TW201229283A - Housing and method for making the same - Google Patents

Housing and method for making the same Download PDF

Info

Publication number
TW201229283A
TW201229283A TW100100741A TW100100741A TW201229283A TW 201229283 A TW201229283 A TW 201229283A TW 100100741 A TW100100741 A TW 100100741A TW 100100741 A TW100100741 A TW 100100741A TW 201229283 A TW201229283 A TW 201229283A
Authority
TW
Taiwan
Prior art keywords
aluminum
film
alloy substrate
aluminum alloy
gradient
Prior art date
Application number
TW100100741A
Other languages
Chinese (zh)
Inventor
Hsin-Pei Chang
Wen-Rong Chen
Huann-Wu Chiang
Cheng-Shi Chen
Yi-Chi Chan
xiao-qiang Chen
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW100100741A priority Critical patent/TW201229283A/en
Publication of TW201229283A publication Critical patent/TW201229283A/en

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

A housing is provided which includes an Aluminum or Aluminum Alloy substrate, an Aluminum layer and a corrosion resistance layer formed on the Aluminum or Aluminum Alloy substrate in that order. The corrosion resistance layer is an Al-C-N layer which includes La ions implanted by ion implantation process. The atom percentages of N and C in the Al-C-N graded layer gradedly increase from nearing the Aluminum or magnesium Alloy substrate to far away from it. The housing has a higher corrosion resistance. A method for making the housing is Also provided.

Description

201229283 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種殼體及其製造方法’特別涉及一種鋁或 鋁合金的殼體及其製造方法。 C先前技術] [0002] Is或紹合金目前被廣泛應用於航空、航天、汽車及微電 子等工業領域。但鋁或鋁合金的標準電極電位很低,耐 腐蝕差,暴露於自然環境中會引起表面快速腐蝕。 0 [0003] 提高鋁或鋁合金防腐蝕性的方法通常係在其表面形成保 護性的塗層。傳統的陽極氧化、電沉積、化學轉化膜技 術及電链等鋁或鋁合金的表面處理方法存在生產工藝複 雜、效率低、環境污染嚴重等缺點。 [0004] 真空鍍膜(PVD)為一清潔的成膜技術。然而,由於鋁或 呂合金的標準電極電位很低,且PVD塗層本身不可避免的 會存在微小的孔隙,因此形成於鋁或鋁合傘表面的PVD塗 層容易發生電化學腐蝕,導致該PVD塗層的防腐蝕性能降 ® 低,對鋁或鋁合金的防腐蝕能力的提高有限。 【發明内容】 [0005] 鑒於此,提供一種具有較好的耐腐蝕性的鋁或鋁合金的 殼體。 [0006] 另外,還提供一種上述殼體的製造方法。201229283 VI. Description of the Invention: [Technical Field] The present invention relates to a casing and a method of manufacturing the same, and particularly to a casing of aluminum or aluminum alloy and a method of manufacturing the same. C Prior Art] [0002] Is or Shao alloy is currently widely used in aerospace, aerospace, automotive and microelectronics industries. However, the standard electrode potential of aluminum or aluminum alloy is very low, and the corrosion resistance is poor, and exposure to the natural environment causes rapid surface corrosion. 0 [0003] The method of improving the corrosion resistance of aluminum or aluminum alloys is usually to form a protective coating on the surface. Conventional anodizing, electrodeposition, chemical conversion film technology, and surface treatment methods for aluminum or aluminum alloys such as electric chains have disadvantages such as complicated production processes, low efficiency, and serious environmental pollution. [0004] Vacuum coating (PVD) is a clean film forming technique. However, since the standard electrode potential of aluminum or lyon alloy is very low, and the PVD coating itself inevitably has minute pores, the PVD coating formed on the surface of the aluminum or aluminum umbrella is prone to electrochemical corrosion, resulting in the PVD. The corrosion resistance of the coating is low, and the corrosion resistance of aluminum or aluminum alloy is limited. SUMMARY OF THE INVENTION [0005] In view of the above, a housing of aluminum or aluminum alloy having better corrosion resistance is provided. Further, a method of manufacturing the above casing is also provided.

[0007] —種殼體’包括鋁或鋁合金基體,該殼體還包括依次形 成於該銘或鋁合金基體上的鋁膜和防腐蝕膜,該防腐蝕 膜為碳I化鋁梯度膜層,所述碳氮化鋁梯度膜層中N和C 100100741 表單編號 A0101 第 3 頁/共 15 頁 1002001340-0 201229283 的原子百分含量由靠近鋁或鋁合金基體至遠離鋁或鋁合 金基體的方向呈梯度增加,所述碳氮化鋁梯度膜層注入 有鋼金屬離子。 [0008] 一種殼體的製造方法,其包括如下步驟: [0009] 提供鋁或鋁合金基體; [0010] 於該鋁或鋁合金基體的表面磁控濺射鋁膜; [0011] 於鋁膜上磁控濺射碳氮化鋁梯度膜層,所述碳氮化鋁梯 度膜層中N和C的原子百分含量由靠近鋁或鋁合金基體向 遠離鋁或鋁合金基體的方向呈梯度增加; [0012] 對該碳氮化鋁梯度膜層注入鑭金屬離子,形成防腐蝕膜 〇 [0013] 本發明所述殼體的製造方法,在鋁或鋁合金基體上依次 形成鋁膜和防腐蝕膜,該防腐蝕膜為藉由離子注入摻雜 鑭(La)金屬離子的碳氮化鋁梯度膜層,鋁膜和防腐蝕膜 的複合膜層可顯著提高所述殼體的耐腐蝕性,且該殼體 的製造工藝簡單、幾乎無環境污染。 【實施方式】 [0014] 請參閱圖1,本發明一較佳實施例的殼體10包括鋁或鋁合 金基體11、依次形成於該鋁或鋁合金基體11表面的鋁膜 13、防腐蝕膜15,該防腐蝕膜15為藉由離子注入摻雜鑭 (La)金屬離子的氮碳化鋁梯度膜。 [0015] 所述防腐钱膜15的厚度為0. 5~2. Ομπι。所述防腐姓膜15 藉由磁控激射鑛膜法形成。 100100741 表單編號Α0101 第4頁/共15頁 1002001340-0 201229283 剛該殼體10還包㈣纽誠或料金基體n與防腐蚀膜 之間的_13。所述㈣13的形成用以增強所述防腐 減15與喊齡金基體^間的結合力。所述賴13 的厚度為1〇〇〜300nm。 [0017]所述殼體10的製造方法主要包括如下步驟: [_提純聽合金基體Η,該料㉝合金基體^以藉由 冲壓成型*到,其具有待製得的殼體Μ的結構。 0 _]將所述18聽合金基體U放人絲有乙醇或⑽溶液的 超聲波清洗ϋ中進行震動清洗,崎去喊紹合金基艘 11表面的雜質和油污。清洗完畢後烘乾備用。 [0_雜上述處理後雜祕合金基體η的表錢行氮氣電 漿清洗,進一步去除鋁或鋁合金基體丨丨表面的油污以 改善鋁或鋁合金基體11表面與後續塗層的結合力。 [0021]提供一鍍膜機100,鍍膜機1〇〇包括一鍍膜室2〇及一用於 對該鍍膜室抽真空的真空泵30,該鍍膜室2〇内設有轉架 t) (未圖示)’將鋁或鋁合金基體Η固定於轉架上,轉架 帶動銘或鋁合金基體11沿圓形軌跡21運行,且銘或銘合 金基艘11在沿軌跡21運行時亦自轉。在該錄膜室2〇側壁 上安裝二靶材22,該二靶材22關於轨跡21的中心相對稱 。在—鞋•材2 2的兩端設有氣源通道2 4 ’工作氣體藉由該 氣源通道24進入錢膜室20,轟擊乾材22的表面,以使拓 材22表面濺射出粒子。當鋁或鋁合金基體11通過二乾材 22之間時,將锻上二把材22表面滅射的粒子,完成磁控 濺射過程。 100100741 表單編號Α0101 第5賓/共15頁 1002001340-0 201229283 [0022] 該電漿清洗的具體操作及工藝參數可為:對該鍍膜室20 進行抽真空處理至本底真空度為8. 0xl(T3Pa,以 300〜500sccm (標準狀態毫升/分鐘)的流量向鍍膜室20 内通入純度為99. 999%的氬氣(工作氣體),於鋁或鋁合 金基體11上施加-300—800V的偏壓,在所述鍍膜室20中 形成高頻電壓,使所述氬氣產生氬氣電衆對銘或銘合金 基體11的表面進行物理轟擊,而達到對鋁或鋁合金基體 11表面清洗的目的。所述氬氣電漿清洗的時間為 3~1Omiη。 [0023] 採用磁控濺射的方式在鋁或鋁合金基體11表面依次形成 鋁膜13及防腐蝕膜15。形成該鋁膜13及防腐蝕膜15的具 體操作方法及工藝參數為:在所述電漿清洗完成後,通 入高純氬氣(99.999%) 100~300sccm,開啟靶材22的 電源,該乾材22為銘乾,設置Is把功率為2~8kw,調節銘 或鋁合金基體11的偏壓為負300〜負500V,在鋁或鋁合金 基體11表面沉積鋁膜13,沉積5〜10分鐘。 [0024] 形成所述鋁膜13後,以氬氣為工作氣體,其流量為 100〜300sccm,以氮氣和乙快為反應氣體,設置氮氣和 乙炔的初始流量分別為10~20sccm和10~100sccm,在銘 或鋁合金基體11上施加負150〜負500V的偏壓,沉積所述 防腐蝕膜15。該防腐蝕膜15為碳氮化鋁梯度膜層,沉積 所述防腐蝕膜1 5時,每沉積1 0〜1 5m i η將氮氣和乙炔的流 量增大10~20sccm,使氮原子和碳原子在碳氮化鋁梯度 膜層中的原子百分含量由靠近鋁或鋁合金基體11至遠離 鋁或鋁合金基體11的方向呈梯度增加。沉積該碳氮化鋁 100100741 表單編號A0101 第6頁/共15頁 1002001340-0 201229283 [0025] [0026] ❹ [0027] 梯度膜層的時間為30~90min。 所述碳氮化銘梯度膜層在其形成過程t可形成緻密的 C-N相,增強所述防腐蝕膜15的緻密性,以提高所述殼體 10的耐腐蝕性。 所述碳氮化鋁梯度膜的N和C的原子百分含量由靠近铭或 鋁合金基體11至遠離鋁或鋁合金基體11的方向至梯度增 加,可降低碳氮化鋁梯度膜與鋁膜13或鋁或鋁合金基體 11之間晶格不匹配的程度’有利於將賤射碳氮化銘梯度 膜的過程中產生的殘餘應力向鋁或鋁合金基體〗丨方向傳 遞;又因為在碳氮化鋁梯度膜和鋁或鋁合金基體丨丨之間 沉積了塑性較好的鋁膜13 ’可改善腐蝕膜15與鋁或鋁 合金基體11之間的介面錯配度,當碳氮化銘梯度膜中的 殘餘應力較大時,可以借助於該鋁膜13以及鋁或鋁合金 基體11的局部塑性變形實現殘餘應力的釋放,從而減少 所述碳氮化鋁梯度膜内的殘餘應力,使殼體1〇不易發生 應力腐钱,以提尚所述殼想1.0.的耐..腐姓牲。所述應力腐 姑是指在殘餘或/和外加應力及腐餘介質的作用下,引起 的金屬失效現象。 完成上述碳氮化鋁梯度膜層的沉積後,於該碳氮化銘梯 度膜表面離子注入鑭(La)離子,從而形成上述防腐蝕 膜15。所述的注入鑭離子的過程是:將鍍覆有所述鋁膜 13及碳氮化鋁梯度膜的鋁或鋁合金基體丨丨置於強流金屬 離子注入機(MEVVA)中,該離子注入機中採用鑭金屬靶材 ,該離子注入機首先將鑭金屬進行電離,使其產生鑭 (La)金屬離子蒸氣,並經高壓電場加速使該鑭(La)金屬 100100741 表單編號A0101 第7頁/共15頁 1002001340-0 201229283 離子蒸氣形成具有幾萬甚至幾百萬電子伏特能量的鑭離 子束,射入碳氮化鋁梯度膜的表面,與其表層中及其表 面的原子或分子發生物理作用,最終於該防腐蝕膜15中 的碳氮化鋁梯度膜層中注入鑭(La)金屬離子。 [0028] 本實施例中注入所述鑭離子的參數為:離子注入機的真 空度為lxlO_4Pa,離子源電壓為30〜100kV,離子束流強 度為0. 1〜5mA,控制鑭離子注入劑量在1 xl 016 i ons/cm2 到 lxl018ions/cm2之間。 [0029] 所述鑭(La)金屬離子與所述碳氮化鋁梯度膜層中的原 子為冶金結合,因此,該注入的鑭金屬離子不易脫落, 且由於是在高能離子注入的條件下形成,該鑭(La)金 屬注入碳氮化鋁梯度膜層中後形成為非晶態,由於非晶 態結構具有各向同性、表面無晶界、無位錯、偏析,均 相體系等特點,故,經離子注入鑭(La)金屬離子後的 碳氮化鋁梯度膜層使殼體10在腐蝕性介質中不易形成腐 蝕微電池,發生電化學腐蝕的可能極小,大大提高了殼 體10的耐蝕性。 [0030] 以下結合具體實施例對殼體10的製備方法及殼體10進行 說明: [0031] 實施例1 [0032] 電裝清洗:氬氣流量為280sccm,銘或銘合金基體11的 偏壓為-300V,電漿清洗的時間為9分鐘; [0033] 濺鍍鋁膜13 :以鋁靶22為靶材,通入氬氣lOOsccm,開 啟鋁靶22,設置鋁靶22功率為2kw,設置鋁或鋁合金基體 100100741 表單編號A0101 第8頁/共15頁 1002001340-0 201229283 11的偏壓為-500V ’沉積5分鐘; [0034]製備防腐蝕層15 :濺鍍碳氮化鋁梯度膜,以氬氣為工作 氣體,其流量為lOOsccm,以氮氣和乙炔為反應氣體,設 置氬氣和乙炔的初始流量分別為1 〇 s c c m和1 〇 s c c m,在紹 或铭合金基體11上施加負5〇〇V的偏壓;每沉積1〇D1in將 氮氣和乙炔的流量增大l〇sccm,沉積時間控制為3〇min [0035] 於碳氮化鋁梯度膜注入鑭金屬離子:設置真空度為ΐχΐ〇_ 〇 4pa ’離子源電壓為3〇kV,離子束流強度為〇. 1mA,控制 鑭金屬離子注入劑量為lx1016i〇ns/cm2。 [0036] 實施例2 [0037] 電漿清洗:氬氣流量為230sccm,金屬銘或銘合金基體 11的偏壓為-480V ’電漿清洗的時間為7分鐘; [0038] 濺鍍鋁膜13 :以鋁靶22為靶材,通入氬氣200sccm,開 啟鋁靶22 ’設置鋁靶22功率為置鋁或鋁合金基體 〇 11的偏壓為-400V,沉積7分鐘; [0039] 製備防腐蝕層15 :濺鍍碳氮化鋁梯度膜,以氬氣為工作 氣體,其流量為200sccm,以氮氣和乙炔為反應氣體,設 置氮氣和乙炔的初始流量分別為15sccm和60seem,在銘 或鋁合金基體11上施加負300V的偏壓;每沉積I2min將 氮氣和乙炔的流量增大15sccm,沉積時間控制為6〇min [0040] 於碳氮化鋁梯度膜注入鑭金屬離子:設置真空度為1χ1(Γ 1002001340-0 100100741 表單編號Α0101 第9頁/共15頁 201229283 4Pa,離子源電壓為60kV,離子束流強度為2mA,控制鑭 金屬離子注入劑量在lxl〇17i〇ns/cm2。 [0041] [0042] [0043] [0044] [0045] [0046] 100100741 實施例3 電衆清洗:氣氣流量為160sccm,#呂或銘合金基體11的 偏壓為-400V,電漿清洗的時間為6分鐘; 濺鍍鋁膜13 :以鋁靶22為靶材,通入氬氣300sccm,開 啟鋁靶22,設置鋁靶22功率為8kw,設置鋁或鋁合金基體 11的偏壓為-300V,沉積10分鐘; 製備防腐蝕層15 :濺鍍碳氮化鋁梯度膜,以氬氣為工作 氣體,其流量為30Osccm,以氮氣和乙快為反應氣體,設 置氮氣和乙炔的初始流量分別為20.sccni和1 OOsccm,在 銘或銘合金基體11上施加負150V的偏壓;每沉積15min 將氮氣和乙炔的流量增大20sccm,沉積時間控制為 90min ; 於碳氮化鋁梯度膜注入鑭金屬離子:設置真空度為1x10 — 4Pa,離子源電壓為100kV,離子束流強度為5mA,控制 鑭金屬離子注入劑量lxl018ions/cm2。 本發明較佳實施方式的殼體10的製造方法,在鋁或鋁合 金基體11上依次形成鋁膜13及防腐蝕膜15,該防腐蝕膜 15為氮碳化鋁梯度膜,其離子注入有鑭(La)金屬離子。 該鋁膜13、防腐蝕膜15組成的複合膜層顯著地提高了所 述殼體10的耐腐蝕性,且該製造工藝簡單、幾乎無環境 污染。 【圖式簡單說明】 表單編號A0101 第10頁/共15頁 1002001340-0 201229283 [0047] 圖1係本發明較佳實施方式殼體的剖視示意圖。 [0048] 圖2係圖1殼體的製作過程中所用鍍膜機結構示意圖。 【主要元件符號說明】 [0049] 殼體:10 [0050] 鋁或鋁合金基體:11 [0051] 鋁膜:13 [0052] 防腐蝕膜:15 [0053] 鍍膜機:100 [0054] 鍍膜室:20 [0055] 真空泵:30 [0056] 軌跡:21 [0057] 靶材:22 [0058] 氣源通道:24 〇 100100741 表單編號A0101 第11頁/共15頁 1002001340-0[0007] A casing 'includes an aluminum or aluminum alloy substrate, and the casing further includes an aluminum film and an anti-corrosion film sequentially formed on the inscription or aluminum alloy substrate, the anti-corrosion film being a carbonized aluminum gradient film layer , the atomic percentage of N and C 100100741 in the aluminum carbonitride gradient film layer is from the aluminum or aluminum alloy matrix to the direction away from the aluminum or aluminum alloy matrix. The atomic percentage of N and C 100100741 Form No. A0101 Page 3 of 151002001340-0 201229283 The gradient is increased, and the aluminum carbonitride gradient film layer is implanted with steel metal ions. [0008] A method of manufacturing a casing, comprising the steps of: [0009] providing an aluminum or aluminum alloy substrate; [0010] magnetron sputtering an aluminum film on the surface of the aluminum or aluminum alloy substrate; [0011] Upper magnetron sputtering aluminum carbonitride gradient film layer, the atomic percentage of N and C in the aluminum carbonitride gradient film layer is increased in gradient from the aluminum or aluminum alloy matrix away from the aluminum or aluminum alloy matrix [0012] injecting the base metal ion into the aluminum carbonitride gradient film layer to form an anti-corrosion film [0013] The method for manufacturing the casing of the present invention, sequentially forming an aluminum film on the aluminum or aluminum alloy substrate and preventing corrosion a film, the anti-corrosion film is an aluminum carbonitride gradient film layer doped with lanthanum (La) metal ions by ion implantation, and the composite film layer of the aluminum film and the anti-corrosion film can significantly improve the corrosion resistance of the shell. Moreover, the manufacturing process of the housing is simple and almost free of environmental pollution. [0014] Referring to FIG. 1, a housing 10 according to a preferred embodiment of the present invention includes an aluminum or aluminum alloy substrate 11, an aluminum film 13 sequentially formed on the surface of the aluminum or aluminum alloy substrate 11, and an anti-corrosion film. 15. The anti-corrosion film 15 is a nitrogen aluminum nitride gradient film doped with lanthanum (La) metal ions by ion implantation. 5〜2. Ομπι。 [0015] The thickness of the anti-corrosion film 15 is 0. 5~2. Ομπι. The antiseptic film 15 is formed by a magnetron lasing film method. 100100741 Form No. Α0101 Page 4 of 15 1002001340-0 201229283 Just the casing 10 also contains (4) _13 between the Nucheng or gold matrix n and the anti-corrosion film. The formation of the (four) 13 is for enhancing the bonding force between the anticorrosion minus 15 and the gold matrix. The thickness of the Lai 13 is from 1 〇〇 to 300 nm. [0017] The manufacturing method of the casing 10 mainly comprises the following steps: [_Purification of the alloy substrate Η, the material 33 of the alloy substrate is formed by stamping*, which has the structure of the casing 待 to be produced. 0 _] The 18-sound alloy substrate U is placed in an ultrasonic cleaning bath containing ethanol or (10) solution for vibration cleaning, and the impurities and oil on the surface of the alloy base 11 are scraped off. After cleaning, dry and set aside. [0_ Miscellaneous The treatment of the miscellaneous alloy matrix η after the above treatment is performed by nitrogen plasma cleaning to further remove the oil stain on the surface of the aluminum or aluminum alloy substrate to improve the adhesion of the surface of the aluminum or aluminum alloy substrate 11 to the subsequent coating. [0021] A coating machine 100 is provided. The coating machine 1A includes a coating chamber 2A and a vacuum pump 30 for evacuating the coating chamber. The coating chamber 2 has a turret t) (not shown). The 'aluminum or aluminum alloy base Η is fixed to the turret, and the turret drives the aluminum alloy base 11 to run along the circular trajectory 21, and the Ming or Ming alloy base 11 also rotates when running along the trajectory 21. Two targets 22 are mounted on the side walls of the recording chamber 2, and the two targets 22 are symmetrical with respect to the center of the track 21. At both ends of the shoe material 2 2, a gas source passage 2 4 '' working gas is introduced into the money film chamber 20 through the gas source passage 24 to bombard the surface of the dry material 22 to cause particles to be sputtered on the surface of the base material 22. When the aluminum or aluminum alloy substrate 11 passes between the two dry materials 22, the particles which are surface-extruded by the two materials 22 are forged, and the magnetron sputtering process is completed. The number of the vacuum of the coating chamber 20 is 8. 0xl (the specific vacuum of the coating chamber 20 is 8 0 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l T3Pa, argon gas (working gas) having a purity of 99.999% is applied to the coating chamber 20 at a flow rate of 300 to 500 sccm (standard state cc/min), and -300-800 V is applied to the aluminum or aluminum alloy substrate 11. Biasing, forming a high-frequency voltage in the coating chamber 20, causing the argon gas to generate an argon gas to physically bombard the surface of the Ming or Ming alloy substrate 11 to achieve surface cleaning of the aluminum or aluminum alloy substrate 11. The argon plasma cleaning time is 3~1Omiη. [0023] The aluminum film 13 and the anti-corrosion film 15 are sequentially formed on the surface of the aluminum or aluminum alloy substrate 11 by magnetron sputtering. The specific operation method and process parameters of the anti-corrosion film 15 are: after the plasma cleaning is completed, high-purity argon gas (99.999%) is passed through 100~300 sccm, and the power of the target 22 is turned on. Dry, set Is to power 2~8kw, adjust the Ming or aluminum alloy base The bias voltage of 11 is negative 300 to minus 500 V, and an aluminum film 13 is deposited on the surface of the aluminum or aluminum alloy substrate 11 for 5 to 10 minutes. [0024] After the aluminum film 13 is formed, argon gas is used as a working gas, and the flow rate thereof is performed. For 100~300sccm, with nitrogen and B as the reaction gas, the initial flow rates of nitrogen and acetylene are set to 10~20sccm and 10~100sccm respectively, and a negative 150~negative 500V bias is applied on the aluminum alloy substrate 11 to deposit The anti-corrosion film 15. The anti-corrosion film 15 is a carbonitride aluminum nitride gradient film layer, and when the anti-corrosion film 15 is deposited, the flow rate of nitrogen gas and acetylene is increased by 10~1~5 m i η. 20 sccm, the atomic percentage of nitrogen atoms and carbon atoms in the aluminum carbonitride gradient film layer is increased in a gradient from the aluminum or aluminum alloy substrate 11 to the direction away from the aluminum or aluminum alloy substrate 11. The aluminum carbonitride is deposited. 100100741 Form No. A0101 Page 6 of 15 1002001340-0 201229283 [0025] [0026] [0027] The time of the gradient film layer is 30 to 90 min. The carbonitride layer gradient film layer can be formed in the process t Forming a dense CN phase, enhancing the compactness of the anti-corrosion film 15 to enhance the Corrosion resistance of the casing 10. The atomic percentage of N and C of the aluminum carbonitride gradient film is increased from a direction close to the aluminum alloy substrate 11 to a gradient away from the aluminum or aluminum alloy substrate 11 to reduce carbon. The degree of lattice mismatch between the aluminum nitride gradient film and the aluminum film 13 or the aluminum or aluminum alloy substrate 11 is favorable for the residual stress generated during the process of sputtering the carbon nitride nitride gradient film to the aluminum or aluminum alloy substrate.丨 direction transfer; and because a plastic film 13' is deposited between the aluminum carbonitride gradient film and the aluminum or aluminum alloy substrate, the interface between the corrosion film 15 and the aluminum or aluminum alloy substrate 11 can be improved. The degree of distribution, when the residual stress in the carbonitride film is large, the release of residual stress can be achieved by means of the local plastic deformation of the aluminum film 13 and the aluminum or aluminum alloy substrate 11, thereby reducing the aluminum carbonitride The residual stress in the gradient film makes the shell 1〇 less prone to stress and corruption, so as to raise the resistance of the shell to 1.0. The stress corrosion refers to the metal failure caused by residual or/and external stress and the residual medium. After the deposition of the above carbon aluminum nitride gradient film layer is completed, lanthanum (La) ions are ion-implanted on the surface of the carbonitride-imprinted film to form the above-mentioned anti-corrosion film 15. The process of implanting the erbium ions is: placing an aluminum or aluminum alloy substrate ruthenium plated with the aluminum film 13 and the aluminum carbonitride gradient film in a high-current metal ion implanter (MEVVA), the ion implantation A bismuth metal target is used in the machine, and the ion implanter first ionizes the ruthenium metal to generate lanthanum (La) metal ion vapor, and accelerates the lanthanum (La) metal by a high voltage electric field 100100741 Form No. A0101 Page 7 / A total of 15 pages 1002001340-0 201229283 Ion vapor forms a helium ion beam with tens of thousands or even millions of electron volts, which is injected into the surface of the carbonitride film and physically interacts with atoms or molecules in the surface layer and its surface. Finally, lanthanum (La) metal ions are implanted into the aluminum carbonitride gradient film layer in the anti-corrosion film 15. [0028] The parameters of the ion implantation machine are: lxlO_4Pa, the ion source voltage is 30~100kV, the ion beam intensity is 0. 1~5mA, and the cesium ion implantation dose is controlled in the embodiment. 1 xl 016 i ons/cm2 to lxl018ions/cm2. [0029] the lanthanum (La) metal ions are metallurgically bonded to atoms in the aluminum carbonitride gradient film layer, and therefore, the implanted ruthenium metal ions are not easily detached, and are formed under conditions of high energy ion implantation. The lanthanum (La) metal is formed into an amorphous state after being implanted into the aluminum carbonitride gradient film layer, and the amorphous structure has the characteristics of isotropy, no grain boundary at the surface, no dislocation, segregation, and a homogeneous system. Therefore, the aluminum carbonitride gradient film layer after ion implantation of lanthanum (La) metal ions makes it difficult for the shell 10 to form a corroded microbattery in a corrosive medium, and the possibility of electrochemical corrosion is extremely small, and the housing 10 is greatly improved. Corrosion resistance. [0030] The method for preparing the housing 10 and the housing 10 will be described below with reference to specific embodiments: [0031] Example 1 [0032] Electrical cleaning: argon flow rate is 280 sccm, bias of the alloy body 11 of the Ming or Ming alloy For -300V, plasma cleaning time is 9 minutes; [0033] Sputtering aluminum film 13: with aluminum target 22 as target, argon gas 100sccm, open aluminum target 22, set aluminum target 22 power 2kw, set Aluminum or aluminum alloy substrate 100100741 Form No. A0101 Page 8 / Total 15 pages 1002001340-0 201229283 11 The bias voltage is -500V 'deposited for 5 minutes; [0034] Preparation of anti-corrosion layer 15: Sputtering aluminum carbonitride gradient film, Argon gas is used as the working gas, the flow rate is lOOsccm, nitrogen gas and acetylene are used as the reaction gases, and the initial flow rates of argon gas and acetylene are set to 1 〇sccm and 1 〇sccm respectively, and a negative 5 施加 is applied on the Shao or Ming alloy substrate 11.偏压V bias voltage; each deposition of 1〇D1in increases the flow rate of nitrogen and acetylene by 1〇sccm, and the deposition time is controlled to 3〇min [0035] Injecting ruthenium metal ions into the aluminum carbonitride gradient film: setting the vacuum degree to ΐχΐ 〇 _ 〇 4pa 'The ion source voltage is 3〇kV, and the ion beam intensity is . 1mA, the control metal ion-implanted at a dose of lanthanum lx1016i〇ns / cm2. [0037] Example 2 [0037] Plasma cleaning: argon gas flow rate was 230 sccm, metal Ming or Ming alloy substrate 11 bias voltage was -480 V 'plasma cleaning time was 7 minutes; [0038] sputtering aluminum film 13 : The aluminum target 22 is used as a target, and argon gas is passed through 200 sccm to open the aluminum target 22'. The aluminum target 22 is set to have a bias of -400 V for the aluminum or aluminum alloy substrate 〇11, and deposited for 7 minutes; [0039] Corrosion layer 15: Sputtered aluminum carbonitride gradient film with argon gas as working gas, flow rate of 200sccm, nitrogen and acetylene as reaction gases, initial flow rates of nitrogen and acetylene are set to 15sccm and 60seem, respectively, in Ming or aluminum A negative bias of 300 V was applied to the alloy substrate 11; the flow rate of nitrogen and acetylene was increased by 15 sccm per deposition of I2 min, and the deposition time was controlled to be 6 〇 min. [0040] The cerium metal ion was implanted into the aluminum carbonitride gradient film: the vacuum was set to 1χ1(Γ 1002001340-0 100100741 Form No.Α0101 Page 9/15 pages 201229283 4Pa, the ion source voltage is 60kV, the ion beam current intensity is 2mA, and the control metal ion implantation dose is lxl〇17i〇ns/cm2. [0044] [0046] [0046] 100100741 Example 3 Electric cleaning: gas flow rate is 160sccm, #吕 or Ming alloy substrate 11 has a bias voltage of -400V, plasma cleaning time is 6 minutes; Sputtered aluminum film 13: with aluminum target 22 as a target Into the argon gas 300sccm, open the aluminum target 22, set the aluminum target 22 power 8kw, set the aluminum or aluminum alloy substrate 11 bias -300V, deposit 10 minutes; prepare anti-corrosion layer 15: splash aluminum carbonitride gradient film With argon as the working gas, the flow rate is 30Osccm, and the nitrogen and B are the reaction gases. The initial flow rates of nitrogen and acetylene are 20.sccni and 100 sec, respectively, and a negative 150V is applied to the Ming or Ming alloy substrate 11. Bias; the flow rate of nitrogen and acetylene is increased by 20 sccm for 15 min, and the deposition time is controlled to 90 min; the cerium metal ion is implanted into the aluminum carbonitride gradient film: the vacuum is set to 1 x 10 - 4 Pa, the ion source voltage is 100 kV, and the ion beam The flow intensity is 5 mA, and the ruthenium metal ion implantation dose is controlled to be lxl018ions/cm2. In the method for manufacturing the casing 10 of the preferred embodiment of the present invention, the aluminum film 13 and the anti-corrosion film 15 are sequentially formed on the aluminum or aluminum alloy substrate 11. Corrosion film 15 is a ladder of aluminum oxycarbide The film is ion-implanted with lanthanum (La) metal ions. The composite film layer composed of the aluminum film 13 and the anti-corrosion film 15 remarkably improves the corrosion resistance of the casing 10, and the manufacturing process is simple and almost environment-free. Pollution. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing a casing of a preferred embodiment of the present invention. FIG. 1 is a schematic view of a casing according to a preferred embodiment of the present invention. 2 is a schematic structural view of a coating machine used in the manufacturing process of the housing of FIG. 1. [Main component symbol description] [0049] Housing: 10 [0050] Aluminum or aluminum alloy substrate: 11 [0051] Aluminum film: 13 [0052] Anti-corrosion film: 15 [0053] Coating machine: 100 [0054] Coating chamber :20 [0055] Vacuum pump: 30 [0056] Track: 21 [0057] Target: 22 [0058] Air source channel: 24 〇 100100741 Form number A0101 Page 11 / Total 15 pages 1002001340-0

Claims (1)

201229283 七、申請專利範圍: 1 . 一種殼體,包括鋁或鋁合金基體,其改良在於:該殼體還 包括依次形成於該鋁或鋁合金基體上的鋁膜和防腐蝕膜, 該防腐蝕膜為碳氮化鋁梯度膜層,所述碳氮化鋁梯度膜層 中N和C的原子百分含量由靠近鋁或鋁合金基體至遠離鋁或 鋁合金基體的方向呈梯度增加,所述碳氮化鋁梯度膜層注 入有鋼金屬離子。 2 .如申請專利範圍第1項所述之殼體,其中所述防腐蝕膜的 厚度為0. 5~2. Ο/zm。 3 .如申請專利範圍第1項所述之殼體,其中所述鋁膜的厚度 為 1 00〜300nm。 4 . 一種殼體的製造方法,其包括如下步驟: 提供鋁或鋁合金基體; 於該鋁或鋁合金基體的表面磁控濺射鋁膜; 於鋁膜上磁控濺射碳氮化鋁梯度膜層,所述碳氮化鋁梯度 膜層中N和C的原子百分含量由靠近鋁或鋁合金基體向遠離 鋁或鋁合金基體的方向呈梯度增加; 於氮碳化鋁梯度膜注入鑭金屬離子,形成防腐蝕膜。 5.如申請專利範圍第4項所述之殼體的製造方法,其中磁控 濺射所述氮碳化鋁梯度膜的工藝參數為:以氬氣為工作氣 體,其流量為100〜300sccm,以氮氣和乙炔為反應氣體 ,設置氣氣和乙炔的初始流量分別為1 0 ~ 2 0 s c c m和 10〜100seem,在鋁或鋁合金基體上施加負150〜負500V的 偏壓;每沉積10〜15min將氮氣和乙快的流量增大 10~20sccm,沉積時間控制為30~90rain。 100100741 表單編號A0101 第12頁/共15頁 1002001340-0 201229283 6 . 如申請專利範圍第4項所述之殼體的製造方法,其中對氮 碳化鋁梯度膜注入鑭金屬離子的工藝參數為:以氬氣為工 作氣體,其流量為100~300sccm,以氮氣和乙炔為反應 氣體,設置氮氣和乙炔的初始流量分別為1 0〜2 0 s c c m和 10~100sccm,在鋁或鋁合金基體上施加負150〜負500V的 偏壓;每沉積10~15min將氮氣和乙炔的流量增大 10〜20sccm,沉積時間控制為30〜90min。 θ 如申請專利範圍第4項所述之殼體的製造方法,其中沉積 所述鋁膜的工藝參數為:以鋁靶為靶材,設置真空度為 8. 0xl0_3Pa,通入氬氣100~300sccm,開啟鋁靶,設置 鋁靶功率為2〜8kw,設置鋁或鋁合金基體的偏壓為 -300~-500V,沉積5~10分鐘:。 如申請專利範圍第4項所述之殼體的製造方法,其中所述 殼體的製造方法還包括在沉積所述鋁膜之前對鋁或鋁合金 基體進行電漿清洗的步驟。 ❹ 100100741 表單編號A0101 第13頁/共15頁 1002001340-0201229283 VII. Patent application scope: 1. A casing comprising an aluminum or aluminum alloy substrate, the improvement comprising: the casing further comprising an aluminum film and an anti-corrosion film sequentially formed on the aluminum or aluminum alloy substrate, the corrosion prevention The film is an aluminum carbonitride gradient film layer, and the atomic percentage of N and C in the aluminum carbonitride gradient film layer increases in a gradient from a direction close to the aluminum or aluminum alloy substrate to a direction away from the aluminum or aluminum alloy matrix. The aluminum carbonitride gradient film layer is implanted with steel metal ions. 2 2 z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z. 3. The casing of claim 1, wherein the aluminum film has a thickness of from 100 to 300 nm. A method of manufacturing a casing, comprising the steps of: providing an aluminum or aluminum alloy substrate; magnetron sputtering an aluminum film on the surface of the aluminum or aluminum alloy substrate; magnetron sputtering aluminum carbonitride gradient on the aluminum film In the film layer, the atomic percentage of N and C in the aluminum carbonitride gradient film layer is increased from a direction close to the aluminum or aluminum alloy matrix to the direction away from the aluminum or aluminum alloy matrix; injecting the base metal into the aluminum oxynitride gradient film Ions form an anti-corrosion film. 5. The method of manufacturing a casing according to claim 4, wherein the process parameter of the magnetron sputtering the aluminum oxynitride gradient film is: using argon as a working gas, the flow rate is 100 to 300 sccm, Nitrogen and acetylene are the reaction gases, and the initial flow rates of gas and acetylene are set to 10 to 20 sccm and 10 to 100 seem, respectively, and a negative 150 to negative 500 V bias is applied to the aluminum or aluminum alloy substrate; each deposition is 10 to 15 minutes. Increase the flow rate of nitrogen and B by 10~20sccm, and the deposition time is controlled to 30~90rain. 100100741 Form No. A0101 Page 12 of 15 1002001340-0 201229283 6. The manufacturing method of the casing according to Item 4 of the patent application, wherein the process parameter for injecting the base metal ion into the aluminum oxynitride gradient film is: Argon is a working gas, the flow rate is 100~300sccm, nitrogen and acetylene are used as reaction gases, and the initial flow rates of nitrogen and acetylene are set to 10~2 0 sccm and 10~100sccm respectively, and negative is applied on the aluminum or aluminum alloy substrate. 150~ negative 500V bias; the flow rate of nitrogen and acetylene is increased by 10~20sccm for 10~15min deposition, and the deposition time is controlled to 30~90min. θ The manufacturing method of the casing according to claim 4, wherein the process parameter for depositing the aluminum film is: using an aluminum target as a target, setting a vacuum degree of 8. 0xl0_3Pa, and introducing argon gas 100~300sccm Open the aluminum target, set the aluminum target power to 2~8kw, set the aluminum or aluminum alloy substrate to a bias of -300~-500V, and deposit for 5~10 minutes: The method of manufacturing a casing according to claim 4, wherein the method of manufacturing the casing further comprises the step of plasma-cleaning the aluminum or aluminum alloy substrate before depositing the aluminum film. ❹ 100100741 Form No. A0101 Page 13 of 15 1002001340-0
TW100100741A 2011-01-10 2011-01-10 Housing and method for making the same TW201229283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100100741A TW201229283A (en) 2011-01-10 2011-01-10 Housing and method for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100100741A TW201229283A (en) 2011-01-10 2011-01-10 Housing and method for making the same

Publications (1)

Publication Number Publication Date
TW201229283A true TW201229283A (en) 2012-07-16

Family

ID=46933885

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100100741A TW201229283A (en) 2011-01-10 2011-01-10 Housing and method for making the same

Country Status (1)

Country Link
TW (1) TW201229283A (en)

Similar Documents

Publication Publication Date Title
TWI490354B (en) Housing and method for making the same
TWI490358B (en) Housing and method for making the same
TW201236542A (en) Housing and method for making the same
TW201229283A (en) Housing and method for making the same
CN102691062A (en) Housing and manufacturing method thereof
TWI486476B (en) Housing and method for making the same
CN102676990A (en) Aluminum or aluminum alloy shell and manufacturing method thereof
TWI486468B (en) Housing and method for making the same
TW201233291A (en) Housing and method for making the same
TWI477621B (en) Housing and method for making the same
TWI471445B (en) Housing and method for making the same
TWI477620B (en) Housing and method for making the same
CN102595833A (en) Aluminum or aluminum alloy shell and manufacturing method thereof
TWI493067B (en) Housing and method for making the same
CN113235060B (en) Preparation method of all-alpha-phase tantalum coating
US8568905B2 (en) Housing and method for making the same
TWI415951B (en) Housing and method for making the same
TWI476283B (en) Surface treatment for aluminum or aluminum alloy and housing manufactured by the aluminum or aluminum alloy
CN102618826A (en) Aluminum or aluminum alloy housing and manufacturing method thereof
TWI472637B (en) Surface treatment for aluminum alloy and housing manufactured by the aluminum alloy
TW201226583A (en) Housing and method for making the same
CN102605326A (en) Shell and manufacturing method thereof
CN102691045A (en) Aluminum or aluminum alloy shell and manufacturing method thereof
US8603627B2 (en) Housing and method for making the same
CN102534611A (en) Shell and manufacturing method for shell