TW201234684A - Light-emitting diode device and method for manufacturing the same - Google Patents
Light-emitting diode device and method for manufacturing the same Download PDFInfo
- Publication number
- TW201234684A TW201234684A TW100103924A TW100103924A TW201234684A TW 201234684 A TW201234684 A TW 201234684A TW 100103924 A TW100103924 A TW 100103924A TW 100103924 A TW100103924 A TW 100103924A TW 201234684 A TW201234684 A TW 201234684A
- Authority
- TW
- Taiwan
- Prior art keywords
- emitting diode
- metal
- light
- layer
- package base
- Prior art date
Links
Landscapes
- Led Device Packages (AREA)
Abstract
Description
201234684 六、發明說明: 【發明所屬之技術領域】 ‘本發明是有關於一種發光元件,且特別是有關於一種 發光二極體(LED)元件及其製作方法。 【先前技術】 請參照第1圖’其係繪示一種習知發光二極體元件之 剖面圖。此發光二極體元件1〇〇主要包含發光二極體晶片 # 102、封裝基座104、導線114、導線架Π2與封裝膠體116。 在此發光二極體元件100中,導線架112包含導腳i〇8a與 108b、以及金屬導熱塊11〇。其中,導腳1〇8b與金屬導熱 塊110接合,而導腳l〇8a則與金屬導熱塊110以及導腳 108b電性分離。 封裝基座104與導線架112結合,但暴露出每個導腳 10如與i08b的一部分、以及金屬導熱塊n〇之底面的一部 分。此外’封裝基座104具有凹槽118,其中凹槽118暴露 • 出封裝基座1〇4之金屬導熱塊11〇之表面的一部分、以及 導腳108a之表面的一部分。 發光二極體晶片102設置於封裝基座1〇4之凹槽H8 中,且固定在金屬導熱塊110遭凹槽118所暴露出的表面 上。發光二極體晶片102可透過導線114以及直接與金屬 導熱塊11〇接合的方式,而分別與導腳1〇8&和1〇8b電性 .連接。因此,經由導腳108&與108b,外部電源可供應電 力予發光二極體晶片102,來使發光二極體晶片1〇2發光。 •封裝基座104之凹槽118的側壁上通常設有反射層 201234684 106’以利將發光二極體晶片1〇2朝凹槽118侧壁所發射之 光朝發光一極體元件100之正面反射,而可提高發光二極 體元件100之光取出效率。封裝膠體116則填滿凹槽118 中’以包覆住發光二極體晶片1〇2、導線114、反射層1〇6、 以及凹槽118所暴露出之金屬導熱塊110的表面與導腳 108a的表面。 為了解決發光一極體晶片1 〇2在大電流操作下所導致 的政熱問通,導線架112具有金屬導熱塊11 〇的設計。利 用金屬導熱塊110,可將發光二極體晶片1〇2運轉所產生 之熱往下導出。如此一來,可避免運作時所產生之熱量累 積發光二極體晶片1〇2,進而可增進發光二極體晶片1〇2 之發光效率與可靠度。 然而’在這樣的導線架1Π設計中,由於金屬導熱塊 110與導腳108b相互連接,但卻又具有不同厚度,如此會 大幅增加導線架112製作製程的困難度。 此外,封裝基座104是利用將聚-鄰-苯二曱醯胺 (Polyphthalamide ; PPA)材料射出成型的方式製作而成。然 而,PPA材料散熱效果不佳,因此封裝基座1〇4無法將發 光二極體晶片102運轉所產生之熱量有效散逸。 目前,為了解決散熱問題,而採用陶瓷材料,例如低 溫共燒陶瓷(Low Temperature Co-fire Ceramic ; LTCC),來 作為封裝基座之材料。由於陶瓷材料具有良好的散熱特 性,因此以陶瓷材料來作為封裝基座的材料,可有助於發 光二極體元件之散熱。 然而’由於低溫共燒陶瓷材料本身多為多層堆疊結201234684 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a light-emitting element, and more particularly to a light-emitting diode (LED) element and a method of fabricating the same. [Prior Art] Referring to Fig. 1 which is a cross-sectional view showing a conventional light-emitting diode element. The light-emitting diode element 1 〇〇 mainly comprises a light-emitting diode wafer # 102, a package base 104, a wire 114, a lead frame Π 2 and an encapsulant 116. In the light-emitting diode element 100, the lead frame 112 includes lead pins i8a and 108b, and a metal heat-conducting block 11A. Wherein, the lead pins 1〇8b are joined to the metal heat conducting block 110, and the lead pins 10a are electrically separated from the metal heat conducting block 110 and the guiding pins 108b. The package base 104 is bonded to the lead frame 112, but exposes a portion of each of the lead pins 10, such as a portion of i08b, and a bottom surface of the metal heat conducting block n〇. Further, the package base 104 has a recess 118 in which the recess 118 exposes a portion of the surface of the metal thermally conductive block 11 of the package base 1 4 and a portion of the surface of the guide 108a. The light emitting diode chip 102 is disposed in the recess H8 of the package base 1〇4 and is fixed on the surface of the metal heat conducting block 110 exposed by the recess 118. The LED chip 102 can be electrically connected to the lead pins 1〇8& and 1〇8b through the wires 114 and directly joined to the metal heat conducting block 11b. Therefore, the external power source can supply electric power to the light-emitting diode wafer 102 via the lead pins 108 & and 108b to cause the light-emitting diode wafer 1 to emit light. The sidewalls of the recesses 118 of the package base 104 are typically provided with a reflective layer 201234684 106' to facilitate the emission of the light emitted from the LED substrate 1〇2 toward the sidewalls of the recess 118 toward the front side of the light-emitting diode element 100. The light reflection efficiency of the light-emitting diode element 100 can be improved by reflection. The encapsulant 116 fills the recess 118 to cover the surface of the metal thermal block 110 exposed by the LED chip 1, the wire 114, the reflective layer 1〇6, and the recess 118. The surface of 108a. In order to solve the political heat caused by the high-current operation of the light-emitting diode chip 1 〇 2, the lead frame 112 has a design of a metal heat-conducting block 11 。. With the metal heat conducting block 110, the heat generated by the operation of the light-emitting diode wafer 1 〇 2 can be led downward. In this way, the heat generated during operation can be prevented from accumulating the light-emitting diode wafer 1〇2, thereby improving the luminous efficiency and reliability of the light-emitting diode wafer 1〇2. However, in such a lead frame design, since the metal heat conductive block 110 and the lead pins 108b are connected to each other but have different thicknesses, the difficulty in the manufacturing process of the lead frame 112 is greatly increased. Further, the package base 104 is formed by injection molding a polyphthalamide (PPA) material. However, the heat dissipation effect of the PPA material is not good, so the package base 1〇4 cannot effectively dissipate the heat generated by the operation of the light-emitting diode wafer 102. At present, in order to solve the heat dissipation problem, a ceramic material such as Low Temperature Co-fire Ceramic (LTCC) is used as a material for the package base. Since the ceramic material has good heat dissipation characteristics, the ceramic material is used as a material for the package base to contribute to heat dissipation of the light-emitting diode element. However, because the low temperature co-fired ceramic material itself is mostly a multi-layer stack junction
S 5 201234684 構’且質地較脆’因此不易製作成封裳基座。特別是,目 前大都利用雷射方式來製作封裝基座之反射碗杯,但是雷 射方式不僅I作成本極為高昂,也無法製作平滑且具特定 角度之反射碗杯的㈣。如此_來’會造成發光二極體晶 片之出光的反射角度不佳,進而影響發光二極料件之光 形,並導致發光二極體元件之亮度下降。 【發明内容】 因此本發明之一態樣是在提供—種發光二極體元件 與製作方法’其係採用金屬來作為封裂基座之本體,故發 光二極體兀件可具有較佳之散熱效能。 ,本毛月之另一癌樣就是在提供一種發光二極體元件與 製法’其利用金屬板材來製作封裝基座本體,因此利 :簡單:機械加工方式即可順利形成封裝基座之碗杯狀凹 。^一來,不僅可提升發光二極體晶片之出光 3效果’獲叫需之出光絲與亮度,更可大幅降低封 &土座之凹槽製作的複雜度,有效降低製作成本。-、 本發明之樣就是在提供—種發光 =方法’其可在封錄紅金屬基板上 ^件與 晶片設置的凹槽時,同時以簡單的機械加卫方=二極體 板上製作發光二極體元件之導線接腳。因此金屬基 元件之導線接腳製作容易。 只九二極體 根據本&明之上述目的,提出_種發光 在匕發光二極體元件包含—金屬散熱座、一金屬層體^件。 基座、一發光—極體晶片、-第-電極墊與1"〜封巢 〜電極勢、 6 201234684 以及一封裝膠體。金屬層覆蓋在金屬散熱座上。封裝基座 設於金屬層上,且具有一凹槽。其中,封裝基座包含一金 屬基板、以及一絕緣層包覆住金屬基板。發光二極體晶片 設於凹槽中。其中,發光二極體晶片具有不同電性之第一 電性電極與第二電性電極。第一電極墊與第二電極墊設於 封裝基座上,且分別與第一電性電極和第二電性電極電性 連接。封裝膠體包覆住凹槽及發光二極體晶片。 依據本發明之一實施例,上述之金屬基板之材料可包 含鋁或銅。此外,絕緣層之材料可包含氧化鋁、氮化矽或 二氧化矽。 依據本發明之另一實施例,上述之金屬散熱座與金屬 層更包含有第一間隙,以使第一電極墊與第二電極墊電性 分離於第一間隙之二側。此外,封裝基座更具有二通孔貫 穿封裝基座,且封裝基座包含二導線接腳分別設於前述通 孔中,以將第一電極墊和第二電極墊分別電性連接至位於 第一間隙之二側的金屬散熱座。 依據本發明之又一實施例,上述之金屬散熱座與金屬 層更包含有第二間隙,且第一間隙與第二間隙分別位於發 光二極體晶片之二側。 根據本發明之上述目的,另提出一種發光二極體元件 之製作方法,包含下列步驟。提供一封裝基座,其中此封 裝基座具有至少一凹槽,且封裝基座包含一金屬基板、以 及一絕緣層包覆住金屬基板。形成一第一電極墊與一第二 電極墊於封裝基座上。提供一暫時基板,其中此暫時基板 上設有一高分子材料層。將封裝基座與至少一發光二極體S 5 201234684 is a 'brighter texture' and therefore is not easy to make into a base. In particular, most of the current use of the laser method to make the reflective bowl of the package base, but the laser method is not only extremely costly, but also can not produce a smooth and angled reflector cup (4). Such a phenomenon causes the reflection angle of the light emitted from the LED film to be poor, thereby affecting the light shape of the light-emitting diode material, and causing the brightness of the light-emitting diode element to decrease. SUMMARY OF THE INVENTION Therefore, in one aspect of the present invention, a light-emitting diode element and a method for fabricating a metal are used as a body of a crack pedestal, so that the light-emitting diode element can have better heat dissipation. efficacy. Another cancer of this month is to provide a light-emitting diode component and a method for making a packaged base body using a metal plate. Therefore, it is simple: the machining method can smoothly form the cup of the package base. Concave. ^In one way, not only can the light-emitting diode 3 effect of the light-emitting diode chip be improved, but the light-emitting wire and brightness required for obtaining the light can be greatly reduced, and the complexity of the groove making of the seal and the earth seat can be greatly reduced, and the manufacturing cost can be effectively reduced. - the invention is provided by providing a kind of illumination = method "which can be used to print a recess on a red metal substrate and a wafer, while simultaneously making a light on a simple mechanically-applied square=diode plate The wire pins of the diode element. Therefore, the wire pins of the metal-based component are easy to fabricate. According to the above purpose of this & Ming, the illuminating diode component includes a metal heat sink and a metal layer. A pedestal, a luminescent-polar body wafer, a -electrode pad with 1"~encapsulated ~electrode potential, 6 201234684 and an encapsulant. The metal layer is covered on the metal heat sink. The package base is disposed on the metal layer and has a groove. Wherein, the package base comprises a metal substrate, and an insulating layer covers the metal substrate. The light emitting diode chip is disposed in the recess. The light emitting diode chip has a first electrical electrode and a second electrical electrode having different electrical properties. The first electrode pad and the second electrode pad are disposed on the package base, and are electrically connected to the first electrical electrode and the second electrical electrode, respectively. The encapsulant covers the recess and the LED wafer. According to an embodiment of the invention, the material of the metal substrate may comprise aluminum or copper. Further, the material of the insulating layer may comprise aluminum oxide, tantalum nitride or hafnium oxide. According to another embodiment of the present invention, the metal heat sink and the metal layer further comprise a first gap, so that the first electrode pad and the second electrode pad are electrically separated from the two sides of the first gap. In addition, the package base further has a through hole penetrating through the package base, and the package base includes two wire pins respectively disposed in the through hole to electrically connect the first electrode pad and the second electrode pad to the first A metal heat sink on the side of a gap. According to still another embodiment of the present invention, the metal heat sink and the metal layer further comprise a second gap, and the first gap and the second gap are respectively located on two sides of the light emitting diode chip. According to the above object of the present invention, there is further provided a method of fabricating a light-emitting diode element comprising the following steps. A package base is provided, wherein the package base has at least one recess, and the package base comprises a metal substrate, and an insulating layer covers the metal substrate. A first electrode pad and a second electrode pad are formed on the package base. A temporary substrate is provided, wherein the temporary substrate is provided with a layer of polymer material. Encapsulating the base and at least one light emitting diode
S 7 201234684 晶片嵌設於高分子材料層中,並使發光二極體晶片位於凹 槽中。其中,此發光二極體晶片具有不同電性之一第一電 性電極與一第二電性電極。形成一金屬層覆蓋在高分子材 料層、封裝基座與發光二極體晶片上。形成一金屬散熱座 於金屬層上。移除暫時基板與高分子材料層,以暴露出第 一電性電極、第二電性電極、第一電極墊與第二電極墊。 將第一電性電極和第二電性電極分別與第一電極墊和第二 電極墊電性連接。形成一封裝膠體包覆住凹槽與發光二極 體晶片。 依據本發明之一實施例,上述提供封裝基座之步驟可 包含:提供一金屬平板;形成一貫穿槽於金屬平板中,以 形成該金屬基板;以及形成絕緣層包覆住金屬基板。 依據本發明之另一實施例,上述之金屬平板之材料可 包含鋁,形成貫穿槽之步驟包含可利用一機械加工方式, 且形成絕緣層之步驟可包含利用一陽極處理方式,以形成 一氧化铭層來作為絕緣層。 依據本發明之又一實施例,上述之金屬平板之材料可 包含銅,形成貫穿槽之步驟可包含利用一機械加工方式, 且形成絕緣層之步驟可包含利用一沉積方式,以形成絕緣 層。 依據本發明之再一實施例,上述提供封裝基座之步驟 可更包含於形成絕緣層之步驟前,形成二通孔貫穿金屬平 板且分別位於貫穿槽之二側。而且,於形成金屬層之步驟 前,上述發光二極體元件之製作方法可更包含形成二導線 接腳分別位於前述之通孔中,其中這些導線接腳適用以分 0^. 8 201234684 之二側 別將第-電轉和第二電極㈣性連接至金屬層。此外, 上述形成金屬層之步驟與形成金屬散熱座之步驟可包含形 =第-間隙穿毅金屬散熱麵金屬層所構成之堆疊結 構中,以使第-電極墊與第二電_電性分離於第一間隙 之二側 依據本發明之再-實施例,上述形成金屬層之步驟與 屬散熱座之步驟可更包含形成一第二間隙穿設於堆 璺4中’第-間隙與第二間隙分別位於發光二極體晶片 本發明藉由採用金屬板材來作為封裝基座之本體,可 同時兼顧發光二極體元件之散熱絲的提升、以及封裝基 座之凹槽反射面之製作複雜度的降低。 【實施方式】 請參照第2A圖至第21圖,其係繪示依照本發明之一 實施方式的一種發光二極體元件之製程剖面圖。在本實施 =式中,製作如第2J圖所示之發光二極體元件262可 圖2並^封裝基座21〇(請先參照第2C圖)。如第2A 金屬ΐ板2=此封裝基座210時,先提供金屬平板200。 度。金屬平;厚度較佳約為封裝凹槽或封裝碗杯之深 平板2〇〇之材料可;1力二”屬/在-實施例中,金眉 細之材料可例如^ 在另—實施射,金屬平板 接著,如第2B园& _ 斤示,利用例如機械加工方式,而於 9 201234684 金屬平板200之預設位置上形成貫穿槽2〇6,藉以形成金 屬基板200a。貫穿槽206貫穿於金屬平板2〇〇之表面202 與204之間。貫穿槽206可例如為碗杯型。在一實施例中, 貫穿槽206之側壁斜面與金屬平板2〇〇之底部表面2〇4的 夾角0的範圍可例如為〇。〈夾角θ <9(Γ,夾角θ的範圍 較佳可介於30。與60。之間。 接下來,形成絕緣層208包覆住金屬基板2〇〇a ,而形 成封裝基座210。其中,此絕緣層2〇8包覆住金屬基板2〇〇a 之所有表面。此外,由於金屬基板2〇〇a具有貫穿槽2〇6, 因此藉由在金屬基板20〇a之表面包覆一層絕緣層2〇8而形 成之封裝基座210也具有凹槽212穿設於封裝基座210中。 在一實施例中,金屬平板200之材料可包含鋁,因而 可利用例如陽極處理方式,於金屬基板2〇〇之所有表面上 形成一層氧化鋁,來作為絕緣層2〇8之材料。由於,氧化 銘層之厚度若太厚可能會影響金屬基座210之散熱與反射 效果。因此,可控制氧化鋁層之厚度來降低絕緣層2〇8對 金屬基座210之散熱效能與反射率的影響。在一例子中, 氧化銘層之厚度可例如控制在5 // m至45 " m之間。此外, 由於氧化鋁層之外觀顏色容易偏黑而具有吸光效果,因此 在另—些實施例中,更可選擇性地利用例如濺鍍或蒸鍍方 式,形成反射層216覆蓋在凹槽212之側壁214上,以提 升凹槽212之侧壁214的光反射率。在一例子中,反射層 210之材料可例如為二氧化鈦(Ti〇2)或銀。 曰 在另一實施例中’金屬平板200之材料可包含銅,因 而可利用例如沉積方式形成一層氮化矽或二氧化矽,來作 201234684 為絕緣層208之材料。在一例子中,沉積方式可例如為電 子束蒸鍍(E-gun Evaporation)沉積或濺鍍(Sputtering)沉積 . 方式。 接著,如第2C圖所示,可利用例如沉積、微影與蝕刻 製程;沉積與浮離(Lift-off)製程;或網印製程等方式,形 成電極塾218與220於封裝基座210上。其中,電極墊218 與220鄰設於凹槽212旁,且位於凹槽212之相對二侧。 然後,提供暫時基板222。其中,此暫時基板222可 φ 例如為一平板。暫時基板222較佳係採用較為堅硬且耐酸 鹼之材料。接下來,利用例如塗布方式,形成高分子材料 層226於暫時基板222之表面224上。在一實施例中,高 分子材料層226可例如包含光阻或熱熔膠。接著,如第2D 圖所不,將封裝基座210與發光二極體晶片228壓入高分 子材料層226之表面242中。並且,如第2E圖所示,使封 裝基座210與發光二極體晶片228嵌設於高分子材料層226 中以及使發光一極體晶片228位於封裝基座210之凹槽 鲁 212中。在一實施例中,當嵌設於高分子材料層226中時, 封裝基座210之底部表面246和發光二極體晶片228之底 部表面244較佳係約齊平。 在一實施例中,發光二極體晶片228主要可包含基板 230、第一電性半導體層232、發光層234、第二電性半導 體層236、以及第一電性電極238與第二電性電極240。其 中,第一電性半導體層232位於基板230上,發光層234 位於σ卩为之弟一電性半導體層232上,第二電性半導體層 236位於發光層234上,第一電性電極238位於第一電The S 7 201234684 wafer is embedded in the polymer material layer and the LED substrate is placed in the recess. The light-emitting diode chip has one of a first electrical electrode and a second electrical electrode having different electrical properties. A metal layer is formed over the polymer material layer, the package base, and the light emitting diode wafer. A metal heat sink is formed on the metal layer. The temporary substrate and the polymer material layer are removed to expose the first electrical electrode, the second electrical electrode, the first electrode pad and the second electrode pad. The first electrical electrode and the second electrical electrode are electrically connected to the first electrode pad and the second electrode pad, respectively. An encapsulant is formed to cover the recess and the light emitting diode wafer. According to an embodiment of the invention, the step of providing a package base may include: providing a metal plate; forming a through groove in the metal plate to form the metal substrate; and forming an insulating layer to cover the metal substrate. According to another embodiment of the present invention, the material of the metal flat plate may include aluminum, and the step of forming the through-groove includes using a mechanical processing method, and the step of forming the insulating layer may include using an anodizing method to form an oxidation. The layer is used as an insulating layer. According to still another embodiment of the present invention, the material of the metal flat plate may comprise copper, and the step of forming the through-groove may include utilizing a mechanical processing, and the step of forming the insulating layer may include using a deposition method to form the insulating layer. According to still another embodiment of the present invention, the step of providing the package base may further include forming a two-pass hole through the metal plate before the step of forming the insulating layer and respectively located on two sides of the through groove. Moreover, before the step of forming the metal layer, the method for fabricating the LED component may further include forming two wire pins respectively in the through holes, wherein the wire pins are applicable to 0^. 8 201234684 bis Side-to-side electrical connection and second electrode (four) connection to the metal layer. In addition, the step of forming a metal layer and the step of forming a metal heat sink may include a stack structure of a metal layer of a shape-first gap, such that the first electrode pad is electrically separated from the second electrode. According to a second embodiment of the present invention, the step of forming a metal layer and the step of forming a heat sink may further comprise forming a second gap through the stack - the first gap and the second The gap is respectively located on the light-emitting diode chip. The invention adopts a metal plate as the body of the package base, and can simultaneously consider the lifting of the heat-dissipating wire of the light-emitting diode element and the manufacturing complexity of the groove reflecting surface of the package base. The reduction. [Embodiment] Please refer to Figs. 2A to 21, which are cross-sectional views showing a process of a light emitting diode device according to an embodiment of the present invention. In the present embodiment, the light-emitting diode element 262 as shown in Fig. 2J can be fabricated and the base 21 can be packaged (refer to Fig. 2C first). When the 2A metal raft 2 is the package base 210, the metal plate 200 is first provided. degree. The metal is flat; the thickness is preferably about the material of the deep groove of the package groove or the package cup; 1 force 2" genus / in the embodiment, the material of the gold eyebrows can be shot, for example, in another The metal plate is then formed into a through-groove 2〇6 at a predetermined position of the metal plate 200 at 9, 201234684 by, for example, machining, as in the case of the 2B garden & Between the surfaces 202 and 204 of the metal plate 2, the through groove 206 can be, for example, a cup type. In one embodiment, the angle between the side wall of the through groove 206 and the bottom surface 2〇4 of the metal plate 2〇〇 The range of 0 may be, for example, 〇. <An angle θ < 9 (Γ, the range of the included angle θ may preferably be between 30 and 60. Next, the insulating layer 208 is formed to cover the metal substrate 2〇〇a The package base 210 is formed, wherein the insulating layer 2〇8 covers all surfaces of the metal substrate 2〇〇a. Further, since the metal substrate 2〇〇a has the through grooves 2〇6, by the metal The package base 210 formed by coating the surface of the substrate 20A with an insulating layer 2〇8 also has The groove 212 is disposed in the package base 210. In an embodiment, the material of the metal plate 200 may include aluminum, so that an aluminum oxide may be formed on all surfaces of the metal substrate 2 by, for example, anodizing. As the material of the insulating layer 2 〇 8. Since the thickness of the oxidized layer is too thick may affect the heat dissipation and reflection effect of the metal pedestal 210. Therefore, the thickness of the aluminum oxide layer can be controlled to reduce the insulating layer 2 〇 8 pairs The effect of heat dissipation performance and reflectivity of the metal base 210. In an example, the thickness of the oxidized layer can be controlled, for example, between 5 // m and 45 " m. In addition, since the appearance color of the aluminum oxide layer is easily biased Black has a light absorbing effect, so in other embodiments, it is more selectively used, for example, by sputtering or evaporation, to form a reflective layer 216 overlying the sidewall 214 of the recess 212 to lift the side of the recess 212. The light reflectivity of the wall 214. In one example, the material of the reflective layer 210 can be, for example, titanium dioxide (Ti〇2) or silver. In another embodiment, the material of the metal plate 200 can comprise copper, and thus, for example, Deposition A layer of tantalum nitride or hafnium is formed to form 201234684 as the material of the insulating layer 208. In an example, the deposition method may be, for example, E-gun Evaporation deposition or sputtering deposition. Then, as shown in FIG. 2C, the electrodes 218 and 220 may be formed on the package base by using, for example, deposition, lithography and etching processes, deposition and lift-off processes, or screen printing processes. 210, wherein the electrode pads 218 and 220 are adjacent to the recess 212 and are located on opposite sides of the recess 212. Then, a temporary substrate 222 is provided. The temporary substrate 222 can be, for example, a flat plate. The temporary substrate 222 is preferably a relatively hard and acid-resistant material. Next, a polymer material layer 226 is formed on the surface 224 of the temporary substrate 222 by, for example, a coating method. In an embodiment, the layer of high molecular material 226 may comprise, for example, a photoresist or a hot melt adhesive. Next, as shown in Fig. 2D, package base 210 and light emitting diode wafer 228 are pressed into surface 242 of layer of high molecular material 226. Further, as shown in Fig. 2E, the package base 210 and the light-emitting diode wafer 228 are embedded in the polymer material layer 226 and the light-emitting body wafer 228 is placed in the recess 212 of the package base 210. In one embodiment, the bottom surface 246 of the package pedestal 210 and the bottom surface 244 of the luminescent diode wafer 228 are preferably flush when embedded in the polymeric material layer 226. In an embodiment, the LED chip 228 may mainly include a substrate 230, a first electrical semiconductor layer 232, a light emitting layer 234, a second electrical semiconductor layer 236, and a first electrical electrode 238 and a second electrical property. Electrode 240. The first electrical semiconductor layer 232 is located on the substrate 230, the luminescent layer 234 is located on the SiO2, and the second electrical semiconductor layer 236 is located on the luminescent layer 234. The first electrical electrode 238 is disposed. Located at the first electricity
S 11 201234684 半導體層232暴露出之另一部分上,而第二電性電極240 則位於部分之第二電性半導體層236上,如第2D圖所示。 在本發明中,第一電性與第二電性為不同之電性。例如, 第一電性與第二電性之其中一者為η型,另一者則為p型。S 11 201234684 The semiconductor layer 232 is exposed on another portion, and the second electrical electrode 240 is located on a portion of the second electrical semiconductor layer 236 as shown in FIG. 2D. In the present invention, the first electrical property and the second electrical property are different electrical properties. For example, one of the first electrical property and the second electrical property is an n-type, and the other is a p-type.
如第2D圖所示’將封裝基座210與發光二極體晶片 228嵌設於高分子材料層226中時,係以將封裝基座210 設有電極墊218與220之一側、以及發光二極體晶片228 設有第一電性電極238與第二電性電極24〇的一侧,朝向 高分子材料層226之表面242的方式,壓入高分子材料層 226中。因此,如第2Ε圖所示,封裝基座21〇之電極墊218 與220、以及第一電性電極238與第二電性電極240均埋 設在高分子材料層226中。 在一實施例中,設置發光二極體晶片228與封裝基座 210時,可先將封裝基座210嵌設在高分子材料層226中, 再將發光二極體晶片228嵌設在封裝基座21〇之凹槽212 中的间力子材料層226巾。在另—實施例中,可先將發光 一極體晶片228嵌設在高分子材料層226中,再將封裝基 座210嵌設在高分子材料層226巾,並使發光二極體晶片 228位於封震基座21〇之凹槽212中。在又一些實施例中, 光二極體晶片228與封竣基座2_在高分 子材料層226中。 個發ί本::1 H t裝基座可具有多個凹槽,且可提供數 同時製作多個發*二極體元件,^槽中。如此一來,可 著如第2F圖所$,利用例如沉積方式形成金屬層 12 201234684 248覆蓋在高分子材料層226之表面242、封I基座2i〇之 底部表面246與發光二極體晶片228之底部表面244上。 此沉積方式可例如為蒸鍍、濺鍍、無電電鍍(dectr〇less plating)、或電子束蒸鍍。在一實施例中’金屬層248可為 一單一層結構。在另一實施例中,金屬層248可為一多層 複合材料結構。金屬層248之厚度較佳係控制在小於3 # m。 在一實施例中,金屬層248之材料可例如為氧化銦錫 (ITO)、金(Au)、銀(Ag)、!白(pt)、把(Pd) ' 錦(Ni)、鉻(Cr)、 鈦(Ti)、钽(Ta)、鋁(A1)、銦(in)、鎢(W)、銅(Cu),或者含 有鎳、鉻、鈦、鈕、鋁、銦、鎢或銅的合金。在一較佳實 施例中,金屬層248之材料可採用高反射性的金屬材料, 例如銀、鉑、鋁、金、鎳或鈦。 接下來,如第2G圖所示,利用例如沉積方式形成金 屬散熱座250於金屬層248上。在一較佳實施例中,此沉 積方式可採用電鍍方式。金屬散熱座25〇可較為厚一點, 以提供發光二極體晶片228較大之散熱效能。在一實施例 中’金屬散熱座250之厚度可介於5〇# m至5〇〇以m之間。 完成金屬散熱座250之沉積後,可進—步對金屬散熱座25〇 之表面251進行研磨"經研磨後,金屬散熱座25〇之表面 251的粗糖度(從表面⑸之最高點至最低點)介於8〇入至 10 y m之間。 接下來’如第2H圖所示,自封褒基座21〇上移除暫 時基板222與高分子材料層226,而暴露出凹槽212内之 金屬層248、發光二極體晶片228和其第一電性電極挪 與第二電性電極240、以及封裝基座21()和其上電極塾218 201234684 與220。在一實施例中,當高分子材料層226之材料為熱 熔膠時’可利用加熱方式使高分子材料層226呈現熔融狀 態,並藉此同時使暫時基板222自封裝基座210上剝離。 在另一實施例中,當高分子材料層220之材料為光阻時, 可利用去光阻液去除高分子材料層226,並藉此同時使暫 時基板222自封裝基座21〇上剝離。 接著,如第21圖所示,利用例如打線接合(wire_b〇nding) 方式’以連接導線252與254分別連接發光二極體晶片228As shown in FIG. 2D, when the package base 210 and the light-emitting diode wafer 228 are embedded in the polymer material layer 226, the package base 210 is provided with one side of the electrode pads 218 and 220, and is illuminated. The side of the diode wafer 228 on which the first electrical electrode 238 and the second electrical electrode 24 are disposed is pressed into the polymer material layer 226 toward the surface 242 of the polymer material layer 226. Therefore, as shown in Fig. 2, the electrode pads 218 and 220 of the package base 21 and the first and second electric electrodes 238 and 240 are buried in the polymer material layer 226. In one embodiment, when the LED substrate 228 and the package base 210 are disposed, the package base 210 may be embedded in the polymer material layer 226, and the LED wafer 228 may be embedded in the package base. The intervening material layer 226 in the groove 212 of the seat 21 is a towel. In another embodiment, the light-emitting diode wafer 228 is first embedded in the polymer material layer 226, and the package base 210 is embedded in the polymer material layer 226, and the light-emitting diode wafer 228 is disposed. It is located in the groove 212 of the sealing base 21〇. In still other embodiments, the photodiode wafer 228 and the encapsulation pedestal 2_ are in the high molecular material layer 226.发 ί : :: 1 H t mounting base can have multiple grooves, and can provide a number of simultaneous production of multiple * diode components, ^ slot. In this way, as shown in FIG. 2F, the metal layer 12 can be formed by, for example, deposition. 201234684 248 covers the surface 242 of the polymer material layer 226, the bottom surface 246 of the I 2i, and the light emitting diode chip. On the bottom surface 244 of 228. This deposition method can be, for example, evaporation, sputtering, dectr〇less plating, or electron beam evaporation. In one embodiment, the metal layer 248 can be a single layer structure. In another embodiment, metal layer 248 can be a multilayer composite structure. The thickness of the metal layer 248 is preferably controlled to be less than 3 #m. In an embodiment, the material of the metal layer 248 may be, for example, indium tin oxide (ITO), gold (Au), silver (Ag), ! White (pt), P (Pd) 'Jin (Ni), Chromium (Cr), Titanium (Ti), Tantalum (Ta), Aluminum (A1), Indium (in), Tungsten (W), Copper (Cu), Or an alloy containing nickel, chromium, titanium, a button, aluminum, indium, tungsten or copper. In a preferred embodiment, the material of metal layer 248 may be a highly reflective metallic material such as silver, platinum, aluminum, gold, nickel or titanium. Next, as shown in Fig. 2G, a metal heat sink 250 is formed on the metal layer 248 by, for example, deposition. In a preferred embodiment, this deposition can be by electroplating. The metal heat sink 25 〇 can be thicker to provide greater heat dissipation performance of the LED chip 228. In one embodiment, the thickness of the metal heat sink 250 can be between 5 〇 #m and 5 〇〇 in m. After the deposition of the metal heat sink 250 is completed, the surface 251 of the metal heat sink 25 可 can be further polished " after grinding, the roughness of the surface 251 of the metal heat sink 25 ( (from the highest point of the surface (5) to the lowest Point) is between 8 and 10 ym. Next, as shown in FIG. 2H, the temporary substrate 222 and the polymer material layer 226 are removed from the self-sealing susceptor 21, and the metal layer 248, the light-emitting diode wafer 228, and the first portion thereof in the recess 212 are exposed. An electrical electrode is moved to the second electrical electrode 240, and the package base 21 () and its upper electrode 塾 218 201234684 and 220. In one embodiment, when the material of the polymer material layer 226 is a hot melt adhesive, the polymer material layer 226 can be melted by heating, and at the same time, the temporary substrate 222 is peeled off from the package base 210. In another embodiment, when the material of the polymer material layer 220 is photoresist, the polymer material layer 226 can be removed by using a photoresist to remove the temporary substrate 222 from the package base 21 at the same time. Next, as shown in Fig. 21, the light-emitting diode wafer 228 is connected to the connecting wires 252 and 254, respectively, by means of, for example, a wire bonding method.
之第一電性電極238與電極墊218、以及第二電性電極24〇 與電極塾220 ’藉以使第—電性電極238與第二電性電極 240分別與電極墊218與22〇電性連接。其中,連接導線 252與254可例如為金線。此外,在本實施方式中,同樣 可利用例如打線接合方式’而以連接導線祝與258,分 別將電極塾叫與22〇連接至—外部電源(未繪示),以利 電源來提供發光二極體晶片228電力。同樣地, 連接導線256與258可例如為金線。 隨後’將封裝膠體遍填人封裝基座21()之凹槽212 二:Ϊ =光二極體元件262的製作。如第2J圖所示, 完全填滿凹槽212,且完全包覆住凹槽犯 住部分晶片228、及連接導線252與254,並包覆 電極:2心t 218與220。封裝膠Μ 260較佳係包覆住 220 接導線252與256接合之處、以及電極塾 連=5: Γ與258接合之處,以確保電極墊⑽ 的接合、以及電極墊22〇和連接導 線254與258的接合。在-實施例中,封裝膠體二; 201234684 摻雜有螢光粉,例如釔鋁石榴石(YAG)系列或b〇se系列等 螢光粉。 本發明之發光二極體元件亦可以其他方式來與外部電 源連接,而無需透過連接導線。請參照第3圖,其係繪示 依照本發明之另—實施方式的-種發光二健元件之剖面 圖。在此實施方式中,發光二極體元件274之架構大致上 與上述實施方式中之發光二極體元件262相同。然,發光 二極體元件262與274二者之間的差異主要在於:封裝基 座210a相較於封裝基座21〇多了通孔264與266 ’且通孔 264與266分別填設有導線接腳268與270 ;以及金屬層 248a與金屬散熱座25〇a所構成之堆疊結構相較於金屬層 248與金屬散熱座250所構成之堆疊結構多了間隙272。 請同時參照第2A圖、第2B圖與第3圖,在製作封裝 基座210a時,可在利用例如機械加工方式,於金屬平板 200形成貫穿槽206時,同時於金屬平板2〇〇之預設位置 上形成二通孔264與266。其中,通孔264與266貫穿金 屬平板200,且通孔264與266分別位於貫穿槽206之二 侧。因此,經對金屬平板200機械加工後,所形成之金屬 基板除了貫穿槽206外’更具有通孔264與266。於通孔 264與266形成後,再形成絕緣層208包覆住此金屬基板 的所有表面’包含通孔264與266之内側面。形成絕緣層 208之方法可如前述實施例之方式,於此不再贅述。並且, 在通孔264與266上方分別形成電極墊218與220覆蓋通 孔264與266,而形成如第3圖所示之封裝基座21〇a。 此外’請同時參照第2E圖、第2F圖與第3圖,將封 15 201234684 裝基座210a與發光二極體晶片228嵌設於高分子材料層 226後,在形成金屬層248a之前,可先利用例如沉積的方 式’形成二導線接腳268與270分別填充在通孔264與266 中。在一實%例中,此沉積方式可例如為電鍍或無電電鑛 方式。如第3圖所示,電極墊218與22〇分 基The first electrical electrode 238 and the electrode pad 218, and the second electrical electrode 24 and the electrode 塾 220' are used to electrically connect the first electrical electrode 238 and the second electrical electrode 240 to the electrode pads 218 and 22, respectively. connection. Among them, the connecting wires 252 and 254 may be, for example, gold wires. In addition, in the present embodiment, the wire bonding method can also be used, for example, to connect the wire to the 258, and connect the electrode bark and the 22 分别 to an external power source (not shown) to provide a light source for the power source. The polar body wafer 228 is electrically powered. Likewise, connecting wires 256 and 258 can be, for example, gold wires. Subsequently, the encapsulant colloid is overfilled into the recess 212 of the package base 21 (): Ϊ = fabrication of the photodiode element 262. As shown in Fig. 2J, the recess 212 is completely filled, and the recess completely covers the portion of the wafer 228, and the connecting wires 252 and 254, and covers the electrodes: 2 cores t 218 and 220. The encapsulating plastic 260 preferably covers the junction of the 220 wires 252 and 256, and the electrode connection = 5: where the Γ and 258 are joined to ensure the bonding of the electrode pads (10), and the electrode pads 22 and the connecting wires. Engagement of 254 and 258. In an embodiment, the encapsulant 2; 201234684 is doped with a phosphor powder, such as a yttrium aluminum garnet (YAG) series or a b〇se series. The light-emitting diode element of the present invention can also be connected to an external power source in other ways without the need to pass through a connecting wire. Referring to Figure 3, there is shown a cross-sectional view of a light-emitting two-in-one element in accordance with another embodiment of the present invention. In this embodiment, the structure of the light-emitting diode element 274 is substantially the same as that of the light-emitting diode element 262 of the above embodiment. However, the difference between the LED components 262 and 274 is mainly due to the fact that the package base 210a has more vias 264 and 266' than the package base 21 and the vias 264 and 266 are respectively filled with wires. The stacks 268 and 270; and the stacked structure of the metal layer 248a and the metal heat sink 25A have a gap 272 compared to the stacked structure of the metal layer 248 and the metal heat sink 250. Referring to FIG. 2A, FIG. 2B and FIG. 3 simultaneously, when the package base 210a is produced, the through-groove 206 can be formed on the metal flat plate 200 by, for example, machining, and the metal flat plate can be simultaneously Two through holes 264 and 266 are formed in the position. The through holes 264 and 266 extend through the metal plate 200, and the through holes 264 and 266 are respectively located on two sides of the through groove 206. Therefore, after the metal plate 200 is machined, the formed metal substrate has through holes 264 and 266 in addition to the through grooves 206. After the via holes 264 and 266 are formed, the insulating layer 208 is formed to cover all the surfaces of the metal substrate, including the inner sides of the via holes 264 and 266. The method of forming the insulating layer 208 can be in the manner of the foregoing embodiments, and details are not described herein again. Further, electrode pads 218 and 220 are formed over the via holes 264 and 266 to cover the via holes 264 and 266, respectively, to form the package base 21A as shown in Fig. 3. In addition, please refer to FIG. 2E, FIG. 2F and FIG. 3 simultaneously, and after the sealing layer 15201234684 mounting base 210a and the light-emitting diode wafer 228 are embedded in the polymer material layer 226, before forming the metal layer 248a, The two wire pins 268 and 270 are first filled in the through holes 264 and 266 by, for example, deposition. In a real case, the deposition may be, for example, electroplated or electroless. As shown in Fig. 3, the electrode pads 218 and 22 are divided into groups.
座⑽之通孔2_6 一端的開口上,且二完 住通孔264與266的開口。因此,分別形成在通孔264與 266中之導線接腳268與27〇,可分別與電極墊218與22〇 接觸’而產生電性連接。 於導線接腳268與270形成後’即可形成金屬層248a。 金屬層248a覆蓋在發光二極體晶片228之底部表面244、 封裝基座210a之底部表面246、導線接腳268與27〇上。 ,屬層248a覆蓋住導線接腳268與27〇,而和導線接腳268 ,、270接觸。如此一來,導線接腳268與270可分別將電 $ 218和220電性連接至金屬層洲。接著,形成金屬 政熱座25〇a覆蓋在金屬層248a上。 在-實施例中’製作金屬層織與金屬散熱座遣 沾’可先形成-層連續的金屬層(僅繪示其中的金屬層遍 屑=)’再形成-層連續的金屬散熱層(僅繪示其中的金 屬政熱座25〇a的部分)覆蓋在此連續的金屬層上。接著, =例如機械加工方式或水刀#射切财式,在此連續的 的金屬散熱層所構成之堆疊結構的預設位置 上形成間隙272 ’而形成金屬層遍與金屬散孰座漁。 在^實_巾,製作金制織與觸散熱座漁 、可利用無電電鍍方式’設計使金屬層2偽與金屬散熱 201234684 f 2二在成長的同時便均包含有分離之二部分。如此-層遍與金屬散熱座250a的成長,間隙272 疊結構^。、金屬層⑽與金屬散熱座25〇3所構成之堆 電極形成於發光二極體晶片228之一侧旁,並且The opening of the through hole 2_6 of the seat (10) is on the opening at one end, and the opening of the through holes 264 and 266 is completed. Therefore, the wire pins 268 and 27, respectively formed in the through holes 264 and 266, can be electrically connected to the electrode pads 218 and 22, respectively. The metal layer 248a is formed after the wire pins 268 and 270 are formed. Metal layer 248a overlies bottom surface 244 of light emitting diode wafer 228, bottom surface 246 of package base 210a, and wire pins 268 and 27A. The genus layer 248a covers the wire pins 268 and 27, and is in contact with the wire pins 268, 270. In this way, the conductor pins 268 and 270 can electrically connect the power lines 218 and 220 to the metal layer. Next, a metal chevron 25a is formed to cover the metal layer 248a. In the embodiment, 'making a metal layer weave and a metal heat sinking station' can form a layer of a continuous metal layer (only the metal layer of which is shown in the chip =) 'reformed-layer continuous metal heat sink layer (only The portion of the metal political seat 25〇a is shown to cover the continuous metal layer. Next, = for example, a machining method or a water jet cutting method, in which a gap 272' is formed at a predetermined position of the stacked structure of the continuous metal heat dissipating layer to form a metal layer and a metal spar. In the ^ _ towel, the production of gold weaving and touch heat sink fishing, can be used to electroless plating method 'design to make the metal layer 2 pseudo and metal heat. 201234684 f 2 two are growing together with the separation of the two parts. In this way, the layer is spread over the metal heat sink 250a, and the gap 272 is stacked. a stack electrode formed of a metal layer (10) and a metal heat sink 25〇3 is formed on one side of the light emitting diode wafer 228, and
封裝基座210a。此外,間隙272之設置可使 封裝基座21()a上的電極墊218與22()不會因下方之金屬層 48a與金屬散熱座25Ga而短路。因此,間隙272可使電極 墊218與220電性分離於_ 272 &二側。在一實施例中, 更可於間隙272中填人電性絕緣材料(未繪示),以進一步 確保電極墊218與220可電性分離於間隙272的二侧。 透過間隙272的設置’電極塾218可透過導線接腳 咖、_ 272 -側之金屬層2術的部分、與此側之金屬 散熱座250a的部分,而與外部電源之一電極達到電性連 接。另一方面,電極墊220則可透過導線接腳27〇、間隙 272另一側之金屬層24Sa的部分、與此侧之金屬散埶座 250a的部分,而與外部電源之另一電極達到電性連接。 本發明之發光二極體元件亦可包含二間隙,而使發光 二極體元件具有熱電分離的運轉特性。請參照第4圖,其 係綠示依照本發明之又-實施方式的—種發光二極體元件 之剖面圖。在此實施方式中,發光二極體元件278之架構 大致上與上述實施方式中之發光二極體元件274相同。 然,發光二極體元件274與278二者之間的差異主要在於: 除了間隙272之外,金屬層248b與金屬散熱座25〇b所構 17 201234684 成^堆構相較於金屬層248a與金屬散熱座250a所構 • 式可在J結構又多了一個間隙276。也就是說,本實施方 作間隙272時,一併在金屬層248b與金屬散熱座 構成之堆疊結構中製作出另一間隙276。 在if發光二極體元件278中,間隙272與276分別形成 入/ 一極體晶片228之二侧旁,且間隙272與276分別 ;丨於電極墊220與發光二極體晶片228之間、以及電極墊 /、發光一極體晶片228之間。其中,間隙272與276 φ 均暴露出部分之封裝基座210a。此外,間隙272或276之 设置,可使封裝基座210a上的電極墊218與22〇不會因為 下方之金屬層248b與金屬散熱座25〇b導致短路。因此, 間隙272或276可使電極墊218與22〇電性分離於間隙272 或2 7 6的二侧。 藉由間隙272與276的設置,電極墊218可透過導線 接腳268、間隙276外側之金屬層24讣的部分、與此外侧 之金屬散熱座250b的部分,而與外部電源之一電極達到電 •性連接。另一方面’電極墊220則可透過導線接腳270、 間隙272外侧之金屬層248b的部分、與此外侧之金屬散敎 座250b的部分,而與外部電源之另一電極達到電性連接。 另外,由於發光二極體晶片228下方與電極塾218和 220之間分別隔設有間隙276與奶,因此發光二極體晶片 228運轉時所產生之熱,主要係藉由介於間隙奶與— 之間的金屬層248b與金屬散熱座25〇b來傳導。如此一來, 對於發光二極體晶片228而言’金屬層觀與金屬散執座 ㈣b傳導其電力與熱的部分係分開的。故,發光二極體元 201234684 件278具有熱電分離的運轉特性。 由上述之實施方式可知,本發明之一優點就是 '帛金屬來作為封裝基座之本體,因此發光二極體元件^ 有較佳之散熱效能。 /、 由上述之實施方式可知,本發明之另一優點就是 '用金屬板材來製作封襄基座本體,因此利用簡單之赫 加工方式即可順利形成封裳基座之碗杯狀凹槽的斜邊。^ 此一來,不僅可提升發光二極體晶片之出光反射效果 # :了所需之出光光形與亮度,更可大幅降低封裝基座二 製作的複雜度,有效降低製作成本。 僧 〇由上述之實施方式可知,本發明之又一優點就是因為 可在封裝基座之金屬基板上製作發光二極體晶片設置的·、、 槽時,同時以簡單的機械加工方式在金屬基板上製作發Ζ 極體元件之導線接腳。因此’發光二極體元件之導線接 腳製作容易。 雖然本發明已以一較佳實施例揭露如上,然其並非用 % 以限定本發明,任何在此技術領域中具有通常知識者,在 不脫離本發明之精神和範圍内,當可作各種之更動與潤 飾’因此本發明之保護範圍當視後附之申請專利範圍所界 定者為準。 | 【圖式簡單說明】 . 為讓本發明之上述和其他目的、特徵、優點與實施例 能更明顯易懂,所附圖式之說明如下: 第1圖係繪示一種習知發光二極體元件之剖面圖。 201234684 第2A圖至第2J圖係繪示依照本發明之一實施方式的 一種發光二極體元件之製程剖面圖。 第3圖係繪示依照本發明之另一實施方式的一種發光 二極體元件之剖面圖。 第4圖係繪示依照本發明之又一實施方式的一種發光The base 210a is packaged. Further, the gap 272 is disposed such that the electrode pads 218 and 22() on the package base 21()a are not short-circuited by the underlying metal layer 48a and the metal heat sink 25Ga. Therefore, the gap 272 can electrically separate the electrode pads 218 and 220 from the two sides of the _ 272 & In an embodiment, an electrical insulating material (not shown) may be filled in the gap 272 to further ensure that the electrode pads 218 and 220 are electrically separated from the two sides of the gap 272. Through the gap 272, the electrode 218 can be electrically connected to one of the external power sources through the wire pin, the portion of the metal layer 2 on the side of the 272 side, and the portion of the metal heat sink 250a on the side. . On the other hand, the electrode pad 220 can be electrically connected to the other electrode of the external power source through the wire pin 27, the portion of the metal layer 24Sa on the other side of the gap 272, and the portion of the metal cavity 250a on the side. Sexual connection. The light-emitting diode element of the present invention may also include two gaps, and the light-emitting diode element has operational characteristics of thermoelectric separation. Referring to Fig. 4, there is shown a cross-sectional view of a light-emitting diode element in accordance with still another embodiment of the present invention. In this embodiment, the structure of the light-emitting diode element 278 is substantially the same as that of the light-emitting diode element 274 of the above embodiment. However, the difference between the LED components 274 and 278 is mainly due to: In addition to the gap 272, the metal layer 248b and the metal heat sink 25〇b are constructed in a manner that is compared with the metal layer 248a. The metal heat sink 250a is constructed with a gap 276 in the J structure. That is to say, when the embodiment performs the gap 272, another gap 276 is formed in the stacked structure of the metal layer 248b and the metal heat sink. In the if light-emitting diode element 278, the gaps 272 and 276 are respectively formed on the two sides of the /-pole body wafer 228, and the gaps 272 and 276 are respectively; between the electrode pad 220 and the light-emitting diode wafer 228, And between the electrode pad/, the light-emitting one-pole wafer 228. Wherein, the gaps 272 and 276 φ both expose part of the package base 210a. In addition, the gaps 272 or 276 are arranged such that the electrode pads 218 and 22 on the package base 210a are not short-circuited by the underlying metal layer 248b and the metal heat sink 25b. Thus, the gap 272 or 276 can electrically separate the electrode pads 218 and 22 from the two sides of the gap 272 or 276. By the arrangement of the gaps 272 and 276, the electrode pad 218 can pass through the wire pin 268, the portion of the metal layer 24讣 outside the gap 276, and the portion of the metal heat sink 250b on the outside, and is electrically connected to one of the external power sources. • Sexual connection. On the other hand, the electrode pad 220 is electrically connected to the other electrode of the external power source through the wire pin 270, the portion of the metal layer 248b outside the gap 272, and the portion of the metal cavity 250b on the outside. In addition, since the gap 276 and the milk are respectively disposed between the lower surface of the light-emitting diode wafer 228 and the electrode electrodes 218 and 220, the heat generated when the light-emitting diode wafer 228 is operated is mainly caused by interstitial milk and The metal layer 248b is conductive between the metal layer 248b and the metal heat sink 25b. As such, for the LED 228, the metal layer is separated from the portion of the metal bulk (b) that conducts its power and heat. Therefore, the light-emitting diode element 201234684 piece 278 has the operational characteristics of thermoelectric separation. It can be seen from the above embodiments that one of the advantages of the present invention is that the metal is used as the body of the package base, so that the light-emitting diode element has better heat dissipation performance. According to the above embodiments, another advantage of the present invention is that the metal base plate is used to form the sealing base body, so that the cup-shaped groove of the sealing base can be smoothly formed by the simple processing method. hypotenuse. ^ In this way, not only can the light reflection effect of the LED chip be improved. #: The required light shape and brightness can be greatly reduced, and the complexity of the package base 2 can be greatly reduced, and the manufacturing cost can be effectively reduced. According to the above embodiments, another advantage of the present invention is that the metal substrate can be formed by a simple machining method when the light-emitting diode chip can be fabricated on the metal substrate of the package base. Make the wire pins of the body part of the hairpin. Therefore, the conductor pins of the light-emitting diode element are easy to fabricate. While the present invention has been described above in terms of a preferred embodiment, it is not intended to limit the invention, and any of those skilled in the art can make various modifications without departing from the spirit and scope of the invention. The scope of protection of the present invention is therefore defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; A cross-sectional view of the body element. 201234684 Figures 2A through 2J are cross-sectional views showing a process of a light emitting diode device in accordance with an embodiment of the present invention. Figure 3 is a cross-sectional view showing a light emitting diode element in accordance with another embodiment of the present invention. 4 is a view showing a luminescence according to still another embodiment of the present invention.
二極體元件之剖面圖。 【主要元件符號說明】 1〇〇 :發光二極體元件 104 :封裝基座 108a :導腳 110 :金屬導熱塊 114 :導線 118 :凹槽 200a :金屬基板 202 :表面 206 :貫穿槽 210 :封裝基座 210b :封裝基座 214 :側壁 218 :電極墊 222 :暫時基板 226 :南分子材料層 230 :基板 234 :發光層 102 :發光二極體晶片 106 :反射層 108b :導腳 112 :導線架 116 :封裝膠體 200 :金屬平板 200b :金屬基板 204 :表面 208 :絕緣層 210a :封裝基座 212 :凹槽 216 :反射層 220 :電極墊 224 :表面 228 :發光二極體晶片 232 :第一電性半導體層 236 :第二電性半導體層 20 201234684 238 :第一電性電極 240 : 242 :表面 244 : 246 :表面 248 : 248a :金屬層 248b 250 :金屬散熱座 250a 250b :金屬散熱座 251 252 :連接導線 254 256 :連接導線 258 260 :封裝膠體 262 264 :通孔 266 268 :導線接腳 270 272 :間隙 274 276 :間隙 278 Θ :夾角 第二電性電極 表面 金屬層 :金屬層 :金屬散熱座 表面 連接導線 連接導線 發光二極體元件 通孔 導線接腳 發光二極體元件 發光二極體元件A cross-sectional view of a diode element. [Main component symbol description] 1〇〇: LED component 104: package base 108a: lead 110: metal heat transfer block 114: wire 118: recess 200a: metal substrate 202: surface 206: through slot 210: package Base 210b: package base 214: side wall 218: electrode pad 222: temporary substrate 226: south molecular material layer 230: substrate 234: light-emitting layer 102: light-emitting diode wafer 106: reflective layer 108b: lead 112: lead frame 116: encapsulant 200: metal plate 200b: metal substrate 204: surface 208: insulating layer 210a: package base 212: groove 216: reflective layer 220: electrode pad 224: surface 228: light emitting diode wafer 232: first Electrical semiconductor layer 236: second electrical semiconductor layer 20 201234684 238: first electrical electrode 240: 242: surface 244: 246: surface 248: 248a: metal layer 248b 250: metal heat sink 250a 250b: metal heat sink 251 252: connecting wire 254 256 : connecting wire 258 260 : encapsulant 262 264 : through hole 266 268 : wire pin 270 272 : gap 274 276 : gap 278 Θ : angle second electrical electrode surface metal layer: metal layer: gold Heat sink surface of the connecting member through hole conductor wire connecting the light emitting diode lead pin light emitting diode element emitting diode element
21twenty one
Claims (1)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100103924A TW201234684A (en) | 2011-02-01 | 2011-02-01 | Light-emitting diode device and method for manufacturing the same |
CN2011101350009A CN102623609A (en) | 2011-02-01 | 2011-05-24 | Light emitting diode element and manufacturing method thereof |
US13/363,387 US20120193671A1 (en) | 2011-02-01 | 2012-02-01 | Light-emitting diode device and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100103924A TW201234684A (en) | 2011-02-01 | 2011-02-01 | Light-emitting diode device and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201234684A true TW201234684A (en) | 2012-08-16 |
Family
ID=46563395
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100103924A TW201234684A (en) | 2011-02-01 | 2011-02-01 | Light-emitting diode device and method for manufacturing the same |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102623609A (en) |
TW (1) | TW201234684A (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI297537B (en) * | 2006-06-26 | 2008-06-01 | Univ Nat Cheng Kung | Embedded metal heat sink for semiconductor device and method for manufacturing the same |
TWM366640U (en) * | 2009-04-27 | 2009-10-11 | Bao-Long Lin | Plate-shaped heat dissipation structure for LED |
CN201434352Y (en) * | 2009-05-08 | 2010-03-31 | 琉明斯光电科技股份有限公司 | Light-emitting diode encapsulation structure and light bar applying same |
CN101924175B (en) * | 2010-07-12 | 2013-11-20 | 深圳大学 | Packaging device of light-emitting diode and packaging method thereof |
-
2011
- 2011-02-01 TW TW100103924A patent/TW201234684A/en unknown
- 2011-05-24 CN CN2011101350009A patent/CN102623609A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CN102623609A (en) | 2012-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI344711B (en) | Surface mountable chip | |
TWI758400B (en) | Light-emitting device | |
US9397266B2 (en) | Lateral semiconductor light emitting diodes having large area contacts | |
US9099632B2 (en) | Light emitting diode emitter substrate with highly reflective metal bonding | |
US6876008B2 (en) | Mount for semiconductor light emitting device | |
US9041020B2 (en) | Electrolytically coated optoelectronic semiconductor component and method for producing an optoelectronic semiconductor component | |
TW201234679A (en) | High voltage wire bond free LEDs | |
TW200403869A (en) | Contacting scheme for large and small area semiconductor light emitting flip chip devices | |
JP2010508655A (en) | Integrated heat spreader for LED and related assemblies | |
TWI648886B (en) | Light-emitting diode structure | |
US10177277B2 (en) | Flip chip type light-emitting diode and method for manufacturing the same | |
TWI533484B (en) | Light-emitting devices | |
JP2008091459A (en) | Led illumination apparatus and manufacturing method thereof | |
TWI583022B (en) | Light emitting diode package, light emitting diode die and method for manufacuring the same | |
US20130001614A1 (en) | Light-emitting diode device and method for fabricating the same | |
CN108807358B (en) | Semiconductor light emitting device | |
JP7112596B2 (en) | semiconductor light emitting device | |
TW201236225A (en) | Light-emitting diode device and method for manufacturing the same | |
CN209626251U (en) | A kind of semiconductor light-emitting elements, packaging body and light emitting device | |
TW201240172A (en) | Method for manufacturing light emitting diode | |
TWI569471B (en) | Semiconductor light emitting structure and manufacturing method thereof | |
TWM521810U (en) | Light emitting device | |
CN104952985A (en) | Semiconductor light emitting device and method of manufacturing same | |
TWM460413U (en) | Semiconductor light-emitting element structure | |
TW201234684A (en) | Light-emitting diode device and method for manufacturing the same |