201228784 六、發明說明: 【發明所屬之技術領域】 本發明實施例大體而言係有關於處理基板的設備。 【先前技術】 現今的基板製造通常需要在一基板上於若干不同處理 腔室内執行多個製程,該處理腔室例如蝕刻或沉積腔 室、冷卻腔室、負載鎖定室、或諸如此類者。該等製程 腔室常是與中央真空腔室耦合的整合系統或群集工具的 一部分。移送機器人係設置在該中央真空腔室内以將基 板從一個腔室移動至另一個腔室。為了增加整合系統的 效率,常將移送機器人設定為可在中央真空腔室内同時 移送多個基板。但是,隨著移送機器人的複雜度提升, 移送機器人的整體尺寸也增加,最終成為決定該整合系 統的積集度的限制因素。 例如’在習知大型基板(例如’太陽能板、多個晶圓的 承載框架、平面顯示器、或諸如此類者)的製造製程中, 移送機器人可包含單件構造,該構造擁有三或多個在中 央軸上彼此堆疊的旋轉致動器,其中該等旋轉致動器經 由一系列滑輪和皮帶控制移送機器人的兩或多個手臂。 但是,以此方式配置的移送機器人的整體尺寸使移送機 器人很難,或不可能,在不對該整合系統進行實質調整 的情況下安裝在現今的整合系統内。此外,若安裝了移 送機器人,該整體尺寸與單件構造使難以在不從整合系 201228784 統完全移出移送機器人的情況下對轉接祕。。 杪廷機盗人進行保 養。 因此,本發明人提供一種改良的基板移送機器人以 與整合製造系統並用。 【發明内容】 在此提供雙臂基板移送機器人的實施例。在某些實施 例中,雙臂基板移送機器人可包含中央致動器,':圍: 中央軸旋轉移送機器人;連接f,該連接臂擁有第—端 以及通常與第-端相對的第二端’其中該連接臂在介於 第一端與第二端之間础鄰連接冑中心處肖十央致動器輕 合;第一前臂,可旋轉地與連接臂的第一端耦合;第二 前臂’可旋轉地與連接臂的第二端耦合;第—前臂致: 器,以控制第一前臂相對於連接臂的旋轉;以及第二前 臂致動器’以控制第二前臂相對於連接臂的旋轉,其中 第-前臂致動器與第二前臂致動器係與中央致動器橫向 偏位。 本發明的其他與進—步實施例在下文描述。 【實施方式】 本發明實施例大體而言係有關於用於整合基板製造系 統的基板移送機ϋ人。本發明的基板移送機器人有利地 提供共同的連接臂與分開的橫向偏位旋轉致動器,以單 獨控制移送機器人的手臂,此舉提供對移送機器人增強 的控制’同時縮減移送機器人的整體尺寸,因而使移送 5 201228784 機器人可簡易地安裝及保養β 第1圖係可適於與在此揭示的本發明設備並用之範例 多腔室處理系統1〇〇的概要上視圖。可根據在此提供的 教不做適當調整的合適多腔室處理系統的範例包含 ENDURA®、CENTURA⑧、以及pR〇DUCER⑧處理夺統(例 如 PRODUCER® GTtm)、ADVANTEDGETM處理系統或 可從位於加州聖塔克拉拉的應用材料公司購得之其他適 合的處理系統。預期其他處理系統(包含來自其他製造商 者)可經改造而受惠於本發明。 在某些實施例中,處理系統1〇〇 一般可包含真空密封 處理平臺102、工廠介面1〇4,以及系統控制器14〇。平 臺102 了包含與移送室188耦合的複數個製程腔室 190A-F以及與移送室188耦合的至少一個負載鎖定室 (圖不出兩個)184。移送機器人1〇6(在下文對照第2圖與 第3圖知述)係設置在移送室188中央,以在負載鎖定室 184和製程腔室19〇A_F間移送基板。製程腔室i9〇a_f 可經设定以執行各種功能,包含層沉積(包含原子層沉 積(ALD))、化學氣相沉積(CVD)、物理氣相沉積(p VD)、 姓玄j預淨化、除氣、定向與中心定位(cent;er_finding)、 退火、與其他基板製程。每一個製程腔室l9〇A_F皆可包 含流量間或其他選擇性的可密封開口,以選擇性地流體 麵合製程腔室190 A-F的個別内部體積與移送室ία的内 部體積。同樣地,每一個負載鎖定室丨84皆可包含埠, 以選擇性地流體耗合負載鎖定室丨84的個別内部體積與 201228784 移送室188的内部體積。 工廠介面104係經由負載鎖定室184與移送室188耦 合。在某些實施例中,每一個負載鎖定室丨84皆可包含 與工廠介面102耦合的第一埠123以及與移送室188耦 合的第二4 125。負載鎖定室184可與壓力控制系統耦 合,該壓力控制系統將負載鎖定室1 84抽及破真空,以 輔助基板在移送室188的真空環境和工廠介面ι〇4的實 質周圍壓力(例如,大氣壓)環境間移送。 在某些實施例中,工廠介面1〇4包含至少一個機座⑻ 以及主少201228784 VI. Description of the Invention: [Technical Field of the Invention] Embodiments of the present invention generally relate to an apparatus for processing a substrate. [Prior Art] Today's substrate fabrication typically requires multiple processes to be performed on a substrate in a number of different processing chambers, such as etching or deposition chambers, cooling chambers, load lock chambers, or the like. These process chambers are often part of an integrated system or cluster tool coupled to a central vacuum chamber. A transfer robot is disposed within the central vacuum chamber to move the substrate from one chamber to the other. In order to increase the efficiency of the integrated system, the transfer robot is often set to simultaneously transfer a plurality of substrates in the central vacuum chamber. However, as the complexity of the transfer robot increases, the overall size of the transfer robot also increases, eventually becoming a limiting factor in determining the integration of the integrated system. For example, in a manufacturing process of a conventional large substrate such as a 'solar panel, a carrier frame of a plurality of wafers, a flat panel display, or the like, the transfer robot may comprise a one-piece construction having three or more in the center Rotary actuators stacked on each other on a shaft, wherein the rotary actuators control two or more arms of the transfer robot via a series of pulleys and belts. However, the overall size of the transfer robot configured in this manner makes it difficult or impossible for the transfer robot to be installed in today's integrated systems without substantial adjustments to the integrated system. In addition, if a transfer robot is installed, the overall size and one-piece construction make it difficult to transfer the transfer robot without completely removing the transfer robot from the integrated system 201228784. . Yu Tingji robbed people for maintenance. Accordingly, the inventors have provided an improved substrate transfer robot for use with an integrated manufacturing system. SUMMARY OF THE INVENTION An embodiment of a dual-arm substrate transfer robot is provided herein. In some embodiments, the dual-arm substrate transfer robot can include a central actuator, ': a central axis rotation transfer robot; a connection f having a first end and a second end generally opposite the first end Wherein the connecting arm is coupled to the center of the connecting arm between the first end and the second end; the first forearm is rotatably coupled to the first end of the connecting arm; a forearm rotatably coupled to the second end of the connecting arm; a first fore-arm to control rotation of the first forearm relative to the connecting arm; and a second forearm actuator to control the second forearm relative to the connecting arm The rotation of the first-forearm actuator and the second forearm actuator is laterally offset from the central actuator. Other and further embodiments of the invention are described below. [Embodiment] Embodiments of the present invention generally relate to a substrate transfer machine for integrating a substrate manufacturing system. The substrate transfer robot of the present invention advantageously provides a common connecting arm and a separate lateral offset rotary actuator to individually control the arm of the transfer robot, which provides enhanced control of the transfer robot while reducing the overall size of the transfer robot, Thus, the transfer 5 201228784 robot can be easily installed and maintained. FIG. 1 is a schematic top view of an exemplary multi-chamber processing system that can be adapted for use with the apparatus of the present invention disclosed herein. Examples of suitable multi-chamber processing systems that can be adapted to the teachings provided herein include ENDURA®, CENTURA8, and pR〇DUCER8 processing systems (eg, PRODUCER® GTtm), ADVANTEDGETM processing systems, or available from Santa Cruz, California. Other suitable processing systems available from Clara's Applied Materials. It is contemplated that other processing systems, including those from other manufacturers, may be adapted to benefit from the present invention. In some embodiments, the processing system 1A can generally include a vacuum sealed processing platform 102, a factory interface 1〇4, and a system controller 14A. The platform 102 includes a plurality of process chambers 190A-F coupled to the transfer chamber 188 and at least one load lock chamber (not shown) 184 coupled to the transfer chamber 188. The transfer robot 1 6 (described later in reference to Figs. 2 and 3) is disposed in the center of the transfer chamber 188 to transfer the substrate between the load lock chamber 184 and the process chamber 19A_F. The process chamber i9〇a_f can be set to perform various functions, including layer deposition (including atomic layer deposition (ALD)), chemical vapor deposition (CVD), physical vapor deposition (p VD), and surname pre-purification Degassing, orientation and centering (cent; er_finding), annealing, and other substrate processes. Each of the process chambers I9A-F can include flow or other selectively sealable openings to selectively fluidly match the individual internal volumes of the process chambers 190A-F with the internal volume of the transfer chamber ία. Likewise, each of the load lock chambers 84 can include a helium to selectively fluidize the individual internal volumes of the load lock chamber 84 and the internal volume of the 201228784 transfer chamber 188. The factory interface 104 is coupled to the transfer chamber 188 via a load lock chamber 184. In some embodiments, each of the load lock chambers 84 can include a first weir 123 coupled to the factory interface 102 and a second weir 22 coupled to the transfer chamber 188. The load lock chamber 184 can be coupled to a pressure control system that draws and vacuums the load lock chamber 184 to assist in the vacuum environment of the substrate in the transfer chamber 188 and the substantial ambient pressure of the factory interface ι 4 (eg, atmospheric pressure) ) Transfer between environments. In some embodiments, the factory interface 1〇4 includes at least one base (8) and a primary
1J5J 廠介面機器人(圖示出一個)185,以辅助 將基板從4介面1G4通過負載鎖定室184移送至處理 平臺102進行處理。機座183係經配置以容納一或多個 (圖丁出四個)别開口晶圓移送盒(F〇uPs)187A_d。選擇性 地’-或多個測量站(未圖示)可與工廠介面刚耦合, 以輔助測量來自前開口晶圓移送盒ΐ87Α·〇 #基板。在 /、實施例中’叹置在工廠介面1G4内的工廠介面機器 二85能夠線性移動及旋轉移動(箭號182),以在負載鎖 疋至184和複數個前開口晶圓移送盒187A-D之間往返 移送基板晶匣。 系統控制器14 0押味ι| ♦ 3:田< 工制處理系統1 〇〇的操作,此控制通 過利用直接控制處理平臺 ,,^ 4 102與工廠介面104元件(即, 1程腔室190A-F、移送 ,^ 移送機态人102等)的一或多個,或 者,耜由控制與該製 # ^ 处理千里102及工廠介面1〇4元 件相關的電腦(或控制 益J來元成。在某些實施例中,系 201228784 統控制器140容許資料收集與來自處理系統丨〇〇元件的 反饋’以最佳化處理系統10〇的效能。 在某些實施例中,系統控制器14〇通常包含中央處理 單元(CPU)142、記憶體144、與支持電路146。cpui42 可以疋月b夠用於工業设定的任何型態通用電腦處理器的 一種。該記憶體144,或電腦可讀取媒介,可由cpu】42 存取並且可以是能夠輕易取得的記憶體之_或多種,例 如隨機存取記憶體(RAM)、唯讀記憶體(r〇m)、軟碟、硬 碟、或任何其他形式的局部或遠端的數位儲存器。支持 電路146慣常搞合至cpui42並且可包含快取、時脈電 路、輸入/輸出子系統、電源、及諸如此類者。 為增加基板產量,移送機器人1〇6係雙f基板移送機 器人’該雙臂基板移送機器人能夠同時處理兩個基板。 例如,參見第2A圖,在箪此替—y ,上 通常包含連接臂 連接臂204與中央致動器206 " 别臂2〇8 ’該第-前臂208可旋轉地盘連接 臂2°4的第-端-輕合;以及第二前臂212,;Γ 前臂212可旋轉地與連接臂咖的第二端214_r^ 一前臂致動器230係與連接臂204的第一端21〇 :人, 並且係經配置以控制第_ & 耦口, 旋轉,而第:前臂二接臂204的 -搞合,並且_ =置係與連㈣叫的第二端 接臂咖的旋轉配置M控制第二前臂-相對於連 204圍 中央致動器咖支樓連接臂2〇4並輔助連接臂 201228784 繞中央軸226的旋轉移動。中央致動器2〇6 J从疋能夠 提供前述旋轉移動的任何旋轉致動器’如,例如機械馬 達’例如油塵馬達、氣動馬達、或諸如此類,或是電氣 馬達,例如伺服馬達、步進馬達、或諸如此類。2某2 實施例中,中央致動器2〇6與連接器2()4可與機械齒ς 系統267耦合,例如齒輪箱或應變波齒輪系統,以辅^ 精確移動,同時提供可調整的齒輪比,以輔助能量從中 央致動器206至連接臂2〇4的有效傳送。在中央致動器 2〇6係電氣馬達的實施例申,電導引2Μ及/或集電罈 266可與中央致動器206耦合,以輔助功率從功率源(2 圖示)至中央致動器206的流動。 在某些實施射’中央致動g 2〇6可與舉升件246執 合’以輔助移送機器人106的垂直移動。在某些實施例 t,舉升件246通常可包含舉升致動器256,該舉升致 動器256係與外殼25。耦合’並經配置以提供:央致動 器206的垂直移動。在某些實施例中,波紋管加係與 外殼250及舉升致動H 256㉝合,以提供真空㈣進: 輔助在移送室188的内部體積242中維持預期氣壓(例如 真空條件)。舉升致動器256可包含適於提供中央致動器 2 〇 6的垂直運動的任何致動器。例如,在某些實施例中, 舉升致動ϋ 256可包含旋轉致動器如,該旋轉致動器 262與滾珠螺桿的螺桿258輕合。在此等實施例中, 滾珠螺桿260可經由臺架254與中央致動器2㈣合。 在某些實施例中’臺帛2 5 4能夠可移動地與—或多個(圖 201228784 :出-個)導軌268耦合,以輔助臺架流暢且精確 、移動操作時,旋轉致動器262旋轉螺桿,致使 滚珠螺桿260垂直移動’臺架2M也因而垂直移動藉 此辅助中央致動器206的移動。 雖然第2A圖示出臺架254在鄰近該中央致動器2〇6 -P 99處與中央致動器206耦合,但臺架254可在任 何位置與中央致動器206耦合。例如,在某些實施例中, 如第2B圖描繪者,臺帛254可在鄰近中央致動器讓 頂部298處與中央致動器2〇6耦合。在此等實施例中, 中央致動器206可經由設置在臺架254之通孔295内的 柃297與連接臂204耦合。在某些實施例令,桿297可 經由平板293與連接臂204耦合。 藉由在鄰近中央致動器206頂部298處耦合臺架254 與中央致動器206 ’維持在預期氣壓下(例如真空壓)的内 部體積242與未維持在預期氣壓下的外部體積243之間 的分隔位於中央致動器206上方,因而容許中央致動器 206在不需要近接移送室188的内部體積242的情況下 得到保養。 回到第2A圖,移送機器人106可經由適於提供足夠穩 定度以容許移送機器人1 06輔助基板移動的任何方式與 移送室188的内部體積242耦合。在某些實施例中,移 送室188的底表面23 2可包含一或多個凹槽(即,第一凹 槽234和第二凹槽244),該等凹槽係經配置以容納中央 致動器206、第一前臂致動器230與第二前臂致動器228 10 201228784 的尺寸與移動。例如,在此等實施例中,第二凹槽234 可提供環形路梭以容許S -前臂致動H 23G與第二前臂 動器228在中央致動器206圍繞移送室1的中央軸 226旋轉移送機器人106時行進通過第二凹槽234。當存 在或夕個凹槽時,該一或多個凹槽縮減容納移送機器 人106的整體向度所需的内部體積242尺寸。縮滅移送 室188内部體積242的尺寸提供較小的需要排空以得到 預期氣壓(例如,真空條件)的體積。此外,在具備小的 可得實體空間的既存設備中,低的移送機器人高度輔助 移送機器人106併入適當調整的既存設備中。 在某些實施例中’第一前臂致動器230與第二前臂致 動器228係耦合在連接臂204的相對端(即,分別耦合在 第端210與第二端214),並且係經設置為與中央致動 器206 4頁向偏位。提供橫向偏位配置的中央致動器2〇6、 第一别臂致動器230與第二前臂致動器228消除擁有在 連接臂204下方彼此堆疊的多個致動器的需要,因此縮 減移送機器人106的整體高度。此外,橫向偏位中央致 動器206、第一前臂致動器23〇與第二前臂致動器228 使每一個致動|§可被個別近接,因此消除必須移除整個 移送機器人106以進行保養或修復的需要。此外,在某 些實施例中,中央致動器2〇6、第一前臂致動器23〇、與 第二前臂致動器228並不需要呈線性排列,例如第3圖 所示者。 θ 回到第2Α圖,第一前臂致動器23〇與第二前臂致動器 201228784 228可以適於提供牢靠的、固定的耦合的任何方式與連 接臂204輕合。在某些實施例中,如第2A圖與第4A圖 所不者,第一前臂致動器230和第二前臂致動器228可 與連接臂204耦合而使得該等致動器大體而言設置在連 接臂204下方。在某些實施例中,例如第4B圖所示者, 第一則臂致動器230和第二前臂致動器228可與連接臂 204耦合而使得該等致動器大體而言設置在連接臂 上方。 在某些實施例中,連接臂204的第一端210與第二端 214的每一者皆可包含通孔274,該通孔的尺寸係經製作 以分別容納第-前臂致動器230和第二前臂致動器228 的至少一部分。在此等實施例中,支桿280、281可延伸 通過各別的通孔274以辅助第一前臂致動器23{)和第二 前臂致動器228與第一前f 2〇8和第二前臂212的: 合,因此使第—前臂致動器230和第二前臂致動器228 能夠分別控制第一前臂2〇8和第二前臂212的旋轉。在 某些實^例中,-或多個滾珠轴承(圖示的第-前臂208 和第一削臂212的每-者擁有—滾珠軸承279)可設置在 介於第-前臂2〇8和第二前臂212與個別的支桿28〇、 281間的間隙277内,以提供流暢的旋轉移動。 第一前臂致動器230和第二前臂致動器228的每一者 可以是能夠提供第一前臂2〇8和第二前臂212圍繞各自 的第一前臂軸270和第二前臂軸272的旋轉移動之任何 類型的旋轉致動器。例如,第—前臂致動H23〇和第二 12 201228784 前臂致動器228可以是上面關於 六双勁益206所討論 的任何旋轉致動器。在某些實施 米 刖臂致動器 230和第二前臂致動器228可以和中央致 1 丫天致動态206相同, 或者在某些實施例中,第一前臂致叙 牙政動裔230和第二前臂 致動H 228可以係與中央致動器2〇6不同類型的致動 器。在某些實施例中,第一前臂致動_ 23〇和第二前臂 致動器228可與機械齒輪系、统276、278 (例如齒輪箱或 應變波齒輪系統)耦合’以輔助精確移動同時提供可 調整的齒輪比,以分別輔助能量從第一前臂致動器’23〇 和第二前臂致動器228至第一前臂2〇8和第二前臂212 的有效傳送。此外’在某些實施例中,第—前臂致動器 230和第二前臂致動器228可更包含機電元件(未圖示) 以輔助精確旋轉,例如,編碼器,如旋轉編碼器或轴角 編碼器。 在某些貫施例中,連接臂204的第一端2 1 〇和第二端 2 14的每一者白可包含外殼4〇6,該外殼係經配置以容納 第一前臂致動器230和第二前臂致動器228的元件,例 如,如第4A圖和第4B圖所示者。例如,在此等實施例 中,第一前臂致動器230和第二前臂致動器228的每一 者皆可包含定子402,該定子係與外殼406耦合並經配 置以控制一轉子404的旋轉,該轉子係與第一前臂2〇8 和第二前臂212的每一者耦合。滾珠軸承4〇8可設置在 轉子404和固定地與外殼4〇6耦合的支桿41〇之間,以 提供流暢的旋轉移動。雖然在圖式中將外殼406和連接 13 201228784 臂204示為一個整合部件,但外殼4〇6可以是配置來與 連接臂204搞合的一個分離元件。 回見第2A圖,在某些實施例中,第一前臂2〇8和第二 前臂212的每一者係在第—端282、284可旋轉地與連接 臂204耦合。端效器(286、288)係在毗鄰前臂2〇8、 與第一端282、284相對的第二端294、296處可旋轉地 與第一前臂208和第二前臂212的每一者耦合。在某些 實施例中,每一個端效器286、288係經由端效器安裝表 面290、292與第一前臂2〇8和第二前臂212耦合。當存 在端效器安裝表面290、292時,該端效器安裝表面29〇、 292在第一前臂2〇8和第二前臂212與各自的端效器 286、288之間提供間隔。 在某些實施例中,第一滑輪2〇1、2〇3係與第一前臂 208的第一端282及第二前臂212的第一端284的每一 者耦合。在某些實施例中,第一滑輪2〇丨、2〇3係固定地 與支桿410耦合’例如’如第4A圖和第4B圖所示者。 回見第2A圖’第一滑輪2〇1、2〇3係經由各自的皮帶 205、207與各自的第二滑輪2〇9、211耦合,第二滑輪 209、2 11係設置在毗鄰第一前臂2〇8和第二前臂2丨2的 第一端294 ' 296處。第二滑輪2〇9、211係可旋轉地與 第一前臂208和第二前臂212的第二端294、296耦合, 並經由支桿291固定在端效器286、288上。在某些實施 例中’第二滑輪209、2 11能夠藉由設置在第一前臂2〇8 和第二前臂212的第二端294、296内的支桿416可旋轉 14 201228784 地與第一前臂208和第二前臂212耦合,例如,如第4A 圖和第4B圖所示者。在此等實施例中,軸承41 4可設置 在第二滑輪209、2 11和支桿4 16間以提供流暢的旋轉移 動。 參見第4A圖和第4B圖,操作時,第一前臂致動器230 及/或第二前臂致動器228圍繞支桿410並圍繞各自的第 一滑輪201、203旋轉第一前臂208及/或第二前臂212, 該等滑輪維持相對於連接臂204的固定旋轉位置。第一 前臂208及/或第二前臂212的旋轉經由皮帶2〇5、2〇7 導致第二滑輪209、211旋轉,因此相對於第一前臂2〇8 和第二前臂212旋轉端效器286、288。 在某些實施例中,可選擇第一滑輪2〇1、2〇3相對於第 -滑輪209、2 11的尺寸比,以辅助控制第二滑輪、 211的旋轉速率與轉動位移,以及輔助控制藉由第一鴻 輪201、203旋轉時的端效器286、288。例如,在某此 實施例中,當第-滑輪2(H'2()3和第二滑輪2〇9間的; 心對中心距離等於第_滑輪2(H、2〇3和中央軸咖間的 士中。距離時,第一滑輪20卜203對第二滑輪209、 川的尺寸比可以是約! : 2 彳铱其抽 彳你乐刖臂208及/ 或弟一剛# 2丨2致動期間維持端效器 106的定6 n L 野於移逆機器人 的疋向。可如上所討論般對應不同的 離使用其他尺寸比。 ί中心距 端效器286、288可 適當支撐的任何方式 以適於提供設置在端效 配置。例如,在某些實 器上的基板 施例t,端 15 201228784 效器286、288可包含—或多個支㈣3i4 3i6(圖示出 兩個),如第3圖所示者。 。刼作時,致動器(即’中央致動器2〇6、第一前臂致動 器23 0和第二前臂致動 動益228)的協調可提供移送機器人 106在提供預期的基板移動所需的任何方向上的移動。 例如’在某些實施例中,中央致動器206可以第-方向 走轉例如順時針’而第一前臂致動器23〇(或第二 前臂致動器228)可以相反方向旋轉,例如反時針, 因而使第-前臂2〇8(或第二前臂212)與端效器挪以前 行方向移動β 在某些實施例中’可改變第-前臂208和第二前臂212 的每一者的長度(如從第一前臂軸謂或第二前臂軸272 測量至端效器286、288旋轉軸31〇為止)相對於連接臂 2〇4的長冑3〇2(如從第一前臂,由測量至第二前臂軸 272為止)以調整第_前 月J # 208和第二刖臂212相對於連 的轉動位移。在此等實施例中,第一前臂· 月以212的每—者的長度相對於連接臂204的長 可支配以預期方向移動端效器286、288所需之中 ^致=器206的轉動位移相對於第一前臂致動器23〇(或 第一别臂致動器228)的轉動位移。 旋在如上述之中央致動器湯可以第—方向310 =轉而第—前臂致動器⑽可以相反方向則旋轉以以 刖仃方向移動端效器286 右苐一前臂208 、又、力是連接臂204長度302的-半(1/2),第一前 16 201228784 臂致動器230的轅叙a份 位知α可以是中央致動器2〇6的 動位移的約兩倍(2的。@ 付 )或者,在第—前臂208的長度306 ^幻於連接臂204長度302的一半(1/2)的實施 =,可改變第_前臂致動器23〇的轉動位移使第一前 "致動器230的轉動位移大於’或小於,中央致動器206 的轉動位移的約兩倍,以達到端效ϋ在預期方向上的移 動。 , 在此提供與整合製造系統並用的改良的基板移 送機器人。本發明的基板移送機器人有利地提供共同的 連接臂與分開的橫向偏位的旋轉致動器,以單獨控制移 达機器人的手f,此舉提供對於移送機ϋ人的強化的控 制同時縮減移送機器人的整體尺寸,因而使移送機器人 可以輕易地安裝及保養。 雖然前述係針對本發明實施例,但本發明的其他及進 一步實施例可在不背離其基本範圍下被設計出。 【圖式簡單說明】 可藉由參考在附圖中描繪出的本發明之說明性實施例 來瞭解本發明實施例,簡短地在前面概述過並在隨後更 詳細地討論本發明實施例。但是應注意的是,附圖僅示 出本發明之一般實施例,因此不應視為係對本發明實施 例範圍之限制’因為本發明可允許其他等效實施例。 第1圖係適於與根據本發明某些實施例之本發明的雙 臂基板移送機器人並用的處理系統。 17 201228784 第2A圖及第2B圖係奸j者士 2欠。口 # , 據本發明某些實施例之本發明 的雙臂基板移送機器人之剖面圖。 第3圖係根據本發明羊 d呆些Λ施例之本發明的雙臂基板 移送機器人之上視圖。 土 第4Α圖及第4Β圖係根據本發明某些實施例之本發明 的雙#基板移送機器人之剖面圖。 為了促進瞭解,在可能時使用相同的元件符號來表示 該等圖式共有的相同元件。該等圖式並未按比例繪製’ 並且可能經簡化以求清楚。預期到一實施例的元件與特 徵結構可有利地併入其他實施例而不需特別詳述。 【主要元件符號說明】 100 多腔室處理系統 102 真空密封處理平臺 104 工廠介面 106 移送機器人 123 第一 ί隼 125 第二崞 140 系統控制器 142 令央處理單元 144 記憶體 146 支持電路 182箭號 183 機座 201228784 184 負載鎖定室 185 工廠介面機器人 187A-D 前開口晶圓移送盒 188 移送室 190A-F 製程腔室 201、203 第一滑輪 204 連接臂 205 > 207 皮帶 206 中央致動器 208 第一前臂 209、211 第二滑輪 210 、 282 、 284 第一端 212 第二前臂 214、294、296 第二端 226 中央軸 228 第二前臂致動器 230 第一前臂致動器 232 底表面 234、244 凹槽. 242 内部體積 243 外部體積 246 舉升件 250 外殼 254 臺架 19 201228784 256 舉升致動器 258 螺桿 260 滾珠螺桿 262 旋轉致動器 264 電導引 265 波紋管 266 集電環 268 導轨 270 第一前臂轴 272 第二前臂轴 274 通孔 267、276、278 機械齒輪系統 277 間隙 279、408、414 滾珠軸承 支桿 280 、 281 、 291 、 297 、 410 、 416 286、288 端效器 290、292 端效器安裝表面 293 平板 295 通孔 298 頂部 299 底部 302 連接臂長度 306 第一前臂長度 3 08 相反方向 20 201228784 -向 支撐臂 3 10 第一 314、 316 402 定子 404 轉子 406 外殼A 1J5J plant interface robot (one shown) 185 is provided to assist in transferring the substrate from the 4 interface 1G4 through the load lock chamber 184 to the processing platform 102 for processing. The base 183 is configured to accommodate one or more (four illustrated) open-cell transfer boxes (F〇uPs) 187A-d. Optionally, a plurality of measurement stations (not shown) can be coupled to the factory interface to assist in the measurement of the substrate from the front opening wafer transfer cassette. In the embodiment, the factory interface machine 2, which is placed in the factory interface 1G4, is capable of linear movement and rotational movement (arrow 182) to lock the load to 184 and a plurality of front opening wafer transfer boxes 187A- The substrate wafer is transferred back and forth between D. The system controller 14 0 味 ι| ♦ 3: Tian < work processing system 1 〇〇 operation, this control through the use of direct control processing platform, ^ 4 102 and factory interface 104 components (ie, 1 process chamber 190A One or more of -F, transfer, ^ transfer mode 102, etc., or, by controlling the computer associated with the system ^ ^ processing thousands of 102 and factory interface 1 〇 4 components (or control benefits J Yuan Yuancheng In some embodiments, the 201228784 controller 140 allows for data collection and feedback from processing system components to optimize the performance of the processing system 10. In some embodiments, the system controller 14 The 〇 usually includes a central processing unit (CPU) 142, a memory 144, and a support circuit 146. The cpui 42 can be used for any type of general-purpose computer processor that is industrially set. The memory 144, or a computer can The reading medium can be accessed by cpu 42 and can be easily obtained or stored in various types, such as random access memory (RAM), read only memory (r〇m), floppy disk, hard disk, Or any other form of local or remote digit The support circuit 146 is conventionally fitted to the cpui 42 and may include a cache, a clock circuit, an input/output subsystem, a power supply, and the like. To increase the substrate yield, the transfer robot 1〇6 is a dual-f substrate transfer robot' The dual-arm substrate transfer robot is capable of processing two substrates at the same time. For example, referring to FIG. 2A, in this case, the connection arm 204 and the central actuator 206 are generally included. The first-forearm 208 rotatably couples the first end-to-light combination of the arm 2° 4; and the second forearm 212; Γ the forearm 212 rotatably and the second end of the connecting arm 214_r^ a forearm actuator 230 The first end 21 of the connecting arm 204 is: human, and is configured to control the _ & coupling, rotate, and the: forearm two-arm 204 - engage, and _ = set and connect (four) The second end arm's rotational configuration M controls the second forearm - relative to the joint 204 around the central actuator coffee branch connecting arm 2 〇 4 and the auxiliary connecting arm 201228784 about the central axis 226. 2〇6 J from 疋 can provide any rotation of the aforementioned rotational movement The actuator 'such as, for example, a mechanical motor' such as a dust motor, a pneumatic motor, or the like, or an electric motor such as a servo motor, a stepping motor, or the like. 2 In the 2 embodiment, the central actuator 2〇 6 and connector 2() 4 can be coupled to mechanical gingle system 267, such as a gearbox or strain wave gear system, to assist in precise movement while providing an adjustable gear ratio to assist energy from central actuator 206 to The effective transfer of the connecting arms 2〇4. In the embodiment of the central actuator 2〇6 electric motor, the electric guiding 2Μ and/or the collector 266 can be coupled with the central actuator 206 to assist the power from the power The flow of source (2) to central actuator 206. In some implementations, the central actuation g 2 〇 6 can be engaged with the lift 246 to assist in the vertical movement of the transfer robot 106. In certain embodiments t, the lift member 246 can generally include a lift actuator 256 that is coupled to the outer casing 25. Coupling' and configured to provide vertical movement of the central actuator 206. In some embodiments, the bellows is coupled with the outer casing 250 and the lift actuator H 25633 to provide vacuum (four) advancement: assisting in maintaining the desired air pressure (e.g., vacuum conditions) in the interior volume 242 of the transfer chamber 188. The lift actuator 256 can include any actuator adapted to provide vertical movement of the central actuator 2 〇 6. For example, in some embodiments, the lift actuator 256 can include a rotary actuator such as the rotary actuator 262 that is in direct engagement with the screw 258 of the ball screw. In such embodiments, the ball screw 260 can be coupled to the central actuator 2 (four) via the gantry 254. In some embodiments, the 'station 524 can be movably coupled to one or more (Fig. 201228784: out) rails 268 to assist the gantry in smooth and precise, rotational operation when rotating the actuator 262 Rotating the screw causes the ball screw 260 to move vertically. The gantry 2M also moves vertically thereby assisting the movement of the central actuator 206. While Figure 2A shows the gantry 254 coupled to the central actuator 206 adjacent the central actuators 2 - 6 - P 99, the gantry 254 can be coupled to the central actuator 206 at any location. For example, in some embodiments, as depicted in Figure 2B, the table 254 can be coupled to the central actuator 2〇6 at the top 298 adjacent the central actuator. In such embodiments, the central actuator 206 can be coupled to the connecting arm 204 via a bore 297 disposed in the through bore 295 of the gantry 254. In some embodiments, the rod 297 can be coupled to the connecting arm 204 via a plate 293. By maintaining the coupling 254 and the central actuator 206' adjacent the central actuator 206 at the top 298 between the internal volume 242 at the desired air pressure (e.g., vacuum pressure) and the external volume 243 not maintained at the desired air pressure 243 The separation is located above the central actuator 206, thus allowing the central actuator 206 to be serviced without the need to access the internal volume 242 of the transfer chamber 188. Returning to Figure 2A, the transfer robot 106 can be coupled to the interior volume 242 of the transfer chamber 188 via any means suitable to provide sufficient stability to permit the transfer robot 106 to assist in substrate movement. In some embodiments, the bottom surface 23 2 of the transfer chamber 188 can include one or more grooves (ie, a first groove 234 and a second groove 244) that are configured to accommodate the central portion The size and movement of the actuator 206, the first forearm actuator 230, and the second forearm actuator 228 10 201228784. For example, in such embodiments, the second groove 234 can provide a toroidal shuttle to allow the S-Forearm actuation H 23G and the second forearm actuator 228 to rotate about the central axis 226 of the transfer chamber 1 at the central actuator 206 The robot 106 is moved through the second groove 234. The one or more grooves reduce the size of the internal volume 242 required to accommodate the overall orientation of the transfer robot 106 when there is or a recess. The size of the internal volume 242 of the retraction transfer chamber 188 provides a smaller volume that requires emptying to achieve the desired air pressure (e.g., vacuum conditions). Moreover, in an existing device having a small available physical space, the low transfer robot height assisted transfer robot 106 is incorporated into an appropriately adjusted existing device. In certain embodiments, 'the first forearm actuator 230 and the second forearm actuator 228 are coupled at opposite ends of the connecting arm 204 (ie, coupled to the first end 210 and the second end 214, respectively), and are It is set to be offset from the central actuator 206 by 4 pages. The central actuator 2〇6, the first arm actuator 230 and the second forearm actuator 228 providing a laterally offset configuration eliminate the need to have multiple actuators stacked one on top of the connecting arm 204, thus reducing The overall height of the transfer robot 106. In addition, the laterally offset central actuator 206, the first forearm actuator 23A, and the second forearm actuator 228 enable each actuation|§ to be individually abutted, thus eliminating the need to remove the entire transfer robot 106 for The need for maintenance or repair. Moreover, in some embodiments, the central actuator 2"6, the first forearm actuator 23", and the second forearm actuator 228 need not be linearly aligned, such as shown in FIG. θ Returning to Fig. 2, the first forearm actuator 23〇 and the second forearm actuator 201228784 228 may be adapted to provide a secure, fixed coupling in any manner that is in direct contact with the connecting arm 204. In certain embodiments, as in Figures 2A and 4A, the first forearm actuator 230 and the second forearm actuator 228 can be coupled to the connecting arm 204 such that the actuators are generally It is disposed below the connecting arm 204. In certain embodiments, such as shown in FIG. 4B, the first arm actuator 230 and the second forearm actuator 228 can be coupled to the connecting arm 204 such that the actuators are generally disposed in connection Above the arm. In some embodiments, each of the first end 210 and the second end 214 of the connecting arm 204 can include a through hole 274 sized to receive the first-forearm actuator 230 and At least a portion of the second forearm actuator 228. In such embodiments, the struts 280, 281 can extend through the respective through holes 274 to assist the first forearm actuator 23{) and the second forearm actuator 228 with the first front f 2 〇 8 and The combination of the two forearms 212 thus enables the first forearm actuator 230 and the second forearm actuator 228 to control the rotation of the first forearm 2〇8 and the second forearm 212, respectively. In some embodiments, - or a plurality of ball bearings (each of the illustrated first - forearm 208 and first cutting arm 212 - ball bearing 279) may be disposed between the first forearm 2〇8 and The second forearm 212 is within the gap 277 between the individual struts 28A, 281 to provide smooth rotational movement. Each of the first forearm actuator 230 and the second forearm actuator 228 may be capable of providing rotation of the first forearm 2〇8 and the second forearm 212 about the respective first forearm axis 270 and second forearm axis 272 Any type of rotary actuator that moves. For example, the first forearm actuation H23 and the second 12 201228784 forearm actuator 228 can be any of the rotary actuators discussed above with respect to Liushuang Jinyi 206. In some implementations, the armature arm actuator 230 and the second forearm actuator 228 may be the same as the center-to-one antenna dynamics 206, or in some embodiments, the first forearm may be described as a dental dynasty 230 The second forearm actuation H 228 can be a different type of actuator than the central actuator 2〇6. In certain embodiments, the first forearm actuation _ 23 〇 and the second forearm actuator 228 can be coupled to a mechanical gear train 276, 278 (eg, a gearbox or strain wave gear system) to aid in precise movement while An adjustable gear ratio is provided to assist in efficient transfer of energy from the first forearm actuator '23' and the second forearm actuator 228 to the first forearm 2〇8 and the second forearm 212, respectively. Further, in some embodiments, the first-forearm actuator 230 and the second forearm actuator 228 may further include an electromechanical component (not shown) to assist in precise rotation, such as an encoder, such as a rotary encoder or shaft. Angle encoder. In some embodiments, each of the first end 2 1 〇 and the second end 214 of the connecting arm 204 may include a housing 4〇6 configured to receive the first forearm actuator 230 And elements of the second forearm actuator 228, for example, as shown in Figures 4A and 4B. For example, in such embodiments, each of the first forearm actuator 230 and the second forearm actuator 228 can include a stator 402 coupled to the outer casing 406 and configured to control a rotor 404 Rotating, the rotor system is coupled to each of the first forearm 2〇8 and the second forearm 212. Ball bearings 4〇8 may be disposed between the rotor 404 and the struts 41〇 fixedly coupled to the outer casing 4〇6 to provide smooth rotational movement. Although the outer casing 406 and the connection 13 201228784 arm 204 are shown as an integrated component in the drawings, the outer casing 4 6 may be a separate component that is configured to engage the connecting arm 204. Referring back to Figure 2A, in some embodiments, each of the first forearm 2〇8 and the second forearm 212 is rotatably coupled to the connecting arm 204 at the first end 282,284. The end effectors (286, 288) are rotatably coupled to each of the first forearm 208 and the second forearm 212 at a second end 294, 296 adjacent the forearm 2A, opposite the first ends 282, 284 . In some embodiments, each of the end effectors 286, 288 is coupled to the first forearm 2 〇 8 and the second forearm 212 via a damper mounting surface 290, 292. The end effector mounting surfaces 29, 292 provide spacing between the first forearm 2 〇 8 and the second forearm 212 and the respective end effectors 286, 288 when the end effector mounting surfaces 290, 292 are present. In some embodiments, the first pulleys 2〇1, 2〇3 are coupled to each of the first end 282 of the first forearm 208 and the first end 284 of the second forearm 212. In some embodiments, the first pulleys 2, 2, 3 are fixedly coupled to the struts 410, e.g., as shown in Figures 4A and 4B. Referring back to FIG. 2A, the first pulleys 2〇1 and 2〇3 are coupled to the respective second pulleys 2〇9 and 211 via respective belts 205 and 207, and the second pulleys 209 and 211 are disposed adjacent to the first. The forearm 2〇8 and the first end 294'296 of the second forearm 2丨2. The second pulleys 2, 9, 211 are rotatably coupled to the second ends 294, 296 of the first and second forearms 208, 212, and are secured to the end effectors 286, 288 via struts 291. In some embodiments, the 'second pulleys 209, 2 11 can be rotated 14 by the struts 416 disposed in the second ends 294, 296 of the first forearm 2 〇 8 and the second forear 212 212. The forearm 208 and the second forearm 212 are coupled, for example, as shown in Figures 4A and 4B. In such embodiments, a bearing 41 4 can be disposed between the second pulleys 209, 2 11 and the struts 4 16 to provide smooth rotational movement. Referring to FIGS. 4A and 4B, in operation, the first forearm actuator 230 and/or the second forearm actuator 228 surrounds the strut 410 and rotates the first forearm 208 around the respective first pulleys 201, 203 and/or Or the second forearm 212, the pulleys maintain a fixed rotational position relative to the connecting arm 204. Rotation of the first forearm 208 and/or the second forearm 212 causes the second pulleys 209, 211 to rotate via the belts 2〇5, 2〇7, thereby rotating the end effector 286 relative to the first forearm 2〇8 and the second forearm 212 288. In some embodiments, the size ratio of the first pulleys 2〇1, 2〇3 relative to the first pulleys 209, 211 may be selected to assist in controlling the rate of rotation and rotational displacement of the second pulley, 211, and assisted control. The end effectors 286, 288 are rotated by the first switch wheels 201, 203. For example, in one such embodiment, when the first pulley 2 (H'2()3 and the second pulley 2〇9; the center-to-center distance is equal to the first pulley 2 (H, 2〇3, and the central axis coffee) In the distance between the taxis, the distance between the first pulley 20 203 and the second pulley 209, Chuan can be about! : 2 彳铱 彳 彳 刖 刖 208 208 208 and / or 弟一刚# 2丨2 During the actuation period, the fixed 6 n L of the end effector 106 is in the direction of the tilting robot. The different size ratios can be used for different purposes as discussed above. ί Any distance between the end effectors 286, 288 can be properly supported. In a manner suitable for providing a configuration in an end effect configuration, for example, on a substrate embodiment t on some implements, the end 15 201228784 286, 288 may comprise - or a plurality of branches (4) 3i4 3i6 (two shown), As shown in Figure 3, the coordination of the actuator (i.e., 'central actuator 2〇6, first forearm actuator 203 and second forearm actuation 228) provides for transfer The movement of the robot 106 in any direction required to provide the desired movement of the substrate. For example, 'in some embodiments, the central actuator 206 can be rotated in the first direction. The first forearm actuator 23A (or the second forearm actuator 228) can rotate in the opposite direction, such as counterclockwise, such that it is clockwise', thereby causing the first forearm 2〇8 (or the second forearm 212) to be end effected Movement in the forward direction β In some embodiments 'the length of each of the first-forearm 208 and the second forearm 212 can be changed (eg, measured from the first forearm axis or the second forearm axis 272 to the end effector) 286, 288 rotation axis 31 )) relative to the length 胄 3 〇 2 of the connecting arm 2 〇 4 (as measured from the first forearm to the second forearm axis 272) to adjust the first _ month before J # 208 and the second The rotational displacement of the ankle arm 212 relative to the joint. In these embodiments, the length of each of the first forearm months 212 is movable relative to the length of the connecting arm 204 to move the end effectors 286, 288 in a desired direction. The rotational displacement of the device 206 is relative to the rotational displacement of the first forearm actuator 23 (or the first arm actuator 228). The central actuator soup as described above may be in the first direction. 310 = in turn - the forearm actuator (10) can be rotated in the opposite direction to move the end effector 286 in the x direction The arm 208, again, the force is -half (1/2) of the length 302 of the connecting arm 204, and the first front 16 201228784 arm actuator 230 can be the movement of the central actuator 2〇6 About twice the displacement (2. @付) or, in the implementation of the length 306 of the first forearm 208, which is half the length (1/2) of the length 302 of the connecting arm 204, the first forearm actuator 23 can be changed. The rotational displacement of the cymbal causes the rotational displacement of the first front "actuator 230 to be greater than or less than about twice the rotational displacement of the central actuator 206 to achieve movement of the end effect 预期 in the desired direction. Here, an improved substrate transfer robot for use with an integrated manufacturing system is provided. The substrate transfer robot of the present invention advantageously provides a common link arm and a separate laterally offset rotary actuator to individually control the hand f of the transfer robot, which provides enhanced control of the transfer machine while reducing the transfer The overall size of the robot allows the transfer robot to be easily installed and maintained. While the foregoing is directed to embodiments of the present invention, other and further embodiments of the present invention may be devised without departing from the basic scope. BRIEF DESCRIPTION OF THE DRAWINGS Embodiments of the present invention can be understood by referring to the illustrative embodiments of the present invention which are illustrated in the accompanying drawings. It is to be understood, however, that the appended claims Figure 1 is a processing system suitable for use with a dual arm substrate transfer robot of the present invention in accordance with certain embodiments of the present invention. 17 201228784 2A and 2B are traitors. Port # is a cross-sectional view of a dual-arm substrate transfer robot of the present invention in accordance with some embodiments of the present invention. Fig. 3 is a top view of the dual-substrate transfer robot of the present invention in accordance with the present invention. Soil Section 4 and Figure 4 are cross-sectional views of a double # substrate transfer robot of the present invention in accordance with some embodiments of the present invention. To promote understanding, the same element symbols are used where possible to indicate the same elements that are common to the drawings. The figures are not drawn to scale ' and may be simplified for clarity. It is contemplated that elements and features of an embodiment may be beneficially incorporated in other embodiments without particular detail. [Main component symbol description] 100 multi-chamber processing system 102 vacuum sealing processing platform 104 factory interface 106 transfer robot 123 first 隼 125 second 崞 140 system controller 142 central processing unit 144 memory 146 support circuit 182 arrow 183 Base 201228784 184 Load Locking Chamber 185 Factory Interface Robot 187A-D Front Open Wafer Transfer Box 188 Transfer Chamber 190A-F Process Chamber 201, 203 First Pulley 204 Connecting Arm 205 > 207 Belt 206 Central Actuator 208 First forearm 209, 211 second pulley 210, 282, 284 first end 212 second forearm 214, 294, 296 second end 226 central shaft 228 second forearm actuator 230 first forearm actuator 232 bottom surface 234 244 groove. 242 internal volume 243 external volume 246 lift 250 outer casing 254 gantry 19 201228784 256 lift actuator 258 screw 260 ball screw 262 rotary actuator 264 electric guide 265 bellows 266 collector ring 268 Guide rail 270 first forearm shaft 272 second forearm shaft 274 through holes 267, 276, 278 mechanical gear system 277 clearance 279, 408, 414 ball bearing strut 280 , 281 , 291 , 297 , 410 , 416 286 , 288 end effector 290 , 292 end effector mounting surface 293 plate 295 through hole 298 top 299 bottom 302 connecting arm length 306 first forearm length 3 08 opposite direction 20 201228784 - Support arm 3 10 first 314, 316 402 stator 404 rotor 406 outer casing