TW201230388A - Nitride semiconductor light emitting structure - Google Patents

Nitride semiconductor light emitting structure Download PDF

Info

Publication number
TW201230388A
TW201230388A TW100100908A TW100100908A TW201230388A TW 201230388 A TW201230388 A TW 201230388A TW 100100908 A TW100100908 A TW 100100908A TW 100100908 A TW100100908 A TW 100100908A TW 201230388 A TW201230388 A TW 201230388A
Authority
TW
Taiwan
Prior art keywords
layer
nitride
based semiconductor
light
quantum well
Prior art date
Application number
TW100100908A
Other languages
Chinese (zh)
Other versions
TWI415301B (en
Inventor
Yen-Lin Lai
Original Assignee
Genesis Photonics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genesis Photonics Inc filed Critical Genesis Photonics Inc
Priority to TW100100908A priority Critical patent/TWI415301B/en
Publication of TW201230388A publication Critical patent/TW201230388A/en
Application granted granted Critical
Publication of TWI415301B publication Critical patent/TWI415301B/en

Links

Landscapes

  • Led Devices (AREA)

Abstract

The present invention discloses a nitride semiconductor light emitting structure, suitable for emitting with a wavelength essentially ranged between 500 to 540 nm. The nitride semiconductor light emitting structure includes a P type nitride semiconductor layer, a N type nitride semiconductor layer and a nitride semiconductor active layer. The nitride semiconductor active layer is dispose between the P type nitride semiconductor layer and the N type nitride semiconductor layer. In addition, the nitride-based semiconductor active layer includes a plurality of pairs of quantum well structures, each of the pair of the quantum well is stacked into mezzanine shape. Moreover, each pair of quantum well structure includes a well layer and a barrier layer wherein the thickness of the barrier layer is between 10 to 25 nm.

Description

201230388 六、發明說明: 【發明所屬之技術領域】 本發明係有關以氮化物半導體作為發光層材料所構 成的發光二極體及雷射二極體等之氮化物半導體發光元 件,特別是有關於主動層包含複數對量子井結構,且其 發光主波長為介於500至540奈米之氮化物系半導體發 光結構。 【先前技術】 吾人所知的發光二極體(light_einitting diode,led)之發 ,原理是利用電子在n型半導體與p型半導體間移動的能 罝差,以光的形式將能量釋放,這樣的發光原理係有別於 白熾燈發熱的發光原理,因此發光二極體被稱為冷光源。 此外發光一極體具有高耐久性、壽命長、輕巧、耗電量 低等優點,故其需求量及重要性亦日漸提昇。201230388 6. DISCLOSURE OF THE INVENTION [Technical Field] The present invention relates to a nitride semiconductor light-emitting element comprising a light-emitting diode composed of a nitride semiconductor as a light-emitting layer material, a laser diode, and the like, and more particularly The active layer comprises a plurality of pairs of quantum well structures, and the luminescence dominant wavelength is a nitride-based semiconductor light-emitting structure of between 500 and 540 nm. [Prior Art] The principle of light-eating diode (led) is known as the use of electrons to dissipate energy between an n-type semiconductor and a p-type semiconductor to release energy in the form of light. The principle of illumination is different from the principle of illumination of incandescent lamps, so the light-emitting diode is called a cold light source. In addition, the luminous body has the advantages of high durability, long life, light weight and low power consumption, so its demand and importance are also increasing.

瞻 f知之發光二極體包含—基板、-位於基板上之上的N 型氣化物系半導體、一氮化物系半導體主動層以及P型氮 化物系半導體層,由下而上堆疊而成。 目則,氮化物系半導體係藉由金屬有機化學氣相沈積 (MOCVD)、分子束蟲晶或相似技術成長於基板上,而所述 之基板可為藍寶石(α—A12〇3單晶)、任—種氧化物的單 ,或m-V族化合物半導體單晶。一般而言,上述之N型 亂化物系半導體是以摻雜N型離子(例如Si離子)的方式而 3 201230388 f P型氮化物系半導體是以摻雜p型離子(例如峋離子) 成:氮化物系半導體主動層具有包含阻障層與井 層的多1子井結構。 =,業界人士常使用井層(InGaN)/阻障層( 夕置子井結構來作為藍光或綠光LED的主動層。狹而,由 =、綠先的波長較藍光長,綠光咖中In含量因此較高,遂The light-emitting diode of the present invention comprises a substrate, an N-type vapor-based semiconductor, a nitride-based semiconductor active layer, and a P-type nitride semiconductor layer on the substrate, which are stacked from bottom to top. Therefore, the nitride-based semiconductor is grown on the substrate by metal organic chemical vapor deposition (MOCVD), molecular beam worm or similar technology, and the substrate may be sapphire (α-A12〇3 single crystal), Any single oxide or mV compound semiconductor single crystal. In general, the above-mentioned N-type disordered semiconductor is doped with N-type ions (for example, Si ions). 3 201230388 f P-type nitride-based semiconductor is doped with p-type ions (for example, erbium ions): The nitride-based semiconductor active layer has a multi-well structure including a barrier layer and a well layer. =, industry people often use the well layer (InGaN) / barrier layer (Xizizi well structure as the active layer of blue or green LED. Narrow, by =, green first wavelength is longer than blue light, green light coffee In content is therefore higher, 遂

晶過程中產生較大的應力(stress)。緣是,綠光LED 3厚的阻障層以釋放多餘的應力,但卻也因此降低了蠢 日曰片的產出速度。 - 产並tiiLED的需求逐漸增加,同時為了增加產出速· 效率,本發明人研發-種改良式的薄化氮化 物系+導體發光結構不但有效提高生產速度,更可改盖 餘應力殘留之問題’同時藉以減少蟲晶 : 效率提供之功效。 卫适九 【發明内容】 鑑於習知技術之問題,本發明之目的在提供一種 =糸半導體發光結構,其發光主波長介於5GG至540 :::2間者、’ 3亥氮化物系半導體發光結構之特徵係在於 鼠纟半導體主動層包含複數對量子井 一^子井結構係包含-井層及—阻障層,其中每一: 阻p早層之厚度係介於10至25奈米之間。A large stress is generated in the crystal process. The edge is that the green LED 3 thick barrier layer releases excess stress, but it also reduces the rate of production of stupid slabs. - The demand for production and tiiLED is gradually increasing, and in order to increase the output speed and efficiency, the inventors have developed an improved thinned nitride system + conductor light-emitting structure that not only effectively increases the production speed, but also changes the residual stress residue. The problem 'at the same time to reduce the insect crystal: the efficiency provided by the effect.卫适九 [Draft] In view of the problems of the prior art, the object of the present invention is to provide a = 糸 semiconductor light-emitting structure, whose main wavelength of light is between 5GG and 540:::2, '3 Hai nitride semiconductor The illuminating structure is characterized in that the squirrel semiconductor active layer comprises a plurality of pairs of quantum wells, and the well structure comprises - well layers and barrier layers, wherein each of the resistive layers has a thickness of 10 to 25 nm. between.

發明之目的,發明人提出一種氮化物系半導 ^ 、、’σ冓,其包含:一 P型氮化物系半導體層、一 N 4 201230388 型氮,物系半導體層及一氣化物系半導體主動層。其 中,氮化物系半導體主動層係形成於p型氤化物系半 體層及N型氮化物系半導體層之間。詳言之,I化物系 半導體主動層包含複數對量子井結構(MQW, 跑ti-Quantum Well) ’每一對量子井結構堆疊成為夹層 狀。此外,每一對量子井結構係包含一井層(well layer) 及二阻障層(bar— layer),所述阻障層之帶隙大於井層 之帶隙。 • 總而言之’本發明之氮化物系半導體發光結構係包 3 4至15對畺子井結構,整體觀之,猶似多個井層及阻 障層彼此重複交互堆疊而成。惟,靠近N型氮化物系半 導體,的至少2料子井結構定義為非發光區;其餘的 夕對量子井結構則定義為發光區。其中,非發光區之多 對量子井結構之阻障層之厚度大於發光區之多對量子井 結構之阻障層之厚度5至1〇奈米。詳盡的說,該非發光 區之該些多對量子井結構之阻障層之厚度係介於Μ至 • 25奈米之間,較佳則介於18至23奈米之間。並且,該 發光區之該些多對量子井結構之阻障層之厚度係介於 10至2G奈米之間’較佳則介於u至16奈米之間。總 括來說,本發明之氮化物系半導體主動層包.含發光區和 非發光區,由於非發光區的阻障層較厚,方能有效地減 低磊晶製程中所產生的多餘應力。 更/、體而5,發光區及非發光區皆包含至少2對量 子井結構。其中’發光區及非發光區的井層之組成成分 201230388 為氮化鎵錮(組成化學式:GaYInzN,0$Υ,ZS 1,Υ + z=i)’而阻障層之組成成分為係氮化鎵(GaN)。然而, 發光區與非發光區之間的差異不僅在於阻障層的厚度不 同’另一方面,非發光區之井層更不摻雜離子。爰此, 電子和電洞不易在非發光區中復合,多數電子和電洞集 中在發光區中復合,並以光子的模式釋放出能量而產生 光’藉以有效的提高發光效率。 此外,本發明另外提供一種氮化物系半導體發光結 構,其特徵在於,p型氮化物系半導體層及N型氮化物 系半導體層中不含鋁。 根據本案之一較佳實施態樣,本發明之氮化物系半 導體發光結構包含一基材及一緩衝層(Buffer layer),其 中,緩衝層形成於基材表體上,且N型氮化物系半導體 層形成於緩衝層表體上。準此,吾人可利用緩衝層降低 基材與氮化鎵磊晶層因晶格差異所造成之應力,俾使磊 晶缺陷減少,同時更可使提升發光效果。 根據本案之一較佳實施態樣,本發明之氮化物系半 導體發光結構包含-基材、—緩衝層及_未摻雜之氮化 物系半導體層’其中’緩衝層形成於基材表體上,未播 雜之氮化物系半導體層形成於緩衝層表體上,且N型氮 化物系半導體層形成於未摻雜之氮化物系半導體層表 h mN型氮化㈣半導體層也可直接形成於基 材表體上。 附帶-提’本發明之基材可為藍寶石基板、碳化石夕 201230388 !=二、:(:'基板、砷化鎵(caAs)基板 '偏銘酸經 =;)基基板板、録酸雜—基板、氣化録基板或氮化 構: ⑴本發明之氮化物系半導體發光結構,發光 二至540奈米,其中氮化物系半導體主動層包‘ =先區與發光區,非發光㈣轉層 區的阻障層之厚度5至1G奈^ (2)本發明之氮化物系半導體發光結構,其中 化物系半導體層及心氮化物系半導體層不含鋁。 區之(多氮化物系半導體發光結構,其中非發光 力二 =構能夠使得蟲晶製程中產生的多餘應 馨 【實施方式】 之氮化物系半 下述實施例中 以下將參照相關圖式,說明依本發明 導體發光結構之實施例,為使便於理解, 之相同元件係以相同之符號標示來說明之 首先,懇請鈞審同時參閱第丨圖及第2圖,苴 別為本發明之氮化物系半導體發光結構之第一實施例之 不意圖及本發明之氤化物系半導體發光結構之之第二者 施例之示意圖。衡酌此第一實施例,所述之氮化物 201230388 導體主動層3係形成於p型氮化物系半導體層4及^型 氮化物系半導體層2之間,其發光主波長介於5〇〇至54〇 奈米之間。另補充說明,本發明與習知技術之差異更在 於P型氮化物系半導體層4及N型氮化物系半導體層2 不含鋁。此外,氮化物系半導體主動層3包含複數對曰量 子井結構3GG’每-對量子井結構3⑼堆疊成為夹層狀, 在此僅以5對量子井結構3〇〇為例,但並非具限制性。 惟,靠近N型氮化物系半導體層2的至少2對量子井結 構定義為非發光區3卜其餘的多對量子井結構_則定 義為發光區32。換言之,發光區32與非發光區31均為 多對量子井結構300,每一對量子井結構3〇〇各包含一 井層312、314、322、324、326以及-阻障層31卜313、 321、323、325、327,而所述阻障層 311、313、奶、 325 327 之▼隙大於井層 312、314、322、324、 326之帶隙,且每一阻障層31卜313、32卜323、3^、 327之厚度係介於1〇至25奈米之間。 =而言之,本發明之氮化物系半導體發光結構係包 :伽4至15對之量子井結構獅,整體觀之,猶似 井層312、314、322、324、326 及阻障層31卜313、 =、323、325、327彼此重複交互堆疊而成。其中,非 ^,區31的之多對量子井結構300之阻障層311、313 3度大於發光區32之多對量子井結構之阻障層 蘇# r^3、325、327之厚度5至1G奈米。同時,該非 x、品1之s亥些多對量子井結構3〇〇之阻障層31卜313 之厚度係介於15至25奈米之間,較佳則介於18至23 201230388 奈米之間。並且’該發光區32之該些多 20奈米之間’較佳則介於u至16奈米之間。總之,本 f明之氮化物系半導體主動層3包含發光區32和非發光 區31 ’由於非發光區31的阻障層311、313較厚,能有 效地減低磊晶製程中所產生的多餘應力。 更具體而言’發光區32及非發光區3 1皆包含至少 2對量子井結構300。其中,發光區32及非發光區31For the purpose of the invention, the inventors propose a nitride-based semiconductor, σ冓, which comprises: a P-type nitride-based semiconductor layer, a N 4 201230388 type nitrogen, a semiconductor-based semiconductor layer, and a vapor-based semiconductor active layer. . Among them, a nitride-based semiconductor active layer is formed between the p-type germanide-based semiconductor layer and the N-type nitride-based semiconductor layer. In particular, the I-based semiconductor active layer contains a complex pair of quantum well structures (MQW, running ti-Quantum Well). Each pair of quantum well structures is stacked to form a sandwich. In addition, each pair of quantum well structures comprises a well layer and a second barrier layer, the barrier layer having a band gap greater than the band gap of the well layer. • In summary, the nitride-based semiconductor light-emitting structure package of the present invention is formed by stacking the well layers and the barrier layers repeatedly. However, at least two well structures adjacent to the N-type nitride-based semiconductor are defined as non-light-emitting regions; the rest of the quantum well structure is defined as a light-emitting region. Wherein, the thickness of the barrier layer of the quantum well structure is greater than the thickness of the barrier layer of the quantum well structure of the light-emitting region by 5 to 1 nanometer. In detail, the thickness of the barrier layers of the plurality of pairs of quantum well structures in the non-light-emitting region is between Μ and 25 nm, preferably between 18 and 23 nm. Moreover, the thickness of the barrier layers of the plurality of pairs of quantum well structures in the illuminating region is between 10 and 2 G nm, preferably between u and 16 nm. In summary, the nitride-based semiconductor active layer package of the present invention comprises a light-emitting region and a non-light-emitting region. Since the barrier layer of the non-light-emitting region is thick, the excess stress generated in the epitaxial process can be effectively reduced. More /, body 5, the illuminating zone and the non-illuminating zone all comprise at least 2 pairs of quantum well structures. The composition of the well layer in the 'light-emitting area and the non-light-emitting area 201230388 is GaN (constitutive chemical formula: GaYInzN, 0$Υ, ZS 1, Υ + z=i)' and the composition of the barrier layer is nitrogen. Gallium (GaN). However, the difference between the light-emitting region and the non-light-emitting region is not only that the thickness of the barrier layer is different. On the other hand, the well layer of the non-light-emitting region is less doped with ions. Thus, electrons and holes are not easily recombined in the non-light-emitting region, and most electrons and holes are combined in the light-emitting region, and energy is released in the photon mode to generate light, thereby effectively improving the luminous efficiency. Further, the present invention further provides a nitride-based semiconductor light-emitting structure characterized in that the p-type nitride-based semiconductor layer and the N-type nitride-based semiconductor layer do not contain aluminum. According to a preferred embodiment of the present invention, the nitride-based semiconductor light-emitting structure of the present invention comprises a substrate and a buffer layer, wherein the buffer layer is formed on the substrate body and the N-type nitride system The semiconductor layer is formed on the buffer layer body. Therefore, we can use the buffer layer to reduce the stress caused by the lattice difference between the substrate and the gallium nitride epitaxial layer, so that the epitaxial defects can be reduced and the luminescent effect can be improved. According to a preferred embodiment of the present invention, the nitride-based semiconductor light-emitting structure of the present invention comprises a substrate, a buffer layer, and an undoped nitride-based semiconductor layer, wherein the buffer layer is formed on the substrate surface. The undoped nitride-based semiconductor layer is formed on the buffer layer surface, and the N-type nitride-based semiconductor layer is formed on the undoped nitride-based semiconductor layer. The h mN-type nitride (tetra) semiconductor layer can also be directly formed. On the substrate body. Incidentally-presenting the substrate of the present invention may be a sapphire substrate, carbonized stone eve 201230388 !=2, : (: 'substrate, gallium arsenide (caAs) substrate ' 偏 酸 acid =;) base substrate plate, recording acid - Substrate, gasification recording substrate or nitride structure: (1) The nitride-based semiconductor light-emitting structure of the present invention emits light of two to 540 nm, wherein the nitride-based semiconductor active layer package '=pre-zone and illuminating region, non-illuminating (four)-turn The thickness of the barrier layer in the layer region is 5 to 1 G. (2) The nitride-based semiconductor light-emitting structure of the present invention, wherein the compound semiconductor layer and the core nitride-based semiconductor layer do not contain aluminum. a multi-nitride semiconductor light-emitting structure in which a non-emissive force is a structure capable of causing excess enamel generated in the process of the insect crystal. [Examples] In the following embodiments, reference will be made to the related drawings below. The embodiments of the conductor light-emitting structure according to the present invention are described with the same reference numerals for the sake of easy understanding. First, please refer to both the figure and the second figure to identify the nitrogen of the present invention. A schematic diagram of a first embodiment of a first embodiment of a semiconductor-based semiconductor light-emitting structure and a second embodiment of a germanide-based semiconductor light-emitting structure of the present invention. Considering the first embodiment, the nitride active layer of 201230388 3 is formed between the p-type nitride-based semiconductor layer 4 and the-type nitride-based semiconductor layer 2, and has a dominant wavelength of light of between 5 Å and 54 Å. Further, the present invention and the related art The difference in technology is that the P-type nitride semiconductor layer 4 and the N-type nitride-based semiconductor layer 2 do not contain aluminum. Further, the nitride-based semiconductor active layer 3 includes a plurality of pairs of germanium quantum well structures 3GG' per-pair The sub-well structure 3 (9) is stacked in a sandwich shape, and only five pairs of quantum well structures 3 〇〇 are exemplified herein, but are not limited. However, at least two pairs of quantum well structure definitions adjacent to the N-type nitride-based semiconductor layer 2 are defined. The remaining pairs of quantum well structures are defined as the light-emitting regions 32. In other words, the light-emitting regions 32 and the non-light-emitting regions 31 are both pairs of quantum well structures 300, each pair of quantum well structures A well layer 312, 314, 322, 324, 326 and a barrier layer 31 313, 321 , 323 , 325 , 327 are included, and the barrier layers 311 , 313 , milk , 325 327 have a larger gap than the well layer The band gaps of 312, 314, 322, 324, and 326, and the thickness of each of the barrier layers 31, 313, 32, 323, 3, and 327 is between 1 and 25 nm. The nitride-based semiconductor light-emitting structure package of the present invention: a gamma 4 to 15 pair of quantum well structure lions, as a whole, similar to the well layers 312, 314, 322, 324, 326 and the barrier layer 31 313, =, 323, 325, and 327 are repeatedly stacked and overlapped with each other. Among them, the plurality of barrier layers 311 and 313 of the quantum well structure 300 are not more than the light-emitting region 32. The barrier layer of the quantum well structure has a thickness of 5 to 1G nanometers of the #r^3, 325, and 327. At the same time, the non-x, the product of the 1st is more than the barrier layer 31 of the quantum well structure. The thickness of the 313 is between 15 and 25 nanometers, preferably between 18 and 23, 201230,388 nanometers, and 'between the 20 nanometers of the light-emitting region 32' is preferably between In general, the active layer 3 of the nitride-based semiconductor of the present invention includes the light-emitting region 32 and the non-light-emitting region 31'. Since the barrier layers 311 and 313 of the non-light-emitting region 31 are thick, the epitaxial process can be effectively reduced. Excessive stress generated in the process. More specifically, both the illuminating region 32 and the non-emissive region 31 comprise at least two pairs of quantum well structures 300. Wherein, the light emitting area 32 and the non-light emitting area 31

的井層312、314、322、324、326之組成成分為氮化鎵 銦(組成化學式:GaYInzN,OgY,ZS1,γ+ζ=1), 而阻障層311、313、321、323、325、327之組成成分為 係氮化鎵(GaN)。然而,發光區32與非發光區31之間 的差異不僅在於阻障層311、313、321、323、325、327 的厚度不同,另一方面,非發光區31之井層312、314 更不摻雜離子。爰此,電子和電洞不易在非發光區3! 中復合,多數電子和電洞集中在發光區32中復合,並以 光子的模式釋放出能量而產生光,藉以有效的提高發光 效率。 承上所述,凊繼續參閱第2圖,本發明之氮化物系 半導體發光結構更包含—基材!、—緩衝層6以及一未 摻雜之氮化物系半導體層7。其中,緩衝層6形成於基 材1表體上’同時在緩衝層6上形成未掺雜之氮化物系 半導體層7’最後在未摻雜之氮化物系半導體層7上依 序形成N型氮化物系半導體層2、氮化物系半導體主動 201230388 層3及P型氮化物系半導體層4。值得一書者,兮/ / _ 層6可緩衝基材!和半導體層間的晶格差】,車二,, 的效果得以提升。 裹日日 综合所述,依據本發明之主要技術特徵之實施樣態 不僅只在於此二個實施例,以上所述僅為最佳實施例的 揭不,而非用以限定本發明。任何未脫離本發明之精神 與範疇,而進行之等效修改或變更,均應包含於後附之 申請專利範圍中。 【圖式簡單說明】 第1圖係為本發明之氮化物系半導體發光結構之第 —實施例之示意圖。 第2圖係為本發明之氮化物系半導體發光結構之第 一實施例之示意圖。 【主要元件符號說明】 1 :基材 2 : N型氮化物系半導體層 3 :氮化物系半導體主動層 300 :量子井結構 31 :非發光區 32 :發光區 201230388 312、314、322、324、326 :井層 311、313、321、323、325、327 :阻障層 4 : P型氮化物系半導體層 5 :電極 6 :緩衝層 7 :未摻雜之氮化物系半導體層The composition of the well layers 312, 314, 322, 324, 326 is indium gallium nitride (composition chemical formula: GaYInzN, OgY, ZS1, γ + ζ = 1), and the barrier layers 311, 313, 321, 323, 325 The composition of 327 is GaN. However, the difference between the light-emitting region 32 and the non-light-emitting region 31 is not only the thickness of the barrier layers 311, 313, 321, 323, 325, 327, but the well layers 312, 314 of the non-light-emitting region 31 are not. Doping ions. Thus, electrons and holes are not easily recombined in the non-light-emitting region 3!, and most of the electrons and holes are concentrated in the light-emitting region 32, and the light is released in the photon mode to generate light, thereby effectively improving the luminous efficiency. Continuing to refer to Fig. 2, the nitride-based semiconductor light-emitting structure of the present invention further comprises a substrate! — a buffer layer 6 and an undoped nitride-based semiconductor layer 7. Wherein, the buffer layer 6 is formed on the surface of the substrate 1 while forming an undoped nitride-based semiconductor layer 7' on the buffer layer 6, and finally forming an N-type on the undoped nitride-based semiconductor layer 7 The nitride-based semiconductor layer 2, the nitride-based semiconductor active 201230388 layer 3, and the P-type nitride-based semiconductor layer 4. Worth a book, 兮 / / _ layer 6 can buffer the substrate! The lattice difference between the semiconductor layer and the semiconductor layer is improved. The present invention is not limited to the preferred embodiment, and is not intended to limit the present invention. Any equivalent modifications or alterations made without departing from the spirit and scope of the invention are intended to be included in the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing a first embodiment of a nitride-based semiconductor light-emitting structure of the present invention. Fig. 2 is a view showing the first embodiment of the nitride-based semiconductor light-emitting structure of the present invention. [Description of main component symbols] 1 : Substrate 2 : N-type nitride-based semiconductor layer 3 : nitride-based semiconductor active layer 300 : quantum well structure 31 : non-light-emitting region 32 : light-emitting region 201230388 312, 314, 322, 324, 326: well layer 311, 313, 321, 323, 325, 327: barrier layer 4: P-type nitride-based semiconductor layer 5: electrode 6: buffer layer 7: undoped nitride-based semiconductor layer

Claims (1)

201230388 七、申請專利範圍: 1.一種氮化物系半導體發光結構,包含·· 一 p型氮化物系半導體層; 一 N型氮化物系半導體層;以及 ,氮化物系半導體主動層,其係形成於射型 =系+導體層及該N型氮化物系半導體層之間,該 f 糸半導體主動層係包含複數對量子井結構,JL 中數對量子井結構適用於發光主波長介於5〇以 并μ 者’且每—該複數對量子井結構係包含一 1層及-阻障層,該阻障層厚度係介於1()至25奈米之 間0 光社m專利範®第1韻述之氮化㈣半導體發 氮化物系半導體主動層之該複數對量子 井、、、°構之數量係4至15對。 光^冓如Ιί專利範圍第2項所述之氮化物系半導體發 系ΐ導體數對量子井結構巾靠近該μ氮化物 子井姓構2對為非發光區’其餘的該複數對量 之::區’該非發光區之該複數對量子井結構 之节阻二之厚度切該發絲之該複㈣量子井結構 阻障層之厚度5至10奈米。 結第3項所述之氮化物系半導體發光 之厚度係介數對量子井結構之該阻障層 12 201230388 社5’如申請專利範圍第4項所述之氮化物系半導體發光 結構,其中該發光區之該複數對量子井結構之該阻障層 之厚度係介於11至16奈米。 社6.如辛請專利範圍第3項所述之氮化物系半導體發光 結構,其中該非發光區之該複數對量子井結構之該阻障 層之厚度係介於15至25奈米。 社7.如申請專利範圍第6項所述之氮化物系半導體發光 結構,其中該非發光區之該複數對量子井結構之該阻障 層之厚度係介於18至23奈米。 社8.如申請專利範圍第丨項所述之氮化物系半導體發光 結構,其中該N型氮化物系半導體層、該P型氮化物系 半導體層以及該氮化物系半導體主動層均不含鋁。 姓9.如申請專利範圍第1項所述之氮化物系半導體發光 =構,更包含一基材及一緩衝層,其中該緩衝層形成於該 土材表體上’且該N型氮化物系半導體層形成於該緩衝層 表體上。 10.如申請專利範圍第9項所述之氮化物系半導體發光 結構,更包含一未摻雜之氮化物系半導體層,其係位於 該緩衝層與該N型氮化物系半導體層之間。201230388 VII. Patent application scope: 1. A nitride-based semiconductor light-emitting structure comprising: a p-type nitride-based semiconductor layer; an N-type nitride-based semiconductor layer; and a nitride-based semiconductor active layer, which is formed Between the emitter type + the conductor layer and the N-type nitride-based semiconductor layer, the f 糸 semiconductor active layer system comprises a plurality of pairs of quantum well structures, and the JL medium-number quantum well structure is suitable for the main wavelength of the light emission of 5 〇. The sum-μ′′ and each--the complex number includes a layer and a barrier layer for the quantum well structure, and the thickness of the barrier layer is between 1 () and 25 nm. (1) nitriding of the rhyme (4) The semiconductor nitride-nitride semiconductor active layer has a complex number of pairs of quantum wells, and a number of 4 to 15 pairs. The number of conductors of the nitride-based semiconductor system according to item 2 of the patent range is as follows: The region 'the non-light-emitting region's complex number is the thickness of the quantum well structure. The thickness of the junction is cut. The thickness of the quantum well structure barrier layer is 5 to 10 nm. The thickness of the nitride-based semiconductor light emitted by the third embodiment is the barrier layer of the quantum well structure. The nitride-based semiconductor light-emitting structure of the fourth aspect of the invention is as described in claim 4, wherein The complex layer of the luminescent region has a thickness of the barrier layer of the quantum well structure of between 11 and 16 nm. The nitride-based semiconductor light-emitting structure of claim 3, wherein the plurality of non-light-emitting regions have a thickness of the barrier layer of the quantum well structure of 15 to 25 nm. The nitride-based semiconductor light-emitting structure of claim 6, wherein the non-light-emitting region has a thickness of the barrier layer of the quantum well structure of 18 to 23 nm. The nitride-based semiconductor light-emitting structure according to the above aspect of the invention, wherein the N-type nitride-based semiconductor layer, the P-type nitride-based semiconductor layer, and the nitride-based semiconductor active layer do not contain aluminum . 9. The nitride-based semiconductor light-emitting device of claim 1, further comprising a substrate and a buffer layer, wherein the buffer layer is formed on the soil material body and the N-type nitride A semiconductor layer is formed on the buffer layer body. 10. The nitride-based semiconductor light-emitting structure according to claim 9, further comprising an undoped nitride-based semiconductor layer between the buffer layer and the N-type nitride-based semiconductor layer.
TW100100908A 2011-01-10 2011-01-10 Nitride semiconductor emitting structure TWI415301B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100100908A TWI415301B (en) 2011-01-10 2011-01-10 Nitride semiconductor emitting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100100908A TWI415301B (en) 2011-01-10 2011-01-10 Nitride semiconductor emitting structure

Publications (2)

Publication Number Publication Date
TW201230388A true TW201230388A (en) 2012-07-16
TWI415301B TWI415301B (en) 2013-11-11

Family

ID=46934155

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100100908A TWI415301B (en) 2011-01-10 2011-01-10 Nitride semiconductor emitting structure

Country Status (1)

Country Link
TW (1) TWI415301B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9583675B1 (en) 2015-12-08 2017-02-28 Opto Tech Corporation White LED
TWI574432B (en) * 2014-09-18 2017-03-11 光磊科技股份有限公司 White led chip and associated packaging device
US9923119B2 (en) 2013-10-01 2018-03-20 Opto Tech Corporation White LED chip and white LED packaging device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009026956A (en) * 2007-07-19 2009-02-05 Sumitomo Electric Ind Ltd Light emitting device, substrate product for light emitting device, and method of fabricating light emitting device
JP5136437B2 (en) * 2009-01-23 2013-02-06 住友電気工業株式会社 Method for fabricating nitride-based semiconductor optical device
JP2010205835A (en) * 2009-03-02 2010-09-16 Sumitomo Electric Ind Ltd Gallium nitride-based semiconductor optical device, method of fabricating gallium nitride-based semiconductor optical device, and epitaxial wafer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9923119B2 (en) 2013-10-01 2018-03-20 Opto Tech Corporation White LED chip and white LED packaging device
TWI574432B (en) * 2014-09-18 2017-03-11 光磊科技股份有限公司 White led chip and associated packaging device
US9583675B1 (en) 2015-12-08 2017-02-28 Opto Tech Corporation White LED
TWI577043B (en) * 2015-12-08 2017-04-01 光磊科技股份有限公司 White led

Also Published As

Publication number Publication date
TWI415301B (en) 2013-11-11

Similar Documents

Publication Publication Date Title
JP5726413B2 (en) Light emitting element
TWI451591B (en) Nitride-based light emitting device
TWI359506B (en) Light-emitting device and manufacturing method the
JP5671244B2 (en) Nitride semiconductor light emitting device
JP4892618B2 (en) Semiconductor light emitting device
JP2008508720A5 (en)
JP2009278056A (en) Semiconductor light-emitting element
TWI445204B (en) Light emitting device with graded composition hole tunneling layer
TW200921941A (en) Light emitting device of III-nitride based semiconductor and manufacturing method thereof
JP5744615B2 (en) Nitride semiconductor light emitting diode device
JPWO2016002419A1 (en) Nitride semiconductor light emitting device
JP5554739B2 (en) Manufacturing method of nitride semiconductor light emitting device
JP2009129941A (en) Light-emitting device
TW201230388A (en) Nitride semiconductor light emitting structure
JP6654596B2 (en) Semiconductor light emitting device and method of manufacturing semiconductor light emitting device
TW201005998A (en) Semiconductor light emitting device having electron blocking complex layer
KR20180079031A (en) Iii-nitride semiconductor light emitting device
TW201415662A (en) Nitride semiconductor device
JP5337862B2 (en) Semiconductor light emitting device
TW201415661A (en) Nitride semiconductor device
JP2012069982A (en) Nitride semiconductor light-emitting element
JP5455852B2 (en) Compound semiconductor light emitting device and method for manufacturing the same
CN110635005A (en) GaN-based light emitting diode epitaxial structure and preparation method thereof
JP7388357B2 (en) light emitting device
JP6482388B2 (en) Nitride semiconductor light emitting device