TW201229196A - Manganese-activated germanate fluorescent substance, production method therefor, and light-emitting element - Google Patents
Manganese-activated germanate fluorescent substance, production method therefor, and light-emitting element Download PDFInfo
- Publication number
- TW201229196A TW201229196A TW100136231A TW100136231A TW201229196A TW 201229196 A TW201229196 A TW 201229196A TW 100136231 A TW100136231 A TW 100136231A TW 100136231 A TW100136231 A TW 100136231A TW 201229196 A TW201229196 A TW 201229196A
- Authority
- TW
- Taiwan
- Prior art keywords
- manganese
- compound
- activated
- phosphor
- light
- Prior art date
Links
- 239000011572 manganese Substances 0.000 title claims abstract description 50
- 229910052748 manganese Inorganic materials 0.000 title claims abstract description 47
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 17
- 239000000126 substance Substances 0.000 title claims abstract description 7
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 title abstract description 13
- 229910001635 magnesium fluoride Inorganic materials 0.000 claims abstract description 25
- 239000000203 mixture Substances 0.000 claims abstract description 21
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 claims abstract description 19
- 150000002697 manganese compounds Chemical class 0.000 claims abstract description 12
- 150000002681 magnesium compounds Chemical class 0.000 claims abstract description 10
- 239000002245 particle Substances 0.000 claims description 52
- -1 manganese activated citrate phosphor Chemical class 0.000 claims description 37
- 238000000034 method Methods 0.000 claims description 37
- 238000010304 firing Methods 0.000 claims description 20
- 230000008569 process Effects 0.000 claims description 19
- 230000005284 excitation Effects 0.000 claims description 17
- 150000001785 cerium compounds Chemical class 0.000 claims description 9
- 229910000420 cerium oxide Inorganic materials 0.000 claims description 6
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims description 6
- 150000001622 bismuth compounds Chemical class 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 239000004570 mortar (masonry) Substances 0.000 claims description 3
- 238000002156 mixing Methods 0.000 abstract description 15
- 238000005245 sintering Methods 0.000 abstract description 2
- 150000002291 germanium compounds Chemical class 0.000 abstract 1
- 150000003377 silicon compounds Chemical class 0.000 abstract 1
- 150000001875 compounds Chemical class 0.000 description 18
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 16
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical group [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 12
- 229910052707 ruthenium Inorganic materials 0.000 description 12
- 150000003304 ruthenium compounds Chemical class 0.000 description 12
- 239000002253 acid Substances 0.000 description 10
- 150000003839 salts Chemical class 0.000 description 10
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 9
- 239000002270 dispersing agent Substances 0.000 description 8
- 239000002994 raw material Substances 0.000 description 8
- 239000002002 slurry Substances 0.000 description 8
- 239000011777 magnesium Substances 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 6
- 239000011656 manganese carbonate Substances 0.000 description 6
- 235000006748 manganese carbonate Nutrition 0.000 description 6
- 229940093474 manganese carbonate Drugs 0.000 description 6
- 229910000016 manganese(II) carbonate Inorganic materials 0.000 description 6
- XMWCXZJXESXBBY-UHFFFAOYSA-L manganese(ii) carbonate Chemical compound [Mn+2].[O-]C([O-])=O XMWCXZJXESXBBY-UHFFFAOYSA-L 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 230000000704 physical effect Effects 0.000 description 6
- 239000008240 homogeneous mixture Substances 0.000 description 5
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 5
- 239000000347 magnesium hydroxide Substances 0.000 description 5
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 229910044991 metal oxide Inorganic materials 0.000 description 5
- 150000004706 metal oxides Chemical class 0.000 description 5
- 230000004913 activation Effects 0.000 description 4
- 239000002612 dispersion medium Substances 0.000 description 4
- 239000000395 magnesium oxide Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- LMFWXTZEFKLNSB-UHFFFAOYSA-N OS(O)(=O)=O.OS(O)(=O)=O.OS(O)(=O)=O.P.P Chemical compound OS(O)(=O)=O.OS(O)(=O)=O.OS(O)(=O)=O.P.P LMFWXTZEFKLNSB-UHFFFAOYSA-N 0.000 description 3
- 150000004703 alkoxides Chemical class 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 239000011163 secondary particle Substances 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 2
- XBSLKMQADAAKGP-UHFFFAOYSA-N 2-hydroxypropane-1,2,3-tricarboxylic acid;phosphane Chemical compound P.OC(=O)CC(O)(C(O)=O)CC(O)=O XBSLKMQADAAKGP-UHFFFAOYSA-N 0.000 description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- SQPVQGHHSGWUEP-UHFFFAOYSA-N O.[P] Chemical compound O.[P] SQPVQGHHSGWUEP-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 206010036790 Productive cough Diseases 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 229930004069 diterpene Natural products 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000002309 gasification Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 210000003802 sputum Anatomy 0.000 description 2
- 208000024794 sputum Diseases 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical class OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- IGLKELDWPZFFKF-UHFFFAOYSA-N OC(C1=CC=CC=C1C(O)=O)=O.OC(C1=CC=CC=C1C(O)=O)=O.OC(C1=CC=CC=C1C(O)=O)=O.P.P Chemical class OC(C1=CC=CC=C1C(O)=O)=O.OC(C1=CC=CC=C1C(O)=O)=O.OC(C1=CC=CC=C1C(O)=O)=O.P.P IGLKELDWPZFFKF-UHFFFAOYSA-N 0.000 description 1
- 229910052778 Plutonium Inorganic materials 0.000 description 1
- 229910052774 Proactinium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- FPWJLQXCGHQXLL-UHFFFAOYSA-N [P].OP(O)(O)=O Chemical class [P].OP(O)(O)=O FPWJLQXCGHQXLL-UHFFFAOYSA-N 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 150000001540 azides Chemical class 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- GHLITDDQOMIBFS-UHFFFAOYSA-H cerium(3+);tricarbonate Chemical compound [Ce+3].[Ce+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O GHLITDDQOMIBFS-UHFFFAOYSA-H 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 150000004141 diterpene derivatives Chemical class 0.000 description 1
- 125000000567 diterpene group Chemical group 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000695 excitation spectrum Methods 0.000 description 1
- 238000002189 fluorescence spectrum Methods 0.000 description 1
- 239000010436 fluorite Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 230000003779 hair growth Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000011268 mixed slurry Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- QOBRVMGZGBKYRU-UHFFFAOYSA-N oxo(sulfanylidene)antimony Chemical compound O=[Sb]=S QOBRVMGZGBKYRU-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000006862 quantum yield reaction Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 150000003437 strontium Chemical class 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical compound S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229910003468 tantalcarbide Inorganic materials 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- 230000035922 thirst Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- 150000003755 zirconium compounds Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/66—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
- C09K11/666—Aluminates; Silicates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/501—Wavelength conversion elements characterised by the materials, e.g. binder
- H01L33/502—Wavelength conversion materials
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Luminescent Compositions (AREA)
- Led Device Packages (AREA)
Abstract
Description
201229196 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種有用地成為紅色螢光體之錳活化錯 酸鹽螢光體及其製造方法。此外,本發明係關於一種使用 該錳活化鍺酸鹽螢光體之發光元件。 【先前技術】 在近年來’大多知道:藍色二極體係進行實用化而以 該二極體作為發光源之白色發光二極體之研究。發光二極 體係具有所謂輕量且不使用水銀而成為長壽命之優點。 知道例如在藍色發光元件來塗佈Y3Als〇i2 : Ce之白色 發光二極體。但是’該發光二極體係嚴密地說,並非白色, 成為混合藍綠色之白色。因此,提議:混合Y3Ah〇i2 :以 和吸收藍色光而發出紅色螢光之紅色螢光體,調整色調。 關於吸收藍色光而發出紅色螢光之紅色螢光體之報告係大 多是關於有機系材料,但是,關於無機系材料係變少。 另一方面’作為一般之紅色螢光體係也提議氧化物螢 光體、氧硫化物螢光體、硫化物螢光體、氮化物螢光體等 之無機系材料,也提議藉由下列之通式(A)所表示之錳活 化錯酸鹽螢光體(例如參考下列之專利文獻1〜2。)。 a* MgO · b* MgF2 . cGe〇2 : x' Mn4+ ( A)201229196 VI. Description of the Invention: [Technical Field] The present invention relates to a manganese activated acid sulfate phosphor useful as a red phosphor and a method for producing the same. Further, the present invention relates to a light-emitting element using the manganese-activated phthalate phosphor. [Prior Art] In recent years, it has been known that the blue dipole system has been put into practical use and the white light-emitting diode using the diode as a light-emitting source has been studied. The light-emitting diode system has the advantage of being so lightweight and not using mercury to have a long life. It is known to apply, for example, a blue light-emitting element to a white light-emitting diode of Y3Als〇i2: Ce. However, the light-emitting diode system is strictly white, and it is a mixture of blue-green white. Therefore, it is proposed to mix Y3Ah〇i2 to adjust the hue by emitting a red fluorescent red phosphor with and absorbing blue light. The report of the red phosphor which emits red fluorescent light by absorbing blue light is mostly about an organic material, but the inorganic material is less. On the other hand, as an ordinary red fluorescent system, inorganic materials such as oxide phosphors, oxysulfide phosphors, sulfide phosphors, and nitride phosphors are also proposed, and the following is also proposed. The manganese activated acid salt phosphor represented by the formula (A) (for example, refer to the following Patent Documents 1 to 2). a* MgO · b* MgF2 . cGe〇2 : x' Mn4+ ( A)
(在化子式中,成為a +b’ =4,b’係表示0.5Sb, S 1.0,x 係表示 〇.001gx, g〇 〇i。) 但是,錳活化鍺酸鹽螢光體係在發光強度,有問題發(In the formula, a + b' = 4, b' means 0.5Sb, S 1.0, and x means 〇.001gx, g〇〇i.) However, the manganese activated citrate fluorescent system is emitting light. Strength, problematic
201229196 生’量子良品率也變低。 【先前技術文獻】 【專利文獻】 【專利文獻1】日本特開昭54一 158387號公報 【專利文獻2】日本特開平u_ 1 58464號公報 【發明内容】 【發明所欲解決之課題】 因此’本發明係提供一種藉由藍色光來進行激發而以 高發光強度來發出紅色光之錳活化鍺酸鹽螢光體、以及其 有利於工業之製造方法。 【用以解決課題之手段】 本發明人們係在此種貫情,全心重複地進行研究結 果認為:在藉由特定之通式而表示之錳活化鍺酸鹽螢光 體,藉由一氧化矽原子,以特定量,而取代鍺原子之一部 分,但是,以比起習知還更加高之發光強度,來發出紅色 光,以致於完成本發明。 本發明係根據前述之意見而完成的,提供一種猛活化 鍺酸鹽螢光體,其特徵在於:藉由下列之通式(1), aMgO · bMgF2 · c { ( Ge卜ySiy) 〇2 } : xMn“ ( j ) (在化學式中’ a係表示〇<a$4, b係表示〇.5sbs4, c 係表示0.8SCS1.2’ χ係表示〇·0〇1$χ$〇 〇5 , 丫係表示 0 < y S 0. 28。)所表示。 ’ 化錯酸鹽營光體之 此外’本發明係用以製造前述疏活201229196 The raw 'quantum yield rate is also low. [PRIOR ART DOCUMENT] [Patent Document 1] Japanese Patent Laid-Open Publication No. JP-A No. Hei. No. Hei. No. Hei. The present invention provides a manganese-activated citrate phosphor which is excited by blue light to emit red light with high luminous intensity, and a manufacturing method advantageous for the same. [Means for Solving the Problem] The inventors of the present invention conducted this research in a thorough and thorough manner, and concluded that the manganese activated citrate phosphor represented by a specific formula is oxidized by oxidation. The ruthenium atom, in a specific amount, replaces a part of the ruthenium atom, but emits red light at a higher luminous intensity than conventionally, so as to complete the present invention. The present invention has been accomplished in accordance with the foregoing teachings and provides a vigorously activated phthalate phosphor characterized by the following formula (1), aMgO · bMgF2 · c { ( Ge Bu ySiy) 〇 2 } : xMn“ ( j ) (In the chemical formula, 'a indicates 〇 <a$4, b indicates 〇.5sbs4, c indicates 0.8SCS1.2', and χ·〇0〇1$χ$〇〇5 The lanthanide series is represented by 0 < y S 0. 28.). 'In addition to the acid salt camping body', the present invention is used to manufacture the aforementioned sparse
S 201229196 適當方法,提供一 一種錳活化鍺酸鹽螢光體之製造方法 之製造方法,其S 201229196 A method for producing a manganese activated phthalate phosphor, which is a suitable method,
【發明效果】[effect of the invention]
方法的話’則能夠以有利於工業之方法, 藉由本發明之製造 來製造該螢光體。 【實施方式】 在以下’根據其理想之實施形態而說明本發明。 本發明之錳活化鍺酸鹽螢光體係在基本上,藉由藍色 光而進行激發,發出紅色光。具體地說,藉由至少27〇〜 550nm、最好是380〜 490nm之激發光而進行發光。此外, 在600〜750nm、最好是650〜70〇nm之區域,具有發光帶 (也就是具有紅色光譜)。 本發明之錳活化鍺酸鹽螢光體係藉由下列之通式(i ) 所表示。 aMgO · bMgF2 · c { ( Ge卜ySiy) 〇2 } : XMn4+ ^ j ^ 通式(1)之化學式中之a係〇< 4、最好是1<a $3.4 ’ b 係 〇.5$b$4、最好是 0.6Sb各3,c 係 〇.8sc $1.2、最好是 〇.9gcsl.i,x係 0 〇〇1$χ$〇 〇5、最好 是 0. 005 $ 〇· 〇3。 此外,顯示鍺原子之一氧化石夕原子之取代率之化學气 中之y係0<y$0.28、最好是0<yg0.25,藉由該二氧化 201229196 矽原子之取代率成為前述之範 療,紅色光之發光強 又另一方面,在y之值超過〇 28之時, 量子效率而變得不理想。 _者士降低内部 本發明之錳活化鍺酸鹽螢光體係 並盔牲丨阳Μ 遛,其粒子形狀係 …特別限制。粒子形狀係除了可 ^ rr, ,± 疋列如球狀、多面體 狀紡錘形狀、針狀以外,還可以是不定形。 本發明之錳活化鍺酸鹽螢光體係平均粒徑 5〇/im,特別最好是5〜45#m。在平均粒徑未 古机找,A 1工衣滿1 # m之時’ 請先谷易散亂而降低激發光之吸收效率之傾向發生。 千均粒徑超過5〇^之時’粒子表面積變小,激發光之 吸收仍_是容易不充分。此外,在本 /發先之 =係白一次粒子凝集而形成之二次粒子之平均粒徑。該平 γ立㈣中值粒徑。二次粒子之平均粒徑(中值粒徑)係 :如可以藉由堀場製作所製造之雷射繞射/散亂式粒度分 布測定裝置(型號:LA—92〇)而 丁判疋以樣本之折射 =為181,作為分散媒之折射率⑶,藉由體積基準而 :平均粒徑係可以例如正如以下而進行調節。也就是 :’可以藉由在後面敘述之燒成製程來得到之猛活化錯酸 -螢光體之燒成體’施行由於自動研鉢或球磨機等而造成 :粉碎處理’隨著狀態而使用位處於目的粒徑之開孔之 筛’進行分、級,來得到具有要求之平均粒徑之粉體。 本發明之錳活化鍺酸鹽螢光體係BET比表面積最好是 ο.1〜i〇〇"g、特別是丨〜-乂。在BET比表面積未滿In the case of the method, the phosphor can be produced by the production of the present invention in an industrially advantageous manner. [Embodiment] The present invention will be described below based on its preferred embodiments. The manganese activated phthalate fluorescent system of the present invention is substantially excited by blue light to emit red light. Specifically, the light is emitted by excitation light of at least 27 Å to 550 nm, preferably 380 to 490 nm. Further, in the region of 600 to 750 nm, preferably 650 to 70 Å, there is a light-emitting band (i.e., having a red spectrum). The manganese activated phthalate fluorescent system of the present invention is represented by the following general formula (i). aMgO · bMgF2 · c { ( Ge ySiy) 〇 2 } : XMn4+ ^ j ^ a system 通式 in the formula (1) 〇 < 4, preferably 1 < a $3.4 ' b system 〇.5$b $4, preferably 0.6Sb each 3, c system is .8sc $1.2, preferably 〇.9gcsl.i, x is 0 〇〇1$χ$〇〇5, preferably 0. 005 $ 〇· 〇3 . Further, in the chemical gas showing the substitution rate of one of the ruthenium atoms of the ruthenium atom, the y series 0 <y$0.28, preferably 0 < yg 0.25, by which the substitution ratio of the 201222196 ruthenium atom becomes the aforementioned The treatment, the red light is strong and on the other hand, when the value of y exceeds 〇28, the quantum efficiency becomes unsatisfactory. _Zhe Shi lowered the interior of the manganese activated phthalate fluorescent system of the present invention and the helmet is 丨 Μ 遛 遛 遛 遛 遛 遛 遛 遛 遛The particle shape may be indefinite, in addition to the rr, ± 疋 column such as a spherical shape, a polyhedral spindle shape, or a needle shape. The manganese activated phthalate fluorescent system of the present invention has an average particle diameter of 5 Å/im, particularly preferably 5 to 45 #m. When the average particle size is not found in the ancient machine, when the A 1 work clothes are full of 1 # m, please wait for the valley to be scattered and reduce the absorption efficiency of the excitation light. When the number average particle diameter exceeds 5 Å, the surface area of the particles becomes small, and the absorption of the excitation light is still insufficient. Further, in the present invention, the average particle diameter of the secondary particles formed by the aggregation of the primary primary particles is formed. The flat gamma (four) median particle size. The average particle diameter (median diameter) of the secondary particles is as follows: a laser diffraction/scattering particle size distribution measuring device (model: LA-92〇) manufactured by Horiba, Ltd. Refractive = 181, as the refractive index (3) of the dispersion medium, by volume basis: the average particle size can be adjusted, for example, as follows. That is, 'the burnt body of the stimuli-activated acid-fluorescent body obtained by the firing process described later' is performed by an automatic mortar or a ball mill, etc.: the pulverization process is used as the state is used. The sieve of the opening of the target particle size is divided into stages to obtain a powder having a desired average particle diameter. The BET specific surface area of the manganese activated phthalate fluorescent system of the present invention is preferably ο.1~i〇〇"g, especially 丨~-乂. Not enough BET specific surface area
S 6 201229196 0. lm2/ g之時,激發光之吸收容易變得不充分。在比 表面積超過10〇m2/g之時,隨著表面積變大而使得平均粒 徑變小,因此,激發光呈散亂而使得激發光之吸收變得不 充分。BET比表面積係例如可以使用島津製作所製造之抓τ 法之單吸附比表面積測定裝置(FlowS〇rb n23〇〇)而進行 測定。 BET比表面積係可以例如正如以下而進行調節。也就 是說,可以藉由在後面敘述之燒成製程來得到之錳活化鍺 酸鹽螢光體之燒成體,施行由於自動研銶或球磨機等而造 成之粉碎處理,隨著狀態而使用位處於目的粒徑之開孔之 篩,進2分級,來得到具有要求之BET比表面積之粉體。 接著,就本發明之錳活化鍺酸鹽螢光體之理想之製造 方法而進行說明。 入本發明之錳活化鍺酸鹽螢光體之理想之製造方法係包 含:「混合氟化鎂、氟化鎂以外之鎂化合物(在以下,僅稱 .、b 5物」。)、鍺化合物、矽化合物和錳化合物, 燒成侍到之混合物之製程。也就是說’本發明之錳活化鍺 酸鹽勞光體之製造方法係大致包含(甲)混合製程以及(乙) 燒成製程。 a在(甲)之混合製程’調製均勻地混合氟化鎂、鎂化 _ 鍺化a物、z夕化合物和猛化合物之均勻化合物。 β由均勻之混合可以變得容易之觀點來看的話,則最好 疋第1原料之氟化鎂係氟化鎂之理想物性為平均粒徑1。" m以下;t好是卜⑺“、特別是 201229196 原、料之錢化合物係除了氧化鎮以外,在後面敛述 之,乙)燒成製程,使用可以轉換成為氧化鎂者。作為此 種鎮化口物係可以使用例如鎮之氧化物、碳酸鹽酸睡、 ::鹽在氣氧化物等。這些化合物係可以使用i種或Γ種 料間中’在燒成後而不殘留不純物之方面以及 . :性變高之方面,最好是使用氫氧化鎂。由均S 6 201229196 0. At lm2/g, the absorption of excitation light is likely to be insufficient. When the specific surface area exceeds 10 〇 m 2 /g, the average particle diameter becomes small as the surface area becomes larger, and therefore, the excitation light is scattered and the absorption of the excitation light becomes insufficient. The BET specific surface area can be measured, for example, by using a single adsorption specific surface area measuring device (FlowS〇rb n23〇〇) manufactured by Shimadzu Corporation. The BET specific surface area can be adjusted, for example, as follows. In other words, the sintered body of the manganese-activated citrate phosphor obtained by the firing process described later can be subjected to pulverization treatment by an automatic mortar or a ball mill, etc., and the position is used with the state. The sieve having the opening of the target particle size is classified into 2 to obtain a powder having a desired BET specific surface area. Next, an ideal manufacturing method of the manganese activated phthalate phosphor of the present invention will be described. An ideal method for producing the manganese-activated citrate phosphor of the present invention comprises: "mixing magnesium compounds other than magnesium fluoride and magnesium fluoride (hereinafter, simply referred to as "b 5"). , a bismuth compound and a manganese compound, a process of firing a mixture of the servants. That is, the manufacturing method of the manganese activated bismuth silicate polishing agent of the present invention roughly comprises a (A) mixing process and a (B) firing process. a is prepared in a mixed process of (a) to uniformly mix a uniform compound of magnesium fluoride, magnesia, azide, zirconium compound and a compound. When β is easy to be mixed uniformly, it is preferable that the desired physical properties of the magnesium fluoride-based magnesium fluoride of the first raw material are an average particle diameter of 1. " m below; t is good (7) ", especially 201229196 raw materials, the material of the money in addition to the oxidation town, condensed later, B) firing process, the use can be converted into magnesium oxide. As such The town can be used, for example, an oxide of a town, a bed of hydrochloric acid, a salt of a salt, or the like. These compounds can be used in the case of i or sputum, 'after firing, without leaving impurities. And: In terms of high sexuality, it is best to use magnesium hydroxide.
2昆σ可以變得容易之觀點來看的話,則最好是鎂化A 物之理想物性係平均 娱化ϋ 十岣粒也為5 # Hi以下、最好是 m、特別是0.2〜wm。 5// 敘述料之錯化合物係除了氧化錯以外,在後面 為此種錯化合WV吏用可以轉換成為氧化錯者。作 缺脇 ’、可以使用例如鍺之氧化物、碳酸趟^ 酸鹽、硝酸鴎、_ # 厌·»»'硫 -虱氧化物、有機酸鹽等。這歧 以使用1種或2種以上。即使是在這此當中;* :物係可 鍺之揮發性變低且不容 由於氧化 个合易籍由水分而進行皮鉉 藉著後面敘述之渴弋:θ人 ,因此,由 話,則最好是使用氧化錯。由均勻之混合可以看的 觀點來看的話,則最 變件合易之 .c 、最好疋鍺化合物之理想物性係半 為50㈣以下,特別是1〜3(^m。 句粒徑 :乍為第4原料之碎化合物係除了二氧切( 卜,在後面敘述之(乙)燒成 〇 « 氧切者。作為此”化合物係可以使用=轉換成為二 矽、碳化矽、氮化矽、獅# 如—氧化矽、 硼化矽、有機酸矽化厶物笙 化δ物係可以使用丨 口荨。這些 種次2種以上。即使是在這些當中, 201229196 也由於二氧化石夕不容易反應於水而不進行水解,因此,由 藉著後面敘述之濕式混合而容易調整組成之觀點來看的 話’則最好是使用二氧化矽。由均勻之混合可以變得容易 =觀點來看的話’則最好是二氧切之理想物性係平均粒 從為l〇#Hi以下、最好县〇 〜in 于疋υ·υυΐ〜10以"1、特別是0.001〜1 #111。 作為第5原料之猛化合物係可以使用例如經之氧化 氫氧化物、碳酸鹽、硝酸鹽、硫酸鹽、有機酸鹽等。 物 這些化合物係可以使用i種或2種以上。即使是在這些當 中,也由於燒成後而不殘留不純物之方面以及容易固溶: 母體結晶中之方面’則最好是碳酸錳。由可以容易均勻混 合之觀點來看的話,則錳化合物之理想物性係最好是平均 粒徑為1 〇 β m以下、特別是1〜9 # m。 不論前述之氟化鎂、鎂化合物、鍺化合物、矽化合物 及錳化合物之製造履歷’但是,$ 了製造高純度之錳活化 鍺酸鹽螢光體,因此,最好是儘可能地減少不純物含有量。 在本製造方法,氟化鎂、鎂化合物、鍺化合物、矽化 合物及錳化合物之混合比例係可以配合前述之要求之錳活 化鍺酸鹽螢光體之組成而適度地選擇各原料之練合比例。 具體地說,氟化鎂、鎂化合物、鍺化合物、矽化合物 及錳化合物之混合比例係氟化鎂之添加量成為氟化鎂之分 子數相對於鍺化合物中之鍺原子、矽化合物中之石夕原子和 猛化合物中之錳原子之合計原子數之莫爾數比 (Ge+Si + Mn))之 0.5〜4、最好是 〇·6〜3。 值(MgF2/ 此外,鎂化 201229196 合物之添加量係鎂化合物中之鎂原子數相對於鍺化合物中 之鍺原子、矽化合物中之矽原子和錳化合物中之錳原子之 合計原子數之莫爾數比值(Mg/ (Ge+Si + Mn))成為大 於0、小於4,最好是1〜3. 4。猛化合物之添加量係猛化 合物中之錳原子數相對於鍺化合物中之鍺原子、矽化合物 中之矽原子和錳化合物中之錳原子之合計原子數之莫爾數 比值(Mn/ (Ge+Si + Mn))成為〇 〇〇1〜〇 〇5,最好是 0. 005〜0. 03。 此外,矽化合物之添加量係矽化合物中之矽原子數相 對於鍺化合物中之鍺原子和矽化合物之矽原子之合計原子 數之莫爾數比值(Sl/Ge+Sl)成為大於〇、小於°^28, 最好是大於0、小於〇. 2 5。 作為混合第1〜第5原料之氟化鎮、鎮化合物、錯化 合物、矽化合物及錳化合物之方法係可以是濕式法和乾式 法之任何-種’但是,由可以容易地得到各原料呈均句地 =合之均W合物之方面來看的話,則最好是藉由機械手 :而以濕式法來進行者。可以藉由以成為特別是能夠同時 進仃粉碎和混合之機器之介質軋磨機, 熬式法’來進行 浞口處理,而更加容易地得到均勻混合物, j吏用 均勻混合物而得到之猛活化鍺酸鹽螢光體係特別是發 度變高。 ^ 就使用介質軋磨機之混合處理而更加地進行說明。 在介質軋磨機之混合處理係在基本上, 程以及得到之漿體導入至介質軋磨機 二:調製製 订/¾合處理之混 10 201229196 合製程來組成。 在聚體調製製程,氟化鎂、 鎂化合物、鍺化人彡 化合物及猛化合物係分散於分散媒而成為浆體。=夕 媒係即使是水及非水分散媒之任何—種= ”,、分散 處理容易等之觀點來看的話,則最好是使用:,二由 散媒。 疋便用水,來作為分 的話,則 、鍺化合 重量% 、 由處理之規模變小且操作性容易之觀點來邊 最好是衆體之固態成分濃度(氟化鎮、鎂化合私 物、矽化合物及錳化合物之合計濃度)係5〜⑼ 特別是10〜3 0重量% 。 可以在聚體’加入分散劑。藉由分散劑之添加而使得 氟化鎂、鎮化合物、鍺化合物、矽化合物及錳化合物更 加均勾地分散於分散媒中。結果,可以更加容易地得到這 些原料之均勻混合物。使用之分散劑係可以配合分散劑之 種類而選擇適當者。在分散劑為水之狀態下,作為分散劑 係可以使用各種之界面活㈣、聚m㈣鹽等。由充分之 分散效果之觀點來看的話,則最好是漿體中之分散劑之濃 度係〇.01〜10重量%、特別是.0.1〜5重量%。 接著,將在漿體調製製程來得到之漿體,導入至介質 軋磨機而進行混合處理,得到均句混合物。作為介質乳磨 機係可以使用顆粒軋磨機、球磨機、塗料振動器、繪圖機、 砂磨機等。特別最好是使用顆粒軋磨機。在其狀態下,運 轉條件或者是顆粒之種類及大小係可以配合裝置之尺寸或 處里量氟化鎂、鎂化合物、錯化合物、;ε夕化合物及欽化 11 201229196 5物之種類等而適度地選擇。 由得到更加均勻之混合物之觀點來 藉由濕式法而造成之人虛 ' ,」最好是 < 犯合處理係進行至 徑(二次粒子之平 心成/刀之平均粒2 If the σ σ can be easily viewed, it is preferable that the ideal physical property of the magnesia A is an average entertainment ϋ ϋ 岣 也 也 也 也 也 也 也 5 5 5 5 5 5 5 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 5// The wrong compound of the description material is in addition to the oxidation error, and it can be converted into an oxidative error in the following. As the defect, it is possible to use, for example, an oxide of cerium, a cerium carbonate, cerium nitrate, _# ·»»' sulfur-antimony oxide, an organic acid salt or the like. This may be used in one type or in two or more types. Even in this one; *: The volatility of the sputum is low and it is not allowed to be dermatologically due to the oxidization of the escaping. The thirst is described by the following: θ people, therefore, by words, then the most It is good to use oxidation error. From the point of view of uniform mixing, it is the most variable. The ideal physical property of the best 疋锗 compound is 50 (four) or less, especially 1 to 3 (^m.) Particle size: 乍The chopped compound of the fourth raw material is a dioxic cut (b, which is described later as (b) calcined 〇« oxygen chopping. As this "compound" can be used = converted into diterpene, tantalum carbide, tantalum nitride,狮# such as - yttrium oxide, lanthanum boride, organic acid bismuth bismuth sulphate δ system can use 丨 荨. These kinds of more than two species. Even among these, 201229196 is also difficult to react due to dioxide Since water is not hydrolyzed, it is preferable to use cerium oxide from the viewpoint of easy adjustment of the composition by wet mixing described later. It is easy to mix by uniform = point of view 'It is best that the ideal physical property of the dioxic cut is from l〇#Hi below, the best county 〇~in 疋υ·υυΐ~10 to "1, especially 0.001~1 #111. 5, the raw material of the compound can use, for example, hydrogen peroxide Compounds, carbonates, nitrates, sulfates, organic acid salts, etc. These compounds may be used alone or in combination of two or more. Even in these cases, since impurities are not retained after firing, and solid solution is easy. The aspect of the parent crystal is preferably manganese carbonate. From the viewpoint of being easily and uniformly mixed, the ideal physical property of the manganese compound is preferably an average particle diameter of 1 〇β m or less, particularly 1 to 9 # m. Regardless of the manufacturing history of the above-mentioned magnesium fluoride, magnesium compound, bismuth compound, bismuth compound and manganese compound, however, it is preferable to manufacture a high-purity manganese-activated citrate phosphor. In the present production method, the mixing ratio of the magnesium fluoride, the magnesium compound, the cerium compound, the cerium compound, and the manganese compound can be appropriately selected in accordance with the composition of the manganese activated citrate phosphor required for the above-mentioned requirements. Specifically, the mixing ratio of the magnesium fluoride, the magnesium compound, the cerium compound, the cerium compound, and the manganese compound is the amount of magnesium fluoride added to be fluorinated. The number of molecules is 0.5 to 4, preferably 0.5 to 4, based on the molar ratio (Ge + Si + Mn) of the total number of atoms of the ruthenium atom in the ruthenium compound, the ruthenium atom in the ruthenium compound, and the manganese atom in the ruthenium compound. It is 〇·6~3. Value (MgF2/ In addition, the amount of magnesium 201229196 added is the number of magnesium atoms in the magnesium compound relative to the ruthenium atom in the ruthenium compound, the ruthenium atom in the ruthenium compound, and the manganese in the manganese compound. The molar ratio of the atomic number of atoms (Mg/(Ge+Si + Mn)) is greater than 0, less than 4, and most preferably 1 to 3. 4. The amount of the compound added is the number of manganese atoms in the compound. The molar ratio (Mn/(Ge+Si + Mn)) of the total number of atoms relative to the ruthenium atom in the ruthenium compound, the ruthenium atom in the ruthenium compound, and the manganese atom in the manganese compound becomes 〇〇〇1 to 〇〇 5, preferably 0. 005~0. 03. Further, the addition amount of the ruthenium compound is such that the ratio of the number of ruthenium atoms in the ruthenium compound to the total number of atoms of the ruthenium atom of the ruthenium compound and the ruthenium atom of the ruthenium compound (Sl/Ge+Sl) becomes larger than 〇, less than °^28, preferably greater than 0, less than 〇. 2 5. The method of mixing the fluorinated town, the town compound, the wrong compound, the ruthenium compound, and the manganese compound of the first to fifth raw materials may be any of the wet method and the dry method. However, each raw material can be easily obtained. In the case of the average sentence, it is preferable to carry out the method by the wet method. It is possible to obtain a uniform mixture by using a media roll mill which is a machine capable of simultaneously pulverizing and mixing, and it is easier to obtain a homogeneous mixture, which is activated by a homogeneous mixture. In particular, the citrate fluorescent system has a high degree of hair growth. ^ This will be explained more in detail using a mixing process of a media mill. The mixing process in the media mill consists essentially of the process, and the resulting slurry is introduced into a media mill 2: Modulation/Processing Mixture 2012 20122196. In the polymerization process, magnesium fluoride, a magnesium compound, a deuterated human compound, and a stimulating compound are dispersed in a dispersion medium to form a slurry. = Even if it is any kind of water and non-aqueous dispersion medium = "," and it is easy to disperse the treatment, it is best to use: 2. The second is by the media. If you use water as a point, The concentration of the solid component (the total concentration of the fluorinated town, the magnesium compound, the cerium compound, and the manganese compound) is preferably from the viewpoint of the reduction in the weight of the oxime and the ease of handling. 5~(9) especially 10~30% by weight. The dispersant can be added to the polymer. The addition of the dispersant makes the magnesium fluoride, the eutrophic compound, the cerium compound, the cerium compound and the manganese compound more evenly dispersed. As a result, a homogeneous mixture of these raw materials can be obtained more easily. The dispersing agent to be used can be appropriately selected in accordance with the kind of the dispersing agent. In the state in which the dispersing agent is water, various types can be used as the dispersing agent. Interface activity (4), poly m (tetra) salt, etc. From the viewpoint of sufficient dispersion effect, it is preferred that the concentration of the dispersant in the slurry is 〇.01~10% by weight, especially .0.1~5 Then, the slurry obtained in the slurry preparation process is introduced into a media roll mill and mixed to obtain a homogenous mixture. As a medium emulsion mill, a particle mill, a ball mill, and a paint vibration can be used. , a plotter, a sander, etc. It is especially preferable to use a particle mill. In its state, the operating conditions or the type and size of the particles can match the size or amount of magnesium fluoride and magnesium compounds in the device. , the wrong compound, the ε 夕 compound, and the type of the object, etc., and the type of the object, etc., are appropriately selected. From the viewpoint of obtaining a more uniform mixture, the human form caused by the wet method is preferably ' < The smuggling process is carried out to the diameter (the average of the secondary particles of the flat core / knife)
為止。拉d成為1〇㈣以下、特別是U 在展合處理後,由渡體爽 “心 及體來過處及回收均勻混合物。问 =混合物係最好是在附加於(乙)之燒成製程片, 進仃乾處理。乾燥處理係可以在例 引 〜100小時。 (:,進行iuntil. Pulling d becomes 1〇(4) or less, especially after U is blended and treated, the body is mixed with the body and the homogeneous mixture is recovered. Q=The mixture is preferably added to the firing process of (B) Tablets, dry and dry treatment. Drying treatment can be cited in the example ~100 hours. (:, carry out i
力於接著:將在(甲)混合製程來得到之均勾混合物,附 :;(乙)之燒成製程而得到疑活化錯酸鹽螢光體 體。燒成條件係最好是燒成溫度為1 025〜12 A 1 050〜1 200。(:。在蜱成π声去戈特別是 在燒成皿度未滿1 025t,不容易得到 、、且成物,並且,不容易固溶發光離子,另一方 溫度超過1250。(:之時,右由私4 在燒成 時有由於粒子間之燒結過度地進行而 不谷易得到粉體之傾向發生。燒成時間係最好是3小時以 上、特別是5〜36小時。燒成之氣氛係並無特別限制,可 以是大氣等之氧化性氣氛中及情性氣體氣氛中之任何一 種。 像這樣得到之燒成體係可以配合需要而附 之燒成製程。 獲歡人 可以對於在燒成後而得到之链活化錯酸鹽鸯 合需要’來進行解碎處理或粉碎處理,並且,還進行八級 本發明之猛活化錯酸鹽勞光體係可以由於改^濕性 12 201229196 因此’由於需要而還藉由金屬氧化物,來對於粒 子表面’進行表面處理。 作為前述之金屬氧化物係使用包含由Be、Mg、M、Si、 Ca 、 Sc 、 Ti 、 V 、 Cr 、 Mn 、 Fe 、 c〇 、 M 、 Cu 、 zn 、以、^ 'The force is followed by a mixture of the mixture obtained in the (A) mixing process, and the firing process of (B) is obtained to obtain the suspected activated acid sulfate phosphor. The firing conditions are preferably a firing temperature of 1 025 to 12 A 1 050 to 1 200. (:. In the π π 去 去 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , In the case of firing, there is a tendency that the sintering between the particles is excessively performed, and the powder tends to be easily obtained. The firing time is preferably 3 hours or longer, particularly 5 to 36 hours. The atmosphere is not particularly limited, and may be any one of an oxidizing atmosphere such as the atmosphere and an atmosphere of an inert gas. The firing system thus obtained may be accompanied by a firing process as needed. The chain-activated acid salt complex obtained after the formation needs to be 'crushed or pulverized, and the eight-stage activated phosphoric acid solution of the present invention can be modified due to the change of wetness 12 201229196' The surface of the particle is 'surface treated' by a metal oxide as needed. As the metal oxide system described above, it is composed of Be, Mg, M, Si, Ca, Sc, Ti, V, Cr, Mn, Fe. , c〇, M , Cu, zn, to, ^ '
Sr Y Zr 、 Nb 、 Mo 、 Cd 、 In ' Sn 、 Sb 、 Te 、 Ba 、 La 、 Hf 、 Τι λ pu n . _ 、Bi、Ce、Pr、Nb、Pm、Sm、Eu、Gd、Tb、 y Ho Er、Tm、Yb、Lu、Th、Pa、U、Pu 而選出之 j 種 或2種以上之金屬元素之金屬氧化物。 作為藉由這些金屬氧化物而對於錳活化鍺酸鹽螢光體 之粒子表面來進行被覆處理之方法係可以使用習知之方 法,如果是顯示其一例的話,則列舉:使用包含前述金屬 凡素之金屬醇鹽,添加前述之金屬醇鹽至含有該紅色螢光 體之製體或懸濁液’進行該金屬醇鹽之水解反應,藉由前 述之金屬氧化物’而對於紅色螢光體之粒子表面,均勻地 進行表面處理之方法等。 鹽螢光體係可以使用在例如 器、電激發光等之顯示器元 450nm前後之激發光譜,因 像這樣得到之錳活化鍺酸 電解放射型顯示器、電漿顯示 件之用途。此外’具有接近於 此’可以適用在藍色LED激發用螢光體之用途。特別是適 合在電激發光之顯示器元件之用$。此外,也可以藉由併 用於藍色激發綠色螢光體之方法、併用藍“肋元件和藍 色激發綠色螢光體而使用之方法、或者是併用藍色LED元 件和藍色激發黃色發光螢光體而使用之方法等,來適用於 白色LED。Sr Y Zr , Nb , Mo , Cd , In ' Sn , Sb , Te , Ba , La , Hf , Τ λ pu n . _ , Bi, Ce, Pr, Nb, Pm, Sm, Eu, Gd, Tb, y Metal oxides of j or more than two metal elements selected from Ho Er, Tm, Yb, Lu, Th, Pa, U, and Pu. As a method of coating the surface of the particles of the manganese-activated phthalate phosphor by these metal oxides, a conventional method can be used, and if an example is shown, it is exemplified that the use of the aforementioned metal-containing substance is used. a metal alkoxide to which a metal alkoxide is added to a body or suspension containing the red phosphor to carry out a hydrolysis reaction of the metal alkoxide, and the particles of the red phosphor by the metal oxide described above The surface, the method of uniformly performing the surface treatment, and the like. The salt fluorescent system can be used in the excitation spectrum of 450 nm or so of a display element such as a device or an electroluminescence light, and is used for the manganese-activated tantalum-electrolytic radiation type display and the plasma display device thus obtained. Further, 'having close to this' can be applied to the use of a blue LED excitation phosphor. In particular, it is suitable for display elements that are electrically excited. In addition, the method of using the blue phosphor to excite the green phosphor, the method of using the blue “rib element and the blue excitation green phosphor, or the blue LED element and the blue excitation yellow fluorescent It is applied to a white LED by a method of using a light body or the like.
§ 13 201229196 實施例 在以下,藉由實施例而說明本發明,但是, 並非限定於這些實施例》 系 以下之實施例及比較例之平均粒徑和bet比 分別正如下列之敘述而進行測定。 ιτ' 平均粒徑:藉由堀場製作所制 作所製造之雷射繞射/散亂式 粒度分布測;t裝置(型號:LA—92{))而進行測^,以樣本 之折射率成為i. 8卜作為分散媒之折射 基準而算出。 精由體積 腸比表面積:使用島津製作所製造之βΕτ法之 附(monosorb )比表面積測定裝 進行载。 &裝置⑺⑽rbn2_)而 [實施例1 ] (曱)均勻漿體調製製程: 秤量氯氧化鎮(平均粒徑〇 57//m)、氣化錯( 粒徑19.0M、氧化錯(平均粒徑17 7^)、二々 (平均粒徑0. 016以m)和碳酸錳(平均 哪之莫爾數比,成為1:2 =使 0.05 . 0.(Π,裝入至球磨機。在球 (花王(股)公司製、泊(一_,=: IS::來之:合液。分散劑之濃度係2%、之莫爾數 比係顯不僅來自於氫氧化鎂之莫爾數比。 在球磨機’裝入直徑2mm之氧化鍅球進 法而造成之混合粉碎i 5小睥 丁 a 濕式 …5小時。在錯由光散亂法而測定在混 14 201229196 合粉碎後之毁體固態成分之平均粒徑之時,成為〇·3“。 接者,由漿體來過濾及回收混合物,在12〇。〇,進行 1 5小時之乾燥而得到乾燥粉體。 丁 Λ Γ 祖钇屎叔體之平均粒徑係 0· 5 m。 (乙)燒成製程: 接著 以靜置6 光體》 ’在電爐,裝入乾燥粉體, 小時之狀態,來進行燒成, 在大氣下、115(Tc, 得到錳活化鍺酸鹽螢 在就得到之猛活化錯酸鹽螢光體而進行χ射線繞射測 疋之時’ 4認該錳活化鍺酸鹽螢光體係“guGe5〇“。_ 而、且成成為早一組成物之猛活化錯酸鹽營光體。 [實施例2] 除了在貝施例1之(甲)均勻混合毁體調製製程,样 量氫氧化鎂(平均粒徑。.57")、氟化鎂(平均粒徑19〇 、氧域(平均粒徑17.7“)、二氧切(平均粒 徑〇.〇i6am)和碳酸錳(平均粒徑5 2#m)而使得MgF2: : Ge : Si: Μη 之莫爾數比,成為 i : 3 : 〇. 89 : 〇. i : 〇. 〇ι , 裝入至球磨機以外,其餘係相同於實施例丨而得到錳活化 鍺酸鹽螢光體。在就得到之錳活化鍺酸鹽螢光體而進行χ 射線繞射測定之時,確認由MguGesO24和Mg〇而組成,成為 單一組成物之錳活化鍺酸鹽螢光體。 [實施例3 ] 除了在實施例1之(甲)均勻混合漿體調製製程,秤 量氫氧化鎂(平均粒徑〇· 57/z m)、氟化鎂(平均粒徑19. 〇§ 13 201229196 EXAMPLES Hereinafter, the present invention will be described by way of Examples, but the present invention is not limited to these Examples. The average particle diameter and the bet ratio of the examples and comparative examples below were measured as described below. Ιτ' average particle size: measured by laser diffraction/scattered particle size distribution manufactured by Horiba, Ltd.; t device (model: LA-92{)), and the refractive index of the sample becomes i. 8 is calculated as a refractive index of the dispersion medium. Fine volume by volume Specific surface area of the intestine: It was carried out using a monosorbed specific surface area measuring device of the βΕτ method manufactured by Shimadzu Corporation. & device (7) (10) rbn2_) and [Example 1] (曱) uniform slurry preparation process: weighing chlorine oxidation town (average particle size 〇 57 / / m), gasification error (particle size 19.0M, oxidation error (average particle size 17 7^), diterpenes (average particle size 0. 016 m) and manganese carbonate (average molar ratio of 1:2 = 0.05. 0. (Π, loaded into the ball mill. In the ball ( Kao (stock) company system, mooring (a _, =: IS:: come from: liquid. Dispersing agent concentration is 2%, the Mohr number ratio shows not only the molar ratio of magnesium hydroxide. In the ball mill 'loading 2mm diameter cerium oxide ball into the method of mixing and crushing i 5 small a a wet... 5 hours. In the wrong way by the light scattering method measured in the mixed 14 201229196 comminuted solid state When the average particle size of the component is 〇·3", the mixture is filtered and recovered from the slurry at 12 Torr. The dried powder is dried for 15 hours to obtain a dry powder. The average particle size of the unorganized body is 0·5 m. (B) The firing process: Next, the 6-well body is allowed to stand still. 'In the electric furnace, the dry powder is placed in an hour, and the firing is performed. Under the atmosphere, 115 (Tc, when manganese activated strontium fluorite is obtained, the strontium ray diffraction is performed on the sensitized acid sulfate phosphor). 4 The manganese activated citrate fluorescent system "guGe5" is recognized. 〇". _, and into a composition of the early activation of the acid salt phosphoric acid. [Example 2] In addition to the uniform mixing process in the shell of Example 1 (A), the sample of magnesium hydroxide (Average particle size: .57"), magnesium fluoride (average particle size 19 Å, oxygen domain (average particle size 17.7"), dioxotomy (average particle size 〇.〇i6am), and manganese carbonate (average particle size 5 2#m) and the Mohr number ratio of MgF2: : Ge : Si: Μη becomes i : 3 : 〇. 89 : 〇. i : 〇. 〇ι , is loaded into the ball mill, and the rest is the same as the embodiment A manganese-activated phthalate phosphor was obtained by hydrazine. When the Mn-ray diffraction was performed on the obtained manganese-activated phthalate phosphor, it was confirmed that it was composed of MguGesO24 and Mg ,, and it became a single composition of manganese activation. Hydrate phosphor. [Example 3] In addition to the uniform mixing slurry preparation process of Example 1 (A), the amount of magnesium hydroxide was weighed (average grain Square · 57 / z m), magnesium fluoride (average particle size of 19 square
15 201229196 V m)、氧化鍺(平均粒徑17. 7 // m )、二氧化矽(平均粒 徑0. 016# m)和碳酸錳(平均粒徑5. 2" m)而使得MgF2 : 化,〇6.31:^|11之莫爾數比,成為1:3:〇.79:〇.2:〇.〇1, 裝入至球磨機以外,其餘係相同於實施例1而得到錳活化 錯營光體。在就彳于到之猛活化錯酸鹽螢光體而進行X 射線繞射測定之時,確認由Mgl4Ges〇24和Mg〇而組成,成為 單一組成物之錳活化鍺酸鹽螢光體。 [比較例1 ] 混合漿體調製製程,秤 氟化鎂(平均粒徑19. 0 除了在實施例1之(甲)均勻 量氫氧化鎂(平均粒徑〇· 57 # m )、 ㈣)、氧化鍺(平均粒徑17.7//ffl)和碳酸錳(平均粒徑 5.2“)而使得MgF2:Mg:Ge:Mn之莫爾數比,成為1:3: U9: 〇.〇卜裝入至球磨機以外,其餘係相同於實施例( 而得到猛活化鍺酸鹽螢光體。在就得到之猛活化鍺酸鹽營 光體而進行X射線繞射料之時,仙由化如心和_ 而’且成成為單一組成物之錳活化鍺酸鹽螢光體。 [比較例2 ] 旦^ 了在貫施例1之(甲)均勻混合衆體調製製程,科 里 鎮(平均粒徑D、氣化鎮(平均粒徑19 〇 # «〇 、氧化鍺(平均粒 ,,〇 filR 、 17.7#以、二氧化矽(平均粒 k 〇. 016 # m)和碳酸錳(平15 201229196 V m), yttrium oxide (average particle size 17.7 // m), cerium oxide (average particle size 0. 016# m) and manganese carbonate (average particle size 5. 2 " m) make MgF2: 〇, 〇 6.31: ^|11 Mohr number ratio, becomes 1:3: 〇.79: 〇.2: 〇. 〇 1, loaded into the ball mill, the rest is the same as in Example 1 to obtain manganese activation error Camp light body. When the X-ray diffraction measurement was carried out on the activated phosphoric acid phosphor, the manganese-activated citrate phosphor composed of Mgl4Ges〇24 and Mg〇 was confirmed to be a single composition. [Comparative Example 1] A mixed slurry preparation process, weighing magnesium fluoride (average particle diameter of 19.0 except for the uniform amount of magnesium hydroxide (average particle diameter 〇· 57 # m ), (d)) in Example 1 Cerium oxide (average particle size of 17.7//ffl) and manganese carbonate (average particle size of 5.2") such that the molar ratio of MgF2:Mg:Ge:Mn is 1:3: U9: 〇. Except for the ball mill, the rest are the same as the examples (the vibrating citrate phosphor is obtained. When the X-ray diffraction material is obtained by the activation of the citrate camping body, the scent is turned into a heart and _ And the manganese activated citrate phosphor which becomes a single composition. [Comparative Example 2] The uniform polymerization process of the (A) uniform mixture in Example 1 was carried out, and the average particle size D , gasification town (average particle size 19 〇# «〇, yttrium oxide (average grain, 〇filR, 17.7#, cerium oxide (average particle k 〇. 016 # m) and manganese carbonate (flat
Mg . Γρ . Q. _ ♦杬 5. m)而使得]^?2:Mg . Γρ . Q. _ ♦ 杬 5. m) and make ^^?2:
Mg · Ge · Si : Μη之莫爾數比,成 f 人 $ 抹 n 珉為 1 · 3. 0. 69 : 〇. 3 : w, ^ 1 u外’其餘係相同於實施例1而得^ ^化 鍺酸鹽螢光體。在就得到之m 彳龍活化 到之猛活化鍺酸鹽t光體而進行χMg · Ge · Si : Moir number ratio of Μη, into f person $ 抹 n 珉 is 1 · 3. 0. 69 : 〇. 3 : w, ^ 1 u outside 'the rest is the same as in embodiment 1 and ^ ^ Hydrate phosphor. In the case of the obtained m 彳 活化 活化 活化 活化 猛 猛 猛 猛 猛 猛 猛 猛 猛 猛 猛 猛 猛
S 16 201229196 射線繞射測定之時,確認由和Mg0而組成,成為 單一組成物之猛活化錯酸鹽螢光體。 <猛活化鍺酸鹽螢光體之物性評價> 就在實施例及比較例來得到之錳活化鍺酸鹽螢光體, 藉由記載於先前敘述之方法而測定平均粒徑及bet比表面 積,其結果’顯示於表2。 【表1】 原料裝入量(莫爾數比) 燒成溫度 燒成時間 (h) MgF2 Mg原子 Ge原子 Si原子 Μη原子 (0〇 實施例1 1 3 0.94 0.05 0.01 1150 6 實施例2 1 3 0.89 0.1 0.01 1150 6 實施例3 1 3 0.79 0.2 0.01 1150 6 比較例1 1 3 0.99 一 0.01 1150 6 比較例2 1 3 0.69 0.3 0.01 1150 6 【表2】 組成 平均粒徑 (卵) BET比表面積 (mVg) 實施例1 3MgO»lMgF2· { (Ge0.94Si0.05) 〇2} :〇. 〇1Μη4+ 9.2 16.2 實施例2 3MgO»lMgF2· { (Ge〇.89Si〇..) 〇2} : 0. 〇1Μη4+ 10.5 15.3 實施例3 3MgO«lMgF2· { (Ge〇.79Si〇.2) 〇2} : 0.01Mn4+ 12.1 14.7 比較例1 3MgO · lMgFa · Ge〇.99〇2 : 0. 01Mn4+ 7.9 20.3 比較例2 3MgO*lMgF2· { (Ge〇.69Si〇.3) O2} : 〇. 01Mn4+ 15.3 10.8 [作為紅色螢光體之評價] 就在實施例及比較例來得到之錳活化鍺酸鹽螢光體, 錯由以下之方法而測定在激發波長45 〇nm之内部量子效率 17 201229196 及相對發光強度。這些結果,顯示於以下之表3。 [内部量子效率] 使用曰立高科技公司製之螢光分光光度計(F一 7〇〇〇) 和附屬之積为球,成為激發光45〇nm,掃描由開始至 700nm之範圍,求出轉換效率。此外,在用以測定全散亂 光之試料’使用氧化銘粉末。以藉由氧化链而得到之奶 開始至475nm之光譜強度積分值,作為激發光量,以藉由 螢光體試料而得到之435開始至475nm之光譜強度積分 值,作為吸收後激發光量,以藉由螢光體試料而得到之6〇〇 開始至70〇nm之光譜強度積分值,作為螢光量而求出。接 著,由以下之公式而求出内部量子效率。 内部量子效率(% ) =100x螢光量+(激發光量—吸收 後激發光量)。 [相對發光強度] 使用日立高科技公司製之螢光分光光度計(F_ 7000 ) ’成為激發光450nm,掃描由470開始至800nm之 祀圍,付到螢光光譜。由得到之強度值,以最大發光強度 作為100而求出相對發光強度。 【表3】 内部量子效率 __(% ) 相對發光強度 實施例1 __64. 0 100 實施例2 _65. 6 98. 6 實施例3 __67.3 92. 6S 16 201229196 At the time of the ray diffraction measurement, it was confirmed that it was composed of Mg0 and became a single composition of the stimuli-activated acid sulfate. <Evaluation of physical properties of the activated citrate phosphor> The manganese activated citrate phosphor obtained in the examples and the comparative examples was measured by the method described above to determine the average particle diameter and the bet ratio. The surface area, the results of which are shown in Table 2. [Table 1] Raw material loading amount (Mohr number ratio) Firing temperature firing time (h) MgF2 Mg atom Ge atom Si atom Μη atom (0〇 Example 1 1 3 0.94 0.05 0.01 1150 6 Example 2 1 3 0.89 0.1 0.01 1150 6 Example 3 1 3 0.79 0.2 0.01 1150 6 Comparative Example 1 1 3 0.99 - 0.01 1150 6 Comparative Example 2 1 3 0.69 0.3 0.01 1150 6 [Table 2] Composition average particle diameter (egg) BET specific surface area ( mVg) Example 1 3MgO»lMgF2· { (Ge0.94Si0.05) 〇2} : 〇. 〇1Μη4+ 9.2 16.2 Example 2 3MgO»lMgF2· { (Ge〇.89Si〇..) 〇2} : 0. 〇1Μη4+ 10.5 15.3 Example 3 3MgO«lMgF2· { (Ge〇.79Si〇.2) 〇2} : 0.01Mn4+ 12.1 14.7 Comparative Example 1 3MgO · lMgFa · Ge〇.99〇2 : 0. 01Mn4+ 7.9 20.3 Comparative Example 2 3MgO*lMgF2· { (Ge〇.69Si〇.3) O2} : 〇. 01Mn4+ 15.3 10.8 [Evaluation as Red Phosphor] Manganese-activated citrate phosphor obtained in the examples and comparative examples The internal quantum efficiency 17 201229196 and the relative luminous intensity at an excitation wavelength of 45 〇 nm were measured by the following methods. These results are shown in Table 3 below. [Internal quantum efficiency] Using a fluorescence spectrophotometer (F-7 〇〇〇) manufactured by 曰立科技有限公司 and the subsidiary product as a sphere, the excitation light is 45 〇 nm, and the scanning is performed from the beginning to the range of 700 nm. Conversion efficiency. In addition, in the sample for measuring the total scattered light, 'Oxide powder was used. The integrated value of the spectral intensity at 475 nm from the milk obtained by oxidizing the chain was used as the amount of excitation light to make the sample by the phosphor. The spectral intensity integral value from 435 to 475 nm was obtained as the amount of excitation light after absorption, and the spectral intensity integral value from 6 〇〇 to 70 〇 nm obtained by the phosphor sample was obtained as the amount of fluorescence. Next, the internal quantum efficiency is obtained by the following formula: Internal quantum efficiency (%) = 100 x fluorescence amount + (excitation amount - amount of excitation light after absorption) [Relative luminous intensity] Fluorescence spectrophotometry manufactured by Hitachi High-Technologies Corporation (F_ 7000 ) ' becomes 450 nm of excitation light, scans from 470 to 800 nm, and is applied to the fluorescence spectrum. From the obtained intensity value, the relative luminous intensity is obtained by taking the maximum luminous intensity as 100.[Table 3] Internal quantum efficiency __(%) Relative luminous intensity Example 1 __64. 0 100 Example 2 _65. 6 98. 6 Example 3 __67.3 92. 6
18 S 201229196 比較例18 S 201229196 Comparative Example
比較例2 74. 9 61. 5 此外’由表3所示之結果而明確地判斷:實施例1之 猛活化錯酸鹽螢光體(本發明品)係比起比較例1之錳活 化鍺酸鹽螢光體,還更加地使得在紅色區域之發光強度變 南0 【圖式簡單說明】 無 【主要元件符號說明】 無 19Comparative Example 2 74. 9 61. 5 Further, it was judged by the results shown in Table 3 that the stimuli-activated acid salt phosphor of the first embodiment (the present invention) was compared with the manganese-activated hydrazine of Comparative Example 1. The acid salt phosphor further makes the luminous intensity in the red region become south. [Simplified illustration] No [Main component symbol description] None 19
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010256630 | 2010-11-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201229196A true TW201229196A (en) | 2012-07-16 |
Family
ID=46083927
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100136231A TW201229196A (en) | 2010-11-17 | 2011-10-06 | Manganese-activated germanate fluorescent substance, production method therefor, and light-emitting element |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW201229196A (en) |
WO (1) | WO2012066993A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5345451B2 (en) * | 2009-06-23 | 2013-11-20 | 株式会社東京化学研究所 | Deep red phosphor |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54158387A (en) * | 1978-06-05 | 1979-12-14 | Toshiba Corp | Production of magnesium fluorogermanate phosphor |
JPH10102054A (en) * | 1996-09-30 | 1998-04-21 | Matsushita Electric Ind Co Ltd | Fluorescent substance |
JPH11158464A (en) * | 1997-11-26 | 1999-06-15 | Matsushita Electric Ind Co Ltd | Manganese-activated germanate phosphor and its production |
DE10259946A1 (en) * | 2002-12-20 | 2004-07-15 | Tews, Walter, Dipl.-Chem. Dr.rer.nat.habil. | Phosphors for converting the ultraviolet or blue emission of a light-emitting element into visible white radiation with very high color rendering |
-
2011
- 2011-10-06 TW TW100136231A patent/TW201229196A/en unknown
- 2011-11-09 WO PCT/JP2011/075800 patent/WO2012066993A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2012066993A1 (en) | 2012-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5504178B2 (en) | Alpha-type sialon phosphor, method for producing the same, and light emitting device | |
JP4762892B2 (en) | α-sialon and method for producing the same | |
TWI555824B (en) | Nitroxide phosphor powder, nitroxide phosphor powder, and nitrogen oxide phosphor powder for manufacturing the same | |
JP2011246662A (en) | Aluminate phosphor, method for producing the same, and light-emitting element | |
Aboulaich et al. | Rapid synthesis of Ce 3+-doped YAG nanoparticles by a solvothermal method using metal carbonates as precursors | |
JP7088027B2 (en) | Luminescent device and phosphor | |
TW200927659A (en) | Complex oxide powder, method for preparing the same, ceramic composition using the complex oxide powder and ceramic electronic parts using the ceramic composition | |
Behara et al. | Amphotericity-spectroscopy correlations in Eu doped sodium bismuth titanate (Na0. 5Bi0. 5TiO3) | |
WO2012050051A1 (en) | Method for producing manganese-activated germanate phosphor | |
JP2010265448A (en) | Red phosphor and method for producing the same | |
WO2010119799A1 (en) | Red phosphor, method for producing same, and light-emitting element | |
López-Romero et al. | Bright green luminescence from zirconium oxide stabilized with Tb 3+ ions synthesized by solution combustion technique | |
JP5483898B2 (en) | Method for producing oxide phosphor | |
TW201443201A (en) | Oxynitride phosphor powder and method for producing same | |
US7407894B2 (en) | Compound semiconductor particles and production process therefor | |
JP4364189B2 (en) | α-type sialon, phosphor comprising α-type sialon, and lighting apparatus using the same | |
TW201229196A (en) | Manganese-activated germanate fluorescent substance, production method therefor, and light-emitting element | |
TW201202394A (en) | PROCESS FOR PRODUCTION OF Eu-ACTIVATED ALKALINE EARTH METAL SILICATE PHOSPHOR | |
JP7037082B2 (en) | Rare earth aluminate phosphor manufacturing method, rare earth aluminate phosphor and light emitting device | |
CN115768853A (en) | Nitride phosphor and method for producing same | |
JP2014037452A (en) | Fluorescent material and method for manufacturing the same and fluorescent material-containing composition using the fluorescent material | |
JP2013159718A (en) | Manganese-activated germanate phosphor, method for preparing the same, and light-emitting element | |
JP7466660B2 (en) | Phosphor powder and light-emitting device | |
WO2022044792A1 (en) | Method for producing phosphor powder, phosphor powder, and light emitting apparatus | |
Gu et al. | Luminescent characteristics of ZrO 2: Pb nanopowders |