TW201232652A - Chemical mechanical planarization processes for fabrication of FinFET devices - Google Patents
Chemical mechanical planarization processes for fabrication of FinFET devices Download PDFInfo
- Publication number
- TW201232652A TW201232652A TW100146573A TW100146573A TW201232652A TW 201232652 A TW201232652 A TW 201232652A TW 100146573 A TW100146573 A TW 100146573A TW 100146573 A TW100146573 A TW 100146573A TW 201232652 A TW201232652 A TW 201232652A
- Authority
- TW
- Taiwan
- Prior art keywords
- slurry
- chemical mechanical
- top layer
- mechanical polishing
- polishing
- Prior art date
Links
Landscapes
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
Description
201232652 六、發明說明: 相關申請案資訊: 本申請案主張20 10年1〇月4日申請的美國專利臨時申 請案第6 1 /3 8 9,546號之優先權,並藉引用方式將其整體納 入本文。 本申請案係關於共同讓渡的申請案:與本案同時申請 之「淺溝渠隔離之化學機械平坦化方法」(序號爲(TBD )(代理案件表編號 YOR9 20100498US1C 163-365))) :與本案同時申請之「具有覆蓋層遮罩的化學機械平坦化 」(序號爲(TBD)(代理案件表編號YOR920 1 00499US1 ( 1 63 -3 69)));及與本案同時申請之「製造置換型金 屬閘極裝置的方法」,序號爲(TBD)(代理案件表編號 YOR920 1 0053 8 US 1 ( 163-373))),藉由引用方式將前 述所有文件納入本文。 【發明所屬之技術領域】 本發明係關於半導體的製造,且更特別係關於用於鰭 式場效電晶體結構等之化學機械平坦化(CMP )的方法。 【先前技術】 互補式金氧半導體(CMOS )技術的顯著成功可歸因 於電晶體之尺寸可調節性。基礎電晶體設計,在超過四分 之一世紀以來,除了尺寸以外少有變化。尺寸調節的觀念 需要將所有實體尺寸(長度、寬度及厚度)同時降低。因 -5- 201232652 這些實體尺寸開始趨近分子級尺寸,要單獨以簡單裝置的 尺寸調節獲得成效效益已變得極爲困難。正在發展包含新 的裝置結構及材料選擇之一些策略,其意圖擴充平坦的電 晶體設計並保留裝置的尺寸調節爲約50 nm閘極長度以上 〇 一種克服與裝置的尺寸調節有關的困難之方法爲建構 多重閘極裝置。這些裝置以更好的通道控制而維持尺寸調 節的優點。當閘極長度變得越來越小時,源極與汲極的緊 密靠近降低閘電極對電位分佈及通道中的電流之控制能力 。在這些條件下,使用短通道效應(S C E ),限制其能力 爲約50 nm閘極長度以下。短通道效應係歸因於二個物理 現象:因通道長度縮短導致臨界電壓(Vt )改變,及施加 於通道中電子傳送(移動性)的限制。因閘極長度縮短導 致臨界電壓(Vt)降低稱爲臨界電壓下滑。降低閘極氧化 物厚度、降低接面深度及增加通道中摻雜物濃度,並使用 絕緣層上矽(SOI )技術,可將短通道效應最小化。這些 想法已經納入現代電晶體裝置中,並已達到如接近2 2 nm 節點之實際限制。 在克服短通道效應之成效中,電晶體已從平坦的單一 閘極裝置發展至具多重閘極(雙、三或四閘極)結構的三 維裝置。雙閘極實際上爲在裝置相對側上的單閘電極,且 三聞極爲沿著裝置之三側折疊的單閘極。針對具有高k金 屬閘極電晶體之鰭式場效電晶體(FinFET)(多重閘極) 裝置之製造’已提供一些整合的流程。 -6- 201232652 多重閘極FinFET之製造包括化學機械拋光步驟,其歷 經碟化及不平整的介電質去除以暴露下層。FinFET製造對 於化學機械拋光步驟的變化特別敏感。 【發明內容】 本發明係關於一種平坦化方法,其包括在第一化學機 械拋光步驟中將半導體晶圓平坦化,以去除覆蓋層並將頂 層平坦化,在下層上方留下一厚度的頂層物質。在第二化 學機械拋光步驟中將頂層物質平坦化,以進一步去除頂層 ,並將第二物質及第三物質的下層暴露,以使頂層物質對 第二物質、對第三物質的選擇比介於約1 : 1 : 1至約2 :1 : 1, 以提供平坦的形貌。 —種用於製造鰭式場效電晶體(FinFET)之平坦化方 法,其包括在第一化學機械拋光步驟中將FinFET結構平坦 化,以去除覆蓋層並將氧化物頂層平坦化,在下層上方留 下300至600A的厚度;及在第二化學機械拋光步驟中進行 平坦化,以進一步去除氧化物,並將下面氮化物及多晶矽 區域暴露,以使氧化物:氮化物:多晶矽的選擇比介於約 1 : 1 : 1至約2 : 1 : 1,以提供平坦的形貌。 與所附圖式一倂閱讀,由以下說明性具體實例的詳細 描述,將使這些及其他特徵與優點顯而易見。 【實施方式】 本發明提供半導體結構,例如鰭式場效電晶體( 201232652201232652 VI. Description of the invention: Relevant application information: This application claims the priority of US Patent Provisional Application No. 6 1 / 3 8 9,546, filed on January 4, 2010, and incorporates it by reference. This article. This application is related to the application for joint transfer: the chemical mechanical flattening method for shallow trench isolation (the serial number is (TBD) (agent case number YOR9 20100498US1C 163-365))) and this case At the same time, the application of "Chemical Mechanical Planar with Overlay Mask" (No. (TBD) (Proxy Case No. YOR920 1 00499US1 (1 63 -3 69))); and "Manufacture of Replacement Metals" The method of the gate device, serial number (TBD) (agent case number YOR920 1 0053 8 US 1 (163-373))), all the aforementioned documents are incorporated herein by reference. TECHNICAL FIELD OF THE INVENTION The present invention relates to the fabrication of semiconductors, and more particularly to methods for chemical mechanical planarization (CMP) of fin field effect transistor structures and the like. [Prior Art] The remarkable success of complementary metal oxide semiconductor (CMOS) technology can be attributed to the size adjustability of the transistor. Basic crystal design has changed little in addition to size for more than a quarter of a century. The concept of size adjustment requires that all physical dimensions (length, width and thickness) be reduced simultaneously. Since -5- 201232652 these physical dimensions are beginning to approach the molecular size, it has become extremely difficult to achieve effective results by simply adjusting the size of the simple device. Some strategies are underway to include new device configurations and material options that are intended to extend the flat transistor design and preserve the device size to be above about 50 nm gate length. A method to overcome the difficulties associated with device size adjustment To build multiple gate devices. These devices maintain the advantages of size adjustment with better channel control. As the gate length becomes smaller and smaller, the close proximity of the source and the drain reduces the ability of the gate electrode to control the potential distribution and the current in the channel. Under these conditions, the short channel effect (S C E ) is used to limit its ability to less than about 50 nm gate length. The short channel effect is attributed to two physical phenomena: the change in the threshold voltage (Vt) due to the shortening of the channel length, and the limitation of electron transport (mobility) applied to the channel. The decrease in the threshold voltage (Vt) due to the shortening of the gate length is called the threshold voltage drop. Reducing the thickness of the gate oxide, reducing the junction depth, and increasing the dopant concentration in the channel, and using the SOI technique on the insulating layer, minimizes the short channel effect. These ideas have been incorporated into modern transistor devices and have reached practical limits such as near 2 2 nm nodes. In overcoming the effects of short channel effects, transistors have evolved from flat single gate devices to three-dimensional devices with multiple gate (double, triple or quad gate) structures. The double gate is actually a single gate electrode on the opposite side of the device, and the three gates are extremely single gates folded along the three sides of the device. Some integrated processes have been provided for the fabrication of fin field effect transistor (FinFET) (multiple gate) devices with high-k metal gate transistors. -6- 201232652 The fabrication of multiple gate FinFETs includes a chemical mechanical polishing step that removes the underlying dielectric by dishing and uneven dielectric. FinFET fabrication is particularly sensitive to changes in chemical mechanical polishing steps. SUMMARY OF THE INVENTION The present invention is directed to a planarization method that includes planarizing a semiconductor wafer in a first chemical mechanical polishing step to remove a cap layer and planarize a top layer, leaving a top layer of material above the lower layer . The top layer material is planarized in the second chemical mechanical polishing step to further remove the top layer, and the second substance and the lower layer of the third substance are exposed to make the selection ratio of the top substance to the second substance to the third substance Approximately 1: 1 : 1 to about 2 : 1 : 1, to provide a flat topography. a planarization method for fabricating a fin field effect transistor (FinFET), comprising planarizing a FinFET structure in a first chemical mechanical polishing step to remove a cap layer and planarize an oxide top layer, leaving over the lower layer a thickness of 300 to 600 A; and planarization in a second chemical mechanical polishing step to further remove oxides and expose the underlying nitride and polysilicon regions to select an oxide:nitride:polysilicon option Approximately 1: 1 : 1 to about 2 : 1 : 1, to provide a flat topography. These and other features and advantages will be apparent from the following detailed description of exemplary embodiments. Embodiments The present invention provides a semiconductor structure such as a fin field effect transistor (201232652)
FinFET )結構,之平坦化方法。本原則使用具有適當選擇 比的漿料,在利於其他物質之下’將特定物質拋光’以達 到高度平坦的最終結構。在F1 n F E T裝置的情況中’使用對 覆蓋層具有高去除速率且對下層爲相對低的去除效率之漿 料,以第一化學機械拋光/平坦化(CMP ) ’將大量覆蓋層 去除。如此降低初始形貌,且若覆蓋層爲氧化物,在下層 (例如氮化物)上殘留約3〇〇至600A的氧化物。在該 FinFET裝置的情況中,進行第二CMP步驟,以去除覆蓋層 (例如氧化物),打開下層(氮化物)並暴露在下層之下 的導電物質(例如經摻雜的多晶矽)。在此實例中,使用 具.有針對氧化物、氮化物及多晶砂的拋光速率選擇比爲約 1:1:1之漿料,供最終的平坦化。本文揭示使用於各種拋光 步驟的漿料組成份。 圖式中的流程及方塊圖在一些替代的執行例中可不依 圖式指示的順序進行。例如’在連續顯示的二個方塊中, 視所包含的功能性而定’事實上可實質地同時執行,或有 時可以相反順序執行方塊。 應瞭解的是,以所提供的說明性架構來說明本發明, 然而,其他架構、結構、基板物質及方法特徵與步驟可在 本發明的範圍內變化。整篇揭示說明氧化物、氮化物及多 晶矽物質。然而,這些物質爲說明性且也可考量在本發明 範圍內的其他物質。此外’整篇揭示說明厚度尺寸。這些 厚度尺寸爲說明性且可依照本原則使用其他尺寸。 在此所述的電路及裝置可爲積體電路晶片設計的一部FinFET) structure, the method of planarization. This principle uses a slurry having an appropriate selection ratio to polish a particular material under other materials to achieve a highly flat final structure. In the case of the F1 n F E T device, a large amount of the cover layer is removed by a first chemical mechanical polishing/planarization (CMP) using a slurry having a high removal rate for the cover layer and a relatively low removal efficiency for the lower layer. The initial topography is thus reduced, and if the cover layer is an oxide, an oxide of about 3 Å to 600 Å remains on the lower layer (e.g., nitride). In the case of the FinFET device, a second CMP step is performed to remove the capping layer (e.g., oxide), open the underlying layer (nitride) and expose the conductive material (e.g., doped polysilicon) below the underlying layer. In this example, a slurry having a polishing rate of about 1:1:1 for oxide, nitride, and polycrystalline sand was used for final planarization. The composition of the slurry used in various polishing steps is disclosed herein. The flow diagrams and block diagrams in the drawings may be performed in some alternative embodiments without the order indicated by the figures. For example, 'in the two blocks shown in succession, depending on the functionality contained,' may in fact be performed substantially simultaneously, or the blocks may sometimes be executed in the reverse order. It is to be understood that the invention is described in terms of the illustrative structures provided, however, other architectures, structures, substrate materials and method features and steps may vary within the scope of the invention. The entire disclosure reveals oxides, nitrides, and polycrystalline materials. However, these materials are illustrative and other materials that are within the scope of the invention are also contemplated. In addition, the entire section reveals the thickness dimensions. These thickness dimensions are illustrative and other dimensions may be used in accordance with this principle. The circuit and device described herein can be a part of an integrated circuit chip design
-8 · S 201232652 分。晶片設計可用圖解的電腦程式語言加以產生,並儲存 在電腦儲存媒體中(例如磁碟、磁帶、實體硬碟機、或例 如儲域網域(storage access network)中的虛擬硬碟機) 。若設計者未製造晶片或使用光刻遮罩製造晶片,設計者 可用物理性機構(例如提供儲存設計的儲存媒體之複本) 傳達所得的設計、或直接或間接地以電子方式(例如經由 網路)而至該實體。再將經儲存的設計轉換成適當的格式 (例如GDSII ),以供光刻遮罩的製造,其通常包括論及 之在晶圓上形成晶片設計的多個複本。光刻遮罩係用以界 定待蝕刻或其他處理的晶圓(及/或其上之層)的範圍。 在此所述的方法可用以製造積體電路晶片。所得的積 體電路晶片可由作爲空模(bare die)的粗晶圓(raw wafer )形式(亦即具有多重未封裝晶片的單一晶圓)或 以封裝形式所製造者加以分配。在後者中,晶片係以單一 晶片封裝(例如具有固定於主機板的導線之塑膠載體,或 其他更高階的載體)或以多重晶片封裝(例如具有表面互 連或埋設的互連中之一或二者的陶瓷載體)加以安裝。在 任一情況下,再將晶片與其他晶片、不連續的電路元件、 及/或其他訊號處理裝置加以整合,作爲(a )中間產品, 例如主機板,或(b )最終產品的一部分。最終產品可爲 包括積體電路晶片,其範圍自玩具及其他低階應用至具有 顯示器、鍵盤或其他輸入裝置、及中央處理器之進階電腦 產品的任何產品。 現在參考圖式,其中相同的數字代表相同或相似的元 -9- 201232652 件,圖1A爲鰭式場效電晶體(FinFET )的說明性結構1 〇之 橫切面。以實例顯示之製造方法,示範本原則。結構1 〇可 在半導體晶圓的基板12上形成。基板12可包括整體基板、 在絕緣體上的半導體之基板,例如絕緣層上矽(SOI )、 或任何其他適合的基板。依照本原則,可使用任何數目的 基板材料。在單晶(例如矽)表層1 1 (可爲SOI結構的一 部分)頂部上之半導體鰭式結構1 4已經過圖案化,例如使 用鰭式遮罩或類似者。 在一特別適用的具體實例中,鰭式結構1 4包括包埋在 氮化矽中的多晶S i鰭。導電物質1 6在該側上形成並在鰭式 結構1 4的頂部上。導電物質1 6可包括經摻雜的多晶矽》導 電物質1 6在隨後的處理中會在閘極導體內形成。閘極導體 可包括雙或三閘極結構。例如雙閘極實際上爲在鰭式結構 14相對側上的單閘電極,且三閘極爲沿著鰭式結構14之三 側(頂部及側邊)折疊的單閘極。 使用閘極遮罩1 8將導體物質1 6圖案化。閘極遮罩1 8可 包括氮化物或其他_當的介電物質。隔離沈積20在閘極遮 罩18上形成,且用以提供導電物質16之側牆的隔離及/或 塡充進晶圓的其他區域。 本原則以二步驟CMP方法達成表面的高度平坦後的化 學機械拋光/平坦化(CMP),其使用在至少三種不同物質 之間具有不同選擇比的漿料。就說明目的,以氧化物、氮 化物及多晶矽說明三種物質。 參考圖1B,在第一步驟中,將層20的過剩覆蓋層去除 -10- 201232652 。層20的覆蓋層可包括氧化物且下層(閘極遮罩18)可包 括氮化物。在一具體實例中,在此拋光/平坦化步驟之後 ,約300A的氧化物殘留在下層18上。針對此步驟,可使用 具有例如氧化物對氮化物選擇比爲4 : 1的氧化物拋光漿料 或氧化鈽/界面活性劑系的漿料,以形成表面22。 參考圖1 C,在第二步驟中,使用具有(氧化物:氮化 物:多晶矽)拋光速率選擇比大致爲1:1:1的漿料。導電物 質1 6包括多晶矽,在此例中其位於閘極遮罩1 8 (氮化物) 的下方。 氧化物可由例如高密度電漿(HDP )方法而形成。氮 化物可由例如低壓化學蒸汽沈積(LPCVD )或快速高溫化 學蒸汽沈積(RTCVD)而形成。多晶矽可由例如LPCVD或 RTCVD而形成。也可使用其他方法。第二平坦化對於結構 的不同部分之氧化物、氮化物及多晶矽達到相等或幾近相 等的拋光速率,以避免因該三種物質的拋光速率差異而引 起碟化及侵蝕。CMP方法形成表面24。 雖然其他結構及方法可能一樣有利並可被使用,CMP 方法的漿料組成份對於FinFET裝置的形成特別有用。本原 則對於需要同時將三種物質例如氧化物、氮化物及多晶矽 平坦化之結構特別有用。 針對用以形成圖1B的表面22的第一CMP,當去除大量 氧化物覆蓋層時,降低了大的初始形貌,且如此使模上各 處留有約300 A的平坦氧化物層(例如厚度介於表面22及 層1 8之間)。因爲在拋光的初始階段需要高的氧化物去除 -11 - 201232652 速率且實質上未將氮化物表面暴露,在此步驟中的漿料選 擇比並非爲重要的因子。此可由具有氧化物對氮化物選擇 比爲約例如4 : 1的氧化物拋光漿料而達成。氧化物漿料可 包括如氫氧化鉀或氫氧化銨的鹼性溶液及選自煙製氧化矽 及膠體氧化矽的氧化矽硏磨劑。然而,爲增進平坦性及達 到橫跨各種圖案密度之均勻的氧化物厚度,可能需要對氧 化物漿料使用添加劑。也可在此步驟中使用氧化铈/界面 活性劑系統,以達到所欲的平坦性及均勻度。 針對用以形成圖1C的表面24的第二CMP,去除殘留之 約300 A的氧化物層,暴露底下的表面,及達到無缺陷( 例如拋光刮痕、凹洞及其他污點)之高度平坦的最終表面 24。爲達到高平坦性,需要具有對氧化物、氮化物及多晶 矽覆蓋表面爲大致相同的拋光速率。氧化物、氮化物及多 晶矽的拋光速率不應該很高,因爲如此會無可避免地導致 不良的可控制性。因此,會高度希望有對該三種物質的拋 光速率在約3 00至約600 A/分鐘範圍內的漿料。此將提供具 有良好可控制性之適當的拋光時間,及容許過度拋光邊緣 以將難以拋光的結構平坦化。 對於化學機械平坦化,不同物質的拋光速率隨著線寬 、圖案密度及實際電路配置中的特徵尺寸而改變。在經圖 案化的結構中,不同物質的局部拋光速率爲包覆層晶圓中 相同物質的拋光速率之極複雜的函數。因此,希望能將經 圖案化的晶圓拋光及實驗地測量平坦性而將漿料的選擇比 最佳化,以確保達到所欲的目標。因爲模的配置在技術節-8 · S 201232652 points. The chip design can be generated in a graphical computer programming language and stored in a computer storage medium (such as a diskette, tape, physical hard drive, or a virtual hard drive in a storage access network, for example). If the designer does not manufacture the wafer or uses a lithographic mask to fabricate the wafer, the designer can communicate the resulting design, either directly or indirectly electronically (eg, via the network) using a physical mechanism (eg, a copy of the storage medium providing the storage design). ) to the entity. The stored design is then converted to a suitable format (e.g., GDSII) for fabrication of the lithographic mask, which typically involves the formation of multiple copies of the wafer design on the wafer. A lithographic mask is used to define the extent of the wafer (and/or layers thereon) to be etched or otherwise processed. The methods described herein can be used to fabricate integrated circuit wafers. The resulting integrated circuit wafer can be dispensed by a raw wafer in the form of a bare die (i.e., a single wafer having multiple unpackaged wafers) or in a package. In the latter, the wafer is packaged in a single chip (eg, a plastic carrier having wires secured to the motherboard, or other higher order carrier) or in a multi-chip package (eg, one having surface interconnects or buried interconnects or The ceramic carriers of both are installed. In either case, the wafer is integrated with other wafers, discrete circuit components, and/or other signal processing devices as part of (a) an intermediate product, such as a motherboard, or (b) a final product. The final product can be an integrated circuit chip ranging from toys and other low-end applications to any product with an advanced computer product with a display, keyboard or other input device, and a central processing unit. Referring now to the drawings in which like numerals represent the same or similar elements -9-201232652, Figure 1A is a cross-sectional view of an illustrative structure of a fin field effect transistor (FinFET). This principle is demonstrated by the manufacturing method shown by the example. Structure 1 can be formed on substrate 12 of a semiconductor wafer. Substrate 12 may comprise a monolithic substrate, a substrate of a semiconductor on an insulator, such as a germanium on insulator (SOI), or any other suitable substrate. Any number of substrate materials can be used in accordance with this principle. The semiconductor fin structure 14 on top of a single crystal (e.g., tantalum) skin layer 1 1 (which may be part of the SOI structure) has been patterned, for example using a fin mask or the like. In a particularly suitable embodiment, the fin structure 14 includes a polycrystalline Si fin embedded in tantalum nitride. A conductive material 16 is formed on the side and on top of the fin structure 14. The conductive material 16 may comprise a doped polysilicon" conductive material 16 which will form in the gate conductor during subsequent processing. The gate conductor can include a double or triple gate structure. For example, the double gate is actually a single gate electrode on the opposite side of the fin structure 14, and the triple gate is a single gate folded along three sides (top and side) of the fin structure 14. The conductor material 16 is patterned using a gate mask 18. The gate mask 18 may include a nitride or other dielectric material. Isolation deposition 20 is formed over gate shield 18 and is used to provide isolation of the sidewalls of conductive material 16 and/or to fill other regions of the wafer. This principle achieves a highly flat chemical mechanical polishing/planarization (CMP) of the surface in a two-step CMP process using a slurry having different selection ratios between at least three different materials. For purposes of illustration, three species are described in terms of oxides, nitrogen oxides, and polycrystalline germanium. Referring to FIG. 1B, in the first step, the excess cap layer of layer 20 is removed -10- 201232652 . The cover layer of layer 20 may comprise an oxide and the lower layer (gate mask 18) may comprise a nitride. In one embodiment, about 300 A of oxide remains on the lower layer 18 after this polishing/planarization step. For this step, a slurry having an oxide polishing slurry or a cerium oxide/surfactant system having, for example, an oxide to nitride selectivity of 4:1 may be used to form the surface 22. Referring to Fig. 1 C, in the second step, a slurry having a polishing rate selection ratio of (oxide:nitride:polysilicon) of approximately 1:1:1 is used. The conductive material 16 includes polysilicon, which in this example is located below the gate mask 18 (nitride). The oxide can be formed by, for example, a high density plasma (HDP) process. The nitride can be formed, for example, by low pressure chemical vapor deposition (LPCVD) or rapid high temperature chemical vapor deposition (RTCVD). The polysilicon can be formed by, for example, LPCVD or RTCVD. Other methods can also be used. The second planarization achieves equal or near-phase polishing rates for oxides, nitrides, and polysilicon in different portions of the structure to avoid dishing and erosion due to differences in polishing rates of the three materials. The CMP method forms surface 24. While other structures and methods may be equally advantageous and can be used, the slurry composition of the CMP method is particularly useful for the formation of FinFET devices. This principle is particularly useful for structures that require the simultaneous planarization of three materials such as oxides, nitrides, and polysilicon. With respect to the first CMP used to form surface 22 of FIG. 1B, when a large amount of oxide cap layer is removed, a large initial topography is reduced, and thus a flat oxide layer of about 300 A is left throughout the mold (eg, The thickness is between surface 22 and layer 18). Since a high oxide removal -11 - 201232652 rate is required at the initial stage of polishing and the nitride surface is not substantially exposed, the slurry selection ratio in this step is not an important factor. This can be achieved by an oxide polishing slurry having an oxide to nitride selectivity ratio of, for example, about 4:1. The oxide slurry may include an alkaline solution such as potassium hydroxide or ammonium hydroxide, and a cerium oxide abrasive selected from the group consisting of cerium oxide cerium oxide and colloidal cerium oxide. However, in order to improve flatness and achieve a uniform oxide thickness across various pattern densities, it may be desirable to use additives to the oxide paste. A cerium oxide/surfactant system can also be used in this step to achieve the desired flatness and uniformity. For the second CMP used to form surface 24 of Figure 1C, the remaining approximately 300 Å of oxide layer is removed, the underlying surface is exposed, and a highly flat defect free (e.g., polishing scratches, pits, and other stains) is achieved. The final surface 24. In order to achieve high flatness, it is desirable to have a polishing rate that is substantially the same for oxide, nitride, and polysilicon coverage surfaces. The polishing rate of oxides, nitrides, and polysilicon should not be high because it inevitably leads to poor controllability. Therefore, it would be highly desirable to have a slurry having a polishing rate for the three materials ranging from about 300 to about 600 A/min. This will provide proper polishing time with good controllability and allow over-polishing of the edges to planarize structures that are difficult to polish. For chemical mechanical planarization, the polishing rate of different materials varies with line width, pattern density, and feature size in actual circuit configurations. In a patterned structure, the local polishing rate of the different materials is a very complex function of the polishing rate of the same material in the cladding wafer. Therefore, it is desirable to be able to polish and experimentally measure the flatness of the patterned wafer to optimize the slurry selection ratio to ensure that the desired target is achieved. Because the configuration of the module is in the technical section
-12- 201232652 點之間、且甚至在相同技術節點的不同產品之間會變化, 因而極欲能夠以變化漿料中成份的濃度而改變拋光速率的 選擇比。因此,在可使用於廣泛範圍的產品及技術節點的 漿料系統範圍內,拋光速率的選擇比爲「可調整」的。調 整拋光速率選擇比的能力爲於第二拋光步驟中(圖1C)使 用本原則以達到高度平坦的最終表面之因子。 根據特別有用之具體實例的漿料包括以下成份:a ) 硏磨劑,b ) pH調節劑,c )有機酸。a )硏磨劑:硏磨劑 可爲至少一種選自無機及/或有機物質之類型的硏磨劑顆 粒。無機硏磨劑顆粒的實例可包括氧化矽、氧化鋁、氧化 鈦、氧化銷、氧化铈等。氧化矽的實例可包括煙製氧化矽 、以溶膠方法合成的氧化矽、及膠體氧化矽。將四氯化矽 與氧及水在氣相下反應,可獲得煙製氧化矽。將烷氧基矽 化合物加以水解及/或縮合,可獲得以溶膠方法合成的氧 化矽。將經純化的矽化合物於溶液相中水解,可獲得膠體 氧化矽。有機顆粒的實例可包括聚氯乙烯、苯乙烯(共) 聚合物 '聚縮醛、聚酯、聚醯胺、聚碳酸酯、烯屬烴(共 )聚合物、苯氧基樹脂、及丙烯酸(共)聚合物。烯屬烴 (共)聚合物的實例可包括聚乙烯、聚丙烯、聚-1-丁烯、 及聚-4-甲基-1 -戊烯。丙烯酸(共)聚合物的實例可包括 聚甲基丙烯酸甲酯等。硏磨劑的平均顆粒直徑可在5至500 nm的範圍內,更佳爲20至150 nm。使用具有平均顆粒直徑 在此範圍內的硏磨劑顆粒可達成適當的拋光速率。該膠體 氧化矽可由商業中獲得(例如得自日本F u s 〇化學有限公司 -13- 201232652 ),具有主要顆粒直徑爲例如3 5 nm。此膠體氧化矽硏磨 劑爲市集氧化矽硏磨劑的實例,且可以其容量使用於在此 提及的所有實例中。 b) pH調節劑:根據一具體實例漿料的pH係在1至11 的範圍內,且較佳爲2至6。將漿料的pH調整成在此範圍內 的値可達成適當的拋光速率。pH調節劑的實例可包括有機 鹼、無機鹼、及無機酸。有機鹼的實例可包括氫氧化四甲 基銨、三乙基胺等。無機鹼的實例可包括氫氧化銨、氫氧 化鉀、及氫氧化鈉。無機酸的實例可包括硝酸、硫酸、磷 酸、及氫氯酸。 c )有機酸:有機酸係使用作爲氮化物拋光的促進劑 。可使用各種有機酸,例如一元酸(例如單羧酸)、二元 酸(例如二羧酸)、多元酸(例如多羧酸)、及具有取代 基(羥基、胺)的羧酸。該有機酸的實例包括飽和酸、不 飽和酸、芳族酸、及脂族酸。飽和酸的實例可包括甲酸、 乙酸、丁酸、草酸、丙二酸、丁二酸、戊二酸、及己二酸 。包含羥基的酸的實例可包括乳酸、蘋果酸、酒石酸、及 檸檬酸。不飽和酸的實例可包括順丁烯二酸、及反丁焼二 酸。芳族酸的實例可包括苯甲酸、及鄰苯二甲酸。較佳爲 使用具有二個或多個羧酸基團的有機酸,以獲得高的氮化 物拋光速率。也可使用這些有機酸的鉀或銨鹽類。 其他成份:本原則容許將其他成份添加進漿料,以調 整例如氧化物對氮化物對多晶矽的選擇比。如這些具體實 例的漿料若需要可包括界面活性劑。界面活性劑的實例可-12- 201232652 Between points, and even between different products of the same technology node, it is highly desirable to be able to vary the polishing rate selection ratio by varying the concentration of the components in the slurry. Thus, the polishing rate selection ratio is "adjustable" over a range of slurry systems that can be used for a wide range of products and technology nodes. The ability to adjust the polishing rate selection ratio is the factor used in the second polishing step (Fig. 1C) to achieve a highly flat final surface. The slurry according to a particularly useful specific example comprises the following ingredients: a) a honing agent, b) a pH adjusting agent, c) an organic acid. a) honing agent: The honing agent may be at least one type of honing agent granule selected from inorganic and/or organic substances. Examples of the inorganic honing agent particles may include cerium oxide, aluminum oxide, titanium oxide, an oxidation pin, cerium oxide, and the like. Examples of the cerium oxide may include cerium oxide cerium oxide, cerium oxide synthesized by a sol method, and colloidal cerium oxide. Tobacco cerium oxide can be obtained by reacting ruthenium tetrachloride with oxygen and water in the gas phase. The alkoxy ruthenium compound is hydrolyzed and/or condensed to obtain ruthenium oxide synthesized by the sol method. The purified ruthenium compound is hydrolyzed in the solution phase to obtain colloidal ruthenium oxide. Examples of the organic particles may include polyvinyl chloride, styrene (co)polymer 'polyacetal, polyester, polyamine, polycarbonate, olefinic hydrocarbon (co)polymer, phenoxy resin, and acrylic acid ( Co)polymer. Examples of the olefinic hydrocarbon (co)polymer may include polyethylene, polypropylene, poly-1-butene, and poly-4-methyl-1-pentene. Examples of the acrylic (co)polymer may include polymethyl methacrylate or the like. The honing agent may have an average particle diameter in the range of 5 to 500 nm, more preferably 20 to 150 nm. The use of honing agent particles having an average particle diameter within this range achieves an appropriate polishing rate. The colloidal cerium oxide is commercially available (for example, from F s 〇 Chemical Co., Ltd., Japan -13 - 201232652), and has a main particle diameter of, for example, 35 nm. This colloidal cerium oxide honing agent is an example of a commercially available cerium oxide grinding agent, and its capacity can be used in all of the examples mentioned herein. b) pH adjuster: The pH of the slurry according to a specific example is in the range of 1 to 11, and preferably 2 to 6. Adjusting the pH of the slurry to within this range achieves a suitable polishing rate. Examples of the pH adjuster may include an organic base, an inorganic base, and a mineral acid. Examples of the organic base may include tetramethylammonium hydroxide, triethylamine, and the like. Examples of the inorganic base may include ammonium hydroxide, potassium hydroxide, and sodium hydroxide. Examples of the inorganic acid may include nitric acid, sulfuric acid, phosphoric acid, and hydrochloric acid. c) Organic acids: Organic acids are used as accelerators for nitride polishing. Various organic acids such as a monobasic acid (e.g., a monocarboxylic acid), a dibasic acid (e.g., a dicarboxylic acid), a polybasic acid (e.g., a polycarboxylic acid), and a carboxylic acid having a substituent (hydroxyl, amine) can be used. Examples of the organic acid include saturated acids, unsaturated acids, aromatic acids, and aliphatic acids. Examples of the saturated acid may include formic acid, acetic acid, butyric acid, oxalic acid, malonic acid, succinic acid, glutaric acid, and adipic acid. Examples of the acid containing a hydroxyl group may include lactic acid, malic acid, tartaric acid, and citric acid. Examples of the unsaturated acid may include maleic acid, and antibutanic acid. Examples of the aromatic acid may include benzoic acid, and phthalic acid. It is preferred to use an organic acid having two or more carboxylic acid groups to obtain a high nitride polishing rate. Potassium or ammonium salts of these organic acids can also be used. Other Ingredients: This principle allows the addition of other ingredients to the slurry to adjust, for example, the oxide to nitride to polycrystalline germanium selectivity ratio. A slurry such as these specific examples may include a surfactant as needed. An example of a surfactant can be
-14- 201232652 包括陰離子性、非離子性、及陽離子性界面活性劑。陰離 子性界面活性劑的實例可包括具有至少一種選自羧基(-COOX )、磺酸基(-so3x)、及磷酸基(-hpo4x)(其 中X代表氫、銨、或金屬)之官能基的界面活性劑。陰離 子性界面活性劑的實例可包括脂族及芳族硫酸鹽及磺酸鹽 、及磷酸鹽。可使用例如十二基苯磺酸鉀、十二基苯磺酸 銨、烷基萘磺酸鈉、烷基磺琥珀酸鹽、烯基琥珀酸鉀的化 合物。可使用如油酸鉀的脂肪酸鹽類。這些陰離子性界面 活性劑可單獨或與其他界面活性劑組合使用。非離子性界 面活性劑的實例可包括聚氧乙烯烷基醚、環氧乙烷-環氧 丙烷嵌段共聚物'、乙炔二醇、乙炔二醇的環氧乙烷加成產 物、乙快醇等。要注意的是也可使用例如聚乙烯醇、環糊 精、聚乙烯基甲基醚、或羥基乙基纖維素的非離子性聚合 物。陽離子性界面活性劑的實例可包括脂族胺鹽類、及脂 族銨鹽類。此外,在拋光以控制選擇比時,也可添加例如 聚(丙烯酸)及其例如鈉、鉀、及銨之鹽類之多元電解質 。利用以下的實例,本原則包括進一步說明之漿料成份功 能。要注意的是這些實例不應視爲限制。 實例1中,適用於二步驟CMP (圖1B至圖1C)拋光的 漿料可包括如下。在0 · 5至3 0重量%範圍內的氧化矽硏磨劑 ’較佳範圍爲5至10重量%;在〇.5至50 g/L範圍內的有機 酸,較佳範圍爲3至25 g/L;在0.01至5 g/L範圍內的酸性 pH調節劑’較佳範圍爲〇.1至2.0 g/L:在0至5 g/L範圍內 的鹼性pH調節劑’較佳範圍爲〇至2 g/L ;及漿料pH在1至 15- 201232652 11範圍內,較佳範圍爲2至6。 實例2中’實例1的調合物可包括如下。分散於水中之 5重量%的膠體氧化矽硏磨劑,5 g/L的檸檬酸,0.25至0.35 g/L的磷酸,〇. 1至〇·5 g/L的氫氧化銨,pH在2至5的範圍 內,較佳的pH爲約4。 實例3中,實例1的調合物可包括如下。分散於水中之 1 0重量%的膠體氧化矽硏磨劑,1 〇 g/L的檸檬酸,1至2 g/L 的磷酸’ 0.1至2.0 g/L的氫氧化銨,pH在2至5的範圍內。 在另一具體實例中,漿料包括二部分:第一部分:氧 化矽硏磨劑漿料、有機酸、及酸性p Η調節劑;及第二部分 :鹼性Ρ Η調節劑及酸性ρ Η調節劑。漿料可被供應至拋光 桌作爲二種成份,且使其在該拋光桌上混合,以產生具有 所欲的最終組成份之漿料。由使用相同或不同的漿料流速 ’可在拋光時變化漿料組成份,以獲得氧化物、氮化物及 多晶矽在不同拋光階段下所欲的拋光速率在另一實例中 ’起始時使用第一部分及第二部分,且在一定時間之後, 關閉第二部分,以產生與原來的調合物具有不同選擇比的 漿料。在拋光進行時’保持一種成份的流量固定及變化其 他者,可達成類似的效應》 在另一具體實例中,漿料包括二部分:第一部分:氧 化矽硏磨劑漿料、有機酸及酸性ρ Η調節劑;第二部分:氧 化矽硏磨劑漿料、鹼性pH調節劑及酸性ρΗ調節劑。漿料 可被供應至拋光桌作爲二種成份,且使其在該拋光桌上混 合,以產生具有所欲的最終組成份之漿料。由使用相同或 -16--14- 201232652 Includes anionic, nonionic, and cationic surfactants. Examples of the anionic surfactant may include at least one functional group selected from the group consisting of a carboxyl group (-COOX), a sulfonic acid group (-so3x), and a phosphate group (-hpo4x) (wherein X represents hydrogen, ammonium, or a metal). Surfactant. Examples of the anionic surfactant may include aliphatic and aromatic sulfates and sulfonates, and phosphates. For example, a compound of potassium dodecylbenzenesulfonate, ammonium dodecylbenzenesulfonate, sodium alkylnaphthalenesulfonate, alkylsulfosuccinate, or potassium alkenylsuccinate can be used. Fatty acid salts such as potassium oleate can be used. These anionic surfactants can be used alone or in combination with other surfactants. Examples of the nonionic surfactant may include polyoxyethylene alkyl ether, ethylene oxide-propylene oxide block copolymer ', acetylene glycol, ethylene oxide addition product of acetylene glycol, and ethyl alcohol Wait. It is to be noted that nonionic polymers such as polyvinyl alcohol, cyclodextrin, polyvinyl methyl ether, or hydroxyethyl cellulose can also be used. Examples of the cationic surfactant may include aliphatic amine salts, and aliphatic ammonium salts. Further, when polishing to control the selection ratio, a polyelectrolyte such as poly(acrylic acid) and a salt thereof such as sodium, potassium, and ammonium may be added. Using the following examples, this principle includes further description of the slurry composition function. It should be noted that these examples should not be considered limiting. In Example 1, the slurry suitable for the two-step CMP (Fig. 1B to Fig. 1C) polishing may include the following. The cerium oxide granule in the range of 0.5 to 30% by weight is preferably in the range of 5 to 10% by weight; the organic acid in the range of 〇.5 to 50 g/L, preferably in the range of 3 to 25 g/L; an acidic pH adjuster in the range of 0.01 to 5 g/L is preferably in the range of 0.1 to 2.0 g/L: an alkaline pH adjuster in the range of 0 to 5 g/L. The range is from 〇 to 2 g/L; and the pH of the slurry is in the range of from 1 to 15 to 201232652 11, preferably from 2 to 6. The blend of Example 1 in Example 2 can include the following. 5 wt% colloidal cerium oxide abrasive dispersed in water, 5 g/L citric acid, 0.25 to 0.35 g/L phosphoric acid, 〇. 1 to 〇·5 g/L ammonium hydroxide, pH 2 A preferred pH is about 4 in the range of up to 5. In Example 3, the blend of Example 1 can include the following. 10% by weight of colloidal cerium oxide grinding agent dispersed in water, 1 〇g/L of citric acid, 1 to 2 g/L of phosphoric acid '0.1 to 2.0 g/L of ammonium hydroxide, pH 2 to 5 In the range. In another embodiment, the slurry comprises two parts: a first part: a cerium oxide granule slurry, an organic acid, and an acidic p Η modifier; and a second part: an alkaline Ρ Η Η adjusting agent and an acid ρ Η adjustment Agent. The slurry can be supplied to the polishing table as two components and mixed on the polishing table to produce a slurry having the desired final composition. By using the same or different slurry flow rates 'the slurry composition can be varied during polishing to obtain the desired polishing rate of oxides, nitrides, and polysilicon at different polishing stages. In another example, the first use A portion and a second portion, and after a certain period of time, the second portion is closed to produce a slurry having a different selection ratio than the original blend. In the case of polishing, the flow rate of one component is fixed and changed, and a similar effect can be achieved. In another embodiment, the slurry comprises two parts: the first part: cerium oxide granule slurry, organic acid and acidity ρ Η modifier; the second part: cerium oxide grinding agent slurry, alkaline pH adjusting agent and acidic pH Η modifier. The slurry can be supplied to the polishing table as two components and mixed on the polishing table to produce a slurry having the desired final composition. By using the same or -16-
S 201232652 不同的漿料流速,可在拋光時變化漿料組成份,以獲得氧 化物、氮化物及多晶矽在不同拋光階段下所欲的拋光速率 。起始時使用第一部分,且在一定時間之後,關閉第一部 分並開啓第二部分,以產生與原來的調合物具有不同的氧 化物對氮化物對多晶矽選擇比之漿料。 根據本原則,使用氧化鈽硏磨劑漿料以習用的一步驟 CMP方法而拋光的FinFET結構之掃描式電子顯微鏡(SEM )圖,係與使用如本原則所述漿料以二步驟CMP方法拋光 的FinFET結構之SEM顯微圖比較。在許多情況下,習用的 方法無法清除所有的閘極遮罩層(18)以暴露導電物質( 16)(參見例如圖1 A )。根據本原則的方法,使所有觀察 的鰭式結構皆從導電物質(16)清除所有的閘極遮罩層( 18)。此外,在二步驟CMP方法後,SEM顯微圖顯示 FinFET結構的平坦性,在多晶矽導電物質及相鄰的層20之 氧化物區域之間無明顯的碟化(參見圖1 C )。習用.的方法 則有明顯的碟化。 參考圖2,示意顯示以二步驟將FinFET結構及類似者 拋光的方法,以將氧化物層平坦化並暴露及拋光底下氮化 物及多晶矽覆蓋的區域。應瞭解的是,可使用這些及其他 物質的不同組合。在方塊1 02中,方法包括第一步驟之化 學機械拋光,以去除覆蓋層並將氧化物層平坦化,而留下 氧化物的厚度爲例如約3 00至600人的氧化物。此拋光係以 含有例如氧化矽硏磨劑的氧化物漿料或含有氧化铈硏磨劑 及界面活性劑的漿料而完成。在方塊1 0 4中,第二化學機 -17- 201232652 械拋光包括繼續去除氧化物層,並將下面氮化物及多晶矽 覆蓋的表面暴露’以使氧化物:氮化物:多晶矽的選擇比 爲約1 : 1 : 1至2 ·· 1 : 1 ’以完成高度平坦的形貌。 在方塊1 06中’傳送漿料供根據第二平坦化步驟之平 坦化。方塊1 04的漿料較佳包括分散於水性溶液中之例如 0.5至30重量%的氧化矽硏磨劑。此外,方塊1〇4的漿料可 包括在0_01至30 g/L範圍內的有機酸。方塊1〇4的漿料可包 括在0.01至10 g/L範圍內的酸性PH調節劑。而且,方塊1〇4 的漿料可包括在0至15 g/L範圍內的鹼性pH調節劑。方塊 1〇4的漿料之pH範圍可爲1至11。方塊ι〇4之漿料的較佳組 成物包括分散於水中之5重量.%的膠體氧化矽硏磨劑、具有 二個或多個羧酸基團之0.5至50 g/L的有機酸、0.25至0.35 g/L的無機酸、0.1至l.〇g/L的無機鹼,pH在2至5的範圍內 ,較佳的pH爲約4。 在一具體實例中,漿料於方塊108可爲二部分漿料而 被傳送。二部分駿料的實例包括:第一部分:0.5至30 %氧 化矽硏磨劑漿料、0.5至50 g/L有機酸、0.01至5 g/L酸性 pH調節劑;及第二部分:〇.〇1至5 g/L驗性pH調節劑、〇.〇1 至50 g/L酸性pH調節劑。漿料可被供應至拋光桌作爲二種 成份,且使其在該拋光桌上混合,以產生具有所欲的最終 組成份之漿料。由使用相同或不同的漿料流速,可在拋光 時變化漿料組成份,以獲得氧化物、氮化物及多晶矽在不 同拋光階段下所欲的拋光速率。 在另一具體實例中,漿料可使用作爲二部分漿料(方 -18- 201232652 塊108) ’且具有以下的組成份:第—部分:(^5至30 %氧 化矽硏磨劑漿料、0.5至50 g/L有機酸、〇.〇1至5 g/L酸性 pH調節劑;第二部分:〇.5至30%氧化矽硏磨劑漿料、〇.〇1 至5 g/L鹼性pH調節劑、〇.〇1至50 g/L酸性pH調節劑。漿料 可被供應至抛光桌作爲二種成份,且使其在該拋光桌上混 合,以產生具有所欲的最終組成份之漿料。方塊110中, 由使用相同或不同的漿料流速,可在拋光時變化漿料組成 份’以獲得氧化物、氮化物及多晶矽在不同抛光階段下所 欲的拋光速率。 已描述製造FinFET裝置之化學機械平坦化方法之較佳 具體實例(其用以說明但非限制),應注意的是,熟悉本 技藝者依照上述的教導可進行修改及變化。所以,應瞭解 在揭示的特殊具體實例中所作的改變係在隨附申請專利範 圍所界定之本發明的範圍內。因此,於隨附申請專利範圍 中提出本發明的觀點(含有欲受公開專利證書所保護及主 張之細節及專利法所要求的可專利性)。 【圖式簡單說明】 由以下較佳具體實例的描述並參考圖式來提供本揭示 的細節,於圖式中: 圖1 A至1C說明如本原則FinFET結構的二步驟拋光方 法中的半導體裝置之橫剖面圖;及 圖2顯示如本原則製造裝置結構的平坦化方法,其係 同時將三種或更多種物質平坦化之流程圖。 -19- 201232652 【主要元件符號說明】 1 〇:結構 1 1 :表層 12 :基板 1 4 :鰭式結構 1 6 :導電物質 1 8 :閘極遮罩 20 :隔離沈積 22 :表面 2 4 :最終表面 -20 -S 201232652 Different slurry flow rates, which can be varied during polishing to obtain the desired polishing rate of oxides, nitrides and polysilicon at different polishing stages. The first portion is used initially, and after a certain time, the first portion is turned off and the second portion is turned on to produce a slurry having a different oxide-to-nitride-to-polysilicon selectivity than the original blend. According to the present principles, a scanning electron microscope (SEM) image of a FinFET structure polished using a conventional one-step CMP method using a cerium oxide slurry is performed by a two-step CMP method using a slurry as described in the present principles. Comparison of SEM micrographs of FinFET structures. In many cases, conventional methods do not remove all of the gate mask layer (18) to expose conductive material (16) (see, for example, Figure 1A). According to the method of the present principles, all of the observed fin structures are removed from the conductive material (16) by all of the gate mask layers (18). Furthermore, after the two-step CMP method, the SEM micrograph shows the flatness of the FinFET structure without significant dishing between the polysilicon conductive material and the oxide regions of adjacent layers 20 (see Figure 1 C). The method of conventional use has obvious discs. Referring to Figure 2, there is schematically illustrated a method of polishing a FinFET structure and the like in two steps to planarize the oxide layer and expose and polish the underlying nitride and polysilicon covered regions. It should be understood that different combinations of these and other materials can be used. In block 102, the method includes chemical mechanical polishing of the first step to remove the cover layer and planarize the oxide layer leaving the oxide having a thickness of, for example, about 300 to 600 people. This polishing is carried out by using an oxide slurry containing, for example, a cerium oxide abrasive or a slurry containing a cerium oxide abrasive and a surfactant. In block 104, the second chemical machine -17-201232652 mechanical polishing includes continuing to remove the oxide layer and exposing the underlying nitride and polysilicon-covered surfaces to such that the oxide:nitride:polysilicon selectivity ratio is about 1 : 1 : 1 to 2 ·· 1 : 1 'To complete a highly flat topography. The slurry is transferred in block 106 for flattening according to the second planarization step. The slurry of block 104 preferably comprises, for example, 0.5 to 30% by weight of a cerium oxide abrasive dispersed in an aqueous solution. Further, the slurry of the block 1〇4 may include an organic acid in the range of 0_01 to 30 g/L. The slurry of block 1〇4 may comprise an acidic pH adjuster in the range of 0.01 to 10 g/L. Moreover, the slurry of the block 1〇4 may include an alkaline pH adjuster in the range of 0 to 15 g/L. The pH of the slurry of block 1〇4 can range from 1 to 11. A preferred composition of the slurry of ι〇4 includes 5 wt.% of a colloidal cerium oxide abrasive dispersed in water, and 0.5 to 50 g/L of an organic acid having two or more carboxylic acid groups. 0.25 to 0.35 g/L of the inorganic acid, 0.1 to 1. g/L of the inorganic base, the pH is in the range of 2 to 5, and the preferred pH is about 4. In one embodiment, the slurry can be delivered at block 108 as a two-part slurry. Examples of the two parts include: the first part: 0.5 to 30% cerium oxide grinding agent slurry, 0.5 to 50 g/L organic acid, 0.01 to 5 g/L acidic pH adjusting agent; and the second part: 〇. 〇1 to 5 g/L of an acidic pH adjuster, 〇.〇1 to 50 g/L acidic pH adjuster. The slurry can be supplied to the polishing table as two components and mixed on the polishing table to produce a slurry having the desired final composition. By using the same or different slurry flow rates, the slurry composition can be varied during polishing to achieve the desired polishing rate for oxides, nitrides, and polysilicon at different polishing stages. In another embodiment, the slurry can be used as a two-part slurry (Part -18-201232652 Block 108) and has the following composition: Part: (^5 to 30% cerium oxide slurry) 0.5 to 50 g/L organic acid, 〇.〇1 to 5 g/L acidic pH adjuster; Part 2: 5.5 to 30% cerium oxide abrasive slurry, 〇.〇1 to 5 g/ L alkaline pH adjuster, 〇.〇1 to 50 g/L acidic pH adjuster. The slurry can be supplied to the polishing table as two components, and mixed on the polishing table to produce the desired The final composition of the slurry. In block 110, the slurry composition can be varied during polishing by using the same or different slurry flow rates to obtain the desired polishing rate of oxides, nitrides, and polysilicon at different polishing stages. The preferred embodiment of the chemical mechanical planarization method for fabricating a FinFET device has been described (which is intended to be illustrative, but not limiting), and it should be noted that modifications and variations can be made by those skilled in the art in light of the above teachings. The changes made in the specific examples disclosed are in the scope of the accompanying patent application. The scope of the present invention is defined by the scope of the invention as set forth in the accompanying claims (including the details of the invention as claimed and claimed, and the patentability required by the patent law). DETAILED DESCRIPTION OF THE INVENTION The details of the disclosure are provided by the following description of the preferred embodiments and the drawings in which: FIG. 1A to 1C illustrate a cross-sectional view of a semiconductor device in a two-step polishing method of a FinFET structure of the present principles. And Figure 2 shows a planarization method for fabricating a device structure as in this principle, which is a flow chart for flattening three or more substances at the same time. -19- 201232652 [Description of main component symbols] 1 〇: Structure 1 1 : Surface layer 12: Substrate 1 4: Fin structure 1 6 : Conductive material 1 8 : Gate mask 20 : Isolation deposition 22 : Surface 2 4 : Final surface -20 -
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/012,836 US8513127B2 (en) | 2010-10-04 | 2011-01-25 | Chemical mechanical planarization processes for fabrication of FinFET devices |
PCT/US2011/054521 WO2012047770A2 (en) | 2010-10-04 | 2011-10-03 | Chemical mechanical planarization processes for fabrication of finfet devices |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201232652A true TW201232652A (en) | 2012-08-01 |
TWI529791B TWI529791B (en) | 2016-04-11 |
Family
ID=47073009
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100146573A TWI529791B (en) | 2011-01-25 | 2011-12-15 | Chemical mechanical planarization processes for fabrication of finfet devices |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI529791B (en) |
-
2011
- 2011-12-15 TW TW100146573A patent/TWI529791B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI529791B (en) | 2016-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8513127B2 (en) | Chemical mechanical planarization processes for fabrication of FinFET devices | |
KR101062986B1 (en) | Multi-Stage Chemical Mechanical Polishing of Gate Areas in FINEFT | |
US6812076B1 (en) | Dual silicon layer for chemical mechanical polishing planarization | |
CN104124168B (en) | The forming method of semiconductor structure | |
JP2003507887A (en) | Manufacture of integrated circuit isolation structures | |
JP2004363191A (en) | Chemical mechanical polishing slurry for organic film, method of chemically/mechanically polishing organic film, and method of manufacturing semiconductor device | |
TWI529791B (en) | Chemical mechanical planarization processes for fabrication of finfet devices | |
JP2004265989A (en) | Method of manufacturing semiconductor device | |
TWI532090B (en) | Fabrication of replacement metal gate devices | |
CN106653604B (en) | The forming method of fin field effect pipe | |
Kuenzelmann et al. | Chemical-mechanical planarization of aluminium damascene structures | |
JP2006196512A (en) | Process for fabricating semiconductor device | |
KR20080101454A (en) | Method for isolation of semiconductor device | |
KR20050073044A (en) | Chemical mechanical polishing method | |
TW201234469A (en) | Shallow trench isolation chemical mechanical planarization | |
CN118782543A (en) | Method for forming semiconductor structure | |
Tsai et al. | Poly-Silicon Opening Polishing Slurry Development for Advanced HKMG Process |