TW201233829A - Housing and method for making the same - Google Patents

Housing and method for making the same Download PDF

Info

Publication number
TW201233829A
TW201233829A TW100104688A TW100104688A TW201233829A TW 201233829 A TW201233829 A TW 201233829A TW 100104688 A TW100104688 A TW 100104688A TW 100104688 A TW100104688 A TW 100104688A TW 201233829 A TW201233829 A TW 201233829A
Authority
TW
Taiwan
Prior art keywords
aluminum
film
alloy substrate
aluminum alloy
gradient
Prior art date
Application number
TW100104688A
Other languages
Chinese (zh)
Other versions
TWI486468B (en
Inventor
Hsin-Pei Chang
Wen-Rong Chen
Huann-Wu Chiang
Cheng-Shi Chen
Yi-Chi Chan
xiao-qiang Chen
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW100104688A priority Critical patent/TWI486468B/en
Publication of TW201233829A publication Critical patent/TW201233829A/en
Application granted granted Critical
Publication of TWI486468B publication Critical patent/TWI486468B/en

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

A housing is provided which includes an Aluminum or Aluminum Alloy substrate, an Aluminum layer and a corrosion resistance layer formed on the Aluminum or Aluminum Alloy substrate in that order. The corrosion resistance layer is an Al-C-N layer which includes Ce ions implanted by ion implantation process. The atom percentages of N and C in the Al-C-N graded layer gradedly increase from nearing the Aluminum or magnesium Alloy substrate to far away from it. The housing has a higher corrosion resistance. A method for making the housing is Also provided.

Description

201233829 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種殼體及其製造方法,特別涉及一種鋁或 鋁合金的殼體及其製造方法。 【先前彳支術】 [0002] 鋁或鋁合金目前被廣泛應用於航空、航天、汽車及微電 子等工業領域。但鋁或鋁合金的標準電極電位很低,耐 腐蝕差,暴露於自然環境中會引起表面快速腐蝕。 0 [0003] 提高鋁或鋁合金防腐蝕性的方法通常係在其表面形成保 護性的塗層。傳統的陽極氧化、電沉積、化學轉化膜技 術及電鍍等鋁或鋁合金的表面處理方法存在生產工藝複 雜、效率低、環境污染嚴重等缺點。 [0004] 真空鍍膜(PVD)為一清潔的成膜技術。然而,由於鋁或 鋁合金的標準電極電位很低,且PVD塗層本身不可避免的 會存在微小的孔隙,因此形成於鋁或鋁合条表面的PVD塗 層容易發生電化學腐蝕,導致該PVD塗層的防腐蝕性能降 〇 低,對鋁或鋁合金的防腐蝕能力的提高有限。 【發明内容】 [0005] 黎於此,提供一種具有較好的耐腐蝕性的鋁或鋁合金的 殼體。 [0006] 另外,還提供一種上述殼體的製造方法。 [0007] 一種殼體,包括鋁或鋁合金基體,其改良在於:該殼體 還包括依次形成於該鋁或鋁合金基體上的鋁膜和防腐蝕 膜,該防腐蝕膜為碳氮化鋁梯度膜層,其摻雜有鈽金屬 100104688 表單編號A0101 第3頁/共15頁 1002008137-0 201233829 離子,所述碳氮化铭梯度膜層中N和C的原子百分含量由 靠近鋁或鋁合金基體至遠離鋁或鋁合金基體的方向呈梯 度增加,所述鈽金屬離子的摻雜方式為離子注入方式。 [0008] —種殼體的製造方法,其包括如下步驟: [0009] 提供鋁或鋁合金基體; [0010] 於該鋁或鋁合金基體的表面磁控濺射鋁膜; [0011] 於鋁膜上磁控濺射碳氮化鋁梯度膜層,所述碳氮化鋁梯 度膜層中N和C的原子百分含量由靠近銘或銘合金基體向 遠離鋁或鋁合金基體的方向呈梯度增加; [0012] 對該碳氮化鋁梯度膜層注入鈽金屬離子,形成防腐蝕膜 〇 [0013] 本發明所述殼體的製造方法,在鋁或鋁合金基體上依次 形成鋁膜和防腐蝕膜,該防腐蝕膜為藉由離子注入摻雜 鈽金屬離子的碳氮化鋁梯度膜層,鋁膜和防腐蝕膜的複 合膜層可顯著提高所述殼體的耐腐蝕性,且該殼體的製 造工藝簡單、幾乎無環境污染。 【實施方式】 [0014] 請參閱圖1,本發明一較佳實施例的殼體10包括鋁或鋁合 金基體11、依次形成於該鋁或鋁合金基體11表面的鋁膜 13、防腐蝕膜15,該防腐蝕膜15為藉由離子注入摻雜鈽 金屬離子的氮碳化鋁梯度膜。 [0015] 所述防腐蝕膜15的厚度為0.5〜2.0/zm。所述防腐蚀膜15 藉由磁控濺射鍍膜法形成。 100104688 表單編號A0101 第4頁/共15頁 1002008137-0 201233829 [0016] 所述鋁膜1 3的形成用以增強所述防腐蝕膜丨5與鋁或鋁合 金基體11之間的結合力。所述鋁膜13的厚度為 100〜300nm 〇 [0017] 所述殼體10的製造方法主要包括如下步驟: ⑽18]提供鋁或鋁合金基體11,該鋁或鋁合金基體21可以藉由 沖壓成型得到,其具有待製得的殼體10的結構。 [酬騎述銘或銘合金基體^放入盛裝有乙醇或丙酮溶液的 超聲波清洗器中進行清洗,以除去鋁或鋁合金基體丨丄表 ° 面的雜質和油污。清洗完畢後棋乾備甩。 ⑽20]對經上述處理後的鋁或鋁合金基體u的表击進行氬氣電 漿清洗,進一步去除鋁或鋁合金基體丨丨表面的油污,以 改善鋁或鋁合金基體11表面與後續塗層的結合力。 [0021] 〇 請參閱圖2,提供-鑛膜機⑽,該链膜機則包括一鍵膜 室20及連接於祕室2麵-真空泵30,真空㈣用以對 鑛膜室20抽真空。該鍍㈣設有轉架(未圖示)、二 姉22 ’轉料㈣她合金基體11沿圓形的執跡21公 轉,且銘植合金基體丨丨在沿轨㈣公轉時亦自轉。 剛㈣衆清洗的具體操作及工藝參數可為:對該賴㈣ 進行抽真空處理至本底真空度為8 Qxl(r3pa,以 3〇〇~5__ 毫升/分鐘)的流量向鑛膜室2〇 内通入純度為".999%的氬氣(工作氣體),於紹或銘合 金基體11上施加-3〇〇,〇V的偏I,在所述鑛膜室20中 形成高頻電Μ,使所述氬氣產生氬氣電漿對銘或銘合金 基體η的表面進行物理轟擊,而達到雜心合金基體 1002008137-0 100104688 表單編號ΑΟΙ01 第5頁/共]5買 201233829 11表面清洗的目的。所述氬氣電漿清洗的時間為 3 ~1Om i η 〇 [0023] 採用磁控濺射的方式在鋁或鋁合金基體11表面依次形成 鋁膜13及防腐蝕膜15。形成該鋁膜13工藝參數為:在所 述電楽·清洗完成後,通入高純氬氣100〜300sccm,開啟 鋁靶22,設置鋁靶22功率為2〜8kw,調節鋁或鋁合金基 體11的偏壓為-300 — 500V,在鋁或鋁合金基體11表面沉 積is膜13,沉積5~10分鐘。 [0024] 製備防腐蝕膜15,該防腐蝕膜15為摻雜鈽金屬離子的碳 氮化鋁梯度膜,所述鈽金屬離子的摻雜方式為離子注入 〇 [0025] 碳氮化鋁梯度膜的製備工藝:以氬氣為工作氣體,其流 量為100〜300sccm,以氮氣和乙快為反應氣體,設置氮 氣和乙炔的初始流量分別為10~20sccm和10〜lOOsccm, 在銘或銘合金基體11上施加-150 — 500V的偏壓,每沉積 10~15min將氮氣和乙炔的流量增大10〜20sccm,使氮原 子和碳原子在碳氮化鋁梯度膜層中的原子百分含量由靠 近鋁或鋁合金基體11至遠離鋁或鋁合金基體11的方向呈 梯度增加。沉積該碳氮化鋁梯度膜層的時間為30〜90min 〇 [0026] 所述碳氮化鋁梯度膜層在其形成過程中可形成緻密的A1-C-N相,增強所述防腐蝕膜15的緻密性,以提高所述殼體 1 0的财腐蚀性。 [0027] 所述碳氮化鋁梯度膜的N和C的原子百分含量由靠近鋁或 100104688 表單編號A0101 第6頁/共15頁 1002008137-0 201233829 ❹ 銘合金基體11至退離銘或銘合金基體11的方向呈梯度增 加,可降低碳氮化Is梯度膜與銘膜13或銘或紹合金基體 11之間晶格不匹配的程度’有利於將濺射碳氮化銘梯度 膜的過程中產生的殘餘應力向鋁或鋁合金基體U方向傳 遞,又因為在碳氣化紹梯度膜和銘或銘合金基體11之間 沉積了塑性較好的鋁膜13 ’可改善防腐蝕膜15與鋁或鋁 合金基體11之間的介面錯配度,當碳氮化鋁梯度膜中的 殘餘應力較大時’可以借助於該鋁膜〗3以及鋁或鋁合金 基體11的局部塑性變形實現殘餘應力的釋放,從而減少 所述碳氮化鋁梯度膜内的殘餘應力,使殼體1〇不易發生 應力腐# ’以提高所述殼想1:〇的耐腐钱性》所述應力腐 蝕係指在殘餘或/和外加應力及腐餘介質的作用下,引起 的金屬失效現象。 [0028] ο - 完成上述碳氮化鋁梯度膜層的沉積後,於該碳氮化鋁梯 度膜表面離子注入鈽離子,從而形成上述防腐蝕膜15。 所述的注入鈽離子的過程:將鍍覆有所述鋁膜13及碳氮 化鋁梯度膜的鋁或鋁合金基體丨丨置於強流金屬離子注入 機(MEVVA)中,該離子注入機中採用鈽金屬靶材,該離子 注入機首先將鈽金屬進行電離,使其產生鈽金屬離子蒸 氣,並經高壓電場加速使該鈽金屬離子蒸氣形成具有幾 萬甚至幾百萬電子伏特能量的鈽離子束,射入碳氮化鋁 梯度膜的表面,與其表層中及其表面的原子或分子發生 物理作用,最終於該防腐蝕膜15中的碳氮化鋁梯度膜層 中注入飾金屬離子。 [0029] 本實施例中注入所述鈽離子的參數為:離子注入機的真 100104688 表單編號A0101 第7頁/共15頁 1002008137Ό 201233829 空度為lxl(T4Pa,離子源電壓為30〜100kV,離子束流強 度為0. l~5mA,控制鈽離子注入劑量在lxl016ions/cm2 到 lxl018ions/cm2之間。 [0030] 所述鈽金屬離子與所述碳氮化鋁梯度膜層中的原子為冶 金結合,因此,該注入的鈽金屬離子不易脫落,且由於 係在高能離子注入的條件下形成,該鈽金屬注入碳氮化 鋁梯度膜層中後形成為非晶態,由於非晶態結構具有各 向同性、表面無晶界、無位錯、偏析,均相體系等特點 ,故,經離子注入鈽金屬離子後的碳氮化鋁梯度膜層使 殼體10在腐蝕性介質中不易形成腐蝕微電池,發生電化 學腐蝕的可能極小,大大提高了殼體10的耐蝕性。 [0031] 以下結合具體實施例對殼體10的製備方法及殼體10進行 說明: [0032] 實施例1 [0033] 電漿清洗:氬氣流量為280sccm,鋁或銘合金基體11的 偏壓為-300V,電漿清洗的時間為9分鐘;201233829 VI. Description of the Invention: [Technical Field] The present invention relates to a casing and a method of manufacturing the same, and more particularly to a casing of aluminum or aluminum alloy and a method of manufacturing the same. [Previous 彳 术 】 [0002] Aluminum or aluminum alloys are currently widely used in aerospace, aerospace, automotive and microelectronics industries. However, the standard electrode potential of aluminum or aluminum alloy is very low, and the corrosion resistance is poor, and exposure to the natural environment causes rapid surface corrosion. 0 [0003] The method of improving the corrosion resistance of aluminum or aluminum alloys is usually to form a protective coating on the surface. Conventional anodizing, electrodeposition, chemical conversion film technology, and surface treatment methods for aluminum or aluminum alloys such as electroplating have disadvantages such as complicated production processes, low efficiency, and serious environmental pollution. [0004] Vacuum coating (PVD) is a clean film forming technique. However, since the standard electrode potential of aluminum or aluminum alloy is very low, and the PVD coating itself inevitably has minute pores, the PVD coating formed on the surface of the aluminum or aluminum strip is prone to electrochemical corrosion, resulting in the PVD. The corrosion resistance of the coating is lowered, and the corrosion resistance of aluminum or aluminum alloy is limited. SUMMARY OF THE INVENTION [0005] Herein, a housing of aluminum or aluminum alloy having better corrosion resistance is provided. Further, a method of manufacturing the above casing is also provided. [0007] A housing comprising an aluminum or aluminum alloy substrate, the improvement comprising: the housing further comprising an aluminum film and an anti-corrosion film sequentially formed on the aluminum or aluminum alloy substrate, the anti-corrosion film being aluminum carbonitride Gradient film layer doped with base metal 100104688 Form No. A0101 Page 3 of 15 Page 1002008137-0 201233829 Ions, the atomic percentage of N and C in the carbonitride gradient layer is close to aluminum or aluminum The alloy matrix is gradually increased in a direction away from the aluminum or aluminum alloy matrix, and the doping metal ion is doped in an ion implantation manner. [0008] A method of manufacturing a casing, comprising the steps of: [0009] providing an aluminum or aluminum alloy substrate; [0010] magnetron sputtering an aluminum film on the surface of the aluminum or aluminum alloy substrate; [0011] Magnetron-sputtered aluminum carbonitride gradient film on the film, the atomic percentage of N and C in the aluminum carbonitride gradient film layer is gradient from the Ming or Ming alloy matrix to the direction away from the aluminum or aluminum alloy matrix Adding bismuth metal ions to the aluminum carbonitride gradient film layer to form an anti-corrosion film 〇 [0013] The method for manufacturing the casing of the present invention, sequentially forming an aluminum film and preventing on an aluminum or aluminum alloy substrate Corrosion film, the anti-corrosion film is an aluminum carbonitride gradient film layer doped with europium metal ions by ion implantation, and the composite film layer of the aluminum film and the anti-corrosion film can significantly improve the corrosion resistance of the shell, and The manufacturing process of the housing is simple and almost free of environmental pollution. [0014] Referring to FIG. 1, a housing 10 according to a preferred embodiment of the present invention includes an aluminum or aluminum alloy substrate 11, an aluminum film 13 sequentially formed on the surface of the aluminum or aluminum alloy substrate 11, and an anti-corrosion film. 15. The anti-corrosion film 15 is a nitrogen aluminum nitride gradient film doped with europium metal ions by ion implantation. [0015] The corrosion-resistant film 15 has a thickness of 0.5 to 2.0/zm. The anticorrosive film 15 is formed by a magnetron sputtering coating method. 100104688 Form No. A0101 Page 4 of 15 1002008137-0 201233829 [0016] The aluminum film 13 is formed to enhance the bonding force between the anti-corrosion film crucible 5 and the aluminum or aluminum alloy substrate 11. The aluminum film 13 has a thickness of 100 to 300 nm. [0017] The manufacturing method of the housing 10 mainly includes the following steps: (10) 18] providing an aluminum or aluminum alloy substrate 11 which can be formed by stamping It is obtained that it has the structure of the casing 10 to be produced. [Remote riding or Ming alloy substrate ^ is placed in an ultrasonic cleaner filled with ethanol or acetone solution to remove impurities and oil on the surface of the aluminum or aluminum alloy substrate. After the cleaning is completed, the chess is ready. (10) 20] performing argon plasma cleaning on the surface of the aluminum or aluminum alloy substrate u after the above treatment to further remove oil stain on the surface of the aluminum or aluminum alloy substrate to improve the surface and subsequent coating of the aluminum or aluminum alloy substrate 11. The combination of strength. [0021] Referring to FIG. 2, a filming machine (10) is provided. The chain filming machine includes a key film chamber 20 and a vacuum chamber 30 connected to the chamber 2, and a vacuum (4) for evacuating the film chamber 20. The plating (4) is provided with a rotating frame (not shown), a second 22' turn (4), and the alloy base 11 is revolved along a circular track 21, and the alloy substrate is also rotated when it is revolved along the rail (4). The specific operation and process parameters of the (4) cleaning can be: vacuuming the Lai (4) to a vacuum of 8 Qxl (r3pa, 3〇〇~5__ ml/min) to the film chamber 2〇 An argon gas (working gas) having a purity of ".999% is introduced therein, and -3 Torr is applied to the Shaosha alloy substrate 11, and a bias I of 〇V is formed, and a high frequency electricity is formed in the film chamber 20. Μ, the argon gas is generated by argon plasma to physically bombard the surface of the Ming or Ming alloy matrix η, and reaches the hybrid alloy matrix 1002008137-0 100104688 Form No. ΑΟΙ01 Page 5 / Total] 5 Buy 201233829 11 Surface Cleaning the goal of. The argon plasma cleaning time is 3 to 10 μm η 〇 [0023] An aluminum film 13 and an anti-corrosion film 15 are sequentially formed on the surface of the aluminum or aluminum alloy substrate 11 by magnetron sputtering. The process parameters for forming the aluminum film 13 are as follows: after the electric sputum cleaning is completed, high-purity argon gas is passed through 100 to 300 sccm, the aluminum target 22 is opened, and the power of the aluminum target 22 is set to 2 to 8 kW, and the aluminum or aluminum alloy substrate is adjusted. The bias voltage of 11 is -300 - 500V, and the is film 13 is deposited on the surface of the aluminum or aluminum alloy substrate 11, and deposited for 5 to 10 minutes. [0024] preparing an anti-corrosion film 15 which is a platinum carbonitride gradient film doped with bismuth metal ions, and the doping method of the bismuth metal ions is ion implantation 〇 [0025] aluminum carbonitride gradient film The preparation process is as follows: argon gas is used as working gas, the flow rate is 100~300sccm, and nitrogen and B are used as reaction gases. The initial flow rates of nitrogen and acetylene are 10~20sccm and 10~lOOsccm respectively, in Ming or Ming alloy matrix. Apply a voltage of -150 to 500V on the 11th, and increase the flow rate of nitrogen and acetylene by 10~20sccm every 10~15min, so that the atomic percentage of nitrogen and carbon atoms in the gradient layer of aluminum carbonitride is close. The aluminum or aluminum alloy substrate 11 is gradiently increased in a direction away from the aluminum or aluminum alloy substrate 11. The time for depositing the aluminum carbonitride gradient film layer is 30 to 90 min. [0026] The aluminum carbonitride gradient film layer can form a dense A1-CN phase during the formation thereof, and the anti-corrosion film 15 is reinforced. Densification to increase the financial corrosion of the casing 10. [0027] The atomic percentage of N and C of the aluminum carbonitride gradient film is close to aluminum or 100104688 Form No. A0101 Page 6 / Total 15 pages 1002008137-0 201233829 ❹ Ming alloy substrate 11 to retreat from Ming or Ming The orientation of the alloy substrate 11 increases in a gradient, which can reduce the degree of lattice mismatch between the carbonitride-Is gradient film and the Ming film 13 or the Ming or Shao alloy matrix 11 'facilitating the process of sputtering carbon nitride The residual stress generated in the direction of the U or aluminum alloy matrix U is transferred, and a plastic film 13' is deposited between the carbon gasification gradient film and the Ming or Ming alloy substrate 11 to improve the corrosion preventing film 15 and The interface mismatch between the aluminum or aluminum alloy substrate 11 can be remnant by means of the aluminum film 〗 3 and the local plastic deformation of the aluminum or aluminum alloy substrate 11 when the residual stress in the aluminum carbonitride gradient film is large. The release of stress, thereby reducing the residual stress in the aluminum carbonitride gradient film, so that the shell 1〇 is less prone to stress rot # ' to improve the corrosion resistance of the shell 1 : 〇 耐 耐 》 ” Refers to residual or / and applied stress and residual media The role of the metal caused by the failure phenomenon. [0028] After the deposition of the above-described aluminum carbonitride gradient film layer is completed, cerium ions are ion-implanted on the surface of the aluminum carbonitride gradient film to form the above-described anti-corrosion film 15. The process of implanting cerium ions: placing an aluminum or aluminum alloy substrate ruthenium plated with the aluminum film 13 and an aluminum carbonitride gradient film in a high-current metal ion implanter (MEVVA), the ion implanter A ruthenium metal target is used, which first ionizes the ruthenium metal to generate ruthenium metal ion vapor, and accelerates the ruthenium metal ion vapor to form enthalpy of tens of thousands or even millions of electron volts by a high voltage electric field. The ion beam is injected into the surface of the aluminum carbonitride gradient film to physically interact with atoms or molecules in the surface layer and its surface, and finally the metal ion is implanted into the aluminum carbonitride gradient film layer in the anti-corrosion film 15. [0029] The parameters for injecting the cesium ions in the embodiment are: true 100104688 of the ion implanter. Form No. A0101 Page 7 / Total 15 pages 1002008137 Ό 201233829 The vacancy is lxl (T4Pa, the ion source voltage is 30~100kV, ion The beam intensity is 0. l~5 mA, and the control ion implantation dose is between lxl016ions/cm2 and lxl018ions/cm2. [0030] The base metal ion is metallurgically bonded to the atom in the aluminum carbonitride gradient film layer. Therefore, the implanted ruthenium metal ions are not easily detached, and since the ruthenium metal is formed under the condition of high-energy ion implantation, the ruthenium metal is formed into an amorphous state after being implanted into the aluminum carbonitride gradient film layer, since the amorphous structure has each Isotropic, surface-free grain boundary, no dislocation, segregation, homogeneous system, etc. Therefore, the aluminum carbonitride gradient film layer after ion implantation of ruthenium metal ions makes the shell 10 less likely to form corrosion in corrosive media. The battery may have minimal electrochemical corrosion, which greatly improves the corrosion resistance of the casing 10. [0031] The method for preparing the casing 10 and the casing 10 will be described below with reference to specific embodiments: [0032] Example 1 [0033] ] Plasma cleaning: the flow rate of argon gas is 280 sccm, the bias voltage of aluminum or alloy substrate 11 is -300 V, and the plasma cleaning time is 9 minutes;

[0034] 濺鍍鋁膜13 :通入氬氣lOOsccm,開啟鋁靶22,設置鋁 靶22功率為2kw,設置鋁或鋁合金基體11的偏壓為-500V ,沉積5分鐘; [0035] 製備防腐蝕層15 :濺鍍碳氮化鋁梯度膜,以氬氣為工作 氣體,其流量為lOOsccm,以氮氣和乙炔為反應氣體,設 置氮氣和乙炔的初始流量為1 0 sccm和1 0 sccm,在铭或I呂 合金基體11上施加-500V的偏壓;每沉積lOmin將氮氣和 乙快的流量增大1 0 sccm,沉積時間控制為3 0m i η ; 100104688 表單編號Α0101 第8頁/共15頁 1002008137-0 201233829 [0036] [0037] [0038] [0039] ❹ [0040] [0041] ❹ [0042] [0043] [0044] 於碳氮化銘梯度膜注入鈽金屬離子.设置真空度為ΐχΐ〇 4Pa,離子源電壓為30kV,離子束流強度為〇. 1mA ’控制 鈽金屬離子注入劑量為lxl016ions/cm2。 實施例2 電漿清洗··氬氣流量為230sccm,金屬鋁或鋁合金基體 11的偏壓為-480V,電漿清洗的時間為7分鐘; 濺鍍鋁膜13 :通入氬氣200sccm,開啟鋁靶22,設置鋁 靶22功率為5kw,設置鋁或鋁合金基體11的偏壓為-400V ,沉積7分鐘; 製備防腐蝕層15 :濺鍍碳氣化鋁梯皮膜,以氬氣為工作 氣體,其流量為200sccm,以I:氣夫乙诀為k應氣體,設 置氣氣和乙炔的初始流量為1 5sccm和60sccm,在IS或 合金基體11上施加-300V的偏壓;每沉積12inin將氮氣和 乙炔的流量增大15sccm,沉積時fal控制為£0min ; 於碳氮化鋁梯度膜注入鈽金屬離子:設置真空度為lxl(T 4Pa,離子源電壓為60kV,離子束流強度為2mA,控制鈽 金屬離子注入劑量在lxl017ions/cm2。 實施例3 電漿清洗:氬氣流量為160sccm,鋁或鋁合金基體11的 偏壓為-400V,電漿清洗的時間為6分鐘; 濺鍍鋁膜13 :通入氬氣300sccm,開啟鋁靶22,設置鋁 靶22功率為8kw,設置鋁或鋁合金基體11的偏壓為-300V ,沉猜10分鐘; 100104688 表單編號A0101 第9頁/共15頁 1002008137-0 201233829 [0045] 製備防腐蝕層15 :濺鍍碳氮化鋁梯度膜,以氬氣為工作 氣體,其流量為3 0 0 sccm,以氮氣和乙炔為反應氣體,設 置氮氣和乙块的初始流量為20sccm和lOOsccm,在銘或 銘合金基體11上施加-150V的偏屢;每沉積15min將氮氣 和乙块的流量增大2 0 sccm,沉積時間控制為9 0m i η ; [0046] 於碳氮化鋁梯度膜注入鈽金屬離子:設置真空度為1χ10_ 4Pa,離子源電壓為100kV,離子束流強度為5mA,控制 鈽金屬離子注入劑量lxl018ions/cm2。 [0047] 本發明較佳實施方式的殼體10的製造方法,在鋁或鋁合 金基體11上依次形成鋁膜13及防腐蝕膜15,該防腐蝕膜 15為氮碳化鋁梯度膜,其離子注入有鈽金屬離子。該鋁 膜13、防腐蝕膜15組成的複合膜層顯著地提高了所述殼 體10的耐腐蝕性,且該製造工藝簡單、幾乎無環境污染 〇 【圖式簡單說明】 [0048] 圖1係本發明較佳實施方式殼體的剖視示意圖。 [0049] 圖2係圖1殼體的製作過程中所用鍍膜機俯視示意圖。 【主要元件符號說明】 [0050] 殼體:10 [0051] 鋁或鋁合金基體:11 [0052] 鋁膜:13 [0053] 防腐蝕膜:15 [0054] 鍍膜機:100 100104688 表單編號A0101 第10頁/共15頁 1002008137-0 201233829 [0055] 鍍膜室:20 [0056] 真空泵:3 0 [0057] 執跡:21 [0058] 鋁靶:22[0034] The aluminum film 13 is sputtered: argon gas is introduced into 100 sccm, the aluminum target 22 is turned on, the power of the aluminum target 22 is set to 2 kW, and the bias of the aluminum or aluminum alloy substrate 11 is set to -500 V, and deposited for 5 minutes; Anti-corrosion layer 15: Sputtered aluminum carbonitride gradient film with argon gas as working gas, flow rate of lOOsccm, nitrogen gas and acetylene as reaction gases, initial flow rates of nitrogen and acetylene set to 10 sccm and 10 sccm, A bias voltage of -500 V was applied to the Ming or Ilu alloy substrate 11; the flow rate of nitrogen and B was increased by 10 sccm per deposition of 10 min, and the deposition time was controlled to 30 m i η; 100104688 Form No. Α 0101 Page 8 / Total 15 pages 1002008137-0 201233829 [0036] [0039] [0040] [0044] [0044] Injecting a ruthenium metal ion into a carbonitride-gradient film. Setting the degree of vacuum For ΐχΐ〇4Pa, the ion source voltage is 30kV, and the ion beam current intensity is 〇. 1mA' control 钸 metal ion implantation dose is lxl016ions/cm2. Example 2 Plasma cleaning · Argon gas flow rate is 230 sccm, metal aluminum or aluminum alloy substrate 11 has a bias voltage of -480 V, plasma cleaning time is 7 minutes; Sputtered aluminum film 13: argon gas 200 sccm, open The aluminum target 22 is provided with an aluminum target 22 with a power of 5 kW, a bias of the aluminum or aluminum alloy substrate 11 of -400 V, and deposition for 7 minutes. Preparation of an anti-corrosion layer 15: sputtering of a carbonized aluminum vaporized ladder film, working with argon gas The gas has a flow rate of 200 sccm, and the initial flow rate of the gas and acetylene is set to 15 sccm and 60 sccm, and the bias voltage of -300 V is applied to the IS or alloy substrate 11; 12 inin per deposition The flow rate of nitrogen and acetylene was increased by 15 sccm, and the fal was controlled to be £0 min during deposition. The cerium metal ion was implanted into the aluminum carbonitride gradient film: the vacuum was set to lxl (T 4Pa, the ion source voltage was 60 kV, and the ion beam intensity was 2 mA, controlling the cerium metal ion implantation dose at lxl017ions/cm2. Example 3 Plasma cleaning: argon gas flow rate is 160 sccm, aluminum or aluminum alloy substrate 11 has a bias voltage of -400 V, plasma cleaning time is 6 minutes; Aluminum film 13: argon gas 300sccm, open aluminum target 22, set aluminum The power of the target 22 is 8 kW, the bias voltage of the aluminum or aluminum alloy substrate 11 is set to -300 V, and the guess is 10 minutes; 100104688 Form No. A0101 Page 9 / Total 15 pages 1002008137-0 201233829 [0045] Preparation of anti-corrosion layer 15: splashing A carbon-plated aluminum nitride gradient film with argon gas as the working gas, a flow rate of 300 sccm, nitrogen gas and acetylene as the reaction gas, and an initial flow rate of nitrogen and an ethylene block of 20 sccm and 100 sccm, in the Ming or Ming alloy matrix Applying -150V on 11; increasing the flow rate of nitrogen and block by 20 min for 15 min, and controlling the deposition time to 90 m i η; [0046] Injecting ruthenium metal ions into the aluminum carbonitride gradient film: setting The degree of vacuum is 1χ10_4Pa, the ion source voltage is 100kV, the ion beam current intensity is 5mA, and the bismuth metal ion implantation dose is controlled to be lxl018ions/cm2. [0047] The manufacturing method of the casing 10 of the preferred embodiment of the present invention is in aluminum or aluminum. An aluminum film 13 and an anti-corrosion film 15 are sequentially formed on the alloy substrate 11, and the anti-corrosion film 15 is a gradient film of aluminum oxycarbide, which is ion-implanted with ruthenium metal ions. The composite film composed of the aluminum film 13 and the anti-corrosion film 15 is remarkable. Improved the housing 10 Corrosive, and the manufacturing process is simple, and there is almost no environmental pollution. [FIG. 1 is a schematic cross-sectional view of a housing according to a preferred embodiment of the present invention. [0049] FIG. 2 is a housing of FIG. A schematic view of the coating machine used in the production process. [Main component symbol description] [0050] Housing: 10 [0051] Aluminum or aluminum alloy substrate: 11 [0052] Aluminum film: 13 [0053] Anti-corrosion film: 15 [0054] Coating machine: 100 100104688 Form No. A0101 10 pages/total 15 pages 1002008137-0 201233829 [0055] Coating chamber: 20 [0056] Vacuum pump: 3 0 [0057] Obstruction: 21 [0058] Aluminum target: 22

100104688 表單編號Α0101 第11頁/共15頁 1002008137-0100104688 Form NumberΑ0101 Page 11 of 15 1002008137-0

Claims (1)

201233829 七、申請專利範圍: 1 . 一種殼體,包括鋁或鋁合金基體,其改良在於:該殼體還 包括依次形成於該鋁或鋁合金基體上的鋁膜和防腐蝕膜, 該防腐蝕膜為碳氮化鋁梯度膜層,其摻雜有鈽金屬離子, 所述碳氮化鋁梯度膜層中N和C的原子百分含量由靠近鋁或 鋁合金基體至遠離鋁或鋁合金基體的方向呈梯度增加,所 述鈽金屬離子的摻雜方式為離子注入方式。 2 .如申請專利範圍第1項所述之殼體,其中所述防腐蝕膜的 厚度為0. 5〜2. 0 //m。 3 .如申請專利範圍第1項所述之殼體,其中所述鋁膜的厚度 為100~300nm。 4 . 一種殼體的製造方法,其包括如下步驟: 提供鋁或鋁合金基體; 於該鋁或鋁合金基體的表面磁控濺射鋁膜; 於鋁膜上磁控濺射碳氮化鋁梯度膜層,所述碳氮化鋁梯度 膜層中N和C的原子百分含量由靠近鋁或鋁合金基體向遠離 鋁或鋁合金基體的方向呈梯度增加; 於氮碳化鋁梯度膜注入鈽金屬離子,形成防腐蝕膜。 5.如申請專利範圍第4項所述之殼體的製造方法,其中磁控 濺射所述氮碳化鋁梯度膜的工藝參數為:以氬氣為工作氣 體,其流量為100~300sccm,以氮氣和乙炔為反應氣體 ,設置氮氣和乙快的初始流量分別為1 0〜20sccm和 10~100sccm,在鋁或鋁合金基體上施加-1 50 — 500V的 偏壓;每沉積l〇~15min將氮氣和乙快的流量增大 10~20sccm,沉積時間控制為30~90min。 100104688 表單編號A0101 第12頁/共15頁 1002008137-0 201233829 6 .如申請專利範圍第4項所述之殼體的製造方法,其中對氮 碳化鋁梯度膜注入铈金屬離子的工藝參數為:以氬氣為工 作氣體,其流量為100〜300scciTi,以氮氣和乙炔為反應 氣體,設置氮氣和乙诀的初始流量分別為1 0〜2 0 s c c m和 10〜lOOsccm,在鋁或鋁合金基體上施加-1 50 — 500V的 偏壓;每沉積l〇~15min將氮氣和乙炔的流量增大 10〜20sccm,沉積時間控制為30~90min。 7.如申請專利範圍第4項所述之殼體的製造方法,其中沉積 鋁膜的工藝參數為:設置真空度為8. 0x1 0_3Pa,通入氬 ^ 氣1 00~300sccm,開啟銘乾,設置銘乾功率為2~8kw,設 置鋁或鋁合金基體的偏壓為-300 — 500V,沉積5〜10分鐘 〇 8 .如申請專利範圍第4項所述之殼體的製造方法,其中殼體 的製造方法還包括在沉積所述鋁膜之前對鋁或鋁合金基體 進行電漿清洗的步驟。 100104688 表單編號A0101 第13頁/共15頁 1002008137-0201233829 VII. Patent application scope: 1. A casing comprising an aluminum or aluminum alloy substrate, the improvement comprising: the casing further comprising an aluminum film and an anti-corrosion film sequentially formed on the aluminum or aluminum alloy substrate, the corrosion prevention The film is an aluminum carbonitride gradient film layer doped with barium metal ions, and the atomic percentage of N and C in the aluminum carbonitride gradient film layer is close to the aluminum or aluminum alloy matrix to away from the aluminum or aluminum alloy matrix. The direction of the metal ions is increased in a gradient, and the doping method of the base metal ions is an ion implantation method. The smear is 0. 5~2. 0 //m. The thickness of the anti-corrosion film is 0. 5~2. 3. The casing of claim 1, wherein the aluminum film has a thickness of 100 to 300 nm. A method of manufacturing a casing, comprising the steps of: providing an aluminum or aluminum alloy substrate; magnetron sputtering an aluminum film on the surface of the aluminum or aluminum alloy substrate; magnetron sputtering aluminum carbonitride gradient on the aluminum film In the film layer, the atomic percentage of N and C in the aluminum carbonitride gradient film layer is increased from a direction close to the aluminum or aluminum alloy matrix to the direction away from the aluminum or aluminum alloy matrix; injecting the base metal into the aluminum oxynitride gradient film Ions form an anti-corrosion film. 5. The method of manufacturing a casing according to claim 4, wherein the process parameter of magnetron sputtering the aluminum oxynitride gradient film is: using argon as a working gas, the flow rate is 100~300 sccm, Nitrogen and acetylene are the reaction gases. The initial flow rates of nitrogen and B are set to 10~20sccm and 10~100sccm respectively, and the bias voltage of -1 50-500V is applied to the aluminum or aluminum alloy substrate; each deposition will be 15~15min. The flow rate of nitrogen and B is increased by 10~20sccm, and the deposition time is controlled by 30~90min. The method for manufacturing a casing according to the fourth aspect of the invention, wherein the process parameter for injecting the base metal ion into the aluminum oxynitride gradient film is as follows: Argon is a working gas, the flow rate is 100~300scciTi, nitrogen gas and acetylene are used as reaction gases, and the initial flow rates of nitrogen and acetonitrile are set to 10~2 0 sccm and 10~100 sccm respectively, and applied on aluminum or aluminum alloy substrate. -1 50 - 500V bias; the flow rate of nitrogen and acetylene is increased by 10~20sccm for each deposition of l〇~15min, and the deposition time is controlled to 30~90min. 7. The method for manufacturing a casing according to claim 4, wherein the process parameter for depositing the aluminum film is: setting a vacuum degree of 8. 0x1 0_3Pa, introducing an argon gas of 00~300 sccm, opening the stem, The setting of the stem power is 2~8kw, the bias voltage of the aluminum or aluminum alloy substrate is set to -300 - 500V, and the deposition is performed for 5 to 10 minutes. The manufacturing method of the shell according to the fourth aspect of the patent application, wherein the shell is The method of manufacturing the body further includes the step of plasma cleaning the aluminum or aluminum alloy substrate prior to depositing the aluminum film. 100104688 Form No. A0101 Page 13 of 15 1002008137-0
TW100104688A 2011-02-11 2011-02-11 Housing and method for making the same TWI486468B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100104688A TWI486468B (en) 2011-02-11 2011-02-11 Housing and method for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100104688A TWI486468B (en) 2011-02-11 2011-02-11 Housing and method for making the same

Publications (2)

Publication Number Publication Date
TW201233829A true TW201233829A (en) 2012-08-16
TWI486468B TWI486468B (en) 2015-06-01

Family

ID=47069994

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100104688A TWI486468B (en) 2011-02-11 2011-02-11 Housing and method for making the same

Country Status (1)

Country Link
TW (1) TWI486468B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4935073A (en) * 1981-11-27 1990-06-19 Sri International Process for applying coatings of zirconium and/or titantuim and a less noble metal to metal substrates and for converting the zirconium and/or titanium to an oxide, nitride, carbide, boride or silicide
FR2856627B1 (en) * 2003-06-26 2006-08-11 Saint Gobain TRANSPARENT SUBSTRATE WITH COATING WITH MECHANICAL STRENGTH PROPERTIES
US20050255329A1 (en) * 2004-05-12 2005-11-17 General Electric Company Superalloy article having corrosion resistant coating thereon
US8097300B2 (en) * 2006-03-31 2012-01-17 Tokyo Electron Limited Method of forming mixed rare earth oxynitride and aluminum oxynitride films by atomic layer deposition

Also Published As

Publication number Publication date
TWI486468B (en) 2015-06-01

Similar Documents

Publication Publication Date Title
CN104561910A (en) Plasma enhanced arc ion plating equipment and method for preparing precision coating
CN107937875A (en) A kind of preparation method of Sintered NdFeB magnet surface protection coating
TW201237196A (en) Housing and method for making the same
TW201236542A (en) Housing and method for making the same
TWI490358B (en) Housing and method for making the same
TW201233829A (en) Housing and method for making the same
CN102691062A (en) Housing and manufacturing method thereof
TWI486476B (en) Housing and method for making the same
CN102676990A (en) Aluminum or aluminum alloy shell and manufacturing method thereof
CN109666912B (en) Hf/TiBxMethod for producing an anti-corrosion multilayer coating
CN108251810B (en) Preparation method of corrosion-resistant sintered neodymium-iron-boron magnet
TW201233291A (en) Housing and method for making the same
TWI477620B (en) Housing and method for making the same
TW201229283A (en) Housing and method for making the same
CN113235060B (en) Preparation method of all-alpha-phase tantalum coating
TWI477621B (en) Housing and method for making the same
TWI476283B (en) Surface treatment for aluminum or aluminum alloy and housing manufactured by the aluminum or aluminum alloy
TWI471445B (en) Housing and method for making the same
TWI493067B (en) Housing and method for making the same
CN102595833A (en) Aluminum or aluminum alloy shell and manufacturing method thereof
CN102618826A (en) Aluminum or aluminum alloy housing and manufacturing method thereof
CN102605318A (en) Aluminum or aluminum alloy shell and method for manufacturing same
CN102605326A (en) Shell and manufacturing method thereof
TW201224166A (en) Housing and method for making the same
TW201226583A (en) Housing and method for making the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees