展示)生產之微波 能可在穿過外部ΤΕ〇至TM心模式轉換器950a至950d(其將 穿過其之能量轉換成一 TMai)模式)之前以一 ΤΕ〇模式傳輸 通過波導段942a至942d。所得丁]\4心模式微波能可接著經由 各別波導段942e至942h退出模式轉換器950a至95〇d,如圖 160978.doc •65· 201231885 10a中所圖解說明。此後,TMfl6波導段942e至942h中之微 波能之至少一部分可在經由TMafc波導段942i至9421進入微 波加熱器930之前穿過各別阻障總成970a至970d。如本文 中所使用,術語「阻障總成」可係指可操作以流體地隔離 微波加熱器與一外部環境而仍准許微波能穿過其之任一裝 置。舉例而言,在圖10a中所展示之一項實施例中,各別 阻障總成970a至970d可各自包括至少一個密封窗構件972a 至972d,其可係微波能可透過的,但提供每一上游942e至 942h ΤΜαέ波導段與下游942i至9421 TMafc波導段中之每一 者之間的一期望程度流體隔離。如本文中所使用,術語 「密封窗構件」係指以如下之一方式組態之一窗構件:其 將提供窗構件之任一側上之兩個空間之間的充分流體隔離 以允許跨越此窗構件維持一壓力差。現將關於圖l〇b論述 關於阻障總成970a至970d之特定實施例之額外細節。 根據本發明之一項實施例組態之阻障總成甚至在高能量 通量及/或低操作壓力下亦最小化或消除發弧。根據本發 明之一項實施例,每一阻障總成970a至970d可准許能量以 至少5 kW、至少30 kW、至少50 kW、至少60 kW、至少65 kW、至少75 kW、至少100 kW、至少150 kW、至少200 kW、至少250 kW、至少350 kW、至少400 kW、至少500 kW、至少600 kW、至少750 kW或至少1,000 kW及/或不大 於2,500 kW、不大於1,500 kW或不大於1,000 kW之一速率 穿過其各別窗構件972a至972d,而微波加熱器930中之壓 力可係不大於550托、不大於450托、不大於350托、不大 160978.doc -66· 201231885 於250托、不大於200托、不大於150托、不大於loo托或不 大於75托。在一項實施例中,微波加熱器中之壓力可係不 大於10毫托、不大於5毫托、不大於2毫托、不大Mi毫 托、不大於0.5毫托或不大於〇.1毫托。在一項實施例中, 穿過阻障總成970a至970d之微波能可經引入以使得磁場維 持低於發弧之臨限值以藉此防止或最小化阻障總成97〇&至 970d中之發弧。 現翻至圖10b,提供一阻障總成970之一轴向剖面圖。阻 障總成970包括安置於一阻障殼體973内之一第一密封窗構 件972a及一選用第二密封窗構件972b。當存在時,第二密 封窗構件972b可操作以與第一密封窗構件972a協作以提供 上游(例如,入口)ΤΜαΖ>波導段975a與下游(例如,出 口)ΤΜα6波導段975b之間的一期望位準之流體隔離同時准 許微波能之至少一部分自第一TMflA波導段975a通行至第二 T1VU波導段975b。根據一項實施例,第一TM&波導段975a 及第二ΤΜαδ波導段975b可具有圓形圓柱形剖面。在—項實 施例中,波導段975a、975b可係其中可安置有阻障總成 970之一單個連續波導之兩個端,而在另一實施例中,波 導段可係適合地緊固或耦合至阻障總成970之任一側之兩 個單獨波導部分或組件。 如圖10b中所展示,阻障殼體973可包括一第一或入口區 段973a ' —選用第二或中間區段973b及第三或出口區段 973c ’其中第一密封窗構件972a安置於第一區段973a與第 二區段937b之間且第二密封窗構件972b安置於第二區段 160978.doc -67· 201231885 ㈣與第三區段937c之間。根據一項實施例,第一段 仙、第二段咖及第三段咖中之每一者之壓力可係不 同的。舉例而t ’在一項實施例中,第一段973a之壓力可 大於第一奴973b之壓力’第二段973b之壓力可大於第三段 973c之壓力。阻障殼體973之第一段”“、第二段Μ%及 第,段937c中之每一者可藉由諸如(舉例而言)螺釘、螺栓 及諸如此類之任一適合緊固裝置(未展示)固持在一起。此 外’阻障總成970a至970d亦可包括變更微波輻射之阻抗之 一或多個阻抗變換器。一實例圖解說明為在圖i〇b中所展 示之實施例中之阻抗變換直徑臺階式改變974a、947b,其 用於最大化自微波產生器(未展示)至微波加熱器(未展示) 中之負載之能量傳送。在一項實施例中,阻抗變換直徑臺 階式改變974a、947b可位於密封窗構件972a、972b中之至 ’’者附近,而在另一實施例中,臺階式改變974a、947b 可位於入口 TMai)波導975a及/或出口 ΤΜαέ波導975b附近或 至少部分地由入口 TMa6波導975a及/或出口 ΤΜα6波導975b 界定 如圖10a及10b中所圖解說明,密封窗構件972a、9721)可 包括一或多個盤。每一盤可由具有一適合程度之耐蝕性、 強度 '流體不透過性及微波能透過性之任何材料建構。適 合材料之實例可包含(但不限於)氧化鋁、氧化鎂、二氧化 矽、氧化鈹、氮化硼、富鋁紅柱石及/或聚合物(諸如,鐵 氟龍(TEFLON))。根據一項實施例,盤之損耗正切可係不 大於2χ1〇·4、不大於ΐχΐ〇·4、不大於7.5χ10·5或不大於5x1〇-5。 2 60978.doc -68 - 201231885 該等盤可具有任一適合剖面。在一項實施例中,盤可具 有與鄰接波導975a、975b之剖面相容之一剖面。在一項實 施例中,該等盤可具有一實質上圓形剖面且可具有等於穿 過阻障總成970之微波能之主要波長之長度之至少1/8、至 少1/4、至少1/2及/或不大於1、不大於3/4或不大於1/2之一 厚度(在圖l〇b中指定為「jc」)。該等盤之直徑可係一或多 個鄰接波導975a、975b之直徑之至少50%、至少60%、至 少75%、至少90%及/或不大於95%、不大於85%、不大於 70%或不大於60%。 密封窗構件972a至972d之每一盤可以任一適合方式可操 作地耦合至各別阻障總成970a至970d。在一項實施例中, 密封窗構件972a至972d中之每一者可包括撓性地耦合至阻 障殼體973及/或密封窗構件972a、972b之一或多個密封裝 置。如本文中所使用,術語「撓性地耦合」意指經緊固、 附接或以其他方式配置以使得該等構件在不直接接觸一或 多個剛性結構之情況下固持在適當位置。舉例而言,在圖 10b中所展示之一項實施例中,阻障總成970可包括複數個 彈性環982a、982b及984a、984b,其壓縮在阻障殼體973 之各種段973a至973c之間且可操作以將密封窗構件972a、 972b撓性地耦合至阻障殼體973中。 根據一項實施例,每一各別上游彈性環982a、982b及下 游彈性環984a、984b可操作以充分地防止或限制阻障總成 970之第一區段973a與第二區段973b及/或第二區段973b與 第三區段973c之間的流體流動。舉例而言,當經受根據使 160978.doc -69- 201231885 用一 Varian型號第938-41號偵測器之由Aicatel Vacuum Technology 發佈之標題為「Helium Leak Detection Techniques」之文件中闡述之標題為rSpraying Testing」 之程序B1之一氦洩漏測試時,密封窗構件972a至972d及/ 或阻障總成970a至970d之流體洩漏率可係不大於10-2托·升/ 秒、不大於10 4托.升/秒或不大於1〇·8托·升/秒。另外,密 封窗構件972a、972b中之每一者可個別地可操作以維持或 承受跨越密封窗構件972a、972b及/或阻障總成970之一壓 力差而不破裂、裂開、毁壞或以其他方式出故障,該壓力 差在數量上係諸如至少0.25 atm、至少〇.5 atm、至少0.75 atm、至少0.90 atm、至少1 atm或至少1.5 atm等》 現翻至圖10c ’提供一剖面微波加熱系統92〇。圖1以中 所繪示之微波加熱系統包含一微波分佈系統94〇,其包括 安置於一微波加熱器930之大體相對側上之至少一個微波 發射器對(例如,發射器944a及944h)。儘管在圖1 〇c中展示 為包含一單個發射器對,但應理解’微波分佈系統94〇可 進一步包括一或多個額外的經類似(或稍微不同)組態之微 波發射器對,其在某些實施例中使一個發射器來自安置於 微波加熱器9 3 0之大體相對側上之每一對。進一步地,在 另一實施例(圖10c中未展示)中,微波分佈系統94〇可包括 定位於微波加熱器930之大體相同側上之兩個或兩個以上 垂直隔開微波發射器列。在一項實施例中,微波加熱器 930之每一側可包含兩個或兩個以上垂直隔開發射器列, 以使得來自每一相對安置對之一個發射器可位於比來自另 160978.doc •70· 201231885 一相對安置對之一個發射器高之一垂直高度處。舉例而 言,在一項實施例中’發射器944a及/或944h可定位於比 圖10c中所繪示稍微高之一垂直高度處,且另一發射器對 可經定位以使得兩個發射器中之一者將定位於微波加熱器 930之相同側上但在比發射器944a大體較低之一垂直高度 處,且另一發射器將定位於微波加熱器930之相同側上但 在比發射器944h大體較低之一垂直高度處。此外,儘管展 示為分裂發射器944a、944h,但在一項實施例中,該等垂 直隔開之發射器可係本文中所闡述之任一類型(或任一類 型組合)之微波發射器。 如圖10c中所展示’微波分佈系統94〇包括耦合至至少一 個微波發射器944a、944h對之複數個波導段942。舉例而 言,如圖10c中之實施例中所展示,發射器944&可耦合至 波導段942a、942e及942i,而發射器944h可耦合至波導段 942x、942y及942z ’其可操作以將微波能自一或多個微波 產生器(圖10c中未展示)遞送至微波加熱器930之内部。在 一項實施何申’微波分佈系統940可包含耦合至波導段942 中之一或多者之一或多個模式轉換器947a至947d,如圖 l〇c中所展示。根據一項實施例,模式轉換器947&至947d 可操作以將穿過其之微波能之傳輸模式自一 TE^模式改變 成一 模式(亦即,一 TE叮至ΤΜ&模式轉換器)或自一 模式改變成一 模式(亦即,一τΜβδ至ΤΕ^模式轉 換器)°舉例而言’如圖l〇c中所展示,模式轉換器947a及 947c可各自可操作以在傳輸通過波導942a及942x之微波能 160978.doc •71 · 201231885 通行至波導942e及942y中時將該微波能自一 ΤΕΧ>)模式轉換 成一 模式。如先前所論述,α、6、X及之值可相同或 不同且可具有上文所提供之值。視需要,模式轉換器947b 及947d可操作以將傳輸通過波導942e及942i之微波能以及 傳輸通過942y及942z之能量自一 ΤΜαί)模式轉換成一 TE”模 式。 進一步地,在圖l〇c中所圖解說明之一項實施例中,模 式轉換器947a至947d中之至少一者可包括一模式轉換器分 裂器’其可操作以既改變穿過其之微波能之模式又將其分 裂成兩個或兩個以上單獨微波能流以供排放至微波加熱器 之内部空間中。根據一項實施例,第二模式轉換器947b及 947d可各自包括至少部分地安置於微波加熱器mo之内部 内之模式轉換分裂器。在另一實施例中,第二模式轉換分 裂器947b及947d可整體地安置於微波加熱器930之内部内 且可各自分別係一分裂發射器944a及944h之一部分,如圖 i〇c中所圖解說明。稍後將論述關於分裂發射器944a、 944h之額外細節。 根據本發明之其中微波分佈系統940在一或多個波導段 中包括兩個或兩個以上模式轉換器之一項實施例,第—模 式轉換器與第二模式轉換器之間的總電長度(延伸穿過且 包含任一阻障總成(若存在)之電長度)可等於係穿過其之微 波能之競爭模式之非整數個半波長之一值。如本文中所使 用,術語「電長度」係指微波能之電傳輸路徑,表達為沿 -既定路徑傳播所需要之微波能之波長之數目。在其中實 160978.doc •72· 201231885 體傳輸路徑包含一或多個不同類型之傳輸媒體(其具有兩 個或兩個以上不同介電常數)之一項實施例中,傳輸路徑 之實體長度可短於電長度。因此,電長度取決於若干個因 素,包含(舉例而言)微波能之特定波長、一或多個傳輸媒 體之厚度及類型(例如,介電常數)。 根據一項實施例,第一模式轉換器947a、947c與第二模 式轉換器947b、947d之間的總電長度(延伸穿過且包含 ΤΜβί)阻障總成970a、970h之總電長度)可等於微波能之競 爭模式之非整數個半波長《如本文中所使用,術語「非整 數」係指並非一整數之任一數目。接著,一非整數半波長 可對應於《乘λ/2之一距離,其中„係任一非整數。舉例而 言,數字「2」係一整數,而數字「2.05」係一非整數。 因此,對應於2.05之一電長度乘以微波能之競爭模式之半 波長將係彼競爭模式之非整數個半波長。 如本文中所使用,術語「微波能之競爭模式」係指除打 算用於沿一既定路徑傳播之微波能之期望或目標模式以外 之沿彼路徑傳播之微波能之任一模式。競爭模式可包含— 單個最流行模式(亦即,主要競爭模式)或複數個不同的不 流行競爭模式。當存在多個競爭模式時,第一模式轉換器 與第二模式轉換器之間的總電長度(延伸穿過且包含任二 阻障總成(若存在)之電長度)可等於係該多個競爭模式中 至少-者之非整數個半波長之一值,且在一項實施二二 等於係主要競爭模式之非整數個半波長之一值。 舉例而言,在圖10c中所繪示之一項實施例中,第—模 160978.doc -73- 201231885 式轉換器947a、947c包括TM。6模式轉換器,其可操作以將 各別波導段942a及942d中之微波能之至少一部分自一 τε 模式轉換成波導段942b及942e中之一 τΜα6模式。然而,實> 際上,該微波能之至少一部分可轉換成除所期望模式以外 之模式。除期望模式以外之任一模式通常在本文中稱為 微波能之「競爭模式」。在本發明之其中微波能之期望模 式係一TMefc模式之一項實施例中,微波能之競爭模式可係 一 TEwn模式,其中„係1且w係在丨與5之間的一整數。因 此,在一項實施例中,第一模式轉換器947a與第二模式轉 換器947b之間的ΤΜα6波導9426及942i之總電長度(延伸穿 過且包含阻障總成970a之電長度)可等於TEw”模式之非整 數個半波長,其中《係1且所係在丨與5之間的一整數。在另 一實施例中,w可係2或3。 在一項實施例中,選擇波導段942、模式轉換器947a至 947d及/或阻障總成970a、970h之實體長度及性質可最小 化阻障總成970a、970h内之能量聚集。舉例而言,根據一 項實施例,當至少5 kW、至少30 kW、至少50 kW、至少 60 kW、至少65 kW、至少75 kW '至少1〇〇 kw、至少15〇 kW、至少200 kW、至少250 kW、至少350 kw、至少4〇〇 kW、至少500 kW、至少600 kW、至少750 IcW或至少1,〇〇〇 kW及/或不大於2,500 kW、不大於l,5〇〇 kW或不大於1,〇〇〇 kW之能量可穿過阻障總成97〇a、970h時,阻障總成 970a、970h内之至少一個密封窗構件(圖1〇c中未展示)之至 少一部分之溫度可改變不大於1(TC、不大於5°c、不大於 160978.doc •74- 201231885 2C或不大於1°C。在另一實施例中,如上文所闞述,跨越 該至少一個密封窗構件之壓力差及/或微波加熱器93〇内之 壓力可維持有類似結果。 .根據圖10 c中所圖解說明之一項實施例’位於微波加熱 器930之大體相對側上且至少部分地安置於微波加熱器93〇 之内部内之個別微波發射器944a、944h中之至少一者可包 括一分裂反射器,其界定用於將微波能發射至微波加熱器 930之内部中之至少兩個排放開口。儘管在圖1〇c中圖解說 為包括一單個發射器對(例如’一第一分裂發射器94“及 一第二分裂發射器944h),但應理解,微波加熱器93〇可包 括任意適合數目個發射器或發射器對,如本文中所闡述。 圖l〇d中繪示一分裂發射器944之一項實施例。分裂發射 器944可包括用於接收微波能之一單個入口或開口 951,及 用於自其發射微波能之一單個(未展示)或兩個或兩個以上 排放開口或出口 945a、945b。在一項實施例中,一單個分 裂發射器之微波能入口對排放出口之比率可係丨:丨、至少 1:2、至少1:3或至少1:4。根據一項實施例,引入至入口 951中之微波能之模式可與經由排放開口 945&、94讣發射 之微波能之模式相同,而在另一實施例中,該等模式可係 不同的。舉例而言,在其中分裂發射器944包括一模式轉 換分裂器949之-項實施例中,引人至—微波加熱器之一 第-側壁之一單個入口中之微波能可經歷一模式轉換並被 劃分成至少兩個單獨微波能部分,其可隨後視需要以一不 同模式發至加熱器之内部+。舉例而言,在冑⑺d中所 160978.doc •75· 201231885 展示之一項實施例中’分裂發射器944可包括一 ΤΜβ6波導 段942、一個或兩個或兩個以上ΤΕ”波導段943a、943b及 安置於其間的一 丁河“至TE^模式轉換分裂器949。在操作 中,經由波導段942引入之呈一 ΤΜ^模式之微波能在以一 個或兩個或兩個以上單獨微波能分率自波導943a、94扑之 各別出口 945a、945b以一TE„模式同時或幾乎同時排放之 前穿過模式轉換分裂器949。 當發射器944包括一單個排放開口時,模式轉換分裂器 949可僅係用於改變穿過其之微波能之模式之一模式轉換 器949(並非一分裂器)。舉例而言,在其中發射器_包括 一單個排放開口(圖l〇d中未展示)之一項實施例辛,發射器 944 了包括單個TM&波導段、一單個τε”波導段及安置 於其間的一 ΤΜ&至ΤΕ〇模式轉換器949。該模式轉換器可 位於微波加熱器外側、部分地位於微波加熱器之内側或完 全地位於微波加熱器之内側。在操作中,經由入口波導段 引入之呈一 ΤΜβΖ)模式之微波能可在以一 ΤΕ〇模式排放之前 穿過模式轉換器9 4 9。單個開口發射器之排放開口可以相 對於水平面之任一適合角度定向或可實質上平行於水平 面。在一項實施例中,自單個開口發射器排放之能量可經 定向而與水平面成至少20。、至少3〇。、至少45。或至少6〇。 及/或不大於100。、不大於9〇。或不大於8〇。之一角。 當存在多個排放開口時,分裂發射器944之排放開口 945a、945b中之每一者可經彼此定向以使得自其排放之微 波能之路徑界定-相對排放角0,如圖刚中所展示。在一 I60978.doc -76- 201231885 項實施例中’微波能排放開口 945a、945b之路徑之間的相 對排放角可係至少5。、至少15。、至少3 0。、至少4 5。、至少 60。、至少90。、至少115。、至少135。、至少140。及/或不大 於180°、不大於170。、不大於165。、不大於16〇。、不大於 140°、不大於12〇。、不大於1〇〇。或不大於9〇。。在一項實施 例中’排放開口 945a、945b之定向亦可相對於自其排放之 微波能之路徑相對於ΤΜαί;波導段942之延伸軸948之定向來 闡述。在一項實施例中,排放開口 945a、945b中之每一者 可經組態以與ΤΜαδ波導段942之延伸轴948成各別第一及第 二排放角(φ i及q»2)地排放微波能。在一項實施例中,%及 φ2可係大致相等,如圖l〇d中大體繪示,或在另一實施例 中,該兩個角中之一者可大於另一者。在各種實施例中, φι及/或(P2可係至少5。、至少10。、至少15。、至少3〇。、至 少35°、至少55。、至少65。、至少70。及/或不大於110。、不 大於100°、不大於95°、不大於80。、不大於7〇。、不大於 60°或不大於40°。 在一項實施例中,分裂發射器944可係一垂直定向之分 裂發射器’此發射器944包括經組態以與水平面成一向上 角地發射微波能之至少一個向上定向之排放開口(例如, 945a)及經組態以與水平面成一向下角地發射微波能之至 少一個向下定向之排放開口(例如,945b)。儘管在圖1〇c中 繪示為包括經組態而以相對於水平面之角度排放能量之垂 直定向分裂發射器944a、944h,但在另一實施例中,微波 加熱器930之分裂發射器944a、944h中之一或多者可係水 160978.doc -77- 201231885 平定向,以使得已使如上文所闡述之分裂發射器旋轉 90° »在另一實施例中,可使一或多個分裂發射器94牦、 944h旋轉0。與90°之間的一角度。在一項實施例(未展示) 中,一微波加熱器可包含位於加熱器之一個側上之兩個或 兩個以上垂直隔開之水平定向分裂發射器列及在同一加熱 器之另一大體相對側上之兩個或兩個以上垂直隔開之水平 定向分裂發射器列。根據此實施例,垂直隔開之發射器列 可包括單個開口發射器、水平定向分裂發射器、垂直定向 分裂發射器或其任一組合。 在圖10c中所展示之一項實施例中,微波加熱器93〇可包 括一或多個(或至少兩個)可移動反射器外以至99〇d,其定 位於微波加熱器930内之各種位置處且經組態以光柵化自 一或多個微波發射器94蚀、944h之一或多個排放開口 945a 至945d發射至微波加熱器93〇之内部中之微波能。反射器 990a至990d可具有任一適合組態,諸如(舉例而言)包含先 前關於圖9f至9h所闡述之特徵中之一或多者之組態。進一 步地’儘管大體圖解說明為包括四個可移動反射器99〇&至 990d,但應理解,微波加熱器93〇可包括任意適合數目個 可移動反射器。在-項實施例中,包括”個分裂發射器之 —微波加熱器可包括至少2/ί個可移動反射器。在另一實施 例中,一微波加熱器可採用總共四個可移動反射器,其各 自界定實質上沿微波加熱器93〇之長度延伸之一反射器表 面,以使得兩個或兩個以上轴向毗鄰發射器「共用」一或 多個反射器或反射表面。 160978.doc •78· 201231885 不管所採用之反射器之具體數目如何,每一反射器99〇a 至990d皆可操作以光柵化經由排放開口 945a至945d退出發 射器944a、944h至微波加熱器930中之微波能之至少一部 分’以藉此加熱及/或乾燥束或其他物件、物品或負載之 至少一部分。如本文中所使用,術語「光柵化」意指將能 量引導、投射或聚集於某一區域上。與習用反射或散射能 量相比,光柵化能量涉及一較大程度之有意引導或聚集, 此可藉由利用微波能之準光學性質來達成。與習用手段相 比,光柵化不包含靜止反射表面或習用模式攪拌裝置(諸 如,風扇)之使用。在一項實施例中,微波加熱器可包括 複數個分裂發射器對(例如,兩個或兩個以上發射器對), 其中每一對包括具有實質上類似組態之兩個發射器(如上 文所闡述)。在一項實施例中,每一對之一個發射器可定 位於微波加熱器之大體相對側上或相同側上,如先前關於 圖9c及9d詳細論述。根據一項實施例,一或多個可移動反 射器990a至990d可定位於(及/或經定位以面向)微波發射器 944中之每一者之一或多個排放開口附近。在其中第一發 射器944a及第二發射器94411各自包括界定各別向上定向之 排放開口 945a及945c以及各別向下定向之排放開口 94讣及 945d之分裂微波發射器之一項實施例中,至少一個可移動 反射器可定位於排放開口 945a至945d中之一或多者附近以 光柵化自分裂發射器944a、944h排放至微波加熱器9 = 2 内部中之微波能之至少一部分(例如,兩個或兩個以上單 獨TE^模式微波部分)。在圖10c中所圖解說明之一項實施 160978.doc -79- 201231885 例中,微波加熱器930可包括至少四個可移動反射器,其 各自界定一各別反射表面且定位於分裂發射器944a、944h 之各別排放開口 945a至945d附近。如圖10c中所圖解說 明,可移動反射器990a至990d可位於微波加熱器930之底 部左象限(例如,反射器990a)、頂部左象限(例如,反射器 990b)、頂部右象限(例如,反射器990c)及底部右象限(例 如,反射器990d)中。當發射器944a、944h係水平定向之 分裂發射器或單個開口發射器時,亦可存在反射器990a至 990d中之兩者或兩者以上,如先前詳細闡述。 可移動反射器990a至990d可組態成兩個垂直隔開之對 (例如,反射器990a與反射器990b配對且反射器990c與反 射器9 9 0 d配對)及/或組態成兩個水平隔開之對(例如,反射 器990b與反射器990c成對且反射器990a與反射器990d成 對)。如圖10c中所圖解說明,垂直隔開之反射器對(例如, 反射器對990a、990b以及990c、990d)可定位於分裂發射 器944a、944h附近以使得一個可移動反射器定位於發射器 944a、944h之排放開口 945a至945d中之每一者附近(例 如’排放開口 945a至945d面向各別可移動反射器990a至 990d)。如圖l〇c中所繪示,可移動反射器990b及990c可定 位於比各別可移動反射器99〇a及990d高之一垂直高度處, 以使得分裂發射器944a、944h可垂直定位於垂直隔開之反 射器對之間(例如,發射器944a垂直定位於垂直隔開之反 射器990a、990b對之間且發射器944h垂直定位於垂直隔開 之反射器990c、990d對之間)。在一項實施例中,可移動 160978.doc -80· 201231885 反射器990經定位以使得反射器表面991面向其對應微波發 射器(未展示)之一開放出口。在另一實施例中,一或多個 可移動反射器990a至990d可經定位而與微波加熱器93〇之 中心伸長轴對準或經定位以面向微波加熱器93〇之中心伸 長轴(圖10c中未展示)。 可移動反射器990a至990d可直接或間接耦合至一微波加 熱器之一或多個側壁且可以任一適合方式移動或致動。反 射l§ 990a至990d中之一或多者可沿一經預程式化(經計劃) 之路徑移動,或可致使一或多者以一隨機或不重複型樣移 動。當存在多個反射器990a至990d時,在一項實施例中, 兩個或兩個以上反射器990a至990d可具有相同或類似移動 型樣,而在相同或另一實施例中,兩個或兩個以上反射器 990a至990d可具有不同移動型樣。根據一項實施例,反射 器990a至990d中之至少一者可以一大體弧形路徑移動且可 以某一速度及/或滞留時間穿過總路徑之各種段或「區」。 區之大小及數目以及反射器移動通過每一區之速度或每一 區中之反射器滯留時間取決於各種各樣之因素,諸如(舉 例而言)東之大小及類型、木材之類型以及初始及最後一 束之初步及期望特性。 在一項實施例中’可根據本文中所闡述之一或多個實施 例個別地驅動或致動反射器99〇3至99〇(1中之每一者,而在 另一實施例中’兩個或兩個以上反射器可連接至一共同驅 動機構(例如,欲同時致動之旋轉轉轴)。圖10e中展示用於 使用一致動器960移動一反射器990之一驅動機構之一個實 160978.doc • 81 - 201231885 例。致動器960可係一線性致動器,其具有耦合至微波加 熱器之一側壁933之一固定部分961及連接至一可移動反射 器990之一可延伸部分963。根據圖10e中所圖解說明之一 項實施例,固定部分961之至少一部分可延伸通過外部側 壁933並到達一伸縮囊結構964中,藉此將致動器96〇密封 地耦合至側壁933。在一項實施例中,伸縮囊結構964可操 作以減小、最小化或幾乎防止進出其中致動器96〇延伸通 過側壁933之位置之流體流動。如圖1〇e中所展示,可移動 反射器990進一步包括以樞軸方式耦合至微波加熱器之側 壁933之一支撐臂980。如本文中所使用,術語「以樞軸方 式耦合」係指兩個或兩個以上物件經附接、緊固或以其他 方式相關聯以使得該等物件中之至少一者可大體圍繞一固 定點移動或樞轉。在操作中,一驅動器97 之可延伸部分963以一進出類型運動移動,如:頭 971所指示。線性致動器960之可延伸部分963允許可移動 反射器990以一大體弧形型樣移動,如由箭頭973所指示。 可以任一適合方式控制驅動器97〇,包含(舉例而言)使用一 或多個可程式化自動控制系統(未展示)。 根據本發明之一項實施例,最小化界定於一微波加熱器 之内部内之未佔用、無阻礙或開放體積之量可係有優勢 的。如本文中所使用,術語「總開放體積」係指當未將一 木材束安置於容器中時不被實體阻礙物佔用之在容器内部 内之空間之總體積。在本發明之—項實施例中,木材束之 總體積(包含個別木材件之間的空間)對微波加熱器之總開 160978.doc -82· 201231885 放體積之比率可係至少〇 2〇、至少〇 25、至少〇 3〇、至少 0.35。在上述實施例中之某些實施例中,該比率亦係不大 於0.75、不大於〇 7〇或不大於〇 在項實施例中,微波加熱器可界定用於接納一木材束 之,·.、阻礙束接納空間。該無阻礙束接納空間亦可經組態 以接收經發射以加熱及/或乾燥其中之_或多個物件(或束^ 之微波牝之至少一部分。微波加熱器93〇之無阻礙束接納 空間在圖1〇c中指示為951。如本文中所使用,術語「無阻 礙束接納空間」係指界定於一微波加熱器之内部内之能夠 接納及固持—木材束之—空間。在—項實施例中該無阻 礙束接納空間可界定具有一類似形狀且在由能夠在微波加 …器930内裝載及/或處理之最大大小木材束所佔用體積之 10%内之一體積。舉例而言,若能夠由微波加熱器容納之 最大束大小係1,〇〇〇立方英尺,則該未佔用束接納空間將 具有U00立方英尺(在一項實施例中)之一體積及與在加熱 器930内處理之束類似之一形狀(例如,立方形 該束接納空間可係「無阻礙」,乃因其可不包含永久性 地安置於其中之任何實體阻礙物(例如,波導、發射器、 反射器等)。在本發明之一項實施例中,微波加熱器可包 括一圓形剖面形狀,而無阻礙束接納空間95丨可界定一立 方形體積及/或經組態以接納具有一立方形形狀之一木材 束°在一項實施例中,微波加熱器930之總開放體積對無 阻礙束接納空間之體積之比率可係至少〇.2〇、至少〇 25、 至少0.30.、至少〇·35。在上述實施例中之某些實施例中, 160978.doc • 83 - 201231885 該比率亦係不大於0 75、不大於〇 7〇或不大於〇 65。 根據一項實施例,無阻礙束接納空間951之至少一部分 可界定於兩個或兩個以上「阻礙物」之間,包含(舉例而 言)位於微波加熱器930之相同或大體相對側上之兩個或兩 個以上發射器、反射器、波導或其他物件,其佔據該加熱 器之内部體積内之實體空間。在其中微波加熱器93〇包括 兩個相對安置之門(例如,安置於微波加熱器93〇之大體相 對端上之一入口門928及一出口門)之一項實施例中,無阻 礙束接納空間951之至少一部分可界定於該兩個相對安置 之門之間。在圖10c中所圖解說明之一項實施例中,發射 态944a、944h或可移動反射器990a至990d(其係阻礙物之 實例)中之任一者皆不安置於無阻礙束空間951内。在其中 無阻礙束接納空間之至少一部分界定於兩個或兩個以上阻 礙物(例如,波導、發射器、反射器等)之間的一項實施例 中,一或多個阻礙物之最外面邊緣與無阻礙束接納空間 (及/或束(當存在時))之間的最小餘隙可係至少〇 5英吋、至 少1英吋、至少2英吋、至少6英吋、至少8英吋及/或不大 於18英时、不大於10英吋或不大於8英吋。在一項實施例 中,該等阻礙物中之一者在束被裝載至加熱器93〇中時不 與其實體接觸。 現將大體參考用於加熱一木材東之—過程闡述根據本發 明之一微波加熱系統之操作之一或多個實施例。然而,應 理解,本文中所闡述之加熱過程之一或多個元件亦可適於 在用於加熱其他物項之過程(如(舉例而言)先前所闞述之彼 160978.doc -84- 201231885 等過程)令使用。此外,應理解,可使用下文詳細閣述之 操作步驟、5法及/或㊣程中之至少某些或全部來操作微 波加熱系統之上文所闡述實施例中之一或多者,包含關於 圖8至1 〇所論述之彼等實施例及其變化形式。 為起始一木材束之加熱,可首先將木材裝載至可根據先 前所閣述之本發明之一或多個實施例組態之一微波加熱器 中。在一項實施例中,該束可在加熱及/或乾燥之前具有 至少100磅、至少250磅、至少375磅或至少500磅之一總初 始重量(例如,在加熱之前一旦裝載,即可接著使用真 空系統(若存在)來將加熱器之壓力減小至不大於55〇托、不 大於450托、不大於350托、不大於300托、不大於25〇托、 不大於200托、不大於15〇托、不大於1〇〇托或不大於75 托。 在維持微波加熱器中之低氣壓之同時,可接著操作一或 多個微波產生器以開始將微波能引入至容器内部中以藉此 加熱及/或乾燥該束之至少一部分。在將微波能引入至微 波加熱器之内部中期間,容器内之壓力可高於、幾乎處於 或低於大氣壓*根據一項實施例’在加熱步驟期間,微波 加熱器之内部之壓力可係至少35〇托、至少45〇托、至少 650托、至少750托、至少9〇〇托或至少ι,2〇〇托,而在另一 實施例中’微波加熱器中之壓力可係不大於35〇托、不大 於250托、不大於2〇〇托、不大於150托、不大於1〇〇托或不 大於75托。在木材之加熱及/或乾燥期間引入至微波加熱 器之内部中之總產生器容量或能量速率可係至少5 kw、至 160978.doc -85· 201231885 少30 k\V、至少50 kW、至少60 kW、至少65 kW、至少75 kW、至少loo kW、至少150 kW、至少200 kW、至少250 kW、至少350 kW、至少400 kW、至少500 kW、至少600 kW、至少750 kW或至少1,000 kW及/或不大於2,500 kW、 不大於1,500 kW或不大於1,000 kW。 根據一項實施例,加熱一木材束之過程可包括複數個個 別順序加熱循環。總加熱過程可包括至少2個、至少3個、 至少4個、至少5個、至少6個及/或不大於2〇個、不大於15 個、不大於12個或不大於10個個別順序加熱循環。每一加 熱循環可包含(視需要在低氣壓下)引入微波能。在一項實 施例中’可在不大於350托之一壓力下將微波能引入至微 波加熱器中,而在其他一項實施例中,微波加熱器中之壓 力可係至少350托。 根據一項實施例,該一或多個個別加熱循環中之每一者 可實施達(例如,具有一持續時間為)至少2分鐘、至少5分 刼、至少1〇分鐘、至少20分鐘、至少30分鐘及/或不大於 180分鐘、不大於12〇分鐘或不大於9〇分鐘。總而言之加 熱過程之整個長度(例如’總循環時間)可係至少〇·5小時、 至少2小時、至少5小時或至少8小時及/或不大於36小時、 不大於30小時、不大於24小時、不大於18小時、不大於j6 小時、不大於12小時、不大於1〇小時、不大於8小時或不 大於6小時。 在其中總加熱過程包括兩個或兩個以上個別加熱循環之 項實施例中,一或多個後續個別加熱循環可以與前一循 160978.doc -86 - 201231885 環不同之一微波能輸入速率及/或與前一循環不同之一壓 力實施。舉例而言,在一項實施例中,後續個別加熱循環 可以比前一循環低之一微波能輸入速率及/或比前一循環 低之一壓力貫施。在另一貫施例中,一或多個後續個別加 熱猶環可以比前一循環尚之一微波能輸入速率及/或比前 一循環咼之一壓力實施。在又一實施例中,一或多個後續 循%可以比一或多個先前個別加熱循環低之一微波能輸入 速率及比一或多個先前個別加熱循環高之一壓力實施,或 以比一或多個先前個別加熱循環高之一微波能輸入速率及 比一或多個先前個別加熱循環低之一壓力實施。當總加熱 過程包含兩個或兩個以上個別加熱循環時,根據某些實施 例,可如上文所闡述實施第二(或稍後)循環中之一或多 者。在其他實施例中,可以相同或幾乎相同壓力及/或微 波能輸入速率實施兩個或兩個以上循環。 根據一項實施例,總加熱過程可包含一第一順序加熱循 環’後跟有一第二加熱循環,其中該第二加熱循環係以比 6亥第一加熱循環低之一微波能輸入速率'比該第一加熱循 二低之一壓力或既比該第一加熱循環低之一微波能輸入速 率亦比該第一加熱循環低之一壓力實施。進一步地,在當 〜循環包括二個或三個以上加熱循環時之一項實施例中, 每y後續循m(除第一循環以外)之微波能輸入速率及/或壓 j可低於前一循環之微波能輸入速率及/或壓力。舉例而 °在項實施例中,第《個別加熱循環可以比第個 別加熱循環低之-微波能輸入速率、比第個別加熱循 160978.doc •87- 201231885 環低之一壓力或既比第個別加熱循環低之一微波能輸 入速率亦比第個別加熱循環低之一壓力實施。 在第一個別加熱循環期間,可將一第一最大微波能輸入 速率引入至微波加熱中。如本文_所使用,術語「最大 微波能輸入速率」係指在一加熱循環期間將微波能引入至 加熱器中之最高速率。在各種實施例中,在第一個別加熱 循環期間引入之最大微波能輸入速率(例如,第一最大微 波能輸入速率)可係(舉例而言)至少5 kW、至少30 kW、至 少50 kW、至少60 kW、至少65 kW、至少75 kW、至少100 kW、至少150 kW、至少200 kW、至少250 kW、至少350 kW、至少400 kW、至少500 kW、至少600 kW、至少750 kW或至少l,〇〇〇 kW及/或(舉例而言)不大於2,5〇〇 kW、不 大於1,500 kW、不大於l,〇〇〇kW或不大於5〇〇 kW。 隨後,可實施一第二個別加熱循環以使得在第二個別加 熱#%·期間將微波能引入至微波加熱器中之第二最大輸入 速率(例如,第一最大微波能輸入速率)可在某些實施例中 係(舉例而言)在第一加熱循環期間達成之最大輸入速率之 至少25%、至少50%、至少70%及/或(舉例而言)不大於 98%、不大於94%或不大於90%〇類似地,當加熱過程包 括三個或三個以上個別加熱循環時,第w個別加熱循環(例 如,第三或第四循環)之最大微波能輸入速率可在一項實 施例中係(舉例而言)在第…卯列如,前―)個別加熱循環 期間的最大輸入速率之至少25%、至少5〇%、至少7〇〇/◦及/ 或(舉例而言)不大於98% '不大於94%、不大於9〇%或;大 160978.doc • 88 - 201231885 於 85%。 在項實施例中,第二(或後續)個別加熱循環可以比第 一(或前一)個別加熱循環低之一壓力實施。舉例而言,在 其中於加熱循環期間利用低氣壓或真空壓力之一項實施例 中,在第一加熱循環期間達到之最低壓力可係至少25〇 托。隨後,可實施一第二個別加熱循環以使得在第二循環 期間達到之最低壓力(例如,所達成之最高真空壓力位準) 可在一項實施例中係(舉例而言)在第一加熱循環期間達到 之最低壓力之至少25%、至少50% '至少7〇%、至少75%、 至少80%及/或在一項實施例中係(舉例而言)不大於98%、 不大於94%或不大於90%β類似地,當加熱過程包括三個 或二個以上個別加熱循環時,第„個別加熱循環之壓力在 一項實施例中(舉例而言)可係在第"個別加熱循環期間 達到之最低壓力之至少25%、至少5〇%、至少7〇%、至少 75%、至少80%及/或不大於98%、不大於94%、不大於9〇% 或所達到之最低壓力之不大於8 5 %。 下文之表1根據本發明之一項實施例概述微波能速率之 寬、中間及窄範圍(表達為最大產生器輸出之一百分率)以 及連續第一、第二、第三及第„個別加熱循環之壓力(以托 表達)。如本文中所使用,術語「最大產生器輸出」係指 由一加熱系統内之所有微波產生器累積產生之在整個陣列 上組合之最大值。在一項實施例中,一或多個加熱循環之 最大微波能輸入速率亦可表達為最大產生器輸出之一百分 比,如表1中所展示。 160978.doc •89· 201231885 表1 :個別加熱循環之微波能速率及壓力 個別循環 微波j II速率(最大值之%) 壓力(托) 編號 寬 中間 窄 % 中間 窄 _ 1 60-100% 70-100% 80-100% <250 <200 20-100 2 40-100% 50-95% 60-90% <250 <200 20-100 3 20-80% 25-75% 30-70% <250 <150 20-100 η 5-60% 10-50% 15-40% <150 <100 10-75 根據本發明之一項實施例’ 一或多個個別加熱循環中之 每一者可包括:一加熱週期(例如,一第一、第二或第„加 熱週期),其中將微波能引入至加熱器中;及一選用休眠 週期(例如,一第一、第二或第„休眠週期),其中將一減小 量之微波能或實質上無微波能引入至加熱器中。舉例而 。,在加熱週期期間,微波能可以足以加熱及/或至少部 分地乾燥潤濕或化學潤濕木材束之至少一部分之一輸入速 率引入至微波加熱器中,而在休眠週期期間,引入至微波 加熱器中之微波能輸入速率可在一項實施例中係在加熱週 期期間引入之最大微波能輸入速率之不大於25%、不大於 ⑽、不大於5%或不大於1%β在其中採用多個個別加轨 錢之-項實施例中,每_循環可包含—❹個加_期In the ministry. For example, in one embodiment shown in Figure 9b, the open exit is axially adjacent to the emitter (e.g., the outlets 845a, 845d of the emitters 844a, 844d and the outlets 845b, 845c of the emitters 844b, 844c) Oriented toward each other in a direction transversely parallel to one of the outer sidewalls to which the emitters are coupled (eg, sidewalls 83a of the emitters 844a, 844d and sidewalls 831b of the emitters 844b, 844c) Discharge microwave energy along the general direction. As used herein, the term "substantially parallel" means ίο in a parallel plane. Inside. In one embodiment, at least one of the open outlets 845 £1 to 845 (1 can be oriented to discharge energy substantially parallel to the axis of elongation of the microwave heater 83 (designated as line 835 in Figure 9b) According to one embodiment, at least one of the open outlets 845a through 845d can be oriented toward the axial midpoint of one of the 160978.doc • 59-201231885 heaters 830. As used herein, a container The axial midpoint" is defined by a plane orthogonal to the elongated axis 835 and intersecting the point 839 of the elongated shaft 835, as shown in Figure 9b. In one embodiment, each of the open outlets 845a through 845d One is oriented toward the axial midpoint of the heater 830 such that the open outlets 845a, 845b of the front side emitters 844a, 844b substantially face the open outlets 845c, 845d of the backside emitters 844c, 844d, as continued in Figure 9b In accordance with an embodiment 'in operation, microwave energy produced by one or more microwave generators (not shown) may be delivered to emitters 844a through 844d via waveguides 842a through 842d, and emitters 844a through 844d emit energy Up to the inside of the microwave heater 830. Not illustrated in Figure 9b, but any number or configuration of microwave generators can be used to produce microwave energy for use in the microwave heating system 820. In one embodiment, a single generator can be used to pass via the waveguide 842a to 842d and transmitter 844 supply energy to heater 83A, while in another embodiment, heating system 82A may include two or more generators. According to another embodiment, one or more microwaves may be utilized One of the generators is networked to emit microwave energy substantially simultaneously from at least one, at least two, at least three, or all four of the microwave emitters 844 & to 844 (in one embodiment) The plurality of transmitters 844a through 844d can be coupled to a single generator and the energy from the generator can be distributed among the transmitters using one or more microwave switches. In another embodiment, the transmitter 84" One or more of up to 844d may have a separate dedicated generator such that at least 75%, at least 9%, or substantially all of the microwave energy produced by the generator is routed to a single transmitter. Ua and Ub Additional details regarding specific embodiments of the microwave generator, waveguide and transmitter and their operation. The microwave energy propagated by the waveguide segments 842a through 842d can be in any suitable mode, including (for example a TMafc mode and/or a TE〇 mode, wherein α, 6, and ^ have values as previously defined. In one embodiment, waveguide segments 842a through 842d each comprise a waveguide segment, wherein the segments 842^842d is configured to penetrate sidewall 83la and segments 842b and 842c are configured to penetrate sidewall μ ib and extend radially toward elongated shaft 835 into the interior of microwave heater 830, as shown in Figure 9b . In accordance with an embodiment of the present invention, the mode of microwave energy propagating through waveguide segments 842 & 842d can be changed before (or at the same time as) being emitted into the interior of microwave heater 830. For example, in one embodiment, the TExy mode energy produced by the microwave generator (not shown in Figure 9b) may pass through one or more mode transition segments (represented as mode converter 85 in Figure 9b) ^ to 850d) is then emitted into the microwave energy as τΜα6 mode energy. The mode converter can have any suitable size and shape and any suitable number of mode converters can be used in the microwave distribution system Mo. In one embodiment One or more mode converters 850a through 850d may be disposed outside the interior space (volume) of the microwave heater 830, while in another embodiment, the mode converters 850a through 850d may be partially or integrally disposed in the microwave heating The mode converters 850a through 850d may be located in or adjacent to the side walls 831a, 83 lb' or (as illustrated in Figure 9b) may be spaced apart from the outer side walls 831a, 831b of the microwave heater 830. Mode converters 850a through 850d are partially or integrally disposed in an embodiment of 160978.doc -61 - 201231885 heater 830, which can initially enter the microwave heater in a chirp mode, and At least a portion of the energy can then be converted such that at least a portion of the energy emitted from the emitters 844a through 844d into the interior of the microwave heater 830 can be in a TM& mode. In one embodiment, the waveguide segments 842a through 842d A TE „ waveguide section operable to transfer microwave energy from the generator to the heater 830 in a TEy mode may be included. In one embodiment, at least a portion of the TE” waveguide sections 842a to 842d may be integrated into the transmitter 844a to In 844d, as depicted in Figure 9b, when energy passes through the mode converters 850a through 850d from the waveguide sections 842a through 842d, the energy is converted to a ?6 mode. Subsequently, the mode energy of the mode converters 850a through 850d is exited. It may then pass through a respective ΤΜα6 waveguide section 843a to 843d before being discharged through the ΤΜα6 open outlets 845a to 845d into the heater 830, illustrated in 9b as being integrally disposed within the interior of the microwave heater 830 and with its side wall 833 Separated. According to another embodiment illustrated in Figure 9e, the microwave heating system 820 can include one or more reflectors 890a through 890d positioned adjacent the open outlets 845a through 845d and operable to reflect or scatter from the emitter 844a The microwave energy emitted into the microwave heater 830 is up to 844d. In one embodiment, the reflectors can be fixed or stationary reflectors to reflect or scatter energy when the position of the reflector does not change. In another embodiment illustrated in Figure 9e, one or more of the reflectors 890 can be a movable reflector operable to change position to reflect or scatter microwave energy into the microwave heater 830 . Each of the movable reflectors 890a through 890d of Figure 9e has a respective reflective surface 89la through 89Id for reflecting or scattering the energy emitted from the microwave emitters 844a 160978.doc • 62· 201231885 to 844d. As shown in Figure 96, each reflective surface can be spaced apart from the outer sidewalls 831a, 83 lb and can be positioned such that the emitters 844a through 844 One or more of the respective emitter openings 845a through 845d of <1 are facing their respective reflective surfaces 89la through 89Id, which in turn are positioned to contact, direct or reflect microwave energy from the emitter openings 845a through 845d. At least part of it. In one embodiment, at least a portion or substantially all of the microwave energy emitted from the microwave emitters 844 & 844 (1) may at least partially contact the respective reflector surfaces 89la through 891d and may be at least partially reflected therefrom or Scattering. In one embodiment, one or more of reflective surfaces 891 & to 89 ld may be oriented to face one direction substantially parallel to the direction of elongation of outer sidewalls 83U, 831b. In one embodiment, The reflector surfaces 891 & to 891 (1 may be substantially planar, while in other embodiments, the one or more reflector surfaces 89^ to 891d may be non-planar. For example, in one embodiment One or more of the non-planar reflector surfaces 891a through 891d may define one of the curvatures as illustrated by the embodiment illustrated in Figure 2. The reflector surfaces 8913 to 891 (1 may be smooth or may have one or A plurality of convex bodies. As used herein, the term "convex body" refers to a region of a reflector that is operable to scatter from it rather than reflect the surface of the energy. In the embodiment, - the convex body may have a substantially convex shape, such as This is illustrated by the example of a convex body 893a, 893b as shown in Fig. 9. In another embodiment, a convex body may have a generally concave shape such as, for example, a pit or Other similar indentations. One or more reflectors 890a to 890d according to an embodiment of the invention 160978. Doc -63- 201231885 Can be a movable reflector. The movable reflector can be any reflector that is operable to change position. In one embodiment, the movable reflectors 89〇3 to 890b can be in a designated pattern (such as, for example, a substantially lower An oscillating reflector that moves in a pattern or a pattern that rotates around an axis. In one embodiment, the movable reflector can be a randomly moveable reflector that is operable to move in any of a wide variety of random and/or unplanned movements. The movable reflectors 890a through 8 90d can be movably consuming to the microwave heater 830 in accordance with any suitable method. For example, in one embodiment illustrated in FIG. 9A, the 'microwave heater 830 can include one of the reflector drivers for the movable reflector 89 within the interior space of the heater 830 (or Actuator) 8 99. As shown in Figure 9i, the reflector driver system 899 can include one or more support arms 892 that can securely couple the reflector 890 to an oscillating shaft 893. To cause the spindle 893 to rotate and thereby move the reflector 890 in an incoming and outgoing pattern (as generally indicated by arrow 880), a motor 898 can rotate a wheel 896 (the linear shaft 895 can be coupled to it substantially off-center) . As indicated by arrow 881, the shaft 895 can be moved in a generally downward manner as the wheel 896 rotates, thereby causing a lever arm 894 to rotate the shaft 893 about the pivot 897, as generally indicated by arrow 882. Accordingly, reflector 890 can be moved as generally indicated by arrow 880 and is operable to reflect or scatter from discharge opening 845 of microwave reflector 844 as determined at least in part by movement of reflector 890. At least a portion of the microwave energy. Yet another embodiment of a microwave heating system 920 is shown in Figures 10a through 1 Of. As illustrated in an embodiment of FIG. 1A, a microwave is heated 160978. Doc • 64· 201231885 The 930 includes a heater inlet door 938 for loading a bundle of wood 902 into the interior of the heater 930 and a heater outlet door 939 for removing the bundle 902 from the microwave heater 930. Although illustrated in FIG. 1A as including separate inlet door 938 and outlet door 939 ', it should be understood that in another embodiment microwave heater 930 may only include internal loading of wood beams from microwave heater 930. 902 and unloading the wood bundle 902 as a single door. In the embodiment shown in FIGS. 1-3, heater inlet door 938 and heater outlet door 939 can be located on generally opposite sides of microwave heater 930 such that bundle 902 can be via a delivery mechanism (such as, for example, A truck (not shown) generally passes through the heater 930. Additionally, the microwave heating system 920 can include a vacuum system (not shown) for controlling one of the pressures in the heater 930. As shown in Figure 10a, the microwave heating system 92A can include a microwave distribution system 940' that includes a plurality of spaced apart emission openings 941 & defined in one of the outer sidewalls 931 of the microwave heater 93A. To 941d. Each of the firing openings 941 is operable to receive a microwave emitter (not shown) for emitting energy into the interior of the microwave heater 930. The microwave emitter can be disposed at least partially or integrally within the interior of the microwave heater 93. Particular embodiments of one or more types of microwave emitters will be discussed in more detail later. According to one embodiment, microwave energy produced by a microwave generator (not shown) may be passed through external enthalpy to TM mode converters 950a through 950d (which converts energy passing therethrough into a TMai mode) Transmission through waveguide segments 942a through 942d is performed in a one-turn mode. The resulting D]\4 heart mode microwave energy can then exit mode converters 950a through 95〇d via respective waveguide segments 942e through 942h, as shown in Fig. 160978. Doc •65· 201231885 10a illustrated. Thereafter, at least a portion of the microwave energy in the TMfl6 waveguide sections 942e through 942h can pass through the respective barrier assemblies 970a through 970d prior to entering the microwave heater 930 via the TMafc waveguide sections 942i through 9141. As used herein, the term "barrier assembly" may refer to any device that is operable to fluidly isolate a microwave heater from an external environment while still permitting microwave energy to pass therethrough. For example, in one embodiment shown in Figure 10a, the respective barrier assemblies 970a through 970d can each include at least one sealing window member 972a through 972d that can be microwave permeable, but provides each A desired degree of fluid isolation between an upstream 942e to 942h ΤΜαέ waveguide segment and each of the downstream 942i to 9421 TMafc waveguide segments. As used herein, the term "sealed window member" refers to a window member that is configured in one of the following ways: it will provide sufficient fluid isolation between the two spaces on either side of the window member to allow for crossing The window member maintains a pressure differential. Additional details regarding particular embodiments of the barrier assemblies 970a through 970d will now be discussed with respect to FIG. A barrier assembly configured in accordance with an embodiment of the present invention minimizes or eliminates arcing even at high energy fluxes and/or low operating pressures. According to an embodiment of the invention, each of the barrier assemblies 970a to 970d may permit energy of at least 5 kW, at least 30 kW, at least 50 kW, at least 60 kW, at least 65 kW, at least 75 kW, at least 100 kW, At least 150 kW, at least 200 kW, at least 250 kW, at least 350 kW, at least 400 kW, at least 500 kW, at least 600 kW, at least 750 kW or at least 1,000 kW and/or no more than 2,500 kW, no more than 1,500 kW or no greater than One of the speeds of 1,000 kW passes through its respective window members 972a to 972d, and the pressure in the microwave heater 930 can be no more than 550 Torr, no more than 450 Torr, no more than 350 Torr, and no more than 160,978. Doc -66· 201231885 For 250 Torr, no more than 200 Torr, no more than 150 Torr, no more than loo or no more than 75 Torr. In one embodiment, the pressure in the microwave heater may be no greater than 10 mTorr, no greater than 5 mTorr, no greater than 2 mTorr, no greater Mi mTorr, and no greater than zero. 5 mTorr or no more than 〇. 1 mTorr. In one embodiment, microwave energy passing through the barrier assemblies 970a through 970d can be introduced to maintain the magnetic field below a threshold of arcing to thereby prevent or minimize the barrier assembly 97〇& The arc in 970d. Turning now to Figure 10b, an axial cross-sectional view of a barrier assembly 970 is provided. The barrier assembly 970 includes a first sealing window member 972a disposed in a barrier housing 973 and a second sealing window member 972b. When present, the second sealing window member 972b is operable to cooperate with the first sealing window member 972a to provide a desired between upstream (eg, inlet) ΤΜαΖ> waveguide segment 975a and downstream (eg, outlet) ΤΜα6 waveguide segment 975b The level of fluid isolation also permits at least a portion of the microwave energy to pass from the first TMflA waveguide section 975a to the second T1VU waveguide section 975b. According to an embodiment, the first TM& waveguide segment 975a and the second ΤΜαδ waveguide segment 975b may have a circular cylindrical cross section. In an embodiment, the waveguide segments 975a, 975b may be in which two ends of a single continuous waveguide of the barrier assembly 970 may be disposed, while in another embodiment, the waveguide segments may be suitably fastened or Two separate waveguide portions or components coupled to either side of the barrier assembly 970. As shown in Figure 10b, the barrier housing 973 can include a first or inlet section 973a' - a second or intermediate section 973b and a third or outlet section 973c' wherein the first sealing window member 972a is disposed The first section 973a is separated from the second section 937b and the second sealing window member 972b is disposed in the second section 160978. Doc -67· 201231885 (4) Between the third section 937c. According to one embodiment, the pressure of each of the first paragraph, the second paragraph, and the third paragraph may be different. By way of example, in one embodiment, the pressure of the first segment 973a may be greater than the pressure of the first slave 973b. The pressure of the second segment 973b may be greater than the pressure of the third segment 973c. Each of the first segment "", the second segment Μ%, and the segment 937c of the barrier housing 973 may be by any suitable fastening means such as, for example, screws, bolts, and the like (not Show) hold together. Further, the barrier assemblies 970a through 970d may also include one or more impedance transformers that alter the impedance of the microwave radiation. An example is illustrated as impedance transformation diameter stepwise changes 974a, 947b in the embodiment shown in Figure ib for maximizing from a microwave generator (not shown) to a microwave heater (not shown) The energy transfer of the load. In one embodiment, the impedance transformation diameter stepwise changes 974a, 947b may be located near the '' in the sealing window members 972a, 972b, while in another embodiment, the stepped changes 974a, 947b may be located at the inlet TMai The waveguide 975a and/or the exit ΤΜαέ waveguide 975b is defined or at least partially defined by the inlet TMa6 waveguide 975a and/or the outlet ΤΜα6 waveguide 975b as illustrated in Figures 10a and 10b, and the sealing window members 972a, 9721) may include one or more A disk. Each disc can be constructed from any material having a suitable degree of corrosion resistance, strength 'fluid impermeability, and microwave energy permeability. Examples of suitable materials may include, but are not limited to, alumina, magnesia, cerium oxide, cerium oxide, boron nitride, mullite, and/or polymers such as TEFLON. According to an embodiment, the loss tangent of the disk may be no more than 2χ1〇·4, no more than ΐχΐ〇·4, and no more than 7. 5χ10·5 or no more than 5x1〇-5. 2 60978. Doc -68 - 201231885 These discs can have any suitable profile. In one embodiment, the disk may have a profile that is compatible with the profile of adjacent waveguides 975a, 975b. In one embodiment, the disks may have a substantially circular cross section and may have at least 1/8, at least 1/4, at least 1 of the length of the dominant wavelength of microwave energy passing through the barrier assembly 970. /2 and/or no more than 1, no more than 3/4 or no more than 1/2 thickness (designated as "jc" in Figure l〇b). The diameter of the disks may be at least 50%, at least 60%, at least 75%, at least 90%, and/or no greater than 95%, no greater than 85%, and no greater than 70 of the diameter of one or more adjacent waveguides 975a, 975b. % or no more than 60%. Each of the sealing window members 972a through 972d can be operatively coupled to the respective barrier assemblies 970a through 970d in any suitable manner. In one embodiment, each of the sealing window members 972a through 972d can include one or more sealing devices that are flexibly coupled to the barrier housing 973 and/or the sealing window members 972a, 972b. As used herein, the term "flexibly coupled" means secured, attached or otherwise configured such that the members are held in place without direct contact with one or more rigid structures. For example, in one embodiment shown in FIG. 10b, the barrier assembly 970 can include a plurality of elastic rings 982a, 982b and 984a, 984b that are compressed in various segments 973a through 973c of the barrier housing 973. There is and is operable to flexibly couple the sealing window members 972a, 972b into the barrier housing 973. According to one embodiment, each respective upstream resilient ring 982a, 982b and downstream resilient ring 984a, 984b are operable to substantially prevent or limit the first section 973a and the second section 973b of the barrier assembly 970 and/or Or fluid flow between the second section 973b and the third section 973c. For example, when subjected to the basis of 160978. Doc -69- 201231885 One of the procedures B1, titled rSpraying Testing, published by Aicatel Vacuum Technology under the heading "Helium Leak Detection Techniques" by a Varian model No. 938-41, leak test The fluid leakage rate of the sealing window members 972a to 972d and/or the barrier assemblies 970a to 970d may be no more than 10-2 Torr·sec/sec and no more than 10 4 Torr. L / s or no more than 1 〇 · 8 Torr · liter / sec. Additionally, each of the sealing window members 972a, 972b can be individually operable to maintain or withstand a pressure differential across one of the sealing window members 972a, 972b and/or the barrier assembly 970 without breaking, cracking, damaging, or In other ways, the pressure difference is in quantity such as at least 0. 25 atm, at least 〇. 5 atm, at least 0. 75 atm, at least 0. 90 atm, at least 1 atm or at least 1. 5 atm et al. now turned to Figure 10c' to provide a cross-sectional microwave heating system 92A. The microwave heating system illustrated in Figure 1 includes a microwave distribution system 94A including at least one pair of microwave emitters (e.g., emitters 944a and 944h) disposed on generally opposite sides of a microwave heater 930. Although shown in FIG. 1c to include a single emitter pair, it should be understood that 'microwave distribution system 94' may further include one or more additional similar (or slightly different) configurations of microwave emitter pairs, In some embodiments, one emitter is from each pair disposed on substantially opposite sides of the microwave heater 930. Further, in another embodiment (not shown in Figure 10c), the microwave distribution system 94A can include two or more vertically spaced microwave emitter columns positioned on substantially the same side of the microwave heater 930. In one embodiment, each side of the microwave heater 930 can include two or more vertically spaced emitter columns such that one emitter from each of the opposing placement pairs can be located from another 160978. Doc •70· 201231885 A relative placement of one of the transmitter heights at one of the vertical heights. For example, in one embodiment 'the emitters 944a and/or 944h can be positioned at a slightly higher vertical height than that depicted in Figure 10c, and another emitter pair can be positioned such that two shots One of the devices will be positioned on the same side of the microwave heater 930 but at a substantially lower vertical height than the emitter 944a, and the other emitter will be positioned on the same side of the microwave heater 930 but in comparison Transmitter 944h is generally at a lower vertical height. Moreover, although shown as split emitters 944a, 944h, in one embodiment, the vertically spaced emitters can be any type (or combination of types) of microwave emitters as set forth herein. The microwave distribution system 94A as shown in Figure 10c includes a plurality of waveguide segments 942 coupled to at least one pair of microwave emitters 944a, 944h. For example, as shown in the embodiment of Figure 10c, the emitters 944 & can be coupled to the waveguide segments 942a, 942e, and 942i, and the emitters 944h can be coupled to the waveguide segments 942x, 942y, and 942z 'which are operable to Microwave energy is delivered to the interior of the microwave heater 930 from one or more microwave generators (not shown in Figure 10c). In one implementation, the Hessian microwave distribution system 940 can include one or more of the mode converters 947a through 947d coupled to one or more of the waveguide segments 942, as shown in FIG. According to an embodiment, the mode converters 947 & 947d are operable to change the transmission mode of the microwave energy passing therethrough from a TE^ mode to a mode (ie, a TE叮 to ΤΜ& mode converter) or A mode is changed to a mode (i.e., a τ Μ β δ to ΤΕ ^ mode converter). For example, as shown in FIG. 10C, mode converters 947a and 947c may each be operable to transmit through waveguides 942a and 942x. Microwave energy 160978. Doc •71 · 201231885 Converts the microwave energy from a ΤΕΧ>) mode to a mode when passing through the waveguides 942e and 942y. As previously discussed, the values of α, 6, X and may be the same or different and may have the values provided above. Mode converters 947b and 947d are operable to convert the microwave energy transmitted through waveguides 942e and 942i and the energy transmitted through 942y and 942z from a mode to a TE" mode, as desired. Further, in FIG. In one illustrated embodiment, at least one of the mode converters 947a through 947d can include a mode converter splitter that is operable to both change the mode of microwave energy passing therethrough and split it into two One or more separate microwave energy streams for discharge into the interior space of the microwave heater. According to an embodiment, the second mode converters 947b and 947d may each include at least partially disposed within the interior of the microwave heater mo The mode switching splitter. In another embodiment, the second mode switching splitters 947b and 947d may be integrally disposed within the interior of the microwave heater 930 and may each be part of a split transmitter 944a and 944h, respectively. Illustrated in Figure i.c. Additional details regarding split transmitters 944a, 944h will be discussed later. In accordance with the present invention, microwave distribution system 940 has one or more waves. An embodiment comprising two or more mode converters, the total electrical length between the first mode converter and the second mode converter (extending through and including any of the barrier assemblies (if present) The electrical length) may be equal to one of a non-integer half-wavelength of the competing mode of microwave energy passing therethrough. As used herein, the term "electrical length" refers to the electrical transmission path of microwave energy, expressed as along - The number of wavelengths of microwave energy required for a given path to propagate. In it, 160978. Doc • 72· 201231885 In one embodiment where the bulk transmission path comprises one or more different types of transmission media having two or more different dielectric constants, the physical length of the transmission path may be shorter than the electrical length. Thus, the electrical length depends on a number of factors including, for example, the particular wavelength of microwave energy, the thickness and type of one or more transmission media (e.g., dielectric constant). According to an embodiment, the total electrical length (extending through and including ΤΜβί) barrier assemblies 970a, 970h between the first mode converters 947a, 947c and the second mode converters 947b, 947d may be Non-integer half-wavelength equal to the competition mode of microwave energy. As used herein, the term "non-integer" means any number that is not an integer. Then, a non-integer half-wavelength may correspond to "multiplied by a distance of λ/2, where „ is any non-integer. For example, the number “2” is an integer and the number is “2. 05" is a non-integer. Therefore, corresponding to 2. A half of the electrical length multiplied by the competition mode of the microwave energy will be a non-integer half wavelength of the competition mode. As used herein, the term "competitive mode of microwave energy" refers to any mode of microwave energy that propagates along a path other than the desired or target mode of microwave energy for propagation along a given path. The competition mode can include - a single most popular mode (ie, a primary competition mode) or a plurality of different non-popular competition modes. When there are multiple competing modes, the total electrical length between the first mode converter and the second mode converter (extending through and including the electrical length of any two barrier assemblies (if present)) may be equal to One of the non-integer half-wavelength values of at least one of the competition modes, and one of the two equals one of the non-integer half-wavelength values of the main competition mode. For example, in an embodiment illustrated in Figure 10c, the first mode 160978. Doc -73- 201231885 Type converters 947a, 947c include TM. A 6 mode converter operative to convert at least a portion of the microwave energy in each of the waveguide segments 942a and 942d from a τε mode to one of the waveguide segments 942b and 942e τ Μ α6 mode. However, at least a portion of the microwave energy can be converted to a mode other than the desired mode. Any mode other than the desired mode is generally referred to herein as the "competitive mode" of microwave energy. In an embodiment of the present invention in which the desired mode of microwave energy is a TMefc mode, the competition mode of microwave energy may be a TEwn mode, where „1 and w are an integer between 丨 and 5. Therefore, In one embodiment, the total electrical length of the ΤΜα6 waveguides 9426 and 942i between the first mode converter 947a and the second mode converter 947b (extending through and including the electrical length of the barrier assembly 970a) may be equal to A non-integer half-wavelength of the TEw" pattern, where "System 1 is an integer between 丨 and 5. In another embodiment, w can be 2 or 3. In one embodiment, the physical length and properties of the selected waveguide segment 942, mode converters 947a through 947d, and/or barrier assemblies 970a, 970h may minimize energy accumulation within the barrier assemblies 970a, 970h. For example, according to an embodiment, when at least 5 kW, at least 30 kW, at least 50 kW, at least 60 kW, at least 65 kW, at least 75 kW 'at least 1 〇〇 kw, at least 15 kW, at least 200 kW, At least 250 kW, at least 350 kW, at least 4 kW, at least 500 kW, at least 600 kW, at least 750 IcW or at least 1, 〇〇〇kW and/or no more than 2,500 kW, no more than 1,5 kW or Not more than 1, at least a portion of the sealed window member (not shown in FIG. 1〇c) of the barrier assembly 970a, 970h when the energy of 〇〇〇 kW can pass through the barrier assembly 97〇a, 970h The temperature can be changed by no more than 1 (TC, no more than 5 ° c, no more than 160,978. Doc •74- 201231885 2C or no more than 1 °C. In another embodiment, as described above, the pressure differential across the at least one sealed window member and/or the pressure within the microwave heater 93 can maintain similar results. . According to an embodiment illustrated in Figure 10c, at least one of the individual microwave emitters 944a, 944h located on substantially opposite sides of the microwave heater 930 and at least partially disposed within the interior of the microwave heater 93A A split reflector can be included that defines at least two discharge openings for emitting microwave energy into the interior of the microwave heater 930. Although illustrated in FIG. 1c as including a single emitter pair (eg, 'a first split emitter 94' and a second split emitter 94h), it should be understood that the microwave heater 93A can include any suitable A number of emitters or emitter pairs, as set forth herein. One embodiment of a split emitter 944 is illustrated in Figure 10. The split emitter 944 can include a single inlet or opening for receiving microwave energy. 951, and a single (not shown) or two or more discharge openings or outlets 945a, 945b for emitting microwave energy therefrom. In one embodiment, a single split emitter microwave energy inlet pair discharge The ratio of the outlets may be: 丨, at least 1:2, at least 1:3 or at least 1:4. According to one embodiment, the mode of microwave energy introduced into the inlet 951 may be via the discharge openings 945 & The modes of the emitted microwave energy are the same, while in another embodiment, the modes may be different. For example, in the embodiment in which the split transmitter 944 includes a mode switching splitter 949, To - one of the microwave heaters - Microwave energy in a single inlet of one of the side walls may undergo a mode conversion and be divided into at least two separate microwave energy portions, which may then be sent to the interior of the heater in a different mode as needed. For example, in (7) d in the 160978. Doc • 75· 201231885 In one embodiment of the presentation, the 'split emitter 944 may include a ΤΜβ6 waveguide section 942, one or two or more ΤΕ" waveguide sections 943a, 943b, and a Dinghe River disposed therebetween TE^ mode conversion splitter 949. In operation, the microwave energy introduced in a mode via the waveguide section 942 is at a single exit 945a, 945b from the waveguides 943a, 94 at one or two or more separate microwave energy fractions. The mode passes through the mode switching splitter 949 before or at the same time. When the transmitter 944 includes a single discharge opening, the mode switching splitter 949 can be used only for mode converters that change the mode of microwave energy passing therethrough. 949 (not a splitter). For example, in an embodiment in which the emitter _ includes a single discharge opening (not shown in FIG. 1D), the emitter 944 includes a single TM& waveguide segment, a A single τ ε" waveguide segment and a ΤΜ & mode converter 949 disposed therebetween. The mode converter can be located outside of the microwave heater, partially inside the microwave heater or entirely inside the microwave heater. In operation, the microwave energy introduced in the 波导βΖ mode via the inlet waveguide section can pass through the mode converter 949 before being discharged in the ΤΕ〇 mode. The discharge opening of a single open emitter may be oriented at any suitable angle relative to the horizontal plane or may be substantially parallel to the horizontal plane. In one embodiment, the energy discharged from a single open emitter can be oriented at least 20 from the horizontal. At least 3 baht. At least 45. Or at least 6 weeks. And / or no more than 100. No more than 9 inches. Or no more than 8 inches. One corner. When there are multiple discharge openings, each of the discharge openings 945a, 945b of the split emitter 944 can be oriented relative to one another such that the path of the microwave energy discharged therefrom is defined - a relative discharge angle of 0, as shown in the figure just . In an I60978. The relative discharge angle between the paths of the microwave energy discharge openings 945a, 945b in the embodiment of doc-76-201231885 may be at least 5. At least 15. At least 30. At least 4 5 . At least 60. At least 90. At least 115. At least 135. At least 140. And/or no more than 180° and no more than 170. No more than 165. No more than 16 inches. , no more than 140 °, no more than 12 〇. No more than 1〇〇. Or no more than 9 inches. . In one embodiment, the orientation of the 'discharge openings 945a, 945b can also be illustrated relative to the orientation of the path of microwave energy discharged therefrom relative to the axis of extension 948 of the waveguide section 942. In one embodiment, each of the discharge openings 945a, 945b can be configured to have respective first and second discharge angles (φ i and q»2) with the extension axis 948 of the ΤΜαδ waveguide segment 942. Discharge microwave energy. In one embodiment, % and φ2 may be substantially equal, as generally illustrated in Figure 〇d, or in another embodiment, one of the two corners may be larger than the other. In various embodiments, φι and/or (P2 may be at least 5, at least 10, at least 15, at least 3, at least 35, at least 55, at least 65, at least 70, and/or not More than 110., no more than 100°, no more than 95°, no more than 80., no more than 7〇, no more than 60° or no more than 40°. In one embodiment, the split emitter 944 can be vertical. Directional split transmitter 'This transmitter 944 includes at least one upwardly directed discharge opening (e.g., 945a) configured to emit microwave energy at an upward angle to the horizontal plane and configured to emit microwave energy at a downward angle to the horizontal plane At least one downwardly oriented discharge opening (e.g., 945b). Although illustrated in Figures 1ac to include vertically oriented splitting emitters 944a, 944h configured to discharge energy at an angle relative to a horizontal plane, In another embodiment, one or more of the split emitters 944a, 944h of the microwave heater 930 can be watered 160978. Doc-77-201231885 is oriented so that the split emitter as explained above has been rotated 90° » In another embodiment, one or more split emitters 94, 944h can be rotated by zero. An angle between 90°. In one embodiment (not shown), a microwave heater can include two or more vertically spaced horizontally oriented split emitter rows on one side of the heater and another general body in the same heater Two or more vertically spaced horizontally oriented split emitter columns on opposite sides. According to this embodiment, the vertically spaced emitter columns may comprise a single open emitter, a horizontally oriented split emitter, a vertically oriented split emitter, or any combination thereof. In an embodiment shown in FIG. 10c, the microwave heater 93A can include one or more (or at least two) movable reflectors up to 99 〇d, which are positioned within the microwave heater 930. The location is and configured to rasterize microwave energy emitted from one or more of the microwave emitters 94, one or more of the 944h discharge openings 945a through 945d into the interior of the microwave heater 93A. The reflectors 990a through 990d can have any suitable configuration, such as, for example, a configuration that includes one or more of the features previously described with respect to Figures 9f through 9h. Further, although generally illustrated as including four movable reflectors 99A & 990d, it should be understood that the microwave heater 93A can include any suitable number of movable reflectors. In an embodiment, including "split emitters" - the microwave heater may comprise at least 2 / 10 movable reflectors. In another embodiment, a microwave heater may employ a total of four movable reflectors Each of them defines a reflector surface extending substantially along the length of the microwave heater 93A such that two or more axially adjacent emitters "share" one or more reflectors or reflective surfaces. 160978. Doc •78· 201231885 Regardless of the specific number of reflectors employed, each of the reflectors 99〇a to 990d is operable to rasterize exiting the emitters 944a, 944h into the microwave heater 930 via the discharge openings 945a to 945d. At least a portion of the microwave energy 'by thereby heating and/or drying at least a portion of the bundle or other article, article or load. As used herein, the term "rasterizing" means directing, projecting or aggregating energy onto an area. Rasterization energy involves a large degree of intentional guidance or aggregation compared to conventional reflection or scattering energy, which can be achieved by utilizing the quasi-optical properties of microwave energy. Rasterization does not involve the use of a stationary reflective surface or a conventional mode agitation device (e.g., a fan) as compared to conventional means. In an embodiment, the microwave heater may comprise a plurality of split emitter pairs (eg, two or more transmitter pairs), wherein each pair includes two emitters having substantially similar configurations (eg, The article explains). In one embodiment, one of each pair of emitters can be positioned on substantially the opposite side of the microwave heater or on the same side as previously discussed in detail with respect to Figures 9c and 9d. According to one embodiment, one or more movable reflectors 990a through 990d may be positioned (and/or positioned to face) one or more of the discharge openings of each of the microwave emitters 944. In one embodiment in which the first emitter 944a and the second emitter 94411 each comprise a split microwave emitter defining respective upwardly directed discharge openings 945a and 945c and respective downwardly oriented discharge openings 94A and 945d At least one movable reflector can be positioned adjacent one or more of the discharge openings 945a-945d to rasterize at least a portion of the microwave energy discharged from the split emitters 944a, 944h into the interior of the microwave heater 9 = 2 (eg , two or more separate TE^ mode microwave sections). One of the implementations illustrated in Figure 10c. Doc-79-201231885 In the example, the microwave heater 930 can include at least four movable reflectors each defining a respective reflective surface and positioned adjacent the respective discharge openings 945a-945d of the split emitters 944a, 944h. As illustrated in Figure 10c, the movable reflectors 990a through 990d can be located at the bottom left quadrant of the microwave heater 930 (e.g., reflector 990a), the top left quadrant (e.g., reflector 990b), the top right quadrant (e.g., Reflector 990c) and bottom right quadrant (eg, reflector 990d). When the emitters 944a, 944h are horizontally oriented split emitters or a single open emitter, there may also be two or more of the reflectors 990a through 990d, as previously detailed. The movable reflectors 990a through 990d can be configured in two vertically spaced pairs (eg, reflector 990a is paired with reflector 990b and reflector 990c is paired with reflector 909d) and/or configured in two The horizontally spaced pairs (e.g., reflector 990b is paired with reflector 990c and reflector 990a is paired with reflector 990d). As illustrated in Figure 10c, vertically spaced reflector pairs (e.g., reflector pairs 990a, 990b and 990c, 990d) can be positioned adjacent to split emitters 944a, 944h to position a movable reflector at the emitter Near each of the discharge openings 945a through 945d of 944a, 944h (e.g., 'discharge openings 945a through 945d face respective movable reflectors 990a through 990d). As illustrated in FIG. 10C, the movable reflectors 990b and 990c can be positioned at a vertical height higher than the respective movable reflectors 99A and 990d such that the split emitters 944a, 944h can be vertically positioned. Between vertically spaced pairs of reflectors (e.g., emitter 944a is positioned vertically between pairs of vertically spaced reflectors 990a, 990b and emitter 944h is positioned vertically between vertically spaced reflectors 990c, 990d) ). In one embodiment, it is movable 160978. Doc -80· 201231885 The reflector 990 is positioned such that the reflector surface 991 opens toward one of its corresponding microwave emitters (not shown). In another embodiment, the one or more movable reflectors 990a through 990d can be positioned to align with the central elongated axis of the microwave heater 93A or positioned to face the central elongated axis of the microwave heater 93(Fig. Not shown in 10c). The movable reflectors 990a through 990d can be coupled, directly or indirectly, to one or more of the side walls of a microwave heater and can be moved or actuated in any suitable manner. One or more of the reflections § 990a through 990d may move along a pre-programmed (planned) path or may cause one or more to move in a random or non-repeating pattern. When multiple reflectors 990a through 990d are present, in one embodiment, two or more reflectors 990a through 990d may have the same or similar moving pattern, while in the same or another embodiment, two Or more than two reflectors 990a through 990d may have different movement patterns. According to one embodiment, at least one of the reflectors 990a through 990d can move over a generally curved path and can pass through various segments or "zones" of the total path at a certain speed and/or residence time. The size and number of zones and the speed at which the reflector moves through each zone or the residence time of the reflector in each zone depends on a variety of factors such as, for example, the size and type of the east, the type of wood, and the initial And the preliminary and expected characteristics of the last bundle. In one embodiment, the reflectors 99〇3 to 99〇 (each of 1 may be individually driven or actuated according to one or more embodiments set forth herein, while in another embodiment Two or more reflectors may be coupled to a common drive mechanism (e.g., a rotary shaft to be actuated simultaneously). One of the drive mechanisms for moving a reflector 990 using the actuator 960 is shown in Figure 10e. Real 160978. Doc • 81 - 201231885 Examples. Actuator 960 can be a linear actuator having a fixed portion 961 coupled to one of side walls 933 of the microwave heater and an extendable portion 963 coupled to a movable reflector 990. According to one embodiment illustrated in Figure 10e, at least a portion of the fixed portion 961 can extend through the outer sidewall 933 and into a bellows structure 964 whereby the actuator 96 is sealingly coupled to the sidewall 933. In one embodiment, the bellows structure 964 is operable to reduce, minimize, or nearly prevent fluid flow into and out of the position where the actuator 96(R) extends through the side wall 933. As shown in FIG. 1A, the movable reflector 990 further includes a support arm 980 that is pivotally coupled to one of the side walls 933 of the microwave heater. As used herein, the term "pivotally coupled" means that two or more items are attached, fastened, or otherwise associated such that at least one of the items can be generally wrapped around a Move or pivot. In operation, the extendable portion 963 of a driver 97 moves in an ingress and egress type, as indicated by head 971. The extendable portion 963 of the linear actuator 960 allows the movable reflector 990 to move in a generally arcuate pattern, as indicated by arrow 973. The drive 97 can be controlled in any suitable manner, including, for example, using one or more programmable automatic control systems (not shown). According to one embodiment of the invention, it may be advantageous to minimize the amount of unoccupied, unobstructed or open volume defined within the interior of a microwave heater. As used herein, the term "total open volume" refers to the total volume of space within the interior of the container that is not occupied by the physical barrier when a bundle of wood is not placed in the container. In an embodiment of the invention, the total volume of the bundle of wood (including the space between individual pieces of wood) is open to the microwave heater 160978. Doc -82· 201231885 The ratio of the volume can be at least 2〇, at least 〇25, at least 〇3〇, at least 0. 35. In some of the above embodiments, the ratio is also not greater than zero. 75, not more than 〇 7 〇 or not more than 〇 In the embodiment, the microwave heater can be defined for receiving a bundle of wood, . , hinder the beam to accept space. The unobstructed beam receiving space can also be configured to receive at least a portion of the microwave device that is emitted to heat and/or dry therein (or a plurality of microwaves). The unobstructed beam receiving space of the microwave heater 93 Indicated as 951 in Figure 1〇c. As used herein, the term "unobstructed beam receiving space" means a space that can be received and held in the interior of a microwave heater - a bundle of wood - in - item In an embodiment, the unobstructed beam receiving space can define a volume having a similar shape and within 10% of the volume occupied by the largest size wood bundle that can be loaded and/or processed within the microwave applicator 930. For example If the maximum beam size that can be accommodated by the microwave heater is 1 〇〇〇 cubic feet, then the unoccupied beam receiving space will have a volume of U00 cubic feet (in one embodiment) and with the heater 930 The inner bundle is similar to one of the shapes (eg, the cuboid bundle receiving space may be "unobstructed" because it may not contain any physical obstructions permanently placed therein (eg, waveguide, launch) In one embodiment of the invention, the microwave heater may comprise a circular cross-sectional shape, and the unobstructed beam receiving space 95 may define a cuboid volume and/or be configured to receive A wood bundle having a cuboid shape. In one embodiment, the ratio of the total open volume of the microwave heater 930 to the volume of the unobstructed beam receiving space may be at least 〇. 2〇, at least 〇 25, at least 0. 30. At least 〇·35. In some of the above embodiments, 160978. Doc • 83 - 201231885 The ratio is also not greater than 0 75, not greater than 〇 7〇 or not greater than 〇 65. According to one embodiment, at least a portion of the unobstructed beam receiving space 951 can be defined between two or more "obstructions" including, for example, on the same or generally opposite sides of the microwave heater 930. Two or more emitters, reflectors, waveguides, or other items that occupy a physical space within the internal volume of the heater. In one embodiment in which the microwave heater 93A includes two oppositely disposed doors (eg, one of the inlet doors 928 and one of the outlet doors disposed on substantially opposite ends of the microwave heater 93A), the unobstructed beam is received At least a portion of the space 951 can be defined between the two oppositely disposed doors. In one embodiment illustrated in Figure 10c, either of the emissive states 944a, 944h or the movable reflectors 990a through 990d (which are examples of obstructions) are not disposed within the unobstructed beam space 951 . In an embodiment wherein at least a portion of the unobstructed beam receiving space is defined between two or more obstructions (eg, waveguides, emitters, reflectors, etc.), the outermost of the one or more obstructions The minimum clearance between the edge and the unobstructed beam receiving space (and/or beam (when present)) may be at least 5 inches, at least 1 inch, at least 2 inches, at least 6 inches, at least 8 inches吋 and / or no more than 18 inches, no more than 10 inches or no more than 8 inches. In one embodiment, one of the obstructions is not in contact with the entity when the bundle is loaded into the heater 93. One or more embodiments of the operation of a microwave heating system in accordance with the present invention will now be described with reference to a general reference for heating a wood. However, it should be understood that one or more of the elements of the heating process described herein may also be suitable for use in the process of heating other items (e.g., for example, previously described herein. Doc -84- 201231885 and other procedures) use. In addition, it is to be understood that one or more of the above-described embodiments of the microwave heating system can be operated using at least some or all of the operational steps, 5 methods, and/or forward steps detailed below, including with respect to FIG. The embodiments and their variations discussed in the 1st. To initiate heating of a bundle of wood, the wood may first be loaded into a microwave heater that can be configured in accordance with one or more embodiments of the invention previously described. In one embodiment, the bundle may have a total initial weight of at least 100 pounds, at least 250 pounds, at least 375 pounds, or at least 500 pounds prior to heating and/or drying (eg, once loaded prior to heating, then Use a vacuum system (if present) to reduce the pressure of the heater to no more than 55 Torr, no more than 450 Torr, no more than 350 Torr, no more than 300 Torr, no more than 25 Torr, no more than 200 Torr, no greater than 15 Torr, no more than 1 Torr or no more than 75 Torr. While maintaining the low pressure in the microwave heater, one or more microwave generators can be operated to begin introducing microwave energy into the interior of the container to borrow This heats and/or dries at least a portion of the bundle. During introduction of microwave energy into the interior of the microwave heater, the pressure within the vessel can be higher, almost at or below atmospheric pressure* according to an embodiment 'in the heating step The pressure inside the microwave heater may be at least 35 Torr, at least 45 Torr, at least 650 Torr, at least 750 Torr, at least 9 Torr, or at least ι, 2 Torr, while in another embodiment 'Microwave heater The pressure in the medium may be no more than 35 Torr, no more than 250 Torr, no more than 2 Torr, no more than 150 Torr, no more than 1 Torr or no more than 75 Torr. Introduced during heating and/or drying of the wood The total generator capacity or energy rate into the interior of the microwave heater can be at least 5 kw to 160978. Doc -85· 201231885 30 k\V less, at least 50 kW, at least 60 kW, at least 65 kW, at least 75 kW, at least loo kW, at least 150 kW, at least 200 kW, at least 250 kW, at least 350 kW, at least 400 kW At least 500 kW, at least 600 kW, at least 750 kW or at least 1,000 kW and / or no more than 2,500 kW, no more than 1,500 kW or no more than 1,000 kW. According to one embodiment, the process of heating a bundle of wood may include a plurality of individual sequential heating cycles. The total heating process may include at least 2, at least 3, at least 4, at least 5, at least 6 and/or no more than 2, no more than 15, no more than 12 or no more than 10 individual sequential heatings cycle. Each heating cycle can include (as needed at low pressure) the introduction of microwave energy. In one embodiment, microwave energy can be introduced into the microwave heater at a pressure of no more than 350 Torr, while in other embodiments, the pressure in the microwave heater can be at least 350 Torr. According to an embodiment, each of the one or more individual heating cycles may be implemented (eg, having a duration of at least 2 minutes, at least 5 minutes, at least 1 minute, at least 20 minutes, at least 30 minutes and / or no more than 180 minutes, no more than 12 minutes or no more than 9 minutes. In general, the entire length of the heating process (eg, 'total cycle time') may be at least 〇5 hours, at least 2 hours, at least 5 hours, or at least 8 hours and/or no more than 36 hours, no more than 30 hours, no more than 24 hours, Not more than 18 hours, no more than j6 hours, no more than 12 hours, no more than 1 hour, no more than 8 hours or no more than 6 hours. In embodiments where the total heating process includes two or more individual heating cycles, one or more subsequent individual heating cycles may be followed by the previous cycle 160978. Doc -86 - 201231885 One of the different microwave energy input rates and/or one of the pressures different from the previous cycle is implemented. For example, in one embodiment, the subsequent individual heating cycle may be one of the microwave energy input rates lower than the previous cycle and/or one of the lower pressures than the previous cycle. In another embodiment, one or more subsequent individual heating helium rings may be performed at a microwave energy input rate of one of the previous cycles and/or one of the pressures of the previous cycle. In yet another embodiment, one or more subsequent cycles % may be implemented at one of a microwave energy input rate lower than one or more previous individual heating cycles and one pressure higher than one or more previous individual heating cycles, or One or more of the previous individual heating cycles are one of the microwave energy input rates and one pressure lower than one or more previous individual heating cycles. When the total heating process comprises two or more individual heating cycles, according to certain embodiments, one or more of the second (or later) cycles may be implemented as set forth above. In other embodiments, two or more cycles may be performed at the same or nearly the same pressure and/or microwave energy input rate. According to an embodiment, the total heating process may comprise a first sequential heating cycle followed by a second heating cycle, wherein the second heating cycle is at a lower microwave energy input rate than the first heating cycle of 6 The first heating is performed at a pressure lower than or lower than the first heating cycle, and the microwave energy input rate is also lower than the first heating cycle. Further, in an embodiment when the ~cycle includes two or more heating cycles, the microwave energy input rate and/or pressure j of each subsequent m (except the first cycle) may be lower than before A cycle of microwave energy input rate and / or pressure. For example, in the example, the "individual heating cycle can be lower than the first heating cycle - the microwave energy input rate is higher than the first heating cycle 160978. Doc •87- 201231885 One of the loop lower pressures or one of the lower than the individual heating cycles is also one of the lower microwave energy input rates than the first individual heating cycle. A first maximum microwave energy input rate can be introduced into the microwave heating during the first individual heating cycle. As used herein, the term "maximum microwave energy input rate" refers to the highest rate at which microwave energy can be introduced into a heater during a heating cycle. In various embodiments, the maximum microwave energy input rate (eg, the first maximum microwave energy input rate) introduced during the first individual heating cycle may be, for example, at least 5 kW, at least 30 kW, at least 50 kW, At least 60 kW, at least 65 kW, at least 75 kW, at least 100 kW, at least 150 kW, at least 200 kW, at least 250 kW, at least 350 kW, at least 400 kW, at least 500 kW, at least 600 kW, at least 750 kW or at least l , 〇〇〇 kW and / or (for example) no more than 2,5 kW, no more than 1,500 kW, no more than l, 〇〇〇 kW or no more than 5 kW. Subsequently, a second individual heating cycle can be implemented such that the second maximum input rate (eg, the first maximum microwave energy input rate) that introduces microwave energy into the microwave heater during the second individual heating #%· can be at some In some embodiments, for example, at least 25%, at least 50%, at least 70%, and/or, for example, no greater than 98%, no greater than 94% of the maximum input rate achieved during the first heating cycle. Or no more than 90% 〇 Similarly, when the heating process includes three or more individual heating cycles, the maximum microwave energy input rate of the wth individual heating cycle (eg, the third or fourth cycle) can be implemented in one implementation. In the example, for example, at least 25%, at least 5%, at least 7 〇〇/◦, and/or (for example) of the maximum input rate during an individual heating cycle. Not more than 98% 'not more than 94%, not more than 9〇% or; large 160978. Doc • 88 - 201231885 at 85%. In an embodiment, the second (or subsequent) individual heating cycle can be performed at a lower pressure than the first (or previous) individual heating cycle. For example, in one embodiment where low pressure or vacuum pressure is utilized during the heating cycle, the minimum pressure reached during the first heating cycle can be at least 25 Torr. Subsequently, a second individual heating cycle can be implemented such that the lowest pressure reached during the second cycle (eg, the highest vacuum pressure level achieved) can be, for example, in the first heating in one embodiment At least 25%, at least 50% 'at least 7%, at least 75%, at least 80%, and/or in one embodiment, for example, no greater than 98%, no greater than 94, of the minimum pressure reached during the cycle. % or not greater than 90% β Similarly, when the heating process includes three or more individual heating cycles, the pressure of the individual heating cycles may be tied to an individual in an embodiment (for example) At least 25%, at least 5%, at least 7%, at least 75%, at least 80%, and/or no greater than 98%, no greater than 94%, no greater than 9%, or at least the minimum pressure reached during the heating cycle The lowest pressure is no more than 85 %. Table 1 below summarizes the broad, intermediate, and narrow ranges of microwave energy rates (expressed as a percentage of the maximum generator output) and continuous first, first, in accordance with an embodiment of the present invention. Second, the third and the „the pressure of the individual heating cycle To prop expression). As used herein, the term "maximum generator output" refers to the maximum value of the combination on the entire array resulting from the accumulation of all microwave generators in a heating system. In one embodiment, the maximum microwave energy input rate for one or more heating cycles can also be expressed as a percentage of the maximum generator output, as shown in Table 1. 160978. Doc •89· 201231885 Table 1: Microwave energy rate and pressure for individual heating cycles Individual cycle microwave j II rate (% of maximum value) Pressure (Torr) Number width narrow in the middle % narrow _ 1 60-100% 70-100% 80-100% <250 <200 20-100 2 40-100% 50-95% 60-90% <250 <200 20-100 3 20-80% 25-75% 30-70% <250 <150 20-100 η 5-60% 10-50% 15-40% <150 <100 10-75 In accordance with an embodiment of the present invention, each of the one or more individual heating cycles may include: a heating cycle (e.g., a first, second, or „heating cycle), wherein Introducing microwave energy into the heater; and selecting a sleep period (eg, a first, second, or „sleep cycle) in which a reduced amount of microwave energy or substantially no microwave energy is introduced into the heater . For example. During the heating cycle, the microwave energy may be introduced into the microwave heater at an input rate sufficient to heat and/or at least partially dry at least a portion of the wet or chemically wetted wood bundle, and during the sleep cycle, to the microwave heating The microwave energy input rate in the device may be, in one embodiment, no more than 25%, no more than (10), no more than 5%, or no more than 1% of the maximum microwave energy input rate introduced during the heating cycle. In the individual-added money-item embodiment, each _cycle may include - ❹ one plus _ period

個休眠週期。舉例而言,#利用^個個別順序加 時’第-個別加熱循環可包含至少―第—加 及—第一休眠週期’而第二個別加熱循環可包含至少第 —加熱週期及-第二休眠週期。另-選擇係,該第二J 週期可跟隨該第一加熱週期,其中無暫時休眠週期。’、’、 在一項實施例中,該笤 加熱週期中之每一者可具右,组 例而言)至少5分鐘、至少1Q分鐘 ' 具有(舉 刀鐘、至少30分 160978.doc 201231885 鐘及/或(舉例而言)不大於60分鐘、不大於4〇分鐘、不大於 30分鐘或不大於20分鐘之一持續時間。在一項實施例中, 該休眠週期可具有(舉例而言)至少5分鐘、至少1〇分鐘或至 少20分鐘及/或(舉例而言)不大於9〇分鐘、不大於⑽分鐘或 不大於40分鐘之一持續時間。在一項實施例中,一個別加 熱循環之加熱週期長度對休眠週期長度之比率可係(舉例 而言)至少0.5:1、至少1:1、至少丨25:1或至少2:1及/或(舉 例而言)不大於5:1、不大於3:1、不大於2 5:1或不大於 1.5:1 。 可在加熱週期中之每一者期間以任一適合方式將微波能 引入至微波加熱器中。舉例而言,在一項實施例中,可貫 穿加熱週期之整個持續時間以一實質上連續方式自一或多 個發射器發射微波能。在一項實施例中,可一次自一單個 發射器發射能量’而在另—實施例中,可同時自兩個或兩 個以上發射时射能量4㈣—自動控制系統來控制自 發射器中之每一者排放之微波能之量、時序、持續時間、 協調及同步化。當將能量排放至微波加熱器中包含在兩個 或兩個以上發射器之間切換時,亦可由控制系統來控制該 切換,如稍後詳細論述。 一根據-項實施例’可將能量引入至微波加熱器令以使得 每加熱週期可包含兩個或兩個以上不同加熱模式(亦稱 作排模式、排放階段或加熱階段)。在一項實施例中, 可在母一加熱階段期間自一或多個發射器發射不同微波能 速率舉例而s,在-項實施例_,在—第—加熱階段期 160978.doc 201231885 間,可以比自一第二發射器發射之一速率高之一速率自一 第一發射器發射能量,而在一第二加熱階段期間,可以比 自該第-發射器之—速率高之—速率自該第二發射器發射 能量。根據—項實施例或多個發射it可將微波能發射 至微波加熱器+,而—或多個發射器可實質上不將能量發 射至微波加熱器中,藉此使能量集中至木材束(或其他物 件)之不同位置上。每一單獨加熱階段可實施達(亦即,具 有一持續時間為)(舉例而言)至少2分鐘、至少5分鐘至少 12分鐘、至少15分鐘及/或(舉例而言)不大於分鐘、不大 於60分鐘、不大於45分鐘或不大於3〇分鐘之一週期。一個 或兩個單獨加熱階段可後跟有至少2分鐘、至少4分鐘或至 少6分鐘及/或不大於15分鐘、不大㈣分鐘或不大於⑽ 鐘之一選用休眠週期。 當微波加熱器包括四個或四個以上發射器時,微波分佈 系統可經組態以使得每-發射器取決於一或多個微波切換 器之位置而在-單獨加熱或排放階段中將微波能發射至微 波加熱中。舉例而言,在其中微波加熱器包括一第一、 第一、第二及第四樹:波發射器之一項實施例巾,兩個或兩 個以上微波切換器(办如’一第一及一第二微波切換器)可 經組態以使得可在一各別第一、第二、第三及第四加熱階 段中主要自每一發射器發射微波能。在一項實施例中,兩 個或兩個以上排放階段可實質上同時實施,而可防止兩個 或兩個以上排放階段實質上同時實施。現將參考圖Ua及 lib在下文中詳細論述關於利用包含交替排放階段之加熱 160978.doc -92- 201231885 週期之微波加熱器之操作之額外細節β 現翻至圖lla及lib,提供根據本發明之一項實施例組態 之一微波加熱系統1020之示意性俯視圖。微波加熱系統 1020係圖解說明為包括用於生產微波能之至少四個微波產 生器1022a至1022d及用於將該微波能之至少一部分引導至 一微波加熱器1030中之一微波分佈系統丨〇4(^微波分佈系 統1040亦包括可操作以將微波能之至少一部分發射至微波 加熱器1040之内部中之複數個隔開之微波發射器1〇4物至 1〇44h(其在一項實施例中可包括一或多個分裂發射器)。微 波發射器1044a至l〇44h中之每一者可係可操作地耦合至複 數個(在此圖中,一第一至第四)微波切換器1〇46&至1〇46d 中之一或多者,如圖lla及llb中所展示。微波切換器 1046a至1046d可操作以按任一適合模式將微波能路由至發 射器1044&至1〇4411中之一或多者,包含(舉例而言)—TMafc 模式及/或一 TE^模式,如先前詳細論述。在一項實施例 中,傳播通過微波分佈系統1〇4〇之能量可在排放至微波加 熱器1030中之前改變模式至少一次。現將參考圖lla及^ 在下文中s羊細闡述根據本發明之一或多個實施例操作微波 加熱系統1020之各種組態及方法。 微波切換器1046a至l〇46d中之每一者可操作以將微波能 之流動引導、控制或分配至定位於微波加熱器1〇3〇之大體 相同側或大體相對側上之兩個或兩個以上微波發射器 1044a至1044h中之每一者。舉例而言,在圖Ua*所繪示 之一項實施例中’微波切換器1〇46&至1〇46d中之每一者可 160978.doc •93· 201231885 麵合至一轴向wit鄰微波發射器對(例如,發射器1 〇44a及 1044b、發射器1044c及1044d、發射器1〇4乜及1〇44f以及 發射器l〇44g及l〇44h),表示為發射器對i〇5〇a至1050d。 在圖11 b中所圖解說明之另一實施例中,微波切換器1 〇46a 至1046d中之每一者可耦合至一軸向對準之微波發射器對 (例如,發射器1044a及1044h、發射器10441)及1〇44g、發 射器1044c及1044f以及發射器l〇44d及l〇44e),展示為發射 器對 1050e至 1050h » 微波切換器1046a至1046d可係任一適合類型之微波切換 器且在一項實施例中可係一旋轉微波切換器。一旋轉微波 切換器可包含一外殼體、安置於其中之一内部路由元件及 用於使該内部路由元件在該殼體内移動之一致動器。在一 項實施例中,該内部路由元件可係可旋轉地耦合至該外殼 體且該致動器可操作以相對於該外殼體選擇性地旋轉該内 部路由元件以藉此切換或引導穿過其之微波能之流動方 向。亦可採用其他類型之適合微波切換器。在一項實施例 中,微波切換器1046a至l〇46d可包括TE^切換器,而在另 一實施例中’微波切換器l〇46a至i〇46d可包括TMu切換 器任何額外適合組件(諸如,一或多個模式轉換器、阻 障總成或在本申請案中別處論述但未展示於圖113及111?中 之組件)可位於微波切換器i0463至丨046d上游或下游。 在操作中’微波切換器1046a至i〇46d可在一第一加熱 (或排放)階段與一第二加熱(或排放)階段 之間選擇性地切 換。在第一加熱階段期間,可自一或多個微波發射器發射 160978.doc •94· 201231885 或排放較多能量,而自一或多個其他微波發射器發射較少 能量。類似地’在第二加熱階段期間,可自一或多個其他 微波發射器發射或排放較多能量,而可自一或多個微波發 射器發射或排放較少能量。 在一項實施例中,在第一加熱階段期間,微波切換器 1046a至1046d中之每一者可經組態以將微波能主要路由至 一第一微波發射器組(在圖11a及lib中標示為「a」發射器 組)内之一或多個發射器而不主要路由至一第二微波發射 器組(在圖11a及lib中標示為一「B」發射器組)之一或多 個發射裔。在第·—排放階段期間,在圖11 a及11 b中之各別 發射器對1050a至1050d及1050e至l〇5〇h中之每一者中,微 波切換器10 4 6 a至10 4 6 d中之每一者可經組態以將微波能主 要路由至該第二組(例如,「B」發射器)之一或多個發射器 而不主要路由至該第一組(例如,「A」發射器)之一或多個 發射器。如本文中所使用,提及將微波能「主要」路由至 發射器X而「不主要」路由至發射器γ意指將由一切換器 接收之微波能之至少50%路由至發射器X,而將由該切換 器接收之微波能之不大於50%路由至發射器Υ。在一項實 施例中,可將能量之(舉例而言)至少75%、至少9〇%、至 少95%、實質上全部主要路由至發射器X,而可將能量之 (舉例而言)不大於25%、不大於1〇%、不大於5%或實質上 無能量路由至發射器Υ。 在一項實施例中’微波加熱系統1〇3〇可進一步包括用於 控制微波切換器1046a至1046d之動作及組態之一控制系統 160978.doc -95- 201231885 1060。在一項實施例_,控制系統〗〇6〇可操作以將切換器 1046a至1046d中之每一者組態為處於第一排放階段中以 使得所有「A」發射器(例如,發射器1〇44a、1〇44〇、 1044e、l〇44g)皆將微波能發射至微波加熱器1〇3〇中而 所有「B」發射器(例如,發射器1〇4仆、1〇44d、1〇44卜 l〇44h)皆將一較小量或實質上無微波能發射至微波加熱器 1030之内部中,如在圖lla及Ub中由微波加熱器1〇3〇之各 別陰影及無陰影區所圖解說明。隨後,控制系統丨〇6〇接著 可操作以將切換器1〇463至104以中之每一者組態為處於第 二排放階段中,以使得所有「A」發射器(例如,發射器 1044a、1044c、l〇44e、i〇44g)皆將一較小量或實質上無微 波能發射至微波加熱器1〇3〇之内部中,而所有「B」發射 器(例如,發射器1044b、l〇44d、1044f、l〇44h)皆將微波 能發射至微波加熱器1030(圖Ua及Ub中未表示)之内部 中。 根據一項實施例,控制系統1〇6〇亦可操作以基於一預定 參數組(包含(舉例而言)循環時間、所排放之總能量及諸如 此類)來控制微波切換器1〇46&至1〇46d在第一排放階段與 第二排放階段之間的切換。舉例而言,在一項實施例中, 控制系統1060可操作以實質上同時將微波切換器i〇46a至 l〇46d中之每一者組態至第一排放階段中,以使得可同時 自「A」發射器l〇44a、i〇44c、l〇44e、1044g中之每一者 發射微波能達一時間週期。在另一實施例中,控制系統 1060可操作以在將一或多個切換器1〇46&至⑺乜心且態至第 160978.doc -96· 201231885 一排放階段中之間包含一時間延遲或滯後。因此,自一或 多個「A」或「B」發射器發射之微波能可相對於自一或 多個其他「A」或「B」發射器排放能量而延遲或交錯。 在一項實施例中,控制系統1060可經組態以允許一或多個 切換器1046a至1046d處於第一排放階段中,而一或多個其 他切換器1046a至1046d處於第二排放階段中,以使得可同 時自一或多個「A」發射器及一或多個「B」發射器發射 微波能。在本發明之一項實施例中,控制系統1 〇6〇亦可操 作以至少部分地防止來自直接相對之發射器對(例如,對 1044a及 l〇44h、對 1044b 及 1044g、對 l〇44c 及 l〇44f、對 1044d及l〇44e)及/或軸向她鄰對(例如,對i〇44a及1044b、 對 1044c及 l〇44d、對 l〇44e及 1044f、對 l〇44g及 l〇44h)之同 時能量排放。 根據本發明之一項實施例組態及/或操作之加熱系統可 操作以比習用加熱系統更有效地加熱一物件或負載。特定 而言,根據本發明之各種實施例組態之加熱系統可操作以 處理大的商業規模負載。在一項實施例中,如本文中所闡 述之加熱系統可加熱具有至少100磅、至少5〇〇碎、至少 1,000磅、至少5,000磅或至少1〇 〇〇〇磅之一累積預加熱 (或預處理)重量之一木材束或其他負载。在各種實施例 中,一木材束可經加熱及/或乾燥以使得木材之總體積之 不大於(舉例而言)20%、不大於1〇%、不大於5%及不大於 2%可達到不超過一上臨限溫度之一溫度。在相同或其他 實施例中,木材之總體積之至少8〇%、至少9〇%、至少 160978.doc •97· 201231885 95%及至少98%(舉例而言)可達到不超過一下臨限溫度之 一溫度。下臨限溫度及上臨限溫度可係彼此相對接近且可 (舉例而言)係在彼此之ll〇°C内、105〇C内' 100°C内、90°C 内、75°C内或50°C内。在各種實施例中,上臨限溫度可係 至少190°C、至少200°C或至少220°C及/或不大於275。(:、 不大於260°C、不大於250°C或不大於225它。在另一實施 例中,下臨限溫度可係至少115°C、至少12(TC、至少 125°C、至少130°C及/或不大於150°C、不大於145°C或不 大於135°C。 根據一項實施例,木材之總體積之至少80%、至少 90%、至少95%及至少98%可達到至少13〇。(:、至少 145°C、至少150°C或至少160°C及/或不大於250°C、不大 於240°C、不大於225°C、不大於210°C或不大於200。(:之一 最大溫度。因此,具有至少100碎、至少500碎、至少 1,000磅或至少5,000磅之一初始(例如,預加熱或預處理) 重量之一木材束(視需要’一化學潤濕之木材束)可以不大 於48小時、不大於36小時、不大於24小時、不大於18小 時、不大於16小時、不大於12小時、不大於1 〇小時、不大 於8小時或不大於6小時加熱。 藉由以下實例進一步圖解說明及闡述本發明之各種態 樣。然而,應理解’除非另有特定指示,否則包含此等實 例僅係出於圖解說明之目的而並非意欲限制本發明之範 鳴。 實例 160978.doc •98- 201231885 實例1 :微波阻流器 此實例圖解說明能夠實質上最小化及/或防止能量自一 微波加熱器之内部洩漏之一微波阻流器。不包含一微波阻 流器之一比較性微波加熱器及採用類似於圖7a至7h中所圖 解說明之阻流器之一阻流器之一發明性微波加熱器係各自 使用HFSSTM軟體(可自賓夕法尼亞州卡農斯堡的Ansys購 得)來模型化。模擬在門與容器本體之接面處及附近之電 場強度並在每一容器内部内(「内部區域」)及針對恰好在 容器外側之接近於每一容器之門凸緣之一區(「凸緣區 域」)兩者計算所得電場之平均強度。下文之表2概述針對 比較性及發明性微波加熱器兩者之此等區域中之每一者之 平均場強度。 表2 :具有及不具有一微波阻流器之微波容器之平均電場強度之比較 所模擬之區域 容器阻流器? 平均電場強度(kV/cm) 内部 否 0.25 至 0.39 凸緣 否 0.25 至 0.39 内部 是 0.25 至 0.39 凸緣 是 <0.03 如表2中所圖解說明,比較性加熱器(其不採用一微波阻 流器)内側及外側兩者之平均電場強度係大致相同,指示 微波能自容器内部顯著洩漏。相比而言,發明性微波加熱 器(其採用如本文中所闡述之一微波阻流器)外側之電場之 平均強度比發明性加熱器内之電場之平均強度低一數量 級,此指示微波能未洩漏而保持於容器内側。此進一步藉 160978.doc •99· 201231885 由呈現於圖12a及12b中之模擬之可視結果來圖解說明。 因此’推斷如本文中所闡述之一微波阻流器之使用可充 分地減小、最小化或幾乎消除微波能自一微波容器之戌 漏。 實例2:利用不同微波能位準之順序加熱播環之使用 此貫例圖解說明將熱量施加至一木材束之方法如何影響 經加熱木材之溫度分佈。進行包含具有各種持續時間、壓 力及/或能量位準之一或多個個別加熱循環之數個測驗以 在加熱循環期間判定對該束之溫度之影響以及燒焦之木材 之量。 建構類似於圖9a、9b及9e中所圖解說明之系統之一微波 加熱系統且其包含經由一系列TE10t導耦合至一真空微波 加熱器之一 FERRITE 75 ‘kW、915 MHz微波產生器(可自新 罕布什爾州納舒厄的 Ferrite Microwave Technologies,lne. 購得)。三個旋轉微波切換器經組態以將微波能自產生器 選擇性地路由至位於微波加熱器之内部中之四個微波發射 器中之一者。每一發射器經設計以按一 TE10模式接收能 量’但包含安置於容器内部内之用於在能量發射至加熱器 中之前將其轉換成一 TM(n模式之一模式轉換器。真空加熱 器(其具有6.5英尺之一直徑及8英尺之一總長度)在一個端 上包含用於裝載及卸載木材之一單個門。該系統亦包含用 於在加熱步驟期間按需要控制加熱器内之壓力之一機械、 乾燥(例如,非油密封)真空泵(可自馬薩諸塞州吐克斯伯利 (Tewksbury,MA)的 Edwards Limited購得)。 160978.doc •100· 201231885 對於測驗運行A至Η中之每一者,具有!英吋χ6英时“英 尺之標稱尺寸之六個經乙醯化輻射松厚板裝備有放置至在 每一板之中心點處鑽出之孔中之纖維光學溫度感測器。該 等裝備有感測器之板放置成包含配置於26個層_之總共 1 5 6個經乙醯化輻射松板之一經黏附束之列1 3。接著將該 束緊固在一起且裝載至該真空加熱器中。在每一運行A至 Η期間’將該束曝露至不同加熱及/或壓力曲線。對於每一 運行’針對每一循環量測在加熱之前及之後的束之峰值平 均及峰值最大纖維光學溫度及重量(以計算蒸發損耗)以及 總能量輸入《下文在表3&及31?中概述每一束之關鍵特性及 每一加熱曲線之詳情。 160978.doc 201231885 婼电癍矣英單^l;M-<wnttHv^树:One sleep cycle. For example, ## individual sequence plus 'the first individual heating cycle may include at least a -first-and-first sleep cycle' and the second individual heating cycle may include at least a first-heat cycle and a second sleep cycle. Alternatively-selecting the second J period may follow the first heating period with no temporary sleep period. ',', in one embodiment, each of the heating cycles may have a right, for example, at least 5 minutes, at least 1Q minutes' (with a knife clock, at least 30 minutes 160978.doc 201231885 And/or (for example) no more than 60 minutes, no more than 4 minutes, no more than 30 minutes, or no more than 20 minutes of duration. In one embodiment, the dormant period can have (for example) At least 5 minutes, at least 1 minute or at least 20 minutes and/or, for example, no more than 9 minutes, no more than (10) minutes, or no more than 40 minutes. In one embodiment, one The ratio of the length of the heating cycle of the heating cycle to the length of the dormant period may be, for example, at least 0.5:1, at least 1:1, at least 丨25:1 or at least 2:1 and/or, for example, no greater than 5 : 1, no more than 3:1, no more than 2 5:1 or no more than 1.5: 1. Microwave energy can be introduced into the microwave heater in any suitable manner during each of the heating cycles. In one embodiment, the entire duration of the heating cycle can be passed through a substantial Continuously transmitting microwave energy from one or more emitters. In one embodiment, energy can be emitted from a single emitter at a time, while in another embodiment, it can be emitted from two or more simultaneously. Energy 4 (4) - Automatic control system to control the amount, timing, duration, coordination and synchronization of microwave energy emitted by each of the emitters. When discharging energy into a microwave heater, it is contained in two or more The switching can also be controlled by the control system when switching between transmitters, as discussed in more detail later. A according to the 'Examples' can introduce energy into the microwave heater so that each heating cycle can contain two or two Different heating modes (also referred to as row mode, discharge stage or heating stage). In one embodiment, different microwave energy rates can be emitted from one or more emitters during the parent-heating phase, for example, Embodiment _, during the -th heating phase 160978.doc 201231885, may emit energy from a first emitter at a rate higher than a rate of transmission from a second emitter, and During a second heating phase, energy may be emitted from the second emitter at a higher rate than the rate from the first emitter - according to the embodiment or the plurality of emitters, microwave energy may be emitted to the microwave heater +, and - or multiple emitters may not substantially emit energy into the microwave heater, thereby concentrating energy to different locations of the wood bundle (or other item). Each individual heating stage may be implemented (also That is, having a duration of, for example, at least 2 minutes, at least 5 minutes, at least 12 minutes, at least 15 minutes, and/or, for example, no more than minutes, no more than 60 minutes, no more than 45 minutes, or no One or more cycles of one to two minutes. One or two separate heating stages may be followed by at least 2 minutes, at least 4 minutes or at least 6 minutes and/or no more than 15 minutes, no (four) minutes or no more than (10) minutes. Sleep cycle. When the microwave heater includes four or more emitters, the microwave distribution system can be configured such that each emitter is microwaved in a separate heating or discharging phase depending on the position of the one or more microwave switches Can be launched into microwave heating. For example, in the microwave heater comprising a first, first, second and fourth tree: an embodiment of a wave emitter, two or more microwave switches (such as 'one first And a second microwave switcher) can be configured such that microwave energy can be emitted primarily from each of the emitters during the respective first, second, third, and fourth heating stages. In one embodiment, two or more discharge stages may be performed substantially simultaneously, while preventing two or more discharge stages from being performed substantially simultaneously. Additional details regarding the operation of a microwave heater utilizing heating 160978.doc-92-201231885 cycles containing alternating discharge stages will now be discussed in detail below with reference to Figures Ua and lib, now to Figures 11a and lib, provided in accordance with the present invention. One embodiment configures a schematic top view of one of the microwave heating systems 1020. The microwave heating system 1020 is illustrated as including at least four microwave generators 1022a through 1022d for producing microwave energy and for directing at least a portion of the microwave energy to one of the microwave heaters 1030. The microwave distribution system 1040 also includes a plurality of spaced apart microwave emitters 1-4 that are operable to emit at least a portion of the microwave energy into the interior of the microwave heater 1040 (which is in an embodiment) One or more split transmitters may be included. Each of the microwave transmitters 1044a through 104h may be operatively coupled to a plurality (in this figure, a first through fourth) microwave switcher One or more of 1〇46& to 1〇46d, as shown in Figures 11a and 11b. Microwave switchers 1046a through 1046d are operable to route microwave energy to transmitters 1044&1 to any suitable mode. One or more of 4411, including, for example, a TMafc mode and/or a TE^ mode, as discussed in detail above. In one embodiment, the energy propagating through the microwave distribution system can be Discharge into microwave heater 1030 The mode is changed at least once. The various configurations and methods of operating the microwave heating system 1020 in accordance with one or more embodiments of the present invention will now be described in detail with reference to Figures 11a and hereinafter. Microwave switchers 1046a through 104d Each of them is operable to direct, control or distribute the flow of microwave energy to two or more microwave emitters 1044a through 1044h positioned on substantially the same side or substantially opposite sides of the microwave heater 1〇3〇 For example, in one embodiment illustrated in Figure Ua*, each of the 'microwave switchers 1〇46& to 1〇46d may be 160978.doc •93· 201231885 An axial wit neighboring microwave transmitter pair (eg, transmitters 1 〇 44a and 1044b, transmitters 1044c and 1044d, transmitters 1〇4乜 and 1〇44f, and transmitters 104a and 44h and 44h) are indicated as Transmitter pair i 〇 5 〇 a to 1050 d. In another embodiment illustrated in Figure 11 b, each of microwave switchers 1 〇 46a through 1046d can be coupled to an axially aligned microwave emission Pair (eg, transmitters 1044a and 1044h, transmitter 10441) and 1〇44g, transmit 1044c and 1044f and transmitters 104a and 104e), shown as transmitter pairs 1050e to 1050h » Microwave switchers 1046a through 1046d may be any suitable type of microwave switcher and in one embodiment may be Rotate the microwave switcher. A rotary microwave switch can include an outer casing, an inner routing element disposed therein, and an actuator for moving the inner routing element within the housing. In an embodiment, the internal routing element can be rotatably coupled to the outer casing and the actuator is operable to selectively rotate the internal routing element relative to the outer casing to thereby switch or guide through Its direction of flow of microwave energy. Other types of suitable microwave switchers are also available. In one embodiment, the microwave switchers 1046a through 16d may include TE^ switches, while in another embodiment the 'microwave switchers 46a through 46b' may include any additional suitable components of the TMu switcher ( For example, one or more mode converters, barrier assemblies, or components discussed elsewhere in this application but not shown in FIGS. 113 and 111, may be located upstream or downstream of microwave switches i0463 through 046d. In operation, the microwave switches 1046a through i〇46d are selectively switchable between a first heating (or discharging) phase and a second heating (or discharging) phase. During the first heating phase, more energy may be emitted from one or more of the microwave emitters, while less energy is emitted from one or more other microwave emitters. Similarly, during the second heating phase, more energy may be emitted or emitted from one or more other microwave emitters, while less energy may be emitted or emitted from one or more microwave emitters. In one embodiment, during the first heating phase, each of the microwave switches 1046a through 1046d can be configured to primarily route microwave energy to a first microwave transmitter group (in Figures 11a and lib) One or more of the transmitters identified as "a" transmitter group) and not primarily routed to one or more of the second microwave transmitter groups (labeled as a "B" transmitter group in Figures 11a and lib) A launcher. During the first-discharge phase, in each of the respective emitter pairs 1050a to 1050d and 1050e to l〇5〇h in FIGS. 11a and 11b, the microwave switcher 10 4 6 a to 10 4 Each of 6d can be configured to route microwave energy primarily to one or more of the second group (eg, "B" transmitters) without being primarily routed to the first group (eg, "A" transmitter) One or more transmitters. As used herein, reference to "major" routing microwave energy to transmitter X and "not primarily" routing to transmitter gamma means routing at least 50% of the microwave energy received by a switch to transmitter X, No more than 50% of the microwave energy received by the switch is routed to the transmitter. In one embodiment, at least 75%, at least 9%, at least 95%, substantially all of the energy may be routed primarily to the emitter X, but the energy may be, for example, not More than 25%, no more than 1%, no more than 5%, or substantially no energy routed to the transmitter. In one embodiment, the 'microwave heating system 1' can further include one of the controls and systems for controlling the operation and configuration of the microwave switches 1046a through 1046d 160978.doc-95-201231885 1060. In an embodiment, the control system is operable to configure each of the switches 1046a through 1046d to be in the first emission phase such that all "A" transmitters (eg, transmitter 1) 〇44a, 1〇44〇, 1044e, l〇44g) all emit microwave energy into the microwave heater 1〇3〇 and all “B” emitters (for example, transmitter 1〇4 servant, 1〇44d, 1) 〇44卜l〇44h) will emit a small amount or substantially no microwave energy into the interior of the microwave heater 1030, as shown in Figures 11a and Ub by the microwave heater 1 〇 3 各 respective shadows and no The shaded area is illustrated. Subsequently, the control system 丨〇6〇 is then operable to configure each of the switches 1〇 463 to 104 to be in the second emission phase such that all "A" transmitters (eg, transmitter 1044a) , 1044c, l〇44e, i〇44g) all emit a small amount or substantially no microwave energy into the interior of the microwave heater 1〇3〇, and all "B" emitters (for example, the transmitter 1044b, L〇44d, 1044f, l〇44h) all emit microwave energy into the interior of the microwave heater 1030 (not shown in Ua and Ub). According to an embodiment, the control system 1〇6〇 is also operable to control the microwave switcher 1〇46&1 to 1 based on a predetermined set of parameters including, for example, cycle time, total energy discharged, and the like. The switch 46d is switched between the first discharge phase and the second discharge phase. For example, in one embodiment, the control system 1060 is operable to configure each of the microwave switches i 〇 46a through 〇 46d into the first emission phase substantially simultaneously such that simultaneously Each of the "A" transmitters 104a, i〇44c, l〇44e, 1044g emits microwave energy for a period of time. In another embodiment, the control system 1060 is operable to include a time delay between one or more of the switches 1〇46& to (7) and the state to the 160978.doc-96·201231885 one emission phase Or lag. Thus, microwave energy emitted from one or more "A" or "B" transmitters may be delayed or staggered relative to emissions from one or more other "A" or "B" transmitters. In one embodiment, control system 1060 can be configured to allow one or more switches 1046a through 1046d to be in a first exhaust phase while one or more other switches 1046a through 1046d are in a second exhaust phase, So that microwave energy can be emitted from one or more "A" emitters and one or more "B" emitters simultaneously. In one embodiment of the invention, the control system 1 〇 6 〇 is also operable to at least partially prevent pairs of directly opposing transmitters (eg, pairs 1044a and 104h, pairs 1044b and 1044g, pairs l 44c) And l〇44f, pair 1044d and l〇44e) and/or axially adjacent pairs (for example, i〇44a and 1044b, pair 1044c and l〇44d, pair l〇44e and 1044f, pair l〇44g and l 〇44h) simultaneous energy emissions. A heating system configured and/or operated in accordance with an embodiment of the present invention is operable to heat an item or load more efficiently than conventional heating systems. In particular, heating systems configured in accordance with various embodiments of the present invention are operable to handle large commercial scale loads. In one embodiment, the heating system as set forth herein can heat accumulated preheating having at least 100 pounds, at least 5 mash, at least 1,000 pounds, at least 5,000 pounds, or at least 1 pound. (or pre-treat) one of the weight of the wood bundle or other load. In various embodiments, a bundle of wood can be heated and/or dried such that the total volume of the wood is no greater than, for example, 20%, no greater than 1%, no greater than 5%, and no greater than 2% Do not exceed one of the upper temperature limits. In the same or other embodiments, at least 8〇%, at least 〇%, at least 160978.doc •97· 201231885 95%, and at least 98% (for example) of the total volume of the wood can reach no more than a threshold temperature. One of the temperatures. The lower threshold temperature and the upper threshold temperature may be relatively close to each other and may, for example, be within ll 〇 ° C of each other, within 105 ° C, within 100 ° C, within 90 ° C, within 75 ° C Or within 50 °C. In various embodiments, the upper threshold temperature can be at least 190 ° C, at least 200 ° C or at least 220 ° C and/or no greater than 275. (:, no more than 260 ° C, no more than 250 ° C or no more than 225. In another embodiment, the lower threshold temperature may be at least 115 ° C, at least 12 (TC, at least 125 ° C, at least 130 °C and/or no more than 150 ° C, no more than 145 ° C or no more than 135 ° C. According to one embodiment, at least 80%, at least 90%, at least 95% and at least 98% of the total volume of wood may Achieve at least 13 〇. (:, at least 145 ° C, at least 150 ° C or at least 160 ° C and / or no more than 250 ° C, no more than 240 ° C, no more than 225 ° C, no more than 210 ° C or not Greater than 200. (: one of the maximum temperatures. Therefore, one of the initial (eg, pre-heated or pre-treated) weights of at least 100 pieces, at least 500 pieces, at least 1,000 pounds, or at least 5,000 pounds (as needed) Chemically wetted wood bundles) may be no more than 48 hours, no more than 36 hours, no more than 24 hours, no more than 18 hours, no more than 16 hours, no more than 12 hours, no more than 1 hour, no more than 8 hours or no Heating greater than 6 hours. Various aspects of the invention are further illustrated and illustrated by the following examples. However, it should be understood The examples are included for illustrative purposes only and are not intended to limit the scope of the invention. Example 160978.doc • 98- 201231885 Example 1: Microwave Rejector This example illustrates the substance A microwave choke that minimizes and/or prevents energy leakage from the interior of a microwave heater. A comparative microwave heater that does not include a microwave choke and is similar to that illustrated in Figures 7a through 7h. One of the inventors of the choke is an inventive microwave heater that is each modeled using HFSSTM software (available from Ansys, Cannonsburg, Pa.). Simulated at and near the junction of the door and the container body. The electric field strength is calculated in the interior of each container ("internal region") and the average intensity of the resulting electric field for both the region of the door flange ("flange region") that is just outside the container. Table 2 below summarizes the average field strength for each of these regions of the comparative and inventive microwave heaters. Table 2: With and without a microwave choke Comparison of the average electric field strength of the wave vessel simulated area container choke? Average electric field strength (kV/cm) Internal 0.25 to 0.39 Flange No 0.25 to 0.39 Internal 0.25 to 0.39 Flange is <0.03 As shown in Table 2 As illustrated in the figure, the average electric field strength of the inner side and the outer side of the comparative heater (which does not use a microwave choke) is substantially the same, indicating that the microwave energy is significantly leaked from the inside of the container. In contrast, the inventive microwave heating The average intensity of the electric field outside of the device (which employs one of the microwave chokes as described herein) is an order of magnitude lower than the average intensity of the electric field within the inventive heater, indicating that the microwave energy remains intact inside the container without leaking. This further illustrates the visual results of the simulations presented in Figures 12a and 12b by 160978.doc • 99· 201231885. Thus, it is inferred that the use of a microwave choke as described herein can substantially reduce, minimize or substantially eliminate leakage of microwave energy from a microwave container. Example 2: Use of a heated heating loop in a sequence of different microwave energy levels This example illustrates how the method of applying heat to a wood bundle affects the temperature distribution of the heated wood. A number of tests are performed comprising one or more individual heating cycles having various durations, pressures and/or energy levels to determine the effect on the temperature of the beam and the amount of charred wood during the heating cycle. Constructing a microwave heating system similar to the one illustrated in Figures 9a, 9b and 9e and comprising a FERRITE 75 'kW, 915 MHz microwave generator coupled via a series of TE10t leads to a vacuum microwave heater (available from Ferrite Microwave Technologies, Nne., Nashua, New Hampshire, purchased). The three rotating microwave switches are configured to selectively route microwave energy from the generator to one of four microwave emitters located within the interior of the microwave heater. Each emitter is designed to receive energy in a TE10 mode 'but contains the interior of the container for converting it into a TM (n mode one mode converter) before the energy is emitted into the heater. It has a diameter of one of 6.5 feet and a total length of 8 feet. It contains a single door for loading and unloading wood on one end. The system also includes pressure for controlling the pressure inside the heater during the heating step as needed. A mechanical, dry (eg, non-oil sealed) vacuum pump (available from Edwards Limited of Tewksbury, MA). 160978.doc •100· 201231885 For test run A to Η In one case, six acetylated radiation slabs with a nominal size of 6 inches of "foot" are equipped with fiber optic temperature sensing placed in a hole drilled at the center of each plate. The boards equipped with the sensors are placed to contain a total of 156 of the acetylated radiata pine sheets, which are disposed in 26 layers, and are adhered to the column 13. The bundle is then fastened together. And loaded to the true In an empty heater, the beam is exposed to different heating and/or pressure curves during each run A to 。. For each run, the peak average and peak of the beam before and after heating are measured for each cycle. Maximum fiber optic temperature and weight (to calculate evaporation loss) and total energy input. Details of each of the key characteristics and each heating curve are summarized below in Tables 3 & and 31. 160978.doc 201231885 婼电癍矣英Single ^l; M-<wnttHv^ tree:

總循環資料 能量密度 (kW/lb乾燥木材) 0.0094 0.0107 0.0107 0.0109 0.0148 0.0155 0.0125 0.0168 總功率輸入 (kW-hr) 26.2 30.7 26.0 30.7 37.0 36.0 32.0 41.3 歷力 (托) 350 〇 yr\ m L—350 ——— ——1 350 1 200 1 200 1 300 1 350 )hnr 乾燥重量 1553 1833 1528 1800 1630 1592 1566 1836 平均濕度含量(%) 2.55 2.04 2.18 2.10 2.70 2.45 2.72 1.95 運行 < ϋ A Η α S 第四加熱循環 休眠 (分鐘) 1 1 I 1 I I 1 1 時間 (分鐘) 1 1 1 1 I I I 能量速率 (kW) 1 1 1 1 1 1 I 第三加熱循環 休眠 (分鐘) 1 1 1 1 1 1 I 時間\ (分鐘)\ 1 沄 1 ν〇 m 00 CN 能量速率 (kW) <Ν <Ν 1 CN <Ν 1 fN 休眠 (分鐘) 1 1 OS 1 00 (Ν 〇 第二加熱循场 時間 (分鐘) 1 Ο <Ν ο 宕 沄 Ο 〇 能量速率 (kW) 1 CN <Ν fS <Ν (Ν (Ν 00 οο 第一加熱循環 休眠 (分鐘) 1 沄 宕 νη m 時間 (分鐘) Ό Ο κη Ο S ο 〇 ο 能量速率 (kW) <Ν νη CN m <Ν \Ti (Ν (Ν (Ν 00 <η (Ν 運行 < U Ο Μ Ο 160978.doc 102· 201231885 在完成每一運行時,移除該束且在視覺上檢査該等板中 之每一者以作燒焦記號,此界定為四分之一大小或更大變 黑或焦化標記。藉由比較在加熱之前及之後之束之重量 (與每一板之已知乾燥重量)來計算蒸發(濕度)損耗β基於 總能量輸入及木材之初始重量與濕度含量計算能量密度 (每碎之乾燥木材)„下文之表4概述運行Α至η之結果,其 包含在加熱期間達成之平均及最大峰值溫度以及燒焦之板 之數目》 表4 :運行Α至Η之結果之概述 運行 結果 能量密度 (kW/lb乾燥木材) 平均峰值溫度 CC) 最大峰值溫度 (Ό 燒焦、之板 (#) A 0.0094 116 159 〇 B C D 0.0107_ 119 161 0 一 0.0107 139 184 7 — 0.0109 116 179 〇 E 0.0148 136 154 19 F G —0.0155 123 137 0 0.0125 113 193 〇 Η 0.0168 142 192 10 ~ 如表4中所展示,對於類似能量密度(例如,運行以 及運行E及F) ’採用在較低能量位準下及/或在較短持續時 間内進行之更多個別循環之運行(例如,運行D&F)比採用 在較高能量位準下及/或在較長持續時間内進行之較少個 別循環之運行(例如,運行C及E)更可能避免燒焦。此外, 如由運行Η所圖解說明,在一高能量位準下及/或在—長持 續時間内進行初始循環之能量及/或持續時間之情形下, 甚至藉助具有降低之能量位準之多個循環進行之運行亦可 導致燒焦。因此,可推斷一總加熱循環内之個別循環之數 160978.doc -103- 201231885 目及持續時間以及該等個別循環中之每一者之能量及/或 壓力之位準對木材之平均及最大峰值溫度以及在加熱循環 期間燒焦之板之數目具有一影響。 實例3: —束内之能量分佈曲線之判定 此實例提供自用以加熱及/或乾燥一經乙醯化木材束之 一试驗規模微波加熱器獲得之實際資料。熱影像係用以建 構一能量分佈曲線,其將接著在預示性實例4中相關以預 測在一商業規模上加熱之木材之化學濕度曲線。 類似於圖l〇a ' l〇c、lOd及l〇e中所圖解說明之加熱器之 水平伸長之微波加熱器建構有12英尺之一外徑及16英尺 之一總長度。該加熱器包含用於自容器裝載及卸載該束之 一入口門。類似於圖1 〇c及10d中所圖解說明之分裂微波發 射器之四個分裂微波發射器配置成兩個相對安置之對且經 由ΤΕι〇波導之一系統連接至一 FERRITE 75 kw 91 5 MHz微 波產生器(可自新罕布什爾州納舒厄(NasJlua, nh)之Ferrite Microwave Technologies,Inc.購得)。三個微波切換器經組 態以將能量自產生器路由至每一對之兩個發射器中之一 者,如下文詳細闡述。 該微波加熱器亦包含類似於圖l〇c中所圖解說明之可移 動反射器之四個可移動反射器。每一反射器界定實質上沿 加熱器之長度延伸之一連續反射表面。四個分裂發射器中 之每一者垂直定位於一可移動反射器對之間以使得藉由安 置於加熱器之内部體積之四個象限中之每一者中之反射表 面將自每一分裂發射器之各別向上及向下定向之排放開口 I60978.doc •104· 201231885 發射之能量光柵化至微波加熱器之内部中。經由利用—外 部驅動器之一轉軸使每一反射表面沿一大體弧形旋轉。稍 後將詳細闡述關於可移動反射器之運動之細節。 允許大致15,0〇〇磅之經乙醯化之輻射松在環境大 度平衡以使得木材之平均水含量係2 wt%至3 wt%。接著將 木材捆綁成包括四個經個別扣緊之堆疊(例如,圖13中所 展示之堆疊A至D)之一合成束。該合成束(在圖13中表示為 束1304)具有4英尺寬x8英尺高xi6英尺長之標稱尺寸。堆 疊A至C中之每一者具有6英吋之一寬度,而堆疊D具有25 英尺之一寬度。將合成束13 04引入至微波加熱器中且在起 始加熱循環之前將門關閉及扣緊。 首先,微波切換器經組態以使得來自產生器之能量將同 時路由至兩個對角相對(例如,相對安置、軸向交錯)之發 射器,而剩餘兩個對角相對之發射器保持空閒。接著,產 生器經啟動及設定以按類似於先前關於圖lla及丨lb之發射 器組「A」論述之方式之一方式將75 kw遞送至第一對角 相對之發射器對。接下來,在1〇分鐘之後,停止產生器且 微波切換器經重新組態以在第二加熱模式期間將能量自第 作用對角相對發射器組路由至空閒對角相對發射器組。 接著以75 kW重新啟動產生器並再次將微波能排放至加熱 器中。在另一 10分鐘之後,停止產生器以使得該等切換器 可返回至原始組態,藉此將能量重新路由回至第一對角相 對發射器對。替代地自軸向交錯之發射器對排放能量之此 序列以10分鐘增量繼續達總共80分鐘(例如,1〇〇kW_hr)。 160978.doc •105- 201231885 在每加熱模式期間,冑由控㈣可移動反射器中之每一 者之運動及位置來將自微波發射器中之每-者排放之能量 光柵化至微波加熱器之内部中一可程式化邏輯控制器 (PLC)、’’至认疋以使用一伺服馬達使每一反射器以各種速度 旋轉通過其總弧形路徑之各種部分(或區)。頂部及底部反 射器對經程式化以按相同速度㈣,但每-對之-個反射 器之移動係在另-者之前起始’藉此避免該對之兩個反射 器同步協力地移動。下文之表5概述運動之八個區中之每 一者之邊界(例如,開始及結束位置)及總長度以及頂部及 底部反射器對中之每一者之反射器速度及在每一區中所花 費之時間⑼如’滯留時間)’表達為總反射器循環時間之 一百分比。注意表5僅概述每一反射器之曲線之一半;一 旦每一反射器對移動通過如下文所闡述之區丨至8,每一反 射器即接著以-反向型樣行進,卩區8開始且移動回至區 160978.doc -106 · 201231885 底部反射器 滯留時間 (循環之%) 〇 rn rn vo CN On 59.0 速度 (°/s) 0.05 0.05 1.82 1.82 1.82 1.82 0.26 0.04 頂部反射器 滯留時間 (循環之。/〇) Os ο 23.3 Ο ρ q 1»^ o CN 48.0 速度 (°/s) 0.07 0.10 ! _! CN οο 1.82 1.82 1.82 0.25 0.04 路徑之長度 (%) 0.31% 12.19% 12.50% 12.50% 12.50% 25.00% 12.50% 12.50% 路徑之長度 (°) Os ΓΟ ρ Ο — Ο 寸· o 00 o o — 結束位置 (°) τ-Η Ο 七 ο οό 12.0 16.0 24.0 28.0 32.0 開始位置 (°) Ο ο ρ — Ο οο 12.0 16.0 24.0 28.0 <Ν m 寸 in v〇 00 160978.doc -107- 201231885 一旦整個加熱循環完成,即關斷產生器並將經加熱之合 成束輸送至一固持地帶,其中具有一寬角鏡頭之一 MIKRON 7500型號相機定位於距經力口熱之束之伸長侧中之 一者大致10英尺處。自該合成束移除堆疊A(圖13_所展示 之最外面板堆疊)以藉此曝露堆疊B之一内部表面(在圖13 中指定為B')。該相機以每5秒1個影像之一速率記錄表面B, 之熱影像’且在20秒之後,自該合成束移除堆疊b。該相 機接著開始記錄堆疊C之一内部表面(在圖13中指定為表面 C’)之熱影像。在20秒之後,自該束移除堆疊c,藉此曝露 堆疊D之内部表面(在圖13中指定為表面D,)。該相機記錄 表面D·之熱影像達20秒且接著被停止。 為分析貫穿該束之體積之合成溫度分佈,使用 1^1〇*〇81)沉1^專業熱成像軟體(版本4·〇.5,可自英國伯克郡 (Berkshire,UK)之Metrum購得)將在表面Βι至D,中之每一者 之一所關注代表性區内獲得之逐像素溫度資料導入至一試 算表中。圖14中展示併入有自合成束之所有内部表面B,至 D'獲得之熱資料之一累積頻率直方圖。 如圖14中所展示,該束之體積之小於2〇%具有低於d 或咼於52 C之一溫度。當與一乾燥、經乙醯化之木材束相 關時,此類型之能量分佈導致所預測之化學濕度含量曲 線,如預示性實例4中所闡述。 實例4(預不性):一經乙醢化之束内之化學濕度含量曲線 之計算 此預不性實例使用在實例A中獲得之實驗性能量分佈資 160978.doc •108· 201231885 料來預測在與先前在實例3中闡述之系統類似地組態之一 商業規模微波加熱系統中加熱及/或乾燥之經乙酿化木材 之化學濕度曲線(例如,總體積内之一或多種熱可移除化 學品之量及分佈)。 將具有大致101英吋高X52英吋寬X16英尺長之尺寸之一 經乙酿化木材束裝載至具有U英尺7英吋之一内部直徑及 17英尺之一凸緣間長度之一微波加熱器中。可加壓加熱器 包含一相對安置之進入及退出開口,每一者可用一全直徑 碟形門密封。加熱器之總内部體積係26〇5立方英尺,且木 材束之總體積對微波加熱器中之總開放(例如,未佔用)體 積之比率係0.29:1。在於微波加熱器中加熱之前,該束具 有大致10 wt%至15 wt%之一「化學濕度含量」(亦即,包 含(舉例而言)乙酸、乙酸酐及其組合之一或多種熱可汽化 化學品之一量)。 在該束之加熱期間,以如先前在實例3中所闡述之一類 似方式將微波能引入至微波加熱器中。另外,使用一真空 系統將加熱器之内部壓力維持處於60托。在8〇分鐘之後, 關斷微波產生器,移除該束並以先前在實例3中所闡述之 方式拍攝該束之内部表面之熱影像。圖15中提供由累積熱 資料產生之預測溫度分佈。 如圖15_所展示,經乙醯化之木材束之預計溫度分佈具 有165°C之一平均峰值溫度且該束之總體積之小於〇 3%具 有低於115°C或高於235eC之一溫度。根據使木材溫度與化 學品濕度含量相關之先前獲得之經驗資料,圖15中之溫度 160978.doc •109· 201231885 分佈針對如上文所闡述來處理之一經乾燥經乙醯化木材束 預測如表6中所概述之一化學濕度含量曲線。 表6:經乾燥經乙醯化木材之預計化學濕度含量曲線 溫度 木材束之百分率 預測濕度含量 T< 115°c 0.3% ~2 wt%濕度 115°C <T<135〇C 2.2% ~ 1 wt%濕度 T>235〇C 0.3% 燒焦 115°C <T<235〇C 99.4% 乾燥 135〇C <T<235〇C 97.2% 乾燥 加熱及/或乾燥經乙醯化木材之總體目標係移除殘餘乙 醯化化學品(例如’藉由最小化經乾燥束之化學濕度含量) 而不過度乾燥或燒焦所處理之木材。如表6中所展示,經 乙醯化束之總體積之小於〇·3%係乾燥不足的(例如,具有2 wt0/。或2 wt。/。以上之一濕度含量)或經受燒焦(例如,具有大 於235 C之一平均溫度)、另外’該束之總體積之小於2 2% 具有1 %或1 %以上之一濕度含量。因此,將經乙酿化束之 總體積之至少97.2%(且最高99.4%)加熱或乾燥至小於 1 wt%至2 wt%之一化學濕度含量’而同時最小化燒焦木材 之量。 上文所闞述之本發明之較佳形式欲僅用作圖解說明且 不應以一限制意義用於解釋本發明之範疇。熟習此項技術 者可在不背離本發明之精神之情況下容易地對上文所述之 例示性實施例作出顯而易見之修改。 本發明人藉此陳述其意欲依靠等效原則來判定且估計本 發明關於任何設備之相當合理範疇而實質上不背離在以下 160978.doc •110· 201231885 申請專利範圍中所述之本發明字面範疇或在本發明字面範 疇之外。 【圖式簡單說明】 圖1係根據本發明之一項實施例組態之一木材處理系統 之一俯視圖,其特定而言圖解說明用於輸送往來於一化學 改質反應器及一木材加熱器之木材束之一軌條系統; 圖2係根據本發明之一替代實施例組態之一木材處理系 統之一俯視圖,其特定而言圖解說明用於輸送往來於複數 個化學改質反應器及複數個木材加熱器之木材束之一 系統; 圖3係根據本發明之一替代實施例組態之一木材處理系 統之一俯視圖,其特定而言圖解說明用於輸送往來於複數 個化學改質反應器及複數個木材加熱器之木材束之一滾輪 系統; 圖4a係適於在生產經化學改質之木材中使用且根據本發 明之-項f施例組態之-穿過式木材處自系統之一俯視 圖,其料而言圖解說明-化學&質反應器及一木材加熱 器,其包括單獨的軸向對準之雙門容器且包含位於反應器 與加熱器容器之間的一蒸汽容納室; 圖4b係圖4a之穿過式木材處理系統之—等軸視圖,其特 定而言圖解說明蒸汽容納室之一例示性鼓風板/壁; 圖4c係在圖4a及4b中繪示之蒸汽容納室之一截面圖,其 特定而言圖解說明用於允許來自外部環境之流體(例如, 空氣)流動至κ容納室中之—例示性單向通氣孔對; 160978.doc •111· 201231885 圖4d係圖4a之穿過式木材處理系統之—側視圖,但亦圖 解說明用於抽取湧入蒸汽容納室及湧入位於加熱器之出口 處之一產品蒸汽移除結構之蒸汽及氣體之一通氣系統; 圖5係根據本發明之一項實施例組態之一微波加熱系統 之一示意圖,其特定而言圖解說明裝備有一真空系統且經 由一微波分佈系統自一微波產生器接收微波能之一微波加 熱器; 圖6係適於用作根據本發明之各種實施例之一化學改質 反應器及/或微波加熱器之一雙門、穿過式容器之一等軸 視圖,其特定而言圖解說明該容器之形狀及尺寸比例; 圖7a係根據本發明之一項實施例組態之一微波加熱器之 一門凸緣與一容器凸緣之接面之一局部截面圖,其特定而 言圖解說明由門及容器凸緣協作地形成且具有彼此平行且 靠攏著延伸之兩個室之一微波阻流器; 圖7b係類似於圖7a中繪示之阻流器之一微波阻流器之一 局部截面圖,但該微波阻流器具有相對於彼此成一銳角延 伸之阻流器腔; 圖7c係裝備有圖7a中繪示之微波阻流器組態之一微波加 熱器之門凸緣之一剖視等軸視圖,其特定而言圖解說明形 成於該阻流器之一導流壁中之複數個圓周地隔開之端部開 口槽或間隙; 圖7d係裝備有具有根據本發明之一項實施例組態之一可 移除部分之一微波阻流器之一微波加熱器上之一開放門之 一側視圖,其特定而言圖解說明該微波阻流器之可移除部 160978.doc •112· 201231885 且可替換之阻流器段; 示之一「G」形可移除阻流器部 分包括複數個可個別移除 圖7e係先前在圖7(1中繪 分之一截面圖; 圖7f係根據本發明之一第一替代實施例組態之一「】」 或「U」形可移除阻流器部分之一截面圖; 」 圖7g係根據本發明之一第二替代實施例組態之一「^」 形可移除阻流器部分之一截面圖; 圖7h係根據本發明之一第三替代實施例組態之一「匕 形可移除阻流器部分之一截面圖; 」 圖8 a係根據本發明之一項實施例組態之一微波加熱器之 見等軸視圖’其特定而言將該加熱器圖解說明為裝備 有-伸長之波導發射H ’該伸長之波導發射器在該發射器 之相對側上具有交錯之發射開口; 圖8b係圖8a中繪示之波導發射器之一放大局部視圖,其 特定而言圖解說明發射開口之組態及界定發射開口之側壁 之厚度; 圖9 a係根據本發明之一項實施例組態之一微波加熱系統 之一側視圖,其特定而言圖解說明用於將微波能遞送至微 波加熱器之一微波分佈系統; 圖9b係圖9a中繪示之微波加熱器之一俯視剖視圖,其特 定而言將微波分佈系統圖解說明為包含在該微波加熱器之 一個側上之一個ΤΜα6發射器對及在該微波加熱器之相對側 上之一第二ΤΜβ6發射器對; 圖9c係圖解說明由術語「相對側」及「相同側」所意指 I60978.doc -113· 201231885 之内容之一圖示; 圖9d係圖解說明由術語「轴向對準」所意指之内容之一 圖示; 圖9e係根據本發明之—項實施例組態之一微波發射及反 射或散射系統之—局部剖視等軸視圖,其特定而言圖解說 明類似於圖9b中繪示之發射系統但亦包含與每一微波發射 器相關聯之-可移動反射器之一發射系統; 圖9f係適於在如本文中所鬧述之一微波加熱系統中使用 之一反射器之一項實施例之一等軸視圖,其特定而言將該 反射器圖解說明為具有帶有—第—組態之—凹部之一非平 面反射表面; 圖9g係適於在本文巾所闡述之__微波加㈣統中使用之 一反射器之另一實施例之一等軸視圖,其特定而言將該反 射器圖解說明為具有帶有一第二組態之一凹部之一非平面 反射表面; 圖9h係適於在本文中所闡述之一微波加熱系統中使用之 一反射器之一項實施例之一側視正視圖,其特定而言圖解 說明反射器表面之曲率; 圖9ι係先前在圖9e中繪示之一微波發射器與反射器對之 一放大剖視等軸視圖,其特定而言圖解說明用於提供反射 器之振盪移動之一致動器系統; 圖l〇a係根據本發明之一項實施例組態之一微波加熱系 統之一側視圖,其特定而言圖解說明裝備有複數個TMu阻 障總成之一微波分佈系統; 160978.doc •114- 201231885 圖10b係圖10a中繪示之ΤΜβά阻障總成中之一者之一轴向 截面圖,其特定而言將該阻障總成圖解說明為具有兩個浮 動密封窗及在阻障總成與其間耦合有該阻障總成之波導之 接面附近之阻抗變換直徑臺階式改變; 圖l〇C係在圖10a中繪示之微波加熱系統之一端視圖,其 中一木材束接納於微波加熱器之内部中,該圖特定而言將 該微波加熱器圖解說明為裝備有在該加熱器之相對側上之 分裂微波發射器及用於光柵化自該等分裂發射器發射之微 波能之可移動反射器; 圖10d係圖10c中繪示之分裂發射器中之一者之一放大側 視圖’其特定而言圖解說明自分裂發射器發射之兩個單獨 微波能分率之發射角; 圖10e係用於使一反射器移動之一系統之一項實施例之 一放大視圖,其特定而言圖解說明用以致使該反射器之振 盪之一致動器及用於抑制其中該致動器穿透微波加熱器之 壁之位置處之流體洩漏之一伸縮囊; 圖11 a係根據本發明之一項實施例組態之一微波加熱系 統之一示意性俯視圖’其特定而言將該加熱系統圖解說明 為包含用於以一交替方式將微波能路由至不同微波發射器 之複數個微波切換器; 圖1 lb係根據本發明之一替代實施例組態之一微波加熱 系統之一示意圖,其特定而言將該加熱系統圖解說明為包 含用於以一交替方式將微波能路由至不同微波發射器之複 數個微波切換器; 160978.doc -115- 201231885 圖12a呈現預測接近不包括一微波阻流器之一微波容器 之一門及本體凸緣處之電場強度之一電腦模擬之結果; 圖12b呈現預測接近不包含一微波阻流器之一微波容器 之一 Π及本體凸緣處之電場強度之一電腦模擬之結果,其 特定而言圖解說明阻流器防止或實質上最小化微波自容器 洩漏之能力; 圖13係一木材束之一示意性表示,其特定而言圖解說明 在判疋如實例3中所闡述之内部表面溫度時利用之組態; 圖14係併入有自圖13中所展示之合成束之表面b,至獲 得之熱資料之一累積頻率直方圖;且 圖15係圖解說明由如實例4中所闡述之一經乙醯化木材 束之推測熱資料產生之一預測溫度分佈之一累積頻率直方 圖。 【主要元件符號說明】 10 20 22 24 26 28 29 30 32 34 160978.doc 木材處理設施 化學改質系統 化學改質反應器 反應器加熱系統 選用反應器加壓/減壓系統 反應器入口門/第一反應器入口門 選用反應器出口門 加熱系統 加熱器 能源 201231885 36 選用加熱器加壓/減壓系統 38 開放加熱器入口門 39 選用加熱器出口門 40 輸送系統 42a 輸送段 42b 輸送段 42c 輸送段 42d 輸送段 42e 輸送段 60a 原始材料儲存區域 60b 成品材料儲存區域 102 木材束 110 木材處理設施 122a 反應器 122b 反應器 122n 反應器 128a 門 128b 門 128n 門 132a 加熱器 132b 加熱器 132n 加熱器 138a 門 138b 門 160978.doc · 117- 201231885 13 8η 140 160 210 222a 222η 228a 228η 229a 229η 232a 232b 232η 238a 238b 238n 239a 239b 239n 240 242a 242b 242c 242d 門 可旋轉平臺/轉臺 儲存區域 木材處理設施 化學改質反應器 化學改質反應器 反應器入口門 反應器入口門 選用反應器出口門 選用反應器出口門 加熱器 加熱器 加熱器 加熱器入口門 加熱器入口門 加熱器入口門 選用加熱器出口門 選用加熱器出口門 選用加熱器出口門 輸送系統 段 段 段 段 160978.doc -118- 201231885 242e 段 242f 段 242g 段 242h 段 242i 段 242j 段 244a 段 244b 段 244c 段 244d 段 244e 段 322 化學改質反應器 328 反應器入口門 329 反應器出口門 332 加熱器 338 加熱器入口門 339 加熱器出口門 342a 直立壁 342b 直立壁 342c 直立壁 342d 直立壁 343 鼓風板或鼓風壁 344 天花板結構 349 蒸汽出口管道 160978.doc -119- 201231885 349a 蒸汽出口管道 349b 蒸汽出口管道 349c 蒸汽出口管道 360 蒸汽容納室 361 傳送區 370a 中心伸長轴/通氣孔 370b 中心伸長軸/通氣孔 399 輸送路徑 400 產品蒸汽移除系統或結構 402 通氣系統 404 通氣罩 406 通氣室 408 通氣室出口 409 門 410 真空產生器 412 處理裝置 414 引流器 416 木材處理設施/木材處理系統 420 微波加熱系統 422 微波產生器 430 微波加熱器 440 微波分佈系統 442 波導 444a 微波發射器 160978.doc -120- 201231885 444b 微波發射器 444c 微波發射器 446 微波模式轉換器/模式轉換器 450 選用真空系統 530 微波加熱器 531 本體側密封表面 532 容器本體 533 門側密封表面 534 門 535 中心伸長轴 536 微波加熱器之内部 631 本體側密封表面 632 容器本體 633 門側密封表面 634 門 650 微波阻流器 651 可移除部分 652 第一徑向延伸阻流器腔 653a 可移除阻流器段 653b 可移除阻流器段 653c 可移除阻流器段 653d 可移除阻流器段 653e 可移除阻流器段 654 第二徑向延伸阻流器腔 160978.doc -121 - 201231885 656 徑向延伸 660 選用流體 670 經隔開之 690 第一阻流 692 第二阻流 702 木材束 720 微波加熱 730 微波加熱 738 加熱器入 739 束接納空 740 微波分佈 760 經伸長之 764a 實質上平 764b 實質上平 764c 實質上平 764d 實質上平 767a 經伸長之 767b 經伸長之 767c 經伸長之 767d 經伸長之 767e 經伸長之 780a 發射對或 780b 發射對或 820 微波加熱 阻流器導流壁 密封構件 開端式間隙 器腔之延伸之方向 器腔之延伸之方向 系統 器 口門 間/選用加熱器出口門 系統 波導發射器 面側壁 面側壁 面側壁 面側壁 槽/發射開口 槽/發射開口 槽/發射開口 槽/發射開口 槽/發射開口 開口對 開口對 糸統 -122- 160978.doc 201231885 830 微波加熱器 831 外部側壁 831a 侧壁 831b 侧壁 835 伸長軸 835a 伸長轴 838 加熱器入口門 839 中點 840 微波分佈系統 841a 經隔開之發射開口 841b 經隔開之發射開口 842a 波導/波導段 842b 波導/波導段 842c 波導/波導段 842d 波導/波導段 843a ΤΜβδ波導段 843b ΤΜα6波導段 843c TMa6波導段 843d TMaZ)波導段 844 微波發射器 844a 微波發射器 844b 微波發射器 844c 微波發射器 844d 微波發射器 160978.doc -123- 201231885 845 開放出口 /發射開口 845a 開放出口 /發射開口 845b 開放出口 /發射開口 845c 開放出口 /發射開口 845d 開放出口 /發射開口 846 發射器 846a 發射器 846b 發射器 850a 模式轉換器 850b 模式轉換器 850c 模式轉換器 850d 模式轉換器 890 反射器 890a 可移動反射器 890b 可移動反射器 890c 可移動反射器 890d 可移動反射器 891a 反射表面 891b 反射表面 891c 反射表面 891d 反射表面 892 支撐臂 893 振盪轉轴 893a 凸部 160978.doc - 124- 201231885 893b 凸部 894 槓桿臂 895 線性轉軸 896 輪 897 枢軸 898 馬達 899 反射器驅動器系統/致動器 902 木材束 920 微波加熱系統 928 入口門 930 微波加熱器 931 外部側壁 933 侧壁 938 加熱器入口門 939 加熱器出口門 940 微波分佈系統 941a 發射開口 941b 經隔開之發射開口 941c 經隔開之發射開口 941d 經隔開之發射開口 942 波導段 942a 上游TM&波導段 942b 上游ΤΜαί)波導段 942c 上游ΤΜαί)波導段 160978.doc -125- 201231885 942d 上游TMa6波導段 942e 上游TM&波導段 942f 上游TM&波導段 942g 上游ΤΜαΖ)波導段 942h 上游ΤΜαΛ波導段 942i 下游波導段 942j 下游TMai)波導段 942k 下游TMflfc波導段 9421 下游ΤΜαί)波導段 942x 波導段 942y 波導段 942z 波導段 943a TEy波導段 943b TEy波導段 944 分裂發射器 944a 第一分裂發射器 944h 第二分裂發射器 945a 排放開口 945b 排放開口 945c 排放開口 945d 排放開口 947a 模式轉換器 947b 模式轉換器 947c 模式轉換器 160978.doc -126· 201231885 947d 模式轉換器 948 延伸袖 949 TMa6至TEy模式轉換分裂器 950a 外部TEy至ΤΜα6模式轉換器 950b 外部至ΤΜαΑ模式轉換器 950c 外部至TMa6模式轉換器 950d 外部TE”至ΤΜαέ模式轉換器 951 入口或開口 /無阻礙束接納空間 960 致動器 961 固定部分 963 可延伸部分 964 伸縮囊結構 970 阻障總成 970a 阻障總成 970b 阻障總成 970c 阻障總成 970d 阻障總成 970h 阻障總成 972a 密封窗構件 972b 密封窗構件 972c 密封窗構件 972d 密封窗構件 973 阻障殼體 973a 第一或入口區段 160978.doc -127- 201231885 973b 選用第二或中間區段 973c 第三或出口區段 974a 阻抗變換直徑臺階式改變 974b 阻抗變換直徑臺階式改變 975a 第一 TMw波導段 975b 第二ΤΜα6波導段 980 支撐臂 982a 彈性環 982b 彈性環 984a 彈性環 984b 彈性環 990 可移動反射器 990a 可移動反射器 990b 可移動反射器 990c 可移動反射器 990d 可移動反射器 991 反射器表面 1020 微波加熱系統 1022a 微波產生器 1022b 微波產生器 1022c 微波產生器 1022d 微波產生器 1030 微波加熱器 1040 微波分佈系統 160978.doc -128- 201231885 1044a 微波發射器 1044b 微波發射器 1044c 微波發射器 1044d 微波發射器 1044e 微波發射器 1044f 微波發射器 1044g 微波發射器 1044h 微波發射器 1046a 微波切換器 1046b 微波切換器 1046c 微波切換器 1046d 微波切換器 1050a 發射器對 1050b 發射器對 1050c 發射器對 1050d 發射器對 1050e 發射器對 1050f 發射器對 1050g 發射器對 1050h 發射器對 1060 控制系統 1304 合成束 A 第一微波發射器組/堆疊 B 第二微波發射器組/堆疊 160978.doc -129· 201231885 B, 内 部表 面 C 堆 疊 C, 内 部表 面 D 堆 疊 D, 内 部表 面 160978.docTotal circulation data energy density (kW/lb dry wood) 0.0094 0.0107 0.0107 0.0109 0.0148 0.0155 0.0125 0.0168 Total power input (kW-hr) 26.2 30.7 26.0 30.7 37.0 36.0 32.0 41.3 Li (350) 〇yr\ m L-350 — —— ——1 350 1 200 1 200 1 300 1 350 )hnr Dry weight 1553 1833 1528 1800 1630 1592 1566 1836 Average humidity content (%) 2.55 2.04 2.18 2.10 2.70 2.45 2.72 1.95 Operation < ϋ A Η α S Fourth Heating cycle sleep (minutes) 1 1 I 1 II 1 1 Time (minutes) 1 1 1 1 III Energy rate (kW) 1 1 1 1 1 1 I Third heating cycle sleep (minutes) 1 1 1 1 1 1 I Time \ (minutes)\ 1 沄1 ν〇m 00 CN Energy rate (kW) <Ν <Ν 1 CN <Ν 1 fN Sleep (minutes) 1 1 OS 1 00 (Ν 〇 second heating time ( Minutes 1 Ο <Ν ο 宕沄Ο 〇 Energy rate (kW) 1 CN <Ν fS <Ν (Ν (Ν 00 οο First heating cycle sleep (minutes) 1 沄宕νη m Time (minutes) Ό Ο κη Ο S ο 〇ο Energy rate (kW) <Ν νη CN m <Ν \Ti (Ν (Ν (Ν 00 ≪η(Ν操作< U Ο Μ Ο 160978.doc 102· 201231885 Upon completion of each run, the bundle is removed and each of the panels is visually inspected for scorch marking, this definition Black or coking mark for a quarter size or larger. Calculate evaporation (humidity) loss β based on total energy input by comparing the weight of the bundle before and after heating (with the known dry weight of each plate) And the initial weight and moisture content of the wood to calculate the energy density (dry wood per crush) „ Table 4 below summarizes the results of running Α to η, which includes the average and maximum peak temperatures achieved during heating and the number of burnt plates Table 4: Summary of results from operation Η to 运行 Operation results Energy density (kW/lb dry wood) Average peak temperature CC) Maximum peak temperature (Ό Charred, plate (#) A 0.0094 116 159 〇BCD 0.0107_ 119 161 0 a 0.0107 139 184 7 — 0.0109 116 179 〇E 0.0148 136 154 19 FG —0.0155 123 137 0 0.0125 113 193 〇Η 0.0168 142 192 10 ~ As shown in Table 4, for similar energy densities (eg, transport And running E and F) 'using more individual cycles of operation at lower energy levels and/or for shorter durations (eg, running D&F) than at higher energy levels / or the operation of fewer individual cycles (for example, running C and E) performed over a longer duration is more likely to avoid charring. In addition, as illustrated by the operating enthalpy, the energy and/or duration of the initial cycle is performed at a high energy level and/or over a long duration, even with a reduced energy level A cycle of operation can also result in charring. Therefore, it can be inferred that the number of individual cycles in a total heating cycle is 160978.doc -103 - 201231885 and the duration and the level of energy and / or pressure of each of the individual cycles are average and maximum for wood. The peak temperature and the number of plates burned during the heating cycle have an effect. Example 3: - Determination of the energy distribution curve within the beam This example provides actual data obtained from a pilot scale microwave heater used to heat and/or dry an acetonitrile bundle. The thermal image is used to construct an energy profile which will then be correlated in Prophetic Example 4 to predict the chemical humidity profile of the wood heated on a commercial scale. A microwave heater similar to the horizontal extension of the heater illustrated in Figures 10a, lOd, and l〇e is constructed with an outer diameter of one foot 12 feet and a total length of one foot 16 feet. The heater includes an inlet door for loading and unloading the bundle from the container. Four split microwave emitters similar to the split microwave emitter illustrated in Figures 1 〇c and 10d are configured in two oppositely disposed pairs and connected to a FERRITE 75 kw 91 5 MHz microwave via one of the 〇ι〇 waveguide systems A generator (available from Ferrite Microwave Technologies, Inc. of NasJlua, Nh.). The three microwave switches are configured to route energy from the generator to one of two pairs of each pair, as explained in detail below. The microwave heater also includes four movable reflectors similar to the movable reflector illustrated in Figure 10c. Each reflector defines a continuous reflective surface that extends substantially along the length of the heater. Each of the four split emitters is vertically positioned between a pair of movable reflectors such that the reflective surface by each of the four quadrants disposed within the interior volume of the heater will split from each The emission openings of the emitters are directed upwards and downwards. I60978.doc •104· 201231885 The emitted energy is rasterized into the interior of the microwave heater. Each reflective surface is rotated in a generally arcuate shape by utilizing one of the shafts of the external drive. Details of the motion of the movable reflector will be elaborated later. Allowing approximately 1,500 pounds of acetylated radiata pine to be equilibrated in an environment such that the average water content of the wood is between 2 wt% and 3 wt%. The wood is then bundled into a composite bundle comprising one of four individually fastened stacks (e.g., stacks A through D shown in Figure 13). The composite beam (shown as bundle 1304 in Figure 13) has a nominal size of 4 feet wide by 8 feet high by xi 6 feet long. Each of stacks A through C has a width of 6 inches and stack D has a width of 25 feet. The composite bundle 13 04 is introduced into the microwave heater and the door is closed and fastened prior to the start of the heating cycle. First, the microwave switcher is configured such that energy from the generator will be routed simultaneously to two diagonally opposite (eg, relatively placed, axially staggered) emitters, while the remaining two diagonally opposite emitters remain idle. . Next, the generator is activated and set to deliver 75 kw to the first diagonally opposite pair of emitters in a manner similar to that discussed previously with respect to the emitter group "A" of Figures 11a and lb. Next, after 1 minute, the generator is stopped and the microwave switcher is reconfigured to route energy from the opposite active diagonal to the emitter group to the idle diagonal relative emitter group during the second heating mode. The generator is then restarted at 75 kW and the microwave energy is again discharged into the heater. After another 10 minutes, the generators are stopped so that the switches can be returned to the original configuration, thereby rerouting the energy back to the first diagonally opposite pair of transmitters. This sequence of discharge energy instead of axially staggered emitters continues in a 10 minute increment for a total of 80 minutes (e.g., 1 〇〇 kW hr). 160978.doc •105- 201231885 During each heating mode, the energy and position of each of the microwave emitters is rasterized to the microwave heater by the motion and position of each of the (4) movable reflectors An internal programmable logic controller (PLC), ''to' to use a servo motor to rotate each reflector through various portions (or zones) of its total arcuate path at various speeds. The top and bottom reflector pairs are programmed to follow the same speed (four), but the movement of each pair of reflectors is started before the other to prevent the two reflectors from moving synchronously. Table 5 below summarizes the boundaries of each of the eight zones of motion (eg, start and end positions) and the total length and reflector speed of each of the top and bottom reflector pairs and in each zone The time spent (9) such as 'residence time' is expressed as a percentage of the total reflector cycle time. Note that Table 5 only summarizes one-half of the curve of each reflector; once each reflector pair moves through the zone 8 to 8 as explained below, each reflector then proceeds in a -reverse pattern, and the zone 8 begins Move back to zone 160978.doc -106 · 201231885 Bottom reflector retention time (% of cycle) 〇rn rn vo CN On 59.0 Speed (°/s) 0.05 0.05 1.82 1.82 1.82 1.82 0.26 0.04 Top reflector retention time (cycle /.) Os ο 23.3 Ο ρ q 1»^ o CN 48.0 Speed (°/s) 0.07 0.10 ! _! CN οο 1.82 1.82 1.82 0.25 0.04 Path length (%) 0.31% 12.19% 12.50% 12.50% 12.50 % 25.00% 12.50% 12.50% Path length (°) Os ΓΟ ρ Ο — Ο · · o 00 oo — End position (°) τ-Η Ο Seven ο ό 12.0 16.0 24.0 28.0 32.0 Starting position (°) Ο ο ρ — Ο οο 12.0 16.0 24.0 28.0 <Ν m inch in v〇00 160978.doc -107- 201231885 Once the entire heating cycle is completed, the generator is turned off and the heated composite beam is transported to a holding zone with one One of the wide-angle lenses MIKRON 7500 model camera positioning Elongated side of the heat from the beam through the mouth of one of the forces of approximately 10 feet. Stack A (the outermost panel stack shown in Figure 13) is removed from the composite beam to thereby expose one of the internal surfaces of stack B (designated B' in Figure 13). The camera records surface B, thermal image ' at a rate of one image every 5 seconds, and after 20 seconds, removes stack b from the composite beam. The camera then begins recording a thermal image of one of the internal surfaces of the stack C (designated as surface C' in Figure 13). After 20 seconds, the stack c was removed from the bundle, thereby exposing the inner surface of the stack D (designated as surface D in Fig. 13). The camera records the thermal image of the surface D· for 20 seconds and is then stopped. To analyze the synthetic temperature profile across the volume of the bundle, use 1^1〇*〇81) Shen 1^ professional thermal imaging software (version 4·〇.5, available from Metrum, Berkshire, UK) The pixel-by-pixel temperature data obtained in the representative region of the focus of each of the surfaces Βι to D is introduced into a trial spreadsheet. A cumulative frequency histogram of the thermal data obtained from all internal surfaces B of the self-synthesizing beam, up to D', is shown in FIG. As shown in Figure 14, less than 2% by volume of the bundle has a temperature below d or at a temperature of 52 C. This type of energy distribution results in a predicted chemical moisture content curve when correlated with a dry, acetified wood bundle, as set forth in Prometric Example 4. Example 4 (pre-invariant): Calculation of the chemical moisture content curve in an acetonitrile bundle This pre-inferior example uses the experimental energy distribution obtained in Example A 160978.doc •108· 201231885 to predict The chemical humidity profile of the brewed wood heated and/or dried in a commercial scale microwave heating system is configured similarly to the system previously described in Example 3 (eg, one or more heat removable within the total volume) The amount and distribution of chemicals). One of the dimensions of approximately 101 inches high X52 inches wide by 16 feet long is loaded into the microwave heater with one of U-foot 7 inch internal diameter and 17 foot one flange length. . The pressurizable heater includes an oppositely disposed entry and exit opening, each of which may be sealed by a full diameter disc door. The total internal volume of the heater is 26 〇 5 ft., and the ratio of the total volume of the wood bundle to the total open (e.g., unoccupied) volume in the microwave heater is 0.29:1. The bundle has a "chemical moisture content" of about 10 wt% to 15 wt% (i.e., containing, for example, one or more of the acetic acid, acetic anhydride, and combinations thereof) before being heated in the microwave heater. One of the chemicals). During the heating of the bundle, microwave energy was introduced into the microwave heater in a similar manner as previously described in Example 3. In addition, a vacuum system was used to maintain the internal pressure of the heater at 60 Torr. After 8 minutes, the microwave generator was turned off, the beam was removed and the thermal image of the interior surface of the beam was taken in the manner previously described in Example 3. The predicted temperature distribution resulting from the accumulated thermal data is provided in FIG. As shown in Figure 15 -, the predicted temperature profile of the acetified wood bundle has an average peak temperature of 165 ° C and the total volume of the bundle is less than 〇 3% having less than 115 ° C or higher than 235 eC temperature. Based on previously obtained empirical data relating wood temperature to chemical moisture content, the temperature in Figure 15 is 160978.doc •109·201231885. The distribution is as described above. One of the dried acetylated wood bundles is predicted as shown in Table 6. One of the chemical moisture content curves outlined in the paper. Table 6: Estimated chemical moisture content curve of dried acetalized wood Temperature percentage of wood bundle predicted moisture content T<115°c 0.3% ~2 wt% humidity 115°C <T<135〇C 2.2% ~ 1 Wt% Humidity T>235〇C 0.3% Charred 115°C <T<235〇C 99.4% Dry 135〇C <T<235〇C 97.2% Drying and/or drying the total of acetified wood The target is to remove residual acetamidine chemicals (eg, 'by minimizing the chemical moisture content of the dried bundles) without excessive drying or charring of the treated wood. As shown in Table 6, less than 〇·3% of the total volume of the acetonitrile bundle is insufficiently dry (for example, having a moisture content of 2 wt0/. or 2 wt% or more) or subjected to scorching ( For example, having an average temperature of more than 235 C), and additionally less than 22% of the total volume of the bundle has a moisture content of 1% or more. Thus, at least 97.2% (and up to 99.4%) of the total volume of the brewed bundle is heated or dried to less than 1 wt% to 2 wt% of one chemical moisture content while minimizing the amount of charred wood. The preferred forms of the invention described above are intended to be illustrative only and not to limit the scope of the invention. Obvious modifications to the illustrative embodiments described above can be readily made by those skilled in the art without departing from the scope of the invention. The inventors hereby state that it is intended to rely on the principle of equivalence to determine and estimate the reasonable scope of the invention in relation to any device without substantially deviating from the literal scope of the invention described in the following patent application. Or outside the literal scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a top plan view of one of the wood treatment systems configured to deliver a chemical upgrading reactor and a wood heater in accordance with an embodiment of the present invention. Figure 1 is a top plan view of one of the wood treatment systems configured in accordance with an alternate embodiment of the present invention, specifically illustrating the transport of a plurality of chemical upgrading reactors and A system of wood bundles of a plurality of wood heaters; Figure 3 is a top plan view of one of the wood treatment systems configured in accordance with an alternate embodiment of the present invention, specifically illustrating the transport of a plurality of chemical modifications a roller system of a reactor and a plurality of wood heaters; FIG. 4a is suitable for use in the production of chemically modified wood and configured according to the embodiment of the present invention - through-wood From a top view of the system, the material is illustrated as a chemical & mass reactor and a wood heater comprising a separate axially aligned double door vessel and comprising a reactor and heating a steam containing chamber between the containers; Figure 4b is an isometric view of the through-wood processing system of Figure 4a, in particular illustrating one exemplary blasting plate/wall of the vapor containing chamber; Figure 4c is attached A cross-sectional view of the vapor containing chamber illustrated in Figures 4a and 4b, in particular illustrating an exemplary one-way vent pair for allowing fluid from the external environment (e.g., air) to flow into the κ holding chamber 160978.doc •111· 201231885 Figure 4d is a side view of the through-wood treatment system of Figure 4a, but also illustrates the product steam for pumping into the steam holding chamber and into the outlet of the heater. Figure 1 is a schematic diagram of one of the microwave heating systems configured to be equipped with a vacuum system and via a microwave distribution system, in accordance with an embodiment of the present invention. A microwave heater that receives microwave energy from a microwave generator; Figure 6 is suitable for use as a double door, through a chemical modification reactor and/or a microwave heater in accordance with various embodiments of the present invention An isometric view of one of the containers, which specifically illustrates the shape and size ratio of the container; Figure 7a is a configuration of one of the door flanges of a microwave heater and a container flange in accordance with an embodiment of the present invention; A partial cross-sectional view of a face, in particular, illustrating a microwave choke that is cooperatively formed by a door and a container flange and having two chambers that are parallel to each other and that are extended together; Figure 7b is similar to that depicted in Figure 7a A partial cross-sectional view of one of the microwave chokes of the illustrated baffle, but the microwave choke has a choke chamber extending at an acute angle relative to each other; Figure 7c is equipped with the microwave choke shown in Figure 7a One of the door flanges of the microwave heater is a cross-sectional isometric view, specifically illustrating a plurality of circumferentially spaced end opening slots formed in a flow guiding wall of the choke Or a gap; Figure 7d is a side view of one of the open doors of a microwave heater having one of the microwave blockers having one of the removable portions configured in accordance with an embodiment of the present invention, in particular Graphically illustrating the movable of the microwave choke Department 160978.doc •112· 201231885 and replaceable spoiler section; one of the “G” shaped removable choke sections includes a plurality of individual removable parts. Figure 7e is previously drawn in Figure 7 (1) Figure 7f is a cross-sectional view of one of the """ or "U"-shaped removable spoiler portions configured in accordance with a first alternative embodiment of the present invention; Figure 7g is in accordance with the present invention A second alternative embodiment configures one of the "^" shaped removable blocker sections to be a cross-sectional view; FIG. 7h is a configuration of a third alternative embodiment of the present invention. A cross-sectional view of a portion of the flow device; Fig. 8a is an isometric view of one of the microwave heaters configured in accordance with an embodiment of the present invention. In particular, the heater is illustrated as being equipped with an elongated Waveguide emission H' the elongated waveguide emitter has staggered emission openings on opposite sides of the emitter; Figure 8b is an enlarged partial view of one of the waveguide emitters illustrated in Figure 8a, specifically illustrating the emission opening Configuration and defining the thickness of the sidewall of the emission opening; Figure 9 a is based on this One embodiment of the invention configures a side view of one of the microwave heating systems, specifically illustrating a microwave distribution system for delivering microwave energy to a microwave heater; Figure 9b is a microwave depicted in Figure 9a A top cross-sectional view of the heater, in particular illustrating the microwave distribution system as a ΤΜα6 emitter pair on one side of the microwave heater and a second ΤΜβ6 emission on the opposite side of the microwave heater Figure 9c is a diagram illustrating one of the contents of I60978.doc - 113· 201231885 by the terms "opposite side" and "same side"; Figure 9d is illustrated by the term "axial alignment" Figure 9e is a partial cross-sectional isometric view of a microwave emission and reflection or scattering system configured in accordance with an embodiment of the present invention, specifically illustrated similar to Figure 9b The transmitting system shown therein also includes one of the movable reflectors associated with each of the microwave emitters; Figure 9f is adapted to be used in one of the microwave heating systems as described herein. An isometric view of one embodiment of the ejector, which in particular illustrates the reflector as having a non-planar reflective surface with a first-configured recess; Figure 9g is suitable for use herein An isometric view of another embodiment of a reflector used in the __microwave plus (four) system, which in particular illustrates the reflector as having one of the recesses with a second configuration Planar reflective surface; Figure 9h is a side elevational view of one embodiment of a reflector suitable for use in one of the microwave heating systems described herein, in particular illustrating the curvature of the reflector surface; 9ι is an enlarged cross-sectional isometric view of one of the pair of microwave emitters and reflectors previously illustrated in Figure 9e, which in particular illustrates an actuator system for providing oscillatory movement of the reflector; a is a side view of one of the microwave heating systems configured in accordance with an embodiment of the present invention, specifically illustrating a microwave distribution system equipped with a plurality of TMu barrier assemblies; 160978.doc • 114- 201231885 Figure 10b is in Figure 10a An axial cross-sectional view of one of the άβά barrier assemblies, which in particular illustrates the barrier assembly as having two floating sealing windows and coupled to the barrier assembly The impedance transformation diameter step change near the junction of the waveguide of the barrier assembly; FIG. 1A is an end view of the microwave heating system illustrated in FIG. 10a, wherein a wood bundle is received in the interior of the microwave heater, The microwave heater is illustrated as being specifically a splittable microwave emitter equipped on opposite sides of the heater and a movable reflector for rasterizing the microwave energy emitted from the split emitters; Figure 10d An enlarged side view of one of the split emitters depicted in Figure 10c, which specifically illustrates the emission angle of two separate microwave energy fractions emitted from the split emitter; Figure 10e is used to make one An enlarged view of an embodiment of a system for reflector movement, in particular illustrating an actuator for causing oscillation of the reflector and for inhibiting the wall of the actuator from penetrating the microwave heater Location One of the fluid leaks is a bellows; Figure 11a is a schematic top view of one of the microwave heating systems configured in accordance with an embodiment of the present invention, which in particular specifically illustrates the heating system for inclusion in a A plurality of microwave switches that alternately route microwave energy to different microwave emitters; FIG. 1b is a schematic diagram of one of the microwave heating systems configured in accordance with an alternative embodiment of the present invention, specifically illustrating the heating system Illustrated as comprising a plurality of microwave switches for routing microwave energy to different microwave emitters in an alternating manner; 160978.doc -115- 201231885 Figure 12a presents a gate that predicts proximity to one of the microwave containers that does not include a microwave choke And the result of a computer simulation of the electric field strength at the flange of the body; Figure 12b shows the result of a computer simulation predicting one of the microwave vessels of one of the microwave vessels not including a microwave choke and the electric field strength at the flange of the body, In particular, the flow blocker is illustrated to prevent or substantially minimize the ability of the microwave to leak from the container; Figure 13 is a schematic representation of one of the wood bundles, The configuration utilized in determining the internal surface temperature as set forth in Example 3 is illustrated; Figure 14 is incorporated into the surface b of the composite bundle as shown in Figure 13, to one of the obtained thermal data. Cumulative frequency histogram; and Figure 15 illustrates a cumulative frequency histogram of one of the predicted temperature profiles produced by the speculated thermal data of the acetylated wood bundle as illustrated in Example 4. [Main component symbol description] 10 20 22 24 26 28 29 30 32 34 160978.doc Wood treatment facility chemical upgrading system Chemical upgrading reactor Reactor heating system using reactor pressure / pressure reducing system reactor inlet door / A reactor inlet door is selected as the reactor outlet door heating system heater energy 201231885 36 is selected heater pressure / decompression system 38 open heater inlet door 39 is selected heater outlet door 40 conveyor system 42a conveying section 42b conveying section 42c conveying section 42d conveying section 42e conveying section 60a raw material storage area 60b finished material storage area 102 wood bundle 110 wood processing facility 122a reactor 122b reactor 122n reactor 128a door 128b door 128n door 132a heater 132b heater 132n heater 138a door 138b Door 160978.doc · 117- 201231885 13 8η 140 160 210 222a 222η 228a 228η 229a 229η 232a 232b 232η 238a 238b 238n 239a 239b 239n 240 242a 242b 242c 242d Door Rotatable Platform/Rotary Table Storage Area Wood Treatment Facility Chemical Modification Reactor Chemical upgrading reactor reactor inlet Door reactor inlet door selection reactor outlet door selection reactor outlet door heater heater heater heater inlet door heater inlet door heater inlet door selection heater outlet door selection heater outlet door selection heater outlet door conveying system Segment segment 160978.doc -118- 201231885 242e segment 242f segment 242g segment 242h segment 242i segment 242j segment 244a segment 244b segment 244c segment 244d segment 244e segment 322 chemical upgrading reactor 328 reactor inlet gate 329 reactor outlet gate 332 heater 338 Heater entrance door 339 Heater exit door 342a Upright wall 342b Upright wall 342c Upright wall 342d Upright wall 343 Blasting or blast wall 344 Ceiling structure 349 Steam outlet pipe 160978.doc -119- 201231885 349a Steam outlet pipe 349b Steam Outlet conduit 349c Steam outlet conduit 360 Steam containment chamber 361 Transfer zone 370a Center extension shaft / vent 370b Center extension shaft / vent 399 Delivery path 400 Product vapor removal system or structure 402 Vent system 404 Vent 406 Vent chamber 408 Vent chamber Out 409 door 410 vacuum generator 412 processing device 414 drain 416 wood processing facility / wood processing system 420 microwave heating system 422 microwave generator 430 microwave heater 440 microwave distribution system 442 waveguide 444a microwave transmitter 160978.doc -120- 201231885 444b Microwave Transmitter 444c Microwave Transmitter 446 Microwave Mode Converter/Mode Converter 450 Vacuum System 530 Microwave Heater 531 Body Side Sealing Surface 532 Container Body 533 Door Side Sealing Surface 534 Door 535 Center Extending Shaft 536 Inside of Microwave Heater 631 Body Side Sealing Surface 632 Container Body 633 Door Side Sealing Surface 634 Door 650 Microwave Rejector 651 Removable Portion 652 First Radially Stretched Restrictor Cavity 653a Removable Slipper Segment 653b Removable Slipper Segment 653c Removable spoiler section 653d Removable spoiler section 653e Removable spoiler section 654 Second radially extended choke chamber 160978.doc -121 - 201231885 656 Radial extension 660 Select fluid 670 Separated 690 first choke 692 second choke 702 wood bundle 720 microwave plus 730 Microwave heating 738 Heater into 739 beam receiving space 740 Microwave distribution 760 Elongated 764a substantially flat 764b substantially flat 764c substantially flat 764d substantially flat 767a elongated 767b elongated 767c elongated 767d elongated 767e Elongated 780a Emission Pair or 780b Emission Pair or 820 Microwave Heating Restrictor Diversion Wall Sealing Member Open End Gap Chamber Extending Direction of Directional Chamber Chamber System Door / Selecting Heater Exit Door System Waveguide Emitter face side wall side wall side wall side wall slot / launch opening slot / launch opening slot / launch opening slot / launch opening slot / launch opening opening pair opening pair - 122 - 160978.doc 201231885 830 microwave heater 831 outer side wall 831a side wall 831b side wall 835 extension axis 835a extension axis 838 heater inlet door 839 midpoint 840 microwave distribution system 841a spaced apart emission opening 841b spaced apart emission opening 842a waveguide/waveguide section 842b waveguide/waveguide section 842c waveguide / waveguide section 842d waveguide / waveguide section 843a ΤΜβδ waveguide section 843b ΤΜα6 waveguide section 843c TMa6 waveguide section 843d TMaZ) waveguide section 844 microwave transmitter 844a microwave transmitter 844b microwave transmitter 844c microwave transmitter 844d microwave transmitter 160978.doc -123- 201231885 845 open exit/launch opening 845a open exit / Launch opening 845b open exit/emitter opening 845c open exit/transmit opening 845d open exit/transmit opening 846 transmitter 846a transmitter 846b transmitter 850a mode converter 850b mode converter 850c mode converter 850d mode converter 890 reflector 890a Moving reflector 890b movable reflector 890c movable reflector 890d movable reflector 891a reflecting surface 891b reflecting surface 891c reflecting surface 891d reflecting surface 892 supporting arm 893 oscillating rotating shaft 893a convex portion 160978.doc - 124- 201231885 893b convex portion 894 Lever arm 895 Linear shaft 896 Wheel 897 Pivot 898 Motor 899 Reflector drive system / Actuator 902 Wood beam 920 Microwave heating system 928 Entrance door 930 Microwave heater 931 External side wall 933 Side wall 938 Heating Inlet door 939 heater exit door 940 microwave distribution system 941a emission opening 941b separated emission opening 941c separated emission opening 941d separated emission opening 942 waveguide section 942a upstream TM& waveguide section 942b upstream ΤΜαί) waveguide section 942c upstream ΤΜαί) waveguide section 160978.doc -125- 201231885 942d upstream TMa6 waveguide section 942e upstream TM& waveguide section 942f upstream TM& waveguide section 942g upstream ΤΜαΖ) waveguide section 942h upstream ΤΜαΛ waveguide section 942i downstream waveguide section 942j downstream TMai) waveguide Segment 942k downstream TMflfc waveguide segment 9421 downstream ΤΜαί) waveguide segment 942x waveguide segment 942y waveguide segment 942z waveguide segment 943a TEy waveguide segment 943b TEy waveguide segment 944 split emitter 944a first split emitter 944h second split emitter 945a discharge opening 945b discharge Opening 945c discharge opening 945d discharge opening 947a mode converter 947b mode converter 947c mode converter 160978.doc -126· 201231885 947d mode converter 948 extension sleeve 949 TMa6 to TEy mode conversion splitter 950a external TEy to ΤΜα6 mode conversion 950b external to ΤΜαΑ mode converter 950c external to TMa6 mode converter 950d external TE" to ΤΜαέ mode converter 951 inlet or opening/unobstructed beam receiving space 960 actuator 961 fixed portion 963 extendable portion 964 bellows structure 970 Barrier assembly 970a Barrier assembly 970b Barrier assembly 970c Barrier assembly 970d Barrier assembly 970h Barrier assembly 972a Sealing window member 972b Sealing window member 972c Sealing window member 972d Sealing window member 973 Barrier housing 973a first or inlet section 160978.doc -127- 201231885 973b second or intermediate section 973c selected third or outlet section 974a impedance transformation diameter stepwise change 974b impedance transformation diameter stepwise change 975a first TMw waveguide section 975b Second ΤΜα6 waveguide section 980 support arm 982a elastic ring 982b elastic ring 984a elastic ring 984b elastic ring 990 movable reflector 990a movable reflector 990b movable reflector 990c movable reflector 990d movable reflector 991 reflector surface 1020 Microwave heating system 1022a microwave generator 1022b microwave generator 1022c micro Wave generator 1022d microwave generator 1030 microwave heater 1040 microwave distribution system 160978.doc -128- 201231885 1044a microwave transmitter 1044b microwave transmitter 1044c microwave transmitter 1044d microwave transmitter 1044e microwave transmitter 1044f microwave transmitter 1044g microwave transmitter 1044h microwave transmitter 1046a microwave switcher 1046b microwave switcher 1046c microwave switcher 1046d microwave switcher 1050a transmitter pair 1050b transmitter pair 1050c transmitter pair 1050d transmitter pair 1050e transmitter pair 1050f transmitter pair 1050g transmitter pair 1050h launch Pair 1060 Control System 1304 Synthetic Beam A First Microwave Transmitter Set / Stack B Second Microwave Emitter Set / Stack 160978.doc -129· 201231885 B, Internal Surface C Stack C, Internal Surface D Stack D, Internal Surface 160978 .doc

Claims (1)

201231885 七、申請專利範圍: 1. 一種用於生產經化學改質、乾燥及/或熱改質之木材之系 統,該系統包括: 一微波加熱器,其包括一容器本體及用於選擇性地准 許及阻擋一木材束通行進出該微波加熱器之内部之一 門, 其中該門及該容器本體具有各別門側及本體侧密封表 面,其在該門被關閉時在該門與該容器本體之間直接或 間接形成一流體密封, 其中該門與該容器本體協作地形成一微波阻流器之至 少一部分,其在該門被關閉時有效抑制微波能在該門與 该谷器本體之間自該微波加熱器中泡漏, 其中該微波阻流器包括一第一徑向延伸阻流器腔、一 第二徑向延伸阻流器腔及在該門被關閉時至少部分地安 置於該第一阻流器腔與該第二阻流器腔之間的一徑向延 伸阻流器導流壁, 其中當該門被關閉時該第二阻流器腔之至少一部分靠 擺著該第一阻流器腔之至少一部分而延伸。 2· 種用於生產經化學改質' 乾燥及/或熱改質之木材之系 統,該系統包括: 一微波加熱器,其包括一圓柱形容器本體、一門及一 微波阻流器, 其中該微波加熱器經組態以接納且加熱一木材束, 其中該微波阻流器可操作以在該門被關閉時實質上防 160978.doc 201231885 止微波能在該門與該容器本體之間自該微波加熱器中洩 漏, 其中該微波阻流器包括可移除地耦合至該容器本體或 該門之一可移除阻流器部分。 3. 如6青求項2之系統,其中該微波阻流器包括一第一徑向 延伸阻流器腔、-第二徑向延伸阻流器腔及在該門被關 閉時至乂 分地安置於該第一阻流器腔與該第二阻流器 腔之間的一徑向延伸阻流器導流壁。 4. 如=求項1或3之系統,其中—相對延伸角界定於該第一 八器腔之延伸方向與該第二阻流器腔之延伸方向之 間’其中該相對延伸角小於6〇。。 5. 如请求項1或3之系統,其中當該門被關閉時該第二阻流器 腔之總長度之至少4〇%#攏著該第—阻流器腔而延伸。 青求項1或3之系統,其中該導流壁包括沿該導流壁圓 周地安置之複數個經隔開之開端式間隙。 7. 如凊求項1之系統,其中該阻流器包括可移除地耦合至 §亥門或該容器本體之一可移除阻流器部分。 8. 如°月求項3或7之系統,其中該可移除阻流器部分包括該 導流劈。 9. 如-月求項2或7之系統,其中該可移除阻流器冑分可移除 地耦合至該門。 10. 如凊求項2或7之系統,其中該可移除阻流器部分包括複 ::可可個別移除阻流器段’其中該等可個別移除阻流 段具有一大體弧形形狀。 160978.doc 201231885 11 ·如請求項1至3或7中任一項之系統,其中該微波加熱器 進一步包括用於流體地隔離該微波加熱器之内部與外部 環境之一彈性密封構件,其中當該門被關閉時該密封構 件被壓縮在該門與該容器本體之間。 12. 如請求項1至3或7中任一項之系統,其進一步包括可操 作以將該微波加熱器中之壓力減小至不大於350托之一 真空系統’該系統進一步包括用於以至少50 kW之一輸 入速率將微波能提供至該微波加熱器之至少一個微波產 生器’其中該微波加熱器具有至少100立方英尺之一内 部體積》 13. 如請求項1至3或7中任一項之系統,其進一步包括用於 化學改質該木材束之至少一部分之一化學改質反應器及 可操作以將該木材束自該化學改質反應器輸送至該微波 加熱器之一輸送系統》 14. 如請求項13之系統,其中該化學改質反應器係用於乙醯 化該木材束之至少一部分之一乙醯化反應器。 15· —種用於生產經化學改質、乾燥及/或熱改質之木材之方 法’該方法包括: (a) 透過該微波加熱器之一開放門將一木材束裝載至 一微波加熱器中; (b) 關閉該微波加熱器之該門以藉此在該微波加熱器 之該門與一容器本體之間形成一流體密封; (c) 在該微波加熱器中維持不大於35〇托之一壓力; (d) 與步驟(c)同時地,藉助引入至該微波加熱器中之 160978.doc 201231885 微波能加熱該木材束;及 (e)與步驟(d)同時地,使用一微波阻流器來防止該微 波能之至少一部分在該門與該容器本體之接面處退出該 微波加熱器。 16. —種用於生產經化學改質、乾燥及/或熱處理之木材之方 法,該方法包括: (a) 將一可移除阻流器部分附接至一微波加熱器之一 門或一容器本體; (b) 藉助引入至該微波加熱器中之微波能加熱一木材 束;及 (c) 與步驟(b)同時地,使用一微波阻流器來防止該微 波能之至少一部分在該門與該容器本體之一接面處退出 該被波加熱盗,其中5亥微波阻流器包括該可移除阻流器 部分。 17. 如請求項15或16之方法,其中在該加熱期間在接近該微 波阻流器處實質上不發生發弧。 18. 如請求項15或16之方法’其中在該加熱期間以至少5〇 kW之一輸入速率將微波能引入至該微波加熱器中,該方 法進一步包括在該加熱之至少一部分期間在該微波加熱 器中維持不大於250托之一壓力。 19_如請求項15或16之方法,其中在該加熱期間不大於每平 方米5 0毫瓦透過該微波阻流器自該加熱器中浪漏。 20.如s青求項15或16之方法,其中在該加熱期間以至少2〇〇 kW之一輸入速率將微波能引入至該微波加熱器中,該方 160978.doc 201231885 法進一步包括在該加熱之至少一部分期間在該微波加熱 器中維持不大於100托之一壓力,且其中在該加熱期間 不大於每平方米10毫瓦之微波能透過該微波阻流器自該 加熱器中洩漏。 21. 如清求項15之方法,其進一步包括在該木材束之該裝載 之前將一可移除阻流器部分附接至一微波加熱器之該門 或該容器本體。 22. 如請求項16或21之方法,其進一步包括自該門或該容器 本體移除該可移除阻流器部分。 23. 如請求項16或21之方法,其中該可移除阻流器部分包括 複數個可個別移除阻流器段,其中該可移除阻流器部分 之該附接包括將該等可個別移除阻流器段之至少一部分 單獨地附接至該門或該容器本體。 24·如明求項23之方法,其進一步包括移除該可移除阻流器 部分之至少一部分且用一替換阻流器部分替換該可移除 阻流器部分之該至少—部分,其中移除且替換之該可移 除阻流器部分之該至少—部分包括不足該等可個別移除 阻流器段之全部。 其中在該加熱之 其中在該加熱之 其中在該加熱之 25. 如請求項15' 16或21中任一項之方法, 前該木材束重達至少500碎。 26. 如請求項15、16或21中任一項之方法, 前已化學改質該木材束之至少一部分。 27_如請求項15、16或21中任一項之方法, 則已乙醯化該木材束之至少一部分。 160978.doc201231885 VII. Patent Application Range: 1. A system for producing chemically modified, dried and/or thermally modified wood, the system comprising: a microwave heater comprising a container body and for selectively Allowing and blocking a wood beam to pass through a door of the interior of the microwave heater, wherein the door and the container body have respective door side and body side sealing surfaces at the door and the container body when the door is closed Forming a fluid seal directly or indirectly, wherein the door cooperates with the container body to form at least a portion of a microwave choke that effectively suppresses microwave energy between the door and the body of the bar when the door is closed a bubble in the microwave heater, wherein the microwave choke includes a first radially extending choke chamber, a second radially extending choke chamber, and is at least partially disposed at the gate when the door is closed a radially extending choke deflector wall between the choke chamber and the second choke chamber, wherein at least a portion of the second choke chamber is placed against the first when the door is closed Blocking Extending at least a portion of the cavity. 2. A system for producing a chemically modified 'dry and/or thermally modified wood, the system comprising: a microwave heater comprising a cylindrical container body, a door and a microwave choke, wherein The microwave heater is configured to receive and heat a bundle of wood, wherein the microwave choke is operable to substantially prevent 160978.doc 201231885 when the door is closed, the microwave energy is between the door and the container body Leakage in the microwave heater, wherein the microwave choke includes a removable choke portion that is removably coupled to the container body or the door. 3. The system of claim 6, wherein the microwave choke includes a first radially extending choke chamber, a second radially extending choke chamber, and when the door is closed to the ground A radially extending baffle diversion wall disposed between the first choke chamber and the second choke chamber. 4. The system of claim 1 or 3, wherein - the relative extension angle is defined between the direction in which the first eight-chamber cavity extends and the direction in which the second choke chamber extends; wherein the relative extension angle is less than 6〇 . . 5. The system of claim 1 or 3, wherein at least 4% of the total length of the second choke chamber when the door is closed is extended by the first choke chamber. The system of claim 1 or 3, wherein the flow guiding wall comprises a plurality of spaced apart open ends circumferentially disposed along the flow guiding wall. 7. The system of claim 1, wherein the flow blocker comprises a removable flow blocker portion removably coupled to the louver or the container body. 8. The system of claim 3 or 7, wherein the removable choke portion comprises the weir. 9. The system of claim 2, wherein the removable baffle split is removably coupled to the door. 10. The system of claim 2, wherein the removable baffle portion comprises a complex:: cocoa individually removes the choke segment 'where the individually removable choke segments have a generally arcuate shape . The system of any one of claims 1 to 3 or 7, wherein the microwave heater further comprises an elastic sealing member for fluidly isolating the interior and exterior environments of the microwave heater, wherein The sealing member is compressed between the door and the container body when the door is closed. 12. The system of any of claims 1 to 3 or 7, further comprising a vacuum system operable to reduce the pressure in the microwave heater to no more than 350 Torr. The system further comprises One input rate of at least 50 kW provides microwave energy to at least one microwave generator of the microwave heater 'where the microwave heater has an internal volume of at least 100 cubic feet" 13. As claimed in claims 1 to 3 or 7 A system further comprising a chemical upgrading reactor for chemically modifying at least a portion of the wood bundle and operable to deliver the wood bundle from the chemical upgrading reactor to one of the microwave heaters System 14. The system of claim 13, wherein the chemical upgrading reactor is for acetylating an acetonitrile reactor of at least a portion of the wood bundle. 15. A method for producing a chemically modified, dried and/or thermally modified wood. The method comprises: (a) loading a bundle of wood into a microwave heater through an open door of the microwave heater (b) closing the door of the microwave heater to thereby form a fluid seal between the door of the microwave heater and a container body; (c) maintaining no more than 35 Torr in the microwave heater a pressure; (d) simultaneously with step (c), heating the wood bundle by means of microwave energy introduced into the microwave heater 160978.doc 201231885; and (e) simultaneously with step (d), using a microwave resistor The flow device prevents at least a portion of the microwave energy from exiting the microwave heater at the junction of the door and the container body. 16. A method for producing a chemically modified, dried and/or heat treated wood, the method comprising: (a) attaching a removable baffle portion to a door or a container of a microwave heater (b) heating a bundle of wood by means of microwave energy introduced into the microwave heater; and (c) simultaneously with step (b), using a microwave choke to prevent at least a portion of the microwave energy from being at the gate The waved heat thief is exited from a junction with the container body, wherein the 5 hp microwave blocker includes the removable damper portion. 17. The method of claim 15 or 16, wherein substantially no arcing occurs near the microwave choke during the heating. 18. The method of claim 15 or 16, wherein the microwave energy is introduced into the microwave heater at an input rate of at least 5 kW during the heating, the method further comprising the microwave during at least a portion of the heating The heater is maintained at a pressure of no more than 250 Torr. The method of claim 15 or 16, wherein no more than 50 milliwatts per square meter per square meter through the microwave choke is leaked from the heater during the heating. 20. The method of claim 15 or 16, wherein the microwave energy is introduced into the microwave heater at an input rate of at least 2 kW during the heating, the method further comprising 160967.doc 201231885 A pressure of no more than 100 Torr is maintained in the microwave heater during at least a portion of the heating, and wherein no more than 10 milliwatts per square meter of microwave energy during the heating is leaked from the heater through the microwave choke. 21. The method of claim 15, further comprising attaching a removable flow blocker portion to the door or the container body of a microwave heater prior to the loading of the wood bundle. 22. The method of claim 16 or 21, further comprising removing the removable choke portion from the door or the container body. 23. The method of claim 16 or 21, wherein the removable baffle portion comprises a plurality of individually removable spoiler segments, wherein the attaching of the removable baffle portion comprises At least a portion of the individual removal choke segments are individually attached to the door or the container body. The method of claim 23, further comprising removing at least a portion of the removable baffle portion and replacing the at least one portion of the removable baffle portion with a replacement choke portion, wherein The at least a portion of the removable choke portion removed and replaced includes less than all of the individually removable spoiler segments. Wherein the heating, wherein the heating is in the heating, wherein the method of any one of the items 15'16 or 21, the wood bundle weighs at least 500. 26. The method of any one of claims 15, 16 or 21, wherein at least a portion of the bundle of wood has been chemically modified. 27_ The method of any one of claims 15, 16 or 21, wherein at least a portion of the bundle of wood has been smashed. 160978.doc
TW100147206A 2010-12-23 2011-12-19 Wood heater with enhanced microwave choke system TW201231885A (en)

Applications Claiming Priority (20)

Application Number Priority Date Filing Date Title
US42707010P 2010-12-23 2010-12-23
US42706410P 2010-12-23 2010-12-23
US42708010P 2010-12-23 2010-12-23
US42707610P 2010-12-23 2010-12-23
US42705610P 2010-12-23 2010-12-23
US42707510P 2010-12-23 2010-12-23
US42706710P 2010-12-23 2010-12-23
US42705310P 2010-12-23 2010-12-23
US42707910P 2010-12-23 2010-12-23
US42704210P 2010-12-23 2010-12-23
US42703010P 2010-12-23 2010-12-23
US42707210P 2010-12-23 2010-12-23
US13/323,133 US20120160835A1 (en) 2010-12-23 2011-12-12 Wood heater with enhanced microwave barrier system
US13/323,239 US20120160838A1 (en) 2010-12-23 2011-12-12 Wood heater with enhanced microwave dispersing and tm-mode microwave launchers
US13/323,164 US20120160839A1 (en) 2010-12-23 2011-12-12 Microwave wood heater with enhanced spatial usage efficiency and uniformity of heat distribution
US13/323,194 US20120160840A1 (en) 2010-12-23 2011-12-12 Wood heater with alternating microwave launch locations and enhanced heating cycles
US13/323,219 US20120160837A1 (en) 2010-12-23 2011-12-12 Wood heater with enhanced microwave launch efficiency
US13/323,184 US9456473B2 (en) 2010-12-23 2011-12-12 Dual vessel chemical modification and heating of wood with optional vapor
US13/323,140 US9282594B2 (en) 2010-12-23 2011-12-12 Wood heater with enhanced microwave launching system
US13/323,104 US20120160841A1 (en) 2010-12-23 2011-12-12 Wood heater with enhanced microwave choke system

Publications (1)

Publication Number Publication Date
TW201231885A true TW201231885A (en) 2012-08-01

Family

ID=47069416

Family Applications (4)

Application Number Title Priority Date Filing Date
TW100147209A TW201236751A (en) 2010-12-23 2011-12-19 Dual vessel chemical modification and heating of wood with optional vapor containment
TW100147206A TW201231885A (en) 2010-12-23 2011-12-19 Wood heater with enhanced microwave choke system
TW100147113A TW201240528A (en) 2010-12-23 2011-12-19 Wood heater with enhanced microwave launching system
TW100147207A TW201240526A (en) 2010-12-23 2011-12-19 Wood heater with enhanced microwave dispersing and TM-mode microwave launchers

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW100147209A TW201236751A (en) 2010-12-23 2011-12-19 Dual vessel chemical modification and heating of wood with optional vapor containment

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW100147113A TW201240528A (en) 2010-12-23 2011-12-19 Wood heater with enhanced microwave launching system
TW100147207A TW201240526A (en) 2010-12-23 2011-12-19 Wood heater with enhanced microwave dispersing and TM-mode microwave launchers

Country Status (1)

Country Link
TW (4) TW201236751A (en)

Also Published As

Publication number Publication date
TW201240526A (en) 2012-10-01
TW201236751A (en) 2012-09-16
TW201240528A (en) 2012-10-01

Similar Documents

Publication Publication Date Title
US9456473B2 (en) Dual vessel chemical modification and heating of wood with optional vapor
US20130172526A1 (en) Wood treatment method and apparatus employing laterally shiftable transportation segments
US20210299907A1 (en) Reactor system and process for wood modification
CA2398649C (en) Apparatus for uniformly dispersing microwave and heating system using the same
TW201231885A (en) Wood heater with enhanced microwave choke system
US10993295B2 (en) Microwave mode stirrer apparatus with microwave-transmissive regions
TW201240527A (en) Wood heater with enhanced microwave barrier system
JP5283082B2 (en) Wood drying equipment
KR100414935B1 (en) A drying apparatus
RU2424479C2 (en) Procedure for shf-drying long-length timber, preferably, logs and cants and device for its implementation
RU2084084C1 (en) Plant for microwave treatment of insulating materials
JP2003211413A (en) Smoke-drying treatment method and apparatus